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Water alternating gas process (WAG) and double displacement process (DDP) are two
effective methods to recover oil in the reservoir as they combine the advantages of water and
gas injection. In this study, reservoirs with different dip-angles are constructed by the reservoir
simulation software. The effects of different operating parameters are investigated for WAG with

up-dip and down-dip injection and DDP by using barrel of oil equivalent (BOE) as an indicator.

Low water cut criteria, high water injection rate, moderate gas injection rate, and
shorter injection durations of water and gas are considered to be beneficial for the two types of
WAG. Moreover, the increase of water to gas injection duration ratio enhances the oil production
performance in a non-dipping reservoir while this ratio does not have a significant effect for an
inclined reservoir. We can improve the performance of DDP by using low water cut stopping
criteria for water flooding and injecting water and gas at high rates. The best performance process
for all reservoirs is WAG. Although DDP vyields higher oil recovery factor than WAG, it consumes
much larger amount of gas which results in lower BOE. The optimum production processes for a
non-dipping reservoir, a 15° dipping reservoir, and a 30° dipping reservoir are (1) WAG with up-dip
injection by eight vertical wells, (2) WAG with down-dip injection by two horizontal wells, and (3)
WAG with up-dip injection by a vertical well up-dip and a horizontal well down-dip.

Sensitivity analysis shows that the higher horizontal permeability results in the higher
oil recovery factor in an inclined reservoir. The increase of k,/k;, ratio improves the oil production
whereas the decrease of k/ky ratio requires much more amount of injected gas due to the
earlier breakthrough. For the three-phase relative permeability correlation, ECLIPSE default model
gives more oil recovery factor than Stone 1 and Stone 2 models. We can produce oil from the
thinner reservoir in shorter time but not always with more efficiency. Light oil containing large

amount of solution gas is easy for production.
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CHAPTER |
INTRODUCTION

1.1 Background

After primary recovery by natural drive mechanisms, some amount of oil is
not recovered but left in a reservoir as residual oil. There is an effort to produce oil
as much as possible from the fields by injection of fluids to displace and chase oil
ahead. The reservoir pressure is also maintained. Water injection and gas injection are
proven as effective methods. These methods have been used worldwide by several

oil companies.

Water alternating gas process (WAG) is one of the widely used oil recovery
methods. Water and gas are injected in separate small slugs. These slugs are
alternately injected into the reservoir in order to flood the residual oil left after the
primary recovery. The sweep efficiency of water and the microscopic displacement

efficiency of gas improve the performance of this recovery process.

Double displacement process (DDP) is the process of gas flooding to recover
residual oil after water flooding. This process starts with down-dip water injection to
displace oil up-dip structure and follows by up-dip gas injection to displace oil and
water down-dip structure. It can recover oil due to the better microscopic
displacement efficiency of gas and the forming of oil film. These two methods are

effective for recovery process and should be studied to compare their performances.

In this study, three reservoirs with different dip angles which are 0-degree, 15-
degree, and 30-degree are constructed by using ECLIPSE 100. WAG and DDP
processes are applied to recover oil from these reservoirs. For WAG, the initial water
flooding is performed until water cut of the producer reaches the criteria. Then, WAG
injection is started. Thus, the strategies that yield the highest barrel of oil equivalent
(BOE) for WAG and DDP are determined, and the effects of the following production
parameters are investigated: water cut stopping criteria for initial water flooding,

water and gas injection rates, WAG cycle and injection duration (only for WAG), and



well pattern. Moreover, WAG process is performed in both up-dip and down-dip
injection. After that, the cases that yield the highest BOE for these three reservoirs
are analyzed on their sensitivities when reservoir properties (which are horizontal
permeability, vertical to horizontal permeability ratio, three phase relative

permeability correlation, and reservoir thickness) and oil property are changed.

1.2 Objectives

1. To determine the best production strategy for water alternating gas process in
terms of stopping criteria for initial water flooding, water and gas injection

rates, WAG cycle and injection duration, and well pattern.

2. To determine the best production strategy for double displacement process
in terms of stopping criteria for initial water flooding, water and gas injection

rates, and well pattern.

3. To study the effects of reservoir and fluid properties such as horizontal
permeability, vertical/horizontal permeability, relative permeability, reservoir
thickness, and oil property on water alternating gas and double displacement

process.

4. To compare the performances of water alternating gas and double

displacement process.

1.3 Outlines of methodology
1. Review previous studies on WAG and DDP.
2. Construct a base case reservoir model in ECLIPSE 100.

3. Perform three base case recovery methods as listed below to study their

production characteristics.
3.1 WAG with up-dip injection

3.2 WAG with down-dip injection



3.3 DDP
4. Study the effects of the following parameters on oil recovery efficiency.
4.1 stopping criteria for water flooding
4.2 water and gas injection rates
4.3 WAG cycle and injection duration (only for WAG)
4.4 well pattern

This study is performed in a non-dipping reservoir and 15-degree and 30-

degree dipping reservoirs.

5. Select the cases, from both WAG and DDP, which give the best results for
sensitivity study. Reservoir with dip angle of 0°, 15°, and 30° are studied and

rock and fluids parameters are varied as follows:
5.1 horizontal permeability
52 vertical/horizontal permeability
53 relative permeability
54 reservoir thickness
55 oil property
6. Discuss and compare the performances of WAG and DDP.

7. Draw conclusions from simulation results.

Outlines of thesis

There are 6 chapters in this thesis as detailed below:
— Chapter | is the introduction of this study.
— Chapter Il illustrates the literature review in the topics of WAG and DDP.

— Chapter Il summarizes the related theories and concepts.



Chapter IV is description of reservoir model and its properties.

Chapter V shows the simulation results for WAG and DDP. The performances
of two methods are compared and discussed. In addition, sensitivity analysis

is also investigated in this chapter.

Chapter VI is the conclusion of this thesis.



CHAPTER I
LITERATURE REVIEW

Previous studies of water alternating gas and double displacement process

are summarized in this chapter.

2.1 Water alternating gas process

In 1972, Dyes et al. [1] presented the alternate injection of high pressure gas
(HPG) and water for Hassi Messaoud oil reservoir in Algeria. The volumetric sweep
efficiency for this reservoir had been quite low due to its heterogeneity. Therefore,
they tried to improve the volumetric sweep efficiency by performing an alternate
injection of gas and water. A pilot operation showed significant improvement in
volumetric sweep which were 22% for alternate injection and 10-12% for continuous

gas injection at gas breakthrough.

Moffitt and Zornes [2] presented one of the first immiscible WAG. A project of
COy/waterflood was conducted at the Lick Creek Meakin Sand Unit, Arcansas in 1976.
This unconsolidated sandstone reservoir has a depth of 2,550 ft., an average
thickness of 8.4 ft., an average permeability of 1,200 md, and a porosity of 30.3%.
This reservoir contained 15.8 MMSTB of OOIP. Only 4.5 MMSTB or 28.3% of OOIP had
been produced by natural depletion for 20 years. It was reported that this project

can recover 1.75 MMSTB of incremental oil over primary recovery or 11.1% OOIP.

Mangalsingh and Jagai [3] studied the effect of WAG ratio by performing a
core-flooding experiment. Cores were produced from 80 mesh silica sand. Crude oil
with 16 — 29 °API and CO, with 99.5% purity were used. This experiment was
performed at 900 psi and 28 °C to let the CO, WAG occur in immiscible condition.
They varied WAG ratio from 1:1 to 1:5 and found that ratio of 1:4 was the optimum
ratio. They also concluded that WAG had two important advantages as compared to

continuous gas flooding such as higher oil recovery and less volume of gas needed.



Li et al. [4] performed a core test to evaluate feasibility of immiscible WAG in
Wennan reservoir. Cores with average permeability of 15.0 md and porosity of
21.58% were collected from Wennan reservoir. Immiscible WAG process yielded
61.90% recovery from injection of 0.453 HCPV at breakthrough time but caused a
problem of high water production rate (97.94% water cut). However, the final

recovery reached up to 95.22%.

Srivastava and Mahli [5] performed core flooding experiments to study effects
of different water alternating gas (WAG) injection cycles and changing slug sizes on
the performance of oil production. Core plugs, oil sample, and gas sample were
collected from Gandhar field. Porosity and permeability of these sandstone cores
were 21% and 323.23 md, respectively. Injection rates were 20 cc/h for water and 10
cc/h for gas. To study the effect of number of WAG cycles, single cycle and five
cycles of 1 PV of gas and water were injected with WAG ratio of 1:1 after water
flooding. The results showed that single-cycle WAG yielded 12.75% incremental
displacement efficiency over water flooding while five-cycle WAG with the same
injection volume vyielded 19.30% incremental displacement efficiency over water
flooding. Better displacement efficiency caused better total oil recoveries which were
71.63% and 64.59% for five-cycle and single-cycle, respectively. Moreover, they also
performed tapered WAG methods, changeable WAG ratio in each cycle, as shown in
Table 1. Gas and water injection volumes were adjusted to be 1.5 PV in this case in
both increasing WAG ratio and decreasing WAG ratio experiments. In case of
decreasing WAG ratio, more amount of gas could dissolve in the first cycle; thus
caused improvement in mobility and increase in oil recovery. Decreasing WAG ratio in
which its recovery factor was 72.57% gave 23.84% incremental displacement
efficiency over water flooding while increasing WAG ratio in which its recovery factor
was 72.34% gave only 20.73% incremental displacement efficiency over water
flooding. However, constant WAG ratio over five cycles yielded 71.63% recovery
factor which was lower than those two types of tapered WAG. Thus, decreasing WAG

ratio had slightly better performance than other cases.



Table 2.1 WAG ratios for the experiments (after [5]).

Cycles WAG ratio for tapered WAG (water:gas)
Increasing WAG ratio | Decreasing WAG ratio

! 51 3:5

2 5:2 3:4

3 1:1 1:1

4 3.4 3.2

5 3:5 a1

Parracello et al. [6] performed a core flooding test in order to investigate
efficiency of immiscible water alternating gas (WAG). They used sandstone core with
porosity of 17.8% and permeability of 406 md. Viscous oil sample had viscosity of
180 cp and density of 0.870 g/cm3. Two different injection orders were studied.
Water and gas were injected alternately starting with water slug in the first test but
gas slug in the second test. Although the final oil recovery from the first test was
slightly higher than the final oil recovery from the second test which was 35.4% and
34.7%, respectively, much more amount of oil was recovered since early time in the
first test. In other words, WAG starting with water slug of injection showed better
result in oil recovery. However, relative permeability curves were constructed by

simulator.

Pitakwatchara [7] performed water alternating gas (WAG) flooding study in a
non-dipping reservoir. Water injection alternating gas dumpflood was proposed and
compared to conventional WAG in which both gas and water were injected from
surface. From the results, three wells with a distance between each well of 2,000 ft
provided high sweep efficiency and recovery factor. A high water cut stopping criteria
for water injection was not suitable for the recovery processes due to the
requirement of large amount of injected water. An increase of water and gas injection
rates shortened the production time but slightly lowered oil recovery factor for
conventional WAG. However, for water injection alternating gas dumpflood, an
increase in water injection rate vyielded better oil recovery factor in shorter

production period. For both methods, WAG ratio and slug size did not have a



significant influence on oil recovery factor. When two methods were compared, she
concluded that water injection alternating gas dumpflood yielded lower oil
production than conventional WAG. However, water alternating gas dumpflood does
not need surface facilities for gas injection. Effects of vertical to horizontal
permeability ratio (k,/k,) and oil viscosity were also investigated and concluded that
a low k,/k, ratio and a low viscosity improved the performance of both two types of

WAG.

2.2 Double displacement process

Langenberg et al. [8] studied appropriate recovery method to improve oil
production for Hawkins Field in Texas. Oil production from this field reached its peak
rate at 112,000 BOPD in 1975 and approached its economic limit in 1987. Ways to
extend the production life of this field were studied. Eventually, immiscible double
displacement process (DDP) was found to be the most suitable method and was
then applied to the East Fault Block of the Hawkins Field Unit. They started to
perform DDP in August 1987. The oil production rate was around 3,700 BOPD at the
starting time and declined to 1,075 BOPD at the end of 1991 with average nitrogen
gas injection rate of 24.5 MMscf/D. The average gas-oil contact moved 81 ft. while
the average oil-water contact moved 91 ft. downstucture in three years. This meant
the size of oil bank grew 10 ft. They concluded that these moving rates were too
high for Hawkins Field. Thus, they decided to reduce gas injection rate to 15 MMscf/D
in June 1992. As a result, 32 ft. of oil bank increased to 40 ft. from 1992 to 1993. Oil
production rate was 900 BOPD in 1992 and 1,300 in 1993. They summarized that DDP
was very successful improved oil recovery method and could be applied for other

areas of Hawkins Field.

Ren et al. [9] studied the effects of many parameters on the performance of
double displacement process (DDP). A dipping reservoir model with a dip angle of 8°
was the base case. Dimensions in the x-, y-, and z-direction were 591 m, 305 m, and

91 m, respectively. This model had porosity of 25% and permeability of 1,500 md.



Oil has gravity of 0.865 cg/cm3 and viscosity of 0.9 mPa-s. They constructed a reservoir
model with an up-dip gas injector and a down-dip producer and then varied three
parameters: injection and production rate, dip angle of the reservoir, and oil relative
permeability. Results of this simulation showed that the critical gas injection rate was
510 m3/day. Bigger dip angle showed better performance due to gravity effect. Stone
2 model was the most suitable three-phase relative permeability model for this
simulation compared to Stone 1 model, linear isoperm model, and segregated

model.

Wang et al. [10] evaluated double displacement process (DDP) for Hibernia
Field. Core plug with 18% porosity and 1,800 md permeability was collected from
this field. Core flood experiment was done at 210°F and 4,500 psi. Imbibition and
drainage processes were studied prior to performing the DDP test. Critical gas
saturation of 0.243 and residual oil saturation of 0.065 after gas flooding were
measured by core flooding of gas-displacing-oil process. The water-oil relative
permeability was then studied and the core from Hibernia was found to be oil-wet.
After that, DDP test was performed by two steps of injection which were water and
oil, with ratio of 9:1, injection and gas injection sequentially. Oil bank reached the
outlet after 0.025 PV of gas was injected. At that time, oil fractional flow equaled to
0.925. After that, oil fractional flow decreased to 0.205 when 0.280 PV of gas was
injected and gas reached the outlet. It was also observed that oil flow rate would be
higher than water flow rate after gas breakthrough but with lower two-phase, oil and
water, flow rate. Water flooding recovered 54% of OOIP. Additional 14% of OOIP and

18.5% of OOIP were recovered by 1 PV and 11 PV of gas injection, respectively.

Gachuz-Muro et al. [11] compared the performances of natural gas and
nitrogen gas in double displacement process (DDP). Core was collected from a
naturally fractured reservoir. Density and viscosity of crude oil sample were found to
be 32 °API and 0.9 cp, respectively. For natural gas DDP, they performed three
recovery mechanisms which were natural depletion, water injection, and gas
injection sequentially. Recovery factor for each mechanism was 0.9%, 46.99%, and

16.44%, respectively. Core was then cleaned and used again in the next experiment.
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After that, nitrogen gas DDP was studied by performing three recovery mechanisms
similar to natural gas DDP experiment but only different in gas type. Recovery factor
for each mechanism was 0.5%, 46.7%, and 3.79%, respectively. In their study, natural

gas injection yielded higher recovery than nitrogen injection in DDP process.

Suwannakul [12] studied the effect of production strategies especially the
location of gas injector on the performance of double displacement process (DDP).
He constructed three dipping reservoirs with dip angles of 5°, 10°, and 20°. Four
vertical wells are constructed. Well 1 was located at the most up-dip location while
well 4 was located at the most down-dip location. He injected gas at different wells
to determine the effect on production time. It was found that the shortest
production time was obtained when gas was injected at well 2 (the second most up-
dip well) in a 5° reservoir and at well 1 (the most up-dip well) in a 10° reservoir.
However, there was an insignificant effect of injector location on production time for
a 20° reservoir due to an influence of gravitational force. In addition, he studied the
effect of three-phase relative permeability correlation and concluded that it

moderately affected production time but did not affect oil recovery factor.

The previous studies prove that WAG and DDP are two of effective oil
recovery methods. They are not only performed in laboratory or simulator but also
applied to the real oil reservoirs in every part of the world. They are considered to
be successful because they provide good results and their operations are feasible.
However, operational parameters have strong effect on the performance of oil
production by WAG and DDP. Therefore, the investigation of each parameter is

necessary to optimize the production strategies.



CHAPTER Il
THEORY AND CONCEPT

3.1 Water alternating gas

Water alternating gas (WAG) is a process of injecting water and gas alternately
into the formation. This process combines advantages of water flooding and gas
flooding which are better sweep efficiency and better microscopic displacement
efficiency, respectively. As a result, more amount of oil can be recovered compared

to water flooding or gas flooding. WAG also has these following benefits [13]:
1. High injectivities
The injectivity of WAG is higher than the injectivity of water flooding.

Gas is not only injected easily but also lowers the bottom-hole pressure

requirement.
2. In-situ gas lifting

The oil rate is enhanced by in-situ lifting provided by circulation of

produced gas and injected gas.
3. Suppressed water production

WAG reduces water management cost because the presence of
trapped gas lowers the water mobility. As a result, less amount of water is

produced.
4. Well interaction

WAG is sometimes applied as the tracer. It can determine the

communication between the injectors and the producers.

WAG can be divided into two types: miscible WAG and immiscible WAG.
Miscible WAG occurs when the pressure is higher than minimum miscibility pressure
(MMP) while immiscible WAG occurs when the pressure is below MMP. Efficiency of
WAG is affected by [14]:
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Fluid properties

The performance of WAG is affected by the properties of oil and
solution gas in the reservoir. Light oil consisting of high amount of gas can
flow easily. However, it involves in the mixing and separating of fluid phases

which may have an influence on the flood front.
Trapped gas and wettability

The mobilization of oil and the water/gas displacement is affected
directly by gas trapping process. It depends mainly on the saturation of initial
gas and the rock wettability. In addition, the fluid which is the wetting phase
bypasses other phases. As a result, the non-wetting phase fluid will be
trapped, thus causing the problem of the decrease in the relative

permeability to injected fluid.
Reservoir heterogeneity

The ability of fluids to flow between different zones inside the
reservoir is the important factor to determine the performance of WAG
process. The heterogeneity of the reservoir has a strong influence on this.
Additionally, WAG and other displacement processes by water and gas are

significantly affected by the viscous force to gravity force ratio.
Injection schemes

The important objective of water/gas injection is the improvement of
sweep and displacement efficiencies. To improve these efficiencies, the
optimization of water and gas injection parameters need to be performed.
These parameters include (1) WAG slug size which is the size of water and gas
slugs in the basis of pore volume (PV) or duration of slug injection, (2) WAG
ratio which is the ratio of water slug size to gas slug size, and (3) cycling

frequency which relates to the period of the injection of each cycle.
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5. Injection rate

Oil recovery depends on the viscosity to gravity ratio. A low injection
rate can stable the flood front but taking long time for production. On the
other hand, a high rate accelerates the production process but causing a
problem of viscous fingering effect. Thus, injection rate needs to be

optimized.

3.2 Double displacement process

The double displacement process (DDP) is a process of gas flooding to
recover water-flooded residual oil in dipping reservoir as shown in Figure 3.1. DDP
can recover oil up to 85-95% of OOIP [9]. This process starts with down-dip water
injection. In this stage, a production well is located at up-structured location while an
injection well is located at down-structured location. Oil is displaced up-structure by
water through production well. However, some amount of oil is left after water

flooding process is done. This residual oil can be divided into two parts [9]:

1. Bypassed oil, in water-unswept zone, caused by reservoir heterogeneity or

well placement.

2. Trapped oil, in water-swept zone, caused by capillary pressure and surface

force.

Gas is then injected to displace oil and water down-dip structure. In this
stage, location of production well and injection well are alternately changed. Gas
flooding can recover bypassed oil due to better microscopic displacement efficiency,
as compared to water, and can recover trapped oil due to oil film forming. After that,
oil accumulates to form oil bank between water zone and gas zone. In addition, gas-
oil system is more effective than water-oil system in gravity drainage due to more
density difference between phases. Consequently, water-flooded residual oil is

recovered.
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Figure 3.1 Schematic of DDP process (after[15]).

Reservoirs with the following properties are good candidates for DDP [15]:

1. high amount of water-flooded residual oil
2. permeability of 300 md or more
3. dip angle over 10°

33 Immiscible displacement in a dipping reservoir

3.3.1 Water displacing oil
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For water flooding in a dipping reservoir, water is normally injected down-dip

due to higher density of water compared with reservoir fluids. Consequently,

injection wells and production wells should be located as shown in Figure 3.2.
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Figure 3.2 Linear prototype reservoir model: (a) plan view, (b) cross section (after

[16]).

