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This thesis proposes a 1-D transform architecture for the latest video coding
standard, the High Efficiency Video Coding (HEVC). The design is described in VHDL,
and aimed for Field Programmable Gate Arrays (FPGAs), which are suitable for low
volume productions. All transform sizes, which are 4xd, 8x8, 16x16, and 32x32, can
be computed by the proposed architecture with equally high throughput. The
throughput is high enough to encode 8K(7680 pixels x 4320 pixels) videos at
30 frames/s. The proposed architecture can receive flexible input combinations
resulting from a quad-tree partitioning. Using dedicated resources in critical tasks
such as multiplications is an important strategy for FPGA designs, so dedicated
multipliers in the DSP slices are extensively employed to gain high performance
design and save general purpose resources. Hardware of a small size transform is
completely reused in a larger size to further save the overall resources. Since the
dedicated multipliers are usually expensive resources, a multiplier sharing scheme is
invented in this thesis. The total number of dedicated multipliers required is reduced
such that the design can be implemented on small size FPGA such as the Spartan3A.
A scheme called the configuration encoding scheme is created to efficiently
represent 1-D transform input combinations resulting from a quad-tree partitioning,
which is the partitioning used to get basic processing units of the transform step in
the HEVC. Finally, the HEVC reference software is used to encode a set of standard
test sequences, then data of the transform step are recorded and compared with

simulation results of the architecture to ensure correctness.
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Chapter 1

Introduction

1.1 Motivation and Significant of the Research Problems

Video information is continually increased in both resolutions and frame
rates. Modern video codecs will need to support higher resolutions such as 4K
(3840x2160) and faster frame rates, as high as 120 fps. Higher resolutions and frame
rates mean more information needed to be processed, as well as higher network
bandwidth needed for transmitting video data and larger storage spaces are

necessary to store them.

Video compression techniques reduce redundancy information, which make it
possible to represent the original video data using fewer bits. The High Efficiency
Video Coding (HEVC) is the latest video coding standard jointly developed by the ITU-
T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG). The HEVC is able to deliver same video quality at 50% bit-rate compared
with its predecessor, the H.264/AVC [1].

To achieve high coding efficiency, several new or improved coding techniques
have been introduced in the HEVC, which cause the complexity of the codec to
increase significantly. The HEVC decoders are slightly more complex than the H.264
decoders, while the HEVC encoders are remarkably more complex, and expected to

be a subject of research in years to come [2].

Due to the HEVC complexity and its focus on increased use of parallel
processing architectures [1], implementation of the HEVC encoders on hardware,
instead of software, is an interesting option. Hardware designs can process several

tasks concurrently, which make its more feasible to build an HEVC real-time encoder.

High volume hardware productions are usually fabricated using Application
Specific Integrated Circuits (ASICs) technology. However, for low volume productions,
Field Programmable Gate Arrays (FPGAs) are more suitable alternative. FPGAs are

reconfigurable hardware, which can be configured according to circuit designers’



need. FPGAs design development also has cheaper non-recurring engineering cost,
compared with ASICs, and faster time to market [3]. Furthermore, FPGA designs can

be upgraded as the technology changes.

In this thesis, FPGA architectures for the HEVC transform will be designed and
synthesized. HEVC is a hybrid video coding. The coding process is composed of four
main steps, which are the prediction, the transform, the entropy encoding, and the
filter. The HEVC transform, which is an integer transform, is an important component
in the HEVC coding standard. To achieve the targeted bit-rate, HEVC employs variable
and larger block size transform, ranging from 4x4 to 32x32, which increases
complexity of its transform significantly. The design IP (intellectual property) cores in

this research can potentially be used as part of a HEVC encoder design on FPGA.

1.2 Literature Reviews

Kim et al. [4] have proposed a high performance hardware architecture for 1-
D forward transform of the HEVC. The architecture can support transform unit (TU)
sizes of dxd, 8x8, 16x16, and 32x32. The design can compute 1-D transform within 38
cycles, irrespective of transform sizes. The throughput can reach 10 Gsamples/s on
TSMC 180 nm CMOS technology, with an operating frequency of 400 MHz. The
proposed architecture is claimed to support 4K (3840x2160) at 30 fps.

The design in [4] is based on the partial butterfly algorithm, which is the
standard algorithm used in the HEVC reference software [5]. The multiplication step
is decomposed into binary shifts and additions. Outputs from the first step, the odd
and even components, is shifted up 0, 1, .., 6 position, then added to generate
product terms of desired coefficients. The fact that small-size transform coefficients
are sub-sampled of large-size transform coefficients is employed to optimize

common operator inside the design.

Another architecture for a 16-point 1-D transform of the HEVC is proposed by
Jeske et al. [6]. The architecture is aimed to be implemented on FPGAs, which are

reconfigurable hardware. The targeted families are Cyclone Il and Stratix Ill of Altera.



The design used both algorithmic optimization as well as architectural optimization
to achieve its goals, which are high throughput and low resource usage. Results of
the proposed architecture are compared with a direct implementation architecture,
using the standard algorithm. Maximum resource usage gain of 73.7% and maximum
frequency cain of 445.6% was achieved. To visualize the throughput gain of the
design, it is shown that the optimized architecture can support QFHD (3840x2160) at

30 fps but the direct implementation architecture cannot.

In [6], fully combinational strategy is employed to reduce hardware overhead.
The design is based on the reference partial butterfly algorithm, with several
optimization techniques. The techniques include factorizing computation equations
in the third step of the algorithm, the step which sums together multiplied terms, to
reduce bit width of the operators;, decomposing the multiplication steps into binary
shifts and additions; postponing binary shifts in the multiplication step to the end to
save the number of bits in adders. The third step computation equations are further

factorized to facilitate sharing of sub-expression between outputs.

To cut down more bits in adder/subtractor operators, outputs from the third
step of the algorithm are shifted down before being added with offset constant in
the rounding step. Finally, zero concatenations, which represent the binary shifts, are
carefully implemented to minimize the number of bits necessary to implement each

adder.

Fig.1 depicts a partial diagram of the proposed architecture in [6]. This
hardware part computes an output x; from the 16 inputs, w;;i = 0,1, ...,16 , which

enter on the left of the figure.

Zhao [7] proposed a 2-D forward transform architecture for the HEVC. The
architecture can support all transform sizes, i.e. dx4, 8x8, 16x16, and 32x32. The
design is focused on high throughput. Weighted average throughput is used for
measuring performance of the design, since different transform size yields different

throughput [7].



Synthesis results on the Cyclone IV E FPGA show average throughput of
238.13 Msamples/s, which is enough to process 2560x1600 video at 30 fps. The
design is further synthesized under Application Specific Integrated Circuits (ASICs) 45
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Fig. 1 Partial diagram of the proposed architecture in [6].

nm technology, which yields a throughput of 634.35 Msamples/s. This throughput is
enough to support 4Kx2K (4096 pixels x 2048 pixels) video at 30 fps.

Partial butterfly algorithm is also used as the basis of the work in [7]. A
modification is made to the standard algorithm by adding the result from the first
step in the algorithm together before multiplying with 64. For example, Computation

of

Z, = 64+ EEE, + 64 - EEE, (1)



is carried out by adding EEE, with EEE; first, to generate EEEE,. Then, Z, is
computed from multiplying EEEE, with 64.

Since parallel implementation of multipliers on ASICs lead to relatively slow
and costly design, multiplication steps are instead replaced with a series of binary
shifts and additions. Another optimization technique in this design is reusing

hardware utilized by small-size transform in computing other large-size transform.

Three architectures for the 1-D integer transform for the HEVC are proposed
in Park et al. [8]. The architectures have advantage in area, delay, and power
respectively. All the designs in [8] are based on the partial butterfly algorithm. The
designs can support 4x4, 8x8, 16x16, and 32x32 transforms.

Fundamental block diagram for the design in [8] is depicted in Fig.2. Three
modifications are made to this fundamental architecture to generate 3 variants

called Flexible-1, Flexible-2, and Flexible-3 architecture.

The fundamental block is composed of the INPUT-ADDER-UNIT (IAU) which
compute the first step in the partial butterfly algorithm; the SHIFT-ADD-UNIT (SAU)
which compute the second step; and OUTPUT-ADDER-UNIT (OAU) which compute
the third step. Some part of the transform computation is reused from smaller-point

transform, which is shown as (N/2)-POINT FIXED INTEGER DCT UNIT in Fig.2.

The multiplication step, the second step of the partial butterfly algorithm, is
implemented as a set of multiple constant multiplications (MCM). Example of an
MCM unit is shown in Fig.3. This MCM unit receives b(i) as the input, and generate
18- b(i),50 - b(i), 75 b(i),and 89 b(i), which is t; 15, t; 50, ti 75, and t; gg in Fig.3
respectively. Basically, MCM technique decomposes multiplications into binary shifts

and additions and optimizes sharing of operations between outputs.
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Block diagrams in Fig.4 are architecture variants modified from the
fundamental block diagram in Fig.2. Flexible-1 has advantage in area; Flexible-2 has
advantage in delay; and Flexible-3 has advantage in power. Flexible-2 and Flexible-3
can support 7680x4320 video at 30 fps with operating frequency only 94 MHz, which

Can save power.

Fundamental block diagram in Fig.2 is modified by adding MUX-UNIT in to the
design to generate Flexible-1 architecture. The MUX-UNIT as highlighted in Fig.4 (a), is
used for selecting inputs for the (N/2)-POINT REUSABLE INTEGER DCT UNIT. If the
architecture is configured to compute a (N/2)-point transform, the inputs are selected
as  x(0),x(1),..,x(N/2—1). Otherwise, the inputs are selected as
a(0),a(1),...,a(N/2 — 1), which is computed from x(0),x(1),...x(N — 1) of a N-

point transform.

Flexible-2 architecture is generated by inserting another (N/2)-POINT
REUSABLE INTEGER DCT UNIT to the Flexible-1 architecture. The added block enables
the architecture to compute 2 sets of (N/2)-point transform simultaneously. Thus, N
samples of data are processed in every cycle irrespective of transform size, which

results in equal throughput for all transform size.

Flexible-3 architecture is further modified from Flexible-2 by merging SHIFT-
ADD-UNITs (SAUs) with the added (N/2)-POINT REUSABLE INTEGER DCT UNIT. The
merging result units are called CONFIGURABLE SHIFT-ADD-UNIT, which are simply
extended version of the MCM units. Notice 2-to-1 MUXes inside the CONFIGURABLE
SHIFT-ADD-UNIT, this unit can compute 36+ x(5),83 - x(5),64 - x(5), and 64 - x(5),
or 18- b(1),50-b(1),75- b(1),and 89 - b(1).

Meher [9] extended the work in [8] by employing Flexible-2 architecture as
the base unit of their design. The overall block diagram of the 1-D transform design is
depicted in Fig.5. The structure can be used for implementation of a set of N-point

transform or two sets of (N/2)-point transform, for any even integer N.
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Fig. 4 Modified architectures (a) Flexible-1 (b) Flexible-2 (c) Flexible-3 [9].

To use this design as a transform engine for the HEVC, consider the case
when N is equal to 32. Depend on the control unit, the architecture can compute a
set of 32-point transform, or two sets of 16-point transform. When the architecture is
configured to compute a set 32-point transform, the upper (N/2)-point reusable
integer DCT unit, the IAU, SAU, and OAU, are used. Otherwise, both of the (N/2)-point

reusable integer DCT units are used for computing 2 sets of 16-point transform.



The design inside the (N/2)-point reusable integer DCT units that is employed
in computing 16-point transform uses the same structure in Fig.5. Each design
module can compute a set of 16-point transform or two sets of 8-point transform.
The architecture is recursively designed in this fashion until it reaches the 4-point

transform.

In summary, the hardware can compute a set of 32-point transform, two sets
of 16-point transform, four sets of 8-point transform, or eight sets of 4-point

transform. The architecture yields equal throughput irrespective of transform size.

Hy
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Fig. 5 Overall block diagram of the 1-D transform design in [10].

The architecture is further pruned by integrating the rounding step in the
reference partial butterfly algorithm into the SAU. The integration makes the
transform results of the architecture not exactly correct, i.e. the results are only
approximation, but the effect to the coding performance is only marginal. Pruning

strategy can reduce resource usage in the design.
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Both the original and pruned architectures can support 8K (7680x4320) video
at 60 fps on TSMC 90 nm technology at operating frequency of 187 MHz.

Table.l summarizes the performance and resource usage of the reviewed

architectures.

Table. 1 Design summary of architectures in the literature.

Kim et al. | Jeske etal. | Zhao et al. | Parketal. | Meher
(5] (6] 7] 8] etal
[9]

Technology | ASIC Cyclone |l Cyclone IV ASIC ASIC

(180 nm) | (90 nm) (60 nm) (150 nm) | (90 nm)
Function 1D 1D 2D 1D 1D

all sizes 16x16 all sizes all sizes all sizes
Throughput 10,000 376.2 238.13 1,504 2,990
(MSamples/s)
Max Freq 400 23.51 125 94 187
(MHz)
LUTs - 5,343 - - .

(ALUTS)
FFs - - - - -
Slices - - 40,541 - _
(LEs)
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1.3 Thesis Objectives

1.3.1 Propose a 1D forward integer transform architecture of the High
Efficiency Video Coding (HEVC) to be used as a part of an HEVC encoder on
FPGA platform. The architecture will,

- have high throughput
- be flexible.

1.3.2 Design a test program to verify the correctness of the proposed

architecture.

1.4 Thesis Scope

1.4.1 Propose a 1D forward transform architecture of the HEVC on Xilinx FPGA
which

- have high throughput (support at least 4K @ 30 fps)

- flexible (can support all transform size, 4-point; 8-point; 16-point; 32-
point, and all possible input combinations resulted from quad-tree

partitioning with equal throughput)

1.4.2 Design a test program to verify the correctness of the proposed

architecture.

1.5 Expected Results

1.5.1 A high throughput and flexible FPGA IP core for the 1D forward integer
transform of the HEVC. The architecture is aimed to be used as part of a real-

time HEVC encoder on FPGA platform.

152 A test program for verifying the correctness of the proposed

architecture.
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1.6 Research Procedures

1.6.1 Review literatures related to hardware designs for 1D integer transform

of the HEVC.

1.6.2 Study the HEVC integer transform and its standard algorithm, the partial
butterfly algorithm, employed in the HEVC reference software.

1.6.3 Design and simulate an FPGA architecture for the core 16-point 1D
forward transform of the HEVC.

1.6.4 Design and simulate a reconfigurable FPGA architecture for all integer

transform size, which are 4-point, 8-point, 16-point, and 32-point.

1.6.5 Evaluate and improve the first proposed design to be more flexible, i.e.
able to compute 1D transform of every possible input combination with

equal throughput.
1.6.6 Design a test program.
1.6.7 Verify the proposed architectures using the test program.

1.6.8 Summarize the results, analyze and compare performance and resource

usages with other previous works in literature.

1.6.9 Write the thesis report.

1.7 Thesis Outlines

Following the introduction in this chapter, related backgrounds are presented
in chapter.2. The chapter includes six subtopics. First, the High Efficiency Video
Coding (HEVQ), which is the video coding standard whose transform step will be
implemented in this thesis, is reviewed. Basic processing units of the transform step
called transform units (TUs) are discussed. The third subtopic is details about the
transform step of the HEVC, which can be viewed as matrix multiplication. Next, a
standard algorithm suitable for hardware implementation of the transform step is

illustrated. The algorithm is called the partial butterfly algorithm.
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The last two subtopics of chapter.2 is about standard measurements for
comparisons of video coding quality. There are two main aspects to compare. The
first aspect is the quality of videos after reconstruction by a video encoder. This
quality is measure by Peak Signal-to-Noise Ratio (PSNR) indicator. Another aspect
measures compression performance of video coding techniques. The indicator for

the latter aspect is Bjontegaard Delta bitrate (BD-rate).

Chapter.3 and chapter.4 concern with the two proposed architectures in this
thesis. Both architectures are aimed to be implemented on FPGAs. The first
architecture, proposed in chapter.3, utilizes dedicated multipliers in FPGAs to gain a
high throughput design. The dedicated multipliers are shared among different
operations because they are scarce and therefore expensive resources. Another
architecture, proposed in chapter.4, can receive flexible input combinations,
computes transform of those inputs, and produces outputs with uniform throughput

regardless of input combinations.

Test procedure and a test program for verifying the correctness of the
proposed architectures are discussed in chapter.5. Transform inputs and outputs
data are retrieved from the HEVC reference software [5]. Automated testbench is
written in VHDL to inject transform input data into the proposed architecture,
retrieve output data, and automatically compare transform output results with the

reference data.

Finally, chapter.6 concludes the thesis. Possible future works are also

suggested in this chapter.



Chapter 2
Related Background

2.1 High Efficiency Video Coding (HEVC)

The High Efficiency Video Coding (HEVC) is the latest video coding standard
jointly developed by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG) standardization organizations. The standard is
the successor of the well-known H.262/MPEG-2 and H.264/MPEG-4 video coding
standard. The HEVC focuses on ever increasing resolution in modern video data as

well as the use of parallel processing architectures available presently.

The HEVC is a hybrid video coding as in the case of all prior video coding
standard since H.261. The HEVC video encoder block diagram is depicted in Fig.6 [1].

Hybrid video coding approaches are usually composed of four main steps.

The first step is the prediction step, which consists of Intra-Picture Estimation,
Intra-Picture Prediction, Motion Estimation, and Motion Compensation blocks in the
block diagram. The second step is the transform step, which consists of Transform,
Scaling & Quantization, and Scaling & Inverse Transform blocks. The third step is the
entropy coding, which is the Header Formatting & CABAC block. The final step is the
loop filter, which consists of the Filter Control Analysis, and Deblocking & SAQO Filters
blocks.

