

การพัฒนาอัลกอริทึมที่ใช้ในการตรวจจับการติดตาย
ส าหรับการระบุการติดตายที่มีแนวโน้มที่จะเกิดข้ึน

นางสาวสุวารินทร์ พลอยศรี

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต
สาขาวิชาวิศวกรรมซอฟต์แวร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2557

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

A DEVELOPMENT OF THE DEADLOCK DETECTION ALGORITHM
FOR IDENTIFYING POTENTIAL DEADLOCKS

Miss Suvarin Ploysri

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Software Engineering

Department of Computer Engineering
Faculty of Engineering

Chulalongkorn University
Academic Year 2014

Copyright of Chulalongkorn University

Thesis Title A DEVELOPMENT OF THE DEADLOCK DETECTION
ALGORITHM FOR IDENTIFYING POTENTIAL
DEADLOCKS

By Miss Suvarin Ploysri
Field of Study Software Engineering
Thesis Advisor Associate Professor Wanchai Rivepiboon, Ph.D.

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master's Degree

 Dean of the Faculty of Engineering

(Professor Bundhit Eua-arporn, Ph.D.)

THESIS COMMITTEE

 Chairman

(Associate Professor Wiwat Vatanawood, Ph.D.)

 Thesis Advisor

(Associate Professor Wanchai Rivepiboon, Ph.D.)

 Examiner

(Associate Professor Twittie Senivongse, Ph.D.)

 External Examiner

(Associate Professor Somchai Prakancharoen, Ph.D.)

 iv

THAI ABSTRACT

สุวารินทร์ พลอยศรี : การพัฒนาอัลกอริทึมที่ใช้ในการตรวจจับการติดตายส าหรับการระบุ
การติดตายที่มีแนวโน้มที่จะเกิดขึ้น (A DEVELOPMENT OF THE DEADLOCK
DETECTION ALGORITHM FOR IDENTIFYING POTENTIAL DEADLOCKS) อ.ที่ปรึกษา
วิทยานิพนธ์หลัก: รศ. ดร. วันชัย ริ้วไพบูลย์, 198 หน้า.

ในปัจจุบันการพัฒนาอินเตอร์เฟสของชุดค าสั่งของโปรแกรมประยุกต์แบบมัลติเธรด(เอพีไอ)
เพ่ือการใช้งานเฉพาะอย่างนั้น มีการพัฒนาอย่างกว้างขวางมาก อย่างไรก็ตามปัญหาที่เกิดจากเอพีไอ
แบบมัลติเธรดนั้นก็ได้เกิดขึ้นมาด้วย นั่นก็คือการติดตาย การติดตายในเอพีไอแบบมัลติเธรดเป็นสิ่งที่
น่ากังวลมากที่สุดเพราะว่า เราไม่สามารถค้นหาการติดตายในโปรแกรมประยุกต์และค่าใช้จ่ายส าหรับ
การแก้ไขข้อบกพร่องภายหลังเฟสการพัฒนาจะสูงมากขึ้นและปัญหามีความซับซ้อนมากขึ้น การ
ตรวจจับการติดตายในเอพีไอแบบมัลติเธรดในเฟสต้นของวงจรการพัฒนาซอฟต์แวร์หรือการใช้ก าร
วิเคราะห์แบบสถิตย์คงเป็นวิธีที่มีประสิทธิภาพมากกว่าวิธีอ่ืน เนื่องจากเรายังไม่ทราบว่าผู้เขียน
โปรแกรมจะน าเอาเอพีไอแบบมัลติเธรดไปใช้อย่างไร การตรวจจับทุกๆ ส่วนของชุดค าสั่งจึงถูก
น ามาใช้ในงานวิจัยฉบับนี้ เราประสบความส าเร็จในการพัฒนาอัลกอริทึมที่ใช้ในการตรวจจับการติด
ตาย โดยน าแนวคิด ของมายูร์ เนก ซึ่งกล่าวไว้ในปี 2009 ว่า เงื่อนไขของการเกิดการติดตายนั้นมี 5
ประเภทและ แนวคิดของแฟรงก์ อ็อตโต ซึ่งกล่าวไว้ในปี 2008 ว่า รูปแบบของรหัสค าสั่งนั้นมี 2
ประเภท ในงานวิจัยชิ้นนี้ได้เสนอ 7 เงื่อนไขของการเกิดการติดตาย ซึ่งได้แก่ เงื่อนไขสมนาม เงื่อนไข
การล็อคด้วยล าดับผันกลับหรือเงื่อนไขล็อคพ่ึงพาแบบวงกลม เงื่อนไขหลบหนี เงื่อนไขแบบขนาน
เงื่อนไขไม่มีล็อคป้องกัน และเงื่อนไขล็อคฟุ่มเฟือย มาใช้ในการพัฒนาอัลกอรึทึมที่ใช้ในการตรวจจับ
การติดตาย และนอกจากนี้แล้ว เราได้มีการพัฒนาเครื่องมือต้นแบบที่ใช้ในการการตรวจจับการติด
ตายเพ่ือแสดงให้เห็นถึงการใช้งานอัลกอริทึมที่ใช้ในการตรวจจับการติดตาย ผลของการพัฒนา
อัลกอริทึมท่ีใช้ในการตรวจจับการติดตายและเครื่องมือที่ใช้ในการตรวจจับการติดตายนั้น ให้ผลเป็นที่
น่าพอใจ และ ถูกต้องตามที่คาดไว้

ภาควิชา วิศวกรรมคอมพิวเตอร์
สาขาวิชา วิศวกรรมซอฟต์แวร์
ปีการศึกษา 2557

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาหลัก

 v

ENGLISH ABSTRACT

5471023921 : MAJOR SOFTWARE ENGINEERING
KEYWORDS: DEADLOCK / DEADLOCK DETECTION ALGORITHM / STATIC ANALYSIS /
MULTITHREADING / JAVA / API

SUVARIN PLOYSRI: A DEVELOPMENT OF THE DEADLOCK DETECTION
ALGORITHM FOR IDENTIFYING POTENTIAL DEADLOCKS. ADVISOR: ASSOC.
PROF. WANCHAI RIVEPIBOON, Ph.D., 198 pp.

Currently, developing a multithreading Application Programming Interface
(API) for special use is extensive. Deadlock in the multithreading API is the most
concerned problem because we cannot find the deadlock in the application and the
cost for defect fixing later on the development phase is even higher and more
complex. Detecting deadlock in early phase of the Software Development Life
Cycle or using static analysis is the way more effective. Since we still do not know
how developer uses the API, detecting deadlock in the source code using static
analysis is our selection for this research. We have successfully developed the
Deadlock Detection Algorithm that brings the concept of five deadlock conditions by
Mayur Naik published in 2009 and two code patterns by Frank Otto published in
2008. We present seven deadlock conditions that are the Aliasing Condition, the
Reverse Order Locking Condition or the Cyclic Lock Dependency Condition, the
Escaping Condition, the Parallel Condition, the Non-Guarded Lock Condition and the
Superfluous Lock Condition. In addition, we develop the prototype of the Deadlock
Detection Tool to demonstrate the use of the Deadlock Detection Algorithm. The
result of the implementation of the Deadlock Detection Algorithm and the Deadlock
Detection Tool are satisfied and provide correct result as expected.

Department: Computer Engineering
Field of Study: Software Engineering
Academic Year: 2014

Student's Signature

Advisor's Signature

 vi

ACKNOWLEDGE MENTS

ACKNOWLEDGEMENTS

First and foremost I wish to express my deepest gratitude to my thesis
advisor, Associate Professor Dr. Wanchai Rivepiboon, for his continuous support in
the entire of my thesis and life. Without his encouragement, understanding, caring
and excellent guidance, I could not have finished this thesis. I would like to thank
the rest of my thesis committee, Associate Professor Dr. Wiwat Vatanawood,
Associate Professor Dr. Twittie Senivongse and Associate Professor Dr. Somchai
Prakancharoen, who gave me comments and reviewed my work. In addition, I
offer my sincerest gratitude to the faculty and officers of Computer Engineering
and Chulalongkorn University.

Besides my academic, I would like to thank for Thomson Reuters
(Software) Thailand for sponsorship, support and opportunity to develop my
knowledge and ability. In addition, I would like to thank for my ex-colleagues in
Thomson Reuters, especially, TRDC support team.

I would like to thank for my all of my classmates, especially my 10th
group for help, support, encouragement, sincere and friendship.

Above all, I am deeply grateful for my family, relatives and close friends
that always stay by my side through the good and bad and pray for me
throughout the time of my study. This thesis is heartily dedicated to my mother
and father who value education and goodness.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF FIGURES .. xii

LIST OF TABLES .. xv

CHAPTER I INTRODUCTION .. 1

1.1. Motivation... 1

1.2. Objective ... 4

1.3. Scope ... 5

1.4. Contribution ... 6

1.5. Publications .. 6

1.6. Research Methodology .. 7

1.7. Organization of the Thesis .. 7

CHAPTER II BACKGROUND THEORY AND LITERATURE REVIEWS ... 8

2.1. Background Theory ... 8

2.1.1. Application Programming Interface (API) ... 8

2.1.2. Multithreading API .. 8

2.1.3. Deadlock .. 10

2.1.3.1. Mutual Exclusion ... 10

2.1.3.2. Hold and Wait .. 10

2.1.3.3. No Preemption .. 10

 viii

 Page

2.1.3.4. Circular Wait ... 10

2.1.4. Deadlock Example ... 11

2.1.4.1. Alphones and Gaston Story [8] .. 11

2.1.4.2. Some Deadlock Properties of Computer Systems 13

2.1.4.3. Deadlock Detection in Distributed Databases 13

2.1.5. Deadlock in the multithreading API .. 14

2.1.6. Six conditions of Deadlock ... 16

2.1.6.1. Reachable Condition .. 16

2.1.6.2. Aliasing Condition .. 16

2.1.6.3. Escaping Condition .. 16

2.1.6.4. Parallel Condition ... 16

2.1.6.5. Non-Reentrant Condition... 16

2.1.6.6. Non-Guarded Condition ... 17

2.1.7. Three Types of Deadlock Analysis .. 18

2.1.7.1. Static Analysis .. 18

2.1.7.2. Dynamic Analysis ... 18

2.1.7.3. Hybrid Analysis ... 18

2.1.8. Deadlock Detection Algorithms ... 20

2.1.8.1. Directed Graph ... 20

2.1.8.2. Wait-For Graph (WFG) ... 20

2.1.8.3. Call Graph ... 21

2.1.9. Path Coverage ... 21

2.1.10. Deadlock Code Patterns ... 21

 ix

 Page

2.1.10.1. Cyclic Lock Dependencies .. 21

2.1.10.2. Superfluous Lock .. 23

2.2. Literature Reviews .. 24

2.2.1. Effective Static Deadlock Detection ... 24

2.2.2. Finding Synchronization Defects in Java Programs: Extended Static
Analyses and Code Patterns .. 25

2.2.3. Understanding Complex Multithreaded Software Systems by Using
Trace Visualization .. 25

2.2.4. Run-Time Detection of Potential Deadlocks for Programs with Locks,
Semaphores, and Condition Variables ... 26

2.2.5. Pulse: A Dynamic Deadlock Detection Mechanism Using Speculative
Execution .. 27

2.2.6. Static Deadlock Detection for Java Libraries .. 27

2.2.7. Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients 28

2.2.8. Ant Colony Optimization for Deadlock Detection in Concurrent
Systems .. 28

CHAPTER III APPROACH OF THIS THESIS ... 30

3.1. Deadlock Detection Algorithm ... 32

3.1.1. Exported Code .. 35

3.1.2. Thread Counting ... 35

3.1.3. Synchronized Object Collecting .. 37

3.1.4. Aliasing Condition ... 39

3.1.5. Parallel Condition ... 44

3.1.6. Escaping Condition ... 46

 x

 Page

3.1.7. Reachable Condition ... 47

3.1.8. Superfluous Lock Condition ... 49

3.1.9. Non-Guarded Lock Condition .. 51

3.1.10. Reverse Order Locking Condition or Cyclic Lock Dependency
Condition .. 54

3.2. Deadlock Detection Tool .. 63

3.2.1. Model Design ... 64

3.2.2. View Design .. 65

3.2.3. Controller Design .. 67

CHAPTER IV RESULT AND VALIDATION .. 68

4.1. Result... 68

4.4.1. Result of the Deadlock Detection Algorithm .. 68

4.4.2. Result of the Deadlock Detection Tool ... 68

4.2. Validation .. 76

CHAPTER V CONCLUSION AND FUTURE WORK ... 79

REFERENCES ... 85

APPENDICES .. 88

APPENDIX A PUBLICATION ... 89

APPENDIX B SOURCE CODE OF DEADLOCK DETECTION TOOL ... 90

B.1. Model Package .. 90

B.2. View Package ... 124

B.2.1. DeadlockDetectionTool.java .. 124

B.2.2. DeadlockOutputDisplay.java .. 133

 xi

 Page

B.3. Controller Package.. 137

APPENDIX C RESULT OF THE DEADLOCK DETECTION TOOL .. 143

C.1. Found Deadlocks .. 143

C.2. Detail of Deadlock from Test002.java .. 144

C.3. Detail of Deadlock from Test008.java .. 145

C.4. Detail of Deadlock from Test009.java .. 146

C.5. Detail of Deadlock from Test011.java .. 147

C.6. Detail of Deadlock from Test013.java .. 148

C.7. Detail of Deadlock from Test014.java .. 149

C.8. Detail of Deadlock from Test015.java .. 150

C.9. Detail of Deadlock from Test017.java .. 151

C.10. Detail of Deadlock from Test018.java ... 152

C.11. Detail of Deadlock from Test024.java ... 153

C.12. Detail of Deadlock from Test025.java ... 154

C.13. Detail of Deadlock from Test026.java ... 155

APPENDIX D SOURCE CODE OF TEST EXAMPLES OF MULTITHREADING API 156

VITA .. 198

xii

LIST OF FIGURES

Figure 1 The stack trace of deadlock reported by a customer .. 2

Figure 2 Application and API .. 8

Figure 3 The application is implemented on top of the multithreading API 9

Figure 4 The multithreading API .. 9

Figure 5 Alphonse and Gaston Story for Deadlock Example [8] 11

Figure 6 Deadlock in an API .. 14

Figure 7 Deadlock in the multithreading API .. 15

Figure 8 Wait-For Graph shows deadlock .. 20

Figure 9 Implementation of the Deadlock Detection Algorithm 24

Figure 10 Derivation of the algorithm ... 31

Figure 11 The Deadlock Detection Tool .. 32

Figure 12 The Deadlock Detection Algorithm diagram ... 33

Figure 13 The example of the Aliasing Condition .. 39

Figure 14 The example of the Aliasing Condition .. 39

Figure 15 The Aliasing Condition that deadlock does not occur 40

Figure 16 The Aliasing Condition that deadlock occurs ... 40

Figure 17 The example of the Parallel Condition ... 44

Figure 18 The example of the Escaping Condition .. 46

Figure 19 The example of the Reachable Condition .. 47

Figure 20 The example of the Superfluous Lock Condition.. 49

Figure 21 The left call graphs show Guarded Lock Condition and the right call
graphs show Non-Guarded Lock Condition ... 52

xiii

Figure 22 The Reverse Order Locking Condition or the Cyclic Lock Dependency
Condition that deadlock occurs .. 55

Figure 23 The Wait-For Graph shows deadlock of a Cyclic Lock Dependency
Condition .. 55

Figure 24 The Class Diagram of the Deadlock Detection Tool ... 63

Figure 25 The Class Diagram of the Deadlock Detection Algorithm Class 64

Figure 26 Graphic User Interface (GUI) of the Deadlock Detection Tool 66

Figure 27 The Class Diagram of the DataPreparation Class ... 67

Figure 28 The output screenshot of the Deadlock Detection Tool that reports the
result of deadlock detection ... 69

Figure 29 The directories that are the result of the Deadlock Detection Tool 70

Figure 30 The DDExportedSource Directory .. 70

Figure 31 The exported source code compares with the original source code 71

Figure 32 The DDReport directory ... 71

Figure 33 The content of the AliasingCondTrue.txt .. 72

Figure 34 The ThreadCountReport.txt .. 73

Figure 35 The DDSyncInfo directory ... 74

Figure 36 The result of the file in the DDSyncInfo directory ... 74

Figure 37 The DDDisplay directory .. 75

Figure 38 The content of the file in the DDDisplay directory ... 75

Figure 39 the screenshot of the Deadlock Detection Tool that provides correct
result of deadlock detection ... 78

Figure 40 The screenshot of found deadlock... 143

Figure 41 The screenshot of the detail of deadlock from Test002.java 144

Figure 42 The screenshot of the detail of deadlock from Test008.java 145

xiv

Figure 43 The screenshot of the detail of deadlock from Test009.java 146

Figure 44 The screenshot of the detail of deadlock from Test011.java 147

Figure 45 The screenshot of the detail of deadlock from Test013.java 148

Figure 46 The screenshot of the detail of deadlock from Test014.java 149

Figure 47 The screenshot of the detail of deadlock from Test015.java 150

Figure 48 The screenshot of the detail of deadlock from Test017.java 151

Figure 49 The screenshot of the detail of deadlock from Test018.java 152

Figure 50 The screenshot of the detail of deadlock from Test024.java 153

Figure 51 The screenshot of the detail of deadlock from Test025.java 154

Figure 52 The screenshot of the detail of deadlock from Test026.java 155

xv

LIST OF TABLES

Table 1 The deadlock code example .. 12

Table 2 The Cyclic Lock Dependency example .. 21

Table 3 The Superfluous Lock example.. 23

Table 4 The pseudo code of the Thread Counting of the Deadlock Detection
Algorithm .. 36

Table 5 The pseudo code of the Synchronized Object Collecting method in the
deadlock detection algorithm.. 37

Table 6 The psuedo code of the Aliasing Condition of the Deadlock Detection
Algorithm .. 41

Table 7 The pseudo code of the Parallel Condition of the Deadlock Detection
Algorithm .. 45

Table 8 The pseudo code of the Escaping Condition of the Deadlock Detection
Algorithm .. 47

Table 9 The pseudo code of the Reachable Condition of the Deadlock Detection
Algorithm .. 48

Table 10 The pseudo code of the Superfluous Lock Condition of the Deadlock
Detection Algorithm ... 50

Table 11 The pseudo code of the Non-Guarded Lock Condition of the Deadlock
Detection Algorithm ... 52

Table 12 The pseudo code of the Reverse Order Locking Condition or the Cyclic
Lock Dependency Condition of the Deadlock Detection Algorithm 57

Table 13 The result of the Deadlock Detection Tool when using test files for
testing .. 76

Table 14 The source code of the DeadlockDetectionAlgorithm.java 90

xvi

Table 15 The source code of the DeadlockDetectionTool.java 124

Table 16 The source code of the DeadlockDetectionDisplay.java 133

Table 17 The source code of the DataPreparation.java ... 137

Table 18 The list of test files for testing on each condition ... 156

Table 19 Summary result of test files .. 158

Table 20 The source code of Test001.java that deadlock does not occur 159

Table 21 The source code of Test002.java that deadlock occurs 160

Table 22 The source code of Test003.java that deadlock does not occur 162

Table 23 The source code of Test004.java that deadlock does not occur 163

Table 24 The source code of Test005.java that deadlock does not occur 164

Table 25 The source code of Test006.java that deadlock does not occur 165

Table 26 The source code of Test007.java that deadlock does not occur 166

Table 27 The source code of Test008.java that deadlock occurs 168

Table 28 The source code of Test009.java that deadlock occurs 170

Table 29 The source code of Test010.java that deadlock does not occur 171

Table 30 The source code of Test011.java that deadlock occurs 173

Table 31 The source code of Test012.java that deadlock does not occur 174

Table 32 The source code of Test013.java that deadlock occurs 175

Table 33 The source code of Test014.java that deadlock occurs 177

Table 34 The source code of Test015.java that deadlock occurs 178

Table 35 The source code of Test016.java that deadlock does not occur 179

Table 36 The source code of Test017.java that deadlock occurs 181

Table 37 The source code of Test018.java that deadlock occurs 183

Table 38 The source code of Test019.java that deadlock does not occur 184

xvii

Table 39 The source code of Test020.java that deadlock does not occur 186

Table 40 The source code of Test021.java that deadlock does not occur 187

Table 41 The source code of Test022.java that deadlock does not occur 188

Table 42 The source code of Test023.java that deadlock does not occur 190

Table 43 The source code of Test024.java that deadlock does not occur 191

Table 44 The source code of Test025.java that deadlock occurs 193

Table 45 The source code of Test026.java that deadlock occurs 195

CHAPTER I
INTRODUCTION

This chapter provides an introduction of this thesis; including the motivation,
objective, scope, contribution, publications, research methodology and the
organization of this Thesis.
1.1. Motivation

In this present, the multithreading API developing for specific usage is
prevalence. The multi-core technology leads developing software design [1].
Therefore the application is able to work faster and get more result than a sequential
application in a time. However, there is a trade-off that the application potentially
encounters the deadlock problem [2]. And what is a “Deadlock”? Mayur Naik, David
Gay, Change-Seo Park and Koushik Sen also presumed that “Deadlock is an
unintended condition in which a set of threads blocks forever because each thread
in the set is waiting to acquire a lock already held by another thread in the set” [3].

In support and consulting service for a multithreading API, the API defects
deadlocks and the problems occur after applications are developed or released.
When the application calls the API that is underlying layer of the application, the API
will create several threads and there are more than one thread lock and wait for the
same objects. Therefore when the application calls the API that is defect with
deadlocks, the application encounters deadlock problems. In problem investigation
work for the deadlock in the API support and consulting service, a customer provides
the stack trace to report deadlock issue to the support consultant. The support
consultant has to analyze the stack trace that relates to the API behavior to
reproduce the problem. They have to mark the break points reported in the stack
trace showing in Figure 1 and then debug into the source code of the API to find the
root cause of the deadlock.

2

Figure 1 The stack trace of deadlock reported by a customer

The general root cause of the deadlock problem is incorrect synchronization
of pair or more objects [4], incorrect ordering of lock acquisitions [2] or incorrect
usage of the API. All these causes occur in the API that deadlock was not prevented
(non-thread safe), miss-detected in the software development process or not tested
enough.

The deadlock occurs in the application after the API was released to the
customers that used the API to develop their applications. Actually, the deadlock
should be found in the early phase of the Software Development Life Cycle of the
API that is the Software Development phase. It can be also found in the Software
Testing phase of the API. Hidden bugs in the API directly lead to increasing of
development costs that are time and effort for investigating, fixing bugs and testing
for the customers’ application layer [5] to the API layer. The slower deadlock is
found, the more the cost of the application increases. In the Design phase of the API
we also conduct for deadlock prevention. However, the multithreading concept is

3

error prone and difficult [6] therefore deadlock seems to be an inevitable problem.
Lack of focusing on deadlock detection in the Software Testing process for
concurrence programming of the API to save the cost should be disaster as well. And
it causes the deadlock hidden, unexploded and not fixed until the package is
released to the customer and the API is developed as an application on customer’s
sites. The deadlock prevention in the early phase of the Software Development can
also help to get rid of deadlock. Knowing the structure and design of the software is
also very important for deadlock detection and prevention in the Software
Development phase because the developers can specify the pair or multiple objects
or processes of incorrect synchronization statements from diagrams that are products
of the Design phase. In addition, the behavior of programmers and incorrect coding
can also lead to deadlock such as not emphasize the Software Design or copying-
pasting code without awareness of incorrect usage of code or not use deadlock
detection tools [6]. Lack of all these things causes deadlock in the API.

There are several researches concerning deadlock prevention suggested to
detect the deadlock and find its cause early in the Software Design, the Software
Development or the Software Testing. It is important to solve the error earlier to not
to accumulate deadlock from the API to the applications.

The concept of developing the deadlock detection algorithm comes from
processes in the Software Development Life Cycle that can encounter the deadlock.
To detect the deadlock involves all Software process concepts to develop the
deadlock detection algorithm. For deadlock prevention, in the Software
Development phase, the developers use the object diagrams that are outputs from
the Software Design phase to develop the API and know which objects and methods
should be synchronized or not. In addition, there should be a flow diagram to
present the API behavior when threads work together. In the Software Testing phase,
the tester designs the path coverage test case to test the multithreading API. Using
the concept of each process, the deadlock detection algorithm should be able to
generate object and flow diagrams to elicit all paths of the multithreading API. In
addition, detecting which synchronized objects, methods; including wait-notify
methods and threads are in the multithreading API source code that cause

4

deadlocks. The algorithm of the deadlock detection for the multithreading API
should be the static analysis because it is more direct to detect the deadlock in the
source code of the API than execute the application that is implemented on top of
the API. In the other hands, the dynamic analysis for deadlock detection algorithm
does not meet approach because the deadlock does not easily occur and reproduce
at runtime, not cover all path of code, and there is no prior information why the
deadlock occurs [2]. Therefore static analysis should be more suitable for testing,
debugging [3] and developing the deadlock detection algorithm for the
multithreading API.

1.2. Objective

The objective for this thesis is to research for the algorithm that is able to
detect the potential deadlock using static analysis for the multithreading API
developed by Java programming language. Moreover, use the algorithm to develop
the prototype tool for deadlock detection.

5

1.3. Scope

Here below is the research scope of this thesis.
1. Detecting the deadlock in the multithreading API developed by Java

Programming language using static analysis.

2. Detecting the deadlock that causes of using synchronized statements

and wait-notify methods in the multithreading API developed by Java

programming language.

3. Focusing on correctness of result after using the deadlock detection

tool. In this research, it does not include the performance qualification

for the Deadlock Detection Tool.

4. Researching on the application that uses the single thread to call to the

multithreading API in order to not to affect the behavior of the

multithreading API.

5. Resolving the deadlock issue is not a focus of this thesis.

6

1.4. Contribution

The outcomes of this research are the followings:
1. Getting defects early in the Software Development process, Software

Testing process and Maintenance phase.

2. Using the result as related information to find the root cause of

deadlock and solve the problem in the multithreading API.

3. Helping to determine and provide prior suggestion, the guideline

document of the usage and limitation of the multithreading API to the

customer if deadlock defects are non-strategic for project planning and

not fixed.

4. Emphasizing the importance of understanding overall system behavior of

the application to the multithreading API and resolve programming issue,

including deadlock.

5. Helping the development manager to make a decision how the

potential deadlock should be fixed and to plan resources that affect to

financial cost of the project.

1.5. Publications

Several parts of our research have been selected to be presented in
international conferences and published in the corresponding proceedings detailed in
Appendix A.

7

1.6. Research Methodology

To achieve the research, there are 8 following steps.

1. Studying to understand about conditions of deadlock and deadlock

occurrences in the Java programming field

2. Studying the deadlock detection algorithm

3. Choosing an appropriate algorithm to use in this research

4. Designing a deadlock detection algorithm and tool

5. Developing the deadlock detection algorithm and tool

6. Testing the deadlock detection algorithm and tool

7. Exercising the example of test cases using the deadlock detection tool

and evaluating output of the research.

8. Summarizing and analyzing the result and providing suggestion. And

finally publishing the thesis

1.7. Organization of the Thesis

The remainder of the thesis is organized into four chapters as follows:
Chapter II presents theoretical background including API, Multithreading API,

Deadlock, Deadlock Example, Deadlock in the Multithreading API, Six Conditions of
Deadlock, Three Types of Deadlock Analysis, Deadlock Detection Algorithms, Path
Coverage and Deadlock Code Patterns and Literature Reviews.

Chapter III describes the approach of this thesis for the deadlock detection
algorithm and tool.

Chapter IV presents the result from the algorithm and tool detecting the
potential deadlock in the multithreading API and validation of the algorithm and
tool.

Finally, Chapter V concludes research work and presents some directions for
future work, Limitation of our work are also detailed.

CHAPTER II
BACKGROUND THEORY AND LITERATURE REVIEWS

2.1. Background Theory

2.1.1. Application Programming Interface (API)

 In Java Tutorials website published by Oracle [7] stated that the API was a
large collection of ready-made software components that provided many useful
capabilities. It was grouped into libraries of related classes and interfaces; these
libraries were known as packages.

Figure 2 Application and API

Figure 2 illustrates the application calls Interfaces and Classes that are in the
underlying API. For the application development, developers use Interfaces and
Classes to develop the application. At runtime, the application will call Interfaces
and Classes to work as it was developed.
2.1.2. Multithreading API

 The multithreading API is developed for specific use on top of the general
programming language such as the Java API. The multithreading API is the API that
creates several threads to process their tasks when the application calls it at runtime.

Figure 3 illustrates the application is developed on top of the multithreading
API and the multithreading API is developed on top of the Java API that is a general
programming language.

9

Figure 3 The application is implemented on top of the multithreading API

Figure 4 illustrates the stack trace of the application at runtime when the
main thread of the application calls objects in the multithreading API, the
multithreading API creates several threads to handle tasks as regards calling of the
application.