Reservoir fluids are pushed ahead from the injector through the producer
after injection. Both oil and water flow together in separated phases due to
immiscibility between them. If two fluids are considered incompressible, the

relationship of flow rates will be [16]

gr = Qo+ gw = qi (3.1)
where of = total flow rate
o = oil flow rate
Ow = water flow rate
o = water injection rate

A fraction of water in total flow can be calculated by fractional flow
equation. This equation was derived from Darcy’s law. It was first introduced by

Leverett in 1941 [16].

kkyoA (0P Ap gsin@
1+ ( 5)
. qt o \ 0x 1.0133X10
fW - “w  kro (3.2)
1+ W.. =IO
krw ko
where fu = fractional flow of water in reservoir

7\_
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absolute permeability
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relative permeability to oil
relative permeability to water
viscosity of oil

viscosity of water

area

capillary pressure

distance in direction of flow
Pw ~ Po

density of water

density of oil

acceleration due to gravity

dip angle of the reservoir

The wetting phase and non-wetting phase require minimum saturations for

flowing in a two-phase system. For oil/water system, the interstitial water saturation

or Sy, and the residual oil saturation as S, are required as minimum saturations.

These values are affected by rock type, wettability, and IFT.

The flooding front is usually stable during the water flooding with low

injection rate in a dipping reservoir, but usually unstable with high injection rate.
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Figure 3.3 Water displacement: (a) stable, (b) stable, and (c) unstable (after [16]).

Stable displacement refers to the flooding with constant angle between the
water-oil interface and the bedding plane (B) at any distance from injection well
through production well as shown in Figure 3 (a) and (b) which are described by the

following equation [16]. In this case, gravity force predominates over viscous force.

d
d—i = —tanf = constant (3.3)

Conversely, viscous force predominates over gravity force in the condition of
high injection rate. This causes water underrun or unstable flood front as shown in

Figure 3 (c) which is described by the following equation [16].

dy . _
= = tanf = 0 (3.4)

Figure 3.3 shows three different displacement patterns as shown below:

(a) stable, G>M-1, M >1,B< 6
(b) stable, G>M-1,M< 1, <6
(c) unstable, G < M-1
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The dimensionless gravity number (G) and the end point mobility ratio (M)

can be calculated from the following equations [16].

G = k ki, A Apég sin@ (3.5)
1.0133x106 q; iy,
k’
M = (ﬂ) : (”—,") (3.6)
HUw kro
where K'rw = end point water relative permeability
K'o = end point oil relative permeability

Water tongue normally occurs when the injection rate is higher than the
critical rate for by-passing (quei) Which can be calculated from the following

equation [16].

k kjy AAp g sinf

it = 3.7
Aw,crit 1.0133%x10° pu, (M—1) B0

Thereby, injection rate should be maintained below g, to avoid early
breakthrough causing by unstable flood front. Early water breakthrough results in
high water cut at the production well. It directly reduces the performance of oil
production because high amount of oil is bypassed by this underrunning water.
Moreover, the costs of surface facility and management, including separator and

waste water management, rise up.

3.3.2 Gas displacing oil

In a dipping reservoir, gas injection well is normally located at up-dip
structure location. Gas displaced oil down-dip to the production well. Gas fractional

flow can be calculated by Welge equation [17].

1Lk kro Ap Asina

at 1
fg — 1+tlo (3.8)
M
k
where M = mobility ratio = <£> ) (ﬁ)
Hg k1‘0
f, = fractional flow of gas in reservoir

k = absolute permeability
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relative permeability to oil

relative permeability to gas

P = Po

area of cross section normal to the bedding plane
dip angle of the reservoir

total flow rate

viscosity of oil

viscosity of gas

Figure 3.4 Gas displacement: (a) unstable and (b) stable (after [16]).

In contrast to water underrun, gas flooding can cause the problem of gas

override due to lower density. The angle between the gas-oil interface and the

bedding plane is constant throughout the flooding process in the stable

displacement but not constant in the unstable displacement as shown in Figure 3.4.

Even though the problem of gas override is more difficult to avoid as compared to

the problem of water underrun because of the larger difference in fluid viscosities,

gas injection rate is still necessary to be optimized. Too high gas injection rate not

only decreases the sweep efficiency, which lowers the production performance, but

also increases the operating costs. The examples of these costs affected by gas

injection rate are the costs of storage tank, pump, separator, and gas conditioning

unit.
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The dimensionless gravity number (G), the end point mobility ratio (M), and
the critical rate for by-passing (g, i) can be calculated from the following equations

[16]:

_ kkygAApgsind 59)
~ 1.0133x106 g pg '

- ()-6)
= \— )"\ (3.10)
Ug kro

k k,'«g AAp g sin6
Ag,crit 1.0133x106 pg (M—1)

(3.11)

where K'ro = end point gas relative permeability

34 Three-phase relative permeability

Relative permeability is defined as the ability of porous medium or reservoir
rock to conduct each fluid in several-fluid-phase system. There are three phases of
fluid involving in WAG and DDP, namely, oil, water, and gas. In ECLIPSE, there are
three models that can be used to indicate three-phase relative permeability

according to Schlumberger’s simulation software manuals 2007.1 [18].
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3.4.1 ECLIPSE default

cho 1'So'swco So

Gas

Oil

- Water

1-S, S,
Figure 3.5 Relationship of oil, water, and gas saturations for the ECLIPSE default
model (after [18]).

In a fraction S¢/(Se+S,-Sueo) Of the cell (the gas zone),
the oil saturation is S,
the water saturation is S,
the gas saturation is S¢+Sy-Suco
In fraction (Sy-Sweo)/(Sg+Su-Sueo) Of the cell (the water zone),
the oil saturation is S,
the water saturation is S¢+5,,
the gas saturation is 0

The relative permeability is calculated by the following equation.

kro — Sgkrog"‘(sw_swco)krow (3.13)
Sg+Sw—Sweo
where S, = the connate water saturation
kog = the oil relative permeability for a system with oil, gas, and connate
water

kiow = the oil relative permeability for a system with oil and water only
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3.4.2 Stone 1 (modified)

This is the modification of Stone 1 model. The relative permeability is

calculated by the following equation.
ko = KrocwSSoF WFg (3.14)

where ko, = the oil relative permeability in the presence of connate water only
SSo = (So-Sorm(1-Syco-Som) When Sg > Sor,
Fo = Kow/(Kioew (1-SSy))
Fo = kiog/(Kioaw(1-SSg))
SSw = (SySweo)(1-Spco-Som) When S, > S0
SSe = So/(1-Syeo-Som)
kg = the oil relative permeability for a system with oil, gas, and connate
water
kiow = the oil relative permeability for a system with oil and water only

Som = the minimum residual oil saturation

3.4.3 Stone 2 (modified)

This is the modification of Stone 2 model. The relative permeability is

calculated by the following equation.

kro = Kroow | (222 + Ky ) (2L + Ky g ) — Koy — K
ro — "rocw ™ rg T™W rg (3.15)
kTOCW kTOCW
where k., = the oil relative permeability for a system with oil, gas, and connate
water

kiow = the oil relative permeability for a system with oil and water only

kioew = the oil relative permeability in the presence of connate water only



23

35 Fracturing pressure

The fracturing pressure is the pressure that can cause fracture in reservoir
formation. Therefore, any fluid should be injected below this pressure to prevent the
reservoir from any damage. Equation 3.16 is used to calculate fracturing pressure for
the M Field in the Gulf of Thailand [19].

FRAC.S.G. XTVD

Fracturing pressure (bar) = 00 (3.16)

where FRAC.S.G. fracturing pressure gradient (bars/meter)

122 + (TVD x 1.6 x 107)

TVD true vertical depth below rotary table (meter)

3.6 Barrel of oil equivalent

Barrel of oil equivalent (BOE) is an effective indicator to illustrate production
performance for process involving gas injection and production. Produced oil,
produced gas, and injected gas are taken into account for the calculation. BOE can

be calculated by the following equation [20].

BOE = Cumulative oil production (STB) +
[Cumulative gas production (MMSCF) x 166.7] -
[Cumulative gas injection (MMSCF) x 166.7] (3.17)



CHAPTER IV
MODEL DESCRIPTION

The reservoir model is constructed in order to study and compare two
recovery processes which are water alternating gas process (WAG) and double

displacement process (DDP). Description of the model is shown in this chapter.

4.1 Reservoir model

The homogeneous reservoir model with following parameters as shown in
Table 4.1 is constructed for simulation by BlackOil Simulator in ECLIPSE100. This
model consists of 45,260 corner-point Cartesian grids as shown in Figure 4.1. The
reservoir size of 6,000 ft x 2,000 ft x 200 ft is represented by 73 x 31 x 20 grid blocks.
Grid cells in the %, y, and z-direction are shown in Figures 4.2, 4.3, and 4.4,

respectively.

Table 4.1 Parameters of the reservoir model.

Parameters Values Units
Grid number 73x31x 20 block
Reservoir size 6,000 x 2,000 x 200 ft’
Porosity 15.09 %
X Permeability 126 md
Y Permeability 126 md
Z Permeability 12.6 md
Top of reservoir 5,000 ft
Initial pressure at 5,000 ft 2,242 psia
Bubble point pressure 2,242 psia
Dip angle 15 degree
Initial oil saturation 0.7 -
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Figure 4.1 The 3D reservoir model.

KAxis

1 15 44 49 54 59 B3 B8 73

Figure 4.2 Grid cells in the x-direction.
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KAxs

Jindex

1 13 15 47 19 21 23 25 27 29 31

Figure 4.3 Grid cells in the y-direction.

Kindesx

Figure 4.4 Grid cells in the z-direction.

4.2 PVT properties

PVT properties refer to properties of oil, gas, water and rock. The densities of
oil, gas, and water at standard conditions are assumed to be 51.45684 lb/ft3,
0.04369958 lb/fts, and 62.42797 lb/fts, respectively. Data in Table 4.2 have to be put
in PVT correlation section to let ECLIPSE generate live oil PVT properties (Figure 4.5)
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and dry gas PVT properties (Figure 4.6). Water PVT properties are shown in Table 4.3.

The rock compressibility is assumed to be 3.013923 x 10° psi .

Table 4.2 Input data for PVT correlation.

Input Data Values Units
Oil gravity 40 CAPI
Gas gravity 0.7 s.g. air
Gas oil ratio (R) 566 SCF/STB
Standard temperature 60 °F
Standard pressure 14.7 psia
Reservoir temperature 200 °F
Reference pressure 3000 psia
Rock type Consolidated sandstone -
PVTO (Live Qil PVT Properties (Dissolved Gas))
=Rz -y- Phub
.68 E 0
1 1200 2
8507 000 _: L—w.soo
.40 - ] -
1 800 / -
im _: & 600 —: // e i
2.20 3 ] / N .
g 7 400 = <
] . // s
610 — . / M — 1100

3000.00

2000.00
Phub  paig

4000.00

200000

Figure 4.5 Live oil PVT properties.
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PVDG (Dry Gas PVT Properties (No Vapourised Oil))

=B-8— FVF -v- Press.
BB Visc -v- Press

200.00 —

100.00

FWF b AMaed

IIIIIIIIIIIIIIIIIIIIIIIIIIIxj

g

= T
200000
Prazs  paig

=

L
3000.00

! |
4500.00

=

3000.00

0.0230

0.0225

0.0200

0.0175

0.0150

Wise op

Figure 4.6 Dry gas PVT properties.

Table 4.3 Water PVT properties.

Properties Values Units

Water FVF at P, 1.021734 RB/STB
Water compressibility 3.09988 x 10 psi
Water viscosity at P 0.3013289 cp
Water viscosibility 3396041 x 10 psi”

4.3 SCAL properties

Relative permeability curves are generated by ECLIPSE using Corey’s

correlation. Input parameters for Corey’s correlation are listed in Table 4.4. Gas/oil

saturation functions and water/oil saturation functions are shown in Figure 4.7 and

Figure 4.8, respectively.



Table 4.4 Input parameters for Corey’s correlation.

Corey water 3 Corey gas/oil 3 Corey oil/water 1.5
Swmin 0.25 Semin 0 Corey oil/gas 1.5
Swer 0.25 Secr 0.15 Sorg 0.1
Swi 0.25 Sei 0.15 Sorw 0.3
vamax 1 Krg(Sorg) 0.4 Kro(Swmin) 0.8
KYW(SOYW) 03 Krg(ngax) 04 Kro(ngin) 08
Krw(swmax) 1
SGOF (Gas/Qil Saturation Functions)
1.00 __
(.75 —
(.50 —_ :
.25 —_
0.00 —— —— “,’/,’/ —— = ,
0.00 0,10 0.20 Q.30 0.40 0,50 060 0.70
Sq

Figure 4.7 Gas/oil saturation functions.
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SWOF (Water/Oil Saturation Functions)
=BB—=Hrw -v- S
E-E=Kro -v- Sw
1.00 ™7
4
075 —
-3
- 8
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e .
X
5 N H,
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025 — &
— 8
_ h_—a’/ ot
D 00 T T T T I T T T T I T T T T I T :
0,30 0.40 0,30 0.60 0,70 0.80 0.90 1.00
Sw

Figure 4.8 Water/oil saturation functions.

4.4 Well schedule

For the base case model, two vertical wells are constructed in the model,
one well at up-dip location and another well at down-dip location as shown in Table

4.5 and Figures 4.9 and 4.10. Fracture pressures of well 1 and well 2 are calculated

by Eq. 3.16.
Table 4.5 Well location and fracture pressure for the base case model.
Parameters Values Unit
Position of well 1 i=12, j=16 -
Position of well 2 i=62, =16 -
Fracture pressure of well 1 3,260 psia
Fracture pressure of well 2 4,080 psia
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DISTANCE ¥, ft
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2000 —

Figure 4.9 Well locations for base case model.

Figure 4.10 Well location in 3D for base case model.

4.4.1 Water alternating gas process (WAG)

In this study, WAG is divided into two types which are WAG with up-dip
injection and WAG with down-dip injection. Parameters for well schedule for WAG for

the base case are shown in Table 4.6.
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Table 4.6 Parameters for well schedule for WAG.

Parameters Values Units

Water injection rate 8,000 RB/D

Production rate during water injection 8,000 RB/D

Gas injection rate 8,000 RB/D

Production rate during gas injection 8,000 RB/D
Water cut for stopping time of water injection 60 %

Water injection duration 90 days

Gas injection duration 90 days

Economic constraint Oil rate < 50 STB/D

Production time 30 years

4.4.1.1 WAG with up-dip injection

For WAG with up-dip injection, well 1 and well 2 are set as producer and
water injector, respectively, during the initial water flooding period. After the water
cut of well 1 reaches a certain value, both wells are shut for 180 days. Slugs of water
and gas are then injected alternately at well 1 while oil is produced at well 2. The
production period is limited at 30 years. However, the production is stopped if the oil

rate reaches economic constraint.

4.4.1.2 WAG with down-dip injection

For WAG with down-dip injection, well 1 and well 2 are set as producer and
water injector, respectively, during the initial water flooding period. After the water
cut of well 1 reaches a certain value, both wells are shut for 180 days. Slugs of water
and gas are then injected alternately at well 2 while oil is produced at well 1. The
production period is limited at 30 years. However, the production is stopped if the oil

rate reaches the economic constraint.
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4.4.2 Double displacement process (DDP)

For DDP, well 1 and well 2 are set as producer and water injector,
respectively, during the initial water flooding period. After the water cut of well 1
reaches a certain value, both wells are shut for 180 days. Gas flooding is then
performed by setting well 1 and well 2 as gas injector and producer, respectively.
The production period is limited at 30 years. However, the production is stopped if
the oil rate reaches the economic constraint. Parameters for well schedule for DDP

base case are shown in Table 4.7.

Table 4.7 Parameters for well schedule for DDP.

Parameters Values Units

Water injection rate 8,000 RB/D

Production rate during water injection 8,000 RB/D

Gas injection rate 8,000 RB/D

Production rate during gas injection 8,000 RB/D
Water cut for stopping time of water injection 60 %

Economic constraint Oil rate < 50 STB/D

Production time 30 years

4.5 Thesis methodology
The details of thesis methodology are summarized below:

1. Construct a 15° reservoir model consisting of 45,260 corner-point Cartesian
grids as detailed in Section 4.1. PVT and SCAL properties for the model are

shown in Sections 4.2 and 4.3, respectively.

2. Study the production characteristics of long-term water flooding, water
alternating gas (WAG), and double displacement process (DDP) by performing

four base cases as listed below:

2.1 long-term water flooding base case
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2.2 short-term water flooding followed by WAG with up-dip injection base

case

2.3 short-term water flooding followed by WAG with down-dip injection

base case
2.4 DDP base case

Since WAG and DDP start with initial water flooding, the effect of stopping
criteria for water flooding is studied. Water injection is stopped when water
cut of the producer reaches 1, 20, 40, 60, and 80%. This study is performed
for reservoir with dip angle of 0°, 15°, and 30°. The water cut stopping criteria
that yields the highest barrel of oil equivalent (BOE) for each production

process and each reservoir are used in the subsequent studies.

Determine water and gas injection rates that yield the highest BOE for each
production process and each reservoir. These rates are used in the
subsequent studies. The 16 cases with the combination of water injection
rate (6,000, 8,000, 10,000, and 12,000 RB/D) and gas injection rate (6,000,
8,000, 10,000, and 12,000 RB/D) are applied in this study.

Study the effect of WAG cycle and injection duration for WAG with up-dip and
down-dip injection processes. Cases with different WAG cycles (1:4, 1:2, 1:1,
2:1, and 4:1) and different durations of injection are performed to find the

case that provides the highest BOE for each process and each reservoir.

Construct the following well patterns to study their effects on oil production.
Water cut stopping criteria, water and gas injection rates, and WAG cycle and
injection duration that yield the highest BOE for each process and reservoir

from the previous studies are applied in this study.
6.1 pattern with 2 vertical wells (base case)

6.2 pattern with 4 vertical wells

6.3 pattern with 8 vertical wells

6.4 pattern with 2 horizontal wells
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pattern with an up-dip vertical well and a down-dip horizontal well

7. Compare the production performances of WAG with up-dip injection, WAG

with down-dip injection, and DDP. The production process that yields the

highest BOE for each reservoir is summarized.

8. Study the effects of the following reservoir and fluid properties on oil

production performance. The cases that yield the highest BOE for 0°, 15°, and

30° reservoir are applied in this study.

8.1

8.2

8.3

8.4

8.5

horizontal permeability (25.2, 126, and 630 md)
vertical/horizontal permeability ratio (0.01, 0.1, and 0.5)

three-phase relative permeability correlation (ECLIPSE default model,

Stone 1 model, and Stone 2 model)
reservoir thickness (50, 200, and 500 ft.)

oil properties (as shown in Table 4.8)

Table 4.8 Cases with different oil properties.

Property
Case Oil gravity Rs
[°API] [SCF/STB]
30 400
2 a0 650
50 1,000




CHAPTER V
RESULTS AND DISCUSSION

The results of two recovery processes which are water alternating gas process
(WAG) and double displacement process (DDP) are presented and discussed in this
chapter. For WAG, four parameters which are (1) stopping time for water injection, (2)
water and gas injection rates, (3) WAG cycle and injection duration, and (4) well
pattern are investigated for their effects. For DDP, three parameters which are (1)
stopping time for water injection, (2) water and gas injection rates, and (3) well
pattern are examined. These studies are performed for reservoir with dip angle of 0°,
15°, and 30°. After that, sensitivity on the change in (1) horizontal permeability, (2)
vertical/horizontal permeability ratio, (3) relative permeability correlation, (4)

reservoir thickness, and (5) oil property is conducted.

5.1 Base cases

5.1.1 Long-term water flooding

Water flooding process is performed by continuously injecting water at down-
dip location (well 2) and producing oil at up-dip location (well 1). This process is

stopped when the water cut of the producer reaches 95%.
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Figure 5.1 shows water injection rate and bottom-hole pressure of the water
injector (well 2). Water injection rate of 8,000 RB/D (or approximately 7,850 STB/D)
can be kept constant throughout the production time because the bottom-hole

pressure is always lower than the fracturing pressure of 4,080 psia.

— WATER INJECTION RATE WELL 2
— BOTTOM-HOLE PRESSURE WELL 2
o0 ] [ 4000

7000 _,/ -

WATER INJECTION RATE, STB/DAY
II\
BOTTOM—HOLE PRESSURE, PSIA

T T T T T T T T
10 20 30

TIME, YEARS

a

Figure 5.1 Water injection rate and bottom-hole pressure of water injector of long-

term water flooding.



38

Oil and gas are produced at quite constant rates about 7 years before the
breakthrough of injected water. After that, their rates drop dramatically while water
production rate increases rapidly between the seventh year and the fifteenth year.
As the water cut of producer (well 1) reaches 95%, the production is stopped. The
total production time of this long-term water flooding base case is 15.17 years. Qil,

gas, and water production rates are illustrated in Figure 5.2.