Many new or improved coding techniques have been adopted in HEVC to
achieve the targeted coding efficiency, around 50% bit-rate of its predecessor,
H.264/AVC, at the same video quality. For example, the concept of Coding Tree Unit
(CTU) is introduced. The HEVC is a block-based video compression, each video frame
is divided into square blocks. HEVC employs variable size square blocks, up to 64x64

samples, instead of fixed size macroblocks in prior coding standard.
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Fig. 6 The HEVC encoder block diagram [1].

Intra prediction in HEVC supports more prediction modes, 33 directional
prediction mode in all, than H.264/AVC, which provides the encoder with a large set
of prediction choices. Integer transforms with 4-point, 8-point, 16-point, and 32-point
are employed in HEVC. Use of large block size transform make the coding efficiency

higher, however, the complexity of the encoder is also increased.

It is worthy to note that only the syntax elements and the decoding
processes are defined in the standard, which provides the designer a great flexibility
to optimize the encoder. The standard comes with compliant reference software
called the HM reference software [5]. The reference software is just an illustrated
implementation of the HEVC codec, which is suitable for research and experiment.
The software is not intended for real usage, and is not optimized for any specific

application.

2.2 Transform Unit (TU)

The basic unit of the coding layer of the HEVC is the coding tree unit (CTU)

[1]. A coding tree unit is composed of a luma coding tree block (CTB), corresponding
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chroma CTBs, and associated syntax elements. Luma CTBs can have a size of 16x16,

32x32, or 64x64. Larger CTBs lead to better compression.

The coding tree unit (CTU) can be partitioned into smaller blocks called
coding units (CUs), each of which is composed of a luma coding block (CB),
corresponding chroma CB, and associated syntax elements. Fig.7 shows CTUs
partitioning examples. The partitioning is signaled by quadtree-like signaling in the
syntax elements. If a NxN block is signaled to be partitioned, it will be divided into
four blocks of size (N/2)x(N/2). The coding block (CU) is the root of a tree of

transform blocks (TUs), which will be explained next.

6L e,
=]_>CTU
64 A (1)
)
| 5 CL)
o‘://

Fig. 7 examples of CTUs partitioning using quadtree-like signaling.

The coding block (CU) can be further partitioned into transform units (TUs)
and prediction units (PUs) using another level of quadtree-like signaling. Prediction
units (PUs) are consisted of a luma prediction block (PB), corresponding chroma PB,
and associated syntax elements. The PBs are basic block for prediction steps in the

HEVC hybrid video codins.

Transform units (TUs) are consisted of a luma transform block (TB),

corresponding chroma TB, and associated syntax elements. The TBs are basic block
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for the transform step in the HEVC. Same quadtree structure is applied to partition
both chroma and luma components of a CB to generate luma TBs and corresponding

chroma TBs. HEVC support square transform block of size 4x4, 8x8, 16x16, and 32x32.

2.3 HEVC Transform

In transform step of a hybrid video coding, residual data from the prediction
step are transformed into spectral domain which is more amenable to be used by
the entropy coding step. HEVC adopts integer transforms which are approximated
scaled versions of the Discrete Cosine Transform (DCT) and the Discrete Sine
Transform (DST). The core transforms are derived from the DCT, while an alternative

4x4 transform is derived from the DST.

The standard specifies all the elements of the 1-D inverse transform
coefficient matrices of the 32-point core transform, as well as the 4-point alternative
transform. Coefficients for other lower point, 4-point, 8-point, and 16-point, core

transform are just sub-samples of the 32-point coefficient matrix.

The 2-D transform is carried out by computing 1-D transform of each columns
of the input data, followed by computing another 1-D transform of each rows of the
intermediate result. The 2-D transform computation can be represented in matrix

form by,

Y=A4-X-AT, )

where X is an input data vector which is a 9-bit residual data from the prediction
step of the HEVC encoder, A is the 1-D transform matrix, and Y is a transform result
vector. The intermediate results after each 1-D transform are rounded by adding with
an offset and shifting down, to preserve a bit width of 16 after each transform stage

[10].

The 1-D forward transform matrix can be obtained by simply transposing its

corresponding 1-D inverse transform matrix. The 16-point and 32-point forward
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transform matrices are shown in Fig.8. Note that the 16-point forward transform
matrix is a sub-sampled version of the 32-point forward transform matrix. The
elements in the 16-point forward transform matrix are simply the first sixteenth
elements of the even rows, i.e. the zeroth row, the second row, and so forth, of the

32-point forward transform matrix.

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}
——>{ 90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90}
{89 75 50 18 18-50-75-89-89-75-50-18 18 50 75 89}
{87 57 9-43-80-90-70-25 25 70 920 80 43 -9-57-87}
{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}
{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}
{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}
{70-43-87 9 90 25-80-57 57 80-25-20 -9 87 43-70}
{64-64-64 64 ©64-64-64 64 64-64-64 64 64-64-64 64}
{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57}
{50-89 18 75-75-18 895-50-50 89-18-75 75 18-89 50}
{43-90 57 25-87 70 9-80 80 -5-70 B7-25-57 90-43}
{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}
{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}
{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}
{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

(a)

{64 64|64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}
{90 s0p8 85 82 78 73 67 61 54 46 38 31 22 13 4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90}
{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-20-90-87-80-70-57-43-25 -9 9 25 43 57 70 80 87 90}
{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31 4-22-46-67-82-90}
{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}
{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88}
{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9 57 87}
{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85}
{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}
{82 22-54-90-6l1 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 &7 90 46-31-85-78-13 €l 90 54-22-82}
{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 80}
{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-78}
{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}
{73-31-90-22 78 €7-38-90-13 82 61-46-88 -4 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73}
{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70}
{€7-54-78 38 85-22-90 4 90 13-88-31 82 46-73-61 €1 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67}
{64-64-64 64 64-64-64 64 64-64-64 64 ©64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}
{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 €7-67-54 78 38-85-22 90 4-50 13 88-31-82 46 73-61}
{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57}
{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54}
{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}
{46-90 38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46}
{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 25 57-90 43}
{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67 4-73 88-38}
{36-83 83-36-36 B83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}
{31-78 90-61 4 54-88 82-38-22 73-90 €7-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31}
{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70 25}
{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22}
{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}
{13-38 ©61-78 88-90 85-73 54-31 4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13}
{ 9-25 43-57 70-80 87-90 920-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25 9}
{ 4-13 22-31 38-46 54-61 ©7-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4}

(b)

Fig. 8 (a) 16-point 1-D forward transform matrix

(b) 32-point 1-D forward transform matrix [10].
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Since the focus of this thesis is on the core transform of the HEVC, detail
about approximation method used for deriving the integer transform from the DCT

will be further explained.

The main reason to do transform is to de-correlate residual data to make
entropy encoding task more efficient. The best transform for the entropy encoding is
actually the Karhunen-Loeve transform (KLT), but DCT is more widely used in image
and video compression due to its favorable properties [11], such as implementation

friendlyness.

An N-point 1D DCT can be expressed by the following equation,
v = X0 wicij, 3)

where i =0,...,N — 1, u; are input vector elements, v; are output vector elements,

and

P N
Cij = 7= COS [%(] +E)L], 4)
where i,j =0,..,N—1, and
p={ 12, m s
W2, i>o0 '

Useful properties of the DCT in term of both energy compaction and
implementation friendliness are discussed below [11].
1. The DCT have orthogonal basis, which make spectral domain good at de-

correlating data.

2. Good energy compaction is provided by the DCT which leads to high

compression efficiency.
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3. Quantization and de-quantization steps are relatively easy because the DCT
have equal norm. If equal quantization error along frequency domain is

desirable, quantization matrices will not be needed.

4. Basis vectors of smaller matrix are contained in larger matrix. This fact can be
employed to reduce hardware implementation cost by sharing the design

among different transform sizes.

5. Only 2™ —1 distinct numbers are required to compute an M-point DCT,

which reduce hardware complexity.

6. The fact that even basis vectors of the DCT have symmetry and odd basis
vectors have anti-symmetry can be used to reduce the required number of

operations.

7. The DCT has trigonometric relationships which can be employed to further

reduce the required number of operations.

HEVC adopts integer approximation of the DCT for two main reasons. The first
reason is to ease the implementation, especially hardware implementation. Another
reason is to eliminate a mismatch between different encoder-decoder
implementations, which might use different strategies to represent floating-point

numbers.

The first ¢oal for approximating DCT in HEVC transform is to preserve properties
4-6, discussed earlier. These properties are important for implementation friendliness,
considered to be significant for complex standard like the HEVC. Property 7 is too
difficult to be preserved by a transform represented by integer numbers. Properties
1-3 are preserved to some degree, compromised by the number of bits needed to
represent the transform coefficients. The final transform standardized into HEVC uses
8 bits to represent the transform coefficients. The exact value of each coefficients

are hand-tuned to give the best trade-offs between properties 1-3 [11].
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2.4 The Partial Butterfly Algorithm

The HEVC core integer transform can be implemented using two strategies
[10]. The first strategy is by using direct matrix multiplication, which facilitate
readability of the design. In contrast, the second strategy called the partial butterfly
algorithm helps improving the performance of the design. The partial butterfly
algorithm is feasible because the HEVC core integer transform has inherited
symmetries from the DCT. It should be noted that the partial butterfly algorithm is

employed in the HEVC reference software [5].

Principally, the algorithm reduces the number of multiplications by first
grouping inputs that have same coefficient value and then factoring out the common
coefficient. This approach gives need to a pre-processing of adding or subtracting a

set of numbers followed by a multiplication with the common coefficient.

As an example, the sequence for computing the 1-D 16-point transform using
the partial butterfly algorithm will be explained. In the first step, the odd and even
components, E,O,EE,EO,EEE,EEOQ, are generated from the inputs, X;;i = 0,1, ...,7

, as stated by the following equations,

Ei = Xi + X15—i; i = 0,1, ,7 )
Oi = Xi -’ X15—i; i = 0,1, ,7 B
EEi = Ei + E7_i;i = 0,1,2,3 )
EO, =E,—E,_;;i =0,123,
EEE;, = EE; + EE;_;;i =0,1,
EEO; = EE; — EE5_;;i = 0,1.

(6)

In the second step, each component is multiplied with coefficients as
required by the algorithm. For example, EEQ, is multiplied with 83 and 36 to
generate two product terms necessary for finding Z, and Z;, , respectively. In the
third step, a number of resulting product terms are added together or subtracted out
to produce an output, Z;;i =0,1,...,7. These two steps are shown through the

following set of equations,
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Z, = 64 - EEE, + 64 - EEE,,

Zg = 64 - EEE, — 64 - EEE,,

Z, = 83-EE0, + 36 - EEO,,

Zy, = 36 - EEO, — 83 - EEO;,

(7)

Z, =89-E0, + 75-EO, + 50 - EO, + 18 - EOs,

Zy=75-EO, —18-EO, — 89-EO, — 50 - EOs,

Z1o=50+EOQy —89-EO, + 18+ EO, + 75 EO;

Z1, = 18-E0, — 50 - EO, + 75 - EO, — 89 - EO5,

Z,=90-0,+87-0,+80-0,+70-05+57-0, +43-0s +25-04 +9-0,,
Z3=870y4+57-0,+9-0,—43-05—80-0,—90-05 — 7004 — 25 - 0,
Z:=80"0y4+9-0,—70-0,—8705—25-0,+ 570+ 900, + 43 - 0,,
Z, =

700y —43-0, —87-0,+9-05+90-0, + 2505 — 8004 — 57 - 05,
Zy=57-0,—80-0,—25-0,+90-05—9-0,—87-05+43-0,+ 700,
Zy, =43-0,—90-0, +57-0,425-05—87-0,+70-05+9- 04 —80-0,,
Z13=250,—70-0,+90-0,—80-05+43-0,+90s —57-0g +87-0,,

As the final step, these results are rounded by added with an offset and
shifted right before being sent out to the outputs, Y;;i = 0,1, ...,7 , according to the

equation,

Y,=(0Z;+4)>»3;i=01,..,15. (8)

It should be noted that in the example above, intermediate outputs,
Zi;1=0,1,...,15 are intentionally grouped according to their level of symmetry.

Notice the symmetry properties of the 16-point matrix, which is shown in Fig.8(a) :

- row number 0 and 8 have symmetry with symmetry points before

coefficient no. 2,4, ..., 14.

- row number 4 and 12 have anti-symmetry with symmetry point before

coefficient no. 2, 4, ..., 14.

- row number 2, 6, 10, 14 have anti-symmetry with symmetry point before

coefficient no. 4, 8, and 12.
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- other rows, row number 1, 3, ..., 15, have anti-symmetry with symmetry

point before coefficient no. 8.

2.5 Reconstructed Video Quality Measurement

Measuring quality of a video sequence can be accomplished by averaging the
quality measurement scores of each video frame over the entire sequences.
Evaluation of the quality of a video frame is image quality measurement. Image
quality is hard to be measured because quality issues are typically subjective. The
quality depends on the Human Visual System (HVS), the eye and the brain, of each
individual. Furthermore, people judge quality of an image differently depending on
their current situation. They usually feel better quality when the picture is perceived

in relax situations, such as watching television [12].

People also give more attention to highlichted parts of the picture. For
example, consider a face in front of a blue background picture. People usually
concentrate on the face more than the background. Assume that we equally distort
two pictures, the first one in the face part while the other one in the background
part. We should get equal quality image, but people perceive better quality from the

second picture, because the blurry part is outside their interested spot.

Despite the difficulties explained above, an objective image quality score is
invented [12]. This objective image quality score is called Peak Signal-to-Noise Ratio

(PSNR). PSNR can be computed by

(2" - 1)?

7 ©)
MSE

PSNRdB == 1Olog10

,where n is the number of bits used for representing each data pixel of the image,
and MSE is the mean square error between the reconstructed image and the original

image [12].

PSNR is widely adopted for measuring reconstruction quality in many video

coding standards. It can be easily computed from reconstructed videos. The PSNR
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computation is repeatable since it is an objective measurement. Reconstructed
videos with high PSNR usually mean good quality, while reconstructed videos with
lower PSNR mean worse quality. Nevertheless, there are no direct conversions

between PSNR and subjective quality.

2.6 Coding Efficiency Measurement

Compression performance of video coding standards can be compared using
a score called Bjontegaard Delta bitrate (BD-rate). The BD-rate is an average bitrate
gain over a specific interval of PSNR. This indicator can be computed using Rate
Distortion plots (RD plots). The RD plots are plots between PSNR and bitrate of video

sequences, which is illustrated in Fig.9.

PSNR coding 2
(dB)

A4

bitrate

Fig. 9 Rate Distortion Plots (RD plots).

Each curve in Fig.9 is constructed by interpolation of the four data on the
curve. The four data are obtained by varying quantization parameter (QP) used in
encoding a video sequence. Quantization parameter (QP) affects the step size in the
quantization process. After interpolation, the curves are employed for evaluating
bitrate saving at each PSNR level. Then, bitrate savings are averaged over the entire

range of PSNR to get Bjontegaard Delta bitrate (BD-rate) [13].
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In Fig.9, coding scheme 1 has BD-rate gain over the coding scheme 2, because
the coding scheme 1 requires less bitrate on average. So, coding 1 has better coding
performance than coding 2. Coding 1 and coding 2 can be different video coding
standards like the HEVC and the H.264, or the same video coding standard with some

different parameters like different profiles of the HEVC.



Chapter 3
The High Throughput Architecture

A 1D HEVC transform architecture is presented. The architecture utilizes the
dedicated multipliers inside the DSP slices to gain high throughput design and save
general purpose resources [14]. Details about the proposed architecture will be
discussed in the next subsections. First, top level block diagram and flow of the
design are discussed in section 3.1. Further detail on multiplier sharing scheme is
then described in section 3.2. Design results and comparisons with other works are
presented in section 3.3. Finally, the pseudo code of the high throughput

architecture is given in section 3.4.

3.1 Top Level Block Diagram

Fig.10 shows block diagram of the high throushput architecture. This
architecture is a direct implementation of the partial butterfly algorithm discussed
earlier with some modifications to make it more efficient for hardware

implementation. Modification details will be described further later in this section.

Xo 9 16 Y
~—>

pre MUX DSP post round MUX

add [— —> — add [ . >
ing output

sub data mul sub
X319 16 Y31
— ——
7 1
MUX MUX
count Coeff
AT

|

COfol'Cl'(,’TltS C()nf[g

Fig. 10 The top level block diagram [14].
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The architecture in Fig.10 always receives thirty-two 9-bit inputs, but can be
selected to perform 32-point transform on one set of data, 16-point transform on
two sets of data simultaneously, 8-point transform on four sets of data
simultaneously, or 4-point transform on eight sets of data simultaneously depending
on the 2-bit configuration, config. Yy, ..., Y31 are 16-bit outputs which are matched to
the corresponding inputs. For example, in case of performing the 16-point transform,
X;,Y;;i=0,1,..,15 are assigned to the first data set, while X;,Y; ;i = 16,17, ...,31

are assigned to the second data set.

Four main blocks are highligshted in Fig.10. These four blocks essentially
realize the four steps of the partial butterfly algorithm described in the section 2.4. In
block gen odd even, the odd-even components, such as E;, O0;, EE;, EO;, EEE;, EEO;
are generated. In block DSP mul, each odd and even component is multiplied with
coefficients as required. In block post add sub, product terms are added or
subtracted according to the defined equations such as in (7). The results are then

sent to block rounding.