Figure 4 The multithreading API

10

2.1.3. Deadlock

Oracle [8] defined that deadlock described a situation where two or more
threads were blocked forever, waiting for each other.

Deadlock occurring are described as four deadlock conditions by Edward G.
Coffman, Jr. in 1971 [9]. The deadlock occurs if following four conditions occurs
simultaneously.
2.1.3.1. Mutual Exclusion

The involved resources must be unshareable. Only one process can use the
resources anytime.
2.1.3.2. Hold and Wait

The processes must hold the resources they have already been allocated
while waiting for other requested resources.
2.1.3.3. No Preemption

The process must not have resources taken away while those resources are
being used.
2.1.3.4. Circular Wait

The process must be waiting for a resource which is being held by another
process, which in turn is waiting for the first resource to release resource. In general,
there is a set of waiting processes, P = { P1, P2, P3, …, PN}, such that P1 is waiting for
a resource held by P2, P2 is waiting for a resource held by P3 and so on until PN is
waiting for a resource held by P1.

11

The following examples are deadlock examples in the Computer fields.
2.1.4. Deadlock Example

2.1.4.1. Alphones and Gaston Story [8]

There is a classic example that is always used as an example for the Java API
proposed by Oracle. It is about Alphonse and Gaston are friends, and great believers
in courtesy. A strict rule of courtesy is that when you bow to a friend, you must
remain bowed until your friend has a chance to return the bow. Unfortunately, this
rule does not account for the possibility that two friends might bow to each other at
the same time.

Figure 5 Alphonse and Gaston Story for Deadlock Example [8]

12

This example application is shown in Table 1, Deadlock, models this
possibility:

Table 1 The deadlock code example
public class Deadlock {

 static class Friend {

 private final String name;

 public Friend(String name) {

 this.name = name;

 }

 public String getName() {

 return this.name;

 }

 public synchronized void bow(Friend bower) {

 System.out.format("%s: %s"

 + " has bowed to me!%n",

 this.name, bower.getName());

 bower.bowBack(this);

 }

 public synchronized void bowBack(Friend bower) {

 System.out.format("%s: %s"

 + " has bowed back to me!%n",

 this.name, bower.getName());

 }

 }

 public static void main(String[] args) {

 final Friend alphonse =

 new Friend("Alphonse");

 final Friend gaston =

 new Friend("Gaston");

 new Thread(new Runnable() {

 public void run() { alphonse.bow(gaston); }

 }).start();

 new Thread(new Runnable() {

 public void run() { gaston.bow(alphonse); }

 }).start();

 }

}

When Deadlock runs, it's extremely likely that both threads will block when
they attempt to invoke bowBack. Neither block will ever end, because each thread is
waiting for the other to exit bow.

13

2.1.4.2. Some Deadlock Properties of Computer Systems

This is an example about the deadlock in the Computer System written by
Richard C. HOLT in 1972 [4]. The deadlock occurs when there is more than one
process in the Computer System. One process blocks another process and both
cannot work as their desire. If there are two processes that are represented with P1
and P2 and two resources that are represented with R1 and R2. Assume that
resource cannot be released if a process is waiting for a request. If R1 is used by P1
and R2 is used by P2. And P1 requests to use R2 concurrently with P2 requests to
use R1. The result is P1 and P2 is deadlock.
2.1.4.3. Deadlock Detection in Distributed Databases

This example is the deadlock that occurs in the Database proposed by Edgar
Knapp in 1987 [10]. The cause of deadlock in the database begins with there is
sharing the same data in the Database. Several transactions work concurrently and
request to access the same data in the Database. Assume that there is a data reading
operation in the Database stored at x; R(x). And there is a data writing operation in
the Database stored at x; W(x). When there are more than two transactions operate
in the Database concurrently, the database transaction operates interleaved fashion.
The interleaved fashion is the transaction that operates to use a resource concurrent
with another transaction that operates to use another resource and then cross
operating on resources. The interleaved fashion causes incorrect data to store in the
Database after the transactions end. To solve the interleaved fashion of two
processes work together on same data in the Database is ‘Locking’. Locking prevents
other transactions to access data that is locked. However, if transactions cross
accessing to data that are locked by each other, the deadlock occurs.

For these examples, as describe hereinbefore, exchanging resources between
more than one process, there are resource blocking and requesting interleaving, it
causes deadlock occur. The root cause of deadlock is incorrect synchronization of
processes [4].

14

2.1.5. Deadlock in the multithreading API

 In the big picture of the application, the API is also a part of the application.
However, if the application is developed by 3rd parties that are not the same team
that develop the API, the API should be separated from the application. Figure 6
illustrates the deadlock occurs in an API layer. The main thread is called by the
application layer and locks object R1 and object R2 and it requires object R3.
However, object R3 is locked by Thread A that is in the API Layer and Thread A also
requires object R1 to process its task. This situation is common way for the deadlock
in the API. Both threads also require the same resources; however each other thread
already locks the resource and doesn’t release the resource until they have done
their tasks. Therefore both threads block and wait for each other caused ‘Deadlock’.

Figure 6 Deadlock in an API

The deadlock in the multithreading API is the API creates several threads
when the application calls the API at runtime and some threads locks and waits to
acquire the same objects. Figure 7 facilitates understanding for the deadlock in the
multithreading API.

15

Figure 7 Deadlock in the multithreading API

In the stack trace of deadlock in the multithreading API, Figure 7 shows that
there are 2 threads lock and wait for the same objects. Above thread owns the
SSLRTRecordService object and is waiting for the SSLRecordRequestQueue object
when calling the completeRequest() method. Below thread owns the
SSLRecordRequestQueue object and is waiting for the SSLRTRecordService object
when calling the rtRecordImplEx() method. Therefore both threads encounters
deadlock.

16

2.1.6. Six conditions of Deadlock

Referring to the Effective Static Deadlock Detection in 2009 proposed by
Mayur Naik, David Gay, Chang-Seo Park and Koushik Sen [3], they have presented the
following six conditions of deadlock that can be used to develop the deadlock
detection algorithm.
2.1.6.1. Reachable Condition

In some execution of the program, can a thread abstracted by Thread A reach
line 1 of A and, after acquiring a lock at line 1 of A, proceed to reach line 2 of A
while still holding the lock (and similarly for Thread B reach line 1 of B and then line
2 of B)?

2.1.6.2. Aliasing Condition

In some execution of the program, can a lock acquired at line 1 of A be the same
as a lock acquired at line 2 of B (and similarly for line 2 of A and the line 1 of B)?
2.1.6.3. Escaping Condition

In some execution of the program, can a lock acquired at line 1 of A be
accessible from more than one thread (and similarly for each of line 2 of A and then
line 1 of B and line 2 of B)?

2.1.6.4. Parallel Condition

In some execution of the program, can different threads abstracted by Thread A
and Thread B simultaneously reach line 2 of A and line 2 of B, respectively?
2.1.6.5. Non-Reentrant Condition

In some execution of the program, can a thread abstracted by Thread A acquire a
lock at line 1 of A it does not already hold and, while holding that lock, proceed to
acquire a lock at line 2 of A it does not already hold (and similarly for thread B and
then line 1 of B and then line 2 of B)? If the thread acquires the same lock it already
holds then the second lock acquisition cannot cause a deadlock as locks are
reentrant in Java.

17

2.1.6.6. Non-Guarded Condition

In some execution of the program, can different threads abstracted by Thread A
and Thread B reach line 1 of A and line 1 of B, respectively, without holding a
common lock? If the two threads already hold a common lock then we call it a
guarding lock (also called a gate lock).

18

2.1.7. Three Types of Deadlock Analysis

There are three types that are used for deadlock analysis as follows:
2.1.7.1. Static Analysis

In 2005, Tong Li explained, the static analysis performed analysis on all
possible control flow paths. However, considering all possible paths also forced static
tools to face the issue of filtering out potentially large amounts of false positives [2].
Mattia Moga et al. added suggestion for the static analysis approach in 2009, the
static analysis that performed flow-sensitive, interprocedural and context-sensitve
data flow analysis was quite efficient and precise with low false positives rate [11].
This research aims to use this approach because the deadlock detection should be
detected for all paths in the scope of the API prior to API released to the customer
and we still don’t know exactly scenarios and application usage of the customers.
2.1.7.2. Dynamic Analysis

Mayur has gathered the definition of dynamic analysis in 2009. He explained
that the dynamic analysis was the deadlock actually occurred in execution. In
addition, the dynamic approached monitor the program workflow in an execution
and report cycles in the resulting dynamic graph [3]. Mattia Moga et al. believed that
the dynamic analysis introduced a significant runtime overhead in the application
being analyzed [11]. Tong Li et al. also added about the drawback of dynamic
analysis, it was hard to reproduce the deadlock using dynamic analysis. We had to
wait and run the code repeatedly to detect the deadlock. In addition, it only
considered control flow paths actually taken that might be under expectation [2].
2.1.7.3. Hybrid Analysis

Mattia Monga et al. in 2009 proposed the hybrid analysis blended the
strengths of static and dynamic analysis approaches. Static analysis considered the
source code without actually executing it. The strength was that it could reason over
all possible program paths but they were often overly conservative that normally
reported properties weaker than dynamic analysis that actually held in a specific
execution. Dynamic analysis focused on an actual execution of the target application

19

that considered only a limited number of program paths (i.e., those that have been
covered in the observed executions), but they could provide more accurate results.
However, dynamic analysis introduced a significant runtime overhead in the
application being analyzed. The hybrid analysis relied on a static preprocessing
technique to reduce the runtime overhead of the subsequent dynamic analyzing.
The static analysis identified dangerous statements and the dynamic analysis
monitoring identified statement at runtime [11]. This approach still isn’t appropriate
for deadlock detection in the API because it uses the dynamic analysis.

20

2.1.8. Deadlock Detection Algorithms

These are deadlock detection algorithms that use to detect the deadlock.
2.1.8.1. Directed Graph

Ahmed K. Elmagarmid described in year 1986 about the directed graph. In the
directed graph, transactions and resources were represented by vertices and the
requests and allocations by edges [12].
2.1.8.2. Wait-For Graph (WFG)

 In 2005 Tong Li, C. S. E., Alvin R. Lebeck, and Daniel J. Sorin explained in their
paper, the wait-for graph was a general resource graph. The nodes represented
processes and edges represented dependences between processes. The usage for
this graph was if there was an edge from node A to node B, it meant process A was
waiting for process B to release a resource. A cycle in a WFG indicated a deadlock.
Figure 8 shows a WFG for process A that is waiting for resource x from process B,
process B is waiting for resource y from process C and process C is waiting for
resource z from process A. The cycle in graph shows the deadlock. Constructing a
WFG requires dynamically tracking the status of resources. It tracks the owner of each
resource and the processes that are being waited for resources at a time [2].

Figure 8 Wait-For Graph shows deadlock

21

2.1.8.3. Call Graph

 Usman Ismail described about the call graph that it was defined as a set of
directed edges connecting call site (statements invoking method calls) to
corresponding target methods. The call graph was an analysis that can be used to
help the programmers to understand and debug large programs. It supported all
path coverage for the application. There were several call graph generating
techniques such as Reachability Analysis (RA), Class Hierarchy Analysis (CHA) and
Rapid Type Analysis (RTA). He suggested that the RTA was an algorithm that was able
to create precise call graphs. RTA determined the set of class instantiated in the
context of the call site and used this information to filter the number of possible
target methods [13].

2.1.9. Path Coverage

Path coverage is the one of the most important criteria that is used to
investigate the sufficiency of software testing. It requires that every path in a program
should be executed at least once [14].

2.1.10. Deadlock Code Patterns

 Frank Otto and Thomas Moschny presented code patterns indicating possible
synchronization problems that encountered the deadlock [15].
2.1.10.1. Cyclic Lock Dependencies

 The following two code fragments are shown in Table 2, which are both path
of parallel application, acquire lock in different orders:

Table 2 The Cyclic Lock Dependency example

void foo() {

synchronized(o1) {

synchronized(p1) {

// …

}

}

}

void bar() {

synchronized(p2) {

synchronized(o2) {

// …

}

}

}

22

Problem: A cyclic lock dependency is the classic pre-condition of a deadlock. The
existence of cyclic lock dependencies can be determined by considering the
constraints of the program. The above example consists of two constraints o1  p1,
p2  o2, such that there are cyclic lock dependencies provided that o1 in foo() and
o2 in bar() as well as p1 in foo() and p2 in bar() may point to the same objects,
respectively. In this case, a deadlock may occur when foo() and bar() are executed in
parallel.
Detection:
1) Consider the set C of all constraints of the program.

2) Build a directed graph G = (V, E). We define vertexes V := C and edge E := {(c1 

c2, c’1  c’2) ∈ C X C : PS(c2) ∩ PS(c’1) ≠ Ø}. That is, each constraint is

represented by a vertex, and an edge between two constraints says that the

second lock of the first constraint may point to the same object as the first of

the second constraint.

3) Find all cycles in G, e.g. by using a depth-first algorithm.

4) For each cycle, determine the set B of involved blocks.

5) If mhp(b1, b2) = true for all b1, b2 ∈ B, report the cycle.

23

2.1.10.2. Superfluous Lock

 Consider the body of a synchronized block, although it never access shared
objects concurrently:

Table 3 The Superfluous Lock example

synchronized(o) {

// only non-critical operations

// …

}

Problem: A superfluous lock is a lock protecting some code that only performs “non-
critical” operations. We define an operation to be non-critical if it never accesses any
shared object concurrently. A superfluous lock may result in efficient synchronization
by making other threads unnecessarily block.
Detection: For each synchronized block b of the program:
1) Consider the set B of block that may be executed in parallel to b, i.e. B := {b’ :

mph(b, b’) = true}.

2) For each block b’ ∈ B, check if b and b’ might access shared objects such that

there could be read-write- or write-write-conflicts.

3) If this is not the case, then b is probably unnecessarily protected. Report b.

24

2.2. Literature Reviews

The following are related works have researched about deadlock detection.
2.2.1. Effective Static Deadlock Detection

Firstly in this research, they defined six types of deadlock occurrence that was in
the preceding part of this proposal. They used Discrete Mathematics to represent
methods, variables and application flows. And propose the deadlock detection
algorithm using a tool called JADE (Java Agent DEvelopment framework).

Figure 9 Implementation of the Deadlock Detection Algorithm

The deadlock detection algorithm is implemented by a tool called JADE. The
input of the algorithm can be the closed Java program in the byte code form or the
source code. Then it uses the Soot framework to construct 0-CFA-based call graph
(CFA stands for Control Flow Analysis) and get the result with set M of methods that
may be reachable from the main method. Then rewrite each synchronized block to
synchronize on argument v with body s. And then change format to SSA (Static Single
Assignment) to increase the precision of the flow-insensitive k-object-sensitive
analysis. The result from k-object-sensitive analysis; Datalog, is performed by the
thread-escape and may-happen-in-parallel analysis. Results from three analyses
called Datalogs will be solved using BDD (Binary Decision Diagram) based the Datalog
solver. The outputs from BDDs are the program information, the analyzed output,
the relation finalDeadlock and the set of paths categorized by six types of deadlock
occurrence.

25

 This paper suggests that the static analysis is effective for developing the
deadlock detection tool for multithreading Java programs comprising over 1.5 MLOC
in practice. They also added that using the dynamic analysis approaches the
deadlock could occur in a different execution. It is unsound and cannot be applied
to open programs and without the input test data for simulating the different
scenario of execution [3].

Therefore this thesis will use the static analysis to develop the deadlock
detection algorithm.

2.2.2. Finding Synchronization Defects in Java Programs: Extended Static
Analyses and Code Patterns

 This paper was presented by Frank Otto and Thomas Moschny in 2008. They
proposed an approach to indicate the possible synchronization problems using static
analysis combined with point-to and may-happen-in-parallel (MHP) analysis to detect
the code patterns that may result in deadlocks or race condition or indicate
inefficient synchronization in the Java programs. In addition, focusing on reduce false
positive [15].
 In our thesis we will use the deadlock patterns suggested by this paper to
implement the deadlock detection algorithm to find deadlocks in the source code of
the multithreading API.

2.2.3. Understanding Complex Multithreaded Software Systems by Using Trace
Visualization

Jonas Trümper proposes the tool to help the developers to understand and
envision the flow and behavior of software that is developed previously using
visualization concept. The visualization concept that they proposed, they provide the
graph to show the mechanism inside the application at runtime consists of threads.
Their tool analyzes the software system and captures threads’ activities and
represents them as a graph. They call the behavior of tool that analyzes the software
system behavior at runtime that dynamic analysis. Referring to the visualization

26

concept, it can help the developers to understand the flow and behavior of software
[16].

In the same way as the deadlock detection, it demonstrates the behavior of
the multithreading API with the graph such as the wait-for graph or the call graph, is
able to facilitate the deadlock analysis. In our thesis the deadlock detection tool
should report the result of the deadlock sites for increasing understanding of
developers for the multithreading API behavior and guiding them for future
resolution of deadlock.

2.2.4. Run-Time Detection of Potential Deadlocks for Programs with Locks,
Semaphores, and Condition Variables

 Rahul Agarwal and Scott D. Stoller in 2006 presented concepts to develop
the programs to detect potential deadlocks at runtime. The program detects the
deadlock that occurs in the event for the following operation: acquire and release of
locks, wait- notify on condition variables, up and down operations on semaphores,
accesses to shared variables and thread start, join and termination operations. They
implemented the program using their multithread GoodLock algorithm detects
potential for deadlock to handle block and using the Bensalem and the Havelund’s
algorithms to handle non-block structured locking. They used dynamic analysis to
implement the program to detect the deadlock because they expected few false
alarms that should be eliminated from infeasible paths for using static analysis [17].

In this thesis we detect deadlock that occurs in the following operation:
acquire and release of locks using synchronization statement and wait-notify
condition on variables.

27

2.2.5. Pulse: A Dynamic Deadlock Detection Mechanism Using Speculative
Execution

 Tong Li, Carla S. Elis, Alvin R. Lebeck and Daniel J. Sorin proposed a novel
operating system mechanism to detect deadlock dynamically in applications in 2005.
It scans the system for processes that have been blocked using Speculative
execution to discover dependencies amongst the sleeping processes and to
determine that applications encounter deadlocks. It constructs a general resource
graph and checks for the graph that contains cycles will be reported as deadlocks. It
also detects various types of deadlock. They also added that Pulse can use with
other tools to expand accuracy of deadlock coverage [2].

2.2.6. Static Deadlock Detection for Java Libraries

 This paper proposed by A.Williams, W.Thies, and M.D. Ernst in 2005. They
presented a flow-sensitive, context-sensitive analysis for static deadlock detection in
Java libraries. They used lock-order graphs to represent locking in Java libraries. In
the graph, nodes are sets, edged are lock orderings and cycles indicate deadlocks.
They focused on deadlock occurred by synchronized statements and the wait-notify
methods of Java. They also added that using static analysis is more accurate than
using dynamic analysis because of all path coverage; however, there are some
spurious reports because of infeasible flows [18].
 This paper supports our approach for this thesis to use static analysis for the
deadlock detection algorithm. In addition, they support for detecting the deadlock
from the synchronization statements and wait-notify methods.

28

2.2.7. Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients

 This paper was proposed by Jyotimoy Deshmukh, E.Allen Emerson and Sriram
Sankaranarayanan in 2009. They presented the Symbolic Deadlock Analysis to detect
deadlock based on synchronization for re-entrant locks. The tool separates deadlock
identifying in Java libraries, concurrent libraries and the multithreaded client
applications for decoupling the deadlock reports in each part. The tool was
developed on the static analysis concept. It uses lock-order graph analysis, logical
formulae for symbolic enumeration of alias patterns, soot framework, May-aliases for
tracking lock objects across methods. The final result of this tool still has fault
positives and redundant deadlock causing alias patterns [19].
 Their symbolic concept is interesting; however, it provides fault positive and
duplicate deadlock report.

2.2.8. Ant Colony Optimization for Deadlock Detection in Concurrent Systems

 This paper proposed by Gianpiero Francesca, Antonella Santone, Gigliola
Vaglini and Maria Luisa Villani in 2011. They used Calculus of Communicating System
(CCS) to detect deadlock in the source code. CCS is one of a temporal-logic formula
representing the requirement to be verified as regards the concept of Model
checking. The Model checking is used to verify complex systems and is able to prove
correctness of a system. The complex system has general problems such as
deadlock. In addition, the problem occurs in the system with many components
interact with each other or in system with data structures that can assume many
different values. They proposed the use of Ant Colony Optimization (ACO) to reduce
the state space explosion problem. ACO algorithms are stochastic techniques. They
compare the result of several optimization algorithms that are the A* algorithm, ACO,
Breadth-First Search (BFS) and Concurrency Workbench of New Century (CWB-NC).
The final result is the ACO algorithm provides best result of minimal
counterexamples [20].
 Using the Model checking concept to develop the deadlock detection
algorithm is interesting; however, the Model checking returns very long

29

counterexamples. The ACO algorithm helps to reduce the state space explosion and
provide short counterexamples but the ACO are still stochastic techniques. The ACO
uses estimation from the structure of the process can cause imprecise result.
Moreover, it is possible that the ACO loses some paths to get shortest
counterexamples. The result of stopping running when solution found filters other
solutions more than half. The ACO can optimize the result with faster searching but
the accuracy is dropped and in fact in the Development phase of finding deadlock
needs all path coverage.

CHAPTER III
APPROACH OF THIS THESIS

From the general concepts of four deadlock conditions by Edward G.
Coffman, Jr. [9], there are two researches that enhance this concept to create their
own static deadlock detection algorithms to detect deadlocks in Java source codes.
The first research was presented a static deadlock detection algorithm that has six
deadlock conditions by Mayur Naik in 2009 [3] and another research was presented
the detection algorithm for finding synchronization defects that has two related
conditions to detect deadlocks by Frank Otto in 2008 [15]. We select five conditions
from the first research that are in the scope of our research. We do not include the
Reentrance Condition into our Deadlock Detection Algorithm because our scope of
our research does not consider detecting deadlock in the multithreading API that is
developed by using java.util.concurrent package. And we select two conditions from
the second research to develop our own algorithm to detect deadlocks in the
multithreading API. The Deadlock Detection Algorithm detects deadlock in the
multithreading API and provides information which conditions encounter deadlock to
help developers understand the behavior of the multithreading API and deadlock
occurance. Figure 10 shows derivation of our research.

31

Figure 10 Derivation of the algorithm

In addition, we develop the prototype tool for deadlock detection that uses
the Deadlock Detection Algorithm to demonstrate the development of the Deadlock
Detection Algorithm. We use the Java Programming Language to develop the
Deadlock Detection Algorithm and Tool. We design the Deadlock Detection Tool to
get the Java source codes that have several files as an input of the Deadlock
Detection Tool. We create Java files of source code to validate the result of the
Deadlock Detection Algorithm. Each file is represented as a multithreading API and
solely finishes its work in its file. Therefore all files do not relate or call to other files
and a file is for testing a scenario of deadlock occurance. The Deadlock Detection
Tool reports number of files that are found deadlock, absolute path of each file for
informing location to developers, deadlock site for each file, number of Threads that
are created in each file and deadlock conditions of each file. Figure 11 shows overall
of the Deadlock Detection Tool.

32

Figure 11 The Deadlock Detection Tool

We describe more detail about the Deadlock Detection Algorithm and Tool in
the following sections.

3.1. Deadlock Detection Algorithm

Our Deadlock Detection Algorithm is derived from five in six deadlock
conditions [3] and from two in five code patterns of deadlock conditions [15] to
develop our own algorithm to detect deadlock in the multithreading API source
code. Figure 12 shows the Deadlock Detection Algorithm diagram.

33

Export

Source

Code

Thread Counting

No Deadlock

Synchronized

Objects

Collecting

Escaping?
Can a lock be

accessible from more

than one thread?

Reachable?

False

False

False
Can a thread reaches a

lock and after acquires

the lock and then

process to reach

another lock?

Parallel?

Can a different threads

simultaneously reach

locks?

Can the acquired lock

be the same as another

acquired lock?

Non-

Guarded?

False Can different threads

reach lock without

holding the common

lock?

Cyclic?

True

False

Deadlock

True

True

True

Superfluous?

False

True

Can the acquired lock

be unnecessary lock?

Is it Cyclic Lock

Dependencies?

Aliasing

Revised Objects

True

Figure 12 The Deadlock Detection Algorithm diagram

34

 In Figure 12 the algorithm starts after the input of the source code that is
exported to the algorithm by filtering out the non-related deadlock source code that
are the source code comments and source codes that are not in the synchronization
block, to focus on the source code that relates to deadlock. The focus source code
are the synchronized keyword, the start() method called by Thread Class, the
synchronization block, Object declaration, Object reference, the Thread Class
extension and the Runnable interface implementation. The algorithm counts the
number of threads that are created. After that it collects all synchronized objects
from the exported source code. Next it processes the Aliasing Condition. If the
acquired lock is the same as another acquired lock, the collected objects are
changed to the reference one. If the acquired lock is not the same as another
acquired lock, the collected objects remain the same. Then it checks the Parallel
Condition. If there are different threads are created simultaneously and reach locks,
this condition returns true and there is deadlock possibly occurs. If there is no
different threads are created simultaneously and reach locks, this condition returns
false and there is no deadlock occurs. And after that the algorithm checks the
Escaping Condition. If there is a lock is accessed by more than one thread, this
condition returns true and there is deadlock possibly occurs. However, if there is no
lock is accessed by more than one thread, this condition returns false and there is no
deadlock occurs. And then it checks the Reachable Condition. If a thread reaches a
lock and after acquires the lock and then process to reach another lock, this
condition returns true and there is deadlock possibly occurs deadlock. However, if it
occurs in the other hand, this condition returns false and there is no deadlock
occurs. And then it checks the Superfluous Lock Condition. If the acquired locks are
redundant, this condition returns true and deadlock possibly occurs. In the other
hand, this condition returns false and there is no deadlock occurs. After that it
checks the Non-Guarded Lock Condition. If different threads reach locks without
holding a common lock, this condition returns true and there is deadlock possible
occurs. However, if different thread reaches a lock and already holds a common
lock, this condition returns false and there is no deadlock occurs. Finally, algorithm
checks the Reverse Order Locking Condition or the Cyclic Lock Dependency

35

Condition. If the order of locking is reverse or cyclic lock dependencies, it returns
true and there is deadlock possibly occurs. In other hand, if the other of locking is
not reverse or cyclic lock dependencies, it returns false and there is no deadlock
occurs.
 The following explain in detail for each block of the algorithm diagram.

3.1.1. Exported Code

 The exported code is the input from the multithreading API source code that
is filtered out non-related source code. The non-related source codes are comments
and the part of codes that are not synchronization blocks or keywords. The related
deadlock source code are the synchronized keyword, the start() method keyword of
the Thread Class, the synchronization block, Object declaration, Object reference,
the Thread Class extension and the Runnable interface implementation. This input is
an output from the Data Preparation process. The exported source code is used as
an input of the Deadlock Detection Algorithm. We will deep down in detail for the
Data Preparation process in the Deadlock Detection Tool.

3.1.2. Thread Counting

 Deadlock occurs when there is more than one Thread lock the same Objects
and with reverse order of more than two Objects. Therefore we count the number of
Thread created in the source code.

In the Deadlock Detection Algorithm, the exported codes; java files, are read
one by one and the algorithm checks each line of files of source codes whether
there are “.start()” String or not. If the line of code has the “.start() String, the
algorithm counts up the thread number integer by one. If there are more than one
Thread call the start() method, it is possible that deadlock occurs. If there is only one
Thread calls the start() method, deadlock does not occur. Table 4 shows the pseudo
code of the Thread Counting method in the Deadlock Detection Algorithm.

36

Table 4 The pseudo code of the Thread Counting of the Deadlock Detection
Algorithm

For (File exportedFile : exportedSource.listFiles())

 If exportedFile.isDirectory

 Call method countThreads with exportedFile

 Else

 Initialise exportedFileName to

exportedFile.getAbsolutePath

 Initialise exportedClassName to exportedFile.getName

 If exportedClassName.contains with ".java"

 Create new File

 Initialise threadCount to 0

 Initialise br to null

 Try

 Create new BufferedReader

 Initialise line to null

 Try

 While (line)

 If line.contains with

".start()"

 increment threadCount

 EndIf

 EndWhile

 Catch IOException e

 Call method e.printStackTrace

 EndTry

 Catch FileNotFoundException e

 Call method e.printStackTrace

 Finally

 If br is not equal to null

 Try

 Call method br.close

 Catch IOException e

 Call method e.printStackTrace

 EndTry

 EndIf

 EndTry

 EndIf

 EndIf

EndFor

37

3.1.3. Synchronized Object Collecting

 We collect synchronized Objects in the source code to check each condition
whether there is deadlock in the source code or not.