— OIL PRODUCTION RATE —— WATER PRODUCTION RATE
GAS PRODUCTION RATE
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5 — — <,
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Figure 5.2 Oil, gas, and water production rates of long-term water flooding.
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Long-term water flooding can recover 19.675 MMSTB of oil, equivalent to

56.05% of oil recovery in 15.17 years as shown in Figure 5.3.
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Figure 5.3 Cumulative oil production and oil recovery factor of long-term water

times

a)

b)

flooding.
Figures 5.4 and 5.5 illustrate oil saturation inside the reservoir at different

as listed below:

At early time of water flooding (1 year of production), injected water

displaces oil around the injector. Most area is still unswept.

At middle time of water flooding (8 years of production), injected water
arrives the producer. There is an accumulation of water to form a water bank
at the bottom part of reservoir. Most amount of oil is displaced except in the

top reservoir layer (z-direction) and the zone up-dip of well 1.

At the end of production (15.17 years), there is a small oil bank in the area
up-dip of the producer separating from the water bank due to the difference

in their densities. However, water sweeps almost all area of the reservoir.
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Figure 5.4 Qil saturation at any time of long-term water flooding (top view, k=1).
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Figure 5.5 Qil saturation at any time of long-term water flooding (side view, j=31).
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5.1.2 Short-term water flooding followed by water alternating gas process

(WAG) base case

Water alternating gas process (WAG) is the injection of water alternately with
gas in separated slugs. In this study, the process starts with water flooding by
injecting water at down-dip location (well 2) and producing oil at up-dip location
(well 1). AWl wells are shut for 180 days when the water cut reaches 60%. After that,
WAG is performed in two different types which are WAG with up-dip injection and
WAG with down-dip injection.

5.1.2.1 WAG with up-dip injection base case

After the water cut in the initial water flooding reaches the criteria of 60%,
water and gas are injected alternately at up-dip location (well 1) while the
production is done at down-dip location (well 2) of which schedule is shown in Table

5.1.

Table 5.1 Well schedule for WAG with up-dip injection base case.

Step of production

Well 1 (up-dip)

Well 2 (down-dip)

water flooding

producer

(8000 RB/D)

water injector

(8000 RB/D)

water cut of well 1

reaches 60%

shut in for 180 days

shut in for 180 days

WAG with up-dip

injection

water/gas injector

(8000 RB/D)

producer

(8000 RB/D)

During the period of water flooding from the first day to the eighth year of
production, water is injected at well 2 with the rate of 8,000 RB/D or approximately
7,850 STB/D as shown in Figure 5.6. The bottom-hole pressure of well 2 does not
exceed the fracturing pressure of 4,080 psia. This means water can be injected with

this rate without fracturing the formation.
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For WAG process following the initial water flooding, water and gas injection
durations of 90 days are injected alternately at well 1 at the same rate of 8,000 RB/D
which are approximately 7,850 STB/D for water and 6.7 MMSCF/D for gas. They also
do not cause any fracture because the bottom-hole pressure of well 1 is always

lower than the fracturing pressure of 3,260 psia as illustrated in Figures 5.6 and 5.7.
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Figure 5.6 Water injection rate and bottom-hole pressure of water injector of the

WAG with up-dip injection base case.
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Figure 5.7 Gas injection rate and bottom-hole pressure of gas injector of the WAG

with up-dip injection base case.

From Figure 5.8, oil and gas start to be produced by well 1 at quite constant
rates which are approximately 6,000 STB/D and 3.4 MMSCF/D, respectively, during
the initial water flooding for about 7 years before water breakthrough. After that, oil
and gas rates drop very rapidly whereas water rate increases because of the arrival of
water at well 1. At 8.59 years, fluids are produced by well 2 with a high amount of
water which is formerly injected and accumulates around this well at down-dip
location. In the twelfth year, a dramatic increase in gas rate occurs together with a
slight increase in oil rate and an expeditious decrease in water rate due to the

breakthrough of injected gas.



a5

— OIL PRODUCTION RATE — WATER PRODUCTION RATE
GAS PRODUCTION RATE
2000 [ 4.00
7000 — i

. 6000 — — 3.00 ..
ES 1 L []
= ] o
o — L e
& 5000 — w

- — o
§ 3 F oz
Z 2000 — —5.00=
= - [~ Ll_i.
= = L =
S 3000 — i o
[ _ =
& - - =
t 2000 — —1.0005
= - | =)
z = - 5
% 1000 ] - a
< J | tn
S O ] T T T I T T T T I T T T T O‘OO 5

o 10 20 30
TIME, YEARS

Figure 5.8 Qil, gas, and water production rates of the WAG with up-dip injection base

case.

Figure 5.9 shows that the initial water flooding that is implemented until the
water cut reaches 60% can recover 17.068 MMSTB of oil or 48.62% recovery while an
additional 6.643 MMSTB of oil is recovered by WAG. Therefore, the total amount of
oil production reaches 23.711 MMSTB, equivalent to the oil recovery factor of

67.55% in the last year of production.
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Figure 5.9 Cumulative oil production and oil recovery factor of the WAG with up-dip

injection base case.

Water is injected since the first day of production; however, it starts to be
produced in the seventh year after breakthrough. The total amount of injected water

is 53.990 MMSTB while the total amount of produced water is 35.557 MMSTB.

The total amount of 28.676 BSCF of gas is produced by two mechanisms:
water flooding and WAG. Gas injection is performed since the eight year.
Consequently, 9.7 BSCF of gas produced before this time is solution gas in the

reservoir. The total amount of gas needed for injection is 25.792 BSCF.

Since there is no water in the reservoir, water cut in the early time is zero. It
later increases dramatically to 60%, the stopping criteria for water injection, at the
eight year because of the breakthrough of water. At the early time of WAG, water cut
is very high because of an accumulation of water around well 2. Then, it drops to

about 73% at the seventeenth year and finally increases to 90% in the last year.
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Figures 5.10 and 5.11 illustrate oil saturation inside the reservoir at different

times as listed below:

a) At early time of water flooding (1 year of production), oil saturation around
well 2 is quite low due to oil being displaced by injected water. Most area is

still unswept.

b) At late time of water flooding (8 years of production), oil between well 1 and

well 2 is mostly flooded. Oil in the area up-dip of well 1 is unswept.

c) At early time of WAG injection (9 years of production), water and gas displace

oil around well 1, causing very low oil saturation in this area.

d) At the end of production (30 years), much amount of oil is produced.
However, there is some residual oil which cannot be produced at the zone
down-dip of well 2. The side view figure shows higher oil saturation in the
middle layer (z-direction) than the upper and the lower layers due to the
separation of three fluids which are gas, oil, and water in the upper, middle,

and lower layers, respectively.



Digtance (¥} 1l
o 1000 3000 aupa 4600 5000

Distance (Y] ft

(a) 1 year of production

Uistance §8p 1
HJPG QOIDD 30I00 ADIDD SOIOO

Lo

Distance (¥) ft

(b) 8 years of production

Dislance (¥} 11
2000 3000 4600 5600

b
=

=1
=4

Distance () ft

(c) 9 years of production

Dislonce (¥} 1l
zop0

o

10|00 JGIUO AGIOD 5000

Distance () Tt

—2000 —

(d) At the end of production (30 years)

QS
0,05880 0.261839 42499 O‘SSISOS 075117

Figure 5.10 Qil saturation at any time of WAG with up-dip injection (top view, k=1).
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5.1.2.2 WAG with down-dip injection base case
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After the water cut in the initial water flooding reaches the criteria of 609%,

water and gas are injected alternately at down-dip location (well 2) while the

production is done at up-dip location (well 1) of which schedule is shown in Table

5.2.

Table 5.2 Well schedule for WAG with down-dip injection base case.

Step of production

Well 1 (up-dip)

Well 2 (down-dip)

water flooding

producer

(8000 RB/D)

water injector

(8000 RB/D)

water cut of well 1

reaches 60%

shut in for 180 days

shut in for 180 days

WAG with down-dip

injection

producer

(8000 RB/D)

water/gas injector

(8000 RB/D)

Water injection at a rate of 8,000 RB/D or approximately 7,850 STB/D is

performed at well 2 as shown in Figure 5.12. It is injected continuously during water

flooding but in separated small slugs during WAG injection. The bottom-hole

pressure is always lower than the fracturing pressure of 4,080 psia throughout the

production time.

Gas is injected at well 2 at a rate of 8,000 RB/D or approximately 7 MMSCF/D

in separated small slugs during a WAG injection period. This injection rate always

keeps the bottom-hole pressure to be lower than the fracturing pressure of 4,080

psia as shown in Figure 5.13.
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Figure 5.12 Water injection rate and bottom-hole pressure of water injector of the

WAG with down-dip injection base case.
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Oil and gas production rates are quite constant around 6,100 STB/D and 3.4
MMSCF/D, respectively, during the initial water flooding for about 7 years before
water breakthrough. After that, they drop expeditiously whereas water rate increases
dramatically due to the breakthrough of water at well 1. All wells are then shut for
180 days. At 8.59 years, the fluids are produced by well 1 with the rates similar to
their rates on the last day of initial water flooding because a producer is still the
same. The breakthrough of injected gas between the tenth and the eleventh year
causes a rapid increase of gas production rate and a dramatic decrease of water rate.
This also causes a slight increase of oil production rate. Since the fifteenth year, oil

rate slightly decreases until the last year as shown in Figure 5.14.
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Figure 5.14 Qil, gas, and water production rates of the WAG with down-dip injection

base case.
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From Figure 5.15, initial water flooding that is implemented until the water
cut reaches 60% recovers 17.068 MMSTB of oil while WAG recovers an additional
5971 MMSTB of oil. At the last year of production, the total amount of oil
production is 23.039 MMSTB, equivalent to 65.63% of oil recovery factor.
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Figure 5.15 Cumulative oil production and oil recovery factor of the WAG with down-

dip injection base case.

Water is injected since the first day of production; however, it starts to be
produced in the seventh year after breakthrough. The amount of water required
during initial water flooding is 23.094 MMSTB while WAG needs 30.909 MMSTB of
water. Thus, the total amount of injected water and the total amount of produced

water are 54.003 MMSTB and 30.003 MMSTB, respectively.

The total amount of 34.904 BSCF of gas is produced by two mechanisms:
9.544 BSCF by initial water flooding and 25.357 BSCF by WAG. Gas injection starting in
the ninth year requires 27.162 BSCF of gas.
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Water cut increases rapidly in the eight year and reaches the stopping criteria
of 60% in the ninth year. In the WAG period, it increases to 82% in the tenth year,
drops to 71% in the fifteenth year, and slightly increases to 95% in the last year.

Figures 5.16 and 5.17 illustrate oil saturation inside the reservoir at different

times as listed below:

a) At early time of water flooding (1 year of production), oil saturation around
well 2 is quite low due to oil being displaced by injected water. Most area is

still unswept.

b) At late time of water flooding (8 years of production), oil between well 1 and

well 2 is mostly flooded. Oil in the area up-dip of well 1 is unswept.

c) At early time of WAG injection (9 years of production), water and gas displace

oil around well 2, causing very low oil saturation in this area.

d) At the end of production (30 years), much amount of oil is produced but

there is a small layer of oil left in the zone up-dip of well 1.
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Figure 5.16 Qil saturation at any time of WAG with down-dip injection (top view, k=1).
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Figure 5.17 Qil saturation at any time of WAG with down-dip injection(side view, j=31).
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5.1.3 Double displacement process (DDP) base case

Double Displacement Process (DDP) involves two sequential flooding
mechanisms which are water flooding and gas flooding. During water injection, the
well at up-dip location (well 1) is set to be a producer while the well at down-dip
location (well 2) is set to be water injector. After that, well 1 is switched to be gas
injector while well 2 is switched to be producer of which schedule is shown in Table

5.3.

Table 5.3 Well schedule for DDP base case.

Step of production Well 1 (up-dip) Well 2 (down-dip)
producer water injector
water flooding
(8000 RB/D) (8000 RB/D)
water cut of well 1
shut in for 180 days shut in for 180 days
reaches 60%
gas injector producer

DDP
(8000 RB/D) (8000 RB/D)
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Water is injected into the reservoir at well 2 at a rate of 8,000 RB/D or 7,800
STB/D since the first day of production. This rate is constant throughout the water
flooding period because the bottom-hole pressure of well 2 does not exceed its
fracturing pressure. Water injection stops at the eighth year when the water cut

reaches the stopping criteria of 60% as shown in Figure 5.18.
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Figure 5.18 Water injection rate and bottom-hole pressure of water injector of the

DDP base case.
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Figure 5.19 shows gas injection rate and bottom-hole pressure of the injector.
After the wells are shut for 180 days, gas is injected continuously into the reservoir
until the last year of production at well 1 at a rate of 8,000 RB/D or approximately
6.7 MMSCF/D. Gas injection rate is rather constant because the bottom-hole pressure

of well 1 does not exceed its fracturing pressure.
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Figure 5.19 Gas injection rate and bottom-hole pressure of gas injector of the DDP

base case.
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Oil, water, and gas production rates are shown in Figure 5.20. Oil is produced
by well 1 at constant rate around 6,050 STB/D for almost 7 years. After that, it drops
expeditiously to around 2,750 STB/D. Gas is also produced at constant rate around
3.4 MMSCF/D. Gas rate starts to drop similarly to oil rate at the seventh year due to
the breakthrough of injected water. Consequently, water is started to be produced at
this time with expeditiously increasing rate. At the eighth year of production, both
wells are shut for 180 days. During the early time of WAG, a lot of water is produced
because of the accumulation of water around well 2 caused by the former water
injection. Water rate drops expeditiously after the eleventh year because there is less
amount of water in the reservoir. Oil is produced with an increasing rate until it
reaches approximately 1,800 STB/D in the nineteenth year but later with a decreasing
rate until the last year of production. The oil production rate at the last year is 771
STB/D. Gas is produced with a low rate for a while but with an increasing rate after
the breakthrough of injected gas. Gas production rate at the last year is 6.014
MMSCF/D.
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Figure 5.20 Qil, gas, and water production rates of the DDP base case.
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More amount of oil is produced in the initial water flooding period as
compared to the amount of oil recovered in the gas flooding period; they are 17.068
MMSTB and 9.232 MMSTB, respectively. As a result, the total amount of oil of 26.301
MMSTB is produced, equivalent to the oil recovery factor of 74.92% as shown in

Figure 5.21.
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Figure 5.21 Cumulative oil production and oil recovery factor of the DDP base case.

The amount of water required for injection is 23.094 MMSTB. It is produced

mainly in the gas flooding period.

An amount of solution gas approximately 9.544 BSCF is produced during the
initial water flooding while the injected gas is produced after the breakthrough. At
the last year of production, the total amount of injected gas and total amount of

produced gas are 52.733 BSCF and 43.000 BSCF, respectively.

In term of water cut, it is zero for almost 7 years. After the breakthrough, it
increases expeditiously to 60% which is the criteria for stopping of water flooding. In

the early time of gas flooding, water cut reaches 100% because of the accumulation
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of water around the producer. However, it decreases continuously because much
amount of water is displaced by oil and gas from up-dip location, causing this water

to be produced back.

Figures 5.22 and 5.23 illustrate oil saturation inside the reservoir at different

times as listed below:

a) At early time of water flooding (1 year of production), oil saturation around
well 2 is quite low due to oil being displaced by injected water. Only small

area is swept by water while oil saturation of most area is still high.

b) At late time of water flooding (8 years of production), oil between well 1 and

well 2 is mostly flooded.

c) At early time of gas flooding (9 years of production), gas displaces oil around

well 1, causing very low oil saturation in this area.

d) At the end of production (30 years), much amount of oil is produced.
However, there is some residual oil which cannot be produced at the zone

down-dip of well 2.
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Figure 5.22 Qil saturation at any time of DDP (top view, k=1).
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Table 5.4 shows result comparison of WAG with up-dip injection base case,
WAG with down-dip injection base case, and DDP base case. The performance of
long-term water flooding having abandonment criteria of 95% water cut is also
included in the table. Barrel of oil equivalent (BOE) calculated from Eqg. 3.17 is an
appropriate indicator for production performance comparison than recovery factor
because it accounts for two important terms which are amounts of injected and
produced gas. From the results shown in Table 5.4, water flooding needs the
shortest production time but it results in the lowest BOE. DDP base case yields the
highest recovery factor and BOE even though it is the only case having more injected

gas than produced gas.
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52 Effect of stopping criteria for water flooding

Effect of stopping criteria for water flooding is studied by using the base case
model consisting of two vertical wells as represented in Figure 4.10 and varying the
stopping criteria for water flooding based on water cut of well 1 which is the
producer before starting WAG or DDP. Water and gas injection rates are still the same
as the base case at 8,000 RB/D. When water cut reaches the stopping criteria, well 1
and well 2 are shut for 180 days to prepare for WAG or DDP. Water cut stopping
criteria of 1%, 20%, 40%, 60%, and 80% are investigated. This study is performed for
reservoir with dip angle of 15° (base case), reservoir without dip angle, and reservoir
with dip angle of 30°. Results of WAG with up-dip injection, WAG with down-dip

injection, and DDP are presented and discussed in this section.

52.1 WAG with up-dip injection

Figures 5.24 and 5.25 show oil production rate and water cut for a reservoir
with dip angle of 15°. Production profiles for 0 and 30 degree dip angle are not
shown here as the thesis will become too long. In the early time of water flooding
period, every case has the same production profile. Oil is produced at the rate of
6,000 STB/D without water cut for more than 6 years. After the water cut reaches the
criteria set in each case, the oil rate becomes zero as the wells are shut in for 180
days. Then, the oil rate in each case gradually increases after well 2 (down-dip well)
is reopened for production while water and gas is alternatively injected updip. At the
beginning of WAG, the oil rates for different cases are very much different but they
become more similar during the last 10 years of production. The water cut of all
cases abruptly increases to 100% when WAG is started because the water injector
downdip is now converted to producer. Then, the water cut gradually decreases as
water and gas injected updip chase the oil towards the downdip producer. Similar to
oil rate, water cuts during the last 10 years of production for all cases exhibit a
similar trend. The case with 1% water cut produces the least amount of oil during

water flooding but it results in the highest rate and the highest amount of produced
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oil in WAG period. On the contrary, the case with 80% water cut produces oil with
the lowest amount during WAG period because there is the least amount of residual

oil but the highest amount of water in the reservoir after water flooding.
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Figure 5.24 Effect of stopping criteria for water flooding on oil production rate of WAG

with up-dip injection in a reservoir with dip angle of 15°.
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Figure 5.25 Effect of stopping criteria for water flooding on water cut of WAG with up-

dip injection in a reservoir with dip angle of 15°.
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Table 5.5 shows result comparison of different stopping criteria for WAG with
up-dip injection. Results of reservoir with dip angle of 0° and 30° are also presented
in the table in addition to results of 15° reservoir. Although, up-dip injection cannot
be performed for a non-dipping reservoir, it is done similarly to an inclined reservoir
by injection at well 1. Long-term water flooding with abandonment criteria of 95%

water cut is performed for all reservoirs to compare their performances.

For a non-dipping reservoir, long-term water flooding recovers 21.020 MMSTB
of oil in 29.59 years. WAG having the 1% water cut stopping criteria yields the highest
amount of produced oil of 22.318 MMSTB and the highest BOE of 23.772 MMSTB. It

requires the highest amount of injected gas but the least amount of injected water.

For a 15 degree reservoir, the highest BOE of 24.356 MMSTB is obtained when
the water cut stopping criteria is 1%. This case also results in the highest oil recovery
factor of 68.15% while long-term water flooding results in the lowest oil recovery

factor of 56.05%.

WAG having 1% water cut stopping criteria also yields the highest oil recovery
factor of 74.66% and the highest BOE of 23.105 MMSTB for a 30 degree reservoir. It
requires 30.429 BSCF of injected gas of which amount is the highest. Long-term water

flooding yields 55.36% of oil recovery factor in 12.42 years of production time.

Although, the highest BOEs of 23.772 MMSTB (0°), 24.356 MMSTB (15°), and
23.105 MMSTB (30°) are obtained from the cases of 1% water cut stopping criteria,
different criteria shows slightly different results. In addition, their production profiles
have the same trend because they have the same production mechanisms and the

same water and gas injection rates.
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5.2.2 WAG with down-dip injection

Figures 5.26 and 5.27 show oil production rate and water cut for a reservoir
with dip angle of 15°. During water flooding, all cases have the same production
profile as WAG with up-dip injection. QOil is produced with a rate of 6,000 STB/D for
more than 6 years. A case with 80% water cut produces the highest amount of oil
before shutting in the wells. After that, it produces the least amount of oil during
WAG injection. This case gives the highest water production during WAG because of
high amount of water present in the reservoir before starting of WAG injection. After
25 years of production, every case tends to have the same production profile. Oil
production rate and water cut in the last year are around 200 STB/D and 95%,

respectively.
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Figure 5.26 Effect of stopping criteria for water flooding on oil production rate of WAG

with down-dip injection in a reservoir with dip angle of 15°.