For the rest of Fig.9, MUX data, MUX coeff, and MUX output, are multiplexers
for implementing the multiplier sharing scheme. Basically, the MUX data block
selects and latches appropriate data from the gen odd even block to internal input
registers of the DSP mul block. These data are subsequently multiplied with
appropriate coefficients in transform matrices selected by the MUX coeff block. The
MUX output is used for multiplexing the output ports among different transform
sizes. MUX count is a 2-bit counter that controls the sharing of DSP multipliers
among four inputs and synchronizes the data flow throughout the design. The
necessity of synchronization will be explained later in this subsection. More details

about the sharing scheme can be found in Section 3.2.

The gen odd even block consists of several pre-adder/subtractor trees, each
of which computes a number of odd-even components later used in multiplications.
First enhancement for hardware implementation is made here by inserting pipeline
registers after each addition and subtraction. These pipeline registers will ensure high

throughput and prevent the odd-even generation step from becoming the
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bottleneck of the system. Fig.11 is an example of such a tree that computes the
EEO, component of the 16-point transform. Note that the tree also generates the

Ey, E3, Ey, E5, EEy, and EE3 components which will be involved in computing other

coefficients.
Xo v
E,
X15 E\g
—_ 0
X7 v
E,
X8 v
EEOQ,
X3 \i: V4
Es -
_/’
X12 _,}{Ea_
X4 v
E [
X11

Fig. 11 A part of the hardware used for generating the odd-even components.

The presence of pipeline registers gives rise to the need to synchronize the
flow of data in the design, because the 0,EO0,EEO, and EEEO components
generated at different pipeline register levels must be used as the inputs to the MUX
data block at the same clock cycle. The MUX count 2-bit counter is intended to be
used for this synchronization purpose. For example, data are latches into input
registers of the DSP mul block only when the MUX count equals three, as shown in

timing diagram in Fig.12.

This latching strategy is also used for synchronizing the data path in other part
of the design, which includes the step of collecting multiplied results from the DSP
slices and the step of gathering outputs of the post add sub blocks.
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It should be noted that the synchronization could also be accomplished by
adding dummy registers. However, the dummy register approach is not suitable for
the proposed architecture. Since the design has a large data path, inserting dummy
registers will consume a large amount of flip-flops, which are limited usable
resources on FPGAs. For each input, X;, which is nine bits wide, each generated even-
odd component will require ten bits to store, which means a ten-bit dummy register

must be required for each level of dummies inserted into the pipeline.

Name J6us . L Bus D.Z]usl QU 2415
b HgNglglgigh

O component % r0_32_b0[0] D 10 \ q Y
EO component > I reo_32_b0p] 0 X 2% X pi] x:

EEO component % reeo_32_b0[0] 0 X 5 Y I

EEEO component)> W reeo 32 b0[) 0 X 5 Y W

MUX count b B mucntig

input reg % rmul_data_round0[0] 0 \ 7 Y

to DSP mul

Fig. 12 Synchronization timing diagram. Data are latched into input registers of the

DSP mul block only when the MUX count equal three.

Since the odd and even components of each transform size are derived
differently, separate hardware are needed for every transform data sets. Eight, four,
two, and one odd-even generator modules for the 4-point, 8-point, 16-point, and 32-

point are required respectively.

The hard multipliers in Xilinx’s DSP slices are exploited in the DSP mul block
in Fig.10. Structure of the DSP slice, Xtreme DSP, in the Spartan-3A family is depicted
in Fig.13 [15]. A single DSP slice contains an 18-bit input pre-adder followed by an
18x18 bit two’s complement multiplier and a 48-bit sign-extended
adder/subtractor/accumulator. The DSP slice is dedicated to DSP related tasks which
extensively require a lot of additions and multiplications. Multiple levels of optional
pipeline registers in the DSP slice are available and can be programmed by a user

through the IP core generator to improve its performance.
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The post add sub and rounding blocks in Fig.10 are now discussed. After all
product terms are generated by the DSP mul block, they will be sent to the post
add sub block. The post add sub block selects which product terms will be
added/subtracted together to generate pre-rounding outputs, z. The post add sub
block therefore consists of several trees, each of which adds/subtracts a set of given
product terms according to the defined equation. Each output Zz is then sent for

rounding in the rounding block. The rounding is done by adding an offset to z, then

shifting the result down to the specified resolution.

BCOUT CARRYOUT PCOUT

D:A:B Concatenated cam’,
DREG @ Cascade
. ||
" | Pre-Adder @
B1REG
B0 BEG \ D
B 18 [ rd
e [ Post-Adder/
@ Subtracter
A0 REG A1REG —
A D | )
18 b | B + ﬁLb“ P
CREG Dedicated
— C-Port |
(of=%
7T Th D .
43

opmade[6]

opmode]4]

opmode]5]

opmode[1:0] opmode[3:2] opmode{7]

BCIN PCIN CARRYIN

UGE1 _£1.08_0az20T

Fig. 13 The XtremeDSP DSP48A [15].

We will follow the process of generating output Y; to illustrate the idea of
how these two blocks are built. Following the Partial Butterfly algorithm used in the
reference software, as described in Section 2.4, the steps for computing the second

element or Z; of thel6-point transform are

Oi = Xi - X15—i ;i = 0,1, ...,7,

Zl=90'00+87'01+80'02+70'03

+57 -0, + 43+ 0g +25- 04 +9 - 0,, (10)

Yl = (Zl +4) > 3.
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Fig.14 depicts parts of the structures in the post add sub and rounding blocks
that related to equation (10) above. For this case, the post add sub block is
responsible for the aggregation of the 90 0,,87 - 04, ..., and 9 - 0, product terms
and the rounding block is responsible for rounding Z; to produce Y;. Note that
pipeline registers are again inserted throughout these structures to enhance overall

performance as in the gen odd even block.

In contrast to separate hardware required in the gen odd even block, the
post add sub modules can be shared among different transform sizes. The sharing is
feasible, because the lower point transform matrices are sub-sampled versions of the
32-point transform matrix. The post add sub module sharing technique is further

explained in Section 3.2.

Y Y
post add sub rounding

Fig. 14 The structure for computing the post add sub and rounding step of Z; and Y;

of the 16-point transform.
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3.2 Multiplier Sharing Scheme

Direct implementation of the partial butterfly algorithm is rather expensive. It
requires a total of 308, 84, 20, and 4 multipliers for each 32-point, 16-point, 8-point,
and 4d-point transform respectively. Note that these numbers do not include any
multiplication with coefficients of power of 2 values since they are easily achievable
with binary shifts. Although the requirement for multipliers can be fulfilled on some
FPGA families, where large number of DSP slices are available, the cost of these ICs
are not cheap. To lower the cost, we have targeted our final design on a Spartan-3A,
the XC3SD1800A, which contains only 84 DSP slices [16]. It is therefore necessary to

invent a multiplier sharing scheme that can accomplish the HEVC transform.

There are two types of sharing in the design. In intra-sharing, the multipliers
are shared to compute several product terms of the same transform. For example, in
16-point transform (see eq. (7)), the coefficient of value 18 is needed four times to
be multiplied with components EOQy to EO3, so these four multiplications can
effectively share a multiplier. For our design, each multiplier employed in the 32-
point transform is reused four times, so the total number of multipliers required is

lowered to 77.

In inter-sharing, a multiplier is shared among different size transform. For
example, the coefficient of value 18 is used in multiplication with O in 8-point
transform, EO; in 16-point transform, and EEO; in 32-point transform, so a multiplier
can be shared. All multiplications in the 16-point, 8-point, and 4-point can be shared

with the 32-point transform since their coefficients are just sub-sampled.

For a multiplier, the two sharing types can be mixed but we have limited the
number of different product terms that a multiplier could generate to four at most
for the reason of performance. In total, the amount of multipliers needed for our
HEVC transform implementation are just 77, which can be fitted into the targeted

Spartan-3A FPGA.

An example of intra-sharing multiplier structure is shown in Fig.15. The

structure multiplies four elements of the EEO components of the 32-point transform
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with 18. The 2-bit MUX count selects an appropriate input into the multiplier, and
enables the corresponding register to store the result. The multiplier is implemented

using the hard multiplier embedded in a DSP slice.

Since transform matrices have symmetry properties with different symmetry
points depending on their row number [10], coefficients in the transform matrices
can be grouped according to their symmetric properties and their uses as shown in
Table 2. For example, coefficients in odd rows of the 32-point transform matrix,
coefficient group 4, have anti-symmetry with reflection point between the 15" and
the 16" column. The coefficients are also grouped according to their involvement in
computing the transform. Group? is used in transform of all sizes; groupZ2 is used in
the 8-point, 16-point, and 32-point transforms; group3 is used in the 16-point and 32-

point transforms, while group4 is used only in the 32-point transform.

18- EEO
EEO, B P 0
CE
18
EEO0, —1, Sl \V
18- EEO,
EEO, — |1, cE
EEO, I, 18- EEO,
CE
//
18- EEO;
CE
MUX 2, 0s 0, 0, 0o
7 to-
count 2-to-4 decoder

Fig. 15 A four-time sharing multiplier structure.

Multiplier sharing scheme based on these idea is shown in Table 3. The
seventy-seven multipliers are reused among different transform sizes. They can be

configured to do the multiplication task for 32-point transform on a data set; 16-
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point transform on two data sets; 8-point transform on four data sets; or 4-point

transform on eight data sets. The set{ symbol in Table 3 represents the i data set of

j-point transform, e.g. set3® is the second data set of 16-point transform.

Table. 2 Coefficients of the 3-point transform matrix [14].

row number of
the transform matrix

coeffieient value

0,16

8,24
4,12,20,28

2,6,10,14,18,22,26,30 | group3

odd rows (1,3,5,...,31)

binary
shift

groupl

group?2

binary
shift

64

36,83
18,50,75,89
9,25,43,57,70,80,87,90

4

odd rows (1,3,5,...,31) | group4| 13,22,31,38,46,54,61,67,73,78,82,85,88,90

Table. 3 The multiplier sharing scheme [14].

Multiplier No. coeff | 1setof | coeff | 2 setsof | coeff | 4 sets of | coeff | 8 sets of
group | 32-point | group | 16-point | group | 8-point | group | 4-point
0 groupl groupl groupl g |groupl Setf’
1-4 group2 group2 set116 group2 -
5-20 group3 group3 - )
21 groupl groupl set§ groupll setg
22:-25 group2| seti® |group2
26-41 group3 - )
42 set3? groupl set? groupl| set?
43 -46 group2 -
47 groupd group1 set? group1| sety
48 -51 group2 =
52 - groupl Setg
53 groupl setg
54 - groupl set;“
55 groupl| setg
56-76 E

Detailed block diagram illustrating sharing details of the proposed architecture

is depicted in Fig.16. The multiplier sharing scheme in Table.3 is carefully designed so
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that post add sub block can also be shared among different transform size. For

example, consider the following computations:

Z3,8p:75.00_18.01_89.02_50'03,
Ze16p = 75" EOy —18-EO; —89-EO, — 50 EO3, (11)
212,32]9 = 75 - EEOO - 18 ) EE01 - 89 ) EEOZ - 50 b EE03,

where 8p, 16p, and 32p represents the 8-point transform, 16-point transform, and 32-
point transform, respectively. Observe that, for these three equations, they are able
to share not only multipliers in the DSP mul (75+,18+,89 +,50 -) blocks but also a

post add sub structure since they follow a similar pattern of aggregation (-,-,-).

In Fig.16, the shared mul #1, 2, 3, and 4 and the post add sub & rounding
#33 are reused and shared among Z3 gy, Zg 16p, aNd Z1332,- The shared mul #1, 2, 3,
and 4 is responsible for multiplying by 18, 50, 75, and 89 respectively, which are
coefficients in group2, as shown in Table.2. The precise operation of the structure is

controlled by the configuration bits, config.

In Table.3, there are some multipliers that have to be shared between
different coefficient groups. This is necessary so as to ensure high utilization of a
multiplier. For example, the shared mul #26-41 in Fig.16 are shared between
coefficients in group3 and group4. This method of sharing between different
coefficient groups, however, is limited to no more than two groups, to maintain high

performance of the design.

Consider the shared mul #26 in Fig.16. It receives both the O components of
the 16-point transform of data set 2 and the O components of the 32-point
transform of data set 1. An internal multiplexer is provided inside the shared mul
#26 to select whether the input will be multiplied with 22, which is in coefficient

groupd, or 9, which is in coefficient group3.

Outputs of the shared mul #26 is supplied to two post add sub & rounding
groups. The first group, post add sub & rounding #56, #57, generates results for 16-
point transform, while the second sgroup, post add sub & rounding #64, #65,
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generates results for 32-point transform. Finally, the correct results, depending on

the transform size as selected by config, are assigned to output ports.

Note that multipliers that multiply with coefficient group! are special case.
Since each of the two coefficients in groupl (36 and 83) is used only twice in
multiplying with odd or even components, we can combine their need into using just
one multiplier. In Fig.16, multiplication with 36 and 83 is done by a single shared

multiplier, shared mul #0.

It should also be noted that there are multipliers that are not used in case of

4-point, 8-point, and 16-point transforms, because the 32-point transform demands

_\Lconfig

N —> Yﬂ
post add sub & rounding #0 (for Vg 30, /Va,16p /¥ 2.8p /V14p S€11) q
"4p
X 0y setl shared mul #0 post add sub & rounding #1 (for 4 335 (V12 16p /Vep /V34p set1) — Y,
00— : (36 and %83} ) ) ) ) b, 18p
Xi — 0, setd
0. setl shared mul £1 post add sub & rounding #32 (foryy 30, /¥ 16 /¥1 8p St
X, — £ [x18)
z EOg, setl
: Sharg{u;ﬂ.‘;’” " post add sub & rounding #33 (fory13 33, /Ve16p /Y28y setl) — ¥,
.
EEQg, setd |~
Oy setl Share{:??;'” " post add sub & rounding #34 (for yag325 /Y10 16p /¥5 2 Set1)
EQgy satl
EEO,, setl Share{:;;;“ # post add sub & rounding #35 (foryog 3, V14, 16p /Y7 gp S€t1)
0,5 st Y,t,
shared mul #26 post add sub & rounding #56 [fory, ;, set2)
0z setl (x22 or x3)
EO3;p setl post add sub & rounding #57 [fory; 1, set2)
EE0j, setl shared mul #41 [~
(54 or x30)
Xy EEEOyy, set] > ¥y
post add suh8‘rc»uru:iing#ﬁllIfc»rjvmIJ setl) L~
shared mul #76 .
(=90} i : )
post add sub & rounding #65 Ifor}'3_32p set1) I~
17
| ‘f | T | T \ T J
gen odd even DSP mul post add sub & rounding MUX output

Fig. 16 Sharing details of the proposed architecture.
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much bigger number of multiplications than the rest. As we can see, the number of
multiplier needed for the 32-point transform is 77, while two sets of 16-point
transform requires only 21x2 = 42 multipliers. Therefore, we have plenty of freedom

to choose the sharing combination that will provide good performance.

3.3 Design Results

The proposed architectures are described in VHDL and synthesized by the
Xilinx ISE 14.4, targeting Spartan-3A FPGA. Simulation results of the architecture on
FPGA are then compared with the results retrieved from the HEVC reference software

[5] to verify its correctness.

Design summary on FPGA is shown in Table.4. The primary usage of the slice
flip flops is for pipelining purpose. Four-input LUTs are used mostly for constructing
the adders/subtractors, and multiplexing the data path. The saving on LUTs comes
from the sharing of the post add sub trees as discussed earlier. Seventy-seven DSP
slices are consumed for the multiplication step. Note that, with multiplier sharing
scheme, the HEVC transform can be completely implemented on a single Spartan-3A

FPGA.

Table. 4 The preliminary design summary.

Technology Spartan-3A

4-input LUTs 15521/33280 (46%)
Slice flip flops 20818/33280 (62%)
DSP slices 77/84 (92%)

Max Frequency (MHz) 2115

Throughput (Msamples/s) | 1692

Supporting Video Format | 7680x4320 @30 fps
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Fig.17 is the timing simulation result obtained from Xilinx ISE 14.4. The design
reads 32 data samples simultaneously in each round or every four cycles, and is able
to perform 8 sets of 4-point transform; 4 sets of 8-point transform; 2 sets of 16-point
transform; or 1 set of 32-point transform as selected by confie. The multiplication
step takes four clock cycles to complete, due to the sharing of the multipliers. After

the initial latency of 18 cycles, new outputs are produced every four cycles.

At maximum operating frequency of 211.5 MHz, with new results produced at
the rate of 32 samples per four clock cycles, our proposed design can reach a
maximum throughput of 1692 Msamples/s, which is enough to support 8K videos at
30 frames/s. As a note, for 4:2:0 color sampling format, the 8K video at 30 frames/s

needs a processing rate of 1.5x7680x4320x30, which is approximately 1500

Msamples/s.
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Fig. 17 The simulation result.

Comparisons with the other 1-D transform designs for HEVC are shown in
Table.5. Since the designs have been targeting many different technologies, it is
difficult to make a concrete conclusion. In terms of resources, the area of an ASIC
design is usually reported as the number of equivalent gates. On the other hand,
FPGA tools report resource usage based on the primary elements in a particular FPGA

fabric, which are varied for different vendors or families. However, for performance
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aspect, the throughput can still be roughly compared. The results in Table.5 show
that the proposed architecture has more throughput than any previous designs on

FPGAs [6], [7].

Table. 5 Comparison with other works.

