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CHAPTER 1 

INTRODUCTION 

In this research, the content covers rheology of fluid and the numerical methods in the 

applications of engineering and science. Rheology is the study of flow and 

deformation of matter under applied forces originally starting from liquid. For the 

problems of fluid in motion, the mathematical models are set to explain flow 

behaviors and the way how to solve simulation problems. Many paradigms have been 

introduced to solve these models including experiment, analytical and numerical 

methods [1]. From the former studies, the facts showed that many problems could not 

be solved by analytical method. Subsequently, the numerical styles are well known 

and useful to evaluate nonlinear differential form. 

The computational program in this work executes fluid dynamic problem [2] that is 

basically calibrated from Newtonian model before the heuristic algorithm of 

viscoelastic type is created. In industrial process, the implement of an initial trial 

design is required to reduce the expense of production whilst the suitable 

computational model is rechecking the results and effects in the construction to 

describe the physical behavior. After that the model is modified to optimize 

computing time and accuracy. This trial design is approved to offer a high 

performance in the engineering processing. 

For Newtonian fluid, the proportion between shear stress and the rate of deformation 

is linear and both values start at zero or another meaning of constant viscosity, such as 

water, which describes via Navier-Stoke equation. The nonlinear viscosity is called 

“non-Newtonian”, which is known as dilatant fluid and pseudoplastic fluid. 

Viscoelastic fluids, one of non-Newtonian types, are important for polymer 

processing. The constitutive equations have been implemented to explain the results 

from the experiments. These equations are used to describe flow behaviors of 

viscoelastic fluids such as Maxwell, Oldroyd-B and Phan-Thein Tanner models.    
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To illustrate the complex behavior of fluid, the rheological equations of state and 

material functions are discretised from the conservation of mass and momentum 

equations. The numerical method was developed for solving different solutions in 

science and engineering arias, such as viscoelastic flows. The difficulty is appeared 

while solving the nonlinear partial differential equations in the mathematical model of 

the conservation of mass and momentum equations including constitutive equation. 

These equations have to be described as Navier-Stokes equations which reflect second 

order nonlinear partial differential equation with viscoelastic model. The numerical 

solution can manage complex problems efficiently. 

Many numerical methods are widely utilized such as finite difference method (FDM) 

[3], finite element method (FEM) [4-7], and finite volume method (FVM) [8-10] to 

get the least error approximate solution. Ngamaramvaranggul and Webster [11, 12] 

calculated the simulation model for the pressure-tooling wire-coating flows with 

Phan-Thien/Tanner fluid using the standard FEM under the stability of streamline-

upwind Petrov/Galerkin (SUPG). Consequently, Puangkird et al. [13, 14] generalized 

transient computation of start-up pressure-driven for viscoelastic flow and then 

applied to compute in cross-slot devices with mixed finite volume/element method.  

The strong elongation and violent shear stress at contraction position [15-17] play an 

important role in 4:1 contraction problem for viscoelastic fluid. Originally observation 

from the experiment [18, 19] of non-complicated fluid such as Boger fluid [20] was 

presented. The study included flow characteristics associated with abrupt changes in 

geometry also as lip-vortex mechanism of vortex enhancement in planar contraction 

flows [21]. To extend advanced fluid, the solution of 4:1 planar contraction for 

Oldroyd-B model [9] was evaluated via a semi-Lagrangian FVM. After the result of 

planar system has showed significant error then alternative axisymmetric system [10] 

was applied to correct this perturbation. Recently, the extensional flow of a 

polystyrene Boger fluid in the cylindrical coordinate system [22] through a 4:1 

contraction was displayed. The development of numerical simulation for viscoelastic 

square contraction flows such as Oldroyd-B and PTT models [23-25] was proceeded 

while some solutions were clearly visualized and compared with other literatures. Not 

only the observation of contraction ratio effect [26, 27] was made but also correction 
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for improper inlet boundary condition was applied. The positive result of feedback 

pressure-driven velocity flow [28] was introduced to make solution more secure. 

Another problem that was included in this thesis was die swell flow. In real problem, 

the steep shear stress occurs at die wall because of high velocity near die exit. Hence, 

the slip velocity at die wall has been added in order to reduce shear stress at 

singularity point. At the beginning when slip effect [29] was determined, Newtonian 

and viscoelastic fluids for two dimensional Cartesian coordinate system were 

examined. After the observation of experimental work [30], slip velocity was set as a 

function [31] of wall shear stress for capillary tube problem. Another definition was 

created by Phan-Thien [32] who combined three slip conditions to one slip equation 

that is consisted of critical and wall shear stresses by switching stick velocity to slip 

speed if critical shear stress was greater than the wall shear stress. In 2000, 

Ngamaramvaranggul and Webster [33] added the slip condition to calculate the free 

surface problems for pressure- and tube-tooling die. Recently, the slip effect of 4:1 

contraction problem for Newtonian and Oldroyd-B fluids was determined in [34, 35] 

to reduce the stress values and vortex size.  

The die-swell problem shows the complex deformation of free surface shape and 

physical properties. For the non-Newtonian flow pass the singular point at die wall, 

the radius increase in viscoelastic fluid is as representative as the swelling ratio (  ). 

The extrudate of Newtonian fluid has   less than polymer melt since the polymeric 

material gains more relaxation and memory time. Not only the streamline prediction 

method was set in this issue to predict the swelling ratio but also the flowrate-driven 

boundary condition was adjusted to get more precise outcome by adjusting velocity of 

initial condition with a semi-implicit Taylor-Galerkin pressure-correction finite 

element method (STGFEM). 

For the simulation model of industry process, the simple form of stick-slip flow [36] 

is observed before the complicated flows of die swell problem are concerned. After 

the flow passes from a stick entry part to a free exit section, the singularity of severe 

stress and steep velocity gradients region will appear. A singular finite element 

method [37] was introduced to compute the Stokes flow of stick-slip problem in the 
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neighborhood of the singular point and then the integrated singular basis function 

method [38] was reformed to improve the accuracy of the solution for the same 

problem including die-swell flow as well. 

The singularity point of swelling extrusion position is rough and the free surface path 

will become shark skin [39] in case of high speed so this phenomenon is a noteworthy 

point in rheology and importance in polymer melt. The calculation of surface shape 

for analytical solution under creeping flow and ignored gravity condition in large 

surface tension is reported including melt fracture. An estimation of extrudate swell is 

included a dominant surface tension case for the extrudate processes. The observation 

for steep center of low order elements showed that the accuracy of solution is far 

away from real solution due to high values of the stress and strain near the singularity. 

To reduce this effect, the semi-radial singularity mapping theory [40] is applied along 

with various numerical works of the die-swell flow for Newtonian and viscoelastic 

fluid by Tanner [41].  

A variety of numerical methods were presented to improve accuracy convergence and 

quality of solutions as same as singular function scheme. The singular boundary 

element method (SBEM) [42] is proposed to explore the approximate solution near 

singularity approaching the solution. Cuvelier et al. [43] proffered the singular 

expansion series to correct stress near singular point. Many finite element techniques 

are created for execute stick slip and die-swell flows, such as mesh refinement 

solutions, Galerkin [44] and collocation methods [45]. Consequently, a mixed FEM 

[6] is employed to resolve the problems of slit, circular, and annular dies for 

Newtonian and Maxwell fluids. Although illustration of finer mesh was emboldened 

to focus on elements at the singularity of die swell case, the solutions maintained 

space between analytical and approximate solutions. 

To design die more efficiently and accurately, all factors affecting the extrudate shape 

must be monitored. A relation of velocity near solid wall versus swelling ratio for the 

free surface flow is noticed after numerical solution gave high swelling path. One 

reason to explain this situation is slip effect [29] and surface tension so a simple type 

of Newtonian case was the first to be determined. Then the slip condition for the 
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complex flows were considered next through a boundary element method [32] with 

alternative free-surface location technique in planar flows for viscoelastic fluids; Not 

only numerical study but also experiment is set to observe polyisobutylene-

polybutene fluid [46] in axisymmetric isothermal flows. The advanced geometries are 

designed for pressure- and tube-tooling die processes [33] under high extensional 

viscosities of PTT flows. The calculations of flows are preserved free surface 

behaviors via STGFEM with slip effect technique. Simultaneously with this standard 

FEM, streamline-upwind Petrov/Galerkin (SUPG) [47] and local gradient recovery 

are applied to stabilize the converge solution.  

To develop visualization on free surface shape more real, many studies were 

investigated in three dimensions (3D). The influence of heat [48] was present for 

three-dimensional non-isothermal extrusion flows. The unconstrained extrudate 

solution of Newtonian fluids at finite Reynolds number for three-dimensional planar 

and axisymmetric dies [49] was calculated via boundary and finite element methods. 

A simple shear flow in Wagner integral stress model [50] with a discrete spectrum of 

relaxation times and a single parameter damping function was determined in 3D for 

component of the experimental flow but the result was calculated in terms of the two-

dimensional ordinary space. In this die swell case, the particles track was observed as 

spirals or helices in the planar entry free surface flow of molten polyethylenes. 

In this work, Newtonian and Oldroyd-B fluids are modeled for die-swell and 4:1 

contraction problems under STGFEM simultaneously with SUPG and local gradient 

recovery. The slip effect and feedback pressure-driven velocity flow are both 

conditions to modify solution getting real outcome. The benchmark of this algorithm 

and other literatures is expressed in a way that is clearly understood via figure and 

table presentations. 

In Chapter II, the properties of basic rheology fluid is explored to predict the behavior 

of fluid flows through Navier-Stokes equation of Newtonian and the constitutive 

equations of viscoelastic fluids, such as Maxwell, Oldroyd-B, and Phan-Thien Tanner 

models. The basic viscometric flows are simple shear and elongation flows, which 

describe the properties of material. 
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Chapter III introduces numerical algorithm of semi-implicit Taylor-Galerkin pressure-

correction finite element method (STGFEM), solvers of linear equations, streamline 

prediction method and some special techniques for solution stability. The STGFEM is 

used to discretise the nonlinear differential models comprising Navier-Stoke equation 

and Oldroyd-B model. The velocity gradient recovery as well as the streamline-

upwind Petrov/Galerkin (SUPG) techniques are chosen to stabilize the converge 

solutions. The feedback of pressure-driven velocity flow is also taken to adjust the 

proper initial inlet boundary. 

In Chapter IV, the slip effect scheme is considered in the problem of 4:1 planar 

contraction flow with sharp corner geometry in both Newtonian and Oldroyd-B fluids. 

The numerical solution of two dimensional planar isothermal incompressible flow is 

computed. Finally, the solutions of Oldroyd-B model with and without the slip effect 

are compared with other numerical solutions. The new numerical technique and called 

feedback pressure-driven velocity flow is added to approve accuracy and eliminate 

the problem of divergent solution in 4:1 planar contraction flow with rounded corner 

geometry in Newtonian and Oldroyd-B fluids. 

Chapter V involves the free surface or die-swell problem under two dimensional 

axisymmetric isothermal incompressible flows. The streamline prediction method is 

set in this issue to predict the swelling ratio. Feedback pressure-driven velocity flow is 

taken to support the calculation of free surface path. Since fluid trail is shown 

complex deformation when it confronted with intermediate border between stick and 

slip boundaries, the diameter of extrudate for viscoelastic problem is varied when the 

property of liquid gets more flexibility. The manner of motion prognosticates its 

swelling ratio by calculation of a semi-implicit Taylor-Galerkin pressure-correction 

finite element method (STGFEM) simultaneously with treatment of pressure-driven 

velocity feedback to provide a precise solution of Newtonian and Oldroyd-B fluids. 

Moreover, the stability of approximated solutions is supported by local gradient 

recovery and the streamline-upwind Petrov/Galerkin techniques under two 

dimensional axisymmetric isothermal incompressible flow. The solution is 

recomputed by gradual increase of Weisenberg number (We)   to the highest limit. In 

addition, the pressure-driven velocity flow method has been taken to solve the 
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intensive We before the final prediction of swelling ratio was compared with other 

values in literatures.  

In Chapter VI, a number of researches and the numerical results are analyzed for 

suggestions in future works. 



 
 

 

CHAPTER 2 

NEWTONIAN AND NON-NEWTONIAN FLOWS 

This chapter presents a brief explanation about rheology and the properties of fluid 

materials, found in the book of Tanner [41]. Rheology is a subject of flow and 

deformation behavior of materials. Especially for fluid in motion, the behavior of flow 

is considered from forces and momentum conduced to governing equations. One 

simple kinematics of continuum under linear relation between force and shear rate is 

Newtonian fluid, which has the property of a dynamic viscosity independently of 

motion. This kind of fluid is expressed in Navier-Stokes equations while non-

Newtonian fluid has extra equation of shear and extensional properties in a form of 

constitutive model.  Newtonian fluid has a constant viscosity relating to stress and rate 

of deformation while a substance in solid obeys the Hooke’s law of a constant 

modulus of elasticity relating stress and magnitude of deformation. In case of Non-

Newtonian fluids, there are various behaviors, which are depended on the material 

type, expressed variable proportionality between stress and deformation rate. An 

effect of viscosity when the fluid resistance decreased with an increasing rate of shear 

stress is called shear thinning and the fluid of this specific character is named 

pseudoplastic. This property is discovered in some complex solutions, such as blood, 

whipped cream, ketchup, and molten polymer. Another effect of shear viscosity 

happened when the viscosity increases with applied shear stress is named shear 

thickening substance and this material type is dilatant fluid. Some dilatant fluids are 

difficult to process in industrial factory because they are solid-in-liquid dispersion. 

Bingham fluids, like toothpaste and oil paints, resist movement to critical stress which 

exceeds the yield stress. In Figure 2.1, types of rheological behaviors show the 

relation between the time rate of deformation and shear stress. 
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Figure 2.1 Types of rheological behavior 

 

All fluids in motion satisfy Newton’s second law, which states a mass moving with 

acceleration is proportional to resultant force. The resultant force (F) is a product of 

mass (m) and acceleration (a) as maΣF  . The shear stress ( xy ) is a kind of force of 

friction when fluid is sheared and acting on a body in the fluid path.  The shear stress 

is simple defined as the product of the shear rate (  ) and the shear viscosity ( s ). It 

can be expressed as, 

 sxy                   (2.1) 

For a Newtonian fluid,   is a function of temperature and pressure, but for non-

Newtonian fluid,   is a function of the shear rate. 

2.1    Basic Equations 

In fluid behaviors, the basic equations of isothermal and incompressible flows are 

comprised by the conservation of mass, the conservation of momentum, and the 

constitutive equation. These equations are derived in differential equations as 

functions of space and time to describe flows and materials of fluids.  