72

— WATER CUT 1% WATER CUT 40% WATER CUT 80%
— WATER CUT 20% — WATER CUT 60%
1.00 7]
— f”
0.75 — {
0.50 —
= —
>
o] |
[nad —
Ll
l& |
Z0.25 —
O"OO T T T T T T T T T 1
0 10 20 30
TIME, YEARS

Figure 5.27 Effect of stopping criteria for water flooding on water cut of WAG with

down-dip injection in a reservoir with dip angle of 15°.

Table 5.6 shows the result comparison between different stopping criteria for
WAG with down-dip injection in a non-dipping reservoir, a reservoir with dip angle of
15°, and a reservoir with dip angle of 30°. For a non-dipping reservoir, injection at

well 2 is performed instead of down-dip injection.

For all reservoirs, the amounts of oil production from the cases having
different water cut stopping criteria are not much different. However, the cases
having lower water cut criteria tend to require more amount of injected gas but less
amount of injected water. In term of water production, a case having low water cut
criteria produces less amount of water because it has the shorter period of initial

water flooding.

The highest BOE of 24.518 MMSTB is yielded from a case with 40% water cut
for a non-dipping reservoir. Cases with dip angle of 15° and 30° yield the highest BOE
of 24.378 and 22.649 MMSTB, respectively, from 1% water cut.
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5.2.3 Double displacement process

Figures 5.28 and 5.29 show oil production rate and water cut for DDP in a
reservoir with dip angle of 15°, respectively. The oil production profiles during initial
water flooding period for DDP are the same as those for the two types of WAG
previously discussed. A higher water cut criteria results in a longer time for water
flooding and more amount of produced oil during this period. In WAG period, every
case has similar profile but with slightly different rates due to the difference in

amount of residual oil and amount of water present after water flooding.
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Figure 5.28 Effect of stopping criteria for water flooding on oil production rate of DDP

in a reservoir with dip angle of 15°.
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Figure 5.29 Effect of stopping criteria for water flooding on water cut of DDP in a

reservoir with dip angle of 15°.

Similar to the two types of WAG previously discussed, a case with the lower
water cut stopping criteria results in less amount of water but higher amount of gas

required for injection due to the shorter time of initial water flooding period.

For DDP in a reservoir with dip angle of 15°, the highest BOE of 24.914 MMSTB
is obtained from the case with 1% water cut stopping criteria. It requires 55.535 BSCF
of injected gas and 19.748 MMSTB of injected water. For a reservoir with dip angle of
30°, the case with 20% water cut criteria yields the highest BOE of 23.699 MMSTB
while 60.043 BSCF of gas and 19.168 MMSTB of water are required. Although the case
with 80% water cut in a non-dipping reservoir yields the highest BOE, its BOE is less
than the one for long-term water flooding. Therefore, DDP is not suitable for a non-
dipping reservoir. Table 5.7 shows result comparison between different stopping

criteria for DDP.



76

Lv9ee 69261 16Cv¢ LETYY 8v9'99 b6°08 994°45¢ 0¢ 08 o0¢ dad
889°¢C bagol 881'1¢ 8¢L'9Y 61989 91’18 Ge9°5¢ 0¢ 09 o0¢ dad
869°¢C 0,291 S500°0¢ 069 L vov6s €18 159°G¢ 0¢ ov o0¢ dda
669°¢C 0csv1 891°61 vee8y €v0'09 1218 699°G¢ 0¢ 0¢ o0¢ ddaa
869°¢C 08¢l 1¢¢'81 96'8b 89809 1¢'18 289'9¢ 0¢ 1 o0¢ dad
0z1r61 868°¢C1 68v°G¢ £08'6 0 9¢Sq 98v°L1 (474 G6 o0¢ SUIPOOY J9yeMm
geeve 9¢e1e 69¢°LC G86'6¢ AN 19°¢L 098°G¢ 0¢ 08 oSl dda
8.9'v¢ 9161 v60°¢C 000°¢w €el’cs c6'vL 10¢°9¢ 0¢ 09 oSl dda
88.1¢ 8,291 169°1¢ 147139 806'¢S GeSL 04v'9¢ 0¢ ov oSl dda
Ly8v¢ G6G°G1 q18°0¢ TAR V) 6,905 196/ 0v§9¢ 0¢ 0¢ oSl dda
viéve 09.Lv1 8v.'61 891°GY G9¢9'9S 06°'G.L bv9°9¢ 0¢ 1 oS1 dda
G06°'T¢ €181 0r1gew 9,601 0 G099 G961 LT°GT G6 oST SUIPOOY JoyeMm
08¢°0¢ L0281 095'8¢ 1AY7A%Y v, 9v IRWAY 699°0¢ 0¢ 08 o0 dad
L0b'61 015v1 pvogee VA WAY, L1119 v1°6q V661 0¢ 09 o0 dad
25681 0.6°¢T 6£9'1¢ 818'8p (4 X4 90vS 849561 0¢ oy o0 dad
£6G81 o11el 889°0¢ 86¢°6v 08C°¢s 81'¢q oveel 0¢ 0¢ o0 dad
616°L1T 019°¢1 JAZANG)S 6566 LLeYS 1919 95981 0¢ 1 o0 dad
§996°CC 1¢1'8¢ €06°'99 S09°'T1 0 01'89 0c0'1¢ 6561 G6 o0 5UIpo0)) J91eM
[a.L1SKWI] [a.L1SKWI] [4Ds49] [4Ds4] [%] [9LSWIN] [1e3A] [%]
[9LSWW] uondnpoid | uopdaful uondnpoud uoi3d3aful 1o)oey uononpoud eLI9}ID 9)8ue
309 191eM 191eM ses ses JSETYeREY 10 o suiddois dig SUHEL S5ED
uoldNpoid
1e1ol 1e1ol 1e1ol 18301 110 18301 nd usjep

"daq 1oy eusyud suiddols Jusiapip usamiag uosueduwlod )NsayY /G 91gel




e

The list of cases resulting in the highest BOEs for each production process
and dip angle is shown in Table 5.8. These water cut stopping criteria for initial water
flooding will be used in subsequent studies in the following sections. For a non-
dipping reservoir, DDP study will not be performed because it results in recovery
efficiency lower than water flooding. Even though the cases tabulated in the table
yield the highest BOEs, they may not be the most suitable cases because the income

and cost of injection are not taken into account.

Table 5.8 Summary of water cut criteria that yield the highest BOE.

Water cut
Dip angle Recovery process stopping criteria
[%]
WAG up-dip 1
0° WAG down-dip 40
DDP -
WAG up-dip 1
15° WAG down-dip 1
DDP 1
WAG up-dip 1
30° WAG down-dip 1
DDP 20
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53 Effect of water and gas injection rates

Water and gas injection rates have some influence on production
performance of WAG and DDP. A high water injection rate can cause water to
underrun while a high gas injection rate causes gas to override. On the other hand,
too low rate can take too much production time. Therefore, optimum rates must be
found for the most effective performance. In this case, water and gas injection rates
are varied from 6,000 RB/D to 12,000 RB/D in 16 cases for WAG as shown in Table
5.15 and 16 cases for DDP as shown in Table 5.10. During the initial water flooding,
the production rate is set equal to water injection rate. After that, it is set equal to
the highest rate between water and gas injection for WAG and equal to gas injection
rate for DDP. This investigation is done for reservoir with a dip angle of 15°, reservoir
without dip angle, and a reservoir with a dip angle of 30°. In this study, water cut
stopping criteria for initial water flooding from Table 5.8 are used for each recovery
process. It is noted that water injection rate of 10,000 and 12,000 RB/D cannot be
injected throughout water flooding period for a non-dipping reservoir due to the

limitation of fracturing pressure.



Table 5.9 Water and gas injection rates for WAG.

79

Case Water Gas injection Production rate Production rate
injection rate rate during water flooding during WAG
ne [RB/D] [RB/D] [RB/D] [RB/D]
1 6,000 6,000 6,000 6,000
2 6,000 8,000 6,000 8,000
3 6,000 10,000 6,000 10,000
a4 6,000 12,000 6,000 12,000
5 8,000 6,000 8,000 8,000
6 8,000 8,000 8,000 8,000
7 8,000 10,000 8,000 10,000
8 8,000 12,000 8,000 12,000
9 10,000 6,000 10,000 10,000
10 10,000 8,000 10,000 10,000
11 10,000 10,000 10,000 10,000
12 10,000 12,000 10,000 12,000
13 12,000 6,000 12,000 12,000
14 12,000 8,000 12,000 12,000
15 12,000 10,000 12,000 12,000
16 12,000 12,000 12,000 12,000
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Table 5.10 Water and gas injection rates for DDP.

Case Water Gas injection Production rate Production rate
injection rate rate during water flooding during DDP
"o [RB/D] [RB/D] [RB/D] [RB/D]
1 6,000 6,000 6,000 6,000
2 6,000 8,000 6,000 8,000
3 6,000 10,000 6,000 10,000
4 6,000 12,000 6,000 12,000
5 8,000 6,000 8,000 6,000
6 8,000 8,000 8,000 8,000
7 8,000 10,000 8,000 10,000
8 8,000 12,000 8,000 12,000
9 10,000 6,000 10,000 6,000
10 10,000 8,000 10,000 8,000
11 10,000 10,000 10,000 10,000
12 10,000 12,000 10,000 12,000
13 12,000 6,000 12,000 6,000
14 12,000 8,000 12,000 8,000
15 12,000 10,000 12,000 10,000
16 12,000 12,000 12,000 12,000

53.1 WAG with up-dip injection

During the initial water flooding, the oil production rate depends only on
water injection rate. Cases with water injection rate of 12,000 RB/D produces the
highest oil rate at approximately 9,100 STB/D in the shortest time (about 4.5 years) as
shown in Figure 5.30d while cases with the lowest water injection rate of 6,000 RB/D
need more than 9 years for water flooding as shown in Figure 5.30a. Water flood
front of cases with low injection rate travels slowly from injector to producer which

means it needs more time to reach 1% water cut before shutting in the wells.

During WAG, Figure 5.30a shows that a higher gas injection rate results in a
higher oil production rate at the initial time of WAG because oil is chased rapidly to

the producer. However, it results in the lower oil rate at the late time of WAG
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because there is less oil in the reservoir than those cases with lower gas injection

rate.

From Figure 5.30b, case 8, having the water injection rate of 8,000 RB/D and
the gas injection rate of 12,000 RB/D, produces oil at the highest rate from the
seventh year to the fifteenth year. After that, case 6 results in the lowest oil rate

since the twentieth year to the last year of production.

From Figure 5.30c, case 12 provides the highest oil rate while other cases in
the same figure have similar oil rate during the early time of WAG period. Then, the
case of 10,000 RB/D of both water and gas injection rates results in the lowest oil
rate while other cases have the same profile since the fifteenth year to the last year

of production.

Case 16, having the highest gas and water injection rates of 12,000 RB/D, does
not provide the highest oil production rate as shown in Figure 5.30d. This case tends
to have fingering effect because of too high injection rates which results in low

sweep efficiency.

Additionally, the oil rates of the cases having the same gas and water
injection rates, i.e. cases 4 and 8, are different. Case 8 in Figure 5.30b has the higher

oil production rate than case 4 in Figure 5.30a.
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Figure 5.30 Effect of water and gas injection rates on oil production rate of WAG with

up-dip injection in a reservoir with dip angle of 15°.
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Figure 5.30 Effect of water and gas injection rates on oil production rate of WAG with

up-dip injection in a reservoir with dip angle of 15° (continued).




84

Tables 5.11 to 5.13 depict results for different water and gas injection rates of
WAG with up-dip injection in a non-dipping reservoir, a reservoir with dip angle of 15°,
and a reservoir with dip angle of 30°. Case 14 gives the highest BOE for a reservoir
with dip-angle of 0° and 15° while case 13 yields the largest BOE for 30° reservoir.
Their BOEs are 28.760 MMSTB, 28.697 MMSTB, and 27.153 MMSTB, respectively. High
water injection rate is good for oil recovery but high gas rate is not. Gas tends to
cause a viscous fingering effect more easily than water because of large difference
between oil viscosity and gas viscosity. It is noted that BOE is very low when water

injection rate is equal to gas injection rate (cases 1, 6, 11, and 16).

Water consumption depends directly on water injection rate while gas
consumption does not. For example, case 6 from Table 5.11 requires 27.014 BSCF of

injected gas which is larger than the amounts of gas consumed by cases 7 and 8.

From Table 5.13, case 16 is the only case spending the shortest time for

production. It ends in 28.58 years due to the economic limit.
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53.2 WAG with down-dip injection

As shown in Figure 5.31, the oil production rate during the initial water
flooding is affected only by water injection rate. A higher water rate results in a
higher oil production rate but with shorter duration of water flooding. Water injection
rate also affects the oil rate during WAG period. Although, cases 4, 8, 12, and 16 have
the same oil rate at approximately 9,000 STB/D in the early time of WAG, they result
in different oil rate after that. A higher oil rate is obtained from a higher water

injection rate.

Figure 5.31 (a) and (b) show that gas injection rate has a big impact on oil rate
in the early time of WAG. A higher gas rate results in a higher oil rate. However, in

Figure 5.31 (c) and (d), gas rate has less impact on oil rate.
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Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with

down-dip injection in a reservoir with dip angle of 15°.
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Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with

down-dip injection in a reservoir with dip angle of 15° (continued).
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Figure 5.31 Effect of water and gas injection rates on oil production rate of WAG with

down-dip injection in a reservoir with dip angle of 15° (continued).

The case having water injection rate of 12,000 RB/D and gas injection rate of
8,000 RB/D vyields the highest BOE for all three reservoirs as shown in Tables 5.14 to
5.16. It yields BOE of 28.843 MMSTB, 27.793 MMSTB, and 25.304 MMSTB for a non-
dipping reservoir, a 15° reservoir, and a 30° reservoir, respectively. Similar to WAG
with up-dip injection, cases having water injection rate equal to gas injection rate

yield significantly low BOE.

Water injection rate affects water consumption. It is clearly seen that a higher
amount of water is required when water is injected at a higher rate. However, for gas
consumption, it is not affected directly from gas injection rate. From Tables 5.14 to
5.16, cases 6 and 11 require larger amount of gas than the cases with the same water
injection rate but with a higher gas injection rate. In WAG period, the production rates
of cases 6 and 11 are adjusted equally to both water and gas injection rate.

Therefore, the reservoir pressure can be maintained because the systems of these
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two cases are steady state while the pressures of cases 7, 8, and 12 decline in WAG
period. When case 6 is compared to cases 7 and 8, we can inject higher amount of
gas (in standard unit) in case 6 even though this case has a lower gas injection rate (in
RB unit). Likewise, case 11 requires a higher amount of injected gas than case 12 in

all reservoirs.
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5.3.3 Double displacement process

DDP involves two injection steps which are initial water injection during the
water flooding and continuous gas injection. The oil production profile during water
flooding is the same as those for the two types of WAG. However, a higher oil rate is
caused by higher gas injection rate during gas injection period. However, the oil rate
of cases with higher gas injection rate starts to drop earlier because a larger amount
of oil has been already produced in the early time of DDP. Figure 5.32 shows effect

of water and gas injection rate on oil production rate of DDP in a 15° dipping

reservoir.
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Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a

reservoir with dip angle of 15°.
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Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a

reservoir with dip angle of 15° (continued).
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Figure 5.32 Effect of water and gas injection rates on oil production rate of DDP in a

reservoir with dip angle of 15° (continued).

Tables 5.17 and 5.18 show result comparison between different water and
gas injection rates of DDP in a reservoir with dip angle of 15° and 30°. For both
reservoirs, case 16 which has water and gas injection rates of 12,000 RB/D yields the
highest BOE. It is clearly seen that higher water and gas injection rates result in more
oil production. However, these have just slight impact for a 30° reservoir because

case 1-16 have similar values of BOE around 23-24 MMSTB as shown in Table 5.18.

In addition, case 16 requires the highest amount of injected gas of 91.048
BSCF for a 15° dipping reservoir and 96.493 BSCF for a 30° dipping reservoir. Water
injection rate does not significantly affect the amounts of injected water and
produced water. Cases 1-16 require similar amount of water. However, a higher water
injection rate results in a higher amount of gas required in gas flooding stage because
it accelerates the water flooding mechanism which means there is longer time for gas

injection. This effect can be seen from cases 4, 8, 12, and 16 in Tables 5.17 and 5.18.
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The cases yield the highest BOE for each recovery process and dip angle are
listed in Table 5.19. All recovery processes require the highest water injection rate of
12,000 RB/D but different gas injection rates. These cases will be used in subsequent
studies in the following sections. However, these may not be the most suitable cases

when the economic reason is considered.

Table 5.19 Summary of water and gas injection rates that yield the highest BOE.

Water injection Gas injection
Dip angle Recovery process rate rate

[RB/D] [RB/D]
0° WAG up-dip 12,000 8,000
0° WAG down-dip 12,000 8,000
0° DDP - -
15° WAG up-dip 12,000 8,000
15° WAG down-dip 12,000 8,000
15° DDP 12,000 12,000
30° WAG up-dip 12,000 6,000
30° WAG down-dip 12,000 8,000
30° DDP 12,000 12,000
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5.4 Effect of WAG cycle and injection duration

WAG cycle and injection duration according to Table 5.20 are studied to
consider their effect on production performance for WAG with up-dip and WAG with
down-dip injection. Water cuts from Table 5.14 and Injection rates from Table 5.19
are combined for this study. For example, case 1 of WAG with up-dip injection in a
15° reservoir has a stopping criteria of 1% water cut, water injection rate of 12,000
RB/D, gas injection rate of 8,000 RB/D, water injection duration of 30 days, and gas

injection duration of 120 days.

Table 5.20 WAG cycle and injection duration.

Water injection Gas injection
Case no. WAG cycle duration duration
[day] [day]
1 1:4 30 120
2 1:4 60 240
3 1:2 30 60
4 1:2 60 120
5 W2 90 180
6 1l 30 30
7 oy 90 90
8 1:1 180 180
9 2:1 60 30
10 2:1 120 60
11 2:1 180 90
12 4:1 120 30
13 4:1 240 60

5.4.1 WAG with up-dip injection

Figure 5.33 shows that WAG cycle significantly influences oil rate in the early
time of WAG. Between the seventh year and the twelfth year, WAG cycle of 2:1 (see
Figure 5.33 (c)) yields the highest oil production rate of approximately 3,400 STB/D
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while WAG cycle of 4:1, 1:1, 1:2, and 1:4 yield approximately 3,300 STB/D, 3,200
STB/D, 2,800 STB/D, and 2,500 STB/D, respectively.

Oil production rate may fluctuate due to the arrival of different types of
injecting fluid at the producer. In other words, the fluctuation of oil production
depends on the cycle of injection. As a result, the longer injection duration causes
non-smooth production profile but has the same trend as cases with shorter

injection duration having the same WAG cycle (see Figure 5.33 (b)).
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(a)

Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG

with up-dip injection in a reservoir with dip angle of 15°.
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Figure 5.33 Effect of WAG cycle and injection duration on oil production rate of WAG

with up-dip injection in a reservoir with dip angle of 15° (continued).
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Tables 5.21 to 5.23 show result comparison between different WAG cycle and
injection duration of WAG with up-dip injection. Water and gas requirement is
affected directly by their injection durations. Cases having longer water injection
duration require and produce large amount of water while cases having longer gas
injection duration require and produce large amount of gas. For a non-dipping
reservoir, we can increase oil recovery factor and BOE by injecting water for longer
time than injecting gas (WAG cycle of 2:1 and 4:1) as shown in Table 5.21. Gas has a
high tendency to override in this reservoir; consequently, water can efficiently
stabilize the flood front which lowers the problem of viscous fingering. In contrast to
a non-dipping reservoir, large water slug is not needed to stabilize the flood front in
15-degree and 30-degree dipping reservoirs because a bigger dip angle increases the
value of gravity number (G) calculated from Eq. 3.5. Therefore, unstable condition is
more difficult to occur in reservoir with bigger dip angle as detailed in Chapter 3. As a
result, the ratio of water and gas injection durations has only slightly influence on

recovery factor and BOE of dipping reservoirs as shown in Tables 5.22 and 5.23.

Cases 9, 6, and 3 result in the highest BOE for a reservoir with dip angle of 0°,
15°, and 30°, respectively. These three cases have quite shorter injection durations as
compared to those cases obtaining lower BOE. In other words, shorter injection
duration is appropriate for WAG with up-dip injection because it provides smoother

production profile.