In the algorithm the synchronized Objects are counted for each exported
files. The algorithm compares each line of exported java files with “synchronized”
String and then adds the synchronized Object name in the ArrayList includes braces
to show its synchronized block. We use the ArrayList for collecting synchronized
Objects because we can add synchronized Objects sequentially to the ArrayList
when reading the source code and it is easy to access to the ArrayList. After the
algorithm finishes collecting all synchronized Objects in each files of exported source
code, the algorithm processes each condition that are the Aliasing Condition, the
Parallel Condition, the Escaping Condition, the Reachable Condition, the Superfluous
Lock Condition, the Non-Guarded Lock Condition and the Reverse Order Locking
Condition or the Cyclic Lock Dependency Condition sequentially. We will elaborate
more detail of each condition in the later section. Table 5 shows the pseudo code of
the Synchronized Object Collecting process in the Deadlock Detection Algorithm.

Table 5 The pseudo code of the Synchronized Object Collecting method in the
deadlock detection algorithm

For (File exportedSourceFile : exportedSource.listFiles())

 If exportedSourceFile.isDirectory

 Call method collectSyncObjs with exportedSourceFile

 Else

 If exportedSourceFile.getName

 Create new ArrayList

 Initialise syncCountThis to 0

 Initialise pw to null

 Initialise br to null

 Initialise exportedSourceFileName to

exportedSourceFile

 Initialise syncInfoFileName to "D:\\DDSyncInfo\\"

 Try

 Create new PrintWriter

 Create new BufferedReader

 Initialise line to ""

 While (line)

 If (line.contains with

"synchronized(")

 If line.contains with

"synchronized(this)"

 SyncCountThis++;

38

 Call method syncObjs.add

with "this"

 Else if line.contains with

"synchronized("

 Initialise syncObjName to

line.substring

 Call method syncObjs.add

with syncObjName

 Else if line.contains with

"synchronized"

 Initialise syncObjName to

line.substring

 Set syncObjName to

syncObjName.substring

 Call method syncObjs.add

with syncObjName

 EndIf

 Else if line.contains with "{"

 Call method syncObjs.add with

"{"

 Else if line.contains with "}"

 Call method syncObjs.add with

"}"

 EndIf

 EndWhile

 Call method pw.println with syncObjs

 Set parallelCondBool to parallelCond with

syncInfoFile.getAbsolutePath, syncObjs

 Set escapingCondBool to escapingCond with

syncInfoFile.getAbsolutePath, syncObjs

 Set reachableCondBool to reachableCond with

syncInfoFile.getAbsolutePath

 Initialise revisedSyncObjs

 to aliasingCond with

exportedSourceFile.getAbsolutePath, syncObjs

 Set superfluousCondBool to superfluousCond

with exportedSourceFile.getAbsolutePath, revisedSyncObjs

 Set nonguardedCondBool to nonGuardedCond

with exportedSourceFile.getAbsolutePath, revisedSyncObjs

 Set cyclicCondBool to cyclicCond with

exportedSourceFile.getAbsolutePath, revisedSyncObjs

 Catch IOException e

 Finally

 If pw is not equal to null

 Call method pw.close

 EndIf

 EndTry

 EndIf

 EndIf

EndFor

39

3.1.4. Aliasing Condition
 The Aliasing Condition is the condition that a lock and another lock are
referring to the same object. For example; if Thread A acquires Object L1 and then
acquires Object L2 sequentially. Object L1 is a reference of Object L2. Object L1 and
Object L2 are the aliasing objects. Figure 13 shows the example of the Aliasing
Condition.

Thread A

L1

L2

L1 L2=

Figure 13 The example of the Aliasing Condition

Figure 14 shows another case for the Aliasing Condition. In another case,
Thread A acquires Object L3. Thread B acquires Object L4. Object L3 and Object L4
are aliasing objects.

Thread C

L4

Thread B

L3

L3 L4=

Figure 14 The example of the Aliasing Condition

 For our algorithm, in the Aliasing Condition, the algorithm checks whether the
locked Objects are aliasing or not. If the locked objects are aliasing, the condition
returns true. If the locked objects are not aliasing, the condition returns false. Both

40

cases of the Aliasing Condition possibly encounter deadlock. For example; if Thread
A acquires Object L1 and Object L2 sequentially and Thread D acquired Object L2
and Object L1 sequentially. This example deadlock should occur but if Object L1
and Object L2 are aliasing therefore the deadlock does not occur. Figure 15 shows
the Aliasing Condition that deadlock does not occur.

Thread A

L1

L2

Thread D

L2

L1

L1 L2=

Figure 15 The Aliasing Condition that deadlock does not occur

 In another case, if Thread B acquires Object L3 and Object L1 sequentially
and Thread C acquires Object L1 and Object L4 sequentially. This example deadlock
should not occur because it does not have the cyclic object locking but Object L3
and Object L4 are aliasing therefore the deadlock occurs. Figure 16 shows the
example of the Aliasing Condition that deadlock occurs.

Thread C

L1

Thread B

L3

L3 L4=

L1 L4

Figure 16 The Aliasing Condition that deadlock occurs

41

 For the source code of the Aliasing Condition in the Deadlock Detection
Algorithm we collect reference Objects in the HashMap and refer object as key that
is not duplicate and its alias as a value. And after that the algorithm checks the keys
of Object in the HashMap whether they are in the ArrayList of the synchronized
Objects or not. The algorithm considers only Objects in the HashMap that are in the
ArrayList and then transfers keys and values to another HashMap. After that the
algorithm creates a new ArrayList to copy the synchronized objects and replaces
them with their aliasing Objects. The algorithm sets the flags for the Aliasing
Condition if the ArrayList of synchronized Object is replaced with its aliasing and
returns the ArrayList that has latest revised synchronized Objects to process to the
next condition that is the Parallel Condition. Table 6 shows pseudo code of the
Aliasing condition of the Deadlock Detection Algorithm.

Table 6 The psuedo code of the Aliasing Condition of the Deadlock Detection
Algorithm

Create new HashMap

 Initialise br to null

 Initialise line to ""

 Initialise lineSplitString to null

 Initialise newLength to 0

 Try

 Create new BufferedReader

 Try

 While (line)

 If line.contains with "=" and not

line.contains with "new"

 Set lineSplitString to line.split

with " "

 For i is 0, i is less than

lineSplitString.length, i increments by 1

 If position i in

lineSplitString

 Set newLength to i

 Call method

System.arraycopy with lineSplitString

 If position 2 in

aliasingLineSplitString

 Set 2 of

aliasingLineSplitString to position 2 in aliasingLineSplitString

 EndIf

 If position 2 in

aliasingLineSplitString

42

 Set 2 of

aliasingLineSplitString to position 2 in aliasingLineSplitString

 EndIf

 Call method

aliasingObjs.put

 EndIf

 EndFor

 Else if line.contains with "=" and

line.contains with "new"

 Set lineSplitString to line.split

with " "

 Create new String array of length 2

 For i is 0, i is less than

lineSplitString.length, i increments by 1

 If position i in

lineSplitString

 Set 0 of tempArray to

position in lineSplitString

 Set 1 of tempArray to

position in lineSplitString

 EndIf

 EndFor

 If position 1 in tempArray

 Set 1 of tempArray to position

1 in tempArray

 EndIf

 If position 1 in tempArray

 Set 1 of tempArray to position

1 in tempArray

 EndIf

 Call method aliasingObjs.put with

position 0 in tempArray, position 1 in tempArray

 EndIf

 EndWhile

 Catch IOException e

 EndTry

 Catch FileNotFoundException e

 Finally

 If br is not equal to null

 Try

 Call method br.close

 Catch IOException e

 EndTry

 EndIf

 EndTry

EndIf

Create new HashMap

For (String s : syncObjs)

 For (Map.Entry<String, String> entry :

aliasingObjs.entrySet())

 If entry.getKey

43

 Call method aliasingObjsTemp.put with

entry.getKey, entry.getValue

 EndIf

 EndFor

EndFor

Create new HashMap

For (Map.Entry<String, String> entry : aliasingObjsTemp.entrySet())

 If (not entry.getKey)

 Call method aliasingObjsTemp2.put with entry.getKey,

entry.getValue

 EndIf

EndFor

Initialise aliasingFlag to false

If not aliasingObjsTemp2.isEmpty

 Set aliasingFlag to true

Else

 Set aliasingFlag to false

EndIf

Create new ArrayList

If aliasingFlag

 For (Map.Entry<String, String> entry :

aliasingObjsTemp2.entrySet())

 For i is 0, i is less than syncObjs.size, i increments

by 1

 If entry.getKey

 Call method syncObjsTemp.add with i,

entry.getValue

 Else

 Call method syncObjsTemp.add with i,

syncObjs.get i

 EndIf

 EndFor

 EndFor

 If syncObjsTemp.size is greater than syncObjs.size

 Create new ArrayList

 EndIf

Else

 Set syncObjsTemp to syncObjs

EndIf

Set aliasingCondBool to aliasingFlag

If aliasingFlag

 Call method pwAliasingCondTrue.append with file plus "

\n"

EndIf

Return syncObjsTemp

44

3.1.5. Parallel Condition

 The Parallel Condition is the condition that there are several Threads are
created and run simultaneously and each Thread locks Objects. For example; in the
program there are 2 Threads are created and run simultaneously that are Thread A
and Thread B. Thread A locks Object L1 and locks Object L2 sequentially. Thread B
locks Object L3. Figure 17 shows the example of the Parallel Condition.

Thread A Thread B

L1

L2

L3

Figure 17 The example of the Parallel Condition

For our algorithm, after getting the ArrayList of the synchronized Object
names of each files, the algorithm checks whether there are several threads created
and each thread locks synchronized Objects or not. If in the files there are several
threads created and lock synchronized Objects simultaneously, the algorithm returns
true, the deadlock probably occurs and the algorithm goes to check for a next
condition that is the Escaping Condition. However, if there are several threads
created but do not lock synchronized Objects simultaneously or there is only one
thread created and locks synchronized Objects, the algorithm returns false and does
not check other conditions. Table 7 shows the pseudo code of the Parallel Condition
of the Deadlock Detection Algorithm.

45

Table 7 The pseudo code of the Parallel Condition of the Deadlock Detection
Algorithm

Initialise openBlock to 0

Initialise closeBlock to 0

Initialise lockedObj to 0

Initialise br to null

Initialise line to ""

Initialise numOfThread to 0

Initialise fileSearch to file.substring with file.lastIndexOf

"\\", +1

Initialise scanner to null

Try

 Create new BufferedReader

 Create new Scanner

 While scanner.hasNext

 If scanner.next

 Call method scanner.next

 If scanner.hasNextInt

 Set numOfThread to scanner.nextInt

 EndIf

 EndIf

 EndWhile

 For (String entry : syncObj)

 If entry.equals with "{"

 Else if entry.equals with "}"

 Else

 lockedObj++;

 EndIf

 EndFor

 If (numOfThread is greater than 1) and (numOfThread is

not equal to 0) and (lockedObj is greater than or equal to

numOfThread)

 Call method pwPCondTrue.append with fileSearch plus

" \n"

 Set parallelCondBool to true

 Else

 Set parallelCondBool to false

 EndIf

Catch FileNotFoundException e

Finally

 If br is not equal to null

 Call method br.close

 EndIf

 Call method scanner.close

EndTry

Return parallelCondBool

46

3.1.6. Escaping Condition

 The Escaping Condition is the condition that a lock can be accessible from
more than one thread. For example; there is Object L1, it can be accessible by
Thread A and Thread B. Figure 18 shows the example of the Escaping Condition.

Thread A Thread B

L1

Figure 18 The example of the Escaping Condition

For our algorithm the Escaping Condition checks whether locks in java files
can be accessible from more than one thread or not. If a lock can be accessible from
more than one thread, the algorithm returns the Escaping Condition as a true value
and the algorithm continues to execute the Reachable Condition. If a lock is not
accessible from more than one thread, the algorithm returns the Escaping Condition
as a false value. The algorithm counts synchronized Objects in the ArrayList and it
adds synchronized Objects to the HashMap Object to check duplicate Objects. (We
use the HashMap Object because the HashMap Object can check uniqueness of the
Objects.) If synchronized Objects are duplicated, it means Obects are accessed by
more than one thread and it is possible that deadlock occurs. The Escaping
Condition returns true and continues to execute the next condition that is the
Reachable Condition. If not, the Escaping Condition returns false and not check the
next condition. Table 8 shows the pseudo code of the Escaping Condition of the
Deadlock Detection Algorithm.

47

Table 8 The pseudo code of the Escaping Condition of the Deadlock Detection
Algorithm

Create new HashMap

For (String entry : syncObj)

 Initialise count to map.get with entry

 Call method map.put with entry, (count is equal to null)

EndFor

For (Map.Entry<String, Integer> entry : map.entrySet())

 If not (entry.getKey)

 If entry.getValue is greater than 0

 Call method pwEsCondTrue.append with file plus

" \n"

 Set escapingCondBool to true

 EndIf

 EndIf

EndFor

3.1.7. Reachable Condition

 The Reachable Condition is the condition that a Thread can reach to a lock
and acquire it and then reach to another lock and is still holding the first lock. For
example; Thread A reaches to Object L1 and acquires Object L1 and then it reaches
to Object L2. Thread A is still holding Object L1 when reaches to Object L2. Figure 19
shows the example of the Reachable Condition.

Thread A

L1

L2

Figure 19 The example of the Reachable Condition

For our algorithm the Reachable Condition, the algorithm checks whether
threads reach a lock and after acquiring the lock, they reach to another lock or not.
We count the synchronized objects and get the number of threads. If the number of
threads is more than 0 and the duplication of synchronized objects is more than
one, it means that there are several threads reach several objects. The algorithm

48

returns true and continues to execute the next condition that is the Aliasing
Condition. However, if the condition returns false, the algorithm does not execute
the next condition.

Table 9 shows the pseudo code of the Reachable Condition of the Deadlock
Detection Algorithm.

Table 9 The pseudo code of the Reachable Condition of the Deadlock Detection
Algorithm

Initialise numOfThread to 0

Create new BufferedReader

Create new Scanner

While scanner.hasNext

 If scanner.next

 Call method scanner.next

 If scanner.hasNextInt

 Set numOfThread to scanner.nextInt

 EndIf

 EndIf

EndWhile

Create new HashMap

For (String entry : syncObj)

 Initialise count to map.get with entry

 Call method map.put with entry, (count is equal to null)

EndFor

For (Map.Entry<String, Integer> entry : map.entrySet())

 If not (entry.getKey)

 If numOfThread is greater than 0 and entry.getValue is

greater than 1

 Call method pwReachableCondTrue.append with file

plus " \n"

 EndIf

 EndIf

EndFor

If br is not equal to null

 Call method br.close

EndIf

49

3.1.8. Superfluous Lock Condition

 The Superfluous Lock Condition is the condition that the synchronized
Objects are unnecessary duplicate locked. For example; Thread A acquires Object L1
and after that in the source code Thread A calls to acquires Object L1 again. Thread
A acquires Object L1 twice that is unnecessary duplicate lock. The Superfluous Lock
can cause the system unnecessary block an Object and lead to deadlock. Figure 20
shows the example of Superfluous Lock Condition.

Thread A

L1

L1

Figure 20 The example of the Superfluous Lock Condition

In our algorithm, the Superfluous Lock Condition, it checks locked Objects of
each Thread whether each Thread locks duplicate Object or not. If yes, the deadlock
does not occur. If no, the deadlock potentially occurs. The algorithm checks adjacent
Objects in the ArrayList of synchronized Objects. If both adjacent Objects are equal, it
is a Superfluous Lock. If both adjacent Objects are not equal, it is not a Superfluous
Lock. The result of the adjacent Objects is collected in another ArrayList. If all
elements of the result ArrayList of the adjacent Objects are equal, the deadlock
potentially occurs. If not all elements of the result ArrayList of the adjacent Objects
are not equal, the deadlock does not occur. Table 10 shows the pseudo code of the
Superfluous Lock Condition.

50

Table 10 The pseudo code of the Superfluous Lock Condition of the Deadlock
Detection Algorithm

SuperfluousLockCond

Initialise superfluous to false

 For i is 0, i is less than revisedSyncObjs.size, i increments

by 1

 If (i is equal to (revisedSyncObjs.size decrements by

1)

 break;

 Else

 If (revisedSyncObjs.get i equals with "{" or

revisedSyncObjs.get i equals with "}" or revisedSyncObjs.get i

increments by 1 equals with "}" or revisedSyncObjs.get i increments

by 1 equals with "{")

 continue;

 Else

 index.add with i

 doubleLockList.add (Call method

arrayListToken.get (

revisedSyncObjs.get i, revisedSyncObjs.get i increments by 1)

 EndIf

 EndIf

 EndFor

 Initialise countTrue to 0

 For(boolean boolEle : doubleLockList)

 If booEle equal to true

 increment countTrue

 EndIf

 EndFor

 If countTrue is greater than 0

 Set superfluousBool to true

 Else

 Set superfluousBool to false

 Call method pwSuperflousCondTrue.append with

absolutePath plus "\n")

 EndIf

Return superfluousBool

arrayListToken (a, b)

Initialise doubleLock to true

If a equal b

 Set doubleLock to true

ElseIf

 Set doubleLock to false

EndIf

51

3.1.9. Non-Guarded Lock Condition

 The Non-Guarded Lock Condition is the invert condition of the Guarded Lock
Condition. The Guarded Condition helps to solve deadlock problems by adding the
same synchronized Object before the couple of reverse order of synchronized
Objects that are locked by threads. The synchronized Object is called the Guarded
Lock or the common lock. The Guarded Lock prevents deadlock occurrence. When
the Thread acquires the Guarded Lock, other thread cannot hold that Guarded Lock
until the Thread releases the Guarded Lock. Therefore the reverse order of
synchronized Objects of other threads cannot access until the first thread that
acquires the Guarded Lock finishes the task and releases the Guarded Lock. For
example; if there are Thread A and Thread D. Thread A has acquired sequence of
Objects that are L4, L1 and L2 and Thread B has acquired sequence of Objects that
are L4, L2 and L1. This scenario is showed in Figure 21 in the left call graph it does
not occur deadlock because when Thread A acquires L4, Thread D has to wait
Thread A until Thread A releases L4. And then Thread A owns L4 and acquires L1
and L2 and Thread D still waits for L4. When Thread A releases L2 and Thread A still
owns L4 and L1, Thread D still waits for L4. When Thread A releases L1, it owns L4
and Thread D still waits for L4. After that when Thread A releases L4, Thread D can
acquire L4. The deadlock does not occur for the left call graph scenario. For the right
call graph scenario, there is no Guarded Lock before the couple of reverse order of
synchronized objects; L1 and L2 therefore the deadlock occurs.

52

Guarded

Lock

Thread A

L1

L2

Thread D

L2

L1

L4 L4
Non-Guarded

Lock

Thread A

L1

L2

Thread D

L2

L1

Figure 21 The left call graphs show Guarded Lock Condition and the right call graphs

show Non-Guarded Lock Condition

 For our algorithm the Non-Guarded Lock Condition checks whether the first
lock Object locked by each Thread is the same Object or not. If the first lock Object
is the same as each Thread, it is a Guarded Lock and the Non-Guarded Lock
Condition returns false. In the other hand, if the first lock Object is not the same for
each Thread, there is no Guarded Lock and the Non-Guarded Lock Condition returns
true. Table 11 shows the pseudo code of the Non-Guarded Lock Condition.

Table 11 The pseudo code of the Non-Guarded Lock Condition of the Deadlock
Detection Algorithm

Set nonguarded to false

 Initialise groupMaxSize to 0

 For i is 0, i less than index.size, i increments by 1

 Set groupMaxSize to Call method

checkGroupSize(index.get with i, index.get with i increments by 1

increments by groupMaxSize

 EndFor

 If numOfThread is equal to 2

 If groupMaxSize is equal to 2

 If revisedSyncObjs.get with index.get with 0

equals(revisedSyncObjs.get with index.get with groupMaxSize

 Set nonguarded to false

 Else

 Set nonguarded to true

 EndIf

 Else if groupMaxSize is equal to 3

 If index.size is equal to 5

 If (index.get with groupMaxSize decrements

by 1) increments by 1 is equal to index.get with groupMaxSize

 Set groupMaxSize to groupMaxSize

decrements by 1

 If (revisedSyncObjs.get with (index.get

with 0) equals to revisedSyncObjs.get with index.get with

53

groupMaxSize) Set nonguarded to

false Else if

 Set nonguarded to true

 Else

 If (revisedSyncObjs.get with

index.get with 0) equals (revisedSyncObjs.get with index.get with

groupMaxSize)

 Set nonguarded to false

 Else

 Set nonguarded to true

 EndIf

 EndIf

 Else if index.size equal to 6

 If (revisedSyncObjs.get with index.get(0))

equals (revisedSyncObjs.get with index.get with groupMaxSize))

 Set nonguarded to false

 Else

 Set nonguarded to true

 EndIf

 EndIf

 EndIf

 Else if numOfThread is equal 3

 Set groupMaxSize to groupMaxSize decrements by 1

 If (revisedSyncObjs.get with index.get with 0)

equals(revisedSyncObjs.get with index.get with groupMaxSize))

 If (revisedSyncObjs.get with index.get

with 0 equals(revisedSyncObjs.get with index.get with groupMaxSize

increments by 2))

 Set nonguarded to false

 Else

 Set nonguarded to true

 EndIf

 Else

 Set nonguarded to true

 EndIf

 Else

 Set nonguarded to true

 EndIf

If nonguarded

 pwNonGuardedCondTrue.append with absolutePath plus " \n"

EndIf

Return nonguarded

We scope our Deadlock Detection Algorithm to have capability to detect
deadlock in the multithreading API source code that uses Oracle9i Application Server
Best Practices [21]. The best practices avoid or minimize using of synchronization in
the source code. The code should not have threads more than 3 and nested
synchronization block should not more than 2 to avoid overhead cost and deadlock.
Therefore the Non-Guarded Lock Condition has the condition to detect 2 and 3

54

threads and the number of locks of each thread is 2 and 3. The algorithm checks the
first index of both Threads whether they are the same or not. If they are the same, it
is the Guarded Lock and deadlock does not occur. If not, it is the Non-Guarded Lock
and deadlock occurs and the algorithm continues to the Reverse Order Locking
Condition or the Cyclic Lock Dependency Condition.
 If the number of Threads is 2 and the number of locks is 2 and 3, the
algorithm checks the first index of both Threads whether they are the same or not. If
yes, it is the Guarded Lock and deadlock does not occur. If not, it is the Non-Guarded
Lock and deadlock occurs and the algorithm continues to the the Reverse Order
Locking Condition or the Cyclic Lock Dependency Condition.
 If the number of Threads is 3 and the number of locks is 2, the algorithm
checks the first index of 3 Threads whether they are the same or not. If they are the
same, it is the Guarded Lock and deadlock does not occur. If not, it is the Non-
Guarded Lock and the deadlock occurs and the algorithm continues to check the
Reverse Order Locking Condition or the Cyclic Lock Dependency Condition. And for
other conditions, deadlock potentially occurs and the algorithm continues to check
the Reverse Order Locking Condition or the Cyclic Lock Dependency Condition.

3.1.10. Reverse Order Locking Condition or Cyclic Lock Dependency Condition

 The Reverse Order Locking Condition or the Cyclic Lock Dependency
Condition is a condition that the synchronized Objects locked by two or more than
two threads are reverse. For example, in Figure 22 shows Thread A acquires L1 and
L2 and Thread D acquires L2 and L1 sequentially. The lock order of Thread A and
Thread D is reverse. It causes deadlock. When Thread A owns L1 and Thread D owns
L2, after that Thread A waits to acquire L2 but L2 is owned by Thread D that waits to
acquire L1 that is owned by Thread A. Both threads lock Objects in reverse order.

55

Thread A

L1

L2

Thread D

L2

L1

Figure 22 The Reverse Order Locking Condition or the Cyclic Lock Dependency

Condition that deadlock occurs

 Figure 23 shows the Wait-For Graph that has a Cyclic Lock Dependency
Condition. It occurs deadlock because Thread A waits to acquire L2 but it owns L1
and Thread D waits to acquire L1 but it owns L2.

Thread A

L1

L2

Thread D

Figure 23 The Wait-For Graph shows deadlock of a Cyclic Lock Dependency Condition

 In our algorithm, the Cyclic Lock Dependency Condition also implements to
have capability to detect deadlock in the multithreading API source code that uses
Oracle9i Application Server Best Practices [21] as well.

For this condition, first of all the algorithm ignores the synchronized ‘this’
because in Java when locking ‘this’ it does not occur deadlock. Then it gets the
number of Threads that are created. And then counts the number of locks of each
Thread. If Thread number is 2 and each Thread locks an Object, the deadlock cannot
occur. If the first Thread locks 3 Objects and the second Thread locks 2 Objects, the
deadlock does not occur when the first lock of each Thread are the same. The
deadlock occurs when the first lock of first Thread and the last lock of the second
Thread are the same and the second or the third lock of the first Thread are the
same lock as the first lock of the second Thread.

56

For the first Thread locks 2 Objects and the second Thread locks 3 Objects, if
the first lock of the first Thread and the first lock of the second Thread are the same,
the deadlock does not occur. However, if the first lock of the first Thread and the
second or the third lock of the second Thread are the same and the second lock of
the first Thread and the first lock or the second lock of the second Thread are the
same, the deadlock occurs.

For the case that there are 2 threads and each Thread lock 2 Objects, if the
first lock of the first Thread are the same as the second lock of the second Thread
and the second lock of the first Thread are the same as the first lock of the second
Thread, the deadlock occurs. If there are 2 threads and each Thread lock 3 Objects, if
the first lock of both Threads are the same, deadlock does not occur. If the first lock
of the first Thread are the same as the second or the third lock of the second Thread
and the second or the third lock of the first Thread are the same as the third or the
second lock of the second Thread sequentially, the deadlock occurs.

For the case that there are 3 threads and each Thread lock 2 Objects, if the
first lock of 3 Threads are the same, the deadlock does not occur. If the first lock of
the first Thread are the same as the second lock of the third Thread, the second lock
of the first lock and the first lock of the second Thread are the same and the second
lock of the second Thread and the first lock of the third Thread are the same, the
deadlock occurs. If the first lock of the first Thread and the second lock of the
second Thread are the same, the second lock of the first Thread and the first lock of
the third Thread are the same and the first lock of the second Thread and the
second lock of the third Thread are the same, the deadlock occurs. If there are
reverse order of 2 threads, the deadlock can also occur. For other case beside these,
deadlock does not occur. The pseudo code of the Reverse Order Locking Condition
or the Cyclic Lock Dependency Condition is shown in Table 12.