The yield 

stress 
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From the conservation of mass, the differential form is related between the density      

(  ) and the velocity ( U ) as the functions of position in space and time which is 

expressed as, 

  0.
t





U


 .                        (2.2) 

For isothermal and incompressible flow, the density is constant, thus Equation (2.2) 

transforms to the continuity equation 

        0 U .                 (2.3) 

From Newton’s second law of motion, the conservation of linear momentum states 

that the external forces acting on the fluid mass body is equal to the change in the 

momentum. The external forces are made up of two distinct groups, surface and body 

forces. The Cauchy stress tensor (σ ) which is the surface force but the gravity force  

( g ) which is the body force is discarded in this thesis. For incompressible fluids, the 

Cauchy stress is reduced to isotropic pressure (p) and the extra-stress tensor (T) 

IT pσ .              (2.4) 

For Newtonian fluids, the principle of the momentum conservation can be developed 

to the Navier-Stokes equations which are represented as, 

p
t

2 



UUU

U
 .            (2.5) 

From Equation (2.5), the momentum equation can be expressed in extra-stress tensor 

form which is related with the rate of deformation tensor (D) as, 

     p
t





UUT

U
   (2.6) 

       DT 2  (2.7) 

              )(
2

1 t
UUD               (2.8) 
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These material variables are characterized to dimensionless variables by scaling 

appropriately non-dimensional variables which are ,*,*t,*,*p,*,*y,*x TU  

* and*,
*Dt

D
ii   where L is a representative length, V is a representative velocity, and 

0  is a representative viscosity. 

  
x

L

1*x  , y
L

1*y  , U
V

U
1*  , p

1*p
0V

 , T
V

T
0

L*


 , 

                                        t
L

*t
V

 ,  L*
, 

Dt

DL

*Dt

D

V
 , i

0
i

1* 


                            (2.9) 

Equation (2.3) and (2.5) are transformed to dimensionless forms by using 

characteristic variables in Equation (2.9) and then * notation is discarded. Navier-

Stokes equation and the continuity equation are written as, 

        0. U    (2.10) 

     pRe
t

Re 



UUT

U
 (2.11) 

         
0

L
Re



V
  (2.12) 

For Newtonian fluids, the physical constant which is made up from transformation is 

the nondimensional Reynolds number (Re). The Reynolds number is a ratio of the 

inertial to viscous force. In the most common physical circumstances the inertial 

forces dominate over motions or small viscosity as Re . When Re is very low, 

flows are called creeping flows. 

For non-Newtonian fluids, the viscous properties of the viscoelastic fluids are 

introduced via the extra stress tensor where τ  is the polymer stress contribution: 

       τDT  2  (2.13)   

When the viscoelastic flows are expressed in the equations of nondimensional system, 

the dimensionless Weissenberg number (We) is obtained from scaling variables. The 
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Weissenberg number is the ratio of the relaxation time ( 1 ) and a specific process 

time. We is similar to the Deborah number (De), which is the ratio of the relaxation 

time to the deformation T in Equation (2.14) and (2.15). 

       
L

1V
We   (2.14) 

       
T

1De   (2.15) 

2.2    Constitutive Equations 

For fluid dynamics in physics and engineering, a constitutive equation or equation of 

state is a model of kinetic quantities especially stresses. This model shows the effect 

of force in term of stresses after being applied to strains so it is very well defined as   

deformations. The first constitutive equation was represented by Robert Hooke [51] 

who has created stress-strain relation known as Hooke’s law. This law is dealt with 

the case of linear elastic materials. 

2.2.1  The Maxwell Model 

The constitutive equation of Maxwell model [52, 53], which is used to describe the 

behaviors of viscoelastic fluids, in differential expression is introduced in equation 

(2.16). This equation is made up from the combination of Hooke’s law for elasticity 

and Newton’s law of viscosity [54].  

      D
T

T 0
0 2

tG








     (2.16) 

where G  is constant for the elastic modulus and 
G

0   is represented by the 

characteristic time  . 
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2.2.2  The Oldroyd-B Model 

Since the Maxwell model does not obey the material principle, Oldroyd [55] has 

replaced the original time derivative by a convected derivative term. There are two 

convected alternatives known as the nonlinear lower convected and nonlinear upper 

convected forms as shown in Equations (2.18) and (2.20) respectively.   

The nonlinear lower convected Maxwell model (LCM) is defined as, 

       DTT 02 


  (2.17) 

where the lower convected derivative of the extra stress tensor (


T ) is expressed as, 

      tUTUTTU
T

T 







t
 (2.18) 

The nonlinear upper convected Maxwell model (UCM) is defined as, 

       DTT 02 


 (2.19) 

where the lower convected derivative of the extra stress tensor (


T ) is express as, 

      tUTUTTU
T

T 







t
 (2.20) 

The general convected Oldroyd equation can be obtained from the upper derivative 

with the characteristic time ( i ), 7 ,,1i  . All quadratic terms are the products of 

T , D and 


D  where 


D  is the upper convected derivative of the rate of deformation 

tensor. 

     IDTDTDTTDT  
2

1

2

1
 

2

1
6531 



λτ  t  

       IDTIDDDDDD   
2

1
 2 7420 


















μ   (2.21) 
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To reduce the complicated equation, some characteristic time variables in Equation 

(2.21) is possible to be discarded, thus Oldroyd-B model is defined as, 

               )(2 201



 DDTT   (2.22) 

and        210    (2.23) 

where 1  is elastic solute viscosity, 2  is Newtonian solvent viscosity. 

The retardation time 2  is express as   

      
21

21
2







  (2.24) 

The extra stress tensor in Equation (2.22) was split into viscous and elastic from the 

work of Paddon and Holstein [3] and Crochet and Keunings [6, 56], hence the 

Oldroyd-B model expression is defined as: 

       τDT  22  (2.25) 

       Dττ 11 2 


  (2.26) 

where 


τ  is the upper convected derivative of the polymer stress contribution. 

For isothermal flow, the 3-constant Oldroyd-B model must satisfy the constraint 

equation as below: 

       021    (2.27) 

The decomposition of the extra stress tensor can be brought to elastic and Newtonian 

parts as shown in Equation (2.25) while Equation (2.26) only expresses a pure viscous 

term. Oldroyd-B model can be concerned as an extension of the upper convected 

Maxwell model and it will become the upper convected Maxwell model if the solvent 

viscosity is zero. In this thesis, Oldroyd-B model is the representation of constitutive 

form for 4:1 contraction and die-swell flows because the product of this model gives 
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the least error approximations in shear flow. The nondimensional system of Oldroyd-

B model is expressed in equation (2.28). 

  ))((2
t

1 






UUUD

tWeWe   (2.28) 

2.2.3  The Phan-Thien/Tanner (PTT) Model 

Phan-Thien and Tanner [57, 58] have introduced the particular constitutive model 

from network theory for melting flows of polymeric material. The nonlinear 

constitutive Phan-Thien/Tanner model is well defined to explain flow behavior of 

viscoelastic fluid. It is the state of art to show the rate of creation and destruction for a 

framework of network junctions under softening or hardening behavior. The PTT 

model gives accurate narration of steady-state and transient properties. 

The single relaxation time PTT constitutive equation is defined as, 

       Dττ 11 2 


f   (2.29) 

      )( DττDττ 





  (2.30) 

The exponential term f  in general form is expressed as 

         ])(exp[
1

1 trf



  (2.31) 

where 


τ  is the Gordon-Scholwalter convected derivative,   and   are adjustable 

non-dimensional model material parameters where   falls within the range 20   . 

  and   control shear and elongation behavior, respectively. 

Taking a Taylor series approximation and truncating at first order terms to the 

exponential form f , a linear PTT model is illustrated as 

                      )(1
1

1 trf



  (2.32) 
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Using this approach and truncating at second order terms, a quadratic PTT model is 

identified as 

                2

1

1

1

1 ))((
2

1
)(1 ττ trtrf








  (2.33) 

The quadratic PTT model is reduced to the Oldroyd-B model when   and   are 

vanished. 

2.3    Basic Flows 

In liquid, the two common shear and extensional flows exhibit the relative movement 

for adjacent particles. In shear flows liquid elements flow over or past each other, 

while in extensional flow, adjacent elements flow towards or away from each other 

[59]. 

2.3.1  Simple Shear Flow 

Considering simple shear flow, the fluid flows between two parallel plates. The top 

plate free to move under an applied force and the bottom plate is fixed (Stationary 

plate). The top plate is dragged at constant velocity u across the fluid. The shear rate 

across the layer is as shown in Figure 2.2. 

 

                                           Shear Force 

    u     

    

                      Stationary plate 

Figure 2.2 Particle motion in shear flow 

The velocity components  zyx u,u,u  within a Cartesian coordinate system are 

represented in simple viscometric shear flow as, 

       yux  , 0uu zy     (2.34) 
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The shear rate can be expressed in the velocity gradient as, 

        
dy

du x                                                (2.35) 

The primary normal stress difference ( 1N ) and the second normal stress difference      

( 2N ) can be used to describe the rotation of the fluid elements [60]. They are defined 

in the normal stresses  zzyyxx  ,,   or the primary and secondary normal stress 

function  21,  as below, 

     )(N 1
2

yyxx1     (2.36) 

     )(N 2
2

zzyy2    (2.37) 

                          sxy                (2.38) 

For Oldroyd-B model, the shear viscosity and first normal stress can be expressed as 

function of the shear rate: 

     0s )(                           (2.39) 

          2
2101 )(2)(      (2.40) 

Similarly, for exponential PTT model, )(s    and )(1    are 

             
)2(1

)(
22

1

0
s












               (2.41) 

     
)2(1

2
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22
1

2
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1











   (2.42) 

2.3.2  Extensional (Elongational) Flow 

The important property of elastic fluid is extensional viscosity behavior, which is 

formulated from a term of stress depended on the strain ( ). Extensional flow [61, 

62] is shear-free flow which is classified into three types: uniaxial, biaxial, and planar 

flows. The rate of extension ( ) is described as the function of the velocity profiles. 
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Figure 2.3 Particle motion in uniaxial extensional flow 

At the conservation of mass and axial symmetry, the extensional rate is the velocity 

distribution depending on flow direction and time even if all shear stress components 

are zero. 

                                             
dz

du
2

dy

du
2

dx

du zyx                                                    (2.43) 

                                                                       0yzxzxy                                               (2.44) 

For an incompressible fluid, the stress difference is related with the extensional rate 

and the extensional viscosity ( e ) can be expressed as, 

         )(ezzyyyyxx                              (2.45) 

Biaxial flow is deformed in two particular directions as illustrated in Figure 2.4. This 

flow is called stretching flow, which is represented as both a function of time and 

elongation rate.  

 

 

   

 

 

 

 

 

Figure 2.4 Particle motion in biaxial extensional flow 
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Walter showed the relation between uniaxial viscosity and biaxial viscosity as: 

         )2()( eeb                                 (2.46) 

The elongation rate for biaxial flow is: 

                                              
z

u

2

1

y

u

x

u zyx                                                   (2.47) 

The stress differences are given by: 

                                                        )(ebyyzzxxzz                                 (2.48) 

 0yzxzxy                                            (2.49) 

Normally in planar extension flow, the liquid volume is distorted in two directions act 

against each other, stretch in one direction and extension in another direction as 

depicted in Figure 2.5. 

 

 

 

 

 

 

   

Figure 2.5 Particle motion in planar extensional flow 

The elongation rate for planar extension flow is: 

                                              
z

u

x

u zx      and 0u y                                              (2.50) 

The stress difference is  

                   )(epzzxx                                            (2.51) 

For Oldroyd-B model, the extensional viscosity can be expressed in the following 

function of the extensional rate. 



 

 

20 

       
)1(

)1(

)21(

)21(
2)(

1

2
0

1

2
0e




























               (2.52) 

Correspondingly, for exponential PTT model, the extensional viscosity is represented 

as: 
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2.3.3  The Second and Third Invariants of the Rate of Strain Tensor 

Considering inelastic homogeneous isotropic fluid behavior under isothermal non-

Newtonian flow, the extra stress of a Reiner-Rivin fluid [63, 64] is defined as a 

function of deformation tensor within an incompressible body. It is expressed as,  

DT ),(2                 (2.54) 

where the shear rate of simple shear flow is  

     dII2                           (2.55) 

and the elongation rate for elongation flow is 

     
d

d
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III
3  .                         (2.56) 

The second invariant ( dII ) of the rate of strain tensor D in a Cartesian coordinate 

system is 
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The third invariant ( dIII ) of the rate of strain tensor D is 

dd II)det(III  D                          (2.58) 

Similarly, in an axisymmetric coordinate system dII  and dIII are described as: 
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and 
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2.4    Stream Function 

The streamlines represent the trajectories of particles in a steady flow via stream 

function. The flow velocity component can be defined as the derivatives of the scalar 

stream function. In case of fluid dynamics, the difference between the stream function 

values at any two points gives the volumetric flux across the line between A and P as 

shown in Figure 2.6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 Flow direction in stream function 

For two dimensional incompressible flows, Lamb [65] and Batchelor [66] have 

defined the stream function )yx,(  in the Cartesian coordinate system )yx,( . The 

stream function )yx,(  is expressed as, 


P

A

vdx)-(udy            (2.61) 
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The derivation of stream function in form of Poisson equation is 
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For cylindrical coordinate system )zr,( , the stream function )zr,(  is expressed as 
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Transformation to the Poisson equation is 
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CHAPTER 3 

NUMERICAL METHODS 

In science and engineering arias at recent years, a great deal of interest has been 

concentrated on invention and application. To develop the applied area, the 

simulations for many problems are set up under real conditions in order to reduce cost 

and time. For fluid model, the mathematical equations of the conservation of mass 

and momentum including constitutive equations are formulated from velocity, stress, 

pressure, and temperature especially for stress, which describe the physical behavior 

flow fluently. Instead of solving analytic solution of viscoelastic problem through that 

it is extremely hard to find either of complex integral or differential form of 

constitutive equations but this problem is eliminated via numerical methods. The aim 

of computational methods is the existing outcome that is observed from the accuracy, 

stability and convergence of the approximate solution so all numerical techniques are 

developed in order to encounter more complex problems. 

There are various useful methods such as finite difference method (FDM), finite 

element method (FEM), and finite volume method (FVM) to calculate the nonlinear 

partial differential equation. One of productive early numerical scheme is FDM, 

which is a virtual apparatus to simulate flow phenomena. After trial and error with a 

lot of problems, the concept of FDM make us know that this numerical style cannot 

handle nonlinear nature of the governing system for differential forms that involve 

complicated shapes because this formulation is complex. Instate of basic FDM, FVM 

played an important role to resolve the complex flow situations in order to increase 

accuracy. For example flow, a semi-Lagrangian FVM [9, 10] is applied to estimate 

the abrupt contraction problems for non-Newtonian fluid on a Cartesian and an 

axisymmetric flows. Similarly, FEM can eliminate more errors that are suffered with 

reduction accuracy in the convoluted flows. A lot of simulations that have been solved 

by FEM are as following problems. In stick-slip flow of Oldroyd-B fluid, FEM is 

adopted to calculate final solution before step up to predict swelling ratio by added 

free surface method to adjust the streamline path so the updated flow become die-
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swell problem [33, 67]. This technique is efficient to calculate flow characteristics at 

high Weisenberg numbers for Phan-Thien/Tanner fluid under the complex geometry 

of pressure-tooling wire-coating die via employment of the same standard FEM and 

streamline-upwind Petrov/Galerkin (SUPG) [12]. The advanced geometry of 4:1 

contraction flow is computed with a cell-vertex hybrid finite volume/element method 

[8] for highly elastic solutions of Oldroyd-B and Phan-Thien/Tanner (PTT) fluids 

with rounded and sharp corner contraction figures. And then the technique of alternate 

subcell [68, 69] is added to interpolate cooperative stress of Oldroyd-B fluid via 

FV/FE methods for cavity and contraction flows. After that, the sufficient various 

schemes are investigated to consider constitutive models and rheological properties in 

cross-slot devices though FV/FE pressure correction method [14]. 