In term of WAG cycle, WAG cycle of 2:1, 1:1, and 1:2 yield the highest BOEs

for a reservoir with dip angle of 0°, 15°, and 30°, respectively.
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5.4.2 WAG with down-dip injection

For WAG with down-dip injection, WAG cycle significantly affects oil
production between the sixth year and the fifteenth year as shown in Figure 5.34.
WAG cycle of 2:1 results in higher oil production rate than other cycles during this
time. Cases with the same WAG cycle but different injection durations have the same
trend throughout 30 years of production. However, smoother production profile is
obtained from shorter injection duration as can be clearly seen in Figure 5.34 (b).
Since oil is likely to be produced together with water slug, we can clearly see this
effect when water and gas are injected in large slugs. The case of 180/180 (water/gas)

days of injection durations results in high fluctuation of oil production rate.

— CYCLE 30/120 CYCLE 30/60 CYCLE 90/180
— CYCLE 60/240 — CYCLE 60/120

10000
9000

8000

7000

BO0O

2000

4600

3000

2000

1600

QIL PRODUCTION RATE, STRB/DAY

0

TIME, YEARS

(a)

Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG

with down-dip injection in a reservoir with dip angle of 15°.
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Figure 5.34 Effect of WAG cycle and injection duration on oil production rate of WAG

with down-dip injection in a reservoir with dip angle of 15° (contimued).
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WAG cycle involves in the requirement of water and gas. We need larger
volume of water when water injection duration is longer than gas injection duration.
Conversely, when gas injection duration is longer than water injection duration, total

amount of injected gas obviously increases.

The gravity number is a function of degree of dip angle. Reservoir with
smaller dip angle easily causes the problem of unstable flood front because it
directly lowers the gravity number. Accordingly, it requires large water slugs to avoid
gas overriding. Cases having higher water/gas injection durations ratio result in better
oil recovery factor in a non-dipping reservoir while different WAG cycles do not

apparently affect the performance in dipping reservoirs.

Similar to WAG with up-dip injection, shorter water and gas injection durations
yield higher BOE as shown in Tables 5.24 to 5.26. Case 6 is the case with the highest
BOE for a 15° reservoir and a 30° reservoir while case 9 gives the highest BOE for a
non-dipping reservoir. In addition, water and gas requirement depends mainly on
their injection durations. However, these parameters do not significantly affect the
performance of WAG with down-dip injection. Cases 1-16 do not have obvious

difference in BOE.
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From Table 5.27, reservoirs with dip angle of 15° and 0° have injection
duration (water/gas) of 30/30 and 60/30 that provide the highest BOE, respectively,
for both WAG with up-dip and down-dip injection. For a reservoir with dip-angle of
30°, injection duration (water/gas) of 30/60 and 30/30 yield the highest BOE for WAG
with up-dip and down-dip injection, respectively. The performances of these cases
are considered in term of BOE which takes into account the amount of produced oil

and injected gas but not in term of economic.

Table 5.27 Summary of the WAG cycle and injection duration that give the highest
BOE.

Water injection Gas injection
Dip angle | Recovery process duration duration
[day] [day]
0° WAG up-dip 60 30
0° WAG down-dip 60 30
15° WAG up-dip 30 30
15° WAG down-dip 30 30
30° WAG up-dip 30 60
30° WAG down-dip 30 30
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55 Effect of well pattern

This study is performed to investigate oil production performance of different
well patterns and to find the appropriate pattern for each reservoir. Five well

patterns with different types of well and its location are constructed.

Pattern 1 has two vertical wells at up-dip location (well 1) and down-dip
location (well 2) as shown in Figure 5.35. They are fully perforated to allow oil, gas,
and water flow into or out of the wells. Each reservoir has its own fracturing pressure
which depends on formation depth. Well location and fracturing pressure are listed

in Table 5.28.

This well pattern is similar to the base cases but it has parameters which
provide the highest BOE. These parameters are stopping criteria of water flooding,
water and gas injection rates, and WAG cycle and injection duration from Tables 5.8,
5.19, and 5.27 are applied to yield the highest BOE. Well schedules for all production
processes and reservoirs are illustrated in Table 5.29. Every process starts with water
injection through well 2 and oil production at well 1. After water cut reaches the

criteria, all wells are shut for 180 days. Oil is then produced again until the thirtieth

year or the time of economic constraint.

WELL1

Figure 5.35 Well location in 3D for pattern 1.



Table 5.28 Well location and fracture pressure for pattern 1.
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Parameters Values | Units
i=12, j=16,
Position of well 1 -
k=1-20
i=62, j=16,
Position of well 2 -
k=1-20
Fracture pressure of well 1 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 2 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°) 3,260 psia
Fracture pressure of well 2 @top depth of 6,298 ft (15°) 4,080 psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°) 3,420 psia
Fracture pressure of well 2 @top depth of 7,507 ft (30°) 5,070 psia

Table 5.29 Well schedule of WAG with up-dip injection for pattern 1.

Dip Step of
angle production Welli Well 2
water floodin producer water injector
8 (12000 RB/D) (12000 RB/D)
0° \:\éaatcek:ecsuic;zfg;/ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 60/30 days) - qas (8000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
150 \:\éztfk:eiui(ggﬁfeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) _ qas (8000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
300 \r/\éaatcehrecsui‘;fc\?/iieuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/60 days) _ oas (6000 RB/D) (12000 RB/D)




Table 5.30 Well schedule of WAG with down-dip injection for pattern 1.

aglgrie Step of production Well 1 Well 2
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
0° rvev;zﬁrestfogz \c/:\;iettelrila shut in for 180 days | shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 60/30 days) (12000 RB/D) ~ oas (8000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
150 \r/gﬁ:eiui(gcvr\feuﬂ; shut in for 180 days | shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) (12000 RB/D) ~ gas (8000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
300 :éifgeiui%fcﬁfeuré shut in for 180 days | shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) (12000 RB/D) _ qas (8000 RB/D)

Table 5.31 Well schedule of DDP for pattern 1.

Dip Step of production Well 1 Well 2
angle
water floodin producer water injector
: (12000 RB/D) (12000 RB/D)
150 :éifgeiuitzfcﬁilﬂ; shut in for 180 days | shut in for 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
30° r\évjéﬁregcétog \gietlelrila shut in for 180 days | shut in for 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)
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Pattern 2 consists of 4 vertical wells as shown in Figure 5.36 with their
locations and fracture pressures in Table 5.32. Note that the positions of the most
up-dip well and the most down-dip well in this pattern is not the same as those in
pattern 1. This is because we would like to keep the distance between all wells to

be constant. It starts with water injection through well 4 which is the well at the
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deepest location. Oil is produced at wells 1-3 with the total rate equal to the
injection rate at well 4. Then, well 3 is shut in when the water cut reaches the
stopping criteria presented in Table 5.8 which is different for each process and dip
angle. Wells 1 and 2 are now opened with the total production rate equal to the
injection rate at well 4. After well 2 reaches its stopping criteria, it is shut in as oil is
continued to be produced by the upper-most well. The production rate at well 1 is
set equal to the injection rate at well 4. Oil production is continued until well 1
reaches the stopping criteria. After that, all wells are shut in for 180 days before
three different production types (WAG up-dip, WAG down-dip, and DDP) are
performed as shown in Tables 5.33-5.40.

For WAG with up-dip injection, water and gas injector is well 1 throughout the
production time. Fluid production is from well 2, well 3, and well 4, sequentially.
The switching of producer from well 2 to well 3 is done when GOR of well 2 reaches
the pre-set value which is different for each dip angle. This value comes from the
study of appropriate GOR for switching producer by varying GOR to be 1, 2, 3, 4, and
5 MSCF/STB. GOR resulting in the highest BOE as shown in Table 5.41 is then applied

in this section.

For WAG with down-dip injection, it is performed contrarily to WAG with up-
dip injection by injecting at well 4 but producing at well 3, well 2, and well 1,
sequentially. Switching criteria for producer is obtained from the varying of GOR to be

1,2, 3,4, and 5 MSCF/STB.

For DDP, gas is injected continuously at well 1 while oil is produced at well 2.
After GOR of well 2 reaches the value which yields the highest BOE, oil production is
switched from well 2 to well 3. GOR used for each reservoir is studied by varying it to
be 1, 5, 10, 15, 20, and 25 MSCF/STB. After that, the switching of producer from well
3 to well 4 occurs when GOR of well 3 reaches the setting value. Oil production is

then performed by well 4 throughout the production time.
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Figure 5.36 Well location in 3D for pattern 2.

Table 5.32 Well location and fracture pressure for pattern 2.

Parameters Values Units
. i=4, j=16,
Position of well 1 -
k=1-20
y i=26, j=16,
Position of well 2 -
k=1-20
. i=48, j=16,
Position of well 3 -
k=1-20
y i=70, j=16,
Position of well 4 -
k=1-20
Fracture pressure of well 1 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 4 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 1 @top depth of 5,064 ft (15°) 3,130 psia
Fracture pressure of well 4 @top depth of 6,468 ft (15°) 4,220 psia
Fracture pressure of well 1 @top depth of 5,123 ft (30°) 3,180 psia
Fracture pressure of well 4 @top depth of 7,836 ft (30°) 5,360 psia
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Table 5.33 Well schedule of WAG with up-dip injection in a non-dipping reservoir for

pattern 2.
Step of Well 1 Well 2 Well 3 Well 4
production
producer producer producer water injector

water flooding

(4000 RB/D)

(4000 RB/D)

(4000 RB/D)

(12000 RB/D)

water cut of

producer

producer

water injector

well 3 reaches (6000 RB/D) (6000 RB/D) shut in (12000 RB/D)
1% criteria
water cut of producer . . water injector
well 2 rgaches (12000 RB/D) shut in shut in (12000 RB/D)
1% criteria
vvvgat?réiho;s shut in for shut in for shut in for shut in for
1% criteria 180 days 180 days 180 days 180 days
WAG injector oroducer
(cycle 60/30 | - water (12000 RB/D) (12000 RB/D) shut in shut in
days) - gas (8000 RB/D)
GOR of well 2 injector roducer
reaches 2 | - water (12000 RB/D) shut in ( 15’000 RE/D) shut in
Mscf/stb - gas (8000 RB/D)
GOR of well 3 injector roducer
reaches 2 - water (12000 RB/D) shut in shut in (15000 RB/D)
Mscf/stb - gas (8000 RB/D)

Table 5.34 Well schedule of WAG with up-dip injection in a 15° reservoir for pattern 2

Step of
production

Well 1

Well 2

Well 3

Well 4

water flooding

producer
(4000 RB/D)

producer
(4000 RB/D)

producer
(4000 RB/D)

water injector
(12000 RB/D)

water cut of

producer

producer

water injector

well 3 reaches (6000 RB/D) (6000 RB/D) shut'in (12000 RB/D)
1% criteria
water cut of _
well 2 reaches producer shut in shut in water injector
o (12000 RB/D) (12000 RB/D)
1% criteria
Wvgat?réiﬁ; shut in for shut in for shut in for shut in for
1% criteria 180 days 180 days 180 days 180 days
WAG injector oroducer
(cycle 30/30 | - water (12000 RB/D) (12000 RB/D) shut in shut in
days) - gas (8000 RB/D)
GOR of well 2 injector coducer
reaches 3 - water (12000 RB/D) shut in (15000 RB/D) shut in
Mscf/stb - gas (8000 RB/D)
GOR of well 3 injector oducer
reaches 3 - water (12000 RB/D) shut in shut in (15000 RB/D)
Mscf/stb - gas (8000 RB/D)




Table 5.35 Well schedule of WAG with up-dip injection in a 30° reservoir for pattern 2
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Step of
production

Well 1

Well 2

Well 3

Well 4

water flooding

producer
(4000 RB/D)

producer
(4000 RB/D)

producer
(4000 RB/D)

water injector
(12000 RB/D)

water cut of

producer

producer

water injector

well 3 reaches (6000 RB/D) (6000 RB/D) shut in (12000 RB/D)
1% criteria
water cut of producer . . water injector
well 2 reaches (12000 RB/D) shut in shutiin (12000 RB/D)
1% criteria
vvvgat?rrzgzsgs shut in for shut in for shut in for shut in for
19 criteria 180 days 180 days 180 days 180 days
WAG injector oroducer
(cycle 30/60 | - water (12000 RB/D) (12000 RB/D) shut in shut in
days) - gas (6000 RB/D)
GOR of well 2 injector roducer
reaches 2 | - water (12000 RB/D) shut in ( 15’000 RE/D) shut in
Mscf/stb - gas (6000 RB/D)
GOR of well 3 injector roducer
reaches 2 - water (12000 RB/D) shut in shut in (15000 RB/D)
Mscf/stb - gas (6000 RB/D)

Table 5.36 Well schedule of WAG with down-dip injection in a non-dipping reservoir

for pattern 2.

pritjfczin Well 1 Well 2 Well 3 Well 4
water flooding producer producer producer water injector
(4000 RB/D) (4000 RB/D) (4000 RB/D) (12000 RB/D)
water cut of .
well 3 reaches producer producer shut in water injector
40% criteria (6000 RB/D) (6000 RB/D) (12000 RB/D)
water cut of .
well 2 reaches producer shut in shut in water injector
40% criteria (12000 RB/D) (12000 RB/D)
vvvgat?rrzzzk?;s shut in for shut in for shut in for shut in for
40% criteria 180 days 180 days 180 days 180 days
WAG oroducer injector
(cycle 60/30 shut in shut in (12000 RB/D) | water (12000 RB/D)
days) - gas (8000 RB/D)
GOR of well 3 oroducer injector
reaches 5 shut in (12000 RB/D) shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)
GOR of well 2 roducer injector
reaches 5 (15000 RB/D) shut in shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)




Table 5.37 Well schedule of WAG with down-dip injection in a 15° reservoir for
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pattern 2.
Step of Well 1 Well 2 Well 3 Well 4
production
water flooding producer producer producer water injector
(4000 RB/D) (4000 RB/D) (4000 RB/D) (12000 RB/D)
water cut of o
well 3 reaches producer producer shut in water injector
o (6000 RB/D) (6000 RB/D) (12000 RB/D)
1% criteria
vvater cut ﬁf producer hut | hut | water injector
well 2 reaches | (15400 Re/p) shutin shut in (12000 RB/D)
1% criteria
vvvgat?rrzgzﬁgs shut in for shut in for shut in for shut in for
1% criteria 180 days 180 days 180 days 180 days
WAG oroducer injector
(cycle 30/30 shut in shut in (12000 RB/D) | - water (12000 RB/D)
days) - gas (8000 RB/D)
GOR of well 3 Ul ear injector
reaches 3 shut in ( Ao ) shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)
GOR of well 2 roducer injector
reaches 3 (12000 RB/D) shut in shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)

Table 5.38 Well schedule of WAG with down-dip injection in a 30° reservoir for

pattern 2.
pritﬁfcﬁin Well Well 2 Well 3 Well 4
producer producer producer water injector

water flooding

(4000 RB/D)

(4000 RB/D)

(4000 RB/D)

(12000 RB/D)

water cut of

producer

producer

water injector

Wellol/fcrrietaefges (6000 RB/D) | (6000 RB/D) shut in (12000 RB/D)
water cut of producer water injector
well 2reaches | (15000 pgypy | SMUEIN shut in (12000 R8/D)
1% criteria
vvvgat?rrz:zk?;s shut in for shut in for shut in for shut in for
1% criteria 180 days 180 days 180 days 180 days
WAG roducer injector
(cycle 30/30 shut in shut in (12000 RB/D) | water (12000 RB/D)
days) - gas (8000 RB/D)
GOR of well 3 roducer injector
reaches 5 shut in (12000 RB/D) shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)
GOR of well 2 roducer injector
reaches 5 (15000 RB/D) shut in shut in - water (12000 RB/D)
Mscf/stb - gas (8000 RB/D)




Table 5.39 Well schedule of DDP in a 15° reservoir for pattern 2.

Step of
production

Well 1

Well 2

Well 3

Well 4

water flooding

producer
(4000 RB/D)

producer
(4000 RB/D)

producer
(4000 RB/D)

water injector
(12000 RB/D)

water cut of

producer

producer

water injector

Welt(f/o?’crrietzcrges (6000 RB/D) (6000 RB/D) shut in (12000 RB/D)
water cut of producer water injector
WL IS | (12000 Re/D) shutin shut in (12000 RB/D)
vvvgat?réiho;s shut in for shut in for shut in for shut in for
19 criteria 180 days 180 days 180 days 180 days
gas injector producer . .
boP (12000 RB/D) | (12000 RB/D) shutin shutin
GOR of well 2 o
reaches 5 gas Injector shut in producer shut in
Mscf/sth (12000 RB/D) (12000 RB/D)
GOR of well 3 gas injector producer
rﬁ/\i?/ié (12000 RB/D) S shutin (12000 RB/D)

Table 5.40 Well schedule of DDP in a 30° reservoir for pattern 2.

Step of
production

Well 1

Well 2

Well 3

Well 4

water flooding

producer
(4000 RB/D)

producer
(4000 RB/D)

producer
(4000 RB/D)

water injector
(12000 RB/D)

water cut of

producer

producer

water injector

N e ceaches | (6000 RB/D) | (6000 RB/D) shut in (12000 R8/D)
water cut of —
well 2 reaches producer shut in shut in water injector
20% criteria (12000 RB/D) (12000 RB/D)
vvvgat?rrzztd?;s shut in for shut in for shut in for shut in for
20% criteria 180 days 180 days 180 days 180 days
gas injector producer ) _
obP (12000 RB/D) | (12000 RB/D) shut in shut in
GOR of well 2 o
reaches 5 gas injector <hut in producer shut in
Mscf/stb (12000 RB/D) (12000 RB/D)
GOR of well 3 2s iniector er
reaches 5 sas Inj shut in shut in P

Mscf/stb

(12000 RB/D)

(12000 RB/D)
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Table 5.41 Effect of GOR criteria for switching the producers on BOE for well pattern

2.

Production

type

Dip angle

GOR criteria for switching
the producers
[MSCF/STB]

BOE
[MMSTB]

WAG
up-dip

OO

30.605

30.609

30.594

30.506

30.020

15°

29.090

29.178

29.270

29.173

28.830

30°

27.528

27.542

27.399

26.898

26.763

WAG
down-dip

OO

29.927

30.035

30.132

30.211

30.270

15°

28.341

28.340

28.360

27.856

28.177

30°

25.453

25.449

25.407

25.382

25.733

DDP

15°

26.283

26.641

26.467

26.166

25.776

25.326

30°

23.586

I e P (S T T RN (R I NP TE] F-N TP S PN (6 RN TN T O P (C 1 RN ORI PN TC EN TE Y RN TG R N O T N PR

24.252

—
(@)

24.205

—
(]

24.176

N
(@)

24.150

N
()]

24.121
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Pattern 3 is similar to pattern 2 but different in the number of wells. There
are 8 wells for this pattern arranged in a single row along the x-axis as shown in
Figure 5.37. Their positions and fracture pressures are shown in Table 5.42. In the
water flooding period, well 8 is a water injector while wells 1-7 are producers. Well 7,
6, 5, 4, 3, and 2 are shut in sequentially when its water cut reaches the stopping
criteria shown in Table 5.8. The production rate is always set equal to the injection
rate. After well 1 reaches stopping criteria, all wells are shut in for 180 days.

Production strategy is different for each process as tabulated in Tables 5.43-5.50.

=LA

Figure 5.37 Well location in 3D for pattern 3.
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Table 5.42 Well location and fracture pressure for pattern 3.

Parameters Values Units
i=2, j=16,
Position of well 1 -
k=1-20
i=12, j=16,
Position of well 2 -
k=1-20
i=22, j=16,
Position of well 3 -
k=1-20
i=32, j=16,
Position of well 4 -
k=1-20
i=42, j=16,
Position of well 5 -
k=1-20
i=52, j=16,
Position of well 6 -
k=1-20
- i=60, j=16,
Position of well 7 -
k=1-20
i=72, j=16,
Position of well 8 -
k=1-20
Fracture pressure of well 1 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 8 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 1 @top depth of 5,021 ft (15°) 3,100 psia
Fracture pressure of well 8 @top depth of 6,510 ft (15°) 4,250 psia
Fracture pressure of well 1 @top depth of 5,041 ft (30°) 3,120 psia
Fracture pressure of well 8 @top depth of 7,918 ft (30°) 5,430 psia

For WAG with up-dip injection, water and gas are injected alternately by well
1. Production is done sequentially and individually from well 2 to well 8. The
switching criteria is GOR of the producer which is varied to be 1, 2, 3, 4, and 5
MSCF/STB. The GOR that yields the highest BOE as shown in Table 5.51 is applied for

each reservoir.