Design Technology | Function | Throughput Supporting
(Msamples/s) | Video Format
Jeske et al. | Cyclone |l 1-D 16x16 | 376.2 3840x2160
[6] (90 nm) @30 fps
Zhao et al. | Cyclone IV | 2-D all 238.13 -
(7] (60 nm) sizes
Park et al. ASIC 150 1-D all 1,504 7680x4320
[8] nm sizes @30 fps
Meher et al. | ASIC 90 1-D all 2,990 7680x4320
9] nm sizes @60 fps
Proposed Spartan-3A | 1-D all 1,692 7680x4320
architecture (90 nm) sizes @30 fps

Consider the implementations on 90 nm FPGAs, Cyclone Il [17] and Spartan-
3A [16]. The proposed architecture has four times and seven times more throughput
than the work in [6] and [7] respectively. This significant increase in performance is

due to the use of the dedicated resources, DSP slices, in FPGAs.

It must be pointed out that the resource utilization of the proposed
architecture and the designs in [6] and [7] should be compared with care, since they
are targeted at different FPGA vendors. The previous designs also did not exploit any
dedicated hardware blocks. Nevertheless, it can be inferred that implementing the
multiplication tasks on the dedicated hardware blocks will help saving the general

resources such as LUTs and flip flops.
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3.4 Pseudo Code of the High Throughput Architecture

Fig.18-19 in this section present the pseudo code of the high throughput
architecture. Further details about the multiplier sharing scheme of this architecture

can be found in Appendix B.

1: module partislButterfly_high tp

2:

3 input (reset, clock, input_combination, input)
4: output (output)

5:

M ---- CONTROL PATH

7 process : counter for controlling sharing of dedicated multipliers and synchronizing the data path
8 if reset is enable then

9: mux_counter « 3

1@: else

11: mux_counter « mux_counter + 1
12: end if

13: end process

14:

15: ---- DATA PATH

16: -- 1 step : generate odd even components
17: process #1 : generate 0 components
18: if mux_counter equals 3 then

19: for i « @ to 15 do

28: 0: « input: - inputsii

21: end for

22: end if

23: end process

24

25: process #2 : generate E components
26 if mux_counter equals 3 then

27: for i « @ to 15 do

28: E: « input: + inputsis

29: end for

38: end if

31: end process

32:

33; process #3 : generate EQ components
34: for 1 « @ to 7 do

35; ED; = E; - Epsu:

36: end for

37 end process

38:

39: process #4 : generate EE components
48: for i « @ to 7 do

41: EE: « Ei+ Eisz

42: end for

43: end process

44;

45: process #5 : generate EED components
46: for i « @ to 3 do

47: EEQ; « EE; — EE;s

48: end for

49: end process

58:

51: process #6 : generate EEE components
52: for i « @ to 3 do

53: EEE; + EE; +EE,.;

54: end for

55: end process

56:

57: process #7 : generate EEED components
58: for i « @ to 1 do

59: EEEOQ: + EEE:i - EEEz-z

60: end for

61 end process

62:

63: process #8 : generate EEEE components
Y for i « @ to 1 do

65: EEEE: « EEE; + EEE,.;

66: end for

67 end process

&8

69: -2 step : multiplication

Fig. 18 Pseudo code of the High Throughput architecture.



Ta:
71:
7a:
EEH
T4
75:
76
7
Ta:
7o
Ba:
Bl:
82:
B3:
84:
B5:
B6:
B7:
E8:
:=H
ga:
S1:
22:
23
S4:
25:
96:
@7
S8:
g%9:
168:
181:
182:
1835:
1a4:
185:
186:
187:
188:
169:
11a:
111:
112:
113:
114:
115:
116:
117:
118:
119:
128:
121:
122:
123:
124:
125:
126:
127:
128:
129:
13@:
131:
122:
133:

process #9 : multiplexers for selecting multiplicands for dedicated multipliers
for k « 2 to 76 do
case input_combination, mux_counter of
mul_dats. « an sppropriate component according to the multiplier sharing scheme
end case
end for
end process

process #1@ : multiplexers for selecting multipliers for dedicated multipliers
for k « @ to 76 do
case input_combination, mux_counter of
mul_coeff, « an appreopriste component according to the multiplier sharing scheme
end case
end for
end process

process #11 : initiste dedicate multipliesrs
component k + @ to 76 port map (
multiplier + mul_data.,
multiplicand <« mul_coeffy,
product « mul_output,

)

end process

process #12 : collecting multiplied terms
for kK « 2 to 76 do
case mux_counter of
collect outputs from mul_outpute to an appropriate multiplied term register
end case
end for
end process

process #13 : computing pseudo multiplicstion
if mux_counter equals 3 then
for all element of psewde-multiplied term registers
compute pseudo-multiplied terms by binary shifting
end for
end if
end process

-- 3™ step : post additien subtracticon
process #14 : post sdditions and subtractions
if mux_counter equals @ then
for all s in passible set number do
for i « @ to 31 do
ysi « an aggregation tree of multiplied terms according to the transform matrix
end for
end for
end if
end process

-- 4" step : rounding and output multiplexer
process #15 : output mueltiplexing and rounding
for i « @ to 31 do
case config of
2 ¢ outputy + (Ylisl, emeae + 1331
1 ¢ outputs « (yliel, smedrie + 2722
2 ¢ outputy © (Ylinsl, rrmegian + 4)333
3 ¢ outputs < (ylisl s + B)224
end case
end for
end process

end module

Fig. 19 Pseudo code of the High Throughput architecture (continue).
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Chapter 4
The Flexible Input Architecture

The second forward transform architecture designed in this thesis is the
flexible input architecture [18]. Transform step of the HEVC processes on transform
units of a video sequence. Transform units are derived from coding units using

residual quad-tree partitioning as described earlier in section 2.2.

Fig.20 shows a coding unit of size 32x32, which is partitioned into 13 different
size transform units. Consider each column of the coding unit, there are several input
combinations for the transform step. For example, the first column consists of a set
of 8 inputs, followed by two sets of 4 inputs and a set of 16 inputs. This input
combination is represented as (8, 4, 4, 16). Input combination of (16, 8, 8) can be

observed from the middle column of this coding unit.

32
I
( )
8
4
4
—32
16
— L \ =

(8,4,4,16) (16,8,8)

Fig. 20 A coding unit of size 32x32 pixels, partitioned into 13 transform units of

different sizes.
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The flexible input architecture is an improved version of the high throughput
architecture, presented in chapter 3. Basically, the flexible input architecture can
compute forward HEVC integer transform of any input combinations resulting from a
residual quad-tree partitioning [18], while the high throughput architecture can
compute only four input combinations. Besides that, multiplier sharing scheme used

in the new architecture is simpler than the original architecture.

In this chapter, the flexible input architecture is discussed. The design inside
the architecture itself is explained in section 4.1. Section 4.2 shows the design results
compared with other works. Finally, the pseudo code of the flexible input

architecture is given in section 4.3.

4.1 The Improved Architecture

Top level block diagram of the flexible input architecture is shown on Fig.21.
The diagram is similar to the diagram of the high throughput architecture, depicted in
Fig.10, but there are two main differences. The first difference is that the
configuration bits, config, are composed of 7 bits in the new architecture, instead of 2
bits in the first architecture, which make it feasible to represent all possible input
combinations. Other difference is that the config in the new architecture also

controls the gen odd even block.

X 9 16 Yo
gen MUX DSP post voiind MUX
odd -~ — add [ . >
ing output
even data mul sub
X319 16 Y31
] ——
| T
MUX MUX
count coeff
L

coefficietss config

Fig. 21 Top level block diagram of the Flexible Input architecture.
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The flexible input architecture uses the partial butterfly algorithm as basis of
the design. However, in small-size transform, hardware employed in the first three
steps of the algorithm is completely reused by larger-size transform, as proposed in

[91.

To describe sharing of hardware between different transform sizes, consider

the equations for computing 4-point and 8-point transform as follow,

Ei,4p = Xi,4p + X3_i’4,p 5 i= 0,1,
0i,4p = Xi,4p - X3—i,4p ;1=0,1,

Zoap = 64 Eqap + 64+ Ey 4,
Zyap = 64 Eqap — 64 Eq 4, (13)
Zyap =83+ Ogap + 36 014,
Z34p = 36 0g4p — 83 Oy 4p,

Ei,8p = Xi,8p + X7—i,8p ;1=0,1,2,3,

Oigp = Xigp — X7-i8p ;1 =0,123, (14)
EE;g, = Eigp + E3_igp;i =01,

EO;igp =Eigp —E3_igp;1 =01,

ZO,SP = 64 - EEO,Sp + 64 - EEl,Sp'
Z4,8p = 64‘ ( EE0,8p T3 64 5 EEl,Bp' (15)
Z2,8p = 83- E00,8p + 36 Eollgp,
Z6,8p =36" E00,8p —83- Eollgp,

Zl,8p =89 - 00,8p + 75 - 01,8p + 50 - 02,8p + 18- 03,8p'
Z3,8p = 75 - 00,8p — 18- 01,8p —89- 02,8p - 50 ' 03,8p' (16)
ZS,Sp =50- 00,8p —89- 01,8p + 18- 02,8p + 75 - 03,8p'
Z7,8p = 18 - 00‘82«) - 50 ) 01,8p + 75 ' 02,8p - 89 ' 03,8p'

The equations show only the first three steps of the partial butterfly algorithm,

among which hardware will be shared.
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Reuse of hardware for the first three steps of the partial butterfly algorithm
between 4-point and 8-point transform is illustrated in Fig.22. Basically, hardware for
computing the 4-point transform can be reused for computing some intermediate
results of the 8-point transform. To be more specific, if E; g,; 1 = 0,1,2,3 are inserted
into a 4-point transform instead of X;4p;i = 0,1,2,3, the intermediate results
Ziap;t=0,123 of the 4-point transform will actually be the even-row intermediate

results Zy; gp; 1 = 0,1,2,3 of the 8-point transform.

4-point transform

Xo E, (8p), E, (4p 64 - E, ! g
X E, (8p) E, (4p) 360, Iz
A 180), 1 GOE |EL Ryl |20 PAS |4
X, E, (SP): 4p Oy (4p 4p : 4p | Za .
X, E; (8ph 0y (4p) 83-0, I Zg
— GOE | T
Xof gp |00 (8p) === === ===s oo — &
X5 0, (8p) vul [£8-9:] pas |2
Xy 0, (8p) : i
64 8p : 8p N
X7 0; (8p) 89 " 03 Z7

Fig. 22 Hardware reusing between 4-point and 8-point transform.

We shall now discuss the controlling scheme using config bit. Residual quad-
tree partitioning divides residual data blocks into four smaller blocks recursively in
two-dimension. There are only 26 possible input combinations, which can also be
viewed as one-dimension partitioning. All possible input combinations are listed in
Table.6 with their corresponding config control bit. The method for encoding the

config will be described next.

The method used for encoding possible input combinations into config bit is
called the configuration encoding scheme. The scheme, depicted in Fig.23, is
basically a direct representation of the residual quad-tree partitioning in one-

dimension. Each possible partitioning point is represented by a node in a binary tree,
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and each node is represented by a bit in config. A total number of 7 bits is required

in a config bit.

Table. 6 Possible input combinations resulted from residual quad-tree partitioning.

Input combination representation config
0 |(32) “000 0000”7
1 (16, 16) “000 0001~
2 (16,8, 8) “000 0101~
3 |(16,8,4,4) “100 0101~
4 |(16,4,4,8) “010 0101~
5 |(6,4,4,4,4) “110 0101~
6 |(8,8,16) “000 0011~
7 18, 4,4,16) “001 0011~
8 (4,48, 16) “000 1011~
9 |4, 44,4 16) “001 1011~
10 |(8,8,8,8) “000 01117
11 1(8,8,8,4,4) “100 0111~
12 |(8,8,4,4,8) “010 0111~
13 1(8,8,4,4,4,4) “110 0111~
14 1(8,4,4,8,8) “001 0111~
15 |(8,4,4,8,4,4) “101 0111~
16 ((8,4,4,4,4,8) “011 0111~
17 [(8,4,4,4,4, 4 4) “111 01117
18 |(4,4,8,8,8) “000 1111~
19 |(4,4,8,8,4,4) “100 1111~
20 |(4,4,8,4,4,8) “010 1111~
21 |(4, 4,8, 4,4 4, 4) “110 11117
22 |(4,4,4,4,8,8) “001 1111~
23 |(4,4,4,4, 8, 4,4) “101 1111~
24 | (4,4,4,4,4,4,8) “011 1111~
25 |(4,4,4,4,4,4, 4 4) “111 11117
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32
|
( |
config[1] /.Cflfl/ig_,@l ~~~~~~
:’1I///// =
config[4]
config[0] =T
:'1' ~ ] ’_32
~._configl2]  gfonfigldt] |
\‘:: ,,,,,,,,,,,,,,,,,,
~~___config[6]
— /Or -

(8,4,4,16) (16,8,8)

Fig. 23 7-bit configuration encoding scheme.

Consider the following example for a further explanation on the configuration
encoding scheme. In Fig.23, the block picture on the right-hand side is the same as
the coding unit in Fig.20, described earlier. The first column of this block contains
input combination of (8, 4, 4, 16). This input combination can be represented by the
config on the left-hand side. A config bit assigned at a partitioning point indicates
whether a partitioning has occurred (“1”) or not (“0”). In Fig.23, the config bits that
are corresponding to the active partitioning points are config[0], config[l], and
confield], so the config equals “0010011”. This confi¢ pattern is also highlighted in
Table.6. Note that config bits are arranged by the most significant bit first.

Despite the number of bits in config are seven, it should be noticed that the
number of possible input combinations are not 128, but only 26. This less number of
input combinations is because there are dependencies between bits of config. From
a partitioning resulted from a residual quad-tree, config[1] or config[2] cannot be ‘1’
while config[0] equals ‘0’. This fact is also true for other config bits, bits that are
corresponding to a lower level in the binary tree cannot be ‘1’, while their upper
level bits are ‘0’. This restriction reduces the number of patterns represented by

config to 26.
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Fig.24 describes further detail about the flexible input architecture. Each big
dash box represent each step of the architecture, which are gen odd even (GOE), DSP
mul (Mul), post add sub (PAS), rounding, and MUX output (MUXout). The partial
butterfly algorithm with sharing between different transform sizes, as shown in Fig.22,

is used as basis of the design.

A total number of eight hardware sets is present in the flexible input
transform architecture. The hardware sets are composed of a set for 32-point
transform (set0), a set for 16-point transform (setl), two sets for 8-point transform
(set2, set3), and four sets for 4-point transform (setd, set5, set6, set7). It is worth
noting that part of the hardware set for computing large-size transform can also be
used for computing smaller-size transform. For example, part of setO, which are for
computing a 32-point transform, can also be used for computing 16-point, 8-point, or
4-point transform. Setl, which are for computing a 16-point transform, can also be

used for computing 8-point or 4-point transform.

The eight hardware sets in Fig.24 are carefully arranged. The arrangement not
only allows the architecture to compute transform of any possible input
combination, but also directly mapped the input combination from its configuration
encoding scheme. Notice how config bits are used to control multiplexers inside the
gen odd even (GOE) block. The arrangement of config bits on the multiplexers is in

the same position of their arrangement on the configuration encoding scheme.

To further explain about the hardware set arrangement, consider the
following example. The active hardware sets for computing transform of the input
combination of (8, 4, 4, 16) are highlighted in Fig.24. The hardware set0 is used for
computing the 8-pint transform. The hardware set2 is used for computing the first 4-
point transform. The configl4] is equal ‘1’, so inputs to the hardware set2 are
Xg — X11, not Xg — X;5. The config[1] is equal ‘1’, so inputs to the hardware set0 are
Xo — X7, not Xg — X31 or Xg — X15. Only the first eight outputs from the post add
sub (PAS) of the hardware set0Q are actually used, not all the outputs.
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Fig. 24 Details of hardware inside the Flexible Input architecture.
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It should be noted that input X, — X34 are also routed to some multiplexers
inside the gen odd even (GOE) block. For example, the GOE 4p set0 block can
receive inputs of X, — X3 if config[3] equals ‘1’. Many connections are omitted for

clarity of the diagram.

The multiplication step, DSP mul (Mul), is carried out using dedicated
multipliers inside the DSP slices to get a high performance design, as done by the
high throughput architecture in chapter 3. The dedicated multipliers are shared in

similar manner as in the high throughput architecture.

Multiplier coefficients are grouped according to their level of symmetry as
shown in Table.2 in chapter 3. The coefficients that are power of two, 4 and 64, are
separated out from other coefficients because multiplying with them can be carried
out using binary shifting. From the 32-point transform matrix, presented in section
2.3, a lot of coefficient symmetries can be observed. Odd rows contain coefficient
asymmetric points at the middle column. The coefficients in odd rows are in groupd.
The 4th, 12th, ZOth, and 28th rows contain coefficients from group2. There are several
symmetric and asymmetric points in these rows, each point separated by four

coefficients.

The multiplier sharing scheme for the flexible input architecture is presented
in Table.7. There are two kinds of sharing as in the high throughput architecture,
which are intra-sharing (sharing in the time domain) and inter-sharing (sharing in the
space domain). However, since small-size transform hardware is completely reused
by larger-size transform in the flexible input architecture [9], the multiplier sharing
scheme in the new design is actually simpler than in the high throughput
architecture. For example, the multiplier no.0 need not be responsible for
multiplication of groupl setO of 8-point, 16-point, and 32-point transform, because
these tasks are already taken care of by multiplication of groupl setO of 4-point

transform.



Table. 7 The multiplier sharing scheme for the Flexible Input architecture.