In this chapter, the numerical techniques utilized efficiently to eliminate complicated 

problems. Hence, the governing equations in 4:1 contraction domains and die-swell 

flow are discretised by a semi-implicit Taylor-Galerkin pressure-correction finite 

element method (STGFEM). These equations are formulated to a system of linear 

equation before the approximate solution is calculated by Jacobi iterative method and 

Cholesky decomposition scheme. The velocity gradient recovery and the streamline-

upwind Petrov/Galerkin (SUPG) techniques are operated to stabilize the converge 

solutions. For slip case, Phan-Thien slip rule is a tool for finding appropriate slip 

velocity in case of 4:1 contraction problem [34] while feedback of pressure-driven 

velocity flow [28] is chosen to sustain the computation of free surface flow that 

includes theoretical prediction and numerical adjustment for die-swell paths. 

3.1    Finite Element Method 

The finite element method (FEM) [4, 5, 7] is a powerful developed technique for 

finding numerical solutions of complex problem in computation fluid dynamics. This 

method converts the governing flow equations (partial differential flow equations 

including velocity, pressure, stress, thermal, density, Young's modulus, Poisson's 

ratio, etc.) into a set of algebraic equations. For ease of structure, whole problem 

domain is subdivided in small parts called finite elements. All tiny straight lines are 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Coefficient_of_thermal_expansion
http://en.wikipedia.org/wiki/Density
http://en.wikipedia.org/wiki/Young%27s_modulus
http://en.wikipedia.org/wiki/Poisson%27s_ratio
http://en.wikipedia.org/wiki/Poisson%27s_ratio
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connected nodes to numerous simple elements over many sub-domains with suitable 

initial and boundary conditions to minimize error approximate function. FEM can 

encounter the complex flow situations when a complicated domain is generated to a 

large degree of freedom. 

This section describes the trial function approximation methods by a discrete model 

and it must be continuous over some region in space. The discrete model is built up 

with a set of this function for a finite number of points in the domain, as well as 

piecewise approximations of the function over a finite number of sub-domains, which 

are known as "finite elements". The solution is calculated over locally estimated shape 

function of each element so the steps are taken to obtain a finite element 

approximation in terms of the primary variables of the governing equation system, 

which involves the application of a classical trial solution method. 

The finite element method is characterized by a variational formulation that 

discretization strategies are as follows: 

1. Generate finite element meshes from a finite number of n points within the solution 

domain. The mesh is popular constructed in triangular or rectangular elements for two 

dimensions, and tetrahedral or hexahedral elements for three dimensions. In this 

research all meshes are considered in triangular elements for two dimensions as 

shown in Figure 3.1. 

 

 

 

 

 

Figure 3.1 Triangular elements in two dimensions 
 

 

 

http://en.wikipedia.org/wiki/Domain_of_a_function
http://en.wikipedia.org/wiki/Calculus_of_variations
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2. Interpolate a trial solution for the primary variables )x(
~
U . 

3. Use a variational or Galerkin weighted residual method. The process is constructed 

an integral of the inner product of the residual and the weight functions when integral 

is set to zero. In simple terms, it is a procedure that minimizes the error of 

approximation by fitting trial functions into the PDE. The residual is the error caused 

by the trial functions, and the weight functions are polynomial approximation 

functions that project the residual. This process eliminates all the spatial derivatives 

from the PDE thus a set of algebraic equations at steady state is constructed to 

approximate locally otherwise it can be a set of ordinary differential 

equations for transient problems. 

An example of this expression of the trial solution ( )x(
~
U ) of the velocity variable u, 

as a finite sum of trial functions is: 





n

1i

ii )x(N)x(
~

UU                            (3.1) 

where )x(Ni
 is trial-basis function (also called interpolation shape functions). The 

summation extending over the entire mesh of n nodes (i=1,...,n). The unknown nodal 

values of the variables U are the parameters i
U . 

For this method, the trial functions iN  are employed to approximate the global trial 

function )x(
~
U , which exists within a finite space (a "trial space"). The trial functions 

iN vanish outside their elements. It is noted that the number of nodes used in the 

integration is equal to the number of weighting functions N . 

   0)x(Ni  , if x is outside of element e                      (3.2) 

Also, for the velocity function U(x) to be constant: 

    1)x(Ni
                     (3.3) 

http://en.wikipedia.org/wiki/Inner_product
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Algebraic_equations
http://en.wikipedia.org/wiki/Steady_state
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Ordinary_differential_equation
http://en.wikipedia.org/wiki/Transient_state
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3.1.1  Weighted Residual Methods 

The methods of weighted residuals are methods for solving global differential 

equations to minimize the calculated error. The solutions (x)U of the differential 

equations are supposed to be precise approximated by a finite sum of test functions i . 

Baker [70] and Burnett [71] have illustrated common implementations, which are the 

Galerkin, the collocation, the sub-domain, the least-square and the least-square 

collocation methods. The weighted residual Galerkin method is selected in this work. 

The residual approach will be shown in the two-dimensional boundary value problem 

for the Poisson equation within a Cartesian (x,y) coordinate system. 
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 within                                (3.4) 

         0u   on   (3.5) 

where   is the boundary of the open domain   and f is a given function. The 

residual )u(R of equation (3.4) is 
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    (3.6). 

After replacing the exact solution into the right-hand side of equation (3.6), the 

residual function is set to equalize to zero throughout the entire domain. The residual 

of an approximate trial-solution is non-zero. And then the Galerkin weighted residual 

method is applied to each element residual as following. 
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where eN  is the total number of elements in the domain  

  is the weighted test function within a space of test functions. 

http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Differential_equation
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Equation 3.8 is transformed to a set of linear algebraic system of equations and then it 

is solved by a variety of approaches. The result of the weighted residual that each of 

the coefficient weight is correspond with test function will minimize the error 

between the sum of the test functions and actual solution in a chosen norm. 

        (x)
~

(x)E(x) UU    (3.9) 

where E(x)  is the magnitude of analytical error between the finite element 

approximate solution (x)
~
U and exact solution (x)U . 

3.1.2  Mapping Finite Elements 

A global system of equations is generated from the element equations through a 

transformation of coordinates from the sub domains at local nodes to the domain at 

global nodes. This transformation includes appropriate orientation adjustments as 

applied in relation to the reference coordinate system. In the FEM, the discretization 

for a planar domain is modeled by a set of appropriate non-overlapping sub-domains 

(finite elements) interconnected at points called nodes. The common finite elements 

are triangle [44, 72-74] or quadrilateral [75-78] sub-divisions that are proved equally 

effective for finite element analysis. The conditions [70] of sub-divisions exist as 

below: 

1. The number of sub-regions i  within the domain is finite  eN,...,3,2,1i   . 

2. For two sub-regions 1  and 2 , there is a common edge or vertex, )   ( 21   or

)    ( 21  . 

3. Under the combination of all sub-regions (elements) at entire boundary regions, the 

total area is the whole domain. 

Triangular elements are constructed from linear representations of pressure and 

quadratic representations of velocity and stress as illustrated in Figure 3.2. For a 

http://en.wikipedia.org/wiki/Transformation_matrix
http://en.wikipedia.org/wiki/Coordinate_system
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barycentric coordinate system )η, ξ( , each elements shape function is linear    for 

pressure and quadratic   for velocity and stress. 

  

 

 

 

Figure 3.2 Linear and quadratic representations 

For the 3 node element shown in Figure 3.3 the shape functions are given as 

       1),(Ne
1   (3.10) 

       ),(Ne
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       ),(Ne
3  

For the 6 node element shown in Figure 3.3 the shape functions are given as 

      )221)(1(),(Ne
1    (3.11) 
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Figure 3.3 Right triangle element 

5. The integration techniques are implemented after all proper meshes are constructed. 

A suitable coordinate system, barycentric coordinates, is chosen in order to evaluate 

the integrals of each sub-region in the finite element discretization as shown in Figure 

3.4. 

Each coordinate has magnitude one at its nodal position, and begins (magnitude zero) 

perpendicular to the surface regions boundary element opposite its corresponding 

node. 

 

  

 

 

 

 

 

 

Figure 3.4 Barycentric coordinates )η, ξ(  
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The exact integral [43, 70] of a barycentric coordinate system for n-dimensions is 
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                      (3.12) 

where Det
n
 is the determinant of the coefficient matrix, i ξ is coordinate system, and 

ni (i=1,...,4) are positive integers. 

For two dimensions, the determinant Det
n
 is equivalent to twice elements area. To 

predict the integration, the quadrature rule is considered for all polynomial form 

integrands. For the two-dimensional case, the Guass-Legendre quadrature formula for 

double integrals case is 
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where Wi, Wj are weight coefficients and f(xi,yi) is a function defined over an 

element. 

The integrals of equation (3.13) is evaluated by converting to the coordinate system 

), (   [42] so equation (3.13) becomes 

        
e
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η)df(ξ(y)df(x, 


   (3.14) 

where ), (f   is a function sampled at the sampling point )η, ξ( ii . 

Figure 3.4 illustrates the nodes 1,2 and 3 as: 

         )0,0(),( 11   (3.15) 
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For velocity profiles, it can be written in the coordinate system ), (   as: 
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Equation (3.16) is transformed in matrix form as: 
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 (3.17) 

The Jacobian matrix J of this transformation is 
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where )y,x(
)e(

1
)e(

1
, )y,x(

)e(
2

)e(
2

 and )y,x(
)e(

3
)e(

3  are the (x,y) coordinates of the nodal 

points 1, 2 and 3 respectively.  

The area in Cartesian coordinate system (x,y) is converted to the coordinate system 

), (  . For elemental area of the sub-region, dxdyd )e(   is changed into

 ddd . 

         dd)Jdet(d )e(
 (3.20) 

Equation (3.14) is expressed in the integral solution: 

       


 d)Jdet(),(fd)y,x(f  (3.21) 
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3.2    Semi-implicit Taylor-Galerkin Pressure-Correction Finite 

Element Method (STGFEM) 

To solve convection equations conveniently, the perfect union of factional time steps 

and FEM is applied to split non-dimensional equations. The generalised Navier-

Stokes momentum equation (2.11) in addition to the continuity equation (2.10) and 

Oldroyd-B constitutive equation 

  ))((2
t

1 






UUUD

tWeWe   (3.22) 

are classified into three steps per time step by means of semi-implicit time-stepping 

procedure as below. This cumulated scheme is known as semi-implicit Taylor-

Galerkin pressure-correction finite element method (STGFEM) [11, 79]. 

This Taylor-Galerkin algorithm is a fractional step method by Taylor series expansion 

in time. The semi-discretization is applied in the temporal domain. Consequently, a 

pressure-correction procedure [13] is employed to compute pressure and then it is 

inserted back to correct velocity in second-order accuracy. A Galerkin finite element 

method is employed to accomplish this discretization. The flow domain is discretised 

into a triangular mesh. Each element provides piecewise continuous linear and 

quadratic interpolation functions for pressure and velocity respectively. The three 

fractional steps per time step of the Taylor-Galerkin algorithm [67] are: 

Step 1a: 
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1
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
 (3.23) 
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where n is the time step index over the interval [n,n+1]. In step 1a, the velocity ( n
U ) 

and stress  ( n ) components at time step n are used to compute for the velocity           

( 2

1
n

U ) and stress ( 2

1
n

 ) values  at the half time step (
2

1
n  ). 

Step 1b: 

 )(
t

Re n*
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22
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n n 
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          (3.25) 

   2

1
n

1
n1n  ) )( ( 2 )(

t


 


 UUUD

tWe
We

    (3.26) 

where * is indicative of the intermediate time step. In step 1b, the velocity ( *
U ) at the 

intermediate time is solved by data gathered at time step n and (
2

1
n  ) while the stress 

components ( 1n ) at the full time step is calculated by accumulated data at step n 

and (
2

1
n  ). 

The two step predictor-corrector procedure gives the initial velocity and pressure 

fields. The non-divergence-free 2

1
n

U  and *
U  fields, corresponding to mass matrix 

governing equations, are solved by Jacobi iterative method. The same method is used 

to calculate the stress equation. 

Step 2:  

    *n1n2

t

Re2
)pp( U


            (3.27)
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The pressure difference ( n1n pp  ) over the full time step interval [n,n+1] is solved 

by using *
U via a Poisson equation. The pressure component is calculated by a direct 

Choleski decomposition method.
 

Step 3: 

           )pp()(
t

Re2 n1n*1n 



UU           (3.28) 

Using *
U and pressure difference ( n1n pp  ), the non-divergent velocity field 

1n
U

is determined by Jacobi iteration. Galerkin weighting is adapted for all constitutive 

equations by assuming the general SUPG form as discussed below. 

Velocity and stress interpolation is accomplished by quadratic basis functions j  with 

six-noded triangular elements while pressure interpolation is accomplished via linear 

basis functions k  over three-noded triangular elements. 
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k )p(p   (3.31) 

where index j is associated with vertex and mid-side nodes, whilst k is related only to 

vertex nodes. 

After using equations (3.29)-(3.31), over domain   with non-overlapping finite 

element sub-regions, the fully discrete forms of steps 1-3 become: 

Step 1a: 
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Step 2: 
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Step 3: 

     )pp()(
t
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

 t
LUUM  (3.37) 

where variables at time nt  are velocity ( n
U ), stress ( n ) and pressure ( np ), *

U is an 

intermediate non-solenoidal nodal velocity vector, M is mass matrix, S  is momentum 

diffusive matrix, K is pressure stiffness matrix, N is advection matrix and L is 

divergence/pressure gradient matrix. 

In matrix notation, the variables are 
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The partial differential equations (3.32)-(3.37) are discretised with FDM and FEM. 

The left for time derivative term is expanded by Taylor series and the right for spatial 

component is adopt weight residual of Galerkin finite element method so the 

equations of steps (1)-(3) are converted to the system of linear equations. The 

geometrical region of flow is designed to a network of small triangular elements in 

order to get the precise solution before approximate solution is solved with Jacobi 

iterative method for steps 1 and 3, and Cholesky decomposition for step 2. 

3.3    Solving System of Linear Equations 

In computational fluid dynamic, linear equation system is generated from 

discretization of the Navier-Stokes equation describing incompressible fluid flow. For 

finding the root of equation system, direct method and iterative method are employed. 

The direct methods utilize a finite sequence of operations to solve solution and these 

methods would deliver an exact solution such as Gaussian elimination and Cholesky 

decomposition. In contrast, iterative methods, which are useful to solve nonlinear 

equations, start initial guess set to generate approximated solution such as Jacobi and 

Gauss-Seidel iteration methods. In addition, iterative methods are effective for linear 

problems involving a large number of variables, where direct methods maybe use a 

large memory that is the cause to waste computer time and storage. 

The general form of the linear equations is 

       BXA  (3.39) 

where A  is a global coefficient matrix, X is the global solution vector and B is the 

right hand side constant vector composing of an equal number of components to that 

of the velocity multiple vector. 

http://en.wikipedia.org/wiki/Computational_mathematics
http://en.wikipedia.org/wiki/Root-finding_algorithm
http://en.wikipedia.org/wiki/Gaussian_elimination
http://en.wikipedia.org/wiki/Nonlinear_equation
http://en.wikipedia.org/wiki/Nonlinear_equation
http://en.wikipedia.org/wiki/Approximation
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3.3.1  Jacobi Iteration 

A Jacobi iterative scheme [80] is employed to solve velocity and stress solution of 

governing and constitutive equations. The sequence of solution vector X
(k)

 for the 

matrix equation can be generated as: 

DX
(k+1)

 = (D-wA)X
(k)

 +wB                                    (3.40) 

where w is a positive relaxation factor and D is a chosen diagonal matrix. 