For WAG with down-dip injection, it is the inverse of WAG with up-dip

injection. Production is done sequentially from well 7 to well 1 while water and gas
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are always injected at well 8. The well GOR for switching criteria comes from the

varying of GOR to be 1, 2, 3, 4, and 5 MSCF/STB. It is different for each reservoir.

For DDP, gas is always injected at up-dip location by well 1 throughout the
production time. Production is performed sequentially from well 2 to well 8.
Switching criteria of production well applied for DDP is the GOR among five values: 1,

5, 10, 15, 20, and 25 MSCF/STB that yields the highest BOE.
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Table 5.51 Effect of GOR criteria for switching the producers on BOE for well pattern

3.

Production

type

Dip angle

GOR criteria for switching
the producers
[MSCF/STB]

BOE
[MMSTB]

WAG
up-dip

OO

30.672

30.690

30.554

30.077

29.418

15°

29.042

29.065

29.132

29.009

28.418

30°

27.510

27.497

27.058

26.452

25.610

WAG
down-dip

OO

30.079

30.160

30.275

30.033

29.365

15°

28.439

28.436

28.440

27.905

26.659

30°

25521

25.523

25.618

25.367

26.518

DDP

15°

26.630

26.840

26.501

25.739

25.313

25.175

30°

23.833
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24.275

—
(@)

24.150
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24.078

N
(@)

23.986

N
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23.798
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Pattern 4 consists of two horizontal wells as shown in Figure 5.38. Well
location and fracture pressure are listed in Table 5.52. These two wells are

perforated only in the horizontal section. Well schedule for this pattern is the same

as the one for pattern 1. It is tabulated in Tables 5.53-5.55.
WELL1

Figure 5.38 Well location in 3D for pattern 4.

Table 5.52 Well location and fracture pressure for pattern 4.

Parameters Values Units
N i=12, j=1-31,
Position of well 1 -
k=1
N i=72, j=1-31,
Position of well 2 -
k=20
Fracture pressure of well 1 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 2 @top depth of 5,190 ft (0°) 3,230 psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°) 3,260 psia
Fracture pressure of well 2 @top depth of 6,700 ft (15°) 4,400 psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°) 3,430 psia
Fracture pressure of well 2 @top depth of 8,108 ft (30°) 5,595 psia




Table 5.53 Well schedule of WAG with up-dip injection for pattern 4.
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Dip angle priffcgin Well 1 Wel 2
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
0o \r/\éaatcehrecsuiifc\/:ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 60/30 days) _ qas (8000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
150 \:\é?atcet:ecsuiifc\/xfellri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) _ qas (8000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
300 \r/\;tcek:ecsuiczf!:ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/60 days) _ qas (6000 RB/D) (12000 RB/D)

Table 5.54 Well

schedule of WAG with down-dip injection for pattern 4.

Dip angle | Step of production Well 1 Well 2
vaterfoodng | ;o0 (2000 /)
0° rvev:irescfogz gie‘tlelrila shut in for 180 days shut in for 180 days
injector
(cycle \6/\(/)620 days) (1gg%guR(:Be/r D) ) szgesr((gglozoooO%BFjBD/)D)
vaterfloodng |, bon'aerny (2000 /0y
150 \r/\éaatcehrecsui‘;fcv:iieuri; shut in for 180 days shut in for 180 days
injector
(cycle 3\’/\(/)%30 days) (12(3(())?)UF;:Be/r D) _ szgesr((aal()zoooO(F)%BF;EE;)D)
water flooding producer water injector
(12000 RB/D) (12000 RB/D)
300 \r/\gtcehreiu;(;fcv:iieuri; shut in for 180 days shut in for 180 days

WAG
(cycle 30/30 days)

producer
(12000 RB/D)

injector
- water (12000 RB/D)
- gas (8000 RB/D)




Table 5.55 Well schedule of DDP for pattern 4.
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Dip angle | Step of production Well 1 Wel 2
. producer water injector
water flooding (12000 RB/D) (12000 RB/D)
o water cut of well 1 . .
15 reaches 1% criteria shut in for 180 days shut in for 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
o water cut of well 1 , .
30 reaches 20% criteria shut in for 180 days shut in for 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)

Pattern 5 consists of a vertical well at up-dip location and a horizontal well at

down-dip location as shown in Figure 5.39. Well 1 is fully perforated while well 2 is

perforated only in the horizontal section. Table 5.56 shows well location and fracture

pressure for each reservoir. Well schedule for this pattern is also the same as that for

pattern 1 and pattern 4, which is shown in Tables 5.57-5.59.

WELLT

LAIXY

LAX

IAASER

AL

i A

¥ 1

Figure 5.39 Well location in 3D for pattern 5.



Table 5.56 Well location and fracture pressure for pattern 5.
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Parameters Values Units
i=12, j=16,
Position of well 1 -
k=1-20
" i=72, j=1-31,
Position of well 2 -
k=20
Fracture pressure of well 1 @top depth of 5,000 ft (0°) 3,080 psia
Fracture pressure of well 2 @top depth of 5,190 ft (0°) 3,230 psia
Fracture pressure of well 1 @top depth of 5,234 ft (15°) 3,260 psia
Fracture pressure of well 2 @top depth of 6,700 ft (15°) 4,400 psia
Fracture pressure of well 1 @top depth of 5,452 ft (30°) 3,430 psia
Fracture pressure of well 2 @top depth of 8,108 ft (30°) 5,595 psia

Table 5.57 Well schedule of WAG with up-dip injection for pattern 5.

Dip angle pricjfc;f;n Well 1 Well 2
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
0° \:\éaatcek:ecsuic;zf!:ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 60/30 days) _ oas (8000 RB/D) (12000 RB/D)
: producer water injector
water flooding (12000 RB/D) (12000 RB/D)
150 \:\éztfk:ecsuiczf!:ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) - oas (8000 RB/D) (12000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
300 \r/\éaatcehrecsui‘;fcv:iieuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/60 days) " eas (6000 RB/D) (12000 RB/D)




Table 5.58 Well schedule of WAG with down-dip injection for pattern 5.
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Dip angle | Step of production Well 1 Well 2
. producer water injector
water flooding (12000 RB/D) (12000 RB/D)
0o rvevaaéﬁrescfoi \é\ﬁclelrila shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 60/30 days) (12000 RB/D) _ qas (8000 RB/D)
water floodin producer water injector
s (12000 RB/D) (12000 RB/D)
150 \:\é?atcet:ecsuiifc\/xfellri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) (12000 RB/D) _ qas (8000 RB/D)
. producer water injector
water flooding (12000 RB/D) (12000 RB/D)
300 \r/\;tcek:ecsuiczf!:ifeuri; shut in for 180 days shut in for 180 days
injector
WAG producer
- water (12000 RB/D)
(cycle 30/30 days) (12000 RB/D) _ qas (8000 RB/D)

Table 5.59 Well schedule of DDP for pattern 5.

. Step of
Dip angle production Well 1 Well 2
water floodin producer water injector
a (12000 RB/D) (12000 RB/D)
o water cut of well 1
15 reaches 1% criteria shut 180 days shut 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)
. producer water injector
water flooding (12000 RB/D) (12000 RB/D)
o water cut of well 1
30 reaches 20% criteria shut 180 days shut 180 days
DDP gas injector producer
(12000 RB/D) (12000 RB/D)
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55.1 WAG with up-dip injection

The oil production rate of each pattern is around 9,000 STB/D during water
flooding period. However, the stopping time for water injection is different. Patterns
1, 5, and 4 are stopped before pattern 2 and 3 which have more producers. As water
displaces oil up structure, there is much amount of oil accumulated at up-dip
location while down-dip location contains water bank. In early time of WAG injection,
pattern 3 reaches the highest rate oil before other patterns because it has the
shortest well spacing between the injector and the first producer (well 2).
Meanwhile, other patterns needs more time to let oil bank travel to the producers.
Nevertheless, oil rates of all patterns have a similar trend, gradually decreasing from

the seventeenth year to the last year of production as illustrated in Figure 5.40.

— PATTERN 1 PATTERN 3 PATTERN &
——PATTERN 2 — PATTERN 4

10000 75

9000
8000
7000
BOOO
2000
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3000
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[aw]

I
0 10 20 30
TIME, YEARS

Figure 5.40 Effect of well pattern on oil production rate of WAG with up-dip injection

in a reservoir with dip angle of 15°.
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Gas production profiles for all patterns are similar during water flooding as the
rate is around 5,000 MSCF/D for all cases. In WAG period, patterns 1, 4, and 5 having
two wells show smoother profile than patterns 2 and 3 consisting more wells. Figure

5.41 shows gas production rates of the five well patterns.

— PATTERN 1 PATTERN 3 PATTERN 5
— PATTERN 2 — PATTERN 4
6000 ]
5000 — == -
B ™
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£ 4000 —
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= ]
= ]
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o -
o ]
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TIME, YEARS

Figure 5.41 Effect of well pattern on gas production rate of WAG with up-dip injection

in a reservoir with dip angle of 15°.

During the initial water flooding, water is produced for a short period of time
before water cut reaches the stopping criteria. It is then produced with high rate
when the producer is opened in WAG period because there is a large amount of
water accumulated around the producer which is switched from the water injector.
After the 12th year, water production rates of all patterns are around 5,600 STB/D as

shown in Figure 5.42.
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— PATTERN 1 PATTERN 3 PATTERN &
— PATTERN 2 — PATTERN 4
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Figure 5.42 Effect of well pattern on water production rate of WAG with up-dip

injection in a reservoir with dip angle of 15°.

Table 5.60 shows results comparison among different well patterns of WAG
with up-dip injection in three reservoirs. For a non-dipping reservoir, the highest
recovery factor and BOE of 78.07% and 30.690 MMSTB, respectively, is obtained from
pattern 3 which consists of eight vertical wells. This pattern also needs the lowest
amount of injected gas which is 10.579 BSCF among all patterns in the same
reservoir. Pattern 4 requires the largest amount of gas while the highest amount of
water is required by pattern 5. For a 15° reservoir, patterns with more wells need
higher amounts of injected water but less amounts of injected gas due to the longer
period of water flooding as discussed in Figure 5.53. Pattern 2, consisting of four
vertical wells, yields the highest recovery factor and BOE of 76.60% and 29.270
MMSTB, respectively. This pattern requires 16.530 BSCF of injected gas and 74.967
MMSTB of injected water. For a 30° reservoir, pattern 5 yields the highest recovery
factor and BOE of 81.38% and 27.850 MMSTB, respectively. However, this pattern

requires the largest amount of injected ¢as of 13.411 BSCF.
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552  WAG with down-dip injection

Figure 5.43 shows oil production rates of the five well patterns investigated in
this study. Oil production profiles during water flooding have the same trend which
have a stable rate around 9,000 STB/D. Pattern 1 is the first pattern reaching the
stopping criteria between the fourth and the fifth year whereas pattern 3 stops water
injection at the latest. During WAG period, patterns with two wells (patterns 1, 4, and
5) produce large amounts of oil in the early time because their producers are
located near the oil bank. On the other hand, patterns 2 and 3 produce high
amounts of water because their producers are located in water bank area. However,
the switching of producers from down-dip to up-dip location results in the increasing
of oil production rate around the ninth year. After the twentieth year, all patterns

produce oil with quite the same rate throughout the production time.

—PATTERN 1 PATTERN 3 PATTERN 5
— PATTERN 2 — PATTERN 4
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Figure 5.43 Effect of well pattern on oil production rate of WAG with down-dip

injection in a reservoir with dip angle of 15°.
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Gas is produced with the rate around 5,000 MSCF/D during water floodins.
However, during WAG injection period, patterns 1, 4, and 5 produce gas with
smoother rates than patterns 2 and 3. Gas rates of all patterns slightly decrease until

the last year as illustrated in Figure 5.44.
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Figure 5.44 Effect of well pattern on gas production rate of WAG with down-dip

injection in a reservoir with dip angle of 15°.

As there are only oil and gas in the initial reservoir, water is not
produced until it breaks through the producer. Patterns 2 and 3 show the highest
water rate around the sixth year after WAG has been started. However, every pattern
has a similar rate around 5,200 - 5,600 STB/D after the eighteenth year as shown in
Figure 5.45.
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Figure 5.45 Effect of well pattern on water production rate of WAG with down-dip

injection in a reservoir with dip angle of 15°.

Result comparison for different well patterns is shown in Table 5.61. For a
non-dipping reservoir, the highest BOE of 30.275 MMSTB is obtained by pattern 3.
Amounts of water and gas needed for injection are 63.868 MMSTB and 10.298 BSCF,
respectively. Moreover, patterns consisting of more vertical wells require less
amounts of injected water and gas. For a 15° reservoir, pattern 4 yields the highest
recovery factor of 77.72% and the highest BOE of 29.722 MMSTB. The amount of
injected gas required for this pattern is the lowest (17.549 BSCF) while 74.276 MMSTB
of water is injected. This pattern also yields the highest recovery factor of 79.61%
and the highest BOE of 27.175 MMSTB for a 30° reservoir. Patterns 2 and 3 have
shorter production times than the other cases performed for a 30° reservoir. Pattern
2 reaches the economic limit in 25.77 years while pattern 3 reaches the limit in 29.18
years. It can be considered that a higher recovery factor is obtained when additional
wells are added. Moreover, using horizontal wells instead of vertical wells efficiently

improves the recovery factor.
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5.5.3 Double displacement process

The oil rates in water flooding stage are around 9,000 STB/D for all patterns
because they have the same water injection and production rates of 12,000 RB/D.
After that, in gas injection stage, pattern 1 results in the smoothest oil rate. Patterns
4 and 5 yield extremely high rates for a short period of time between the eight year
and the ninth year due to arrival of oil bank at the producers. For pattern 2 and 3, oil
is produced by several wells causing a swing of the rate according to number of

producers. Figure 5.46 illustrates oil production rates of five different well patterns.
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Figure 5.46 Effect of well pattern on oil production rate of DDP in a reservoir with dip

angle of 15°.

The gas production rates are around 5,000 MSCF/D until the stopping
period of water flooding. During the early time of gas injection, patterns consisting of
two wells have similar gas production profile which is smoother than patterns
consisting of more wells. However, they have the same trend since the fourteenth
year to the last year of production. Figure 5.47 shows effects of well pattern on gas

production rate.
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Figure 5.47 Effect of well pattern on gas production rate of DDP in a reservoir with

dip angle of 15°.

The highest water production rates of around 11,600 STB/D for all patterns
occur in the early time of gas injection. After that, they drop dramatically until there
is small amount of water left in the reservoir. Finally, they slishtly decrease until the

last year of production as shown in Figure 5.48.
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Figure 5.48 Effect of well pattern on water production rate of DDP in a reservoir with

dip angle of 15°.

DDP is performed for two reservoirs which are 15° and 30° reservoirs as
shown in Table 5.62. For a 15° reservoir, when we consider patterns of vertical wells,
patterns consisting of more wells result in higher oil recovery factor and higher
amounts of water injection and production but less amounts of gas injection and
production. For a 30° reservoir, pattern 3 yields higher oil recovery factor, higher
amounts of water injection and production, and higher amounts of gas injection and

production than patterns 1 and 2 because pattern 3 has more producers.

When we use horizontal wells (patterns 4 and 5) instead of vertical wells
(pattern 1), oil recovery factor is evidently improved. Patterns 4 and 5 require less
amounts of injected gas but larger amounts of injected water. Pattern 5, consisting of
a vertical well at up-dip location and a horizontal well at down-dip location, yields
the highest BOE for both reservoirs. The highest BOE of 27.510 MMSTB and 25.074

MMSTB are obtained in 15° reservoir and 30° reservoirs, respectively.
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The production parameters which yield the highest BOE for each process and
dip angle are considered from the studying of four parameters which are (1) stopping
criteria for water flooding, (2) water and gas injection rates, (3) WAG cycle, and (4)
well pattern. Table 5.63 shows these parameters and the results of each process and

dip angle.

For a non-dipping reservoir, DDP is not performed because it results in lower
performance than long-term water flooding as shown in Table 5.7. Thus, there are
two types of WAG being compared to find the most appropriate process. WAG with
up-dip injection shows slightly higher oil recovery factor and BOE than WAG with
down-dip injection. Their BOEs are 30.690 MMSTB and 30.275 MMSTB for WAG with
up-dip and down-dip injection, respectively. Moreover, their requirements for

injected gas and injected water are slightly different.

For a 15° reservoir, WAG with down dip injection having parameters shown in
Table 5.63 yields the highest BOE of 29.722 MMSTB. Even though DDP gives much
higher recovery factor, it requires a lot of injected gas resulting in the lowest BOE of
27.510 MMSTB. However, WAG cases need high amount of water for both water

flooding and water injection alternately with gas.

For a 30° reservoir, WAG with up-dip injection yields the highest BOE of
27.850 MMSTB. WAG with down dip injection yields slightly lower BOE of 27.175
MMSTB. DDP results in the lowest BOE of 25.074 MMSTB due to high amount of gas
requirement. However, DDP requires the lowest amount of injected water and
spends the shortest production time because its oil rate reaches economic limit after

the twenty-eighth year.

In this study, DDP is considered to be an ineffective method. Although it
yields much higher oil recovery factor than the two types of WAG, it yields the
lowest BOE in every reservoir due to the gas requirement. On the other hand, WAG
needs less amount of injected gas because of the alternate water injection. However,

much more amount of injected water is required by WAG process.
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The cases resulting in the highest BOE for each reservoir are shown in Table

5.64. It is noted that these cases are considered only in terms of amount of

produced oil and amount of consumed gas, not in term of economic.

Table 5.64 The production strategies yield the highest BOE for each reservorr.

Water cut for Water Gas
. . . e WAG cycle

Dip stopping injection | injection Well

Process . (water/gas)
angle water flooding rate rate [Day] pattern
[%] [RB/D] | [RB/D] Y

0° WAG 1 12,000 8,000 60/30 3
up-dip

15° WAG . 1 12,000 8,000 30/30 a4

down-dip

30° WAG 1 12,000 6,000 30/60 5

up-dip
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56 Sensitivity analysis

This part is simulated to consider effects of these following factors: (1)
horizontal permeability, (2) vertical to horizontal permeability ratio, (3) relative
permeability correlation, (4) reservoir thickness, and (5) oil properties. The operating

parameters for each reservoir are the ones tabulated in Table 5.64.

5.6.1 Effect of horizontal permeability

Horizontal permeability (ky,) affects fluid flow in the horizontal direction (x and
y directions). It is varied to be five times less and five times higher than the base case
of 126 md while the vertical permeability (k,) is kept constant for all cases as shown

in Table 5.65.

Table 5.65 Cases for the studying of effect of horizontal permeability.

ki, k,
Case
[md] [md]
25.2 12.6
2 126 12.6
630 12.6

5.6.1.1 Reservoir without dip angle

Horizontal permeability significantly affects oil production rate as can be seen
in Figure 5.49. Case 1 has the earliest decline in oil rate but the longest period of
water flooding, in which water injection is stopped after the seventeenth year, and
WAG is started in the eighteenth year. Case 3, having the highest horizontal
permeability, usually has slightly lower oil rate than case 2 except some short
periods in the sixth year, the thirteenth year, and from the twenty-fifth to the
twenty-seventh year. Fluids flow easily in the reservoir from the injector to the
producer in the case of a high horizontal permeability (k, = 630 md) which lets water
arrive the producer early. This case takes the shortest time for initial water flooding

because water cut reaches the stopping criteria earlier than the other two cases with
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lower horizontal permeability. The oil rates of all cases are unstable because the
well pattern used in this study has 8 vertical wells. The oil rate abruptly changes

when oil production is switched from one well to the adjacent well.

Table 5.66 shows that more amount of gas and water can be injected into
the reservoir with higher horizontal permeability because they can flow more easily
from the injector in the horizontal direction. However, case 2 with moderate
horizontal permeability yields the highest oil recovery factor of 78.07% and the
highest BOE of 30.690 MMSTB. Case 3 lets the fluids flow easily in the reservoir, it
results in faster gas movement causing earlier gas breakthrough. Therefore, well
shutting occurs earlier which yields smaller oil recovery factor. In addition, the results

show that case 3 requires larger amounts of water and gas injection.

— kp=25.2md — ky,=126 md k, =630 md
10000
9000
8000
7000
BOOO
5000
4000
3000
2000
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[aw]

I
0 10 20 30
TIME, YEARS

Figure 5.49 Effect of horizontal permeability on oil production rate of WAG with up-

dip injection in a reservoir without dip angle.
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5.6.1.2 Reservoir with dip angle of 15°

Case 1 with the lowest horizontal permeability produces oil with lower rate
than cases 2 and 3. This is because oil in case 1 flows to the producer with the
slowest rate. Additionally, water travels slowly from the injector to the producer
causing a longer water flooding period of case 1 than the other two cases. Case 2
and 3 have similar oil rate at early time even though their horizontal permeability is
not same because of the limitation of maximum production rate set in the simulator.
As a result, case 2 has a similar oil production profile as case 3 in the water flooding
period. However, case 3 with higher horizontal permeability shows a higher oil rate in

WAG period as illustrated in Figure 5.50.