57

Table 12 The pseudo code of the Reverse Order Locking Condition or the Cyclic Lock
Dependency Condition of the Deadlock Detection Algorithm

Set cyclicCondResult to false

Initialise index

 If parallelCondBool2 and escapingCondBool2 and

reachableCondBool2

 and not superfluousCondBool2 and nonguardedCondBool2

 For i is 0, i less than revisedSyncObjs.size, i

increments by 1

 If revisedSyncObjs.get with i equals to

"this"

 revisedSyncObjs.set with i, "}"

 EndIf

 EndFor

 For i is 0, i less than revisedSyncObjs.size, i

increments by 1

 If not(revisedSyncObjs.get with i equals to

"{" or revisedSyncObjs.get with i equals to "}"

 index.add with i

 EndIf

 EndFor

 Initialise br to null

 Initialise line to ""

 Initilaise numOfThread to 0

 Initilaise fileSearch to absolutePath.substring

with

 absolutePath.lastIndexOf with ("\\")

increments by 1, absolutePath.length

 Initilaise scanner to null

 Create new BufferedReader

 While (scanner.hasNext)

 If (scanner.next equals to fileSearch

)

 scanner.next

 If (scanner.hasNextInt)

 Set numOfThread to

scanner.nextInt

 break;

 EndIf

 EndIf

 EndWhile

 Set groupMaxSize to 0

 For i is 0, i less than index.size, i increments

by 1

 Set groupMaxSize to Call method

checkGroupSize with index.get with i, index.get with i increments

by 1

 If numOfThread is equal to 2

 If groupMaxSize is equal to 1

58

 Set cyclicCondResult to false

 Else if groupMaxSize is equal to 3

and index.size is equal to 5

 If index.get with groupMaxSize

decrements by 1 increments by 1 less than index.get with

groupMaxSize

 If revisedSyncObjs.get

with index.get with 0 equals to revisedSyncObjs.get with index.get

with groupMaxSize

 Set

cyclicCondResult to false

 Else

 If

revisedSyncObjs.get with index.get with 0 equals to

revisedSyncObjs.get with index.get with index.size decrements by 1

 If

revisedSyncObjs.get with

 index.get with index.size decrements by 2 equals to

revisedSyncObjs.get with index.get with 1 or revisedSyncObjs.get

with index.get with index.size decrements with 2 equals to

revisedSyncObjs.get with index.get with 2

 Set

cyclicCondResult to true

 Else

 Set

cyclicCondResult to false

 EndIf

 Else if

revisedSyncObjs.get with index.get with 1 equals to

revisedSyncObjs.get with index.get with index.size decrements by 1

and revisedSyncObjs.get with index.get with groupMaxSize decrements

by 1 equals to revisedSyncObjs.get with index.get with groupMaxSize

 Set

cyclicCondResult to true

 Else

 Set

cyclicCondResult to false

 EndIf

 EndIf

 Else

 Set firstGroupSize to

groupMaxSize decrements by 1

 If revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

firstGroupSize

 Set cyclicCondResult to

false

 Else if not revisedSyncObjs.get

with index.get with 0 equals to

revisedSyncObjs.get with index.get with firstGroupSize

59

 If revisedSyncObjs.get

with index.get with 0 equals to revisedSyncObjs.get with index.get

with index.size decrements by 2 or revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

index.size decrements by 1 and revisedSyncObjs.get with index.get

with firstGroupSize decrements by 1 equals to revisedSyncObjs.get

with index.get with firstGroupSize

 Set

cyclicCondResult to true

 Else if

revisedSyncObjs.get with index.get with 0 equals to

revisedSyncObjs.get with index.get with index.size decrements by 1

and revisedSyncObjs.get with index.get with firstGroupSize

decrements by 1 equals to revisedSyncObjs.get with index.get with

firstGroupSize or revisedSyncObjs.get with index.get with

firstGroupSize decrements by 1 equals to revisedSyncObjs.get with

index.get with index.size decrements by 2

 Set

cyclicCondResult to true

 Else

 Set

cyclicCondResult to false

 EndIf

 EndIf

 EndIf

 Else if groupMaxSize is equal to 2 and

index.size is equal to 4

 If revisedSyncObjs.get with index.get

with 0 equals to revisedSyncObjs.get with index.get with

groupMaxSize

 Set cyclicCondResult to false

 Else

 If revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

index.size decrements by 1 and revisedSyncObjs.get with index.get

with 1 equals to revisedSyncObjs.get with index.get with

groupMaxSize

 Set cyclicCondResult to

true

 Else

 Set cyclicCondResult to

false

 EndIf

 EndIf

 Else if groupMaxSize is equal to 3 and

index.size is equal to 6

 If revisedSyncObjs.get with index.get

with 0 equals to revisedSyncObjs.get with index.get with

60

groupMaxSize

 Set cyclicCondResult to false

 Else if not revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

groupMaxSize

 If revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

index.size decrements to 1 and revisedSyncObjs.get with index.get

with 1 equals to revisedSyncObjs.get with index.get with

groupMaxSize or revisedSyncObjs.get with index.get with 1

equals to revisedSyncObjs.get with index.get with groupMaxSize

increments by 1 and revisedSyncObjs.get with index.get with 2

equals to revisedSyncObjs.get with index.get with groupMaxSize or

revisedSyncObjs .get with index.get with 2 equals to

revisedSyncObjs.get with index.get with groupMaxSize increments by

1

 Set cyclicCondResult to

true

 Else if revisedSyncObjs.get

with index.get with 0 equals to revisedSyncObjs.get with index.get

with groupMaxSize increments 1 and revisedSyncObjs.get with

index.get with 1 equals

revisedSyncObjs.get with index.get with groupMaxSize or

revisedSyncObjs.get with index.get with 1

.equals to revisedSyncObjs.get with index.get with index.size

decrements by 1 and revisedSyncObjs.get with index.get with 2

equals to revisedSyncObjs.get with index.get with groupMaxSize or

revisedSyncObjs .get with index.get with 2 equals to

revisedSyncObjs.get with index.get with index.size decrements by 1

 Set cyclicCondResult to

true

 Else

 Set cyclicCondResult to

false

 EndIf

 EndIf

 EndIf

 Else if numOfThread is equal to 3

 If groupMaxSize is equal to 3 and

index.size is equal to 6

 If index.get with groupMaxSize less

than index.get with groupMaxSize increments by 1

 Set currentGroupSize to

groupMaxSize decrements by 1

 If revisedSyncObjs.get with

index.get with 0 equals to revisedSyncObjs.get with index.get with

2 equals to revisedSyncObjs.get with index.get with 4

 Set cyclicCondResult to

false

 Else

 If revisedSyncObjs.get

with index.get with 0 equals to revisedSyncObjs.get with index.get

with index.size decrements by 1 and revisedSyncObjs.get with

index.get with 1 equals to revisedSyncObjs.get with index.get with

2 and revisedSyncObjs.get with index.get with 3 equals to

61

revisedSyncObjs.get with index.get with 4

 Set

cyclicCondResult to true

 Else if

revisedSyncObjs.get with index.get with 0 equals to

revisedSyncObjs.get with index.get with 3 and revisedSyncObjs.get

with index.get with 1 equals to revisedSyncObjs.get with index.get

with 4 and revisedSyncObjs.get with index.get with 2 equals to

revisedSyncObjs.get with index.get with 5

 Set

cyclicCondResult to true

 Else if

revisedSyncObjs.get with index.get with 2

equals to revisedSyncObjs.get with index.get with 5 and

revisedSyncObjs.get with index.get with 3 equals to

revisedSyncObjs.get with index.get with 4

 Set cyclicCondResult to true

 Else if

revisedSyncObjs.get with index.get with 0

equals to revisedSyncObjs.get with index.get with 5 and

revisedSyncObjs.get with index.get with 1 equals to

revisedSyncObjs.get with index.get with 4

 Set

cyclicCondResult to true

 Else if

revisedSyncObjs.get with index.get with 0

equals to revisedSyncObjs.get with index.get with 3 and

revisedSyncObjs.get with index.get with 1 equals to

revisedSyncObjs.get with index.get with 2

 Set

cyclicCondResult to true

 Else

 Set

cyclicCondResult to false

 EndIf

 EndIf

 EndIf

 Else if index.size is equal to 5

 If revisedSyncObjs.get with index.get

with 0 equals to revisedSyncObjs.get with index.get with index.size

decrements by 1

 If revisedSyncObjs.get with

index.get with 1 equals to revisedSyncObjs.get with index.get with

index.size decrements by 2

 Set cyclicCondResult to

true

 Else

 Set cyclicCondResult to

false

 EndIf

 Else

 Set cyclicCondResult to false

 EndIf

 EndIf

 Else if numOfThread greater than 3

 If revisedSyncObjs.get with index.get with

0 equals to revisedSyncObjs.get with index.get with index.size

62

decrements 1

 If revisedSyncObjs.get with index.get

with 1 equals to revisedSyncObjs.get with index.get with

groupMaxSize

 Set cyclicCondResult to true

 Else

 Set cyclicCondResult to false

 EndIf

 Else

 Set cyclicCondResult to false

 EndIf

 EndIf

 Else

 Set cyclicCondResult to false

 EndIf

 If cyclicCondResult

 Call to method pwCyclicCondTrue.append with

absolutePath plus " \n"

 EndIf

 Return cyclicCondResult

63

3.2. Deadlock Detection Tool

We develop the Deadlock Detection Tool using the Model-View-Controller
(MVC) design pattern. The MVC design patten facilitates and makes tool development
to be easier. For the Model, it is a part of the Deadlock Detection Algorithm. For the
View, it is a Graphic User Interface (GUI) that we implement using javax.swing. For the
Controller, it is a part of data input that the source code is imported and data
preparation for the Deadlock Detection Algorithm. Figure 24 shows the Class Diagram
of the Deadlock Detection Tool. And the following sections elaborate more detail of
each part.

Figure 24 The Class Diagram of the Deadlock Detection Tool

64

3.2.1. Model Design

 For the model, we implement the Deadlock Detection Algorithm. We create a
package name is the thesis.deadlockdetection.model and the Class name is
DeadlockDetectionAlgorithm.java. In Figure 24, the DeadlockDetectionAlgorithm
receives input path of the source code of the multithreading API that already filtered
unrelated source code from the DataPreparation Class. And the Deadlock Detection
Algorithm processes to detect deadlock in the source code of the multithreading API
when the Task is called from the View. Figure 25 shows the Class Diagram of the
Deadlock Detection Algorithm.

Figure 25 The Class Diagram of the Deadlock Detection Algorithm Class

65

3.2.2. View Design

For the View, we create a package name is the thesis.deadlockdetection.view.
Inside the View package, we have the DeadlockDetectionTool.java that is
implemented as a GUI of the tool and the DeadlockOutputDisplay.java that we
implement the source code to show the result of the Deadlock Detection Tool. We
implement the View using the javax.swing package. The DeadlockDetectionTool class
gets input of the multithreading API path from a Browse button and shows the
selected path in the text field. There is a Run button to perform deadlock detection
for the multithreading API. When the tool is executing, there is a progress popup
shows the percentage of the progress of the tool execution. The result of the
deadlock shows in the Deadlock Result section. The Deadlock Detection Tool shows
result that are the number of files that can detect deadlock, a list of files that have
deadlock and the detail of deadlock from selected file. The detail of the deadlock
shows when selecting a file name. The detail of the deadlock is shown in the text
area that are the absolute path of the file, the line of code that shows deadlock
sites, the number of threads that are created in the file and types of deadlock
conditions. Figure 26 shows the screenshot of the GUI of the Deadlock Detection
Tool.

66

Figure 26 Graphic User Interface (GUI) of the Deadlock Detection Tool

Figure 24 the DeadlockDetectionTool Class that is the GUI of the Deadlock
Detection Tool receives the input; the multithreading API path. After a user clicks the
Run button, the Task for Deadlock Detection executes. The Task creates the
DataPreparation Object, DeadlockDetectionAlgorithm Object and
DeadlockOutputDisplay Object.

For the part of detail of Deadlock from selected file in Figure 26, we
implement a Class named DeadlockOutputDisplay.java to get result from the
Deadlock Detection Algorithm to display on the Text Area for the absolute path of
the java file, lines of Deadlock site that occurs deadlock, the numbers of Thead that
cause the deadlock and the types of deadlock conditions.

67

3.2.3. Controller Design

For the Controller, we create a package name is the
thesis.deadlockdetection.controller. Inside the Controller package we have the
DataPreparation.java. For preparing data, the tool gets the multithreading API source
path from the GUI and it gets all java files of the multithreading API and then exports
java files by filtering unrelated source code out. We are interested in the Class that
extends the java.lang.Thread class and/or implements the java.lang.Runnable
interface, thread.start(), synchronization methods, synchronization objects, wait()
methods, notify() methods. The tool reads through all of files of source code of the
multithreading API to get keywords that relates to deadlock that are “extends
Thread”, “implements Runnable”, “synchronized”, “start()”, “wait()”, “notify()”,
“notifyAll()”. The exported source code files are located in the new directory for the
Deadlock Detection Algorithm Class to process deadlock detection. Figure 27 shows
the Class Diagram of the DataPreparation.java.

Figure 27 The Class Diagram of the DataPreparation Class

CHAPTER IV
RESULT AND VALIDATION

In this section, we provide the result of the Deadlock Detection Algorithm,
the Deadlock Detection Tool and validation of the result.

4.1. Result

We have successfully implemented the Deadlock Detection Algorithm and
the prototype of the Deadlock Detection Tool. The source code of each part is in the
APPENDIX B and the screenshot of result of the Deadlock Detection Tool is in the
APPENDIX C. We explain in detail of the result of the Deadlock Detection Algorithm
and the Deadlock Detection Tool in the following sections.

4.4.1. Result of the Deadlock Detection Algorithm
 Our Deadlock Detection Algorithm includes 7 deadlock conditions that are
the Aliasing Condition, the Parallel Condition, the Escaping Condition, the Reachable
Condition, the Superfluous Lock Condition, the Non-Guarded Lock Condition and the
Reverse Order Locking Condition or the Cyclic Lock Dependency Condition that are
able to use in the Deadlock Detection Tool and they are able to provide the
deadlock conditions and detect deadlock correctly.

4.4.2. Result of the Deadlock Detection Tool
 To verify the Deadlock Detection Algorithm, we develop the prototype of the
Deadlock Detection Tool to demonstrate using of the Deadlock Detection Algorithm
to detect deadlock in the Java source code. The Deadlock Detection Tool can read
the source code of the Java files or Java programs. We demonstrate a Java file as a
source code of a multithreading API. Each Java file in a specified directory is an input
of the Deadlock Detection Tool. The Deadlock Detection Tool provides the result to
the GUI screen and log files. Figure 28 shows the result of the Deadlock Detection
Tool that reports deadlock detection.

69

Figure 28 The output screenshot of the Deadlock Detection Tool that reports the

result of deadlock detection

 The Deadlock Detection Tool provides deadlock result that are the number
of files that the Tool can detect deadlock in the text field, list of file names that
have deadlock and the deteail of deadlock from the selected file in the text area.
When user clicks a file name in the list, the detail of deadlock of that file is displayed
in the text area. The detail that are the absolute path of the file, deadlock site that
shows line number and lines of code of the Java file, number of Thread and the
deadlock conditions that can detect the deadlock in the file.

The Deadlock Detection Tool also generates log files to use as a data for
displaying on the screen and use in the Deadlock Detection Algorithm. The Deadlock
Detection Tool generates the DDExportedSource directory to collect exported files of
the Java source code that filters unrelated-source code out, a DDReport directory for
collecting files of file report for each deadlock condition, a DDSyncInfo directory for

70

collecting sequence of synchronized Objects of each files and a DDDisplay directory
for collecting the displaying result of the file detail that have deadlock. Figure 29
shows the generated directories that produced by the Deadlock Detection Tool.

Figure 29 The directories that are the result of the Deadlock Detection Tool

Figure 30 The DDExportedSource Directory

 Figure 30 shows inside of the DDExportedSource directory that it has exported
files that already filtere out unrelated lines of code.

71

Figure 31 The exported source code compares with the original source code

 Figure 31 shows the exported source code compares with the original source
code. The exported source code is added line number and filtered out unrelated
lines of code.

Figure 32 The DDReport directory

 Figure 32 shows the DDReport directory that has files of the result of each
condition that are the Aliasing Condition (AliasingCondTrue.txt), the Cyclic Lock
Dependency Condition (CyclicCondTrue.txt), the Escaping Condition (EsConTrue.txt),
the Non-Guarded Lock Condition (NonGuardedCondTrue.txt), the Parallel Condition

72

(ParallelCondTrue.txt), the Reachable Condition (ReachableCondTrue.txt), the
Superfluous Lock Condition (SuperfluousCondTrue.txt) and Thread Count Report
(ThreadCountReport.txt). In the files of condition result contains the list of file names
that returns true for that condition.

Figure 33 The content of the AliasingCondTrue.txt

 Figure 33 shows content of the AliasingCondTrue.txt that is a file in the
DDReport directory. The AliasingCondTrue.txt has the list of file names that the
Deadlock Detection Algorithm can detect that files are the Aliasing condition.

73

Figure 34 The ThreadCountReport.txt

 Figure 34 shows the content in the ThreadCountReport.txt file that has the
result of the Deadlock Detection Algorithm for the number of Thread of each file.

74

Figure 35 The DDSyncInfo directory

Figure 36 The result of the file in the DDSyncInfo directory

 Figure 35 shows the list of files in the DDSyncInfo directory. Figure 36 shows
the content in one of file in the DDSyncInfo directory. In the file, it has the sequence
of the synchronized Objects of the imported Java file.

75

Figure 37 The DDDisplay directory

Figure 38 The content of the file in the DDDisplay directory

 Figure 37 shows the list of file inside the DDDisplay directory. Figure 38 shows
the content of the file in the DDDisplay directory. The content is the result of the
selected file that shows on the text area when user selects the file to see the detail
of the result of the deadlock detection.

76

4.2. Validation

 To validate the result of the Deadlock Detection Algorithm, we create test
files to test the 7 deadlock conditions and deadlock. We create 26 test files. All test
files are implemented using the synchronization best practices [21] that suggests
minimizing the number of Threads and synchronization. The nested synchronization
should not have more than 2 or 3. Therefore our test files have 2 or 3 Threads and 2
or 3 nested synchronization. The detail of all test files is added in APPENDIX D. Table
13 shows the test result of running of the Deadlock Detection Algorithm for 26 test
files comparing between the expeted results and the actual results.

Table 13 The result of the Deadlock Detection Tool when using test files for testing
Files

(.java)
Result

Dead
lock

Aliasing
Cyclic Lock

Dependency
Escaping Parallel

Non-
Guarded

Lock

Reachable
Superfluous

Lock
Thread
Number

Test001 Expected N x

x x x x x 2

Test001 Actual N x

x x x x x 2

Test002 Expected Y x x x x x x

2

Test002 Actual Y x x x x x x

2

Test003 Expected N x

x x

x

2

Test003 Actual N x

x x

x

2

Test004 Expected N

x x x x

2

Test004 Actual N

x x x x

2

Test005 Expected N

x x x x

2

Test005 Actual N

x x x x

2

Test006 Expected N

x x x x

2

Test006 Actual N

x x x x

2

Test007 Expected N

x x x x

3

Test007 Actual N

x x x x

3

Test008 Expected Y

x x x x x

3

Test008 Actual Y

x x x x x

3

Test009 Expected Y

x x x x x

2

Test009 Actual Y

x x x x x

2

Test010 Expected N

x x

x

2

Test010 Actual N

x x

x

2

Test011 Expected Y

x x x x x

2

Test011 Actual Y

x x x x x

2

Test012 Expected N

x x

x

2

Test012 Actual N

x x

x

2

Test013 Expected Y

x x x x x

2

77

Files
(.java)

Result
Dead
lock

Aliasing
Cyclic Lock

Dependency
Escaping Parallel

Non-
Guarded

Lock

Reachable
Superfluous

Lock
Thread
Number

Test013 Actual Y

x x x x x

2

Test014 Expected Y

x x x x x

2

Test014 Actual Y

x x x x x

2

Test015 Expected Y

x x x x x

2

Test015 Actual Y

x x x x x

2

Test016 Expected N

x x

x

2

Test016 Actual N

x x

x

2

Test017 Expected Y

x x x x x

3

Test017 Actual Y

x x x x x

3

Test018 Expected Y

x x x x x

2

Test018 Actual Y

x x x x x

2

Test019 Expected N

x x

x

3

Test019 Actual N

x x

x

3

Test020 Expected N

0

Test020 Actual N

0

Test021 Expected N

x

1

Test021 Actual N

x

1

Test022 Expected N x

x x x x

2

Test022 Actual N x

x x x x

2

Test023 Expected N x

x x x

2

Test023 Actual N x

x x x x

2

Test024 Expected Y

x x x x x

2

Test024 Actual Y

x x x x x

2

Test025 Expected Y

x x x x x

4

Test025 Actual Y

x x x x x

4

Test026 Expected Y x x x x x 2

Test026 Actual Y x x x x x 2

 Table 13 shows that all actual results of testing are the same as expected
results. The Deadlock Detection Algorithm provides correct results. The result is 100
percentage of correctness. The Deadlock Detection Tool provides a result with 12
files that have deadlock that are Test002.java, Test008.java, Test009.java,
Test011.java, Test013.java, Test014.java, Test015.java, Test017.java, Test018.java,
Test024.java, Test025.java and Test026.java. The results are correct as expected.
Figure 39 shows the screenshot of the Deadlock Detection Tool that provides correct
result of deadlock detection.

78

Figure 39 the screenshot of the Deadlock Detection Tool that provides correct result

of deadlock detection

CHAPTER V
CONCLUSION AND FUTURE WORK

 We successfully develop the Deadlock Detection Algorithm to detect the
deadlock in the multithreading API. We implement the prototype of the Deadlock
Detection Tool to demonstrate using of the Deadlock Detection Algorithm and it
provides correct result as expected. The Deadlock Detection Algorithm can detect
the deadlock correctly by analyzing the source code for the deadlock conditions that
are the Aliasing Condition, the Escaping Condition, the Parallel Condition, the Non-
Guarded Lock Condition, the Reachable Condition, the Reverse Order Locking
Condition or the Cyclic Lock Dependency Condition and the Superfluous Lock
Condition.

 The meaning of each deadlock conditions is explained as follows:
1. Parallel Condition
The Parallel Condition is the condition that there are several Threads are

created and run simultaneously and each Thread locks Objects. For example; in the
program there are 2 Threads are created and run simultaneously that are Thread A
and Thread B. Thread A locks Object L1 and then locks Object L2 sequentially.
Thread B locks Object L3.

2. Escaping Condition
The Escaping Condition is the condition that a lock can be accessible from

more than one thread. For example; there is Object L1, it can be accessible by
Thread A and Thread B.

3. Reachable Condition
The Reachable Condition is the condition that a Thread can reach to a lock

and acquire it and then reach to another lock and is still holding the first lock. For
example; Thread A reaches to Object L1 and acquires Object L1 and then it reaches
to Object L2. Thread A is still holding Object L1 when reaches to Object L2.

80

4. Aliasing Condition
The Aliasing Condition of the Deadlock Detection Algorithm is the condition

that a lock and another lock are referring to the same Object. For example; if Thread
A acquires Object L1 and then acquires Object L2. Object L1 is a reference of Object
L2. Object L1 and Object L2 is the aliasing objects.

5. Superfluous Lock Condition
The Superfluous Lock Condition is the condition that the synchronized

Objects are unnecessary duplicate locked. For example; Thread A acquires Object L1
and after that in the source code Thread A calls to acquires Object L1 again. Thread
A acquires Object L1 twice that is unnecessary duplicate lock. The Superfluous Lock
can cause the system unnecessary block an Object and lead to deadlock.

6. Non-Guarded Lock Condition
The Non-Guarded Lock Condition is the invert condition of the Guarded Lock

Condition. The Guarded Condition helps to solve deadlock problems by adding the
same synchronized Object before the couple of reverse order of synchronized
Objects that are locked by threads. The synchronized Object is called the Guarded
Lock or the common lock. The Guarded Lock prevents deadlock occurrence. When
the Thread acquires the Guarded Lock, other thread cannot hold that Guarded Lock
until the Thread releases the Guarded Lock. Therefore the reverse order of
synchronized Objects of other threads cannot access until the first thread that
acquires the guarded lock finishes the task and releases the Guarded Lock. For
example; if there are Thread A and Thread D. Thread A has acquired sequence of
Objects that are L4, L1 and L2 and Thread B has acquired sequence of Objects that
are L4, L2 and L1.

7. Reverse Order Lock Conditon or Cyclic Lock Dependency Condition
The Reverse Order Lock Condition or Cyclic Lock Dependency Condition is a

condition that the synchronized Objects locked by two or more than two threads are
reverse. When displaying on the Wait-For Graph it shows cyclic lock order. For
example; Thread A acquires L1 and L2 and Thread D acquires L2 and L1 sequentially.
The lock order of Thread A and Thread D is reverse. It causes deadlock. When Thread
A owns L1 and Thread D owns L2, after that Thread A waits to acquire L2 but L2 is

81

owned by Thread D that waits to acquire L1 that is owned by Thread A. Both threads
lock Objects in reverse order.
 The sequence of the Deadlock Detection Algorithm for detecting deadlock is
Thread counting, Synchronized Object collecting, the Aliasing Condition, the Parallel
Condition, the Escaping Condition, the Reachable Condition, the Superfluous Lock
Condition, the Non-Guarded Lock Condition and the Reverse Order Locking Condition
or the Cyclic Lock Dependency Condition.
 For the implementation of the Deadlock Detection Algorithm, Thread
Counting checks how many thread are created in the source code by counting the
line of the source code that calls the start() method. The Class that extends the
Thread Class and/or implements the Runnable Class is able to call start() method to
create a Thread to perform a task. After that the algorithm collects synchronized
Objects from the line of source code that has “synchronized”. The synchronized
Objects are collected in the ArrayList as regards their sequence in the source code.
The Deadlock Detection Algorithm uses the ArrayList of the synchronized Objects to
check the deadlock conditions and analyzes the deadlock. The next process is the
Aliasing Condition. The algorithm checks whether there are aliasing Objects in the
source code or not, if there are aliasing of Objects in the source code, the
synchronized Objects in the ArrayList are replaced with their aliasing. After that the
Deadlock Detection Algorithm processes the Parallel Condition. The Deadlock
Detection Algorithm checks whether there are several threads created and lock
Objects or not. If there is only one thread, the source code does not have deadlock.
The Parallel Condition returns false and informs there is no deadlock occurs in the
source code. If there are several threads created and lock Objects, the source code
potentially encounters deadlock. The Parallel Condition returns true. And the
Deadlock Detection Algorithm processes to the next condition that is the Escaping
Condition. The Escaping Condition is the condition that a lock can be accessible from
more than one thread. Therefore the Deadlock Detection Algorithm checkes whether
each synchronized Object in the ArrayList is duplicate or not. If it is duplicate, it
means that there are several threads acquire to lock this Object. We use the
HashMap to check the duplication. The synchronized Object is added as a key for

82

the HashMap and the number of lock that Object is value. If the value is equal 0, the
Object is not duplicate. The Escaping Condition returns false and the Deadlock
Detection Algorithm breaks and informs deadlock does not occur. If value more than
0, it is duplicate and the Escaping Condition returns true. The source code has
potentially that deadlock occurs. The Deadlock Detection Algorithm processes the
next condition that is the Reachable Condition. For the Reachable Condition, the
Deadlock Detection Algorithm checks whether the number of Thread more than 1
and each thread locks several Objects or not. If no, the Reachable Condition returns
false, the Deadlock Detection Algorithm stops and deadlock does not occur. If yes,
the Reachable Condition returns true and deadlock potentially occurs and the
Deadlock Detection Algorithm processes to check the next condition that is the
Superfluous Lock Condition. For the Superfluous Lock Condition, the Deadlock
Detection Algorithm checks whether the adjacent Objects in the ArrayList of each
thread are the same or not. If no, the Superfluous Lock Condition returns false and
the Deadlock Detection Algorithm stops process and it informs that deadlock does
not occur. If yes, the Superfluous Lock Condition returns true. Deadlock potentially
occurs and the Deadlock Detection Algorithm processes the next condition that is
the Non-Guarded Lock Condition. For the Non-Guarded Lock Condition, the Deadlock
Detection Algorithm checks whether the first synchronized Object of each Thread is
the same Object or not. If yes, it is the Guarded Lock Condition and deadlock does
not occur. The Deadlock Detection Algorithm stops processing to the next condition.
If no, it is the Non-Guarded Lock Condition, the deadlock potentially occurs and the
Deadlock Detection Algorithm continues processing the next condition that is the
Reverse Order Locking Conditon or the Cyclic Lock Dependency Condition. For the
Reverse Order Locking Condition or the Cyclic Lock Dependency Condition, the
Deadlock Detection Algorithm checks whether the lock order is reverse or the cyclic
lock occurs or not. If no, the source code does not have deadlock. If yes, the
deadlock potentially occurs.

83

In conclusion, using five deadlock conditions [3] and two code patterns of
deadlock conditions [15] that is enhanced from the necessary conditions of deadlock
of Edward G. Coffman, Jr. [9] is able to develop an algorithm to detect deadlock in
the multithreading API. We found that the Reverse Order Locking Condition or the
Cyclic Lock Dependency Condition is the final result of the Deadlock Detection
Algorithm that helps us to detect and predicts whether deadlock potentially occurs
or not. In addition, the result from other conditions helps us to understand which
deadlock conditions occur and relate to deadlock.
 The found of this thesis can help the developer to check the source code
whether the deadlock potentially occurs or not. They can perform checking the
source code in the early phase of the Software Development or the Software Testing
as a static analysis before the defect is detected in the application. Moreover, the
developer is able to use information of the deadlock conditions to investigate and
resolve the problem in the multithreading API. In addition, the developer is able to
use the Deadlock Detection Algorithm for the unit test. Even if the developer cannot
fix the problem, they can also use the result of deadlock detection to provide as a
suggestion or guideline or document it for the usage and limitation of the
multithreading API to customers or team. Furthermore, the result of deadlock
detection can help the developer to understand Object synchronization in the
multithreading API or source code. Last but not least it can help the development
manager to prepare for issue that will happen in the future and to plan the
resources for fixing the defect or to decide whether it is affect to the design or
requires to fix or not.
 For the limitation of this thesis, as regards we use the Oracle implementation
best practice [21] that suggests to avoid and minimize creating several threads and
synchronization and nested synchronization. Therefore our algorithm is able to
detect deadlock only for the class that has 2 or 3 threads and 2 or 3 nested
synchronization. In addition, we emphasize in developing the Deadlock Detection
Algorithm as a major work of this thesis. The Deadlock Detection Tool is able to
import the source code of Java programs. Each file of the Java source code is

84

represented as a multithreading API and each file are not relate or calls other files.
The program solely completes tasks in its file.
 For the future work we can use the algorithm to detect the deadlock in the
UML of the multithreading API by changing the input part of the Deadlock Detection
Tool to read the UML instead. It will help to detect the deadlock in the early process
of the Software Development Life Cycle to decrease the cost of fixing bugs. In
addition, it is possible to add the Reentrance Condition to detect deadlock that
occurs from java.util.concurrent.locks.ReentrantLock implementation. The algorithm
should be able to detect the lock() method and the unlock() method [22]. Moreover,
it is valuable to develop the algorithm and tool to support deadlock that more
complex in the way of using more than 3 threads and more than 3 nested
synchronization. It is possible to develop the Deadlock Detection Algorithm and Tool
using the call graph theory for higher size of the source code of the multithreading
API or the application. The call graph theory can help to implement the deadlock
detection algorithm and tool using other static analysis methods and can help the
developer to enhance visibility and understanding of the multithreading API behavior
and detect deadlock.