Taking into account limits on both sides of (3.40), convergence of step 1 and 3 for X 

yields the matrix equation solution for that particular iteration is 

DX = (D-wA)X+wB                (3.41) 

When w = 1, this scheme is called the conventional Jacobi scheme appears. For w > 1, 

extrapolated Jacobi iteration is appeared. The iteration is governed by the iteration 

matrix (I-wD
-1

 A) and this method is symmetrisable. The iteration is possibly 

convergent when the spectral radius of the iteration matrix is less than unity. This 

condition is satisfied if the diagonal matrix D is the row sum modulus of A: 

         



eA

1j
ijii Ad                                              (3.42) 

3.3.2  Choleski Decomposition 

Choleski decomposition [80] is direct method for solving linear equation system. 

First, a symmetric positive-definite matrix is decomposed into a lower triangular 

matrix and matrix transpose of the lower triangular matrix. The decomposition for the 

pressure difference in step 2 is 

LL
T
 = A                         (3.43) 

where A is the positive definite banded symmetric matrix that relates to the stiffness 

K in equation (3.36) and L is a real non-singular lower triangular matrix.  
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Finding the solution of the equation set AX=B, it can be solved for X by the forward 

substitution and for Y by the backward substitution as equations (3.44) and (3.45), 

respectively. 

LY = B            (3.44) 

L
T
 X = Y             (3.45) 

3.4    Gradient Recovery 

The gradient recovery is a prominent scheme for improving the velocity gradient 

fields to fit the outcome more precisely with experiment especially for solving highly 

elastic constitutive model. Normally, the calculation without gradient recovery is 

inaccurate since elastic stress values are high while the velocity values are low and 

both effects disturb the stability and accuracy. Many global and local techniques [81, 

82] can be captured smooth u  each time step in the finite element discretization. 

The gradient approximations are generated at the element level and the continuous 

values are cooperative with all variables such as velocity, pressure, and stress. 

Gradient recovery scheme is operated over nodal gradient values per element. Hence, 

direct averaging provides unique values around that the quadratic continuous 

interpolation is based. The local direct method is based on the average of the nodal 

finite element gradient components from triangular elements and the velocity gradient 

component is produced at each local element. The advantages are local compact 

properties and abstaining from large matrix storage. For example this gradient 

recovery scheme is selected by Matallah et al. [83]. For each quadratic triangular 

element, Levine [84, 85] has shown that the average of gradient values give 

superconvergent values at the mid-side node for quadratic interpolation. The global 

method is suitable for a set of nodal gradient values to complete the system that the 

weight residual formation based on the rate of deformation tenser (D) with a quadratic 

interpolation. 
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Velocity gradient is expressed as: 

       
k

h
e
k x

t)(x,u
t)(x,G




  (3.46)  

where 2,1k  . 

u
h
(x,t) is the approximate velocity vector t)u(x,  by finite element interpolation on 

each element: 
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where n is the number of nodes per element. 

The velocity gradient is the combination of equations (3.46) and (3.47) as:  
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 (3.48) 

 

3.5    Streamline-Upwind/Petrov-Galerkin Method (SUPG) 

In case of no creeping flow, the convective term in the momentum equation affects 

the Galerkin method by producing some severe problems such as oscillations, singular 

matrices and the losses of the stability emerge in discretization. For viscoelastic flow, 

the convection term is dominant at high We but stability is low so this problem must 

be treated.  

The Petrov–Galerkin method is employed to obtain approximate solutions of partial 

differential equations that contain convection terms. First, a one-dimensional 

advection-diffusion finite element method [86] was implemented and then two-

dimensional space [87] was considered. After phenomenon of oscillations from the 

discretization was appeared obviously, the streamline-upwind Petrov-Galerkin 

(SUPG) method [75, 76] was introduced to attain accuracy in viscoelastic flows. 

Upwind approach is generated finite difference and central difference methods. It is 

http://en.wikipedia.org/wiki/Partial_differential_equations
http://en.wikipedia.org/wiki/Partial_differential_equations
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crucial in protecting oscillations of the solution by node-to-node. For first order 

accuracy, the finite difference method is used to approximate differences of solution 

values at the upstream and central nodes in the convection term as known as upwind 

differencing while second order accuracy is given the central differencing techniques. 

As a key tool to achieve high accuracy, upwind technique is approved for stabilization 

of the finite element method. In order to approach the convection term under 

viscoelastic flow, some SUPG constraints [73] has generated. The streamline-

upwind/Petrov-Galerkin method will treat consistency to uniform in mesh sizes while 

the convection acceleration is still operate over Galerkin methods. 

The streamline upwinding weighting function ( SUPG
i ) is construction from 

combination of the scalar multiplicative element dependent factor of the advective 

operator with the Galerkin trial function, as equation (3.49) that SUPG
i or weighting 

function is added every term in the differential equation. 

i
h

ii
SUPG   U           (3.49) 

where h  is the specification of the spatially dependent scalar parameter. 

The SUPG scheme is applied to combination with gradient recovery technique to 

enhance stability and accuracy of the converge solution. 

3.6    Free Surface Location 

In industry processing, die-swell is a common phenomenon of polymer extrusion as 

shown in Figure 3.5. When the polymer melt is forced through a die at the entrance, it 

swells back as former shape and become solid after exiting the die. It is known as die-

swell or extrudate swell so the radius of extrudate is significant. 

The swelling ratio (  ) can be represented in term of the proportion between jet radius 

( jR ) and tube radius ( R ), or in the expression as: 
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R

R j
  (3.50) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Die-swell flow 

3.6.1  Streamline Prediction Method 

Streamline prediction method is a way to find free surface path that is corresponded to 

the boundary conditions [88] as equations (3.51)–(3.53). The free surface location of 

die-swell flow is evaluated from these three conditions by means of streamline 

prediction method. 

0nunu zzrr                        (3.51) 
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where ru  is radial velocity, zu  is axial velocity, )n,(n zr  is component of the unit 

normal to the free surface, ),( zr tt  is component of the surface force normal to the 

surface, ),( 21   is principal radii of curvature and S is surface tension coefficient. 

The distance (R) from the axis of die symmetry to free surface path is computed by 

composite Simpson’s rule as shown in Figure 3.6 or three-point Newton-Cotes 

quadrature rule as equations (3.54-3.56). 

     

 

 

 

   

 

 

 

Figure 3.6 Die-swell geometry 
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where R is die radius. 
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where h is the length of finite element and ie  is i
th

 element. 
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3.6.2  Theoretical Prediction 

The analytical estimation for elastic fluid under instantaneous elastic strain recovery 

has been defined by Tanner [89]. The theoretical predictions for adjusting free surface 

of die-swell can be calculated by  

       6
1

2
r  5.01 13.0 S .                              (3.57) 

The recoverable shear  
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rz

1
r

2

N


              (3.58) 

where 1N  is the first normal stress difference, rz  is the shear stress and  w  is the 

evaluated value at the die wall. 

For a Poiseuille entry flow and an Oldroyd-B model: 

      
2

11rrzz1 2N    (3.59) 

      0ττN θθrr2   (3.60) 

       )( 21rz , (3.61) 
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      wWe  1  (3.64) 

where w  is shear rate at the die wall. 

Tanner [41] has presented the swelling ratio R of Newtonian fluid that are  

002.0190.1   and 003.0127.1  within planar and axisymmetric coordinate 

systems, respectively. 
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3.7    Surface Solution Reprojection 

In order to satisfy the zero normal velocity, the adjustment of the free surface path is 

set to correspond with three boundary conditions and the nodal points after the die 

exit at free surface are adjusted. Hence, the velocity solution at each nodal coordinate 

must be projected onto the new position. A way how to find the new surface position 

for each element is demonstrated in Figure 3.7. Two sampling points )z,r( 11  and 

)z,(r 22  is considered at the mid-side and vertex node positions respectively. 

 

 

 

 

 

 

 

 

                                                                      

Figure 3.7 Free surface adjustment 

The velocity magnitude ( totalu ) on an element is 
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For the estimation of new free surface position, the angle   between the boundary 

and the horizontal z is 
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The updated ru and zu velocity components are derived through the projection: 

       )sin(uu totalr   (3.67) 

       )cos(uu totalz   (3.68) 

3.8    Error Norm 

To consider convergence of the finite element solution, the termination of a numerical 

program is determined from an error norm with the following criteria. 

The 2L  relative error norm or relative square-norm is  
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 (3.69) 

2L  is possible as a root mean square measure between successive time steps. N is 

number of node. 
1n

i


X and 
n
i

X  are the solution value for time step n+1 and n, 

respectively. 

The L  relative error norm or relative infinity-norm is  







 

1n

n1n

X

XX

           (3.70) 

L  is the maximum relative difference between the time increments. 
1n

X  and 
n

X

are the solution for time step n+1 and n. For this computation, 2L  and L  , 

where   is the degree of error that is a small value. 
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3.9    Feedback of Pressure-Driven Velocity Flow 

To force pressure and velocity at inlet with suitable boundary, the feedback concept is 

stipulated for picking upstream solution at the same vertical nodes in order to return 

values back in entry border. For example how to choose nodes of Figure 3.8, the 

possible column can be nodes in C2, C3, C4 and C5 so if we choose C3 then the 

values of pressure and velocity of nodes 9, 10, 11 and 12 will be the initial condition 

for nodes 1, 2, 3 and 4, respectively. The differential time step at the beginning is set 

bigger than the later calculation since the computation of large different time step 

makes solution jump to converge but it might be over leap to diverge immediately so 

this is the reason to gradually reduce the differential time step by 10-1 after the error 

of outcome was stepped down at the same rate of 0.1. Every cycle of adjustment for 

the time step occurred simultaneously with the feedback of the pressure-driven 

velocity flow [35] to drive the solution in good agreement with the experimental and 

analytical results. The flowchart of this procedure is described in Figure 3.9, which 

can be executed rapidly for abrupt contraction problem to save time and assure 

convergent solution so the application of FPDVF adjusts the entrance boundary 

condition precisely especially for pressure and velocity even if the first round of 

calculation shoots the result far away. 

 

 

Figure 3.8 Mesh geometry with node number, FPDVF. 
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Figure 3.9 FPDVF algorithm 

 

3.10  Phan-Thien Slip Rule 

To reduce shear stress at sharp corner point, Phan-Thien [32] has introduced the slip 

velocity at solid wall by setting and expressing the particle speed as a function of wall 

shear stress to make solution more accurate and closer to the experimental outcome. 

The slip velocity will be calculated if some values of wall shear stress are greater than 

a constant critical shear value. This desired function is of the form 
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where slipu  is the slip velocity, meanu is the mean velocity flowrate for no-slip case, 

  is the constant slip coefficient, w  is the wall shear stress and crit is the critical 

shear stress. 

For convenience to calculate the shear stress ( xy ) of Oldroyd-B fluid, Johnson and 

Segalman [90] have applied shear stress as a function of shear viscosity ( ) and shear 

rate (  ) on the basis of the kinematic theory of macro-molecules. 
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                  (3.72) 

where 1  and 2 are viscosity coefficients and a is a scalar parameter between )2,0( . 

  



 
 

 

CHAPTER 4 

4:1 CONTRACTION FLOW 

This research mainly concerns on the application of slip effect for Newtonian fluid 

and Oldroyd-B constitutive model in 4:1 contraction flows. The finite element method 

is applied for solving the Newtonian fluid through the abrupt 4:1 contraction channel 

of rounded corner geometries. After the computation of STGFEM for each time step 

was completed, the feedback of pressure-driven velocity flow is forced to modify the 

inlet boundary. 

The kinematic behavior of flow is observed from streamline path, shear stress value 

and vortex size with a models of Navier-Stokes equations in two-dimensional planar 

isothermal incompressible creeping flow with no-slip condition.  After the problem 

encountered with oscillation and solution diverges to infinity, the treatment of drag 

pressure is brought to keep outcome going to the right way. Then pressure driven 

condition at inlet boundary is enforced each time step to achieve the accurate result 

and made the outcome more secure. The solution was first calculated with the method 

of semi-implicit Taylor-Galerkin pressure-correction scheme before the treatment of 

streamline-Upwind/Petrov-Galerkin and velocity gradient recovery are employed to 

confirm the stability. The comparison of velocity for each mesh patterns before and 

after treatment of drag velocity is displayed via line and colour contour visualizations. 

Finally the presentation of line contours for streamline is depicted to reflect the vortex 

size and the influence of shear stress in 4:1 contraction domains is analyzed and 

corrected by adding the slip function on the boundary of channel wall. 

The 4:1 contraction flow is a well know problem to discover kinematic behavior of 

viscoelastic flows whilst flow path has sudden change in the kind of this geometry 

especially for two-dimensional system. There are strong elongation and violent shear 

stress at contraction position. The severe stresses were noticed in experimental work  

[91] by measuring the rheological properties of viscoelastic fluids past an abrupt 2:1 

contraction from rheogoniometer, which gave the less significant results when 

compared with numerical prediction of power-law model. Another trial record [92] of 
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pressure drop and normal stresses for low Reynolds numbers in capillary and slit 

method was investigated but this experimental data was insufficient to calculate 

normal stresses due to establishment of error. In addition, one analyzing test [19] for 

Boger fluids to inspect the behavior of pressure-flow rate was illustrated with various 

contraction geometries.  Those preparatory experiments did not yield any important 

trend.  In order to reduce cost and time for trial and error, the numerical simulation by 

getting input of characteristic parameters from experiment was set for both Newtonian 

and non-Newtonian fluids [20]. The circular contraction flow with adequate 

constitutive equation was predicted possibly in the direction of good basic flow 

property measurements. 

To avoid complex analytic solution, the simulation in the mathematical model for the 

nonlinear partial differential equations that derived from conservation of mass and 

momentum are set up to eliminate hard solving problem so the numerical techniques 

and employed to calculate approximate solution. There are a variety of numerical 

methods such as finite element method (FEM), finite volume method (FVM) and 

finite difference method (FDM). A 4:1 planar contraction of Oldroyd-B fluid for 

creeping and inertial flows [9] has been solved with semi-Lagrangian FVM and it [10] 

had recalculated for new axisymmetric flow but the grids were fixed in Eulerian 

methods. The technique of a cell-vertex hybrid finite volume/element method [8] is 

suitable to compute highly elastic solutions for Oldroyd-B model and Phan-

Thien/Tanner (PTT) fluid [93]. The complex flow via PTT model was included to 

extend the limit of Weissenberg number for both rounded and sharp corner 

contraction figures. Many scientists interested in viscoelastic flow past planar abrupt 

contractions. The significance of contraction ratios [26] and Deborah numbers 

concept was explored for a function of flow characteristics.  

There are a number of problems that were widely solved by FEM in addition to this 

thesis. The stick-slip flow [67] of Oldroyd-B model was adopted with the same 

standard FEM and free surface effect was added to develop this flow to become die-

swell problem; furthermore, swelling ratio is varied as a function of relaxation time. 

Such a case of this short die is a simple example that is taken from full dies, that are 

pressure- [12] and tube- [94] tooling wire-coating dies, in the small section before die 
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exit. These complete long dies show the complex geometries when the finite mesh is 

generated so the computation is more complicated. A new scheme to improve solution 

of Oldroyd-B problem via sub-cell finite element approximation [68] was applied by 

means of discretization technique in order to interpolate cooperative stress and flow 

field through finite volume/finite element method for cavity and contraction flows. 