Table 5.66 shows that higher horizontal permeability results in more oil
recovery factor and BOE. When we consider the requirement of injected fluids, the
case with the lowest horizontal permeability (k, = 25.2 md) consumes the largest

amount of gas but the least amount of water.

— kyn=25.2md — kn=126 md kn, =630 md
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Figure 5.50 Effect of horizontal permeability on oil production rate of WAG with

down-dip injection in a reservoir with dip angle of 15°.
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5.6.1.3 Reservoir with dip angle of 30°

Case 1 has a distinctive oil production profile from the other cases. It takes
more than 9 years for water flooding while the other two cases spend less than 5
years. During water flooding, cases 2 and 3 have similar oil rate around 9,000 STB/D
while the oil rate of case 1 is much lower. In the duration of WAG, cases with higher
horizontal permeability show higher oil production rate. Figure 5.51 shows oil

production profile of three cases with different horizontal permeability.

Oil in case 3 can travel with the fastest rate in the reservoir. From Table 5.66,
it can be clearly seen that higher horizontal permeability results in higher oil
recovery factor with a shorter production time. Case 3 yields the highest oil recovery
factor and the highest BOE which are 84.94% and 29.262 MMSTB, respectively, where

it requires the shortest production time of 19.59 years due to economic constraint.

— ky=25.2md — kn,=126 md k, =630 md
10000
9000
8000
7000
6000
5000
4000
3000
2000

1060

QIL PRODUCTION RATE, STB/DAY

O

I
0 10 20 30
TIME, YEARS

Figure 5.51 Effect of horizontal permeability on oil production rate of WAG with up-

dip injection in a reservoir with dip angle of 30°.
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5.6.2 Effect of vertical to horizontal permeability ratio

The vertical to horizontal permeability ratio is varied to be 0.01, 0.1, and 0.5
as shown in Table 5.67 in order to study its effect on WAG and DDP. Only the value
of vertical permeability (k) is changed while the horizontal permeability (k;,) is always

constant at 126 md. This factor affects the fluid flow in the vertical direction.

Table 5.67 Cases for the studying of effect of vertical/horizontal permeability ratio.

ki, k,
Case k./kp,
[md] [md]
1 0.01 126 1.26
2 0.1 126 12.6
0.5 126 63

5.6.2.1 Reservoir without dip angle

Form Figure 5.52, vertical to horizontal permeability ratio does not affect oil
production rate during water flooding period but has a moderate effect on oil rate
during WAG. In WAG period, gas flows easily in the vertical direction. There are 8
vertical wells in this study. Case 1 (k/ky = 0.01) takes nearly the same duration to
switch oil production from one well to the other while case 3 (k,/k, = 0.5) takes short
periods to switch oil production from well 1 to well 2 and subsequentially wells 3, 4,
5, and 6 but longer periods to switch from well 6 to wells 7 and 8 at late time. This
is a result of gas movement in the vertical direction. Gas tends to override easily in
case 3 because of high vertical permeability. As a result, gas arrives early at each

producer and reaches the GOR switching criteria of each producer early.

From Table 5.68, case with more vertical to horizontal permeability ratio
requires less gas injection but slightly more water injection. Case 3 has the highest oil
recovery factor and BOE which are 82.99% and 32.645 MMSTB, respectively. In
addition, even though case 3 consumes the least amount of injected gas, it produces

the largest amount of gas because of gas overriding.
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Figure 5.52 Effect of vertical/horizontal permeability ratio on oil production rate of

WAG with up-dip injection in a reservoir without dip angle.

5.6.2.2 Reservoir with dip angle of 15°

During water flooding period, every case shows very similar oil production
rate as represented in Figure 5.53. After that, oil production rates of all cases are

slightly different but follow similar trend throughout the production time of 30 years.

The comparison of results for these three cases is shown in Table 5.68. There
is significant difference in gas requirement and production among the three cases.
Case 1 requires much more injected gas but produces only few more gas than the
other two cases. In term of water, the total water injection and production of every
case is not significantly different. Their oil recovery factors are different. Case 1 yields
the highest value of 81.83%. However, BOE of case 3 (30.280 MMSTB) is slightly
higher than those of case 1 (30.250 MMSTB) and case 2 (29.722 MMSTB).
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Figure 5.53 Effect of vertical/horizontal permeability ratio on oil production rate of

WAG with down-dip injection in a reservoir with dip angle of 15°.

5.6.2.3 Reservoir with dip angle of 30°

The oil production rate of the three cases is the same during water flooding
period as shown in Figure 5.54. Water flooding of all cases is stopped in the fourth
year of production. In the WAG injection period, the three cases have a similar trend

of oil production profile.

From Table 5.68, case 3 yields the highest oil recovery factor of 84.23% and
the highest BOE of 28.533 MMSTB where it reaches the economic constraint slightly
earlier than cases 1 and 2. As a result, it takes 29.58 years for the production while

the other two cases take 30 years.
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Figure 5.54 Effect of vertical/horizontal permeability ratio on oil production rate of

WAG with up-dip injection in a reservoir with dip angle of 30°.
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5.6.3 Effect of three-phase relative permeability correlation

The three-phase relative permeability correlation of the base case is ECLIPSE
default. This study is performed to consider the production performance when Stone
1 and Stone 2 models are applied instead of ECLIPSE default. Table 5.69 lists three
cases with different correlations. Figure 5.55 shows oil relative permeability diagrams

as function of three-phase saturation of Stone 1 and Stone 2 models.

Table 5.69 Cases with different relative permeability correlations.

Case Relative permeability correlation
1 ECLIPSE default
2 Stone 1
3 Stone 2

Sgas=1.00 Sgas=1.00
1.0

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

HANESEANSE AN D00 50

T T T T T T T T

f
Swater=1.00 Soil= Swater=1.00 Soil=

(a) Stone 1 Model (b) Stone 2 model
Figure 5.55 QOil relative permeability diagrams as function of three-phase saturation.
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5.6.3.1 Reservoir without dip angle

Result of this reservoir is similar to result of a 15° reservoir. All three cases
provide quite the same oil rate during water flooding and early time of WAG
injection. After that, Stone 2 model produces oil with the lowest rate since the
thirteenth year. Additionally, oil rate of Stone 1 model is slightly lower than that of
ECLIPSE default model since seventeenth year. Figure 5.56 shows oil production

profile of three cases with different relative permeability correlations.

From Table 5.70, ECLIPSE default model yields the highest oil recovery factor
of 78.07% and the highest BOE of 30.690 MMSTB which are slightly higher than those
of Stone 1 model. However, Stone 2 model is the first case that reaches the
economic constraint in the twenty third year. It provides significantly lower oil

recovery factor and BOE than the other two cases.
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Figure 5.56 Effect of relative permeability correlation on oil production rate of WAG

with up-dip injection in a reservoir without dip angle.
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5.6.3.2 Reservoir with dip angle of 15°

From Figure 5.57, the three cases have the same oil production profile during
water flooding; moreover, their stoppings of water injection occur at the same time
in the fifth year. The difference between their oil rates is apparent after the seventh
year which is in the WAG injection period. ECLIPSE default model (case 1) show very
similar oil production profile to Stone 1 model (case 2) where Stone 2 model (case

3) has a significantly lower oil rate.

Table 5.70 shows that ECLIPSE default and Stone 1 models do not have
considerable difference between their oil recovery factors, gas and water injections,
and BOEs. Stone 2 model results in the lowest BOE of 26.527 MMSTB and the

shortest production time of 24.99 years due to the economic constraint.

—— ECLIPSE default — Stone 1 Stone 2
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Figure 5.57 Effect of relative permeability correlation on oil production rate of WAG

with down-dip injection in a reservoir with dip angle of 15°.
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5.6.3.3 Reservoir with dip angle of 30°

During water flooding period, oil is produced with the same rate by the three
cases having different relative permeability correlations. After that, water flooding is
stopped in the fourth year. WAG injection is then performed starting at the same
time for all cases. ECLIPSE default and Stone 1 models provide higher oil rate than
Stone 2 model as illustrated in Figure 5.58.

In term of production time, ECLIPSE default and Stone 1 models spend 30
years while Stone 2 model is stopped in the twenty eighth year because of the
economic constraint as tabulated in Table 5.70. ECLIPSE default model yields higher
oil recovery factor than Stone 1 and Stone 2 models which are 81.38%, 81.34%, and
74.84%, respectively. However, the highest BOE of 27.858 MMSTB is provided by case

2 in which Stone 1 model is applied.
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Figure 5.58 Effect of relative permeability correlation on oil production rate of WAG

with up-dip injection in a reservoir with dip angle of 30°.
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For all reservoir, Stone 2 model results in quite low oil recovery factor
because it reaches the economic constraint earlier than Stone 1 and ECLIPSE default
models. Figure 5.55 shows the relative permeability to oil diagrams as function of
three-phase saturation of Stone 1 and Stone 2 models. Stone 2 model shows lower
relative permeability to oil than Stone 1 model in most area of the diagram.
Therefore, oil flows more difficultly when Stone 2 model is applied to the simulator.

As a result, less amount of oil is produced in this case.
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5.6.4 Effect of reservoir thickness

The effect of reservoir thickness is investigated by construction of three
reservoirs with different thickness which is varied to be 50, 200, and 500 ft. as shown

in Table 5.71.

Table 5.71 Cases with different reservoir thicknesses.

Reservoir thickness
Case
[ft.]
1 50
2 200
500

5.6.4.1 Reservoir without dip angle

Figure 5.59 illustrates oil production profiles of three cases of a non-dipping
reservoir. The more thickness results in the longer time for water flooding. The
stopping time of water flooding for case 1, case 2, and case 3 are in the third, sixth,
and thirteenth year, respectively, because of two reasons. Firstly, more amount of
original oil in place is obtained when the reservoir is thicker. Secondly, a large cross
sectional area perpendicular to the flow direction which depends on reservoir
thickness increases the gravity number (G) as can be calculated from Eq. 3.5. As a
result, an unstable flood front is more difficult to occur in a thicker reservoir.
Therefore, water cut of case 3 having the largest reservoir thickness reaches the
stopping criteria for initial water flooding the latest among all cases. Even though
these three cases are different in their reservoir size causing different production

rates, their profiles have similar pattern.

Table 5.72 shows the result comparison. For a non-dipping reservoir, case 1
requires the shortage production time before it reaches the economic limit of 50
STB/D for oil rate. Cases 2 and case 3 are produced throughout the production time
for 30 years. However, case 2 has the highest oil recovery factor among the three

cases.
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Figure 5.59 Effect of reservoir thickness on oil production rate of WAG with up-dip

injection in a reservoir without dip angle.

5.6.4.2 Reservoir with dip angle of 15°

During initial water flooding period, oil rate cannot be kept constant for the
50-ft reservoir while it is constant around 9,000 STB/D for 5 years and 13 years for
the 200-ft and 500-ft reservoir, respectively. WAG is started in the second year for the
50-ft reservoir, in the fifth year for the 200-ft reservoir, and in the thirteenth year for
the 500-ft reservoir. As shown in Figure 5.60, the three cases have similar profiles but

different in magnitude.

From Table 5.72, case 1 takes the shortage production time which is 26.72
years. In term of oil recovery factor, it is higher for the thinner reservoir. Case 3
having the largest thickness of 500 ft requires the largest amount of injected water
due to the large pore volume of the reservoir and longest period of initial water
flooding. Although we obtain the highest BOE in this case, it results in the lowest oil

recovery factor because there is large amount of oil left in the reservoir.
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Figure 5.60 Effect of reservoir thickness on oil production rate of WAG with down-dip

injection in a reservoir with dip angle of 15°.

5.6.4.3 Reservoir with dip angle of 30°

Case 3 having the highest thickness requires the longest time for water
flooding around 11 years. In the early time of WAG injection, it also needs the
longest period to produce the injected water before oil bank reaches the producer
(from the eleventh year to the nineteenth year). For the other two cases with the
lower reservoir thickness, they spend shorter time for water flooding and shorter

time to produce water bank as shown in Figure 5.61.

From Table 5.72, smaller thickness results in higher oil recovery factor and
less amounts of gas and water are needed for injection because of the smaller
reservoir size and the shorter time of initial water flooding. Case 1 (50 ft thickness)
takes only 21.57 years for production before it reaches the economic limit. Similar to
the other two reservoirs with different dip-angles, the highest BOE is yielded from the

reservoir with the largest thickness due to the largest amount of STOIIP.
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Figure 5.61 Effect of reservoir thickness on oil production rate of WAG with up-dip

injection in a reservoir with dip angle of 30°.
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When the effect of reservoir thickness is considered without the limitation of
production time, cases with the thickness of 200 and 500 ft spend more than 30
years for the production. For a non-dipping reservoir, we need 20.08, 76.76, and
217.02 years to produce oil from the reservoir with thickness of 50, 200, and 500 ft,
respectively. In fact, the production rate should be increased to a higher value in the
cases of 200 and 500 ft thick reservoirs in order to shorten the production time. For a
15° reservoir, we can extend the production time to 46.78 and 166.41 years for cases
having reservoir thickness of 200 and 500 ft, respectively. For a 30° reservoir,
reservoirs with thickness of 50, 200, and 500 ft spend 21.57, 43.21, and 57.56 years,

respectively, for the production before reaching the economic constraint.

Cross sectional area perpendicular to the flow direction affects the gravity
number (G). From Eq. 3.5 in Chapter 3, larger cross sectional area, which means larger
reservoir thickness, results in higher gravity number. Consequently, production from
the thicker reservoir provides higher oil recovery factor due to more stability of

floodfront as shown in Table 5.73.



179

L12°¢C) 061°¢8 P89°¢CI1 986°/9 Y2 0% 8618 265919 99°.G 009 dip-dn
006'8¢ 8v8'99 YAYA 281°0¢ 6G8°'GT 29'¢8 Z1v'9¢ 12°ev 00¢ m.u<>> o0¢
630, 0GT1°9¢ ¢l01¢ qG1Ct Pea’8 91°¢8 G8v°9 YA 4 09
08108 T.¢91¢ 191°C8¢ 299911 12¢9.1 £9'¢8 TUAYA 19991 009 dip-umop
¢Cc9'1e 986°C8 ¢0T011 €9¢'8¢ 60¢°'¢C P6'Z8 pIT'6¢ 8,91 00¢ . o oSl
81/ 65909 18899 26881 P09'GT 1¢°¢Z8 0ce'L 2¢l'9¢ 09
863’18 062999 28¢'vL9 1/2'¢01 P69°6G 88'6. P65/ c0'LT¢C 009 dip-dn
911°0¢ IATORTY ¢eeecee TA44N01Y) £50ve €9l 8v0'8¢ 9,91 00¢ .@<>> o0
19¢°L ¢lS61 G69°9¢ 86611 1098 el 2699 80°0¢ 09
[9LSWI] [91SWIN] [4Ds4] [4Ds4] [%] [dL1SWIN] [1e3A]
[d1SWW] | uononpoud | uonodsful | uononpold | uodsful 10308y uoionpoud [3] 9)8ue
awn SS220.1d
309 iajem lajem ses ses FSETNeREY 110 SSQUDIY L dig
uol3dnpold
1ejo] €101 €101 €101 110 1ejol

“JIWI SWI} UoidNPOoId INOYIM S3SBD SU3 JO SDSSDUSDIYY JIOAIDSDI JUDISHIP UDSMIS] Uosedwod 3Nsay ¢/°G 3\gel




180

5.6.5 Effect of oil properties

Oil properties are important factors affecting production performance. Their
effects are investigated by performing three cases of simulation as listed in Table
5.74. Oil gravity, gas gravity, and solution gas/oil ratio (R,) are taken into account for
this study. Figures 5.62-5.64 illustrate fluid properties which are oil formation volume
factor, oil viscosity, and solution gas oil ratio, respectively, as functions of pressure

for each case

Table 5.74 Cases with different oil properties.

Property
Case Oil gravity Gas gravity Rs
[°API] [s.g. air] [SCF/STB]
30 0.7 400
2 a0 0.7 566
50 0.7 800
—-Case 1 ——Case 2 —A—Case 3

15

14 /“H—‘_‘_*—‘_“H
1.3 //’"‘—0-0—#050_._.

1.2 4

OIL FORMATION VOLUME
FACTOR, RB/STB

1 T T T T 1

0 1000 2000 3000 4000 5000
PRESSURE, PSIA

Figure 5.62 Relationship between oil formation volume factor and pressure for the

study of an effect of oil properties.



181

==-Case 1 == Case 2 wpeCase 3

3
[a W
O]
ﬁ 2
n
O
U
(%2}
S 1
=
O

O I T T T T 1

0 1000 2000 3000 4000 5000

PRESSURE, PSIA

Figure 5.63 Relationship between oil viscosity and pressure for the study of an effect

of oil properties.
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Figure 5.64 Relationship between solution gas-oil ratio and pressure for the study of

an effect of oil properties.

5.6.5.1 Reservoir without dip angle

Figure 5.65 shows oil production profile of the three cases with different oil

properties. It is clearly seen that oil production rate during water flooding period
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depends on oil properties. Case 3 shows a lower rate than case 1 and case 2. As
shown in Figure 5.62, case 3 has the highest oil formation volume factor (B,) which
results in the lowest oil production rate at standard condition. For the longest initial
water flooding period of case 3, it is affected by the lowest oil viscosity as shown in
Figure 5.63 which results in a stable flood front due to a lower value of end point
mobility ratio (M) as can be calculated by Eq. 3.6. However, the oil production rates

of all cases are not much different during WAG injection period.

Table 5.75 shows the comparison of their results. Case 3 shows the highest
oil recovery factor of 82.33%, although it provides the lowest amount of oil
production of 27.061 MMSTB because of a high formation volume factor which
results in the smallest amount of original oil in place (32.870 MMSTB). When gas
production is considered, case 3 produces the highest amount of gas because it has

the highest solution gas-oil ratio as shown in Figure 5.64.

— CASE 1 — CASE 2 CASE 3

12000

10000

000

B000

4000

2000

QIL PRODUCTION RATE, STB/DAY

I
0 10 20 30
TIME, YEARS

Figure 5.65 Effect of oil properties on oil production rate of WAG with up-dip

injection in a reservoir without dip angle.
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5.6.5.2 Reservoir with dip angle of 15°

Oil production profiles of all three cases have a similar trend. In water
flooding period, case 1 has higher oil rate than case 2 and case 3 which are around
10,000 RB/D, 9,100 RB/D, and 7,800 RB/D, respectively, due to the effect of oil
formation volume factor (B,) as shown in Figure 5.62. A higher oil rate at standard
condition is obtained by a lower B,. For case 1, a high oil viscosity as shown in Figure
5.63 results in a high end point mobility ratio (M) as can be calculated by Eq. 3.6.
Therefore, water cut of the producer reaches the stopping criteria early because
water tends to underrun. As a result, stopping time for water flooding of case 1 is a
little bit earlier than those for the other two cases. Figure 5.66 shows the effect of oil

properties on oil production profile.

Similarly to a non-dipping reservoir, case 3 yields the highest oil recovery
factor (80.89%), even though it provides the least amount of oil production (25.815
MMSTB) because case 3 has the least amount of original oil in place. This is because
case 3 has the highest oil formation volume factor as shown in Figure 5.62. In
addition, case 3 produces the largest amount of gas due to the high solution gas-oil
ratio as shown in Figure 5.64. However, case 2 yields the highest BOE of 29.722
MMSTB. Their results are tabulated in Table 5.75.
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Figure 5.66 Effect of oil properties on oil production rate of WAG with down-dip

injection in a reservoir with dip angle of 15°.

5.6.5.3 Reservoir with dip angle of 30°

From Figure 5.67, case 1 has the highest oil rate in water flooding stage while
case 3 has the lowest rate. As previously discussed for a non-dipping reservoir and a
reservoir with dip angle of 15°, higher oil production rate and shorter period of initial
water flooding are affected by lower oil formation volume factor and higher oil
viscosity, respectively. However, oil rate of three cases are not much different in WAG

injection stage.

Table 5.75 shows result comparison. Case 2 provides the highest oil
production of 25.705 MMSTB and the highest BOE of 27.850 MMSTB. Case 3 has the
highest oil formation volume factor which results in the lowest amount of original oil
in place. Consequently, case 3 provides the smallest amount of oil production
although this case yields the highest oil recovery factor of 83.94%. Moreover, the
highest solution gas-oil ratio of case 3 gives a high amount of gas production of

31.525 BSCF.
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Figure 5.67 Effect of oil properties on oil production rate of WAG with up-dip

injection in a reservoir with dip angle of 30°.
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CHAPTER VI
CONCLUSIONS

The following conclusions are made from the results of the studying of water

alternating gas process (WAG) and double displacement process (DDP) after initial

period of water flooding and their sensitivity.