REFERENCES

1. Pedro Fonseca, C.L., and Rodrigo Rodrigues, Finding Complex Concurrency
Bugs in Large Multi-Threaded Applications, in EuroSys’11. 2011, ACM:
Salzburg, Austria. p. 215-228.

2. Tong Li, C.S.E., Alvin R. Lebeck, and Daniel J. Sorin. Pulse: A Dynamic
Deadlock Detection MechanismUsing Speculative Execution. in 2005 USENIX
Annual Technical Conference. 2005. Anaheim, California.

3. Mayur Naik, C.-S.P., Koushik Sen and David Gay, Effective Static Deadlock
Detection, in ICSE’09. 2009, IEEE: Vancouver, Canada. p. 386-396.

4. Holt, R.C., Some Deadlock Properties of Computer Systems. Computing
Surveys, 1972. 4(3): p. 18.

5. Henning, M., API design matters. Communications of the ACM, 2009. 52(5): p.
46.

6. Shan Lu, S.P., Eunsoo Seo and Yuanyuan Zhou, Learning from mistakes - a
comprehensive study on real world concurrency bug characteristics, in
ASPLOS'08. 2008, ACM: Seattle, Washington, USA. p. 329-339.

7. affiliates, O.a.o.i. About the Java Technology. Oracle and/or its affiliates 1995,
2012 [cited 2012 19/10]; Available from:
http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html.

8. affiliates, O.a.o.i. Deadlock. 1995, 2012 [cited 2012 22/09]; Available from:
http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html.

9. Edward G. Coffman, J., Deadlock, in Wikipedia. 1971.
10. Knapp, E., Deadlock Detection in Distributed Databases. ACM Computing

Surveys, 1987. 19(4): p. 26.
11. Mattia Monga, R.P., Emanuele Passerini, A Hybrid Analysis Framework For

Detecting Web Application Vulnerabilities, in ICSE. 2009, Software Engineering
for Secure Systems, 2009. SESS '09. : Vancouver, Canada. p. 25 - 32.

12. Elmagarmid, A.K., A Survey of Distributed Deadlock Detection Algorithms
SIGMOD RECORD, 1986. 15(3): p. 9.

http://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/deadlock.html

86

13. Ismail, U., Incremental Call Graph Construction for the Eclipse IDE. 2009,
David R. Cheriton School of Computer Science, University of Waterloo. p. 9.

14. Shujuan Jiang, Y.Z.a.D.Y., Test Data Generation Approach for Basis Path
Coverage. ACM SIGSOFT Software Engineering Notes, 2012. 37(3): p. 7.

15. Frank Otto, T.M., Finding Synchronization Defects in Java Programs Extended
Static Analyses and Code Patterns, in IWMSE’08. 2008, ACM: Leipzig,
Germany. p. 41-46.

16. Jonas Trümper, J.B., Jürgen Döllner Understanding Complex Multithreaded
Software Systems by Using Trace Visualization, in SOFTVIS’10. 2010, ACM:
Salt Lake City, Utah, USA. p. 133-142.

17. Stoller, R.A.a.S.D., Run-Time Detection of Potential Deadlocks for Programs
with Locks, Semaphores, and Condition Variables, in PADTAD-IV. 2006, ACM:
Portland, Maine, USA. p. 51-59.

18. Amy Williams, W.T., and Michael D. Ernst. Static Deadlock Detection for Java
Libraries. in ECOOP2005. 2005. Glasgow UK.

19. Jyotirmoy Deshmukh, E.A.E.a.S.S. Symbolic Deadlock Analysis in Concurrent
Libraries and Their Clients. in 2009 IEEE/ACM International Conference on
Automated Software Engineering. 2009. Washington, DC, USA: IEEE Computer
Society.

20. Gianpiero Francesca, A.S., Gigliola Vaglini and Maria Luisa Villani. Ant Colony
Optimization for Deadlock Detection in Concurrent Systems. in 2011 35th IEEE
Annual Computer Software and Applications Conference. 2011. Washington,
DC, USA: IEEE Computer Society.

21. Oracle. Oracle9i Application Server Best Practices. 2003 2003 [cited 2014 18
October]; Release 2 (9.0.3) Part Number B10578-02:[Avoid or Minimize
Synchronization]. Available from:
http://docs.oracle.com/cd/A97688_16/generic.903/bp/java.htm#1005570.

22. Oracle. Package java.util.concurrent.locks. 1993; Available from:
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-
summary.html.

http://docs.oracle.com/cd/A97688_16/generic.903/bp/java.htm#1005570
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-summary.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/package-summary.html

87

APPENDICES

APPENDIX A
PUBLICATION

1. Ploysri, S., and Rivepiboon, W. A Development of the Deadlock Detection

Algorithm using Static Analysis for Potential Deadlocks in the Multithreading API.

The proceeding of the International Multi-Conferences 2013 (ICACCT 2013),

International Conference on Advances in Computing and Communication

Technologies, 2013: 9-15.

2. Ploysri, S., and Rivepiboon, W. Yet, Another Method for Detecting API Deadlock.

The proceeding of 8th International Conference on Evaluation of Novel Software

Approaches to Software Engineering (ENASE 2013), 2013: 219-226.

APPENDIX B
SOURCE CODE OF DEADLOCK DETECTION TOOL

B.1. Model Package

The source code of the Deadlock Detection Algorithm is implemented as the
Deadlock DetectionAlgorithm.java in the thesis.deadlockdetection.model package. It
is shown in Table 14.

Table 14 The source code of the DeadlockDetectionAlgorithm.java
package thesis.deadlockdetection.model;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Scanner;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

public class DeadlockDetectionAlgorithm {

 private PrintWriter pw = null;
 private PrintWriter pw2 = null;
 public File threadCountReport = new File(
 "D:\\DDReport\\ThreadCountReport.txt");
 boolean parallelCondBool = false;
 boolean escapingCondBool = false;
 boolean reachableCondBool = false;
 boolean aliasingCondBool = false;
 boolean superfluousCondBool = false;
 boolean nonguardedCondBool = false;
 boolean cyclicCondBool = false;

 File parallelConTrueFile = new
File("D:\\DDReport\\ParallelCondTrue.txt");
 File esCondTrueFile = new File("D:\\DDReport\\EsCondTrue.txt");

91

 File esCondTrueFileTemp = new
File("D:\\DDReport\\EsCondTrueTemp.txt");
 File reachableConTrueFile = new
File("D:\\DDReport\\ReachableConTrue.txt");
 File aliasingConTrueFile = new
File("D:\\DDReport\\AliasingCondTrue.txt");
 File superfluousCondTrueFile = new File(
 "D:\\DDReport\\SuperflousCondTrueFile.txt");
 File nonGuardedCondTrueFile = new File(
 "D:\\DDReport\\NonGuardedCondTrue.txt");
 File cyclicCondTrueFile = new
File("D:\\DDReport\\CyclicCondTrue.txt");

 PrintWriter pwPCondTrue = null;
 PrintWriter pwEsCondTrue = null;
 PrintWriter pwReachableCondTrue = null;
 PrintWriter pwAliasingCondTrue = null;
 PrintWriter pwSuperflousCondTrue = null;
 PrintWriter pwNonGuardedCondTrue = null;
 PrintWriter pwCyclicCondTrue = null;

 public DeadlockDetectionAlgorithm(File sourceCode, File
exportedSource) {

 System.out.println("--- DD Algo ---");

 File reportFolder = new File("D:\\DDReport\\");
 reportFolder.mkdirs();

 System.out.println("--- creating " +
reportFolder.getAbsolutePath()
 + " directory ---");

 try {
 pw = new PrintWriter(new
FileWriter(threadCountReport));

 System.out.println("--- countThreads() ---");
 countThreads(exportedSource);

 } catch (IOException e) {
 e.printStackTrace();
 } finally {
 if (pw != null) {
 pw.close();
 }
 }

 File folderForSyncInfo = new File("D:\\DDSyncInfo\\");
 folderForSyncInfo.mkdirs();
 System.out.println(folderForSyncInfo.getAbsolutePath()
 + " directory is created.");

 try {

 pwPCondTrue = new PrintWriter(new

92

FileWriter(parallelConTrueFile));
 pwEsCondTrue = new PrintWriter(new
FileWriter(esCondTrueFile));
 pwReachableCondTrue = new PrintWriter(new
FileWriter(
 reachableConTrueFile));
 pwAliasingCondTrue = new PrintWriter(new
FileWriter(
 aliasingConTrueFile));
 pwSuperflousCondTrue = new PrintWriter(new
FileWriter(
 superfluousCondTrueFile));
 pwNonGuardedCondTrue = new PrintWriter(new
FileWriter(
 nonGuardedCondTrueFile));
 pwCyclicCondTrue = new PrintWriter(new FileWriter(
 cyclicCondTrueFile));

 System.out.println("--- collectSyncObjs() ---");
 collectSyncObjs(exportedSource);

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 if (pwPCondTrue != null) {
 pwPCondTrue.close();
 }

 if (pwEsCondTrue != null) {
 pwEsCondTrue.close();
 }

 if (pwReachableCondTrue != null) {
 pwReachableCondTrue.close();
 }

 if (pwAliasingCondTrue != null) {
 pwAliasingCondTrue.close();
 }

 if (pwSuperflousCondTrue != null) {
 pwSuperflousCondTrue.close();
 }

 if (pwNonGuardedCondTrue != null) {
 pwNonGuardedCondTrue.close();
 }

 if (pwCyclicCondTrue != null) {
 pwCyclicCondTrue.close();
 }
 }

93

 }

 public void syncObjOrder(ArrayList<String> syncObjs) {

 Object synObOrder[] = null;
 int value = 0;
 Map<String, Integer> map = new HashMap<String,
Integer>();
 for (String s : syncObjs) {
 if (s.equals("{") | s.equals("}")) {
 continue;
 } else {
 map.put(s, value++);
 }
 }

 synObOrder = new Object[map.size()];
 synObOrder = map.keySet().toArray();
 for (int i = 0; i < synObOrder.length; i++) {
 System.out.println(synObOrder[i]);
 for (String s : syncObjs) {
 if (s.equals("{") | s.equals("}")) {
 continue;
 } else if (s.equals(synObOrder[i])) {

 }
 }
 }

 }

 public void formatEsConTrueFile(File esCondTrueFile) throws
Exception {

 SortedSet<String> sortSet = new TreeSet<String>();
 BufferedReader br = new BufferedReader(new
FileReader(esCondTrueFile));
 String line = "";

 while ((line = br.readLine()) != null) {
 sortSet.add(line);
 }

 if (br != null) {
 br.close();
 }

 PrintWriter pwEsCon = new PrintWriter(
 new FileWriter(esCondTrueFileTemp));
 Iterator<String> iter = sortSet.iterator();
 while (iter.hasNext()) {
 String type = (String) iter.next();

 pwEsCon.println(type);
 }

94

 if (pwEsCon != null) {
 pwEsCon.close();
 }

 FileInputStream fis = new
FileInputStream(esCondTrueFileTemp);
 FileOutputStream fos = new
FileOutputStream(esCondTrueFile);

 byte[] buffer = new byte[4096];
 int bytesRead;

 while ((bytesRead = fis.read(buffer)) != -1) {
 fos.write(buffer, 0, bytesRead);
 }

 if (fis != null) {
 fis.close();
 }
 if (fos != null) {
 fos.close();
 }
 }

 public void syncObjOrderCollecting(String file,
ArrayList<String> syncObj) {

 }

 public ArrayList<String> aliasingCond(String file,
 ArrayList<String> syncObjs){

 Map<String, String> aliasingObjs = new HashMap<String,
String>();

 System.out.println("= = = Aliasing Condition = =
=");

 BufferedReader br = null;
 String line = "";
 String[] lineSplitString = null;

 int newLength = 0;
 try {
 br = new BufferedReader(new FileReader(new
File(file)));
 try {
 while ((line = br.readLine()) !=
null) {

 if (line.contains("=") &
!line.contains("new")) {
 lineSplitString =
line.split(" ");
 for (int i = 0; i <

95

lineSplitString.length; i++) {
 if
(lineSplitString[i].contains("=")
 &
!lineSplitString[i].contains("new")) {
 newLength =
i;
 String[]
aliasingLineSplitString = new String[3];

 System.arraycopy(lineSplitString,

 newLength - 1,

 aliasingLineSplitString, 0, 3);

 if
(aliasingLineSplitString[2]

 .contains("\"")) {

 aliasingLineSplitString[2] = aliasingLineSplitString[2]

 .replace("\"", " ").trim();
 }

 if
(aliasingLineSplitString[2]

 .contains(";")) {

 aliasingLineSplitString[2] = aliasingLineSplitString[2]

 .replace(";", " ").trim();
 }

 aliasingObjs.put(

 aliasingLineSplitString[0],

 aliasingLineSplitString[2]);
 System.out

 .println(aliasingLineSplitString[0]

 + " Object is aliasing with "

 + aliasingLineSplitString[2]);
 }
 }
 } else if (line.contains("=")
& line.contains("new")) {
 lineSplitString =
line.split(" ");
 String[] tempArray = new

96

String[2];
 for (int i = 0; i <
lineSplitString.length; i++) {
 if
(lineSplitString[i].contains("=")) {

 tempArray[0] = lineSplitString[i - 1];

 tempArray[1] = lineSplitString[lineSplitString.length - 1];
 }
 }

 if
(tempArray[1].contains(";")) {
 tempArray[1] =
tempArray[1].replace(";", " ")

 .trim();
 }

 if
(tempArray[1].contains(":")) {
 tempArray[1] =
tempArray[1].replace(":", " ")

 .trim();
 }

 System.out.println(tempArray[0]
 + " Object
is aliasing with "
 +
tempArray[1]);

 aliasingObjs.put(tempArray[0], tempArray[1]);

 }

 }

 } catch (IOException e) {

 e.printStackTrace();
 }

 } catch (FileNotFoundException e) {

 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {

97

 e.printStackTrace();
 }
 }
 }

 System.out.println(aliasingObjs);
 Map<String, String> aliasingObjsTemp = new
HashMap<String, String>();
 System.out.println(syncObjs);
 for (String s : syncObjs) {

 for (Map.Entry<String, String> entry :
aliasingObjs.entrySet()) {
 if (entry.getKey().equals(s) |
entry.getValue().equals(s)) {
 aliasingObjsTemp.put(entry.getKey(),
entry.getValue());
 }
 }
 }

 System.out.println("Aliasing Obj Check: " +
aliasingObjsTemp);

 Map<String, String> aliasingObjsTemp2 = new
HashMap<String, String>();

 for (Map.Entry<String, String> entry :
aliasingObjsTemp.entrySet()) {
 if ((!entry.getKey().contains(entry.getValue()))
 &
(!entry.getValue().contains("Object()"))) {
 aliasingObjsTemp2.put(entry.getKey(),
entry.getValue());
 }
 }

 System.out.println("Only Aliasing Objs " +
aliasingObjsTemp2);

 boolean aliasingFlag = false;
 if (!aliasingObjsTemp2.isEmpty()) {
 System.out.println("There are Aliasing Objects "
 + aliasingObjsTemp2.size() + "
couple/s.");
 aliasingFlag = true;
 } else {
 System.out.println("No Aliasing Object.");
 aliasingFlag = false;
 }
 ArrayList<String> syncObjsTemp = new
ArrayList<String>();
 if (aliasingFlag) {
 for (Map.Entry<String, String> entry :
aliasingObjsTemp2.entrySet()) {

98

 for (int i = 0; i < syncObjs.size(); i++) {
 if
(entry.getKey().contains(syncObjs.get(i))) {
 syncObjsTemp.add(i,
entry.getValue());
 } else {
 syncObjsTemp.add(i,
syncObjs.get(i));
 }
 }
 }

 if (syncObjsTemp.size() > syncObjs.size()) {
 syncObjsTemp = new
ArrayList<String>(syncObjsTemp.subList(0,
 syncObjs.size() - 1));
 }

 System.out.println("Replace syncObjs with Aliasing
Object = "
 + syncObjsTemp);

 } else {
 syncObjsTemp = syncObjs;
 System.out.println("Same syncObjs = " +
syncObjsTemp);
 }

 aliasingCondBool = aliasingFlag;

 if (aliasingFlag) {

 pwAliasingCondTrue.append(file + " \n");

 }

 return syncObjsTemp;

 }

 public void collectSyncObjs(File exportedSource) {

 for (File exportedSourceFile :
exportedSource.listFiles()) {

 if (exportedSourceFile.isDirectory()) {

 collectSyncObjs(exportedSourceFile);

 } else {

 if
(exportedSourceFile.getName().contains(".java")) {

 ArrayList<String> syncObjs = new
ArrayList<String>();

99

 int syncCountThis = 0;
 int openBlock = 0;
 int closeBlock = 0;

 PrintWriter pw = null;
 BufferedReader br = null;

 String exportedSourceFileName =
exportedSourceFile
 .getName();
 String syncInfoFileName =
"D:\\DDSyncInfo\\"
 +
exportedSourceFileName;
 File syncInfoFile = new
File(syncInfoFileName);

 try {

 pw = new
PrintWriter(syncInfoFile);

 System.out.println(syncInfoFile.getAbsolutePath());

 br = new BufferedReader(new
FileReader(

 exportedSourceFile));

 String line = "";

 while ((line = br.readLine())
!= null) {

 if
((line.contains("synchronized(")
 |
line.contains("synchronized (") | line

 .contains("public synchronized "))
 &
!line.contains("//")) {

 if
(line.contains("synchronized(this)")
 |
line.contains("synchronized (this)")) {

 syncCountThis++;

 syncObjs.add("this");

 } else if
(line.contains("synchronized(")

100

 |
line.contains("synchronized (")) {

 String
syncObjName = line.substring(

 line.indexOf("(") + 1,

 line.indexOf(")")).trim();

 syncObjs.add(syncObjName);

 } else if
(line.contains("synchronized")
 &
!line.contains("synchronized (")
 &
!line.contains("synchronized(")) {

 String
syncObjName = line.substring(

 line.lastIndexOf("(") + 1,

 line.lastIndexOf(")")).trim();

 syncObjName
= syncObjName.substring(

 syncObjName.lastIndexOf(" "),

 syncObjName.length()).trim();

 syncObjs.add(syncObjName);

 }

 } else if
(line.contains("{")) {

 openBlock++;

 syncObjs.add("{");

 } else if
(line.contains("}")) {

 closeBlock++;

 syncObjs.add("}");
 }

 }

101

 pw.println(syncObjs);
 System.out.println("----------
original-------------");
 System.out.println(syncObjs);
 System.out.println("----------
original-------------");

 ArrayList<String>
revisedSyncObjs = aliasingCond(

 exportedSourceFile.getAbsolutePath(), syncObjs);

 parallelCondBool =
parallelCond(

 syncInfoFile.getAbsolutePath(), revisedSyncObjs);

 escapingCondBool =
escapingCond(

 syncInfoFile.getAbsolutePath(), revisedSyncObjs);
 try {

 reachableCondBool =
reachableCond(

 syncInfoFile.getAbsolutePath(), revisedSyncObjs);

 } catch (Exception e) {
 e.printStackTrace();
 }

 superfluousCondBool =
superfluousCond(

 exportedSourceFile.getAbsolutePath(),
 revisedSyncObjs);

 nonguardedCondBool =
nonGuardedCond(

 exportedSourceFile.getAbsolutePath(),
 revisedSyncObjs);

 cyclicCondBool = cyclicCond(

 exportedSourceFile.getAbsolutePath(),
 revisedSyncObjs);

 System.out.println();

 } catch (IOException e) {

 e.printStackTrace();

102

 } finally {
 if (pw != null) {
 pw.close();
 }
 }

 }
 }
 }
 }

 public boolean superfluousCond(String absolutePath,
 ArrayList<String> revisedSyncObjs)
 {

 System.out.println("===== Superfluous Condition =====");

 boolean superfluousBool = false;

 ArrayList<Integer> index = new
ArrayList<Integer>();
 ArrayList<Boolean> doubleLockList = new
ArrayList<Boolean>();

 for (int i = 0; i < revisedSyncObjs.size(); i++) {
 if (i == (revisedSyncObjs.size() - 1)) {
 break;
 } else {
 if
(revisedSyncObjs.get(i).equals("}")
 ||
revisedSyncObjs.get(i).equals("{")
 || revisedSyncObjs.get(i
+ 1).equals("}")
 || revisedSyncObjs.get(i
+ 1).equals("{")) {
 continue;
 } else {
 System.out.println(i);
 index.add(i);

 doubleLockList.add(arrayListToken(

 revisedSyncObjs.get(i),

 revisedSyncObjs.get(i + 1)));

 }
 }
 }

 System.out.println("Double lock list = " +
doubleLockList);

 int countTrue = 0;

103

 for (boolean boolEle : doubleLockList) {
 if (boolEle == true) {
 countTrue++;
 }
 }

 if (countTrue > 0) {
 System.out.println("Deadlock.");
 superfluousBool = true;
 } else {
 System.out.println("No Deadlock");
 superfluousBool = false;

 pwSuperflousCondTrue.append(absolutePath +
"\n");

 }

 System.out.println("======================================");

 return superfluousBool;
 }

 public static boolean arrayListToken(String a, String b) {
 boolean doubleLock = true;
 System.out.println("Check group = " + a + ", " + b);
 if (a.equals(b)) {
 doubleLock = true;
 System.out
 .println("No deadlock/Superfluous
Condition - Double Lock.");
 } else {
 doubleLock = false;
 System.out
 .println("Potential deadlock/No
Superfluous Condition - No Double Lock.");
 }

 return doubleLock;
 }

 public boolean cyclicCond(String absolutePath,
 ArrayList<String> revisedSyncObjs)
 {

 boolean cyclicCondResult = false;
 ArrayList<Integer> index = new ArrayList<Integer>();

 System.out.println("===========Reverse
Order=============");

 for (int i = 0; i < revisedSyncObjs.size(); i++) {
 if (revisedSyncObjs.get(i).equals("this"))
{
 revisedSyncObjs.set(i, "}");
 }

104

 }

 for (int i = 0; i < revisedSyncObjs.size(); i++) {
 if (!(revisedSyncObjs.get(i).equals("{") |
revisedSyncObjs.get(
 i).equals("}"))) {
 index.add(i);
 }
 }

 System.out.println(index);

 BufferedReader br = null;
 String line = "";
 int numOfThread = 0;
 String fileSearch = absolutePath.substring(
 absolutePath.lastIndexOf("\\") + 1,
absolutePath.length())
 .trim();
 Scanner scanner = null;
 try {

 br = new BufferedReader(new
FileReader(threadCountReport));
 scanner = new Scanner(br);

 while (scanner.hasNext()) {
 if
(scanner.next().equals(fileSearch)) {
 scanner.next();
 if (scanner.hasNextInt()) {
 numOfThread =
scanner.nextInt();

 System.out.println("There are " + numOfThread + " threds.");
 break;
 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (scanner != null) {
 scanner.close();
 }
 try {
 if (br != null) {
 br.close();
 }

 } catch (IOException e) {

 e.printStackTrace();
 }
 }

105

 int groupMaxSize = 0;

 for (int i = 0; i < index.size(); i++) {

 groupMaxSize +=
checkGroupSize(index.get(i), index.get(i++));
 }

 System.out.println("GroupObjSize = " +
groupMaxSize);

 if (numOfThread == 2) {

 if (groupMaxSize == 1) {

 cyclicCondResult = false;
 System.out.println("No Deadlock");

 } else if (groupMaxSize == 3 & index.size()
== 5) {

 if (index.get(groupMaxSize - 1) + 1 <
index
 .get(groupMaxSize)) {

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");
 } else {

 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))) {

 if
(revisedSyncObjs.get(

 index.get(index.size() - 2)).equals(

 revisedSyncObjs.get(index.get(1)))
 |
revisedSyncObjs.get(

 index.get(index.size() - 2))

 .equals(revisedSyncObjs

106

 .get(index.get(2)))) {

 cyclicCondResult = true;

 System.out.println("Deadlock");

 } else {

 cyclicCondResult = false;

 System.out.println("No Deadlock");
 }
 } else if
(revisedSyncObjs.get(index.get(1))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))
 &
revisedSyncObjs.get(

 index.get(groupMaxSize - 1))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");
 } else {

 cyclicCondResult
= false;

 System.out.println("No Deadlock");
 }
 }
 } else {

 int firstGroupSize =
groupMaxSize - 1;

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(firstGroupSize)))) {

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");

107

 } else if
(!revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(firstGroupSize)))) {
 if
((revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 2))) | revisedSyncObjs

 .get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(index

 .size() - 1))))
 &
revisedSyncObjs.get(

 index.get(firstGroupSize - 1))

 .equals(revisedSyncObjs.get(index

 .get(firstGroupSize)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))
 &
(revisedSyncObjs.get(

 index.get(firstGroupSize - 1))

 .equals(revisedSyncObjs.get(index

 .get(firstGroupSize))) | revisedSyncObjs

 .get(index.get(firstGroupSize - 1))

 .equals(revisedSyncObjs.get(index

 .get(index.size() - 2))))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

108

 } else {

 cyclicCondResult
= false;

 System.out.println("No Deadlock");
 }
 }

 }
 } else if (groupMaxSize == 2 & index.size()
== 4) {

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

 cyclicCondResult = false;
 System.out.println("No
Deadlock");

 } else {
 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))
 &
revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index

 .get(groupMaxSize)))) {

 cyclicCondResult = true;

 System.out.println("Deadlock");

 } else {

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");
 }
 }
 } else if (groupMaxSize == 3 & index.size()
== 6) {
 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

109

 cyclicCondResult = false;
 System.out.println("No
Deadlock");
 } else if
(!revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))
 &
(revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index

 .get(groupMaxSize))) | revisedSyncObjs

 .get(index.get(1))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize + 1))))
 &
(revisedSyncObjs.get(index.get(2)).equals(

 revisedSyncObjs.get(index

 .get(groupMaxSize))) | revisedSyncObjs

 .get(index.get(2))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize + 1))))) {

 cyclicCondResult = true;

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize + 1)))
 &
(revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index

 .get(groupMaxSize))) | revisedSyncObjs

110

 .get(index.get(1))

 .equals(revisedSyncObjs.get(index

 .get(index.size() - 1))))
 &
(revisedSyncObjs.get(index.get(2)).equals(

 revisedSyncObjs.get(index

 .get(groupMaxSize))) | revisedSyncObjs

 .get(index.get(2))

 .equals(revisedSyncObjs.get(index

 .get(index.size() - 1))))) {

 cyclicCondResult = true;

 System.out.println("Deadlock");

 } else {

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");
 }

 }

 }

 } else if (numOfThread == 3) {
 System.out.println("else if 3 threads.");
 System.out.println("lock size = " +
groupMaxSize);
 if (groupMaxSize == 3 & index.size() == 6)
{

 if (index.get(groupMaxSize) <
(index.get(groupMaxSize) + 1)) {
 System.out.println("2 locks, 3
threads ");

 int currentGroupSize =
groupMaxSize - 1;

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(2)).equals(

 revisedSyncObjs.get(index.get(4))))) {

111

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");

 } else {

 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 1)))
 &
revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index.get(2)))
 &
revisedSyncObjs.get(index.get(3)).equals(

 revisedSyncObjs.get(index.get(4)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(3)))
 &
revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index.get(4)))
 &
revisedSyncObjs.get(index.get(2)).equals(

 revisedSyncObjs.get(index.get(5)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(2))

 .equals(revisedSyncObjs.get(index.get(5)))
 &
revisedSyncObjs.get(index.get(3)).equals(

 revisedSyncObjs.get(index.get(4)))) {

 cyclicCondResult
= true;

112

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(5)))
 &
revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index.get(4)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

 } else if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index.get(3)))
 &
revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index.get(2)))) {

 cyclicCondResult
= true;

 System.out.println("Deadlock");

 } else {

 cyclicCondResult
= false;

 System.out.println("No deadlock.");
 }

 }

 }
 } else if (index.size() == 5) {

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(index.size() - 1)))) {
 if
(revisedSyncObjs.get(index.get(1))

 .equals(revisedSyncObjs.get(index.get(index

 .size() - 2)))) {

 cyclicCondResult = true;

113

 System.out.println("Deadlock");

 } else {

 cyclicCondResult =
false;
 System.out.println("No
Deadlock");
 }
 } else {

 cyclicCondResult = false;
 System.out.println("No
Deadlock");
 }
 }

 } else if (numOfThread > 3) {
 System.out.println(index);
 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(index.size() - 1)))) {

 if
(revisedSyncObjs.get(index.get(1)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

 cyclicCondResult = true;

 System.out.println("Deadlock");