Multiplier No. coeff | 1setof | coeff | 2 sets of | coeff | 4 sets of | coeff | 8 sets of HW
group | 32-point | group | 16-point | group | 8-point | group | 4-point sets
0 - groupl| setO
1-4 - ) group2| set0 set0
5-20 group3| set0 i
21 i group1| setl
22-25 group2’ setl set0/setl
26-41 group3| setl i
42 group1| set2 set0/set2
43 - 46 group2| set2 s
47 - group1| set3
group4 | setO set0/set3
48 -51 groupzy set3 =
52 groupl| set4 |setO/setd
53 groupl| set5 |setO/set5
54 - groupl| set6 |setO/set6
55 groupl| set7 |setO/set7
56-76 set0

51

The sharing of dedicated multipliers is limited to almost two multiplication

tasks to retain high performance design. Basically, the multipliers for multiplication

tasks of groupd setO of the 32-point transform are reused by multiplication tasks of

setl-set7. So, the multiplication tasks of setl-set7 are represented as dash boxes in

Fig.24, to represent the fact that they are not real multipliers.

Yp .
Ye = Y,
Ya 13 i
Yg . ! config|c]
config[b]
config[a]
i = 0;1;:,31

A =mod(i, 4),4p, set|i/4]
a=3+0i/8] B =mod(i,8)8p,set|i/8]
b=1+1i/16] C =mod(i,16),16p,set|i/16]
c=0 D =1i,32p, set0

Fig. 25 MUX output logic.
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Fig.25 shows MUX output logic of the flexible input architecture. The
Y;;i=0,1,...,31 are outputs of the architecture. The value of indices 4,B,C,D of
Y4, Y, Y, Yp can be derived by the equations on lower part of Fig.25. For example, if
1 is0, Yy, Y, Ye,Yp are Yo apseto Yospsetor Yo16p,seto, and Yozapsero respectively.
Three of seven config bits are selected to be inputs of the MUX output logic. The
indices selected are indicated by a, b, c, which the exact value calculated by the
equations in the lower part of Fig.25. For example, if i is equal 0, configlal, config[b],

confielc] are config[3], config[1], and config[0] respectively.

The MUX output logic shows another benefit of using the configuration
encoding scheme, instead of direct encoding using minimum number of five bits. The
logic is composed of three inputs instead of five inputs in case of the direct
encoding. When consider the targeted Spartan-3A FPGAs which have 4-input LUTs
embedded inside, three-input logic and five-input logic will be synthesized into one
and two level of logic respectively, which give very different performance in term of

speed.

It should be noticed that configlcl, confielb], and configla] together is a
branch in the configuration encoding scheme tree. For example, in case of Y5,
configlcl], configlbl, configlal are set as config[0], config[1], and config[3] respectively.
This sequence of config bits corresponds to the uppermost branch of the

configuration encoding scheme tree.

4.2 Design Results

The flexible input architecture is designed for the Spartan-3A FPGAs. The
design can also easily be migrated to other Xilinx FPGAs with 77 or more number of
DSP slices, because their DSP slice structures are similar. The architecture is described
in VHDL language and synthesized using Xilinx ISE 14.7. We simulate the architecture
using I1Sim simulator, which comes with the Xilinx ISE, and compare the transform
results with the results gotten from the reference software. The compared results

ensure correctness of the flexible input architecture.
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The flexible input architecture is an improved version of the high throughput
architecture presented in chapter3. Design results of the flexible architecture
compared with the proposed architecture in chapter3 are summarized in Table.8.

The improved architecture can compute transform of much more flexible input

combinations.

Table. 8 Design summary, compared with the High Throughput architecture.

High Throughput

Flexible Input

Technology

Spartan-3A

Spartan-3A

A-input LUTs

15,521/33,280 (46%)

15,677/33,280 (47%)

Slice flip flops

20,818/33,280 (62%)

22,767/33,280 (68%)

DSP slices 77/84 (92%) 77/84 (92%)
Max Frequency 211.5 205
(MHz)
Throughput 1,692 1,640
(Msamples/s)

Supporting Video

7680x4320 @30 fps

7680x4320 @30fps

Format

Results in Table.8 indicate that there is a little penalty in performance aspect
of the design, but the architecture still has high enough throughput to support
encoding of 8K (7680x4320) at 30 frame per second, which is the same format as the
supported format of the high throughput architecture. The new design use 1% more
LUTs and 6% more flip flops, which are not significantly increased. The number of
required DSP slices, which is usually expensive resources, remains the same as the

previous architecture.

The flexible input architecture receives 32 inputs in each turn or every four
clock cycles. The inputs can be composed of any possible input combinations. For
example, an input combination can be composed of 4 set of 8 inputs, which is
represented as (8, 8, 8, 8). Other possible input combinations resulting from a

residual quad-tree partitioning are such as (8, 4, 4, 16), (16, 16) etc.
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The architecture produces transform of inputs with a high throughput of 1,640
Msamples/s independent of input combinations. The throughput can be derived by
the maximum frequency of the design. The maximum frequency which the flexible
input architecture can achieve is 205 MHz. Combine the maximum frequency with
the fact that the architecture produces new 32 outputs at every turn or every four
clock cycles, we come to the conclusion that the throughput of the flexible input
architecture is 1,640 Msamples/s. It should be noted that the maximum frequency of
205 MHz is attainable through the use of Digital Clock Manager (DCMs) on the
Spartan-3A family, which can generate frequency up to 320 MHz [16].

Comparisons with other designs in literature are summarized in Table.9. Most
of the designs in literature cannot support transform computation of flexible input
combinations, except the work in [19]. Moreover, the design in [19] produces varying
throughput depending on the current input combination and it is designed for

inverse transform.

Table. 9 Comparison with other works.

Design Technology Function Flexible Throughput | Supporting
(Msamples/s) | Format
Jeske et al. | Cyclone I 1-D 16x16 No 376.2 3840x2160
(6] (90 nm) @30 fps
Zhao et al. | Cyclone IV | 1-D all sizes some 238.13 N/A
(7] (60 nm) combination
Park et al. ASIC 1-D all sizes some 1,504 7680x4320
(8] 150 nm combination @30 fps
Meher et ASIC 1-D all sizes some 2,990 7680x4320
al. [9] 90 nm combination @60 fps
Chiang et ASIC 2-D all sizes some 375 3840x2160
al. [19] 90 nm combination @30 fps
proposed | Spartan-3A | 1-D all sizes all 1,640 7680x4320
(90 nm) combination @30 fps
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The design in [19] does not report their throughput, but the throughput can
be inferred from their clock speed and the number of clock cycles required to do
the computation. The resulting throughput is approximately 375 Msamples/s, which
is enough to support encoding of 3840x2160 videos at 30 frames per second. The
flexible input architecture has higher throughput than [19] and is able to support
encoding of 7680x4320 videos at 30 frame per second. Besides that, the design in
[19] requires complex scheduling to fill the use of transform unit in order to maintain

its high throughput.

Concrete comparisons with other works in literature are difficult, because
other architectures have less flexibility, in term of input combinations, than the
flexible input architecture and also targeting many different technologies. For
example, resource usages in Application Specific Integrated Circuits (ASICs) design are
usually reported in term of equivalent number of gates, while FPGAs tools report
resource usages in term of basic elements inside the FPGAs. The basic elements of

the FPGAs also differ from vendor to vendor, and from family to family.

However, some aspect of the designs such as their performance can be
roughly compared. Besides the work in [9], the flexible input architecture provides
higher throughput than all other designs in literature. The work in [9] is targeted to
be implemented on ASICs, which typically have better performance in term of speed

than FPGAs.

The flexible input architecture has high throughput because of two reasons.
The first reason is because dedicated multipliers are employed in the design [14].
Other reason is that configuration encoding scheme for representing input

combinations is carefully invented.

4.3 Pseudo Code of the Flexible Input Architecture

Fig.26-28 in this section present the pseudo code of the flexible input
architecture. Further details about the multiplier sharing scheme of this architecture

can be found in Appendix C.
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: module partizlButterfly flex

input (reset, clock, enable, input_combination, input)
output {dons, output)

---- CONTROL PATH
process #1 : state machine
case state of
stIdle : -- Idle state, wait for enable signal
if enable is inserted then
state « stProcess
end if
stProcess : -- transform computing state
if latency_count_up equals 22 then
state « stDone
end if
stDens : -- done output is high in this state
if latency_count_down squals 22 then
state « stIdle
end if
end case
end process

process #2 : gensrate dons signal
if state eguals stDone then
done « 1
end if
end process

process #3 : counting up latency
if state equals stIdle and enable is not inserted, or state equals =tDone then
latency_count_up « @
else
latency_count_up « latency_count_up + 1
end if
end process

process #4 : counting down latency
if state equals stIdle then
latency_count_down « 2
else if enzble iz not inserted then
latency_count_down +« latency_count_down + 1
end if
end process

process #5 : counter for controlling sharing of dedicated multipliers and synchronizing the data

path
if state eguals stIdle then
mux_counter « @
else
mux_counter « mux_counter + 1
end if
end process

---- DATA PATH
process #6 : latching input
if enable is inserted then
for 1 « @ to 31 do
i + Input:
end for
end if
end process

-1 step : generate odd even components
process #7 : generate E components of a 32-point transform
for 1 «+ @ to 15 do
E_32p; & X1 + Xau-:
end for
end process

Fig. 26 Pseudo code of the Flexible Input architecture.
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1235:
124:
125:
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128:
129:
138:
131:
132:
133:
134:
135:
126
137:
138:

process #8 : gensrate 0 components of a 32-point transform
for i + @ to 15 do
0_32p; + ¥: - Mz
end for
end process

process #9 : input multiplexers before 16-point transforms
for 1 + @ to 15 do
if input_combinations equals @ then
in_16pg; + E_32p;

else
in_16pe: + x:
end if
in_16p1: « e
end for

end process

process #1@ : generste E components of two 16-point transforms
for s + @ to 1 do
for i « @ to 7 do
E_16p.: + in_16p; + in_16pic:
end for
end for
end process

process #11 : generste O components of two 16-point transform
for = + 2 to 1 do
for 1 + @ to 7 do
0_16p.: + in_16p; - in_16pis.:
end for
end for
end process

process #12 : input multiplexers before 8-point transforms
for 1 + @ to 7 do
if dinput_combination; equals @ then
in_B8pe: « E_l6pa:
else
in_8pe: +
end if

if input_combinastion; s=quals @ then
in_8pa: « E_16pu

else
in_8pi: + Maw

end if

in_8pa: + Muesd
in_8ps: « M
end for
end process

similar processes for the 1% step : generate odd even components step

-- 27 step : multiplication
process #13 : multiplexers for selecting multiplicands for dedicated multipliers
for k + @ to 76 do
case input_combination, mux_counter of
mul_data; = an appropriate component according to the multiplier sharing scheme
end case
end for
end process

process #14 : multiplexers for selecting multipliers for dedicated multipliers
for k + @ to 76 do
case input_combination, mux_counter of
mul_coeff, « an appropriste component accerding to the multiplier sharing schems
end case

Fig. 27 Pseudo code of the Flexible Input architecture (continue).
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139:
148:
141:
142:
143:
144:
145:
146:
147:
148:
149:
158:
151:
152:
153:
154:
155:
156:
157:
158:
159:
le@:
161:
162:
163:
164:
165:
166:
167:
168:
169:
17@:
171:
172:
173:
174:
175:
176:
177:
178:
179:
188:
181:
182:
183:
184:
185:
186:
187:
188:
189:
198:
151:
192:

58

end for
end process

process #15 @ initiste dedicate multipliers
component k « @ to 76 port map (

multiplier « mul_data,,

multiplicand < mul_coeffy,

praoduct +« mul_output,

)

end process

process #16 @ collecting multiplied terms
for k « 2 to 76 do
case mux_counter of
collect outputs from mul_output. to an sppropriate multiplied term register
end case
end for
end process

process #17 @ computing pseudo multiplication
if mux_counter equals 3 then
for all element of pseudo-multiplied term registers
compute pseudo-multiplied terms by binary shifting
end for
end if
end process

.- 3™ step @ post addition subtractien
process #18 : post additions and subtractions
if mux_counter equals @ then
for all s in possible set number do
for i + 2 to 31 do
ys:i = an aggregation tree of multiplied terms according to the transform matrix
end for
end for
end if
end process

-- 4% step : rounding and output multiplexer
process #19 : output multiplexing and rounding
for i « 2 to 31 do
if input_partition, equals @ then
output; « (yg+8)>>4
else if input_partition,i|:e| equals @ then
output: « (¥linsl, :s#4) >3
else if input_partition:.|:;:] equals @ then
outputs «(yliel, a+2)>>2
else
outputs «(y|ia], 2st1)>>1
end if
end for
end process

end module

Fig. 28 Pseudo code of the Flexible Input architecture (continue).



Chapter 5

Experimental Results

After described about all the transform architecture for the HEVC designed on
FPGAs, we turn our attention to the experimental results. Since the transform
architectures invented in this thesis have no parameter, the only thing needed to be
verified is the robustness of the architecture. The robustness of the architectures are
checked by comparing their results with the results retrieved from the reference

software [5] through a large number of input data from real video sequences.

The outline for this chapter is as follow. First, we discuss about the initial
simulation in section 5.1. In this section, functional simulations of the design are
shown and timing specifications are explained. In section 5.2, the standard test
sequences are introduced. The test sequences used in this thesis are selected from
the common test conditions [20]. Then, reference software configuration in our test is
presented in section 5.3. First automated testbench is discussed in section 5.4. This
section shows that the proposed architectures can correctly compute transform of
all sizes without problems such as overflow over a large number of input data sets.
Finally, another section, section 5.5, is dedicated to another automated testbench.
This second testbench checks that the configuration encoding scheme works

correctly.

5.1 Initial Simulation

After completely describing the flexible transform architecture in VHDL, the
design is test visually using ISim simulator accompanied with the Xilinx ISE. It should
be noted that only the flexible transform architecture is tested, because the high
throughput architecture is considered to be a subset of the flexible input transform
architecture. The flexible input transform architecture is an improved version of the

high throughput architecture.
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The data set used for the initial test is retrieved from the reference software
and shown in the first column of Table.10. This data set will be called the initial data
set. The following columns labeled as 4p results, 8p results, 16p results, and 32p
results are the expected results after applying 4-point, 8-point, 16-point, and 32-point

transform to the initial data set respectively.

The data in Table.10 can be used for checking the correctness of computing
the transform of the initial data set, independent of input combinations selected. For
example, if the input combinations selected is (8, 4, 4, 16), then the highlighted data
in the 4p results, 8p results, and 16p results columns are used for checking the

correctness of the architecture.

An example of the initial simulation is shown in Fig.29. The data set used for
this simulation is the initial data set, which first four elements -118, -88, 73, and 127
can be seen from the picture. The partition in the timing diagram is the config in the
design. The config is first set to “0000000”, then later changed to “0000001”. This
configuration represents input combinations of (32) and (16, 16) respectively. It is
worth noting that the config, the partition in the timing diagram, can be changed as

SO0N as necessary.

I

0.1us 0.2us 0.3us 0.4us 0.5us 0.6 us 0.7 us

Name
S e a g Uy Lo oo bov v a bon v aleasy | IFEETr M | T v | I

1 rst
1 ak

1% compen
B partition[6:0]
B »0p:0)
B x1:0)
B x2p:0)
B ap:0)
1§ done
B yo15:0)
B y1115:0)
B y2115:0)
B y315:0]

SHE SIS

3732 X 3832
976 X -5119
-3606 X 2402
1393 X -5176

ooooooooooo»—-o<l

SHEIEIE

T
25 cycles

Fig. 29 An example of initial simulation.



Table. 10 The initial data set, retrieved from the HM reference software.

residual input | 4p results | 8p results | 16p results | 32p results
-118 -192 672 3832 3732
-88 -13065 -3487 -5119 -976
73 768 -6533 2402 -3606
127 2272 -4782 -5176 1393
12 1536 384 -3288 -1434
12 0 3031 -1654 739
12 0 1136 -3811 118
12 0 =750 -481 -7045
-20 -2144 6992 136 -88
-14 -88 -8292 661 414
-16 -224 -44 2531 -1728
-17 -137 2840 360 -1572
126 16128 -112 534 -2744
126 0 -2030 854 715
126 0 -68 -1181 -1824
126 0 1612 -1 781
-17 -2048 6928 3632 36
-16 -59 -8214 2093 -473
-15 -64 116 -5270 1486
-16 24 2783 -5411 -147
119 15904 -144 3112 1449
126 -290 -1794 1802 1160
126 -224 75 -1676 504
126 -126 1492 3167 -635
127 -192 336 -64 -38
73 13066 2327 -2311 1776
-88 768 6109 368 -224
-118 -2271 6135 -647 -450
11 864 16 -610 -424
13 848 -2530 1301 -20
12 -736 -1295 333 -321
-9 319 826 642 171
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The design can be virtually checked by comparing the data in Table.10 with
the simulation results. For example, in case of the (32) input combinations, the first
four outputs can be get from the 32p column which are 3732, -976, -3606, and 1393
respectively, which is consistent with the yellow highlighted outputs in the timing
diagram. Another example can be verified from the blue highlighted inputs and

outputs in the diagram.

Timing specifications of the flexible input transform architecture is as
followed. The compen is the component enable signal. The partition is the config in
the design. Each input needs to hold its value for four clock cycles to wait for
multiplier sharing which reusing each multiplier four times. The compen and partition

are synchronous with the inputs and also hold the value for four clock cycles.

The done signal indicates that the design is almost ready to give the outputs.
This signal is intentionally set a clock cycle prior to the outputs to allow other
receiver modules to have time for decisions before the outputs come. Each output
stays at the same value for four clock cycles. Finally, the latency between each
input and output sets is 25 clock cycles. This latency is mainly resulted from

pipelining inside the design.

5.2 Standard Test Sequences

A set of standard test sequences for the HEVC is defined in the common test
conditions and software reference configurations [20]. These test sequences are
mainly aimed to be used during the development of the standard to test for the
trade-off between coding efficiency and reconstruction picture quality of coding

tools.