This scheme was still maintaining stability and second-third order accuracy. After the 

solutions for time which are independent of viscoelastic problems were revealed, 

many enthusiastic researchers turned their attention to flow movement with time to 

make the visualization more realistic. The transient solution [69] for polymeric liquid 

flow in 4:1 planar rounded corner with a hybrid finite element/finite volume scheme 

was considered in flowrate control, transient flowrate control, and force-driven 

control. Afterwards, the investigation [14] of rheological properties for various 

schemes is considered in cross-slot devices though FV/FE pressure correction 

method.  

Since the difference between experiment and numerical solution for fluid flows 

through hard wall is significant so the study of fluid particle speed on solid surface is 

determined by means of slip effect. In order to approve the solution of Newtonian and 

viscoelastic flow on free surface [29], slip condition is introduced to adjust velocity at 

die wall. The result after adding the conditions of slip velocity gives well value that 

can get along with the experiment [30], focusing on surface melt fracture of HDPE 

and LLDPE. Previously, two slip cases were considered.  One was supported strongly 

with analysis solution by setting slip velocity [31] for capillary tubes as a function of 

wall shear stress and two is Phan-Thien slip rule [32] which manifests the same 

concept of slip velocity. However, slip velocity still notices obviously when the 

critical shear stress is less than wall shear stress. 

The annular tube-tooling and pressure-tooling wire-coating flows [33] of the 

Newtonian fluid were considered with free surface effect that causes flow swell to 

cover wire and the effects of slip at die-walls to mitigate stress singularities at die exit. 

The positive result of feedback pressure-driven velocity flow [34] has been presented 

for the Newtonian fluid through the abrupt 4:1 contraction flow of rounded corner 

geometry. 
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In this research, the slip effect and treatment schemes are considered in the problem 

of 4:1 sharp contraction for Newtonian and Oldroyd-B fluids under the two-

dimensional planar isothermal incompressible flow and formed the mathematical 

model of Navier-Stokes and Oldroyd-B equations. The velocity gradient recovery and 

the streamline-upwind Petrov/Galerkin (SUPG) techniques are chosen to stabilize the 

converge solutions without the slip condition. The converge solution after drag 

velocity at inlet boundary is rectified and revealed that pressure forces velocity drive 

as parabolic motion and makes solution smoothly stable. Finally, the solutions are 

considered with and without the slip condition by means of Phan-Thien slip rule, 

which is a relation between shear stress and velocity at wall. The stress value and 

vortex size of slip condition were compared with Johnson and Segalman model [90]. 

After the slip function is added to reduce the shear stress at the channel wall. The 

appropriated slip velocity which is considered at the wall between sharp corner and 

rounded corner are compared to summarize the effects of the slip condition. 

4.1    Governing Equations 

An incompressible laminar flow of the Newtonian liquid passes through a 4:1 

contraction that entails the solution of the mass conservation under non-gravity and 

the motion is preserved in Navier-Stokes equations. The non-dimensional system is 

normalized to benchmark with other literatures as a result of a standard form. The 

continuity and kinematic equations are equations (2.10) and (2.28), respectively. In 

this research, creeping motion is determined as 0Re  . 

4.2    Numerical Scheme 

The nonlinear differential equations are normally solved by numerical method as 

same as this problem, which is manipulated by basic FEM. The momentum equation 

(2.10) and the stress equation (2.28) of Oldroyd-B model is computed by STGFEM 

that is a scheme for providing the nonlinear equation into three time stages and each 

stage is discretised to system of linear equations. To extend this work, the slip  

velocity is evaluated with Phan-Thien slip rule for 4:1 contraction problem. The result 
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of Newtonian fluid in rounded corner shape is retreated by feedback of pressure-

driven velocity flow. 

4.2.1  Semi-implicit Taylor-Galerkin Pressure-Correction Finite 

Element Method 

The fractional steps are provided to split non-dimensional equation (2.10), (2.11) and 

(2.28) for three stages per time step so it was predicting velocity first before the 

calculation of pressure and then the pressure was the feedback to recalculate the 

correct velocity. Finally, the FEM is employed to separate the continuous equations 

via a system of linear equations. As such, this convenient technique is known as semi-

implicit Taylor-Galerkin pressure-correction finite element method as shown below. 

To divide partial differential equations (2.10), (2.11) and (2.28) with FDM and FEM, 

The derivative term of time is generated by the Taylor series and the weight residual 

of Galerkin finite element method is applied in the spatial phases to classify the 

equations as stages (3.32)-(3.37) and then transform to the system of linear equations. 

Steps 1 and 3 are solved with Jacobi iterative whilst step 2 is approximated by 

Cholesky decomposition algorithm. 

4.2.2  Feedback of Pressure-Driven Velocity Flow of 4:1 Contraction 

Flow 

Feedback concept, which is a way to make solution and jump into the outcome 

immediately, is taken to avoid the diverged solution. This technique forces pressure 

and velocity at inlet boundary be suitable for initial condition. The numerical 

solutions are considered at the same vertical nodes in order to bring trial values back 

to the entry nodes. In Figure 4.1, the neighborhood columns of entry column (C1) are 

between in columns 2 (C2) and column 5 (C5). If C3 is selected, the values of 

pressure and velocity in this column will be set for the initial condition at C1. Every 

loop of time step reduces 0.1 step by step until the difference of the boundary 

condition is satisfied. 
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Figure 4.1 Mesh geometry with node number, 4:1 contraction flow 

4.2.3  Phan-Thien Slip Rule 

To fit the slip velocity, Phan-Thien [32] has demonstrated the concept of slip velocity 

as a function of wall shear stress that is close to experimental solution. This scheme is 

helpful to reduces shear stress for abrupt contraction, and consequently the slip 

velocity will be calculated when the wall shear stresses are greater than a critical shear 

stress. 

4.3    Problem Specification 

For the consideration of slip condition on channel wall, two patterns of 4:1 

contraction geometries are considered under sharp and rounded corners. The acute 

corner or sharp form is shown in Figure 4.2 – Figure 4.4 while the rounded geometry 

is presented in Figure 4.5 and Figure 4.6. On the consideration of shear effect, the 

Poiseuille flow is set at entrance within planar coordinate system and the feedback of 

pressure-driven velocity flow is taken to stabilize the approximated solution of the 

Newtonian and Oldroyd-B fluids. 
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Figure 4.2 4:1 shape contraction flow 

4.3.1  Sharp Corner of 4:1 Contraction Problem  

There is a benchmark of slip and no slip cases in the same geometrical domain for 4:1 

contraction flow that is normally appeared in industrial processes so the major body is 

picked in the model of sharp corner shape. Since the top and bottom parts are 

identical, the bottom portion as show in Figure 4.3 is selected to display all solutions. 

The geometry of the half channel width L at entry and exit sections are 27.5L and 49L 

respectively. 

 

Figure 4.3 Schematic diagram of 4:1 shape contraction flow 
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The inlet length is imposed to Poiseuille flow and fluid passes in channel, which is 

long enough to complete developing flow so the downstream exit length is still 

retaining parabolic flow pattern. At the channel wall, the slip condition is applied to 

gain intensive result close to real problem. 

At inlet fully developed flow, the velocity in x direction, which is denoted xu  is 

varied with distance y that is null at the symmetrical line while normal and shear 

stresses are function of partial derivative of u hence the initial conditions for entrance 

boundary are imposed by Equation (4.1). 
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To inspect the severe stress at impact wall, the sharp corner contraction mesh1-mesh4 

are considered. These are created in four delicate order grids of very coarse, coarse, 

medium and fine meshes which were used by Aboubacar et al. [8] as illustrated in 

Table 4.1 and Figure 4.4. All meshes are bias and the tiny elements ( minh ) are placed 

next to the singularity. 

Table 4.1 Mesh characteristics of sharp corner geometries 

Mesh Element Nodes Degree of freedom minh  

mesh1 980 2105 11088 0.025 

mesh2 1140 2427 12779 0.023 

mesh3 2987 6220 32717 0.006 

mesh4 5140 10575 55593 0.004 
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(a) mesh1                                               (b) mesh2 

                          

(c) mesh3                                           (d) mesh4 

Figure 4.4 Sharp mesh pattern of 4:1 contraction flow 

4.3.2  Rounded Corner of 4:1 Contraction Problem 

In industrial process especially for 4:1 contraction problems when fluid passes 

through a part of abrupt contraction, the flow character shows that its behavior of 

shear stress is so violent at the sharp corner points that the geometrical domain of this 

problem was reduced from acute angle to rounded corner as shown in Figure 4.5. The 

downstream half channel width of planar 4:1 contraction at entry and exit sections are 

27.5L and 49L, respectively. At inlet entry, velocity flow is specified to parabolic 

motion in channel length which is long enough to develop as Poiseuille flow. 

The rounded geometry is designed in curve segment at contraction angle to decrease 

the severe stress [8, 93] and vortex size while mesh patterns are created for three 

different styles as shown in Figure. 4.6 for coarse, medium, and fine meshes that are 

called mesh5, mesh6 and mesh7 respectively. The mesh form of all types as declared 
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in Table 4.2 is generated into bias triangular element and the tiny elements ( minh ) are 

set up near rounded corner. 

 

Figure 4.5 Schematic diagram of 4:1 rounded contraction flow 

 

 

 

 

 

       (a) mesh5                        (b) mesh6   

                

 

 

 

 

 

 

(c) mesh7 

Figure 4.6 Mesh pattern of 4:1 rounded corner 
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Table 4.2 Mesh characteristics of rounded corner geometries 

Mesh Element Nodes Degree of freedom minh  

mesh5 1626 3433 18069 0.017 

mesh6 2693 5652 29740 0.010 

mesh7 4751 9790 51470 0.006 

4.4    Results of 4:1 Sharp Contraction Flow  

The results of sharp corner meshes are considered and the best mesh is selected to run 

for final solution in order to reduce duplicate outcome. After optimal mesh was taken, 

it was brought to run in both Newtonian and viscoelastic fluids under the condition of 

no slip and slip effect. The slip coefficients for each liquid are determined to adjust 

the flow pattern as displayed below. 

4.4.1  Slip Effect of Newtonian Fluid 

The peak values on top downstream wall with no slip of normal stress xx
 
and yy , 

shear stress xy  and shear rate   in Table 4.3 and Figure 4.7 grow upon higher 

sensitivity of grid and it is noticed that the peak of all values can be classified in two 

groups of resemblance. The results of mesh1 and mesh2 are similar as well as mesh3 

and mesh4 but the outcome of second group is prominent. 

In order to choose a suitable mesh to get the final solution, the dominant mesh will be 

selected, that is mesh3 or mesh4. For this case mesh3 is the best choice to prompt 

display even if mesh4 is fine net structure because the result of mesh3 can be run 

easier and faster to get converge solution than mesh4 whilst both grids give the little 

difference so the minor error can be negligible. 
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Table 4.3 The peak values of Newtonian fluid on top downstream wall with no slip 

Mesh xx  xy  yy    

mesh1 9.046 4.523 0.335 4.832 

mesh2 9.014 4.507 0.330 4.753 

mesh3 12.488 6.244 0.328 6.597 

mesh4 15.998 8.000 0.325 8.660 

 

 

Figure 4.7 The peak values of sharp corner meshes 
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Figure 4.8 II  and   along top downstream wall with no slip of Newtonian fluid 

The similar behavior of second invariant ( II ) and shear rate ( ) of Newtonian fluid 

for mesh3 are displayed in Figure 4.8. Both curves for II  and   look like a left-

skewed distribution and the peaks are 10.881 and 6.597 for II  and  , respectively. 

From the previous work, it was found that all apexes go to singularity in case of high 

We and these values are quite far from physical phenomena so it is the reason why 

slip condition is determined to reduce the zenith as seen in Figure 4.9. 

For choosing the optimum value of   and the critical II ( critII ), mesh3 is used to 

execute the slip effect for Newtonian fluid by running   from 0.1 to 1 as illustrated 

in Figure 4.9. First round of calculation to find minimum   of fixing 3.2IIcrit   for 

  at 0.3, 0.5, and 1 is observed that oscillations appear clearly but 0.1  is 

ascertained properly the value of lowest peak  . This selection of minimum   is 

supported by Figure 4.10 which displays a correlation between   and  . Second 

round of computation to find the location of the critical II  by setting 0.1  and 

adjusting II  from 0 to 10 is operated before relation of   versus critII
 
presents that 

the lowest critII  points to 2.3 in Figure 4.11.  
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Figure 4.9   of various  along top downstream wall of Newtonian fluid at 3.2II   

 

 

Figure 4.10 The peak of   versus on top downstream wall of Newtonian fluid at 

3.2II    
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 Figure 4.11 The peak of   versus
 critII

 
on top down-stream wall of Newtonian fluid 

at 0.1    

Figure 4.12 shows streamline (S) line contour for no slip in Figure 4.12(a) and slip 

effect at 0.1 , 2.3II   in Figure 4.12(b). Graphs of both cases look similar but the 

vortex at the corner of no slip is bigger than that of its counterpart in the slip case. 

 

(a) No slip 
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(b) slip at 0.1  and  2.3II   

Figure 4.12 S line contour of Newtonian fluid 

4.4.2  Slip Effect of Oldroyd-B fluid 

Comparing the stress values xx , xy  and yy  of sharp meshes without slip, the 

stress values of mesh1 and mesh2 are significantly different from mesh3 and mesh4 

as illustrated in Table 4.4-4.6. On the observation of the aforementioned tables, it 

makes clear that the stress outcome of mesh3 is slightly deviated from mesh4. 

     Table 4.4 The peak value of xx   along the downstream wall with sharp-corner 

meshes without slip 

     We 

mesh 

0.25 0.5 0.75 

mesh1 7.973 13.514 19.502 

mesh2 8.462 13.920 20.346 

mesh3 19.943 29.455 34.042 

mesh4 20.142 30.515 35.959 
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     Table 4.5 The peak value of xy  along the downstream wall with sharp-corner 

meshes without slip 

      We 0.25 0.5 0.75 

mesh1 5.531 6.101 6.899 

mesh2 5.686 6.432 7.516 

mesh3 10.411 12.888 14.505 

mesh4 12.164 13.980 14.516 

     Table 4.6 The peak value of yy  along the downstream wall with sharp-corner 

meshes without slip 

      We 0.25 0.5 0.75 

mesh1 2.373 2.267 2.451 

mesh2 2.682 2.310 2.798 

mesh3 5.329 5.569 6.116 

mesh4 7.264 7.919 8.189 

For all meshes in Table 4.7, the viscoelastic fluids are considered for various values of 

We . The peak values on top downstream wall with no slip of normal stress   grow 

upon high We  and it is shown that the peak of   for all meshes have thrived with the 

same trend. The results of mesh1 and mesh2 are similar as well as mesh3 and mesh4 

but the outcome of second group is prominent. Since the tendency of behavior for all 

We  has the same direction, all sharp meshes are presented only 01.We   for all 

stresses ( xx , xy , yy ) with the same condition in Table 4.8. Mesh3 is chosen to run 

for the final solution for the same reasons stated earlier. 
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          Table 4.7 The peak values of   on top downstream wall with no slip of 

Oldroyd-B fluid 

Mesh 0.25
 

0.5
 

0.75
 

1 

mesh1 4.873 5.130 5.323 5.717 

mesh2 4.929 5.061 5.153 5.510 

mesh3 7.534 8.550 8.828 9.209 

mesh4 8.833 9.380 9.504 10.234 

   Table 4.8 The peak values of xx , xy  and yy  on the top downstream wall with                  

no slip of Oldroyd-B fluid at 0.1We  

Mesh xx  xy  yy  

mesh1 21.458 7.236 2.507 

mesh2 22.512 8.047 3.018 

mesh3 36.571 15.496 6.427 

mesh4 37.670 15.068 8.772 

To select critical II  from Figure 4.13, the optimum   for 25.0We  is considered 

before calculation of high We . All   values are varied from 0.1 to 1 by first given  

14II   because the shear rate is high enough to switch some stick velocities to move 

freely. For choosing proper   by minimizing shear rate, the same procedure of 

Newtonian case is operated as seen in Figure 4.14 so the minimum shear rate is 7.530 

at 0.1  that is under the value of no slip condition while the other value of   has 

exceeded over the value of slip case. Other   values are rejected except 0.1  

since the slip velocity decreases shear rate. By adjusting critical II, the range of II  is 

started at 5 to 14 since the off range cannot be calculated for 0.1  but the range II  

that is shown in Figure 4.15 and the least value shear rate for 6II   is 7.175; 

therefore, the suitable coefficient slip is 0.1.   
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Figure 4.13 II on the top downstream wall without slip of Oldroyd-B fluid 

 

 

Figure 4.14 The peak of 
  versus on top downstream wall of Oldroyd-B fluid at 

14II  , 25.0We  
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Figure 4.15 The peak of   versus critII  on top downstream wall of Oldroyd-B fluid at 

25.0We    

The shear stress xy  and shear rate   are considered for 4 sharp-corner meshes with 

25.0We  and 0Re   at 3y   as seen in Figure 4.16(a) and 4.16(b), respectively. 