 } else {

 cyclicCondResult = false;
 System.out.println("No
Deadlock");
 }

 } else {

 cyclicCondResult = false;
 System.out.println("No Deadlock");
 }

 }

 System.out

 .println("===
=");

 if (cyclicCondResult) {
 pwCyclicCondTrue.append(absolutePath + " \n");

114

 }

 return cyclicCondResult;
 }

 public int checkGroupSize(int x, int y) {
 int maxCount = 0;

 if ((x++) == y) {
 maxCount++;
 }

 return maxCount;
 }

 public boolean nonGuardedCond(String absolutePath,
 ArrayList<String> revisedSyncObjs) {

 System.out.println("=====Non-Guarded Condition======");
 boolean nonguarded = false;
 ArrayList<Integer> index = new
ArrayList<Integer>();

 for (int i = 0; i < revisedSyncObjs.size(); i++) {
 if (!(revisedSyncObjs.get(i).equals("{") |
revisedSyncObjs.get(
 i).equals("}"))) {
 index.add(i);
 }
 }

 BufferedReader br = null;
 String line = "";
 int numOfThread = 0;
 String fileSearch = absolutePath.substring(
 absolutePath.lastIndexOf("\\") + 1,
absolutePath.length())
 .trim();
 Scanner scanner = null;
 try {

 br = new BufferedReader(new
FileReader(threadCountReport));
 scanner = new Scanner(br);

 while (scanner.hasNext()) {
 if
(scanner.next().equals(fileSearch)) {
 scanner.next();
 if (scanner.hasNextInt()) {
 numOfThread =
scanner.nextInt();

 System.out.println("There are " + numOfThread
 + "
threds.");

115

 break;
 }
 }
 }
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 if (scanner != null) {
 scanner.close();
 }
 try {
 if (br != null) {
 br.close();
 }

 } catch (IOException e) {

 e.printStackTrace();
 }
 }

 int groupMaxSize = 0;

 for (int i = 0; i < index.size(); i++) {

 groupMaxSize +=
checkGroupSize(index.get(i), index.get(i++));
 }

 System.out.println("GroupObjSize = " +
groupMaxSize);

 if (numOfThread == 2) {

 if (groupMaxSize == 2) {
 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {
 System.out.println("No
Deadlock/guarded lock");
 nonguarded = false;
 } else {

 System.out.println("Deadlock");
 nonguarded = true;
 }

 } else if (groupMaxSize == 3) {

 if (index.size() == 5) {

 if (index.get(groupMaxSize -
1) + 1 == index

 .get(groupMaxSize)) {

116

 groupMaxSize =
groupMaxSize - 1;

 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize)))) {

 System.out.println("No Deadlock/guarded lock");
 nonguarded =
false;
 } else {

 System.out.println("Deadlock");
 nonguarded =
true;
 }
 } else {

 if
(revisedSyncObjs.get(index.get(0))

 .equals(revisedSyncObjs.get(index

 .get(groupMaxSize)))) {

 System.out.println("No Deadlock/guarded lock");
 nonguarded =
false;
 } else {

 System.out.println("Deadlock");
 nonguarded =
true;
 }
 }

 } else if (index.size() == 6) {

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {
 System.out.println("No
Deadlock/guarded lock");
 nonguarded = false;
 } else {

 System.out.println("Deadlock");
 nonguarded = true;
 }
 }
 }

117

 } else if (numOfThread == 3) {

 groupMaxSize = groupMaxSize - 1;

 System.out.println(groupMaxSize);

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize)))) {

 if
(revisedSyncObjs.get(index.get(0)).equals(

 revisedSyncObjs.get(index.get(groupMaxSize + 2)))) {
 System.out.println("No
Deadlock/guarded lock");
 nonguarded = false;

 } else {

 System.out.println("Deadlock");
 nonguarded = true;
 }

 } else {

 System.out.println("Deadlock");
 nonguarded = true;

 }
 } else {

 System.out.println("Deadlock");
 nonguarded = true;
 }

 if (nonguarded) {

 pwNonGuardedCondTrue.append(absolutePath + " \n");
 }

 System.out.println("===")
;
 return nonguarded;
 }

 public static boolean checkEqual(ArrayList<String> arrayList,
int a, int b) {

 boolean guardedLockBool = false;

 if (arrayList.get(a).equals(arrayList.get(b))) {

118

 guardedLockBool = true;
 System.out.println("Guarded Lock");
 } else {
 guardedLockBool = false;
 System.out.println("Non-Guarded Lock");
 }

 return guardedLockBool;
 }

 public void syncObjGroup(String file, ArrayList<String>
syncObjs) {

 String[] syncGroupArray[] = new String[2][3];

 Iterator<String> iter = syncObjs.iterator();

 for (int i = 0; i < syncGroupArray.length; i++) {
 for (int j = 0; j < syncGroupArray[i].length; j++)
{
 while (iter.hasNext()) {
 if (!iter.next().equals("}") &
!iter.next().equals("{")) {
 syncGroupArray[i][j] =
iter.next();
 }
 }
 }
 }

 }

 public boolean reachableCond(String file, ArrayList<String>
syncObj
)throws Exception {

 System.out.println("--- Reachable Condition ---");

 String fileSearch =
file.substring(file.lastIndexOf("\\") + 1,
 file.length()).trim();

 int numOfThread = 0;

 BufferedReader br = new BufferedReader(new
FileReader(
 threadCountReport));
 Scanner scanner = new Scanner(br);

 while (scanner.hasNext()) {
 if (scanner.next().equals(fileSearch)) {
 scanner.next();
 if (scanner.hasNextInt()) {
 numOfThread =
scanner.nextInt();
 break;

119

 }
 }
 }

 Map<String, Integer> map = new HashMap<String,
Integer>();

 for (String entry : syncObj) {
 Integer count = map.get(entry);
 map.put(entry, (count == null) ? 1 : count
+ 1);
 }

 for (Map.Entry<String, Integer> entry :
map.entrySet()) {

 if (!(entry.getKey().equals("{") |
entry.getKey().equals("}")))

 if (numOfThread > 0 &
entry.getValue() > 0) {

 pwReachableCondTrue.append(fileSearch + " \n");

 System.out.println("Reachable
Cond - - - " + fileSearch
 + " Deadlock ---
");

 reachableCondBool = true;
 break;

 } else {

 System.out.println("Reachable
Cond - - - " + file
 + " No Deadlock -
- -");
 reachableCondBool = false;

 }
 }

 if (br != null) {
 br.close();
 }
 scanner.close();

 return reachableCondBool;
 }

 public boolean escapingCond(String file, ArrayList<String>
syncObj)
 throws FileNotFoundException {

120

 System.out.println("--- Escaping Condition ---");

 Map<String, Integer> map = new HashMap<String,
Integer>();

 for (String entry : syncObj) {
 Integer count = map.get(entry);
 map.put(entry, (count == null) ? 1 : count
+ 1);
 }

 for (Map.Entry<String, Integer> entry :
map.entrySet()) {

 if (!(entry.getKey().equals("{") |
entry.getKey().equals("}")))
 if (entry.getValue() > 0) {
 System.out.println("key : " +
entry.getKey()
 + " value : " +
entry.getValue());
 pwEsCondTrue.append(file + "
\n");

 System.out.println("Escaping
Cond - - - " + file
 + " Deadlock ---
");

 escapingCondBool = true;
 break;

 } else {
 escapingCondBool = false;
 System.out.println("Escaping
Cond - - -" + file
 + " No Deadlock -
--");
 }
 break;
 }

 return escapingCondBool;

 }

 public boolean parallelCond(String file, ArrayList<String>
syncObj)
 throws IOException {

 System.out.println("--- Parallel Condition ---");
 int groupOfLocks = 0;
 int openBlock = 0;
 int closeBlock = 0;
 int lockedObj = 0;

121

 BufferedReader br = null;
 String line = "";
 int numOfThread = 0;
 String fileSearch =
file.substring(file.lastIndexOf("\\") + 1,
 file.length()).trim();
 Scanner scanner = null;
 try {

 br = new BufferedReader(new
FileReader(threadCountReport));
 scanner = new Scanner(br);

 while (scanner.hasNext()) {
 if (scanner.next().equals(fileSearch)) {
 scanner.next();
 if (scanner.hasNextInt()) {
 numOfThread =
scanner.nextInt();
 System.out.println("There are
" + numOfThread
 + " threds.");
 break;
 }
 }
 }

 for (String entry : syncObj) {
 if (entry.equals("{")) {
 openBlock++;
 } else if (entry.equals("}")) {
 closeBlock++;
 } else {
 lockedObj++;
 }
 }
 System.out.println("locked Objs = " + lockedObj);

 if ((numOfThread > 1) & (numOfThread != 0)
 & (lockedObj >= numOfThread)) {
 pwPCondTrue.append(fileSearch + " \n");
 parallelCondBool = true;
 System.out.println("Parallel Cond - - - " +
fileSearch
 + " Deadlock ---");

 } else {
 parallelCondBool = false;
 System.out.println("Parallel Cond - - - " +
fileSearch
 + " No Deadlock ---");

 }

 } catch (FileNotFoundException e) {

122

 e.printStackTrace();
 } finally {
 if (br != null) {
 br.close();
 }
 scanner.close();

 }

 return parallelCondBool;

 }

 public void getFile(File exportedSource) {

 File[] fileList = exportedSource.listFiles();

 for (int i = 0; i < fileList.length; i++) {

 if (fileList[i].isDirectory()) {

 getFile(fileList[i]);

 } else {
 System.out.println(fileList[i].getName());

 }
 }

 }

 public void countThreads(File exportedSource) {

 for (File exportedFile : exportedSource.listFiles()) {

 if (exportedFile.isDirectory()) {
 countThreads(exportedFile);

 } else {

 String exportedFileName =
exportedFile.getAbsolutePath();

 String exportedClassName =
exportedFile.getName();

 if (exportedClassName.contains(".java")) {

 File threadCountFile = new
File(exportedFileName);

 int threadCount = 0;

 BufferedReader br = null;

123

 try {

 br = new BufferedReader(new
FileReader(threadCountFile));
 String line = null;

 try {

 while ((line =
br.readLine()) != null) {

 if
(line.contains(".start()")) {

 threadCount++;
 }
 }
 } catch (IOException e) {

 e.printStackTrace();
 }

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {

 br.close();

 } catch (IOException e)
{

 e.printStackTrace();

 }
 }
 }

 pw.append(exportedClassName + " has "
+ threadCount
 + " threads are
created.\n");

 System.out.println(exportedClassName
+ " has "
 + threadCount + "
threads are created.\n");
 }

124

 }

 }
 }
}

B.2. View Package

The source code of the View package of the Deadlock Detection Tool is
named that the thesis.deadlockdetection.view package. There are 2 files that are the
DeadlockDetectionTool.java and DeadlockOutputDisplay.java.

B.2.1. DeadlockDetectionTool.java

The source code of the Deadlock Detection Tool that is implemented as the
DeadlockDetectionTool.java file. It is the GUI for users to interact with the Deadlock
Detection Tool. The source code is shown in Table 15.

Table 15 The source code of the DeadlockDetectionTool.java
package thesis.deadlockdetection.view;

import java.awt.Dimension;
import java.awt.EventQueue;
import javax.swing.JFrame;
import javax.swing.JPanel;
import java.awt.BorderLayout;
import javax.swing.JLabel;
import javax.swing.SwingConstants;
import java.awt.GridLayout;
import javax.swing.DefaultListModel;
import javax.swing.GroupLayout;
import javax.swing.GroupLayout.Alignment;
import javax.swing.JFileChooser;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
import javax.swing.JTextField;
import javax.swing.JButton;
import javax.swing.JProgressBar;
import javax.swing.ScrollPaneConstants;
import javax.swing.LayoutStyle.ComponentPlacement;
import javax.swing.SwingWorker;
import java.awt.event.MouseAdapter;
import java.awt.event.MouseEvent;
import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
import java.awt.event.MouseListener;
import java.awt.event.WindowEvent;

125

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangeListener;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.util.Random;
import javax.swing.JSplitPane;
import javax.swing.JTextPane;
import javax.swing.JList;
import javax.swing.UIManager;
import javax.swing.border.LineBorder;
import javax.swing.text.DefaultCaret;
import java.awt.Color;
import javax.swing.JSeparator;
import thesis.deadlockdetection.model.DeadlockDetectionAlgorithm;
import thesis.deadlockdetection.controller.DataPreparation;
import javax.swing.JScrollBar;

public class DeadlockDetectionTool {

 private JFrame frmDeadlock;
 private JTextField textField;
 private JTextField textField_1;

 private JFrame pBarFrame = new JFrame();
 private Task task;
 private JProgressBar pBar = new JProgressBar(0, 100);
 private JTextField textField_2;
 private JButton btnRun = new JButton("Run");

 DeadlockOutputDisplay display = null;
 DefaultListModel<String> dListModel = new
DefaultListModel<String>();
 private JList<String> list = new JList<String>(dListModel);

 private JTextArea textArea = new JTextArea();

 /**
 * Launch the application.
 */
 public static void main(String[] args) {
 EventQueue.invokeLater(new Runnable() {
 public void run() {
 try {
 DeadlockDetectionTool window = new
DeadlockDetectionTool();
 window.frmDeadlock.setVisible(true);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 });
 }

126

 /**
 * Create the application.
 */
 public DeadlockDetectionTool() {
 initialize();
 }

 /**
 * Initialize the contents of the frame.
 */
 private void initialize() {
 frmDeadlock = new JFrame();
 frmDeadlock.setTitle("Deadlock Detection Tool");
 frmDeadlock.setBounds(10, 10, 818, 700);
 frmDeadlock.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel();
 frmDeadlock.getContentPane().add(panel,
BorderLayout.CENTER);

 JLabel lblLocation = new JLabel(
 "Browse Location of Multithreading API : ");

 textField = new JTextField();
 textField.setColumns(10);

 textField_1 = new JTextField();

 textField_1.setColumns(10);
 textField_1.setText("");

 JButton btnBroswe = new JButton("Browse...");
 btnBroswe.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JFileChooser fileChooser = new JFileChooser();

 fileChooser.setFileSelectionMode(JFileChooser.DIRECTORIES_ONLY);

 fileChooser.setCurrentDirectory(new
File(textField_1.getText()));
 int returnVal =
fileChooser.showDialog(frmDeadlock, "Ok");
 if (returnVal == JFileChooser.APPROVE_OPTION)
{

 textField_1.setText(fileChooser.getSelectedFile()
 .getAbsolutePath());
 }
 }
 });

 btnRun.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseClicked(MouseEvent e) {

 pBarFrame.setLocation(400, 400);

127

 pBarFrame.setTitle("Task Progress ...");

 pBar.setValue(0);
 pBar.setStringPainted(true);

 JPanel pPanel = new JPanel();
 pPanel.setPreferredSize(new Dimension(250,
50));
 pPanel.add(pBar);

 pBarFrame.getContentPane().add(pPanel);

 pBarFrame.pack();
 pBarFrame.setVisible(true);
 }
 });

 btnRun.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent arg0) {
 task = new Task();
 task.addPropertyChangeListener(new
PropertyChangeListener() {

 @Override
 public void
propertyChange(PropertyChangeEvent evt) {

 if ("progress" ==
evt.getPropertyName()) {
 int progress = (Integer)
evt.getNewValue();
 pBar.setValue(progress);
 }
 }
 });
 task.execute();
 }
 });

 JPanel panel_1 = new JPanel();
 panel_1.setBorder(new LineBorder(UIManager

 .getColor("CheckBoxMenuItem.selectionBackground")));

 JLabel lblDeadlockResult = new JLabel("Deadlock Result:");
 GroupLayout gl_panel = new GroupLayout(panel);
 gl_panel.setHorizontalGroup(gl_panel
 .createParallelGroup(Alignment.LEADING)
 .addGroup(
 gl_panel.createSequentialGroup()
 .addGap(23)
 .addGroup(
 gl_panel.createParallelGroup(
 Alignment.LEADING)
 .addComponent(
 panel_1,

128

 GroupLayout.PREFERRED_SIZE,760,
 GroupLayout.PREFERRED_SIZE)
 .addGroup(
 gl_panel.createSequentialGroup()
 .addGroup(
 gl_panel.createParallelGroup(
 Alignment.TRAILING)
 .addGroup(
 gl_panel.createSequentialGroup()
 .addComponent(
 lblDeadlockResult,
 GroupLayout.PREFERRED_SIZE,
 152,
 GroupLayout.PREFERRED_SIZE)
 .addGap(359)
 .addComponent(
 btnRun,
 GroupLayout.PREFERRED_SIZE,
 73,
 GroupLayout.PREFERRED_SIZE))
 .addGroup(
 gl_panel.createParallelGroup(
 Alignment.LEADING)
 .addComponent(
 lblLocation,
 GroupLayout.PREFERRED_SIZE,
 364,
 GroupLayout.PREFERRED_SIZE)
 .addComponent(
 textField_1,
 GroupLayout.PREFERRED_SIZE,
 587,
 GroupLayout.PREFERRED_SIZE)))
 .addPreferredGap(
 ComponentPlacement.UNRELATED)
 .addComponent(
 btnBroswe)))
 .addContainerGap(19, Short.MAX_VALUE)));
 gl_panel.setVerticalGroup(gl_panel
 .createParallelGroup(Alignment.LEADING)
 .addGroup(
 gl_panel.createSequentialGroup()
 .addContainerGap()
 .addComponent(lblLocation)
 .addPreferredGap(ComponentPlacement.UNRELATED)
 .addGroup(
 gl_panel.createParallelGroup(
 Alignment.BASELINE)
 .addComponent(
 textField_1,
 GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE,
 GroupLayout.PREFERRED_SIZE)
 .addComponent(btnBroswe))
 .addPreferredGap(ComponentPlacement.RELATED)

129

 .addGroup(

 gl_panel.createParallelGroup(
 Alignment.TRAILING)
 .addComponent(btnRun)
 .addComponent(lblDeadlockResult))
 .addGap(18)
 .addComponent(panel_1,
 GroupLayout.DEFAULT_SIZE, 336,
 Short.MAX_VALUE).addContainerGap()));

 DefaultCaret caret = (DefaultCaret) textArea.getCaret();
 caret.setUpdatePolicy(DefaultCaret.ALWAYS_UPDATE);
 panel.setLayout(gl_panel);
 list.addMouseListener(new MouseAdapter() {
 @Override
 public void mouseClicked(MouseEvent listMouseEvent)
{
 textArea.setText("");
 JList theList = (JList)
listMouseEvent.getSource();
 int index =
theList.locationToIndex(listMouseEvent.getPoint());
 if (index >= 0) {
 Object obj =
theList.getModel().getElementAt(index);

 File file = new File("D:\\DDDisplay\\"
+ obj.toString());
 BufferedReader br = null;
 String inputLine = null;

 try {

 br = new BufferedReader(new
FileReader(file));
 try {
 while ((inputLine =
br.readLine()) != null) {

 textArea.append(inputLine + "\n");
 textArea.setCaretPosition(textArea
 .getDocument().getLength());
 }
 } catch (IOException e) {
 e.printStackTrace();
 }

 } catch (FileNotFoundException e) {
 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {
 e.printStackTrace();

130

 }
 }
 }
 }
 }
 });

 list.setBorder(new LineBorder(UIManager
 .getColor("CheckBoxMenuItem.selectionBackground")));
 JLabel lblNumberOfDeadlocks = new JLabel(
 "Number Of Detected Deadlocks:");
 textField_2 = new JTextField();
 textField_2.setColumns(10);
 JLabel lblListOfFiles = new JLabel("List of files:");
 JLabel lblSites = new JLabel("files");
 JLabel lblDetailOfDeadlock = new JLabel(
 "Detail of Deadlock from selected file:");
 GroupLayout gl_panel_1 = new GroupLayout(panel_1);
 gl_panel_1
 .setHorizontalGroup(gl_panel_1
 .createParallelGroup(Alignment.TRAILING)
 .addGroup(
 gl_panel_1
 .createSequentialGroup()
 .addGap(25)
 .addGroup(
 gl_panel_1
 .createParallelGroup(
 Alignment.LEADING,
 false)
 .addComponent(
 lblListOfFiles,
 GroupLayout.PREFERRED_SIZE,
 149,
 GroupLayout.PREFERRED_SIZE).addGroup(
 gl_panel_1
 .createSequentialGroup()
 .addComponent(

 lblNumberOfDeadlocks,
 GroupLayout.PREFERRED_SIZE,
 187,
 GroupLayout.PREFERRED_SIZE).addPreferredGap(
 ComponentPlacement.RELATED)
 .addComponent(
 textField_2,
 GroupLayout.PREFERRED_SIZE,
 57,
 GroupLayout.PREFERRED_SIZE)).addComponent(
 list, GroupLayout.DEFAULT_SIZE,
 GroupLayout.DEFAULT_SIZE,
 Short.MAX_VALUE)).addGap(22).addGroup(
 gl_panel_1.createParallelGroup(Alignment.LEADING)
 .addComponent(lblDetailOfDeadlock,
GroupLayout.PREFERRED_SIZE, 294, GroupLayout.PREFERRED_SIZE)
 .addComponent(textArea, GroupLayout.PREFERRED_SIZE,

131

 438, GroupLayout.PREFERRED_SIZE)

 .addComponent(lblSites))
 .addGap(25)));
 gl_panel_1.setVerticalGroup(gl_panel_1
 .createParallelGroup(Alignment.LEADING).addGroup(
 gl_panel_1
 .createSequentialGroup()
 .addContainerGap().addGroup(
 gl_panel_1.createParallelGroup(Alignment.BASELINE)
 .addComponent(lblNumberOfDeadlocks,
 GroupLayout.PREFERRED_SIZE, 27,
 GroupLayout.PREFERRED_SIZE)
 .addComponent(
 textField_2,
 GroupLayout.PREFERRED_SIZE, GroupLayout.DEFAULT_SIZE,
 GroupLayout.PREFERRED_SIZE).addComponent(lblSites))
 .addGap(22).addGroup(gl_panel_1.createParallelGroup(
 Alignment.BASELINE).addComponent(lblListOfFiles)
 .addComponent(lblDetailOfDeadlock))
 .addGap(18).addGroup(gl_panel_1
 .createParallelGroup(
 Alignment.BASELINE)
 .addComponent(list,
 GroupLayout.DEFAULT_SIZE,
 439,
 Short.MAX_VALUE).addComponent(
 textArea,
 GroupLayout.DEFAULT_SIZE,
 442,
 Short.MAX_VALUE))
 .addContainerGap()));
 textArea.setLineWrap(true);
 panel_1.setLayout(gl_panel_1);
 }

 class Task extends SwingWorker<Void, Void> {
 @Override
 protected Void doInBackground() throws Exception {

 frmDeadlock.setEnabled(false);

 String sourcePath = textField_1.getText();
 sourcePath = sourcePath + "\\";

 DataPreparation dp = new DataPreparation(new
File(sourcePath));
 pBar.setValue(75);
 String exportedDir = dp.getExportedDir();
 DeadlockDetectionAlgorithm dda = new
DeadlockDetectionAlgorithm(
 new File(sourcePath), new
File(exportedDir));

 pBar.setValue(90);
 display = new DeadlockOutputDisplay(dListModel);

132

 display.processGetFileInfo(dListModel);

 pBar.setValue(100);

 textField_2.setText(dListModel.size() + "");
 return null;
 }

 public void done() {

 pBarFrame.dispatchEvent(new WindowEvent(pBarFrame,
 WindowEvent.WINDOW_CLOSING));

 frmDeadlock.setEnabled(true);
 frmDeadlock.toFront();
 }
 }
}

133

B.2.2. DeadlockOutputDisplay.java
The source code of the DeadlockOuputDisplay.java is shown in Table 16.

Table 16 The source code of the DeadlockDetectionDisplay.java
package thesis.deadlockdetection.view;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Scanner;
import javax.swing.DefaultListModel;

public class DeadlockOutputDisplay {

 public DeadlockOutputDisplay(DefaultListModel<String> dLModel)
{

 String fileName = "D:\\DDReport\\CyclicCondTrue.txt";
 BufferedReader br = null;
 Scanner scanner = null;
 String line = null;

 try {
 br = new BufferedReader(new FileReader(new
File(fileName)));

 while ((line = br.readLine()) != null) {
 line = line

 .substring(line.lastIndexOf("\\") + 1, line.length());
 dLModel.addElement(line);
 }

 } catch (Exception e) {

 e.printStackTrace();

 } finally {

 if (br != null) {
 try {

 br.close();

 } catch (IOException e) {
 e.printStackTrace();
 }
 }

134

 }

 }

 public void processGetFileInfo(DefaultListModel<String>
dLModel) {
 for (int i = 0; i < dLModel.size(); i++) {

 String filename = dLModel.get(i);

 File dir = new File("D:\\DDDisplay\\");
 dir.mkdirs();

 File file = new File("D:\\DDDisplay\\" +
filename);

 PrintWriter pw = null;

 File inputFile = new File("D:\\DDExportedSource\\"
+ filename);

 BufferedReader br = null;

 String inputLine = null;

 File dirOfCond = new File("D:\\DDReport\\");

 BufferedReader brCond = null;

 String inputCondLine = null;
 File[] listAllFiles = dirOfCond.listFiles();

 int threadCount = 0;

 try {

 br = new BufferedReader(new
FileReader(inputFile));

 pw = new PrintWriter(file);

 try {

 while ((inputLine = br.readLine()) !=
null) {

 if (inputLine.contains("D:"))
{

 System.out.println(inputLine);
 pw.append("File : " +
inputLine + " \n");

 System.out.println();
 pw.append("\n");

135

 System.out.println("Deadlock Sites: ");
 pw.append("Deadlock
Site: \n");
 }
 if
(inputLine.contains("synchronized")
 & !(inputLine.contains("//"))) {
 System.out.println(inputLine);
 pw.append(inputLine + "
\n");
 }
 if
(inputLine.contains(".start()")) {
 threadCount++;
 }
 }
 System.out.println();
 pw.append("\n");
 System.out.println("Numbers of Thread
= " + threadCount
 + "threads.");
 pw.append("Numbers of Thread = " +
threadCount
 + " threads. \n");
 System.out.println();
 pw.append("\n");
 System.out.println("Type(s) of
Deadlock Condition:");
 pw.append("Type(s) of Deadlock
Condition: \n");

 for (File Condfile : listAllFiles) {
 if (Condfile.isFile()
 &
!Condfile.getName().equals(

 "ThreadCountReport.txt")
 & !Condfile.getName().equals(
 "EsCondTrueTemp.txt")) {
 brCond = new
BufferedReader(
 new
FileReader(Condfile));
 String fileCondLine =
null;
 while ((fileCondLine =
brCond.readLine()) != null) {
 if
(fileCondLine.contains(filename)) {
 if
(Condfile.getName().equals(
 "AliasingCondTrue.txt")) {
 System.out

136

 .println("Aliasing Condition");
 pw.append("Aliasing Condition \n");
 } else if
(Condfile.getName().equals(
 "CyclicCondTrue.txt")) {

 System.out.println("Cyclic Condition");
 pw.append("Cyclic Condition
\n");
 } else if
(Condfile.getName().equals("EsCondTrue.txt")) {
 System.out.println("Escaping Condition");
 pw.append("Escaping Condition \n");
 } else if
(Condfile.getName().equals("NonGuardedCondTrue.txt")) {
 System.out.println("Non-Guarded Condition");
 pw.append("Non-Guarded Condition \n");
 } else if
(Condfile.getName().equals("ParallelCondTrue.txt")) {
 System.out.println("Parallel Condition");
 pw.append("Parallel Condition \n");
 } else if
(Condfile.getName().equals("ReachableConTrue.txt")) {
 System.out.println("Reachable Condition");
 pw.append("Reachable Condition \n");
 } else if
(Condfile.getName().equals("SuperflousCondTrueFile.txt")) {
 System.out.println("Superflous Condition");
 pw.append("Superflous Condition \n");
 }
 }
 }
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 } catch (FileNotFoundException e) {

 e.printStackTrace();
 } finally {
 if (br != null) {
 try {
 br.close();
 } catch (IOException e) {

 e.printStackTrace();
 }
 }
 if (pw != null) {
 pw.close();
 }
 }
 }
 }
}

137

B.3. Controller Package

The source code of the DataPreparation.java is in the
thesis.deadlockdetection.controller package. It is shown in Table 17.