The standard test sequences are classified into class A to class F according to

their picture size and applications [11]. This classification is summarized in Table.11.

Class A deals with very high resolution videos, with resolution higher than
1920x1080. The aims of Class A sequences are for evaluating the 4K/8K videos, but

to save computation times the video size is reduced to 2560x1600. Class B
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sequences are used for testing 1080p or 1920x1080 resolution videos. Class C and
Class D are for testing mobile applications, which Class C videos have resolution of

832x480 and Class D videos have resolution of 416x240 respectively.

Class E sequences are for a specific low-latency application such as visual
communications. The resolution of Class E sequences is 1280x720. The last test
sequence class is Class F. The Class F aims to test non-camera video such as videos

created by computer graphic.

Table. 11 Test sequence classes summary

Class Resolution Applications
A 2560x1600 Ultra high resolutions, 4K, 8K videos
B 1920x1080 Full HD, 1080p, videos
C 832x480 Mobile applications
D 416x240 Mobile applications
E 1280x720 Low-latency applications, e.g. visual
communication
F 1280x720 Non-camera videos, computer graphic

All test sequences of the HEVC are listed in Table.12. Three sequences are
selected from the standard test sequences to test the transform architecture
designed in this thesis. The selected sequences are highlighted in Table.12 and their
example frames are shown in Fig.30. The reason for selecting low resolution videos is
because the time required for simulating higher resolution videos is too long, as will

be further discussed in section 5.4.

Frequency characteristic of videos has effects on the transform step, so we
select two video sequences which have different frequency characteristic to test our
transform architecture. Objects inside the “BasketballPass” sequence move rather

fast, so the sequence contains significantly high frequencies. While, objects inside the
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“BQSquare” move relatively slow, so the sequence contains significantly low

frequencies.

All of the test sequences are available on ftp://hevceftp.tnt.uni-
hannover.de/testsequences/, however username and password are required for
authentication. Other  place to find the  test  sequences is
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/i_main. However,  only
encoded bitstreams are provided, since raw video data required large space to be

store.
5.3 The HEVC Reference Software Configuration

The HEVC reference software, the HM test model, version 13 is used as the
reference to check the correctness of our transform architecture [5]. The software

encoder profile is set to Main profile. The encoding bit depth is 8 bits.

Since it is out of the thesis scope to thoroughly study the structure of the
reference software, it is difficult to let the reference software directly control the
config of the flexible input architecture. However, the inputs and outputs of each
one-dimension HEVC transform step can be retrieved out from the partialButterfly4,
partialButterfly8, partialButterflyl6, and partialButterfly32 function inside the

program. This four functions code is in appendix A.

Only two frames are used in each video sequence, because HEVC encoding
and testing are time consuming processes. The time required to encode 2 frames of

each testing sequence is summarized in Table.13.


ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/
ftp://hevc@ftp.tnt.uni-hannover.de/testsequences/
ftp://ftp.kw.bbc.co.uk/hevc/hm-10.0-anchors/bitstreams/i_main

Table. 12 The HEVC standard test sequences [20].

Class Sequence name | Resolution Bit
depth

A Traffic 2560x1600 8
A PeopleOnStreet 2560x1600 8
A Nebuta 2560x1600 10
A StreamLocomotive | 2560x1600 10
B Kimono 1920x1080 8
B ParkScene 1920x1080 8
B Cactus 1920x1080 8
B BQTerrace 1920x1080 8
B BasketballDrive 1920x1080 8
C RaceHorses 832x480 8
C BQMall 832x480 8
C PartyScene 832x480 8
C BasketballDrill 832x480 8
D RaceHorses 416x240 8
D BQSquare 416x240 8
D BlowingBubbles 416x240 8
D BasketballPass 416x240 8
E FourPeople 1280x720 8
E Johnny 1280x720 8
E KristenAndSara 1280x720 8
F BasketballDrillText | 1280x720 8
F ChinaSpeed 1280x720 8
F SlideEditing 1280x720 8
F SlideShow 1280x720 8
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Fig. 30 Test sequences (a) BasketballDrill (b) BQSquare (c) BasketballPass
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Table. 13 Two-frame encoding time of the selected test sequences.

Class | Sequence Resolution | Two-frame

Name Encoding Time (min)

C BasketballDrill | 832x480 88.23

D BasketballPass | 416x240 25.68

D BQSquare 416x240 34.58

5.4 The First Automated Testbench

The first testbench for the flexible input architecture is a functional
automated testbench. This testbench is an exhaustive testing to verify the
correctness of the architecture when computing 4-point, 8-point, 16-point, and 32-

point HEVC transform respectively.

The inputs and outputs data from one-dimension transform steps computing
during encoding process of each sequence are written out in text file format. Each
text file corresponds to a transform size of a video sequence. For example,
partialButterfly 16 BasketballPass.txt stores all 16-point transform inputs and

outputs get from the BasketballPass sequence.

An automated testbench is written in VHDL as shown in Fig.31.

1: module partislButterfly_flex_tb_1

2:

3: process #1 @ initiate the unit under test

4: component partialButterfly_flex port map
5: end process

&

7 process #2 : generate clock signal

a: if simulation time elapses for half clock-period then
9: clock « not clock
18: end if
11: end process
12:
13: process #3 : generate stimuli
14: initial reset
15: while( not endfile )
16: read input data form a file
17: insert input datas to the unit under test
18: read output data from a file
19: assert output data form a file equals output data from the architecture
20: end while
21: print “No Error Found!®
22: end process

24: end module

Fig. 31 Pseudo code of the first automated testbench.
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Basically the code reads the text file database, computes HEVC transform of the
inputs received, and compare the architecture outputs with the results database.
The std.textio library is used for assisting text files reading. The readline, read, assert,

and report functions are employed in the testbench.
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Fig. 32 “No Error” report in ISim simulator.

After a time consuming simulation process in ISim simulator, the simulator
console report no error as shown in Fig.32. The total number of transform tested in
each case is summarized in Table.14. The total number of 475176 4-point
transforms, 626,008 8-point transforms, 482,544 16-point transforms, and 328,832 32-

point transforms are tested, which results in the total number of 1,912,560
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transforms error-freed. So we can claim with a great degree of confidence that the

designed transform architecture is robust.

Table. 14 The number of transform tested.

4p 8p 16p 32p
BasketballDrill | 305,200 | 407,768 | 316,216 215,232
BasketballPass | 85,844 | 112,864 90,456 60,352
BQSquare 84,132 | 105,376 75,872 53,248
Total 475,176 | 626,008 | 482,544 328,832 | 1,912,560

The time required for testing each transform size of each test sequence is

summarized in Table.15 to show how long it takes to simulate the sequences. Note

that the unit of Table.15 is hour.

Table. 15 Time required for automated simulation (hours).

4p 8p 16p 32p
BasketballDrive 136.91 194.50 174.55 117.49
BasketballDrill 22.17 32.77 26.70 22.13
BasketballPass 6.23 8.78 7.33 5.07
BQSquare 13.43 12.90 7.34 6.32
FourPeople 56.49 77.81 61.80 43.52
SlideEditing 59.40 74.91 56.23 40.52

The test sequences are simulated using two laptops. The first laptop, with

Intel Core i5-3230M (2.6 GHz, 3 MB L3 Cache, up to 3.2 GHz) CPU, runs the

BasketballDrill and BasketballPass sequences on the Xilinx ISE ISim simulator. The

second laptop, with Intel Core i7-4700HQ (2.4 GHz, 6 MB L3 Cache, up to 3.4 GHz)

CPU, runs the BQSquare sequence on the Xilinx Vivado simulator.

The first platform can simulate faster, so we use time data from the

BasketballDrill and BasketballPass sequences to estimate the time required to

simulate other higher resolution videos, shaded in Table.15. The time data are
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plotted as shown in Fig.33 and linear regression is used for estimation. The
estimation results are reported in shaded area of Table.15, which emphasize the

reason why higher resolution videos are not simulated.

Relation of simulation time with
number of transforms
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Fig. 33 Relation of simulation time with number of transforms.

5.5 The Second Automated Testbench

The second testbench is also a functional automated testbench written in
VHDL. This testbench aims to test correctness of the configuration encoding scheme
inside the flexible input transform architecture. Since structure of the HEVC reference
software is difficult to know and out of scope of the thesis, we synthesize a test data

set to be used in our testing.

First, pairs of inputs and outputs of all transform sizes are collected from the
HEVC reference software to create our database, 10,000 pairs are stored for each
transform size. The database looks like the Table.16. Data are not fully shown in the
table to avoid too much information. For example, 14,0 and 04,0 is a pair of 4-point
transform, which might be (-118, -88, 73, 127) and (-192, -13065, 768, 2272)

respectively.
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Table. 16 Transform input-output pairs database.

pair Input | Output | Input | Output | Input | Output | Input | Output
number | 4dp 4p 8p 8p 16p 16p 32p 32p
0 14,0 04,0

1 18,1 08,1

2 14,2 04,2

99 116,99 | 016,99

9999

A test program is then written in C to generate a test data set as shown in

Fig.34.
1: databose +« read data from files that are retrieved from the reference software
2: HNUMBER_OF_BLOCK +« l1@2@d
3: for set « @ to NUMBER_OF_BLOCK-1 do
4: pattern « random integer between @ to 25
5: generate 32 input-cutput dats with the selected pattern, using dotabose
-8 write the pattern and the generated input-output data to an output file
7: end for

Fig. 34 Pseudo code of the test program.

Firstly, the test program randomly selects the test data input combination, which can
be any of the 26 possible input combinations resulted from a quad-tree partitioning.
Then, data pairs from the database are randomly selected and concatenated to form

a pair of 32 inputs and outputs of the specified input combination.

For example, if the test program select input combination of (8, 4, 4, 16), the
inputs and outputs pair can be (18,1, 14,0, 14,2, 116,99) and (08,1, 04,0, 04,2, 016,99)

respectively.

Both input combination and inputs and outputs pair selected are written into

a text file. The text file is then read by an automated testbench described by Fig.35.
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1: module partialButterfly_flex_tb_2

2:

3: process #1 : initiate the unit wunder test

4: component partialButterfly_flex port map

5: end process

6:

7 process #2 : generate clock signal

a: if simulation time elapses for half clock-period then
9: clock « not clock
1@: end if
11: end process
12:
13: process #3 : generate stimuli
14: initial reset
15: while( not endfile )
161 read input data from a file
17: read input combination from a file
18: insert input data and input combination to the unit under test
19: read output data from a file
2@: assert output data form a file squals output data from the architecture
21: end while
22: print “No Error Found!*
23 end process
24:

25: end module

Fig. 35 Pseudo code of the second automated testbench.

This is how the testbench works. The config of the design is set by input combination
and the corresponding inputs are inserted into the architecture. Outputs of the
architecture are compared with the results in the text file. Assertions are used in the
simulation to ensure that no data mismatch occurs during the simulation, thus

ensure correctness of the design.

Total number of 10,000 blocks of random data is tested. The results are

error-freed as indicated by the simulator console shown in Fig.36.

Console

gt 3298221 ns: Mote: 9994 (ftop_partialbutterfly_flex_verd_th/].
gt 3298551 ns: Mote: 9935 (ftop_partialbutterfly_flex_verd_th/].
gt 32985831 ns: Mote: 9996 (ftop_partialbutterfly flex verd thf.
gt 3299211 ns: Mote: 9957 (ftop_partialbutterfly flex verd thf}.
gt 3299541 ns: Mote: 9998 (ftop_partialbutterfly_flex_verd_th/).
gt 32995871 ns: Mote: 9999 (ftop_partialbutterfly_flex_verd_th/].
gt 3300201 ns: Mote: Mo errors found! (ftop_partialbutterfly_flex_y
Stopped at time : 3317755 ns ¢ File_"D:/Dropbox/CodeProject filinxd
ISim=>

Console ||| Compilationlog | @ EBreskpoints | igg |

Fig. 36 “No Error” report in ISim simulator.



Chapter 6

Conclusion and Future Works

This thesis contributes two architectures for the transform step of the latest
video coding standard, the High Efficiency Video Coding (HEVC). These architectures
are aimed to be employed as part of an HEVC real-time encoder on FPGA platforms.
The design possesses high throughput feature and can receive flexible input

combination.

The first architecture, the high throughput architecture, has a high enough
throughput to support encoding of 4K resolution videos at 30 fps in real-time on
Spartan-3A FPGAs. It has possibility to support up to 8K resolution videos with better
technology. The dedicated multipliers inside the DSP slices, which are dedicated
resources inside FPGAs, are extensively used in this design to gain high throughput
[14]. Using dedicated resources in critical tasks is an important strategy in FPGA

designs.

The second architecture, the flexible input architecture, can compute
transform of any input combinations resulting from a residual quad-tree partitioning,
which is the partitioning used for getting basic processing units of the transform step.
Configuration encoding scheme is invented to represent possible input combinations.
By using this configuration encoding scheme, the flexible input transform architecture
can be constructed without any increase in the number of dedicated multipliers

required [18].

The transform architecture are verified by checking with the HEVC reference
software [5]. Automated testbench is written in VHDL to read transform database

from text files and compare transform results to ensure robustness of the design.

Possible future works include designing other modules of the HEVC encoder,
such as the intra prediction step, the inter prediction step, or the entropy encoder.
There are several parameters to compromise the trade-off between the

reconstructed picture quality and the coding efficiency.
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Another possible future work is to implement an architecture for the HEVC
inverse transform. Since inverse transform matrices of the HEVC are transpose of the
forward transform matrices, these two categories of matrices have similar structure
and symmetries. It is possible to build the inverse transform architecture from the
forward transform architecture with minor modification. Section 6.1 gives an idea

about this modification.

6.1 Flexible and High Throughput Inverse Transform Architecture idea

This section presents an idea to build inverse transform architecture for the
HEVC from the forward transform architecture. Firstly, we will explore the similarities
between computation of the 4-point forward and inverse transform. Then, we will
show sharing of hardware between different transform sizes in the inverse transform.
This idea of sharing is similar to the sharing in the forward transform, described earlier
in chapter.4. Finally, we will describe a possible benefit we can get from using

flexible inverse transform architecture.

To show similarities between the computation of 4-point forward and inverse
transform, only the first three steps of the partial butterfly algorithm, excluding the

rounding step, will be shown.

First, consider the first three steps of the 4-point forward transform, which are

used to generate the intermediate results Z; before rounding step,

] [64 64 64 647 [X,
83 36 -36 -83| | X,
_ 38
X

[y

164 —-64 —-64 64
36 -83 83 -36

2

N N N N
N

w

3

where X;;1 = 0,1,2,3 are inputs of the transform and Z;;i = 0,1,2,3 are intermediate

results before rounding step. This matrix multiplication can be decomposed into
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steps according to the partial butterfly algorithm as in the following sets of equations

(5],

Ey =Xy + X5,
E, =X, +X,,
0y =Xy, — X3,
01 = X1 — X,

Zy=64-Ey+ 64-E,,
Z, = 64-E, — 64 E,,
Z, =830, + 360,
Z3=136-0,—83"0,.

Equations (19) can be written in matrix form as,

BE A
2 =2

Next, consider the first three steps of the 4-point inverse transform, which will

(20)

be used to generate the intermediate results F; before rounding step,

64 83 64 36 X
_ 64 36 -64 -83 . X, | (21)
64 -36 -64 83 X,
X

64 -83 64 -36

0

3

where X;;1 = 0,1,2,3 are inputs to the inverse transform step and F;;i = 0,1,2,3 are
intermediate results before rounding step. It should be noted that the matrix in (21)
is a transpose of the matrix in (17). The matrix multiplication in (21) can be
decomposed into steps according to the partial butterfly algorithm for inverse

transform as in the following sets of equations [5],
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ZO :64X0+64X2,
ZZ =64"X0_64"X2,

(22)
Z1 = 83 'X1 +36X3,
Z3 = 36'X1 _83 'X3,
FO = ZO + Zly
F,=2,+ Z,
1 2 3 (23)
F2 = Zz - Z3,
F3 - Zo - Zl'
Equations (22) can be written in matrix form as,
z,] 64 647 [X,
= [ ] ,
Z,| |64 —64] |X,
(24)

ZE =)

By comparing (20) and (24), it is obvious that the matrices in these two
equations are the same matrices. So, the same hardware used for the second and
the third step of the partial butterfly for forward transform can also be used in the
inverse transform. Both (18) and (23) contain the same number of additions and
subtractions, two additions and two subtractions.

In conclusion, the modification needed to be carried out to construct the
inverse transform architecture is to move the hardware for the first step of the partial
butterfly algorithm for forward transform to be placed after the third step. This
modification is illustrated by Fig.37. The upper-part of Fig.37 is the original hardware
for a 4-point forward transform, while the lower-part is the hardware for a 4-point

inverse transform.



Forward
Xoﬁ %ZO
x,—s| Pre- DSP post [z,
gen
o mul sub
X3—> even —> Z3
Inverse
Xoﬁ —> FO
x,—| DSP post pgoesr:- > F,
add
Xp—> odd [~ F2
mul sub
X3 even [ F3

Fig. 37 Hardware for the first three steps of partial butterfly algorithm (for forward

and inverse transform).

14

Next, sharing of hardware between different transform sizes in the inverse

transforms will be explained. The sharing structures are basic building blocks for the

flexible input architecture, for both forward and inverse transform, so a picture of

sharing structure between 4-point and 8-point transform are illustrated in Fig.38.

Fig.38 (a) is for the forward transform and Fig.38 (b) is for the inverse transform.