Under no slip effect, the solution of mesh3 (6220 nodes) and mesh4 (10575 nodes) 

have slight deviation but there are significant differences with mesh1 (2105 nodes) 

and mesh2 (2427 nodes) because of delicate node. 

 

(a) xy  
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(b)   

Figure 4.16 Sharp-corner meshes without slip at 3y  , 25.0We  and 0Re   

For slip case as shown in Figures 4.17(a) and 4.17(b), mesh3 and mesh4 are almost 

the same maximum values but mesh1 and mesh2 are shot far from mesh3. After 

mesh3 is taken to apply in slip condition, the maximum shear stress and shear rate are 

reduced effectively at channel wall and small difference is deviant from mesh4 so the 

pattern of mesh3, which the smallest element is nearly as tiny as mesh4, is used to 

calculate the problem for sharp corner mesh.  

 
(a) xy  
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(b)   

Figure 4.17 Sharp-corner meshes with slip at 3y  , 25.0We  and 0Re   

To choose the critical II  when 5.0We , the values of II is started at 18 whilst the 

value of   is varied between 0 and 1. From Figure 4.18,  0.1   is an optimum 

value because the other values of  give the higher peak of shear rate so 8.506   is 

selected to calculate slip velocity as well as Figure 4.20.  Similarly, the lowest shear 

rates of 50.We   and 750.We   are chosen to be optimum critical II  as depicted in 

Figure 4.19 and Figure 4.21.  

 
Figure 4.18 The peak of 

  versus on top downstream wall of Oldroyd-B fluid at 

18II  , 5.0We  
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Figure 4.19 The peak   of II  at 0.1  along downstream wall at 3y  , 5.0We  

and 0Re   

 

 

Figure 4.20 The peak of 
  versus on top downstream wall of Oldroyd-B fluid at 

19II  , 75.0We  
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      Figure 4.21 The peak   of II  at 0.1 along downstream wall at 3y  ,             
75.0We  and 0Re   

The line contours of downstream solutions with slip effect for 75.0We  in Figure 

4.22 are explained in term of streamline, velocity, pressure and stresses. 

 

(a) S  
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(b) xu  

 

(c) yu  

 

(d) p 
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 (e) xx   

 

(f) xy  

 

(g) yy  

Figure 4.22 Line contour of mesh3 with slip along downstream wall at 3y  : 0.1 , 

3.5II  , 75.0We  and 0Re      
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Table 4.9 The lowest shear rate for proper  and suitable II of Oldroyd-B fluid 

We 0
 

0.25
 

0.5
 

0.75
 

1 

  0.1 0.1 0.1 0.1 0.1 

critII  2.3 6 4 3.5 3.3 

  5.968 7.175 7.554 8.611 8.801 

Similarly, the lowest shear rates of 0.1We is selected in same algorithm for fitting 

critical II  as shown in Table 4.9. Summarizing the highest xx  and the maximum 

shear rate values of the optimum slip velocity in Table 4.10 are less than the 

maximum values of no slip condition. The maximum value of xx  is reduced from 

19.943 to 13.494 and the peak of   is reduced from 7.534 to 7.175 at 25.0We . 

Similar to the trend of the slip influence for We  at 0.5, 0.75 and 1, the maximum of   

and xx without slip falls below that for the case with slip. Highly reducing the stress 

value is clearly investigated, refer to Table 4.10. 

Table 4.10 The peak value of   and xx  on the top downstream wall 

We 

  
xx  

no Slip Slip no Slip Slip 

0.25 7.534 7.175 19.943 13.494 

0.5 8.550 7.554 29.455 20.586 

0.75 8.828 8.611 34.042 30.975 

1 9.253 8.721 36.571 34.557 

Figure 4.23 shows the comparison of two restrictions under condition of no-slip and 

slip along bottom downstream wall with J&S (Johnson-Segalman) theory by relating 

xy  and   at 25.0We and 0.1We . This plot is indicative of the fact that the shear 
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stress of both cases agree in trend along the resistance but slip limitation is closer to 

J&S though the value of prediction is slightly undershoot. 

 
(a) 25.0We  

 

(b) 0.1We  

Figure 4.23 The comparison of xy versus   with J&S on top downstream wall of 

Oldroyd-B fluid 



 

 

79 

 

(a) No slip 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) slip at 0.1  and 3.3II    

Figure 4.24 S  line contour of Oldroyd-B at 0.1We  
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For the streamline comparison with no slip of Figure 4.24(a) and with slip of Figure 

4.24(b), the serious vortex is still noticed easily for no slip case so this observation 

can get along well with Oldroyd-B behaviour. 

As stated above (the reason for using 0.1We  for final solution), Figure 4.25 depicts 

the line contour of slip condition for 0.1  in line with the following explanation: 

Figure 4.25(a) shows the maximum value of velocity xu  at symmetry line, Figure 

4.25(b) displays the maxima value of velocity yu  near the location of sharp corner 

contraction position, Figure 4.25(c) represents line contour of maximum pressure inlet 

boundary, the maximum xx , xy  and yy  can be seen in Figures 4.25(d)-4.25(f) are 

34.042, 14.505, and 7.116, respectively. 

 

 

(a) xu  

 

(b) yu  



 

 

81 

 

(c) p 

 

(d) xx  

 

(e) xy  
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(f) yy  

Figure 4.25 Line contour with slip along top downstream wall of Oldroyd-B fluid at

0.1 , 3.3II   and 0.1We  

4.5    Results of 4:1 Rounded Contraction Flow 

In industrial process especially for 4:1 contraction problem, there are many objections 

when fluid passes through a part of abrupt contraction so the geometrical domain of 

this problem for sharp corner has been changed to rounded corner as shown in Figure 

4.5. The downstream half channel width of planar 4:1 contraction at entry and exit 

sections are 27.5L and 49L respectively. At inlet entry, fluid flow is set Poiseuille 

flow in channel length which is long enough for developing parabolic flow at exit 

section. At the channel wall, the slip condition is added to compute slip velocity that 

appeared in real problem. 

4.5.1  Feedback of Pressure-Driven Velocity Flow of Newtonain Fluid 

The 4:1 rounded corner contraction problem as shown in Figure 4.5 was computed 

with standard STGFEM to get the outcomes that were taken a large number of time 

steps to execute the program for these three mesh patterns.  The boundary condition at 

inlet is forced to be parabolic curve but the horizontal velocity contours at the 

beginning of upstream fluid in Figure 4.26 for all mesh patterns are not the same style 

as it is imposed onto the boundary. This phenomenon yielded an irregular solution 

and finally the unexpected outcome is met even if the solution was obtained.          
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The entrance pattern was distorted so the urgent cure needs to add in the normal 

procedure by means of FPDVF to drive flow in a good manner. After flow was 

rectified, the velocity contours look clearly as Poiseuille flow which is displayed in 

Figure 4.27. 

   

 

 (a) mesh5 

  

 (b) mesh6  

 
 (c) mesh7 

Figure 4.26 xu  contour with standard STGFEM 
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(a) mesh5 

  

 

 

 

 

 

 (b) mesh6 

 

 

 

 

 

 

 (c) mesh7 

Figure 4.27 xu  contour of STGFEM with FPDVF 

To find the proper mesh for displaying final solution, the comparison of solutions for 

all meshes is considered to reduce some repetitive pictures. After the best mesh has 

been identified, the streamline and pressure line contour will be plotted for Newtonian 
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fluid under treatment of FPDVF. For comparing STGFEM methods with and without 

treatment, the flow properties of both cases are depicted. The calculation by STGFEM 

with remedy can get converging appearance of right contour for velocity field whilst 

the outcome of normal computation is inconsistent. Table 4.11 compares the peak 

values of velocity and pressure for normal STGFEM and STGFEM with treatment. 

The velocity and pressure values of mesh5 and mesh7 are twice those of normal 

STGFEM because the solution from normal running without driving by pressure does 

not have enough force to shove liquid in a long channel whilst the velocity and 

pressure of mesh6 are a bit higher than other options of treatment. In addition, mesh6 

indicates a reduced time step of about 27.15% which is the highest reduction amongst 

the three mesh patterns. These results imply that mesh6 is the best pattern to exhibit 

final demonstration. Therefore STGFEM with pressure-driven velocity flow can 

improve characteristic line and correct solution together with the number of time step 

is cutback. 

Table 4.11 The solution comparison of peak value for various mesh patterns 

Solution 

mesh5 mesh6 mesh7 

FPDVF STGFEM FPDVF STGFEM FPDVF STGFEM 

max
xu  1.50 0.75 1.52 1.51 1.52 0.75 

max
yu  0.29 0.14 0.29 0.34 0.29 0.14 

pmax 144.35 74.91 144.38 150.86 144.26 75.34 

Time step 2862 3361 2074 2847 3036 4069 

 

Not only velocity and pressure are studied thoroughly but also all stresses and shear 

rate are considered to check the deformation at contraction point that can occur so the 

4:1 rounded corner contraction problem was solved by STGFEM combined with 

FPDVF and the collection of stresses and shear rates especially for the maximum 

values recorded.  The highest values of normal stress, shear stress and shear rate   on 
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bottom downstream wall are tabulated in Table 4.12. Under uniform mesh pattern, the 

results make clear that the peak values of all meshes are similar and dependent on 

element size. The tendency of highest values for stresses and shear rate versus refined 

mesh in Table 4.11 are similar except for the value of yy  for mesh6 which is slightly 

higher than those in mesh5 and mesh7. 

Table 4.12 Comparison of the peak values on bottom downstream wall 

Mesh xx  xy  yy    

mesh5 7.177 3.542 0.261 3.734 

mesh6 7.447 3.698 0.265 3.888 

mesh7 7.955 3.905 0.252 4.034 

 

 

 

Figure 4.28 Streamline contour of STGFEM with FPDVF for mesh6 
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Figure 4.29 p color contour of STGFEM with FPDVF for mesh6 

The overlook of the result for all meshes demonstrates that the results of mesh6 are in 

close conformity with those obtained for mesh7 and the program can access mesh6 

comfortably. Thus, mesh6 is chosen as a model of final solution which sustains the 

above statement. The streamline contour of Newtonian fluid for mesh6 after remedy 

of FPDVF is shown in Figure 4.28 which displays normal streamline, and indeed 

looks more stable like virtual experimental pattern and two big vortices at the top and 

bottom contraction angles. The color contour of pressure for this treatment matches 

closely the converge solution as presented in Figure 4.29. 

4.5.2  Slip Effect of Newtonain Fluid 

To find the proper mesh for displaying final solution, the comparison of solutions for 

all meshes is considered in order to reduce computer times. After the best mesh was 

chosen, it was applied to operate in Newtonian problem under no slip case and slip 

condition. A stick or no slip problem has been studied by collecting stresses and shear 

rate so the highest values of normal stress, shear stress and shear rate   on bottom 
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downstream wall are shown in Table 4.12. It is investigated that the peak values of all 

meshes are similar and depend on element size. The tendency of highest values for 

stresses and shear rate versus mesh acuteness in Table 4.12 are similar except for the 

value of yy  for mesh6 which is slightly higher than that for mesh7. By overlooking 

the result for all meshes it is noticed that the result of mesh6 is close to mesh7 and the 

program can access mesh6 comfortably. Thus, mesh6 is chosen as a model of final 

solution. 

 

Figure 4.30 II  and   along downstream wall with no slip, Newtonian fluid 

The trend of second invariant ( II ) and shear rate ( ) look alike as depicted in Figure 

4.30. Now, the slip condition is started to observe from critical II  to find the optimal 

slip coefficient ( ) by assuming the values of the slip coefficient. First,    is set at 1 

in order to find the proper critical II  then various choices of II  between 2.3 and 3.6 

have been determined as depicted in Figure 4.31 so it is exhibited that the critical 

value of II  equals 2.3 made the peak of shear rate grown to 3.857, which is the lowest 

value when compared with the other peak values of II  as shown in Figure 4.32. Using 

the critical II  to decide the optimum  , the minimum shear rate is displayed by 

0.1  as illustrated in Figure 4.33 and the shear rate of   at 0.1, 0.2, 0.4 and 1.0 are 

widely oscillated. It is found that the trend of shear rate is higher when the second 
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invariant value increases like the slip coefficient value. As stated above, II = 2.3 is 

selected to display final solution. 

 

Figure 4.31   with variation of II  at 0.1 , Rounded corner, Newtonian fluid 

 

 

         Figure 4.32 The peak of   with variation of II at 1.0 , Rounded corner,                           

Newtonian fluid  
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        Figure 4.33 The peak of   with variation of   at 2.3II  , Rounded corner,                           

Newtonian fluid 

The streamline contour of Newtonian fluid for slip instance at 0.1  and 2.3II   is 

shown in Figures 4.34(a). The simple observation of vortex around the corner 

contraction for no-slip velocity looks more acute than the slip figure. In case of slip 

condition for 0.1 , Figure 4.34(b) displays the horizontal velocity ( xu ) of 

parabolic line shape, which shows the maximum value at symmetric line while Figure 

4.34(c) shows the line contour of vertical velocity ( yu ) and the maximum value is 

near the location of rounded corner contraction position since fluid pass through the 

sudden changed geometry from 4 unit reduce to 1 unit. Figure 4.34(d) represents line 

contour of pressure (p) that shows the maximum value at the inlet boundary and then 

gradually decreased to zero at the end of downstream flow. 
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 (a) S  

 

(b) xu  
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(c) yu  

 

(d) p 

Figure 4.34 Line contour of Slip at 0.1  and 2.3II  , Rounded corner, 

Newtonian fluid 
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4.6    Conclusions 

For the results of slip effect in 4:1 contraction problem, it is found that the optimum 

slip coefficient of all We is 0.1 if the appropriate critical II is adjusted. The 

appropriate values of the slip coefficient and the second invariant cause the peak of 

shear rate lower than no-slip case. Hence it can be concluded that the slip well reduces 

the stress along the wall. In the same direction, when the small We  is input, the less 

effect is appeared and this is reversed with high Weissenberg numbers. 