Table 17 The source code of the DataPreparation.java
package thesis.deadlockdetection.controller;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;

public class DataPreparation {

 public ArrayList<File> sourceCodeFiles = new ArrayList<File>();
 public String exportedDir = "";
 public DataPreparation(File inputDir) {

 File[] dir = inputDir.listFiles();
 System.out.println("--- getFiles() ---");
 getFiles(dir);

 System.out.println("--- process exporting multithreading
API source code ---");
 exportFiles(sourceCodeFiles);
 }

 public void setExportedDir(String exportedDir) {
 this.exportedDir = exportedDir;
 }

 public String getExportedDir() {
 return exportedDir;
 }

 private void exportFiles(ArrayList<File> sourceCodeFiles) {

 File exportedSourceFolder = new
File("D:\\DDExportedSource\\");
 exportedSourceFolder.mkdirs();
 setExportedDir(exportedSourceFolder.getAbsolutePath());
 System.out.println("--- creating "
 + exportedSourceFolder.getAbsolutePath() +
" directory ---");

 for (int i = 0; i < sourceCodeFiles.size(); i++) {

 File file = new

138

File(sourceCodeFiles.get(i).getAbsolutePath());
 String newExportedFile = "D:\\DDExportedSource\\"
+ file.getName();

 File destFile = new File(newExportedFile);
 PrintWriter pw = null;
 try {

 pw = new PrintWriter(new
FileWriter(destFile));

 } catch (IOException e) {

 e.printStackTrace();
 }

 pw.println(file.getAbsolutePath());
 System.out.println("--- write file " +
file.getAbsolutePath()+ " ---");
 BufferedReader br = null;
 String line = "";
 int lineNumber = 0;

 try {
 br = new BufferedReader(new
FileReader(file));
 try {
 while ((line = br.readLine()) !=
null) {
 lineNumber++;
 if (line.contains("//*") |
line.contains("*//")) {
 continue;
 } else if
(line.contains("extends Thread")) {

 if
((line.contains("public")
 &
line.contains("class") & !line.contains("final"))
| (line.contains("class")
 & line.contains("final") & !line.contains("public"))) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if
(line.contains("class") & !line.contains("public") &
!line.contains("final")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if
(line.contains("public")
 & line.contains("class") & line.contains("final")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +

139

line);
 }
 } else if
(line.contains("implements Runnable")) {

 if
(line.contains("public")
 &
!line.contains("final") & !line.contains("class") &
!line.contains("interface")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if
((line.contains("class") | line.contains("interface")) &
!line.contains("public") & !line.contains("final")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains("public") & line.contains("final") &
(line.contains("class") | line.contains("interface"))) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 }
 } else if (line.contains("interface") &
line.contains("extends Thread")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("class") &
(line.contains("extends Thread") | line.contains("implements
Runnable"))) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains("synchronized")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains(".run()")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains(".start()")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("if (")
 | line.contains("if(") | line.contains("else if (")

140

 | line.contains("else if(") | line.contains("else")
 & (!line.contains("//") | !line.contains("//*") | !line
 .contains("*//"))) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("()
{")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t"
 + line);
 } else if (line.contains(")
{")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("}"))
{
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains(".wait(")
 |
line.contains("wait()") | line.contains(".wait()")) {
 pw.println("line: " +
lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("notify()") |
line.contains("notifyAll()")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains("sleep(")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("new
Thread")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber + " :\t\t"
 + line);
 } else {
 if
(line.contains("interface")
) {
 pw.println("line:
" + lineNumber + " :\t\t"+ line);

 System.out.println("line: " + lineNumber+ " :\t\t" + line);
 } else if
(line.contains("class")

141

 pw.println("line:
" + lineNumber + " :\t\t" + line);

 System.out.println("line: " + lineNumber
 + "
:\t\t" + line);
 } else if
(line.contains("synchronized")) {
 pw.println("line:
" + lineNumber + " :\t\t"
 +
line);

 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains(".run()")) {
 pw.println("line: " + lineNumber + " :\t\t" +
line);
 System.out.println("line: " + lineNumber + "
:\t\t" + line);
 } else if (line.contains(".start()")) {
 pw.println("line: " + lineNumber + " :\t\t" +
line);
 System.out.println("line: " + lineNumber + "
:\t\t" + line);
 } else if
(line.contains("if (") | line.contains("if(") | line.contains("else if
(") | line.contains("else if(") | line.contains("else") &
(!line.contains("//")
 !line.contains("//*") | !line.contains("*//"))) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains("() {")) {
 pw.println("line:
" + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if
(line.contains(") {")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("}")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if (line.contains(".wait(") | line.contains("wait()") |
line.contains(".wait()")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if (line.contains("notify()") |
line.contains("notifyAll()")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" + line);
 } else if (line.contains("sleep(")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +

142

line);
 } else if (line.contains("new Thread")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 } else if (line.contains("=")) {
 pw.println("line: " + lineNumber + " :\t\t" + line);
 System.out.println("line: " + lineNumber + " :\t\t" +
line);
 }
 }
 }
 } catch (IOException e) {

 e.printStackTrace();

 }
 } catch (FileNotFoundException e) {

 e.printStackTrace();

 } finally {

 if (br != null) {

 try {
 br.close();
 } catch (IOException e) {

 e.printStackTrace();
 }
 }
 if (pw != null) {
 pw.close();
 }
 }
 }
 }

 private void getFiles(File[] inputDir) {

 for (int i = 0; i < inputDir.length; i++) {

 if (inputDir[i].isDirectory()) {
 File[] tempDir = inputDir[i].listFiles();
 getFiles(tempDir);

 } else {

 String sourceFileName =
inputDir[i].getAbsolutePath();

 if (sourceFileName.contains(".java")) {
 sourceCodeFiles.add(inputDir[i]);
 }
 }
 }
 }
}

APPENDIX C
RESULT OF THE DEADLOCK DETECTION TOOL

The following section of the APPENDIX C shows results of the Deadlock
Detection Tool execution and detail of the result.

C.1. Found Deadlocks

 Figure 40 shows the screenshot of the Deadlock Detection Tool. Deadlock is
found in 12 files that are shown in the list box under the “List of files”. 12 files that
are found deadlock that are Test002.java, Test008.java, Test009.java, Test011.java,
Test013.java, Test014.java, Test015.java, Test017.java, Test018.java, Test024.java,
Test025.java and Test026.java.

Figure 40 The screenshot of found deadlock

144

C.2. Detail of Deadlock from Test002.java

 After clicking Test002.java in the list box of List of files, the detail of deadlock
of Test002.java shows in the text area. Test002.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Aliasing\Test002.java. The
deadlock site is at line 12, line 14, line 25 and line 27. There are 2 Threads created.
The first Thread locks Obj1 and Obj2 sequentially. The second Thread locks Obj3 and
Obj1 sequentially. The deadlock conditions are the Aliasing Condition, the Cyclic
Lock Dependency Condition, the Escaping Condition, the Non-Guarded Condition, the
Parallel Condition and the Reachable Condition. Deadlock is the Aliasing Condition
therefore Obj2 and Obj3 are aliasing. The screenshot is shown in Figure 41.

Figure 41 The screenshot of the detail of deadlock from Test002.java

145

C.3. Detail of Deadlock from Test008.java

After clicking Test008.java in the list box of List of files, the detail of deadlock
of Test008.java shows in the text area. Test008.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Escaping\Test008.java. The
deadlock site is at line 11, line 13, line 23, line 25, line 36 and line 38. There are 3
Threads created. The first Thread locks Obj1 and Obj2 sequentially. The second
Thread locks Obj2 and Obj3 sequentially. The thrid Thread locks Obj3 and Obj1
sequentially. The deadlock conditions are the Cyclic Lock Dependency Condition,
the Escaping Condition, the Non-Guarded Condition, the Parallel Condition and the
Reachable Condition. The screenshot is shown in Figure 42.

Figure 42 The screenshot of the detail of deadlock from Test008.java

146

C.4. Detail of Deadlock from Test009.java

After clicking Test009.java in the list box of List of files, the detail of deadlock

of Test009.java shows in the text area. Test009.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\nonGuarded\Test009.java.

The deadlock site is at line 11, line 13, line 23, line 25 and line 27. There are 2

Threads created. The first Thread locks Obj1 and Obj2 sequentially. The second

Thread locks Obj4, Obj2 and Obj1 sequentially. The deadlock conditions are the

Cyclic Lock Dependency Condition, the Escaping Condition, the Non-Guarded

Condition, the Parallel Condition and the Reachable Condition. The screenshot is

shown in Figure 43.

Figure 43 The screenshot of the detail of deadlock from Test009.java

147

C.5. Detail of Deadlock from Test011.java

After clicking Test011.java in the list box of List of files, the detail of deadlock

of Test011.java shows in the text area. Test011.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Reachable\Test011.java. The

deadlock site is at line 11, line 13, line 15, line 26 and line 28. There are 2 Threads

created. The first Thread locks Obj1, Obj3 and Obj2 sequentially. The second Thread

locks Obj2 and Obj1 sequentially. The deadlock conditions are the Cyclic Lock

Dependency Condition, the Escaping Condition, the Non-Guarded Condition, the

Parallel Condition and the Reachable Condition. The screenshot is shown in Figure

44.

Figure 44 The screenshot of the detail of deadlock from Test011.java

148

C.6. Detail of Deadlock from Test013.java

After clicking Test013.java in the list box of List of files, the detail of deadlock
of Test013.java shows in the text area. Test013.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Reachable\Test013.java. The
deadlock site is at line 12, line 14, line 16, line 27, line 29 and line 31. There are 2
Threads created. The first Thread locks Obj1, Obj2 and Obj3 sequentially. The second
Thread locks Obj3, Obj1 and Obj2 sequentially. The deadlock conditions are the
Cyclic Lock Dependency Condition, the Escaping Condition, the Non-Guarded
Condition, the Parallel Condition and the Reachable Condition. The screenshot is
shown in Figure 45.

Figure 45 The screenshot of the detail of deadlock from Test013.java

149

C.7. Detail of Deadlock from Test014.java

After clicking Test014.java in the list box of List of files, the detail of deadlock
of Test014.java shows in the text area. Test014.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Reachable\Test014.java. The
deadlock site is at line 12, line 14, line 16, line 27, line 29 and line 31. There are 2
Threads created. The first Thread locks Obj1, Obj2 and Obj3 sequentially. The second
Thread locks Obj2, Obj1 and Obj3 sequentially. The deadlock conditions are the
Cyclic Lock Dependency Condition, the Escaping Condition, the Non-Guarded
Condition, the Parallel Condition and the Reachable Condition. The screenshot is
shown in Figure 46.

Figure 46 The screenshot of the detail of deadlock from Test014.java

150

C.8. Detail of Deadlock from Test015.java

After clicking Test015.java in the list box of List of files, the detail of deadlock
of Test015.java shows in the text area. Test015.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\ExRunnable\Test015.java.
The deadlock site is at line 10, line 12, line 22 and line 24. There are 2 Threads
created. The first Thread locks Obj1 and Obj2 sequentially. The second Thread locks
Obj2 and Obj1 sequentially. The deadlock conditions are the Cyclic Lock
Dependency Condition, the Escaping Condition, the Non-Guarded Condition, the
Parallel Condition and the Reachable Condition. The screenshot is shown in Figure
47.

Figure 47 The screenshot of the detail of deadlock from Test015.java

151

C.9. Detail of Deadlock from Test017.java

After clicking Test017.java in the list box of List of files, the detail of deadlock
of Test017.java shows in the text area. Test017.java file is located at
D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\ExRunnable\Test017.java.
The deadlock site is at line 11, line 13, line 23, line 25, line 35 and line 37. There are
3 Threads created. The first Thread locks Obj1 and Obj2 sequentially. The second
Thread locks Obj2 and Obj3 sequentially. The third Thread locks Obj3 and Obj1
sequentially. The deadlock conditions are the Cyclic Lock Dependency Condition,
the Escaping Condition, the Non-Guarded Condition, the Parallel Condition and the
Reachable Condition. The screenshot is shown in Figure 48.

Figure 48 The screenshot of the detail of deadlock from Test017.java

152

C.10. Detail of Deadlock from Test018.java

After clicking Test018.java in the list box of List of files, the detail of deadlock

of Test018.java shows in the text area. Test018.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\ExRunnable\Test018.java.

The deadlock site is at line 11, line 13, line 15, line 26, line 28 and line 30. There are

2 Threads created. The first Thread locks Obj1, Obj2 and Obj3 sequentially. The

second Thread locks Obj2, Obj3 and Obj1 sequentially. The deadlock conditions are

the Cyclic Lock Dependency Condition, the Escaping Condition, the Non-Guarded

Condition, the Parallel Condition and the Reachable Condition. The screenshot is

shown in Figure 49.

Figure 49 The screenshot of the detail of deadlock from Test018.java

153

C.11. Detail of Deadlock from Test024.java

After clicking Test024.java in the list box of List of files, the detail of deadlock

of Test024.java shows in the text area. Test024.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\WaitNotify\Test024.java. The

deadlock site is at line 14, line 19, line 38 and line 40. There are 2 Threads created.

The first Thread locks Obj1 and Obj2 sequentially. The second Thread locks Obj2 and

Obj1 sequentially. The deadlock conditions are the Cyclic Lock Dependency

Condition, the Escaping Condition, the Non-Guarded Condition, the Parallel Condition

and the Reachable Condition. The screenshot is shown in Figure 50.

Figure 50 The screenshot of the detail of deadlock from Test024.java

154

C.12. Detail of Deadlock from Test025.java

After clicking Test025.java in the list box of List of files, the detail of deadlock

of Test025.java shows in the text area. Test025.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\WaitNotify\Test025.java. The

deadlock site is at line 14, line 19, line 38 and line 40. There are 4 Threads created.

There are two Threads lock Obj1 and Obj2 sequentially. There are two Threads lock

Obj2 and Obj1 sequentially. The deadlock conditions are the Cyclic Lock

Dependency Condition, the Escaping Condition, the Non-Guarded Condition, the

Parallel Condition and the Reachable Condition. The screenshot is shown in Figure

51.

Figure 51 The screenshot of the detail of deadlock from Test025.java

155

C.13. Detail of Deadlock from Test026.java

After clicking Test026.java in the list box of List of files, the detail of deadlock

of Test026.java shows in the text area. Test026.java file is located at

D:\EclipseWorkspace3\ThesisTest\Test\src\test\condition\Test\Test026.java. The

deadlock site is at line 39, line 43, line 75 and line 99. There are 2 Threads created.

The first Thread locks Object ‘to’ and Object ‘from’ sequentially. The second Thread

locks Object ‘from’ and Object ‘to’ sequentially. The deadlock conditions are the

Cyclic Lock Dependency Condition, the Escaping Condition, the Non-Guarded

Condition, the Parallel Condition and the Reachable Condition. The screenshot is

shown in Figure 52.

Figure 52 The screenshot of the detail of deadlock from Test026.java

APPENDIX D
SOURCE CODE OF TEST EXAMPLES OF MULTITHREADING API

The following are the test files of the multithreading applications for testing
the Deadlock Detection Algorithm. There are 26 test files; including 12 test files that
have deadlock and 14 test files that are not deadlock. Table 18 shows the the list of
test files for testing on each condition.

Table 18 The list of test files for testing on each condition

Conditions
Number of
test files

List of test files

Aliasing 5 Test001.java, Test002.java, Test003.java, Test022.java and
Test023.java

Cyclic Lock
Dependency

12 Test002.java, Test008.java, Test009.java, Test011.java, Test013.java,
Test014.java, Test015.java, Test017.java, Test018.java, Test024.java,
Test025.java and Test026.java

Escaping 24 Test001.java, Test002.java, Test003.java, Test004.java, Test005.java,
Test006.java, Test007.java, Test008.java, Test009.java, Test010.java,
Test011.java, Test012.java, Test013.java, Test014.java, Test015.java,
Test016.java, Test017.java, Test018.java, Test019.java, Test022.java,
Test023.java, Test024.java, Test025.java and Test026.java

Parallel 24 Test001.java, Test002.java, Test003.java, Test004.java, Test005.java,
Test006.java, Test007.java, Test008.java, Test009.java, Test010.java,
Test011.java, Test012.java, Test013.java, Test014.java, Test015.java,
Test016.java, Test017.java, Test018.java, Test019.java, Test022.java,
Test023.java, Test024.java Test025.java and Test026.java

Non-Guarded Lock 20 Test001.java, Test002.java, Test004.java, Test005.java, Test006.java,
Test007.java, Test008.java, Test009.java, Test011.java, Test013.java,
Test014.java, Test015.java, Test017.java, Test018.java, Test021.java,
Test022.java, Test023.java, Test024.java, Test025.java and
Test026.java

Reachable 23 Test001.java, Test002.java, Test003.java, Test004.java, Test005.java,
Test006.java, Test007.java, Test008.java, Test009.java, Test010.java,
Test011.java, Test012.java, Test013.java, Test014.java, Test015.java,
Test016.java, Test017.java, Test018.java, Test019.java, Test022.java,
Test024.java, Test025.java and Test026.java

Superfluous Lock 1 Test001.java

157

We have 5 files to test on the Aliasing Condition that are Test001.java,
Test002.java, Test003.java, Test022.java and Test023.java. We have 12 files to test on
the Cyclic Lock Dependency Condition that are Test002.java, Test008.java,
Test009.java, Test011.java, Test013.java, Test014.java, Test015.java, Test017.java,
Test018.java, Test024.java, Test025.java and Test026.java. We have 24 test files to
test on the Escaping Condition that are Test001.java, Test002.java, Test003.java,
Test004.java, Test005.java, Test006.java, Test007.java, Test008.java, Test009.java,
Test010.java, Test011.java, Test012.java, Test013.java, Test014.java, Test015.java,
Test016.java, Test017.java, Test018.java, Test019.java, Test022.java, Test023.java,
Test024.java, Test025.java and Test026.java. We have 24 files to test on the Parallel
Condition that are Test001.java, Test002.java, Test003.java, Test004.java, Test005.java,
Test006.java, Test007.java, Test008.java, Test009.java, Test010.java, Test011.java,
Test012.java, Test013.java, Test014.java, Test015.java, Test016.java, Test017.java,
Test018.java, Test019.java, Test022.java, Test023.java, Test024.java Test025.java and
Test026.java. We have 20 test files to test on the Non-Guarded Lock Condition that
are Test001.java, Test002.java, Test004.java, Test005.java, Test006.java, Test007.java,
Test008.java, Test009.java, Test011.java, Test013.java, Test014.java, Test015.java,
Test017.java, Test018.java, Test021.java, Test022.java, Test023.java, Test024.java,
Test025.java and Test026.java. We have 23 test files to test on the Reachable
Condition that are Test001.java, Test002.java, Test003.java, Test004.java, Test005.java,
Test006.java, Test007.java, Test008.java, Test009.java, Test010.java, Test011.java,
Test012.java, Test013.java, Test014.java, Test015.java, Test016.java, Test017.java,
Test018.java, Test019.java, Test022.java, Test024.java, Test025.java and Test026.java.
And we have 1 file to test on the Superfluous Lock Condition that is Test001.java.

158

Table 19 shows summary of expected result of test files. x is represented the
condition of that file, N is represented deadlock does not occur in that file and Y is
represented deadlock occurs in that file.

Table 19 Summary result of test files
Files

(.java)
Result Deadlock Aliasing

Cyclic Lock
Dependency

Escaping Parallel
Non-

Guarded
Lock

Reachable
Superfluous

Lock
Thread
Number

Test001 Expected N x

x x x x x 2
Test002 Expected Y x x x x x x

2

Test003 Expected N x

x x

x

2
Test004 Expected N

x x x x

2

Test005 Expected N

x x x x

2
Test006 Expected N

x x x x

2

Test007 Expected N

x x x x

3
Test008 Expected Y

x x x x x

3

Test009 Expected Y

x x x x x

2
Test010 Expected N

x x

x

2

Test011 Expected Y

x x x x x

2
Test012 Expected N

x x

x

2

Test013 Expected Y

x x x x x

2
Test014 Expected Y

x x x x x

2

Test015 Expected Y

x x x x x

2
Test016 Expected N

x x

x

2

Test017 Expected Y

x x x x x

3
Test018 Expected Y

x x x x x

2

Test019 Expected N

x x

x

3
Test020 Expected N

0

Test021 Expected N

x

1
Test022 Expected N x

x x x x

2

Test023 Expected N x

x x x

2
Test024 Expected Y

x x x x x

2

Test025 Expected Y

x x x x x

4
Test026 Expected Y x x x x x 2

159

The following section elaborates more detail of each test file.
1. Test001.java

Deadlock does not occur in Test001.java file. Test001.java has 2 Threads. We
have obj1 and obj2 that are created from the Object Class. Obj1 and obj2 has the
same reference so in Java obj1 and obj2 are alias. Thread1 locks obj1 and obj2
sequentially and Thread2 locks obj2 and obj1 sequentially. Both Threads lock the
same object therefore there is no deadlock occur in Test001.java. In this example
not only match the Aliasing Condition but also the Parallel Condition, the Escaping
Condition, the Reachable Condition, the Superfluous Lock Condition and the Non-
Guarded Lock Condition. The source code of Test001.java is shown in Table 20.

Table 20 The source code of Test001.java that deadlock does not occur
package test.condition.Aliasing;

public class Test001 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj1";

class MyWork1 extends Thread{

 public void run(){
 synchronized(obj1){
 System.out.println("obj1 is locked.");
 synchronized(obj2){
 System.out.println("obj2 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread{

 public void run(){
 synchronized(obj2){
 System.out.println("obj2 is locked.");
 synchronized(obj1){
 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

160

 public static void main(String[] args) {

 Test001 test001 = new Test001();
 Test001.MyWork1 work1 = test001. new MyWork1();
 Test001.MyWork2 work2 = test001. new MyWork2();
 work1.start();
 work2.start();
 }
}

2. Test002.java
 Deadlock occurs in Test002.java file. Test002.java has 2 Threads. We have
obj1, obj2 and obj3 that are created from the Object Class. Obj2 and obj3 are alias.
Obj3 is alias to obj2. Thread1 locks obj1 and obj2 sequentially and Thread2 locks
obj3 and obj1 sequentially. Both threads lock obj1 and obj2 in reverse order as well.
Therefore deadlock conditions that occur in Test002.java are the Aliasing Condition,
the Parallel Condition, the Escaping Condition, the Reachable Condition, the Non-
Guarded Lock Condition and the Cyclic Dependency condition. The source code of
Test002.java is shown in Table 21.

Table 21 The source code of Test002.java that deadlock occurs
package test.condition.Aliasing;

public class Test002 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = obj2;

class MyWork1 extends Thread{

 public void run(){
 synchronized(obj1){
 System.out.println("obj1 is locked.");
 synchronized(obj2){
 System.out.println("obj2 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }

161

 class MyWork2 extends Thread{

 public void run(){
 synchronized(obj3){
 System.out.println("obj3 is locked.");
 synchronized(obj1){
 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {

 Test002 test002 = new Test002();
 Test002.MyWork1 work1 = test002. new MyWork1();
 Test002.MyWork2 work2 = test002. new MyWork2();
 work1.start();
 work2.start();

 }
}

3. Test003.java
 Deadlock does not occur in Test003.java. Test003.java has 2 Threads. We
have obj1, obj2 and obj3 that are created from the Object Class. Obj2 is alias to obj1.
Thread1 locks obj1 and obj3 sequentially and Thread2 locks obj2 and obj3
sequentially. Since obj1 and obj2 are alias and the lock orders of both Threads are
not reverse, the deadlock does not occur. The conditions of Test003.java are the
Aliasing Condition, the Parallel Condition, the Escaping Condition, and the Reachable
Condition. The source code of Test003.java is shown in Table 22.

162

Table 22 The source code of Test003.java that deadlock does not occur
package test.condition.Aliasing;

public class Test003 {

 private Object obj1 = "obj1";
 private Object obj2 = obj1;
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread {

 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test003 test003 = new Test003();
 Test003.MyWork1 work1 = test003. new MyWork1();
 Test003.MyWork2 work2 = test003. new MyWork2();
 work1.start();
 work2.start();
 }
}

163

4. Test004.java
 Deadlock does not occur in Test004.java. Test004.java has 2 Threads. We
have obj1, obj2 and obj3 that are created from the Object Class. Thread1 locks obj1
and obj2 sequentially and Thread2 lock obj3 and obj1 sequentially. The lock orders
of both threads are not reverse therefore deadlock does not occur. The conditions of
Test004.java are the Parallel Condition, the Escaping Condition, the Reachable
Condition and the Non-Guarded Lock Condition. The source code of Test004.java is
shown in Table 23.

Table 23 The source code of Test004.java that deadlock does not occur
package test.condition.Cyclic;

public class Test004 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread {

 public void run() {
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

164

 public static void main(String[] args) {

 Test004 test004 = new Test004();
 Test004.MyWork1 work1 = test004.new MyWork1();
 Test004.MyWork2 work2 = test004.new MyWork2();
 work1.start();
 work2.start();
 }
}

5. Test005.java
 Deadlock does not occur in Test005.java. Test005.java has 2 Threads. We
have obj1 that is created from the Object Class. Thread1 locks obj1 and ‘this’
sequentially and Thread2 locks ‘this’ and lock1 sequentially. The lock orders of both
threads are reverse but in Java ‘this’ locking means lock this class that is already
locked when this application is executed. Therefore both threads lock ‘this’ and obj1
sequentially and does not occur deadlock. The conditions of Test005.java are the
Parallel Condition, the Escaping Condition, the Reachable Condition and the Non-
Guarded Lock Condition. The source code of Test005.java is shown in Table 24.

Table 24 The source code of Test005.java that deadlock does not occur
package test.condition.Aliasing;

public class Test005 {

 Object obj1 = "obj1";

 class Work1 extends Thread {
 public void run() {
 synchronized (this) {
 System.out.println("-this- is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class Work2 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (this) {
 System.out.println("-this- is locked");
 }
 }

165

 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test005 test005 = new Test005();
 Test005.Work1 work1 = test005.new Work1();
 Test005.Work2 work2 = test005.new Work2();
 work1.start();
 work2.start();
 }
}

6. Test006.java
 Deadlock does not occur in Test006.java. Test006.java has 2 Threads. We
have obj1 and obj2 that are created from the Object Class. Thread1 locks obj1 and
obj2 sequentially and Thread2 locks obj2. The conditions of Test006 are the Parallel
Condition, the Escaping Condition, the Reachable Condition and the Non-Guarded
Lock Condition. The source code of Test006.java is shown in Table 25.

Table 25 The source code of Test006.java that deadlock does not occur
package test.condition.Escaping;

public class Test006 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread {

 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 }
 System.out.println("finish work2.");
 }

166

 }

 public static void main(String[] args) {
 Test006 test006 = new Test006();
 Test006.MyWork1 work1 = test006.new MyWork1();
 Test006.MyWork2 work2 = test006.new MyWork2();
 work1.start();
 work2.start();
 }
}

7. Test007.java
 Deadlock does not occur in Test007.java. Test007.java has 3 Threads. We
have obj1, obj2 and obj3 that are created from the Object Class. Thread1 locks obj1
and obj2 sequentially, Thread2 locks obj2 and Thread3 locks obj1 and obj3
sequentially. Lock orders of three threads are not reverse therefore deadlock does
not occur. The conditions of Test007.java are the Parallel Condition, the Escaping
Condition, the Reachable Condition and the Non-Guarded Lock Condition. The
source code of Test007.java is shows in Table 26.

Table 26 The source code of Test007.java that deadlock does not occur
package test.condition.Escaping;

public class Test007 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

167

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 }
 System.out.println("finish work2.");
 }
 }

 class MyWork3 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }
 }
 System.out.println("finish work3.");
 }
 }

 public static void main(String[] args) {
 Test007 test007 = new Test007();
 Test007.MyWork1 work1 = test007.new MyWork1();
 Test007.MyWork2 work2 = test007.new MyWork2();
 Test007.MyWork3 work3 = test007.new MyWork3();
 work1.start();
 work2.start();
 work3.start();
 }
}

168

8. Test008.java

 Deadlock occurs in Test008.java. Test008.java has 3 Threads. We have obj1,
obj2 and obj3 that are created from the Object Class. Thread1 locks obj1 and obj2
sequentially, Thread2 locks obj2 and obj3 sequentially and Thread3 locks obj3 and
obj1 sequentially. The lock orders of three threads are cyclic that cause deadlock
occur. The conditions of Test008.java are the Parallel Condition, the Reachable
Condition, the Escaping Condition, the Non-Guarded Lock Condition and the Cyclic
Lock Dependency Condition. The source code of Test008.java is shown in Table 27.

Table 27 The source code of Test008.java that deadlock occurs
package test.condition.Escaping;

public class Test008 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1");
 }
 }

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }

 }
 System.out.println("finish work2");
 }
 }

169

 class MyWork3 extends Thread {
 public void run() {
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work3");
 }
 }

 public static void main(String[] args) {
 Test008 test008 = new Test008();
 Test008.MyWork1 work1 = test008.new MyWork1();
 Test008.MyWork2 work2 = test008.new MyWork2();
 Test008.MyWork3 work3 = test008.new MyWork3();
 work1.start();
 work2.start();
 work3.start();
 }
}

170

9. Test009.java
 In Test009.java occurs deadlock. Test009.java has 2 Threads. We have obj1,
obj2 and obj4 that are created from the Object Class. Thread1 locks obj1 and obj2
sequentially and Thread2 locks obj4, obj2 and obj1 sequentially. Deadlock occurs
because the order of obj1 and obj2 from both threads are reverse order. The
conditions of Test009.java are the Parallel Condition, the Escaping Condition, the
Reachable Condition, the Non-Guarded Lock Condition and the Cyclic Lock
Dependency Condition. The source code of Test009.java is shown in Table 28.