It should be noted that the sharing structure of the forward transform is

already seen in chapter.4. Fig.22 and Fig.38 (a) are same structure. Fig.22 shows more

details in the data path, but it does not show the input multiplexer. The structure in

Fig.22 and Fig.38 (a) is employed in building the flexible input architecture shown in

Fig.24.



config
Pre 1 Imul| |ras
GOE 4 4
4p P P
pre
4 GOE
8p
Mul PAS
3p 3p
(a) Forward transform
ost
Mmul| |pas| [P
> 4 > 4 GOE >
P P 4p
post
Xi— GOE
8
Mul PAS F
3p 3p
(b) Inverse transform

config

Fig. 38 Hardware sharing between 4-point and 8-point transform

(a) forward transform (b) inverse transform.
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After showing the hardware sharing structure in the inverse transform, we now

analyzes inverse transform equations to make it clear why different transform sizes

hardware can be shared.

The first three steps of an 8-point inverse transform

the following matrix multiplication,

F,] [64 89 83
F| |64 75 36
F,| |64 50 -36
F| |64 18 -83
F,| |64 -18 -83
F, | |64 —50 —36
F| |64 -75 36
'F,| |64 -89 83

75 64
-18 -64
-89 -64
-50 64

50 64

89 -64

18 -64
-75 64

50
-89
18
75
—-75
-18
89
-50

can be represented by

36 18 |
-83 -50
83 75
-36 -89
-36 89
83 -75
-83 50
36 18

N - o

w

(%21

(2]

><><><4>><><><><><

~

(25)

where X;;i=0,1,...,7 are inputs to the inverse transform and F;;i = 0,1, ...,7 are

intermediate results before rounding step.

Matrix multiplication in (25) can be decomposed into steps as shown in the

following equations [5],

z,] [64
z,| |64
z,| |64
z,| |64

83 64 36

36 —-64 -83
-36 —-64 83
-83 64 -36

X
.x2

X

X

0

4

6

Z,=89-X;+75 X5 +50-Xs + 18- X,

Z3 :75X1_18X3_89X5_50X7,

Zs=50-X, —89-X;+ 18 - Xs + 75 X,

Z7 = 18'X1_50'X3+75'X5_89'X7,

(26)
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Fo =2y + Z4,
Fi, =27, + Z3,
F, =27,+ Zs,
Fy3 =Zg+ Z;, 08
Fy=27¢— 7,
Fs=2,—Zs,
Fe =2 — Z3,
F,=2y—27;.

The matrix in (26) is the same as the matrix in (21), so computation in (26) can
be taken care of by a 4-point transform. The multiplexer in Fig.38 (b) selects whether
output of the 4-point transform hardware will be directly sent out as 4-point inverse

transform outputs or further processed by the 8-point transform hardware.

As final note, the flexible input inverse transform architecture can have
another benefit because data in HEVC bitstream can be extracted and used to

directly control the circuit.

config[0]

00 1000 00 00OO0OO0O0DO0COO0OO
O )
00 0O g ‘*g "§\ "g
< Q Q
(a) (b)

Fig. 39 (a) the quad-tree structure of partitioning in Fig.23 (b) the modified quad-tree

structure of partitioning in Fig.23.
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According to the standard specification of HEVC [21], partitioning of a coding
unit into transform units is represented by a quad-tree structure. For example, quad-
tree structure that represents the partitioning in the right-hand side of Fig.23 is shown
in Fig.39 (a). This quad-tree structure can be directly decoded from the HEVC binary
stream. Further details about syntax for representing the quad-tree can be found in

[21] and [22].

The configuration encoding scheme in the flexible input transform
architecture can be easily extracted directly from the quad-tree structure with
modest modification. The modified version of the quad-tree structure in Fig.39 (a) is
shown in Fig.39 (b). Basically, we normalized every branches of the tree to have
equal level of three levels from the root. This is possible because a zero node imply
no more partition and there cannot be partitioning in the fourth layer since smallest

size of transform unit, 4x4, is already reached.

In Fig.39 (b), the nodes from the modified quad-tree structure that are
extracted to form the configuration encoding scheme in the left-hand side of Fig.23
are circled. The simple mapping from a quad-tree structure to configuration encoding
scheme is beneficial, because header information in HEVC stream can be directly

used to control our circuit.



REFERENCES

G. J. Sullivan, J. Ohm, H. Woo-Jin, and T. Wiegand, "Overview of the High
Efficiency Video Coding (HEVC) Standard," Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 22, pp. 1649-1668, Dec. 2012.

F. Bossen, B. Bross, K. Suhring, and D. Flynn, "HEVC Complexity and
Implementation Analysis," Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 22, pp. 1685-1696, Dec. 2012.

K. lan and J. Rose, "Measuring the Gap Between FPGAs and ASICs," Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 26,
pp. 203-215, Feb 2007.

K. Kihyun and R. Kwangki, "High performance hardware architecture for multi-
mode 1-D forward transform of HEVC," in Consumer Electronics (GCCE), 2013
IEEE 2nd Global Conference on, Oct. 2013, pp. 343-344.

JCT-VC, "HM Software," 13 ed.

R. Jeske, J. C. Souza, G. Wrege, R. Cenceicao, M. Grellert, J. Mattos, et al., "Low
Cost and High Throughput Multiplierless Design of a 16p 1-D DCT of the New
HEVC Video Coding Standard," presented at the VIl Southern Conference on
Programmable Logic (SPL), Mar. 2012.

W. Zhao, T. Onoye, and S. Tian, "High-performance multiplierless transform
architecture for HEVC," in Circuits and Systems (ISCAS), 2013 IEEE International
Symposium on, May. 2013, pp. 1668-1671.

S.Y. Park and P. K. Meher, "Flexible integer DCT architectures for HEVC," in
Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, May.
2013, pp. 1376-1379.

P. K. Meher, P. Sang Yoon, B. K. Mohanty, L. Khoon Seong, and Y. Chuohao,
"Efficient Integer DCT Architectures for HEVC," Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 24, pp. 168-178, Jan. 2014.

A. Fuldseth, G. Bjontegaard, M. Budagavi, and V. Sze, "CE10: Core transform
design for HEVC (JCTVC-G495)," Nov. 2011.



83

V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding (HEVC)
Algorithms and Architectures: Springer, 2014.

. E. Richardson, The H.264 Advanced Video Compression Standard, 2 ed.
Chichester: John Wiley & Sons, 2010.

G. Bjontegaard, "Calculation of average PSNR differences between RD-curves
(VCEG-M33)," Mar. 2001.

P. Arayacheeppreecha, S. Pumrin, and B. Supmonchai, "1-D integer transform
for HEVC encoder using DSP slices on FPGA," presented at the IEEE
International Electircal Engineering Congress (iIEECON), 2015.

X. Inc., "XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide (UG431),"
Jul. 2008.

X. Inc,, "Extended Spartan-3A Family Overview (DS706)," Feb. 2011.

A. Corporation, "Cyclone Il Device Handbook, Volume 1 (ClI5V1-3.3)."

P. Arayacheeppreecha, S. Pumrin, and B. Supmonchai, "Flexible Input
Transform Architecture for HEVC Encoder on FPGA," presented at the
International Conferences on Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology (ECTI-CON), 2015.

C. Pai-Tse and C. Tian Sheuan, "A reconfigurable inverse transform
architecture design for HEVC decoder," in Circuits and Systems (ISCAS), 2013
IEEE International Symposium on, May. 2013, pp. 1006-1009.

F. Bossen, "Common test conditions and software reference configurations
(JCTVC-11100)," May. 2012.

ITU., "Recommendation ITU-T H.265," ed, Apr. 2013.

l. K. Kim, J. Min, W. J. Han, and J. H. Park, "Block Partitioning Structure in the
HEVC Standard," IEEE Trans Circuits Syst. Video Technol., vol. 22, pp. 1697-
1706, Dec. 2012.



APPENDIX



APPENDIX A

Transform Functions inside the Reference Software

const Short g aiT4[4][4]
{

{64, 64, 64, 64},

{83, 36,-36,-83},
{64,-64,-64, 64},
{36,-83, 83,-36}

s

const Short g aiT8[8][8]
{

{64, 64, 64, 64, 64, 64, 64, 64},

{89, 75,

50, 18,-18,-50,-75,-89},

{83, 36,-36,-83,-83,-36, 36, 83},
{75,-18,-89,-50, 50, 89, 18,-75},
{64,-64,-64, 64, 64,-64,-64, 64},
{50,-89, 18, 75,-75,-18, 89,-50},
{36,-83, 83,-36,-36, 83,-83, 36},
{18,-50, 75,-89, 89,-75, 50,-18}

}s

const Short g aiTl16[16][16] =

{

{64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},

{90, 87, 80, 70, 57, 43, 25, 9,

{89, 75, 5o, 18,-18,-50,-75,-89,-89,-75,-50,
{87, 57, 9,-43,-80,-90,-70,-25, 25, 70, 90,
{83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,

{80, 9,-70,-87,-25,

57, 90, 43,-43,-90,-57,

{75,-18,-89,-50, 50, 89, 18,-75,-75, 18, 89,
{70,-43,-87, 9, 90, 25,-80,-57, 57, 80,-25,
{64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64,
{57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87,
{5e,-89, 18, 75,-75,-18, 89,-50,-50, 89,-18,

{43,-90, 57, 25,-87, 70,
{36,-83, 83,-36,-36, 83,-83, 36, 36,

{25,-70, 90,-80, 43,

{18,-50, 75,-89, 89,-75,
{9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70,

};

9,-80, 80,

,-57, 87,-87, 57,
50,-18,-18,

const Short g_aiT32[32][32] =

{

-9,-43,

-9,-25,-43,-57,-70, -80,
-18, 18, 50,

'91

-83,-83,-36,
25, 87, 70,
50,-50, -89,

-9, 87,
64, 64,-64,

9,-90, 25,

-75, 75, 18,
-9,-70, 87,-25,-57,

-83, 83,-36,-36, 83,

80,-90,

50,-75, 89,-89, 75,

57,-43,

{64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64},

{90, 90, 88, 85, 82, 78, 73, 67, 61, 54, 46, 38, 31, 22,
22,-31,-38,-46,-54,-61,-67,-73,-78,-82,-85, -88,-90,-90},

{90, 87, 80, 70, 57, 43, 25, 9,

80,-70,-57,-43,-25, -9,

9, 25, 43, 57, 70, 80, 87, 90},

-87,
75,
-57,
36,
-9,
-18,
43,
-64,
80,
-89,
90,
-83,
70,
-50,
25,

64,

13,

-90},
89},
-87},
83},
-80},
75},
-70%},
64},
-57%,
50},
-43}%,
36},
-25%},
18},
-9}

64, 64, 64,

4, -4,-13,-

-9,-25,-43,-57,-70,-80, -87,-90,-90, -87, -



{90, 82, 67, 46, 22,

61, 78, 88, 90, 85, 73, 54,

31, 4,-22,-46,-67,-82,-90},

-4,-31,-54,-73,-85,-90,-88,-78,-61,-38,-13, 13,

86

38,

{89, 75, 50, 18,-18,-50,-75,-89,-89,-75,-50,-18, 18, 50, 75, 89, 89, 75,

50, 18,-18,-50,-75,-89,-89,-
{88, 67, 31,-13,-54,-82,-90,-78,-46,

85,-90,-73,-38,
{87, 57,

4, 46, 78,

-9, 43, 80, 90, 70, 25,-25,-70,-90,-80,-43,
{85, 46,-13,-67,-90,-73,-22, 38, 82, 88, 54,

99, 61, 4,-54,-88,-82,-38,

9,-43,-80,-90,-70,-25, 25, 70, 99, 80, 43,

75,-50,-18, 18, 50, 75, 89},
99, 82, 54, 13,-31,-67,-88},
9, 57, 87},

22, 73, 990, 67, 13,-46,-85},

{83, 36,-36,-83,-83,-36, 36, 83, 83, 36,-36,-83,-83,-36, 36, 83, 83,

36,-83,-83,-36, 36, 83,
{82, 22,-54,-90,-61,
73,

{ 88, 9,-70,-87,-25,
70, 87, 25,-57,-90,-43,
{78, -4,-82,-73, 13,
38,-54,-90,-31, 61, 88,
{75,-18,-89,-50, 50,
89,-50, 50, 89, 18,-75,-75,

{73,-31,-90,-22, 78,
4, 88, 46,-61,-82, 13,
{70,-43,-87, 9, 90,
87,

83,

43,

46,-82, 31, 88,-13,-90, -4,

13, 78, 85, 31,-46,-90,-67,
-4, 67, 90, 46,-31,-85,-78,-13, 61, 90, 54,-22,-82},
57, 90, 43,-43,-90,-57, 25, 87, 70,

85, 67,-22,-88,-61, 31, 90,
22, -
89, 18,-75,-75, 18, 89,

67,-38,-90,-13,
90, 38,-67,-78,
25,-80,-57,
-9,-90,-25, 80, 57,-57,-
{67,-54,-78, 38, 85,-22,-90,

36,-36,-83,-83,-36, 36, 83},

%, 57,-25,-87,-70, 9, 80},

67,-85,-13, 73, 82, 4,-78},
18, 89, 50,-50,-89,-18, 75},
82, 61,-46,-88,
22, 90, 31,-73},
80,-25,-90,

9,-87,-43, 70},

57,
80, 25, 90,

99, 22,-85,-38, 78, 54,-67},

-9,-80,-80,

-4, 38, 73, 90, 85, 61, 22,-22,-61,-
-9,-57,-87,-87,-57,

-4,-61,-90,-78,-31, 31, 78,

36, -

4, 73, 88, 38,-38,-88,-

-9,

54,-38,-90,-46, 46, 90,
50,-50,-89,-18, 75, 75,-18,-
-4, 85, 54,-54,-85,
-9, 87, 43,-70,-70, 43,

4, %, 13,-88,-31, 82, 46,-73,-61, 61, 73,-

{64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-64, 64, 64,-64,-

64, 64, 64,-64,-64, 64,

78, 38,-85,-22, 90, 4,-90,

{57,-80,-25, 90, -9,-87, 43, 70,-70,-43, 87,

25,-90, 9, 87,-43,-70, 70,

64, -
{61,-73,-46, 82, 31,-88,-13, 90,

64,-64, 64, 64,-64,-64, 64},
-4,-90, 22, 85,-38,-78,
13, 88,-31,-82, 46, 73,-61},

43,-87, -9, 90,-25,-80, 57},

54, 67,-67,-

{54,-85, -4, 88,-46,-61, 82, 13,-90, 38, 67,-78,-22, 90,-31,-73, 73,

99, 22, 78,-67,-38, 90,-13,-

82, 61, 46,-88, 4, 85,-54},

54,

9,-90, 25, 80,-57,-57, 80,

31, -

{5e, -89, 18, 75,-75,-18, 89,-50,-50, 89,-18,-75, 75, 18,-89, 50, 50,-89,

18, 75,-75,-18, 89,-50,-50,
{46,-90, 38, 54,-90,
82,-73,-13, 85,-67,-22,
{43,-90, 57, 25,-87, 70,
57,-25, 87,-70, -9, 80,-80,

89,-18,-75, 75, 18,-89, 50},

31, 61,-88, 22, 67,-85, 13, 73,-82,
88, -

61,-31, 90,-54,-38, 90,-46},
9,-80, 80,
9, 70,-87, 25, 57,-90, 43},

4, 78,-78,

_4)

-9,-70, 87,-25,-57, 90,-43,-43, 90, -

{38,-88, 73, -4,-67, 90,-46,-31, 85,-78, 13, 61,-90, 54, 22,-82, 82,-22,-

54, 90,-61,-13, 78,-85, 31,

46,-90, 67, 4,-73, 88,-38},

{36,-83, 83,-36,-36, 83,-83, 36, 36,-83, 83,-36,-36, 83,-83, 36, 36,-83,

83,-36,-36, 83,-83, 36, 36,-
4, 54,-88, 82,-38,-22, 73,-90, 67,-13,-46, 85,-85, 46,

{31,-78, 990,-61,
13,-67, 90,-73, 22, 38,-82,
{25,-70, 90,-80, 43,
99, 80,-43, -9,

9,-57, 87,-87,
57,-87, 87,-57,

83, 83,-36,-36, 83,-83, 36},

88,-54, -4, 61,-90, 78,-31},
57, -9,-43, 80,-90,
9, 43,-80, 90,-70, 25},

70,-25,-25,

70, -

{22,-61, 85,-90, 73,-38, -4, 46,-78, 90,-82, 54,-13,-31, 67,-88, 88,-67,

31, 13,-54, 82,-90, 78,-46,

4, 38,-73, 90,-85, 61,-22},

{18,-50, 75,-89, 89,-75, 50,-18,-18, 50,-75, 89,-89, 75,-50, 18, 18,-50,

75,-89, 89,-75, 50,-18,-18,

{13,-38, 61,-78, 88,-90, 85,-73, 54,-31,
67, 46,-22, -4, 31,-54, 73,-

50,-75, 89,-89, 75,-50, 18},

85, 90,-88, 78,-61, 38,-13},

4, 22,-46, 67,-82, 90,-90, 82,-

{9,-25, 43,-57, 70,-80, 87,-90, 90,-87, 80,-70, 57,-43, 25, -9, -9, 25,-

43, 57,-70, 80,-87, 90,-90,

87,-80, 70,-57, 43,-25, 9},



{4,-13, 22,-31, 38,-46, 54,-61, 67,-73, 78,-82, 85,-88, 90,-90, 90,-90,
88,-85, 82,-78, 73,-67, 61,-54, 46,-38, 31,-22, 13, -4}

}s

void partialButterfly4(Short *src,Short *dst,Int shift, Int line)

{
Int j;
Int E[2],0[2];

Int add = 1<<(shift-1);

for (j=0; j<line; j++)

]
]
]