The feedback in velocity and pressure at inlet border is introduced to solve the planar 

two dimensional isothermal incompressible flow of Newtonian fluid after calculation 

via semi-implicit Taylor-Galerkin pressure-correction finite element method is 

completed. This treatment simulation of 4:1 contraction problem was a swift 

termination to get the complete stable solution when compared with regular method of 

STGFEM and its error was smoothly approaching zero. The result before treatment 

revealed a big distortion that made the outcome take many time steps to reach 

converging solution but the computing after remedy presented the positive manner of 

pressure and velocity that can be causing flow movement potentially appear like a 

virtual occurrence. After FPDVF has been implemented and utilized, the obvious 

improvement suggests an appropriate way to solve such a contraction flow with no 

irregular effect. 

For the slip effect study of 4:1 contraction problem, it is investigated that the optimum 

slip coefficient for rounded corner meshes of Newtonian fluid is 0.1  for appropriate 

critical II . The peak of shear rate and vortex size can be reduced in case of choosing 

right slip coefficient and second invariant. In addition, the higher  and II  presented 

more oscillations that led to the phenomenon of shark skin. 

  



 
 

 

CHAPTER 5 

SIMULATION OF DIE-SWELL FLOW 

This study is aimed at creeping die-swell flow for Oldroyd-B fluid in two-dimensional 

axisymmetric coordinate system which is a complicated problem to execute for strong 

elastic fluid. Hence, the technique of feedback is adapted for fulfillment to access 

high relaxation time. The governing equations were solved via a combination of semi-

implicit Taylor-Galerkin pressure-correction finite element method (STGFEM) and 

feedback condition which well predicts the velocity field, pressure and free surface 

paths. Some extra techniques for instant velocity gradient recovery scheme and 

streamline-Upwind/Petrov-Galerkin (SUPG) method were employed to improve the 

stability of solutions. For each time step after velocity field is computed, the specific 

region of die-swell jet is adjusted whilst finite triangle elements in this area were re-

meshed. The calculation was terminated with a limit value of Weisenberg number that 

made the peak of shear stress grown up to infinity at die exit junction. To reduce shear 

force, the alternative velocity and pressure boundary techniques suitable to control 

free surface bulge were introduced to modify entrance boundary. Ultimately, the 

benchmark of swelling ratio with analytical and other literatures was presented in 

positive direction and it got along well with theoretical prediction. 

In this chapter, the die-swell problem of Newtonian fluid and polymer melt is set up 

for simulation of extrudate process in order to survey physical behavior of flow. The 

free surface shape is computed with streamline prediction method and some solutions 

inside die near entrance region are picked up and reinforced at inlet boundary 

condition. This feedback of pressure-driven velocity flow is taken to support the 

calculation of free surface path. Since fluid motion shown complex deformation when 

it confronts with intermediate border between stick and slip boundaries, the diameter 

of extrudate for viscoelastic problem is varied when the property of liquid gets more 

flexibility. The calculation of swelling ratio is computed by the semi-implicit Taylor-

Galerkin pressure-correction finite element method (STGFEM) and the treatment of 

pressure-driven velocity feedback. 
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For die-swell problem of polystyrene samples [39] in extrusion process, the 

singularity point was measured by capillary viscometer, which presented the effect of 

molecular weights on swelling ratio but it got no significance when the aspect ratio 

L/D (length/diameter) was changed. Consequently, the analytic theory [36] of free 

surface method under integral transforms was studied for extending stick-slip shape in 

die. When the flow passes a stick boundary to a free surface, the singular point 

displays a severe shear stress and steep velocity gradients. To reduce this effect, 

Okabe [40] has illustrated the semi-radial singularity mapping theory with displaying 

stress and strain near the singularity. The restriction of analytical solution is not 

solved widely for various liquids due to the limitation of experiment. As such, so 

many numerical methods were proposed for appraisal of the surface shape through 

complex flow. The die-swell or short die problem is a state of art study for wire 

coating flow [94]. 

To demonstrate the complicated behavior of fluid, the rheological equations and 

material functions are calculated with the least error approximate solutions such as 

finite difference (FDM), finite element (FEM) [5, 95, 96], and finite volume methods 

(FVM) [8, 14, 68, 69]. These numerical schemes are discretizing techniques that 

transform continuous equations to a system of linear equations. Some constitutive 

models of viscoelastic fluid are the form of nonlinear partial differential equations that 

are extremely difficult to solve through analytic methods. Normally, the flow through 

abrupt surface of die-swell case is deformed rapidly to make shear stress grown up to 

singularity near the die exit. Thus, one numerical research to improve accuracy 

convergence of solutions was adopted by boundary singularities of integral equation 

method [42] with free surface scheme for viscous slow flows whilst a technique of 

mesh refinement [44] on elements at the singularity was applied. Then Crochet and 

Keunings [6] have considered slit, circular, and annular dies for Newtonian and 

Maxwell fluids by a mixed FEM. After exploration of outcome, it showed that the 

numerical solution gave the result far from real phenomena so Silliman and Scriven 

[29] have presented a slip condition on die wall to make the result look more real. The 

same as Phan-Thien [32] who have exhibited the fact of wall slip on extrudate swell 

and furthermore, the influence of thermal [48] impacted free surface shape. Since the 



 

 

96 

mathematical model of Navier-Stokes and constitutive equations are spatial and time 

dimensions for multi-variables in terms of velocity, pressure and stresses the couple 

mode was applied through fractional step method by means of semi-implicit Taylor 

Galerkin finite element method (STGFEM) [34, 67] and the positive result of 

feedback pressure-driven velocity flow [28] has been presented for the Newtonian 

fluid through the abrupt 4:1 contraction flow of rounded corner geometry. 

In this research, the application of die-swell flow on extrusion processes is considered 

with numerical method of streamline prediction scheme and theoretical 

approximation. Changing suitable velocity boundary scheme is added to estimate die-

swell shape as an acceleration to drive solution fast approaching convergence. The 

numerical solution of STGFEM has been employed to solve the Navier- Stokes 

equation of Newtonian and Oldroyd-B fluids. Moreover, the stability of approximated 

solutions is supported by local gradient recovery and the streamline-upwind 

Petrov/Galerkin techniques under two dimensional axisymmetric isothermal 

incompressible flow. The solution is recomputed by gradual increase of Weisenberg 

number (We) to the highest limit. In addition, the pressure-driven velocity flow 

method is taken to solve the intensive We before the final prediction of swelling ratio 

is compared with other literatures [37, 46, 73, 89, 97, 98]. 

 

5.1    Governing Equations 

The conservation of mass and momentum under incompressible isothermal 

viscoelastic flow without gravity is maintained in term of Navier-Stokes equations for 

two-dimensional axisymmetric system. The dimensionless equations of continuity 

equation (1), motion equation (2) and constitutive equation of viscoelastic fluid for 

Oldroyd-B model [55] are written as shown in [67]. 
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5.2    Numerical Scheme 

The numerical method for this work is based on semi-implicit Taylor Galerkin 

pressure-correction scheme, which is a fractional step to solve nonlinear momentum 

equation due to the coupled mode of velocity and pressure on a finite element 

standard. The non-dimensional differential equations (2.10), (2.11) and (2.28) are 

discretised to the system of linear equations for solving velocity field and stress 

assembly via Jacobi iterative algorithm while pressure was calculated with Cholesky 

decomposition technique. In addition, the streamline prediction method and alternate 

velocity boundary condition (Feedback STGFEM) are applied to adjust swelling path 

precisely. 

5.2.1  Semi-implicit Taylor-Galerkin Pressure-Correction Finite 

Element Method 

The Navier-Stokes equation (2.10) and constitutive form of Oldroyd-B equation 

(2.28) were estimated with the calculation of STGFEM, which is split computing to 

three stages per time step. The time derivative term is expanded with FDM while the 

spatial component is transformed by the weight residual of standard Galerkin FEM 

and then the resultant structure yields partial differential equations (3.32)-(3.37). 

To compute the solution of velocity and pressure, steps 1a, 1b and 3 are approximated 

by Jacobi iterative method whereas step 2 is determined by Cholesky decomposition 

scheme before the local velocity gradient recovery and the streamline-upwind 

Petrov/Galerkin techniques are calculated to stabilize the approximate solution. 

Finally, free surface is predicted by the streamline prediction method and the 

alternative velocity boundary technique is considered to improve the swelling ratio by 

feedback condition or Feedback STGFEM. 
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5.2.2   Feedback of Pressure-Driven Velocity Flow of Die-Swell 

In Chapter III, the feedback technique is suitable for adjusting proper boundary 

condition at inlet flow when pressure forces motion to move smoothly through 

converge solution. For die-swell problem, the technique how to re-feed nodes is 

shown in Figure 5.1. This method is well defined for such a problem of viscoelastic 

fluid since it gradually reduces the differential time step until the swelling ratio 

approaches to analytic result. 

 

Figure 5.1 Mesh geometry with node number, die-swell flow 

5.2.3  Free Surface Prediction 

For extrudate swell problem, streamline prediction scheme is employed to predict the 

free surface path in integration form before it is discretied by Simpson’s rule. The 

numerical computation of swelling ratio (  ) is as good as theoretical technique from 

Tanner [89]. The unknown surface shape is modified every time step until the least 

square and the maximum errors are acceptable. The benchmark for swelling ratio of 

theoretical result, feedback STGFEM and other literature results is explored. 
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5.3    Problem Specification 

There are two specific problems are considered in this chapter, that are stick-slip and 

die-swell flows. The geometry of full domain as Figure 5.2 is provided to two 

identical portions that are symmetric shape of top and bottom parts so the half die is 

represented to generate small finite elements. Both problems have the same boundary 

condition except the free surface boundary for stick-slip flow is set to zero. The 

velocity profile at inlet of both cases is still conserved parabolic motion that is known 

as Poiseuille flow. 

 
 
 

 

Figure 5.2 Schematic of stick-slip flow 

5.3.1   Stick-Slip Flow 

The stick-slip problem [37, 67] is first used before the computation keeps going until 

the final flow is transformed to extrudate shape with the same mesh pattern. Firstly 

the designation of mesh style for stick-slip geometry was generated to small sub-cells 

under 1944 elements and 4033 nodes as shown in Figure 5.3 with the smallest size       

( r ) of finest element to be 0.025. Before it is run, the boundary conditions are 

defined as: Poiseuille flow at the inlet, zero pressure at free surface, null radial 

velocity for all borders and zero shear stress at symmetry line. The standard shape is 

created with 1L for entry section and 2L for exit portion as displayed in Figure 5.4.  

outlet die-exit 

die-exit 

slip 



 

 

100 

The boundary conditions of stick-slip case are set by imposing Poiseuille flow of 

equation (5.1) at the inlet. The die length is long enough to complete developing flow 

so it still maintains parabolic flow pattern. The inlet conditions of stresses are 

represented in equation (5.2) while the boundary at symmetric line ( 0r  ) are 0ur   

and 0rz  .  

     2
z r1u   and 0ur                          (5.1) 

0rr  , 0θθ  , 
r

uz
1rz



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2
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1zz
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u
2 












  We            (5.2) 

 

Figure 5.3 Mesh pattern, 1944 elements, 4033 Nodes 

 

 

 

 

 

Figure 5.4 The half axisymmetric stick-slip flow 

slip 

outlet die-exit 

die-exit 
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5.3.2  Die-swell Flow 

Since die-swell problem has the same inlet boundary conditions as stick-slip case, 

equation (5.1) and equation (5.2) are appeared as well. The solutions are executed at 

the top half-plane as Figure 5.5. To gradually improve velocity at inlet, the temporary 

solution was recalculated by feedback treatment before the swell prediction be 

effective. 

 

 

Figure 5.5 The axisymmetric die-swell flow 

5.4    Results 

5.4.1   Stick-Slip Result 

In order to avoid duplication outcome of stick-slip flow, the data of fine mesh is 

chosen to display the final solution. The program was terminated after We = 2 so the 

line contour plot for upper half plane is shown in Figure 5.6.  Figure 5.6(a) shows the 

velocity contour, which is normalized the maximum value to one unit at the centre of 

die. The axial velocity ( zu ) with no-slip at die wall is Poiseuille flow at inlet and 

gradually adjusting to plug flow meanwhile the computation. The velocity  ru  line 

plot of Figure 5.6(b) vanishes at all boundary sides and displays closed contours of 

small value in the neighborhood of the singularity. Figure 5.6(c) shows a contour plot 

of pressure and the maximum value is illustrated at the inlet boundary, with 

representation of the pressure drop across the flow. Shear stress rz  over the top die 

wall remains negative until it reaches the singularity, where a dramatic jump with the 

outlet 
die-exit 

die-exit 
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positive extreme value is observed, before reducing to zero at the top extrudate 

boundary as depicted in Figure 5.6(d). Axial normal stress zz  at the lower boundary 

is much higher than the die exit as shown in Figure 5.6(e). Figure 5.6(f) displays a 

negative value of radial extra-stress rr  distributed through whole flow in the mean 

time the maximum peak stress is located at the singularity.  θθ  indicates closed 

contours of small constant value in the neighborhood of the singularity as Figure 

5.6(g). 

 

 

(a) zu  

 

 

(b) ru  

 

 

(c) p 
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(d) rz  

 

 

(e) zz  

 

 

(f) rr  

 

 

(g) θθ  

Figure 5.6 Line contour of Oldroyd-B fluid at We = 2, Stick-slip problem 
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5.4.2   Die-Swell Result 

The simulation of die-swell problem is evaluated with STGFEM including feedback 

condition for fine mesh that has been utilised earlier by Ngamaramvaranggul and 

Webster [67]. This technique is useful for running high We of Oldroyd-B fluid. For 

this flow, it is a complex constitutive model so the termination of numerical process is 

limited at low We. The benchmark of swelling ratio after feedback treatment is 

approached to theoretical estimation by Tanner [89] and in addition it spends less time 

step. For Newtonian fluid, the swelling ratio of Feedback STGFEM is identical to 

analytical prediction and there is no significant disparity when compared with the 

solution of Ngamaramvaranggul and Webster [67] but the solution of viscoelastic 

case for STGFEM with and without Feedback was calculated in terms of swelling 

ratio  , normal stress ( zz , rr , and θθ ) and shear stress rz  that are identical for 

both versions but the second invariant II of Feedback STGFEM is higher than 

STGFEM because the pressure driven velocity adjusted more effect for normal stress 

in axial direction. The program could run We twice as many feedback condition as no 

treatment constraint that one can compare this result with the limit of termination at 

1We . 

Figure 5.7 shows the swelling ratio that is varied with We from Newtonian fluid           

( 0We  ) to viscoelastic flow of 2We . STGFEM including feedback condition can 

predict the swelling ratio up to 2We  when the Weisenberg number increases step 

by step at increments of 0.25. The swelling ratios along the exit of top free surface are 

varied with We and all curves are gradually climbed up for the same trend. 
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Figure 5.7 The swelling ratio (  ) of Oldroyd-B fluid; variation with We 

The variation of die-swell geometry with mesh pattern of 20 We  represents the 

maximum swell that corresponds to the largest Weissenberg number as display in 

Figure 5.8. Figure 5.9 and Table 5.1 compares the swelling ratio against other 

literatures, in terms of increasing Weissenberg number. When feedback scheme is 

added in STGFEM, the swell ratio is gradually adjusted and reshaped until the free 

surface is smoother than the basic STGFEM.  