Table 28 The source code of Test009.java that deadlock occurs
package test.condition.nonGuarded;

public class Test009 {

 Object obj1 = "obj1";
 Object obj2 = "obj2";
 Object obj4 = "obj4";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 }
 }
 System.out.println("finish work1.");
 }
 }
 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj4) {
 System.out.println("obj4 is locked - perform
guarded lock.");
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is
locked.");
 }
 }
 }
 System.out.println("finish work2.");
 }
 }

171

 public static void main(String[] args) {
 Test009 test009 = new Test009();
 Test009.MyWork1 work1 = test009.new MyWork1();
 Test009.MyWork2 work2 = test009.new MyWork2();
 work1.start();
 work2.start();
 }
}

10. Test010.java
 Deadlock in Test010.java does not occur. Test010.java has 2 Threads. We
have obj1, obj2 and obj4 that are created from the Object Class. Thread1 locks obj4,
obj1 and obj2 sequentially and Thread2 locks obj4, obj2 and obj1 sequentially.
However, obj1 and obj2 from both threads are reverse orders, it does not occur
deadlock because both threads has a guarded lock that is obj4. The conditions of
Test010.java are the Parallel Condition, the Escaping Condition and the Reachable
Condition. The source code of Test010.java is shown in Table 29.

Table 29 The source code of Test010.java that deadlock does not occur
package test.condition.nonGuarded;

public class Test010 {

 Object obj1 = "obj1";
 Object obj2 = "obj2";
 Object obj4 = "obj4";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (obj4) {
 System.out.println("obj4 is locked -
perform guarded lock.");
 synchronized (obj1) {
 System.out.println("obj1 is
locked.");
 synchronized (obj2) {
 System.out.println("obj2 is
locked.");
 }
 }
 }
 System.out.println("finish work1.");
 }
 }

172

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj4) {
 System.out.println("obj4 is locked -
perform guarded lock.");
 synchronized (obj2) {
 System.out.println("obj2 is
locked.");
 synchronized (obj1) {
 System.out.println("obj1 is
locked.");
 }
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test010 test010 = new Test010();
 Test010.MyWork1 work1 = test010.new MyWork1();
 Test010.MyWork2 work2 = test010.new MyWork2();
 work1.start();
 work2.start();
 }

}

173

11. Test011.java

 Deadlock occurs in Test011.java. Test011.java has 2 Threads. We have obj1,
obj2 and obj3 that are created from the Object Class. Thread1 locks obj1, obj3 and
obj2 sequentially and Thread2 locks obj2 and obj1 sequentially. Deadlock occurs
from reverse order of obj1 and obj2 from both threads. The conditions of
Test011.java are the Parallel Condition, the Escaping Condition, the Reachable
Condition, the Non-Guarded Lock Condition and the Cyclic Lock Dependency
Condition. The source code of Test011.java is shown in Table 30.

Table 30 The source code of Test011.java that deadlock occurs
package test.condition.Reachable;

public class Test011 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 public class MyWork1 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is
locked.");
 }
 }
 }
 System.out.println("finish work1.");
 }
 }

 public class MyWork2 extends Thread {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj1 is locked.");
 synchronized (obj1) {
 System.out.println("obj2 is locked.");
 }
 }
 System.out.println("finish work2");
 }
 }

174

 public static void main(String[] args) {
 Test011 test011 = new Test011();
 Test011.MyWork1 work1 = test011.new MyWork1();
 Test011.MyWork2 work2 = test011.new MyWork2();
 work1.start();
 work2.start();
 }
}

12. Test012.java
 Deadlock does not occur in Test012.java. Test012.java has 2 Threads. We
have obj1, obj2 and obj3 that are created from the Object Class. Thread1 locks obj1
and obj2 sequentially and Thread2 locks obj1, obj3 and obj2 sequentially. Deadlock
does not occur because lock orders of both threads are not reverse order. The
conditions of Test012.java are the Parallel Condition, the Escaping Condition and the
Reachable Condition. The source code of Test012.java is shown in Table 31.

Table 31 The source code of Test012.java that deadlock does not occur
package test.condition.Reachable;

public class Test012 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is
locked.");

175

 }
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test012 test012 = new Test012();
 Test012.MyWork1 work1 = test012.new MyWork1();
 Test012.MyWork2 work2 = test012.new MyWork2();
 work1.start();
 work2.start();
 }
}

13. Test013.java
 Deadlock occurs in Test013.java. Test013.java has 2 Threads. We have obj1,
obj2 and obj3 that are created from the Object Class. Thread1 locks obj1, obj2 and
obj3 sequentially and Thread2 locks obj3, obj1 and obj2 sequentially. Deadlock
occurs because the lock orders of obj1 and obj3 of both threads are reverse orders.
The conditions of Test013 that are the Parallel Condition, the Escaping Condition, the
Reachable Condition, the Non-Guarded Lock Condition and the Cyclic Lock
Dependency Condition. The source code of Test013.java is shown in Table 32.

Table 32 The source code of Test013.java that deadlock occurs
package test.condition.Reachable;

public class Test013 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 synchronized (obj3) {
 System.out.println("obj3 is
locked.");
 }
 }
 }
 System.out.println("finish work1.");

176

 }
 }

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is
locked.");
 }
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test013 test013 = new Test013();
 Test013.MyWork1 work1 = test013.new MyWork1();
 Test013.MyWork2 work2 = test013.new MyWork2();
 work1.start();
 work2.start();
 }
}

177

14. Test014.java
 Deadlock occurs in Test014.java. Test014.java has 2 Threads. We have obj1,
obj2 and obj3 that are created from the Object Class. Thread1 locks obj1, obj2 and
obj3sequentially and Thread2 locks obj2, obj1 and obj3sequentially. Deadlock occurs
because the lock orders of obj1 and obj2 of both threads are reverse. The conditions
of Test014.java are the Parallel Condition, the Escaping Condition, the Reachable
Condition, the Non-Guarded Lock Condition and the Cyclic Lock Dependency
Condition. The source code of Test014.java is shown in Table 33.

Table 33 The source code of Test014.java that deadlock occurs
package test.condition.Reachable;

public class Test014 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 class MyWork1 extends Thread {

 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 synchronized (obj3) {
 System.out.println("obj3 is
locked.");
 }
 }
 }
 System.out.println("finish work1.");
 }
 }

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is
locked.");
 }
 }
 }
 System.out.println("finish work2.");
 }

178

 }

 public static void main(String[] args) {
 Test014 test013 = new Test014();
 Test014.MyWork1 work1 = test013.new MyWork1();
 Test014.MyWork2 work2 = test013.new MyWork2();
 work1.start();
 work2.start();
 }
}

15. Test015.java
 Deadlock occurs in Test015.java. Test015.java has 2 Threads. Test015.java
extends Thread and implements Runnable. We have obj1 and obj2. Thread1 locks
obj1 and obj2 sequentially and Thread2 locks obj2 and obj1 sequentially. Deadlock
occurs because the lock orders of obj1 and obj2 of both threads are reverse. The
conditions of Test015.java are the Parallel Condition, the Escaping Conditions, the
Reachable Condition, the Non-Guarded Lock Condition and the Cyclic Lock
Dependency Condition. The source code of Test015.java is shown in Table 34.

Table 34 The source code of Test015.java that deadlock occurs
package test.condition.ExRunnable;

public class Test015 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";

 public class MyWork1 extends Thread implements Runnable{
 public void run(){
 synchronized (obj1) {
 System.out.println("obj1 is locked");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

 public class MyWork2 extends Thread implements Runnable{
 public void run(){
 synchronized(obj2){
 System.out.println("obj2 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 }
 }

179

 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test015 test015 = new Test015();
 Test015.MyWork1 work1 = test015.new MyWork1();
 Test015.MyWork2 work2 = test015.new MyWork2();
 work1.start();
 work2.start();
 }
}

16. Test016.java
 Deadlock does not occur in Test016.java. Test016.java has 2 Threads.
Test016.java extends Thread and implements Runnable. We have obj1 and obj2.
Thread1 locks obj1 and obj2 sequentially and Thread2 locks obj1 and obj2
sequentially. Deadlock does not occur because the lock orders of obj1 and obj2 of
both threads are not reverse. The conditions of Test016.java are the Parallel
Condition, the Escaping Condition and the Reachable Condition. The source code of
Test016.java is shown in Table 35.

Table 35 The source code of Test016.java that deadlock does not occur
package test.condition.ExRunnable;

public class Test016 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";

 public class MyWork1 extends Thread implements Runnable {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

 public class MyWork2 extends Thread implements Runnable {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj2 is locked.");
 synchronized (obj2) {
 System.out.println("obj1 is

180

locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test016 test015 = new Test016();
 Test016.MyWork1 work1 = test015.new MyWork1();
 Test016.MyWork2 work2 = test015.new MyWork2();
 work1.start();
 work2.start();
 }
}

181

17. Test017.java
 Deadlock occurs in Test017.java. Test017.java has 3 Threads. Test017.java
extends Thread and implements Runnable. We have obj1, obj2 and obj3. Thread1
locks obj1 and obj2 sequentially, Thread2 locks obj2 and obj3 sequentially and
Thread3 locks obj3 and obj1 sequentially. Deadlock occurs because the lock orders
of obj1, obj2 and obj3 of three threads are reverse order. The conditions of
Test017.java are the Parallel Condition, the Escaping Condition, the Reachable
Condition, the Non-Guarded Lock Condition and the Cyclic Lock Dependency
Condition. The source code of Test017.java is shown in Table 36.

Table 36 The source code of Test017.java that deadlock occurs
package test.condition.ExRunnable;

public class Test017 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 public class MyWork1 extends Thread implements Runnable {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1.");
 }
 }

 public class MyWork2 extends Thread implements Runnable {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }
 }
 System.out.println("finish work2.");
 }
 }

 public class MyWork3 extends Thread implements Runnable {
 public void run() {
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj1) {

182

 System.out.println("obj1 is locked.");
 }
 }
 System.out.println("finish work3.");
 }
 }

 public static void main(String[] args) {
 Test017 test015 = new Test017();
 Test017.MyWork1 work1 = test015.new MyWork1();
 Test017.MyWork2 work2 = test015.new MyWork2();
 Test017.MyWork3 work3 = test015.new MyWork3();
 work1.start();
 work2.start();
 work3.start();
 }
}

183

18. Test018.java
Deadlock occurs in Test018.java. Test018.java has 2 Threads. Test018.java

extends Thread and implements Runnable. We have obj1, obj2 and obj3 that are

created from the Object Class. Thread1 locks obj1, obj2 and obj3 sequentially and

Thread2 locks obj2, obj3 and obj1 sequentially. Deadlock occurs because lock orders

of obj1, obj2 and obj3 of both threads are reverse. The conditions of Test018.java are

the Parallel Condition, the Escaping Condition, the Reachable Condition, the Non-

Guarded Lock Condition and the Cyclic Lock Dependency Condition. The source

code of Test018.java is shown in Table 37.

Table 37 The source code of Test018.java that deadlock occurs
package test.condition.ExRunnable;

public class Test018 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";

 public class MyWork1 extends Thread implements Runnable {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 synchronized (obj3) {
 System.out.println("obj3 is
locked");
 }
 }
 }
 System.out.println("finish work1.");
 }
 }

 public class MyWork2 extends Thread implements Runnable {
 public void run() {
 synchronized (obj2) {
 System.out.println("obj2 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 synchronized (obj1) {
 System.out.println("obj1 is
locked");
 }
 }

184

 }
 System.out.println("finish work2.");
 }
 }

 public static void main(String[] args) {
 Test018 test015 = new Test018();
 Test018.MyWork1 work1 = test015.new MyWork1();
 Test018.MyWork2 work2 = test015.new MyWork2();
 work1.start();
 work2.start();
 }
}

19. Test019.java
 Deadlock does not occur in Test019.java. Test019.java has 3 Threads. We
have obj1, obj2, obj3 and obj4 that are created from the Object Class. Thread1 locks
obj1 and obj2 sequentially, Thread2 locks obj1 and obj3 sequentially and Thread3
locks obj1 and obj4 sequentially. Deadlock does not occur because obj1 is a guarded
lock for all threads. The conditions of Test019.java are the Parallel Condition, the
Escaping Condition and the Reachable Condition. The source code of Test019.java is
shown in Table 38.

Table 38 The source code of Test019.java that deadlock does not occur
package test.condition.Parallel;

public class Test019 {

 private Object obj1 = "obj1";
 private Object obj2 = "obj2";
 private Object obj3 = "obj3";
 private Object obj4 = "obj4";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj2) {
 System.out.println("obj2 is locked");
 }
 }
 System.out.println("finish work1");
 }
 }

185

 class MyWork2 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj3) {
 System.out.println("obj3 is locked.");
 }

 }
 System.out.println("finish work2");
 }
 }

 class MyWork3 extends Thread {
 public void run() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 synchronized (obj4) {
 System.out.println("obj4 is locked.");
 }
 }
 System.out.println("finish work3");
 }
 }

 public static void main(String[] args) {
 Test019 test019 = new Test019();
 Test019.MyWork1 work1 = test019.new MyWork1();
 Test019.MyWork2 work2 = test019.new MyWork2();
 Test019.MyWork3 work3 = test019.new MyWork3();
 work1.start();
 work2.start();
 work3.start();
 }
}

186

20. Test020.java
 Deadlock does not occur in Test020.java. Test020.java has no Thread. The
source code of Test020.java does not relate to deadlock. It does not implement
Thread or Runnable, although it has synchronized block and calls the wait() method
and the notify() method. There is no condition reported for Test020.java. The source
code of Test020.java is shown in Table 39.

Table 39 The source code of Test020.java that deadlock does not occur
package test.condition.Misc;

public class Test020 {

 private boolean pizzaArrived = false;

 public void eatPizza() throws InterruptedException{
 synchronized(this){
 while(!pizzaArrived){
 wait();
 }
 }
 System.out.println("yumyum..");
 }
 public void pizzaGuy(){
 synchronized(this){
 this.pizzaArrived = true;
 notifyAll();
 }
 }
}

187

21. Test021.java
 In Test021.java deadlock does not occur because there is only one thread is
created in Test021.java and the thread locks only one object and call the wait()
method to wait until the task is done and then it calls the notify() method.
Test021.java can be detected the Non-Guarded Lock Condition. The source code of
Test021.java is shown in Table 40.

Table 40 The source code of Test021.java that deadlock does not occur
package test.condition.WaitNotify;

public class Test021 {

 class MyWork1 extends Thread {
 int total;
 public void run() {
 synchronized (this) {
 for (int i = 0; i < 100; i++) {
 total += 1;
 }
 notify();
 }
 }
 }

 public static void main(String[] args) {
 Test021 test021 = new Test021();
 Test021.MyWork1 work1 = test021.new MyWork1();
 work1.start();
 synchronized (work1) {
 try {
 System.out.println("waiting work1.");
 work1.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println(work1.total);
 }
 }
}

188

22. Test022.java
 In Test022.java deadlock does not occur because Test022.java is
implemented to lock ‘this’ object that in Java, ‘this’ object is locked from the start
point of the application and there is only one object that is locked therefore
deadlock does not occur, although there are 2 Threads; Thread1 and Thread2,
created. The conditions of Test022.java are the Aliasing Condition, the Parallel
Condition, the Escaping Condition, the Reachable Condition and the Non-Guarded
Lock Condition. The source code of Test022.java is shown in Table 41.

Table 41 The source code of Test022.java that deadlock does not occur
package test.condition.WaitNotify;

public class Test022 {

 int total = 0;
 Object obj1 = "obj1";
 Object obj2 = "obj2";

 class MyWork1 extends Thread {
 public void run() {
 synchronized (this) {
 System.out.println("this thread is locked.");
 for (int i = 0; i < 100; i++) {
 total += 1;
 }
 notify();
 }
 System.out.println("finish work1");
 }
 }

 class MyWork2 extends Thread {

 public void run() {
 synchronized (this) {
 System.out.println("this thread is locked.");
 for (int i = 0; i < 100; i++) {
 total += 1;
 }
 notify();
 }
 System.out.println("finish work2");
 }
 }

189

 public static void main(String[] args) {
 Test022 test022 = new Test022();
 Test022.MyWork1 work1 = test022.new MyWork1();
 Test022.MyWork1 work2 = test022.new MyWork1();
 work1.start();
 work2.start();
 synchronized (work1) {
 try {
 System.out.println("waiting for work1.");
 work1.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 synchronized (work2) {
 try {
 System.out.println("waiting for
work2");
 work2.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
 work1.notify();
 work2.notify();
 System.out.println("tasks are complete.");
 }
}

190

23. Test023.java
 In Test023.java deadlock does not occur because Test023.java has 2 threads;
Thread1 and Thread2, lock the same object that is obj1. The deadlock conditions of
Test023.java are the Aliasing Condition, the Parallel Condition, Escaping Condition
and Non-Guarded Lock Condition. The source code of Test023.java is shown in Table
42.

Table 42 The source code of Test023.java that deadlock does not occur
package test.condition.WaitNotify;
public class Test023 {
 Object obj1 = "obj1";
 class MyWork1 extends Thread{
 public void run(){
 doJob();
 }
 public void doJob(){
 synchronized(obj1){
 System.out.println("obj1 is locked.");
 try {
 System.out.println("obj1 is in wait
state...");
 obj1.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("finish job work1.");
 }
 }
 class MyWork2 extends Thread{
 public void run(){
 trickerRelease();
 }
 public void trickerRelease(){
 System.out.println("obj1 is released.");
 synchronized (obj1) {
 obj1.notify();
 }
 }
 }
 public static void main(String[] args) {
 Test023 test023 = new Test023();
 Test023.MyWork1 work1 = test023.new MyWork1();
 Test023.MyWork2 work2 = test023.new MyWork2();
 work1.start();
 work2.start();
 System.out.println("done.");
 }
}

191

24. Test024.java
 In Test024.java deadlock occurs. Test024.java has 2 Threads. We have obj1
and obj2 that are created from the Object Class. Thread1 locks obj1 and obj2
sequentially and Thread 2 locks obj2 and obj1 sequentially. The lock order of both
threads is reverse. The conditions of Test024.java are the Parallel Condition, the
Escaping Condition, the Reachable Condition, the Non-Guarded Lock Condition and
the Cyclic Lock Dependency Condition. The source code of Test024.java is shown in
Table 43.

Table 43 The source code of Test024.java that deadlock does not occur
package test.condition.WaitNotify;

public class Test024 {

 Object obj1 = "obj1";
 Object obj2 = "obj2";

 class MyWork1 extends Thread {
 public void run() {
 doJob();
 }

 public void doJob() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 try {
 System.out.println("obj1 is in wait
state...");
 obj1.wait();
 synchronized (obj2) {
 System.out.println("obj2 is in
wait state...");
 obj2.wait();
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 System.out.println("finish job work1.");
 }
 }

192

 class MyWork2 extends Thread {
 public void run() {
 trickerRelease();
 }

 public void trickerRelease() {
 System.out.println("obj1 is released.");
 synchronized (obj2) {
 obj2.notify();
 synchronized (obj1) {
 obj1.notify();
 }
 }
 }
 }

 public static void main(String[] args) {
 Test024 ex3 = new Test024();
 Test024.MyWork1 work1 = ex3.new MyWork1();
 Test024.MyWork2 work2 = ex3.new MyWork2();
 work1.start();
 work2.start();
 System.out.println("done.");
 }
}

193

25. Test025.java
 In Test025.java deadlock occurs. Test025.java has 4 Threads. We have obj1
and obj2 that are created from the Object Class. Thread 1 locks obj1, calls
obj1.wait(), locks obj2 and calls obj2.wait() sequentially and Thread2 locks obj2, calls
obj2.notify(), locks obj1 and calls obj1.notify() sequentially. We create Thread3 that
has the same lock sequence as Thread1 and Thread4 that has the same lock
sequence as Thread2. When there are more than 2 threads, it is possible that
deadlock occurs because of race condition of Thread executing. If Thread2 or
Thread4 starts first and calls the notify() method for both object, another thread;
Thread1 or Thread3 and the rest of thread can lock objects in reverse order and
cause deadlock. The conditions of Test025.java are the Parallel Condition, the
Escaping Condition, the Reachable Condition, the Non-Guarded Lock Condition and
the Cyclic Dependency Condition. The source code of Test025.java is shown in Table
44.

Table 44 The source code of Test025.java that deadlock occurs
package test.condition.WaitNotify;

public class Test025 {

 Object obj1 = "obj1";
 Object obj2 = "obj2";

 class MyWork1 extends Thread {
 public void run() {
 doJob();
 }

 public void doJob() {
 synchronized (obj1) {
 System.out.println("obj1 is locked.");
 try {
 System.out.println("obj1 is in wait
state...");
 obj1.wait();
 synchronized (obj2) {
 System.out.println("obj2 is in
wait state...");
 obj2.wait();
 }
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

194

 }
 System.out.println("finish job work1.");
 }
 }

 class MyWork2 extends Thread {
 public void run() {
 trickerRelease();
 }

 public void trickerRelease() {
 System.out.println("obj1 is released.");
 synchronized (obj2) {
 obj2.notify();
 synchronized (obj1) {
 obj1.notify();
 }
 }
 }
 }

 public static void main(String[] args) {
 Test025 ex3 = new Test025();
 Test025.MyWork1 work11 = ex3.new MyWork1();
 Test025.MyWork1 work12 = ex3.new MyWork1();
 Test025.MyWork2 work21 = ex3.new MyWork2();
 Test025.MyWork2 work22 = ex3.new MyWork2();
 work11.start();
 work12.start();
 work21.start();
 work22.start();
 System.out.println("done.");
 }
}

195

26. Test026.java
 In Test026.java deadlock occurs. Test026.java has 2 Threads. We have the
‘from’ Object and the ‘to’ Object that are created from the Test026 Class. Thread1
locks the ‘from’ Object and the ‘to’ Object sequentially and Thread2 locks the ‘to’
Object and the ‘from’ Object sequentially. The lock orders of both Threads are
reverse order therefore deadlock occurs. The conditions of Test026.java are the
Parallel Condition, the Escaping Condition, the Reachable Condition, the Non-
Guarded Lock Condition and the Cyclic Dependency Condition. The source code of
Test026.java is shown in Table 45.

Table 45 The source code of Test026.java that deadlock occurs
package test.condition.Test;

public class Test026 {

 double balance;

 public Test026(double balInit) {

 this.balance = balInit;

 }

 public void debit(double val) {

 balance += val;

 }

 public void credit(double val) {

 balance -= val;

 }

 public double getBalance() {

 return balance;

 }

196

 static class Test026_2 {

 public void pay(Test026 from, Test026 to, double val) {

 System.out.println("balance transfer...");

 System.out.println("lock acquired to...");

 synchronized (to) {

 System.out.println("lock acquired from...");

 synchronized (from) {

 if (from.getBalance() >= val) {

 from.debit(val);

 to.credit(val);

 System.out.println("pay
finished...");

 }

 }

 }

 }

 }

 static class Test026_1 {

 public void transfer(Test026 from, Test026 to, double val) {

 System.out.println("balance transfer...");

 System.out.println("lock acquired from...");

 synchronized (from) {

 System.out.println("lock acquired to...");

 synchronized (to) {

 if (from.getBalance() >= val) {

 from.debit(val);

 to.credit(val);

 System.out.println("transfer
finished...");

197

 public void deposit(Test026 to, double val) {

 System.out.println("money deposit");

 System.out.println("lock acquired to...");

 synchronized (to) {

 to.credit(val);

 System.out.println("deposit finished...");

 }

 }
 }

 public static void main(String[] args) {

 final Test026 cashier1 = new Test026(60000);

 final Test026 cashier2 = new Test026(80000);

 final Test026_1 opc = new Test026_1();
 final Test026_2 opc2 = new Test026_2();

 new Thread(new Runnable() {

 public void run() {

 opc.transfer(cashier1, cashier2, 20000);

 }

 }).start();

 new Thread(new Runnable() {

 public void run() {

 opc2.pay(cashier1, cashier2, 20000);

 }

 }).start();

 }
}

198

VITA

VITA

Name Suvarin Ploysri

Gender Female

Date of Birth February 14, 1984

Place of Birth Chiang Mai, Thailand

Education

2014 M.Sc. in Software Engineering, Chulalongkorn University

2005 B.Eng. in Computer Engineering, Chiang Mai University

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER I INTRODUCTION
	1.1. Motivation
	1.2. Objective
	1.3. Scope
	1.4. Contribution
	1.5. Publications
	1.6. Research Methodology
	1.7. Organization of the Thesis

	CHAPTER II BACKGROUND THEORY AND LITERATURE REVIEWS
	2.1. Background Theory
	2.1.1. Application Programming Interface (API)
	2.1.2. Multithreading API
	2.1.3. Deadlock
	2.1.3.1. Mutual Exclusion
	2.1.3.2. Hold and Wait
	2.1.3.3. No Preemption
	2.1.3.4. Circular Wait

	2.1.4. Deadlock Example
	2.1.4.1. Alphones and Gaston Story [8]
	2.1.4.2. Some Deadlock Properties of Computer Systems
	2.1.4.3. Deadlock Detection in Distributed Databases

	2.1.5. Deadlock in the multithreading API
	2.1.6. Six conditions of Deadlock
	2.1.6.1. Reachable Condition
	2.1.6.2. Aliasing Condition
	2.1.6.3. Escaping Condition
	2.1.6.4. Parallel Condition
	2.1.6.5. Non-Reentrant Condition
	2.1.6.6. Non-Guarded Condition

	2.1.7. Three Types of Deadlock Analysis
	2.1.7.1. Static Analysis
	2.1.7.2. Dynamic Analysis
	2.1.7.3. Hybrid Analysis

	2.1.8. Deadlock Detection Algorithms
	2.1.8.1. Directed Graph
	2.1.8.2. Wait-For Graph (WFG)
	2.1.8.3. Call Graph

	2.1.9. Path Coverage
	2.1.10. Deadlock Code Patterns
	2.1.10.1. Cyclic Lock Dependencies
	2.1.10.2. Superfluous Lock

	2.2. Literature Reviews
	2.2.1. Effective Static Deadlock Detection
	2.2.2. Finding Synchronization Defects in Java Programs: Extended Static Analyses and Code Patterns
	2.2.3. Understanding Complex Multithreaded Software Systems by Using Trace Visualization
	2.2.4. Run-Time Detection of Potential Deadlocks for Programs with Locks, Semaphores, and Condition Variables
	2.2.5. Pulse: A Dynamic Deadlock Detection Mechanism Using Speculative Execution
	2.2.6. Static Deadlock Detection for Java Libraries
	2.2.7. Symbolic Deadlock Analysis in Concurrent Libraries and Their Clients
	2.2.8. Ant Colony Optimization for Deadlock Detection in Concurrent Systems

	CHAPTER III APPROACH OF THIS THESIS
	3.1. Deadlock Detection Algorithm
	3.1.1. Exported Code
	3.1.2. Thread Counting
	3.1.3. Synchronized Object Collecting
	3.1.4. Aliasing Condition
	3.1.5. Parallel Condition
	3.1.6. Escaping Condition
	3.1.7. Reachable Condition
	3.1.8. Superfluous Lock Condition
	3.1.9. Non-Guarded Lock Condition
	3.1.10. Reverse Order Locking Condition or Cyclic Lock Dependency Condition

	3.2. Deadlock Detection Tool
	3.2.1. Model Design
	3.2.2. View Design
	3.2.3. Controller Design

	CHAPTER IV RESULT AND VALIDATION
	4.1. Result
	4.4.1. Result of the Deadlock Detection Algorithm
	4.4.2. Result of the Deadlock Detection Tool

	4.2. Validation

	CHAPTER V CONCLUSION AND FUTURE WORK
	REFERENCES
	APPENDICES
	APPENDIX A PUBLICATION
	APPENDIX B SOURCE CODE OF DEADLOCK DETECTION TOOL
	B.1. Model Package
	B.2. View Package
	B.2.1. DeadlockDetectionTool.java
	B.2.2. DeadlockOutputDisplay.java

	B.3. Controller Package

	APPENDIX C RESULT OF THE DEADLOCK DETECTION TOOL
	C.1. Found Deadlocks
	C.2. Detail of Deadlock from Test002.java
	C.3. Detail of Deadlock from Test008.java
	C.4. Detail of Deadlock from Test009.java
	C.5. Detail of Deadlock from Test011.java
	C.6. Detail of Deadlock from Test013.java
	C.7. Detail of Deadlock from Test014.java
	C.8. Detail of Deadlock from Test015.java
	C.9. Detail of Deadlock from Test017.java
	C.10. Detail of Deadlock from Test018.java
	C.11. Detail of Deadlock from Test024.java
	C.12. Detail of Deadlock from Test025.java
	C.13. Detail of Deadlock from Test026.java

	APPENDIX D SOURCE CODE OF TEST EXAMPLES OF MULTITHREADING API
	VITA