{
/* E and O */
E[@] = src[@
O[@] = src[eo
E[1] = src[1
O[1] = src[1

]

src[3];
src[3];
src[2];
src[2];

1+ 1+

dst[@] = (g_aiT4[@][O]*E[0] + g_aiT4[@][1]*E[1] + add)>>shift;
dst[2*1line] = (g_aiT4[2][@]*E[@] + g_aiT4[2][1]*E[1] + add)>>shift;
dst[line] = (g_aiT4[1][@]*0[@] + g_aiT4[1][1]*0[1] + add)>>shift;
dst[3*line] = (g_aiT4[3][@]*0[0] + g _aiT4[3][1]*0[1] + add)>>shift;

src += 4;
dst ++;
}
}

void partialButterfly8(Short *src,Short *dst,Int shift, Int line)

{
Int j,k;
Int E[4],0[4];

Int EE[2],EO[2];
Int add = 1<<(shift-1);

for (j=0; j<line; j++)

{
/* E and 0*/

for (k=0;k<4;k++)

{
E[k]
O[k]

}
/* EE and EO

EE[@] = E[0]
EO[@] = E[0]
EE[1] = E[1]
EO[1] = E[1]

src[k] + src[7-k];
src[k] - src[7-k];

*/

+ E[3];
- E[3];
+ E[2];
- E[2];

dst[@] = (g_aiT8[©][@]*EE[@] + g_aiT8[@][1]*EE[1] + add)>>shift;

dst[4*1line]
dst[2*1ine]
dst[6*1ine]

(g_aiT8[4][@]*EE[@] + g_aiT8[4][1]*EE[1] + add)>>shift;
(g_aiT8[2][@]*EO[@] + g_aiT8[2][1]*EO[1] + add)>>shift;
(g_aiT8[6][@]*EO[@] + g_aiT8[6][1]*EO[1] + add)>>shift;

87
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dst[line] = (g_aiT8[1][@]*0[0@] + g_aiT8[1][1]*0[1] + g_aiT8[1][2]*0[2]
+ g aiT8[1][3]*0[3] + add)>>shift;
dst[3*1line] = (g_aiT8[3][@]*0[0] + g aiT8[3][1]*0[1] +
g aiT8[3][2]*0[2] + g_aiT8[3][3]*0[3] + add)>>shift;
dst[5*1line] = (g_aiT8[5][@]*0[@] + g_aiT8[5][1]*0[1] +
g aiT8[5][2]*0[2] + g_aiT8[5][3]*0[3] + add)>>shift;
dst[7*1line] = (g_aiT8[7][@]*0[0] + g aiT8[7][1]*0[1] +
g aiT8[7][2]*0[2] + g_aiT8[7][3]*0[3] + add)>>shift;

src += 8;
dst ++;
}
}

void partialButterflyl6(Short *src,Short *dst,Int shift, Int line)
{

Int j,k;

Int E[8],0[8];

Int EE[4],EO[4];

Int EEE[2],EEO[2];

Int add = 1<<(shift-1);

for (j=0; j<line; j++)
{
/* E and 0*/
for (k=0;k<8;k++)
{
E[k]
O[k]
}
/* EE and EO */
for (k=0;k<4;k++)
{
EE[k]
EO[k]
}
/* EEE and EEO */

src[k] + src[15-k];
src[k] - src[15-k];

E[k] + E[7-k];
E[k] - E[7-k];

EEE[@] = EE[@] + EE[3];
EEO[@] = EE[@] - EE[3];
EEE[1] = EE[1] + EE[2];
EEO[1] = EE[1] - EE[2];
dst[ @ ] = (g_aiT16[ @][@]*EEE[@] + g_aiT16[ @][1]*EEE[1] +
add)>>shift;
dst[ 8*line ] = (g_aiT16[ 8][O]*EEE[@] + g _aiTil6[ 8][1]*EEE[1] +
add)>>shift;
dst[ 4*line ] = (g_aiT16[ 4][@]*EEO[@] + g_aiT16[ 4][1]*EEO[1] +
add)>>shift;
dst[ 12*line] = (g_aiT16[12][@]*EEO[@] + g _aiT16[12][1]*EEO[1] +
add)>>shift;

for (k=2;k<16;k+=4)
{
dst[ k*line ] = (g_aiT16[k][@]*EO[@] + g_aiTi16[k][1]*EO[1] +
g aiT16[k][2]*EO[2] + g_aiT16[k][3]*EO[3] + add)>>shift;
}



for (k=1;k<16;k+=2)
{
dst[ k*line ] = (g_aiTl6[k][@]*0[0] + g_aiTi6[k][1]*0[1] +
g aiTie[k][2]*0[2] + g_aiT16[k][3]*0[3] +
g aiTie[k][4]*0[4] + g_aiT16[k][5]*0[5] + g_aiTie[k][6]*0[6] +
g aiT16[k][7]*0[7] + add)>>shift;

src += 16;
dst ++;

}
}

void partialButterfly32(Short *src,Short *dst,Int shift, Int line)
{

Int j,k;

Int E[16],0[16];

Int EE[8],EO[8];

Int EEE[4],EE0[4];

Int EEEE[2],EEEO[2];

Int add = 1<<(shift-1);

for (j=0; j<line; j++)

{
/* E and 0*/
for (k=0;k<16;k++)
{

E[k] src[k] + src[31-k];
O[k] = src[k] - src[31-k];
}
/* EE and EO */
for (k=0;k<8;k++)
{
EE[k] E[k] + E[15-Kk];
EO[k] = E[k] - E[15-k];
¥
/* EEE and EEO */
for (k=0;k<4;k++)
{
EEE[k]
EEO[k]
}
/* EEEE and EEEO */

EE[K] + EE[7-k];
EE[K] - EE[7-K];

EEEE[@] = EEE[@] + EEE[3];

EEEO[@] = EEE[@] - EEE[3];

EEEE[1] = EEE[1] + EEE[2];

EEEO[1] = EEE[1] - EEE[2];

dst[ © ] = (g_aiT32[ @][@]*EEEE[@] + g _aiT32[ @][1]*EEEE[1] +
add)>>shift;

dst[ 16*line ] = (g_aiT32[16][@]*EEEE[@] + g_aiT32[16][1]*EEEE[1] +
add)>>shift;

dst[ 8*line ]
add)>>shift;

(g_aiT32[ 8][@]*EEEO[@] + g_aiT32[ 8][1]*EEEO[1] +
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dst[ 24*line ] = (g_aiT32[24][@]*EEEO[O] + g_aiT32[24][1]*EEEO[1] +
add)>>shift;
for (k=4;k<32;k+=8)
{
dst[ k*line ] = (g_aiT32[k][@]*EEO[@] + g _aiT32[k][1]*EEO[1] +
g aiT32[k][2]*EEO[2] + g_aiT32[k][3]*EEO[3] + add)>>shift;
}
for (k=2;k<32;k+=4)
{
dst[ k*line ] = (g_aiT32[k][@]*EO[@] + g_aiT32[k][1]*EO[1] +
g aiT32[k][2]*EO[2] + g_aiT32[k][3]*EO[3] +
g aiT32[k][4]*EO[4] + g_aiT32[k][5]*EO[5] + g aiT32[k][6]*EO[6] +
g aiT32[k][7]*EO[7] + add)>>shift;
¥
for (k=1;k<32;k+=2)
{
dst[ k*line ] = (g_aiT32[k][ ©]*0O[ @] + g_aiT32[k][ 1]*0[ 1] +
g aiT32[k][ 2]*0[ 2] + g_aiT32[k][ 3]*0O[ 3] +
g aiT32[k][ 4]1*0[ 4] + g_aiT32[k][ 5]1*0[ 5] + g aiT32[k][ 6]*0[ 6]
+ g aiT32[k][ 7]*0[ 7] +
g aiT32[k][ 8]*0[ 8] + g_aiT32[k][ 9]*0[ 9] + g_aiT32[k][10]*0[10]
+ g aiT32[k][11]*0[11] +
g aiT32[k][12]*0[12] + g_aiT32[k][13]*0[13] + g_aiT32[k][14]*0[14]
+ g aiT32[k][15]*0[15] + add)>>shift;
}

src += 32;
dst ++;
}
}



APPENDIX B

The Multiplier Sharing Scheme of the High Throughput Architecture

Table. 17 The Multiplier Sharing Scheme of the High Throughput Architecture.

transform size (config)

Mulipliers No. — — — —
32x32 ("11") 16x16 ("10") 8x8 ("01") 4x4 ("00")

0 36x,83x EEEO(0)-EEE(1) 36x,83x EEO(0)-EEO(1) 36x,83x EO(0)-EO(1) 36x,83 | 0(0)-0(1)
1 18x EEO(0)-EEO(3) 18x EO(0)-EO(3) 18x 0(0)-0(3)

2 50x EEO(0)-EEO(3) 50x EO(0)-EO(3) 50x 0(0)-0(3)

3 75x EEO(0)-EEO(3) 75x EO(0)-EO(3) 75x 0(0)-0(3)

4 89x EEO(0)-EEQ(3) 89x EOQ(0)-EO(3) 89x 0(0)-0(3)

5 9x EO(0)-EO(3) 9x 0(0)-0(3)

6 9x EO(4)-E0(7) 9x 0(4)-0(7)

7 25x EO(0)-EO(3) 25x 0(0)-0(3)

8 25x EO(4)-EO(7) 25x 0(4)-0(7)

9 43x EO(0)-EO(3) 43x 0(0)-0(3)

10 43x EO(4)-E0(7) 43x 0(4)-0(7)

11 57x EO(0)-EO(3) 57x 0(0)-0(3)

12 57x EO(4)-EO(7) 57x 0(4)-0(7)

13 70x EO(0)-EO(3) 70x 0(0)-0(3)

14 70x EO(4)-EO(7) 70x 0(4)-0(7)

15 80x EO(0)-EO(3) 80x 0(0)-0(3)

16 80x EO(4)-E0(7) 80x 0(4)-0(7)

17 87x EO(0)-EO(3) 87x 0(0)-0(3)

18 87x EO(4)-EO(7) 87x 0(4)-0(7)

19 90x EO(0)-EO(3) 90x 0(0)-0(3)

20 90x EO(4)-EO(7) 90x 0(4)-0(7)

21 13x 0(0)-0(3) 36x,83x EEO(0)-EEO(1) 36x,83x EO(0)-EO(1) 36x,83x 0(0)-0(1)
22 13x 0(4)-0(7) 18x EO(0)-EO(3) 18x 0(0)-0(3)

23 13x 0(8)-0(11) 50x EO(0)-EO(3) 50x 0(0)-0(3)

24 13x 0(12)-0(15) 75x EO(0)-EO(3) 75x 0(0)-0(3)

25 22x 0(0)-0(3) 89x EO(0)-EO(3) 89x 0(0)-0(3)

26 22x 0(4)-0(7) 9x 0(0)-0(3)

27 22x 0(8)-0(11) 9x 0(4)-0(7)

28 22x 0(12)-0(15) 25x 0(0)-0(3)

29 31x 0(0)-0(3) 25x 0(4)-0(7)

30 31x 0(4)-0(7) 43x 0(0)-0(3)

31 31x 0(8)-0(11) 43x 0(4)-0(7)

32 31x 0(12)-0(15) 57x 0(0)-0(3)

33 38x 0(0)-0(3) 57x 0(4)-0(7)

34 38x 0(4)-0(7) 70x 0(0)-0(3)

35 38x 0(8)-0(11) 70x 0(4)-0(7)

36 38x 0(12)-0(15) 80x 0(0)-0(3)

37 46x 0(0)-0(3) 80x 0(4)-0(7)

38 46x 0(4)-0(7) 87x 0(0)-0(3)

39 46x 0(8)-0(11) 87x 0(4)-0(7)

40 46x 0(12)-0(15) 90x 0(0)-0(3)

41 54x 0(0)-0(3) 90x 0(4)-0(7)

42 54x 0(4)-0(7) 36x,83x EO(0)-EO(1) 36x,83x 0(0)-0(1)
43 54x 0(8)-0(11) 18x 0(0)-0(3)

44 54x 0(12)-0(15) 50x 0(0)-0(3)

45 61x 0(0)-0(3) 75x 0(0)-0(3)

46 61x 0(4)-0(7) 89x 0(0)-0(3)

47 61x 0(8)-0(11) 36x,83x EO(0)-EO(1) 36x,83x 0(0)-0(1)
48 61x 0(12)-0(15) 18x 0(0)-0(3)

49 67x 0(0)-0(3) 50x 0(0)-0(3)

50 67x 0(4)-0(7) 75x 0(0)-0(3)

51 67x 0(8)-0(11) 89x 0(0)-0(3)

52 67x 0(12)-0(15) 36x,83x 0(0)-0(1)
53 73x 0(0)-0(3) 36x,83x 0(0)-0(1)
54 73x 0(4)-0(7) 36x,83x 0(0)-0(1)
55 73x 0(8)-0(11) 36x,83x 0(0)-0(1)




Table. 18 The Multiplier Sharing Scheme of the High Throughput Architecture

(continue).
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56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
72
73
74
75
76

73x
78x
78x
78x
78x
82x
82x
82x
82x
85x
85x
85x
85x
88x
88x
88x
88x
90x
90x
90x
90x

0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
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The Multiplier Sharing Scheme of the Flexible Input Architecture

Table. 19 The Multiplier Sharing Scheme of the Flexible Input Architecture.

transform size (config)

Mulipliers No.
32632 16x16 [ 8x8 4x4

0 36x83x | 0(0)-0(1) [set 0]
1 18x 0(0)-0(3) [set 0]

2 50x 0(0)-0(3) [set 0]

3 75x 0(0)-0(3) [set 0]

4 89x 0(0)-0(3) [set 0]

5 9x 0(0)-0(3) [set 0]

6 9x 0(4)-0(7) [set 0]

7 25x 0(0)-0(3) [set 0]

8 25x 0(4)-0(7) [set 0]

9 43x 0(0)-0(3) [set 0]

10 43x 0(4)-0(7) [set 0]

11 57x 0(0)-0(3) [set 0]

12 57x 0(4)-0(7) [set 0]

13 70x 0(0)-0(3) [set 0]

14 70x 0(4)-0(7) [set O]

15 80x 0(0)-0(3) [set 0]

16 80x 0(4)-0(7) [set 0]

17 87x 0(0)-0(3) [set 0]

18 87x 0(4)-0(7) [set 0]

19 90x 0(0)-0(3) [set 0]

20 90x 0(4)-0(7) [set 0]

21 13x 0(0)-0(3) 36x,83x I 0(0)-O(1) [set 1]
22 13x 0(4)-0(7) 18x 0(0)-0(3) [set 1]

23 13x 0(8)-0(11) 50x 0(0)-0(3) [set 1]

24 13x 0(12)-0(15) 75x 0(0)-0(3) [set 1]

25 22x 0(0)-0(3) 89x 0(0)-0(3) [set 1]

26 22x 0(4)-0(7) 9x 0(0)-0(3) [set 1]

27 22x 0(8)-0(11) 9x 0(4)-0(7) [set 1]
28 22x 0(12)-0(15) 25x 0(0)-0(3) [set 1]
29 31x 0(0)-0(3) 25x 0(4)-0(7) [set 1]
30 31x 0(4)-0(7) 43x 0(0)-0(3) [set 1]
31 31x 0(8)-0(11) 43x 0(4)-0(7) [set 1]
32 31x 0(12)-0(15) 57x 0(0)-0(3) [set 1]
33 38x 0(0)-0(3) 57x 0(4)-0(7) [set 1]
34 38x 0(4)-0(7) 70x 0(0)-0(3) [set 1]
35 38x 0(8)-0(11) 70x 0(4)-0(7) [set 1]
36 38x 0(12)-0(15) 80x 0(0)-0(3) [set 1]
37 46x 0(0)-0(3) 80x 0(4)-0(7) [set 1]
38 46x 0(4)-0(7) 87x 0(0)-0(3) [set 1]
39 46x 0(8)-0(11) 87x 0(4)-0(7) [set 1]
40 46x 0(12)-0(15) 90x 0(0)-0(3) [set 1]
41 54x 0(0)-0(3) 90x 0(4)-0(7) [set 1]
42 54x 0(4)-0(7) 36x,83x | 0(0)-0(1) [set2]
43 54x 0(8)-0(11) 18x 0(0)-0(3) [set 2]
44 54x 0(12)-0(15) 50x 0(0)-0(3) [set 2]
45 61x 0(0)-0(3) 75x 0(0)-0(3) [set 2]
46 61x 0(4)-0(7) 89x 0(0)-0(3) [set 2]
47 61x 0(8)-0(11) 36x,83x | 0(0)-0(1) [set 3]
48 61x 0(12)-0(15) 18x 0(0)-0(3) [set 3]
49 67x 0(0)-0(3) 50x 0(0)-0(3) [set 3]
50 67x 0(4)-0(7) 75x 0(0)-0(3) [set 3]
51 67x 0(8)-0(11) 89x 0(0)-0(3) [set 3]
52 67x 0(12)-0(15) 36x,83x 0(0)-0(1) [set 4]
53 73x 0(0)-0(3) 36x,83x 0(0)-0(1) [set5]
54 73x 0(4)-0(7) 36X,83% 0(0)-0(1) [set 6]
55 73x 0(8)-0(11) 36x,83x 0(0)-0(1) [set 7]
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Table. 20 The Multiplier Sharing Scheme of the Flexible Input Architecture (continue).

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

73x
78x
78x
78x
78x
82x
82x
82x
82x
85x
85x
85x
85x
88x
88x
88x
88x
90x
90x
90x
90x

0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
0(0)-0(3)
0(4)-0(7)
0(8)-0(11)
0(12)-0(15)
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