   

(a) 0We      (b) 25.0We  

 

   

(c) 5.0We      (d) 75.0We  
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(e) 1We      (f) 25.1We  

 

   

(g) 5.1We      (h) 75.1We  

 

 

 

 (i) 2We   

Figure 5.8 The variation of die-swell geometry; 20 We  
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Figure 5.9 The comparison of  

Since the tendency of swelling ratio for all We values has the same trend , the 

swelling ratio increases when We is higher as seen in Table 5.1. As the following 

result of Feedback STGFEM, the capability of scheme is powerful to get high We and 

gives the best values of swelling ratio when compared with Tanner [89] as illustrated 

in Table 5.1 and Figure 5.9.  

Within the range of 20 We , all values of pressure, stresses, shear rate and II bear 

the same inclination that tend to rise up implying that these worth proportion to We as 

shown in Table 5.2. With the increase of We, the pressure dragged fluid away to 

outside with stronger force and resulted in high pressure drop between entry and die 

exit. 
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Table 5.1 Benchmark of swelling ratio for various We 

Swelling ratio 
We 

0 0.25 0.5 0.75 1 1.5 2 

Tanner [89] 1.131 1.146 1.186 1.242 1.301 1.417 1.523 

Caswell& Viriyayuthakorn [97] 1.131 1.161 1.325 - - - - 

Butler and Bush [46] 1.134 1.171 1.219 - 1.371 - - 

Crochet & Keuning [6, 56] 1.126 1.147 1.217 - 1.343 1.595 1.817 

Clermont & Normandin [98] 

 

- - 1.210 - 1.380 1.470 1.530 

STGFEM [67] 1.130 1.162 1.212 1.268 1.593 1.680 - 

Feedback STGFEM [99] 1.131 1.148 1.190 1.247 1.330 1.427 1.530 

 
 

 

Table 5.2 The peak values of pressure, stresses, shear rate and II at 20 We  

We p zz  rz    II 

0 4.94 12.10 1.06 10.96 28.57 

0.25 7.24 12.81 1.95 13.58 46.08 

0.5 16.29 13.07 3.85 15.18 60.75 

0.75 23.57 13.52 6.09 16.61 71.66 

1.0 30.31 13.70 6.83 16.93 71.66 

1.25 32.39 14.17 7.72 18.94 89.72 

1.5 33.36 14.74 8.05 20.37 104.07 

1.75 34.20 17.94 10.16 22.83 130.26 

2.0 34.87 18.76 10.91 24.82 153.99 
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Since the behavior of second invariant (II) and shear rate ( ) of Oldroyd-B fluid for 

We between 0 and 2 are similar to normal distribution. Many figure instances of 

second invariant and maximum shear rate for 225.1 We  are presented in Figure 

5.10 and Figure 5.11, respectively. II is closely equal to zero and   is steady near 5 

from z = -1 to -0.01 and then they are overshot to the zenith values at exit die (z = 0) 

or the singularity point so all curves show the maximum second invariant and the 

supreme shear rate impact at the singularity location before they sharply reduce to 

constant value from z = 0.04 to z = 2. Once the fluid has passed exit die, the peak 

values of shear rate rise immediately and the rate of growth for peak value between   

and We is in linear progression. In addition, the trends of II reduce steeply when fluid 

passes the stick position to free surface geometry and then II is steady near zero for all 

We. When the Weissenberg numbers increase, the positive extream values of II and   

rise sharply. 

 

 

 

(a) We = 1.25 
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(b) We = 1.5 

 

 

 

(c) We  
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(d) We 2 

 

 

 

(e) 225.1 We  

Figure 5.10 II along the wall 
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(a) We = 1.25 

 

 

 

(b) We = 1.5 
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(c) We  

 

 

 

(d) We 2 
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(e) 225.1 We  

Figure 5.11   along the wall 

The velocity profiles for die-swell in axial direction and radial axis along the wall are 

shown in Figure 5.12 and Figure 5.13, respectively. The peak of zu  increases due to 

the enlargement of We as same as for ru  with maxima placed near z = 0.1. According 

to the viscoelastic fluids, the properties of both viscous and elastic flows are noticed 

in mode of relaxation time representing the memory of stress behavior. The more 

relaxation time or larger We is concerned, the more retention of flow path is observed 

affecting the peak relocation of axial velocity and shift-aways. When 25.1We  and 

1.5, the settle points are placed near z = 0.35 while the place of peak shifts to z = 0.6 

at 75.1We  and 2 as high viscoelatic fluid gathers up velocity and force. 
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(a) We = 1.25 

 

 

 

(b) We = 1.5 
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(c) We  

 

 

(d) We 2 
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(e) 225.1 We  

Figure 5.12 zu  along the wall 

 

 

 

(a) We = 1.25 
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(b) We = 1.5 

 

 

 

(c) We  
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(d) We 2 

 

 

 

(e) 225.1 We  

Figure 5.13 ru  along the wall 

The peak values of shear stress rz  for all We lie near die exit ( 02.0z03.0  ) 

even if We is increased but the location of zenith values is the same as seen in Figure 

5.14. The shear stress grows up and then drops near z = - 0.25 and the peak values 
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shoot up for higher We values. To reduce similar graphs of other We, only one normal 

stress zz  along upper die wall is presented in Figure 5.15, which reveals the highest 

value at z = -0.2 and the peak values of these normal stresses for various We are given 

in Table 5.2. 

 

(a) We = 1.25 

 

 

 

(b) We = 1.5 
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(c) We  

 

 

 

(d) We 2 
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(e) 225.1 We  

Figure 5.14 rz  along the wall 

 

 

 

(a) We = 1.25 
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(b) We = 1.5 

 

 

 

(c) We  
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(d) We 2 

 

 

 

(e) 225.1 We  

Figure 5.15 zz  along the wall 

A small negative value of radial extra-stress rr  is started at inlet and then climbed up 

to positive before free surface section except a small area near die exit that oscillation 

is appeared violently as shown in Figure 5.16.  For the trend of θθ  as Figure 5.17, it 
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displays the extreme value in the neighborhood of the singularity. A maximum 

pressure along the wall is illustrated at the exit die and the pressure drops to zero as in 

Figure 5.18. 

 

 

(a) We = 1.25 

 

 

 

(b) We = 1.5 
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(c) We  

 

 

 

(d) We 2 
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(e) 225.1 We  

Figure 5.16 rr  along the wall 

 

 

 

(a) We = 1.25 
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(b) We = 1.5 

 

 

 

(c) We  
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(d) We 2 

 

 

 

(e) 225.1 We  

Figure 5.17 θθ  along the wall 
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(a) We = 1.25 

 

 

 

(b) We = 1.5 
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(c) We  

 

 

 

(d) We 2 

 

 

 

 

 



 

 

132 

 

 

(e) 225.1 We  

Figure 5.18 p along the wall 

To reduce the duplication of many figures, the die-swell shape with mesh pattern of 

highest We is selected to represent in Figure 5.19. The line contour of Oldroyd-B fluid 

at 2We  is displayed with conspicuous swelling geometry. The maximum value of 

velocity zu  still lies on symmetry line as Figure 5.19(a) but the maximum value of 

ru  is located at exit point as seen in Figure 5.19(b) whilst Figure 5.19(c) 

demonstrates pressure contour that is supreme at entrance and vanished downstream 

the die region. The maxima of  rz , zz  and rr  at exit die are displayed in Figure 

5.19(d) - Figure 5.19(f) respectively whilst for θθ  the maxima appear at swell area as 

can be seen in Figure 5.19(g). 
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(a) zu  

 

 

(b) ru  

 

 

(c) p 
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(d) rz  

 

 

(e) zz  

 

 

(f) rr  
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(g) θθ  

Figure 5.19 Line contour of Oldroyd-B fluid at We = 2, Die-swell problem 

5.5    Conclusions  

The simulation of die-swell problem was evaluated with efficiency procedure of 

feedback semi-implicit Taylor Galerkin finite element method whilst the algorithm 

without feedback can execute only half value of restricted standard Weisenberg 

number for Oldroyd-B fluid. By means of feedback pressure-driven velocity flow, all 

stresses, swelling ratios and pressures are enlarged when We is increased to the upper 

limit of two. The well solution is close to real problem that is the reason from the re-

force of velocity and pressure fields at the inlet boundary in order to improve the 

swelling ratio that is slightly different to the theoretical prediction. The swelling line 

of free surface has reached steadiness faster than non-treatment method that took 

further time steps and its solution of fixing initial condition closely matches analytical 

adjustment.  



 
 

 

CHAPTER 6 

FINAL REMARKS 

A semi-implicit Taylor-Galerkin method is used to simulate steady two-dimensional 

isothermal incompressible creeping fluid to describe flow behaviors and properties of 

4:1 contraction and die-swell problems including slip velocity. The main 

accomplishments of this research state that the slip effect condition for Newtonian and 

Oldroyd-B fluids reduces the stresses of 4:1 contraction regions (sharp and rounded 

corner) and also die swell. The feedback of pressure-driven velocity flow scheme is 

properly applied with STGFEM to treat unstable and diverged solution. In addition, 

this treatment is efficient to adjust free surface with swelling ratio in die swell 

problem. These approximate solutions (velocity, stress and pressure) of complex 

flows are stabilized by streamline upwind Petrov-Galerkin scheme and velocity 

gradient recovery technique. 

The 4:1 contraction problem is considered to study the behaviors of viscoelastic 

fluids, such as LDPE and polymer melt, since the strong elongation and violent shear 

stress at contraction position are exhibited apparently. The effects of increase in 

Weissenberg number have been illustrated via the size of vortices. In this work, 

STGFEM has led to the study of planar Poiseuille flows in both sharp and rounded 

corners. Mesh structure and refinement near contraction region significantly 

influenced solution accuracy. First sharp corner geometry has been considered of no-

slip and slip conditions for Newtonian fluid.  

Many researchers found that fluid particle move with velocity at wall. In this thesis, 

the slip velocity on the channel wall has been added by Phan-Thien rule which yields 

the result close to real solution. The peaks of the shear rate and the second invariant of 

the rate of strain tensor clearly appear at the severity contraction point. The slip 

coefficient values are varied coupled with second invariant II values in order to find 

the best of the slip velocity by Phan-Thien slip function. These appropriate 

components will decrease the  stress maxima at the channel exit. The reflection of the 

slip condition obviously reduces the size of vortices in Newtonian fluid. In subsequent 
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work, switching to viscoelastic Oldroyd-B models, the slip effects of increase in 

Weissenberg number for Oldroyd-B models are influential in reduction of vortex size 

and stresses like Newtonian fluid. The comparison of slip condition against analytic 

solution is satisfied to shear stress values close to J&S theory. 

Calculating rounded corner, the sharp corner is reshaped to curve angle at contraction. 

Basic STGFEM is reused to calculate rounded geometry with slip and without 

condition but the outcome of rounded corner failed to converge to the real solution. 

Feedback of pressure-driven velocity flow is employed to adjust inlet boundary 

condition step by step after the numerical solution is converged gradually. This 

technique is efficient to calculate critical levels of We and it also gives smooth results, 

unlike the oscillatory behavior of viscoelastic model that causes sharkskin phenomena 

and the crack of polymer product. After feedback of pressure-driven velocity flow 

scheme treats with STGFEM, the numerical solution will converge to possible result 

of Newtonian and Oldroyd-B models. In slip case, the outcomes of no-slip condition 

will lead the trial parameter to choose the proper slip velocity by Phan-Thien slip rule, 

like sharp corner. Comparison between geometries (shape and rounded corners) for 

4:1 contraction flow revealed that the influence of slip effect is decreasing stresses 

and vortex sizes. 

Die-swell flow is a common phenomenon in polymer extrusion that a fluid is 

compressed by entrance into a die and then a partial recovery back to the former 

shape and volume of fluid when fluid passes die exit. In this work Weissenberg 

number is representative in elastic property (especially relaxation time) that high 

levels of We affects the size of the swelling shape. Poiseuille axisymmetric die swell 

flows are considered to study the swelling at free surface. In case of die swell the 

divergence of the numerical result of Oldroyd-B model is eliminated by feedback of 

pressure-driven velocity flow technique the same as 4:1 planar contraction flow.  

Stick-slip flows are still an important factor to deal with for die-swell because the 

numerical solution of Stick-slip flow has been let to the trial parameters (velocity, 

stress and pressure) of die swell flows. Stick-slip flow is firstly studied under an 

axisymmetric frame of Poiseuille flows in Newtonian and Oldroyd-B fluids. It is 
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found that stick-slip flows at high (We > 1) are difficult to calculate the approximate 

converge solution. The STGFEM with feedback of pressure-driven velocity flow is 

utilized as apparatus to solve these flows. 

For predicting the swelling, the proper free surface method has been considered to get 

the right swelling for viscoelastic flows from dies. The solution of stick-slip flow is 

employed to calculate the swelling ratio of die-swell flow. Due to the fact that the 

growth of Weissenberg number for Oldroyd-B model effects to the reduction of 

pressure drop and the increase of swelling ratio, die-swell flow is hard to adjust free 

surface region. Feedback of pressure-driven velocity flow technique will operate this 

problem by increasing time stepping and changing inlet boundary as same as stick-

slip case. Consequently, these streamline upwind Petrov-Galerkin scheme and 

velocity gradient recovery technique are provided to encounter unstable solution to 

approaching to the right result of high We (We > 1). 

The solutions of Newtonian and Oldroyd-B fluids by solving STGFEM with feedback 

of pressure-driven velocity flow technique are close with theoretical and analytical 

results. Feedback of pressure-driven velocity flow technique is used to find 

appropriated inlet initial boundary. This scheme is efficient to compute on planar and 

axisymmetric systems. In addition, it is achievable to adjust flow gradually until 

steady state and also the outcome satisfy when compared against the theory and other 

simulation results.  

In the area of fluid dynamic flows, future prolific ways of research may state the 

following aspects: 

-Improvement of numerical solver as FEM to hybrid FV/FEM to reduce a great 

number of computer times that occurs in complex flows and domains. 

-Three-dimensional (3D) flow simulation that is extended from two-dimensional 

flows to close the real problem. 

-Transient flow can be monitoring velocity and pressure that change all time until the 

system is steady state. 
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-Variation of viscoelastic models, such as Phan-Thien/Tanner (PTT) and Pom Pom 

models in contraction and die-swell problems. 

-Non-isothermal modeling by incorporating energy equation in governing equations 

of fluid flows because heating affects  the viscosity and stresses.  

-Biological Engineering field, such as blood flow and cardiovascular. That is 

important to understand human life and make diagnosis of disease. 

Chapters four and five of this thesis form the basis of journal publications in press to 

appear in the International Journal under the respective titles: 

“ Simulation of slip effects with 4:1 contraction flow for Oldroyd-B fluid ”,               

N. Thongjub, B. Puangkird and V. Ngamaramvaranggul [34]. 

“ Slip Effect Study of 4:1 Contraction Flow with Rounded Corner Geometry for 

Newtonian Fluid  ”, N. Thongjub, B. Puangkird and V. Ngamaramvaranggul [35].  

“ Newtonian fluid through the abrupt 4:1 contraction flow of rounded corner 

geometry with feedback pressure-driven velocity flow ” , V. Ngamaramvaranggul and 

N. Thongjub [28]. 

“ Simulation of die swell flow for Oldroyd-B model with feedback semi-implicit 

Taylor Galerkin finite element Method ”, N. Thongjub and V. Ngamaramvaranggul 

[99].
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