1.

3.

Water alternating gas process (WAG) and double displacement process (DDP)
after initial water flooding have more efficiencies than long-term water
flooding. These two methods produce much more amount of oil, although
they involve in gas requirement due to the gas injection mechanisms.
However, DDP is not the effective method to produce oil from a non-dipping

reservoir.

Water cut stopping criteria for the initial water flooding have small effect on
oil production. Criteria of low water cut results in slightly better production
performance because it allows the process to be switched from initial water
flooding to WAG or DDP earlier than those cases having higher water cut
stopping criteria. Consequently, it contains lower amount of flooded water

inside the reservoir which has to be produced back to the surface.

The increase of water injection rate in both WAG and DDP provides better
results, even though the injection rate cannot be kept constant throughout
the injection period in some cases because of the limitation of fracturing
pressure. However, we have to handle large amount of injected and
produced water when the water injection rate is high. For WAG, moderate gas
injection rate is appropriate because it yields the highest barrel of oil
equivalent (BOE). DDP provides the highest BOE when gas is injected at the
highest rate.

Injection of WAG in smaller slugs (shorter injection duration for each slug)
tends to have a little more efficiency. WAG cycle significantly influences the

requirement of water and gas. For a non-dipping reservoir, large amount of oil
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is produced when water injection duration is longer than gas injection
duration (cycle of 4:1 and 2:1) because we need water to stabilize the
floodfront. For an inclined reservoir, the recovery factor is not much different
when we change the WAG cycle because unstable floodfront is more difficult

to occur in a reservoir with bigger dip angle.

Regarding well locations, different patterns result in different values of BOE.
The combination of a vertical well located at up-dip location with a
horizontal well located at down-dip location provides the highest BOE for
DDP in an inclined reservoir. For WAG with up-dip injection, the highest BOE
yielding patterns are (1) eight vertical wells located along the length of
reservoir for a non-dipping reservoir, (2) four vertical wells for a 15° dipping
reservoir, and (3) the combination of a vertical well and a horizontal well for
a 30° dipping reservoir. For WAG with down-dip injection, production by eight
vertical wells provides the highest amount of BOE for a non-dipping reservoir
while two horizontal wells, one located up-dip and another one located
down-dip, are effective for both 15° and 30° dipping reservoirs. Gravity plays
an important role in oil production from inclined reservoirs. Therefore, two
wells are considered to be efficient for 15° and 30° reservoirs while a non-
dipping reservoir needs the pattern with shorter well spacing (pattern of eight

wells) to produce oil from every part of the reservoir.

Horizontal permeability has a large impact on the performance of oil
production. A case of higher horizontal permeability results in higher oil
recovery factor in an inclined reservoir because of the ease of oil flowing
while the moderate horizontal permeability (126 md) yields the highest oil
recovery factor in a non-dipping reservoir because of the problem of early gas

breakthrough in a case with the highest horizontal permeability.

The case in which vertical to horizontal permeability ratio is 0.5 (k,/ky, = 0.5)
shows higher oil recovery factor than the case in which k,/k, = 0.1. However,
the recovery factor is also increased when we reduce the value of k,/k, to

0.01 but this case requires much more amount of injected gas.



8.

9.

10.
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Oil recovery factors from different three-phase relative permeability
correlations are significantly different. The highest oil recovery factor is
obtained when ECLIPSE default model is applied. In addition, Stone 1 model
provides larger oil recovery factor than Stone 2 model because oil relative
permeability calculated by Stone 1 model is often higher than oil relative

permeability calculated by Stone 2.

The important factor that is affected when we change the reservoir thickness
is the size of reservoir and the reservoir fluids located inside. When the
thickness is reduced, oil production reaches the economic limit earlier.
However, it does not indicate that oil recovery factor of smaller reservoir will
be lower or higher than that for the larger reservoir. On the other hand, a
case with too large thickness reaches the limitation of production time while
large amount of oil is still not produced; it thus shows very low oil recovery
factor. Nevertheless, cases with higher thickness yields higher oil recovery
factor when the production time is not limited because higher thickness

results in more stability of floodfront.

Oil recovery factor increases when oil tends to be lighter and contains higher
amount of solution gas. The reason is the improvement in its ability to flow

inside the reservoir.
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APPENDIX

In this study, ECLIPSE 100 is used as a simulator to construct the reservoir
model. The input data for the water alternating gas with up-dip and down-dip
injection base cases and the double displacement process base case are detailed

below:

1. Case definition

Simulator: Black oil
Model dimension: Number of cells in X direction: 73
Number of cells in Y direction: 31

Number of cells in Z direction: 21

Grid type: Cartesian

Geometry type: Corner point

Oil-gas-water properties: Water, oil, gas, and dissolved gas
Solution type: Fully implicit

2. Grid

2.1Properties

Active grid blocks: (1=1-73, J=1-31, K=1-20) = 1
(1=1-73, J=1-31,K=21) =0

X Permeability: 126 md
Y Permeability: 126 md
Z Permeability: 12.6 md
Porosity: 0.1509

2.2 Geometry

Grid block coordinate lines:  depend on dip angle

Grid block corners: depend on dip angle



3. PVT

3.1 Water PVT properties

Reference pressure (Pe):

Water FVF at Pr.

Water compressibility:

Water viscosity at P,

Water viscosibility:

3000 psia
1.021734 rb/stb
3.09988 x 10 psi”
0.3013289 cp
3.39604 x 10° psi'

3.2 Dry gas PVT properties (no vapourised oil)

Pressure FVF Viscosity
[psial [rb/Mscf] [cp]

14.7 225.77118 0.013252614
277.08421 11.684415 0.013438669
539.46842 5.8604139 0.013738956
801.85263 3.8557057 0.014127064
1064.2368 2.8465392 0.014597939
1326.6211 2.2432054 0.015149735
1589.0053 1.8454849 0.015780049
1851.3895 1.5665663 0.016484167
2113.7737 1.3625791 0.017254274
2376.1579 1.2088291 0.0180796
2515.1229 1.1423563 0.018534756

3000 0.96700949 0.020187742
3163.3105 0.92257588 0.020757503
3425.6947 0.86218077 0.021676481
3688.0789 0.81250833 0.022592519
3950.4632 0.77111488 0.023499222
4212.8474 0.73619385 0.024392134
4475.2316 0.70639432 0.025268362
4737.6158 0.68069512 0.026126207

5000 0.65831597 0.026964832

195



3.3 Live oil PVT properties (dissolved gas)

196

R, Poub FVF Viscosity
[Mscf/stb] [psial [rb/stb] [cp]

0.0013251226 14.7 1.069137 1.2402773

277.08421 1.0521431 1.3157432

539.46842 1.0516839 1.4498012

801.85263 1.0515252 1.6261628

1064.2368 1.0514448 1.8437304

1326.6211 1.0513962 2.1048022

1589.0053 1.0513637 2.4132261

1851.3895 1.0513403 27737872

2113.7737 1.0513228 3.1919255

2376.1579 1.0513091 3.6735649

2515.1229 1.0513031 3.9565081

3000 1.0512863 5.1109132

3163.3105 1.0512818 5.563312

3425.6947 1.0512754 6.3634539

3688.0789 1.05127 7.2595718

3950.4632 1.0512653 8.2578239

4212.8474 1.0512612 9.3639202

44752316 1.0512575 10.582968

4737.6158 1.0512543 11.919316

5000 1.0512514 13.376406

0.045575432 277.08421 1.0879253 1.0103244

539.46842 1.0778477 1.0399163

801.85263 1.0743875 1.0857309

1064.2368 1.0726378 1.1443819

1326.6211 1.0715815 1.2143808

1589.0053 1.0708747 1.2950212

1851.3895 1.0703685 1.3859858

2113.7737 1.0699882 1.487169

2376.1579 1.0696919 1.5985826

2515.1229 1.06956 1.6617576

3000 1.0691957 1.9050329

3163.3105 1.0690982 1.9950402
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R, Poub FVF Viscosity
[Mscf/stb] [psial [rb/stb] [cp]

3425.6947 1.068961 2.1482416

3688.0789 1.0688433 2.3120705

3950.4632 1.0687413 2.4865287

4212.8474 1.068652 2.6715637

4475.2316 1.0685731 2.8670619

4737.6158 1.068503 3.0728416

5000 1.0684403 3.2886497
0.10170558 539.46842 1.1124223 0.84002122
801.85263 1.1044637 0.86288269
1064.2368 1.100452 0.89456427
1326.6211 1.0980343 0.93367602
1589.0053 1.096418 0.97944279

1851.3895 1.0952613 1.0314041

2113.7737 1.0943926 1.0892759

2376.1579 1.0937162 1.152877

2515.1229 1.0934153 1.1888397

3000 1.092584 1.3264576

3163.3105 1.0923615 1.3770001

3425.6947 1.0920485 1.4625628

3688.0789 1.0917802 1.5534314

3950.4632 1.0915475 1.6495173

4212.8474 1.0913438 1.7507137

4475.2316 1.0911641 1.8568914

4737.6158 1.0910043 1.9678962

5000 1.0908613 2.0835467
0.16395522 801.85263 1.1403543 0.72158197
1064.2368 1.1333311 0.74074899
1326.6211 1.1291083 0.76554916
1589.0053 1.1262889 0.79525994
1851.3895 1.124273 0.82942227
2113.7737 1.1227599 0.86772984
2376.1579 1.1215824 0.90996846
2515.1229 1.1210587 0.93387599
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R, Poub FVF Viscosity
[Mscf/stb] [psial [rb/stb] [cp]

3000 1.1196126 1.0253232

3163.3105 1.1192256 1.0588533

3425.6947 1.1186814 1.1155173

3688.0789 1.1182149 1.1755445

3950.4632 1.1178104 1.2388412

4212.8474 1.1174565 1.3053076

4475.2316 1.1171442 1.3748342

4737.6158 1.1168665 1.4473002

5000 1.1166181 1.5225719
0.23059392 1064.2368 1.171041 0.63560714
1326.6211 1.1644833 0.65228139
1589.0053 1.1601136 0.67288008
1851.3895 1.1569925 0.69697368
2113.7737 1.1546518 0.72426358
2376.1579 1.1528313 0.75453447
2515.1229 1.1520219 0.77171711
3000 1.149788 0.83758903
3163.3105 1.1491905 0.86176289
3425.6947 1.1483504 0.90260932
3688.0789 1.1476303 0.94585271
3950.4632 1.1470062 0.99140586

4212.8474 1.1464601 1.0391803

4475.2316 1.1459783 1.089084

4737.6158 1.14555 1.1410194

5000 1.1451668 1.1948828
0.30071672 1326.6211 1.204112 0.57047982
1589.0053 1.1977854 0.58530969
1851.3895 1.1932748 0.60302932
2113.7737 1.1898952 0.62335993

2376.1579 1.1872685 0.6460935

2515.1229 1.1861013 0.6590514
3000 1.1828813 0.70892578
3163.3105 1.1820205 0.72727362
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R, Poub FVF Viscosity
[Mscf/stb] [psial [rb/stb] [cp]

3425.6947 1.1808105 0.75830077

3688.0789 1.1797735 0.7911639

3950.4632 1.1788751 0.82578329

4212.8474 1.1780892 0.86208063

4475.2316 1.1773958 0.89997696

4737.6158 1.1767796 0.93939117

5000 1.1762283 0.98023889

0.37375579 1589.0053 1.2393217 0.51938469
1851.3895 1.2330917 0.53277298

2113.7737 1.2284318 0.54837246

2376.1579 1.2248131 0.56599062

2515.1229 1.2232059 0.57608583

3000 1.218775 0.61515125

3163.3105 1.2175912 0.62957481

3425.6947 1.2159274 0.65400197

3688.0789 1.2145023 0.67990635

3950.4632 1.2132677 0.70721497

4212.8474 1.212188 0.73585775

44752316 1.2112357 0.76576565

4737.6158 1.2103895 0.79686929

5000 1.2096327 0.82909793

0.44931763 1851.3895 1.2764901 0.47815326
2113.7737 1.2702713 0.4903721

2376.1579 1.2654501 0.50433103

2515.1229 1.2633101 0.51238049

3000 1.2574146 0.54373676

3163.3105 1.2558405 0.55536757

3425.6947 1.2536291 0.57510507

3688.0789 1.2517354 0.59607444

3950.4632 1.2500957 0.61820842

4212.8474 1.2486619 0.64144356

44752316 1.2473976 0.66571844

4737.6158 1.2462744 0.69097242
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R, Poub FVF Viscosity
[Mscf/stb] [psial [rb/stb] [cp]

5000 1.24527 0.71714467

0.52711162 2113.7737 1.3154764 0.44411489
2376.1579 1.3092103 0.4553589

2515.1229 1.306433 0.46188729

3000 1.2987883 0.48751927

3163.3105 1.2967486 0.49707965

3425.6947 1.2938843 0.51334443

3688.0789 1.2914326 0.53066473

3950.4632 1.2893103 0.54897814

4212.8474 1.2874552 0.56822655

4475.2316 1.2858199 0.58835452

4737.6158 1.2843675 0.60930813

5000 1.2830689 0.63103401

0.60691334 2376.1579 1.3561662 0.41548545
2515.1229 1.3526287 0.42085551

3000 1.342916 0.44210218

3163.3105 1.3403268 0.4500782

3425.6947 1.3366923 0.46368788

3688.0789 1.3335828 0.47822137

3950.4632 1.3308922 0.49362033

4212.8474 1.3285413 0.50983106

4475.2316 1.3264694 0.52680291

4737.6158 1.3246298 0.54448724

5000 1.3229854 0.56283647

0.64992893 2515.1229 1.3783732 0.40207564
3000 1.3674175 0.42140791

3163.3105 1.3645001 0.42868976

3425.6947 1.3604058 0.44113673

3688.0789 1.3569038 0.45445068

3950.4632 1.3538744 0.46857518

4212.8474 1.3512279 0.48345852

44752316 1.348896 0.49905226

4737.6158 1.3468257 0.51531007

5000 1.3449755 0.53218695




3.4 Fluid density at surface conditions

Oil density:

Water density:

Gas density:

3.5 Rock properties

Reference pressure:

Rock compressibility: 3.013923 x 10° psi’1

4. SCAL

51.45684 (b/ft”
62.02797 \p/ft’
0.04369958 |b/ft’

3000 psia

4.1 Gas/oil saturation functions

S Ko Keo "
[psial

0 0 0.8 0
0.15 0 0.53972801 0
0.2125 0.00078125 0.44176066 0
0.275 0.00625 0.35056363 0
0.3375 0.02109375 0.26668279 0
0.4 0.05 0.19082267 0
0.4625 0.09765625 0.12394296 0
0.525 0.16875 0.067466001 0
0.5875 0.26796875 0.023852834 0
0.65 0.4 0 0
0.75 1 0 0
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4.2 Water/oil saturation functions

Pe
va Krvv Kro
[psial
0.25 0 0.8 0
0.3 0.00041152263 | 0.67044199 0
0.35 0.0032921811 0.54874842 0
0.4 0.011111111 0.43546484 0
0.45 0.026337449 0.33126933 0
0.5 0.051440329 0.23703704 0
0.55 0.088888889 0.15396007 0
0.6 0.14115226 0.083805248 0
0.65 0.21069959 0.02962963 0
0.7 0.3 0 0
1 1 0 0
5. Initialization
Datum depth: 5000 ft
Pressure at datum depth: 2242 psia
WOC depth: 12000 ft
GOC depth: 5000 ft
6. Schedule
6.1 During initial water flooding
6.1.1 Producer
Well specification
Well: WELL1
Group: WELL
| location: 12
J location: 16
Preferred phase: OlL
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Inflow equation:

STD

Automatic shut-in instruction: SHUT

Crossflow:

Density calculation:

Well connection data

Well:

K upper:

K lower:
Open/shut flag:
Well bore ID:

Direction:

Production well control

Well:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

6.1.2 Water injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

YES
SEG

WELL1

1

20

OPEN
0.5522083 ft
Z

WELL1
OPEN

RESV

8000 rb/day
200 psia

WELLZ2
WELL
62

16
WATER
STD

Automatic shut-in instruction: SHUT

Crossflow:

Density calculation:

YES
SEG
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Well connection data

Well: WELL2

K upper: 1

K lower: 20
Open/shut flag: OPEN

Well bore ID: 0.5522083 ft
Direction: Z

Injection well control

Well: WELL2

Injector type: WATER

Open/shut flag: OPEN

Control: RESV

Reservoir volume rate: 8000 rb/day

BHP target: 4080 psia (depend on dip angle)

6.2 After initial water flooding
6.2.1 Water alternating gas with up-dip injection
6.2.1.1 Producer

Well specification

Well: P1
Group: P

| location: 62
J location: 16
Preferred phase: OIL
Inflow equation: STD

Automatic shut-in instruction: SHUT
Crossflow: YES

Density calculation: SEG



Well connection data

Well:

K upper:

K lower:
Open/shut flag:
Well bore ID:

Direction:
Production well control

Well:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

6.2.1.2 Water injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

Automatic shut-in instruction:

Crossflow:

Density calculation:

Well connection data

Well:
K upper:

K lower:

P1

1

20

OPEN
0.5522083 ft
Z

P1

OPEN

RESV

8000 rb/day
200 psia

W1

12

16
WATER
STD
SHUT
YES
SEG

W1

20
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Open/shut flag:
Well bore ID:

Direction:
Injection well control

Well:
Injector type:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

Automatic cycling of wells

Well:

On period:
Off period:
Start-up time:

6.2.1.3 Gas injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

Automatic shut-in instruction:

Crossflow:

Density calculation:

Well connection data

Well:

OPEN
0.5522083 ft
Z

W1

WATER

OPEN

RESV

8000 rb/day

3260 psia (depend on dip angle)

W1

90 day
90 day
1 day

Gl

12

16
GAS
STD
SHUT
YES
SEG

Gl
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K upper:

K lower:
Open/shut flag:
Well bore ID:

Direction:
Injection well control

Well:
Injector type:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

Automatic cycling of wells

Well:

On period:
Off period:
Start-up time:

1

20

OPEN
0.5522083 ft
Z

Gl

GAS

OPEN

RESV

8000 rb/day

3260 psia (depend on dip angle)

G1

90 day
90 day
1 day

6.2.2 Water alternating gas with down-dip injection

6.2.2.1 Producer
Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

P1
P
12
16
OlL
STD

Automatic shut-in instruction: SHUT

Crossflow:

YES

207



Density calculation:

Well connection data

Well:

K upper:

K lower:
Open/shut flag:
Well bore ID:

Direction:

Production well control

Well:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

6.2.2.2 Water injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

Automatic shut-in instruction:

Crossflow:

Density calculation:

Well connection data

Well:
K upper:

SEG

P1

1

20

OPEN
0.5522083 ft
Z

P1

OPEN

RESV

8000 rb/day
200 psia

W1

62

16
WATER
STD
SHUT
YES
SEG

W1
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K lower:
Open/shut flag:
Well bore ID:

Direction:
Injection well control

Well:
Injector type:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

Automatic cycling of wells

Well:

On period:
Off period:
Start-up time:

6.2.2.3 Gas injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

Automatic shut-in instruction:

Crossflow:

Density calculation:

20

OPEN
0.5522083 ft
Z

W1

WATER

OPEN

RESV

8000 rb/day

4080 psia (depend on dip angle)

W1

90 day
90 day
1 day

Gl

62

16
GAS
STD
SHUT
YES
SEG
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Well connection data

Well: Gl

K upper: 1

K lower: 20
Open/shut flag: OPEN

Well bore ID: 0.5522083 ft
Direction: Z

Injection well control

Well: G1

Injector type: GAS

Open/shut flag: OPEN

Control: RESV

Reservoir volume rate: 8000 rb/day

BHP target: 4080 psia (depend on dip angle)

Automatic cycling of wells

Well: Gl

On period: 90 day
Off period: 90 day
Start-up time: 1 day

6.2.3 Double displacement process
6.2.3.1 Producer

Well specification

Well: WELL2
Group: WELL
| location: 62

J location: 16
Preferred phase: OlL

Inflow equation: STD



Automatic shut-in instruction: SHUT

Crossflow:

Density calculation:

Production well control

Well:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

6.2.3.2 Gas injector

Well specification

Well:

Group:

| location:

J location:
Preferred phase:

Inflow equation:

Automatic shut-in instruction:

Crossflow:

Density calculation:

Injection well control

Well:
Injector type:
Open/shut flag:

Control:

Reservoir volume rate:

BHP target:

YES
SEG

WELL2
OPEN

RESV

8000 rb/day
200 psia

WELL1
WELL
12

16
GAS
STD
SHUT
YES
SEG

WELL1

GAS

OPEN

RESV

8000 rb/day

3260 psia (depend on dip angle)
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