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CHAPTER I 

INTRODUCTION 

Similarity join is used to retrieve all similar pairs between two relations in a 

database. Texts pairs are considered to be similar if their similarity exceeds the 

specified threshold. The similarity between a pair of text is calculated by a similarity 

function. Many similarity functions such as Cosine similarity [1] and Jaccard similarity 

[1] are used. A brute force method for similarity join is to calculate the similarity 

between every pairs of text in the relations, and this takes long time to calculate. 

Many researches are done to reduce the time consumption. Filter-and-verify 

framework is a more efficient approach for similarity join. It eliminates some 

dissimilar pairs by comparing only some part of text and calculates the similarity of 

the remaining texts. Filter methods such as prefix filtering [2] are used in this 

framework. 

Prefix filtering first divides each text string into two disjoint parts: prefix and 

suffix. The prefix part is used to evaluate the similar between pairs. If the pair of 

strings is considered as dissimilar from their prefixes, it is pruned. An efficient prefix 

filtering algorithm is AdaptJoin and AdaptSearch [3] which adaptively choose prefix 

length based on the performance of longer prefix compare to the previous one. 

However, sometimes a set of queries contains the same patterns of texts. 

Prefix filtering, and most of filter method as well, do not take this type of queries in 

to account. Specifically, prefix filtering repeats the same filter process for the 

repeated queries or similar queries. If there are many such queries in the set, it 

consumes too much unnecessary time. [4] addresses the problem of the high-

frequency queries, and proposes an index structure to support this issue called 

similarity table. This structure stores pointer of all texts string data according to their 
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similarity compared with the chosen high-frequency queries. This method can be 

applied with prefix filtering and solve the problem efficiently. However, an 

appropriate set of high-frequency queries need to be determined first. 

An appropriate set of high-frequency queries are the set that covers all, or 

almost, of the repeated patterns in a set of queries while maintains the lowest space 

usage. Otherwise, when it is applied in high-frequency-queries-based filter, it will 

consume too much memory and become impractical. On the other hand, if the set 

is too small that is unable to capture the main characteristic of the query set, the 

time consumption of the filter method will be too high to accept. According to the 

constraint, the method to find the set of high-frequency queries should be designed 

in aware of both time and space complexity. To do this efficiency, the queries 

should be grouped together to capture all of their patterns first. The state-of-the-art 

method used to find the nature clusters of the dataset is cluster analysis [5]. 

Cluster analysis is an unsupervised method used in data mining, pattern 

recognition and other applications. This method aims to group data together based 

on the closeness between each data. Among three main types of cluster analysis are 

center based, hierarchical based and density based, the last one seem to be the 

best to applied in our problem. DBSCAN [6] is used to find sets of clusters in query 

set with the representative points. DBRAN randomly picks one core point from each 

cluster as a high-frequency query. However, these core points may not capture all 

main characteristics of the query set. The merging strategy is done to all core points 

to delete the redundancy as well as preserve the main characteristics of obtained 

set. The method of DBSCAN using merging strategy to find the sets of high-frequency 

queries is called DBSM.  
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DBSM and DBRAN are applied to find the high-frequency queries from the 

same query set. Then both sets are used in high-frequency-queries-based filter and 

the results are compared. The sets obtained from both methods are nearly the same 

with the low mutated query sets while DBSM is better if the query sets are highly 

mutated. 



 

 

CHAPTER II 

 RELATED WORKS 

 This chapter describes the related works which contains two main parts: 

similarity join and cluster analysis. 

2.1 Similarity Join 

 Given two text datasets D1 and D2 , a similarity function f and a similarity 

threshold t, the similarity join SJ (D1, D2) is defined as: 

SJ (D1, D2) = {(d1, d2)| d1 ∈ D1   d2 ∈ D2  f (d1, d2) ≥ t} 

 The brute force method to find SJ (D1, D2), which is to calculate f (d1, d2) and 

compare with t for every possible pairs (d1, d2) in D1 × D2 , consumes too much time. 

Several methods are proposed to improve the efficiency of the algorithm for 

similarity join based on two representations of texts, which are described next. 

 2.1.1 Representation of Text in Text Databases 

Texts can be represented in two different viewpoints. The first viewpoint is as 

the sequence of characters, called character-based viewpoint [2]. Another viewpoint 

is to map and consider each of them as a token, called token-based viewpoint [2]. 

- Character-based Viewpoint 

Each text record in a dataset is treated as a text string. For instance, 

given a text ‘System analysis needs various applications and software 

process’, it is represent as the sequence of ‘S’, ‘y’, ‘s’, ‘t’, ‘e’, ‘m’, ‘ ’, and 

so on. To count the number of overlapped strings between these two texts, 

we need to check whether each string pair contains the same character 

sequences or not. This procedure requires at least the length of the longer 
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string in the pair. For example, to check whether the string “system” and 

“systematic” in the second text are overlapped or not, we compare ‘s’ with 

‘s’, ‘y’ with ‘y’, ‘s’ with ‘s’ and so on until found they are not the same 

string. We need to do this at least m times if m is the length of the longer 

text. 

On the other hand, if two texts are mapped into a set of tokens 

instead, each string becomes an integer, which needs only one comparison to 

check the equality. To reduce the time of each comparison, tokens are used 

instead of texts as they require less time to compare. This is how texts are 

represented in token based viewpoint [2]. 

- Token-based Viewpoint 

For each record d in a dataset D, d contains multiple text strings which 

can be mapped to tokens. These tokens are further used all along the 

computation instead of the original text strings. Example of this 

transformation is illustrated in example 1. 

Example 1: Given a dataset D 

D = { d1: {system, analysis, application, software, process}, 

d2: {computer, system, organization, processor}, 

   d3: {image, processing, computer, vision, application}} 

Each text string can be mapped into token as figure 1 
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Text Token 

System t1 

Analysis t2 

Application t3 

Software t4 

process, processor, processing t5 

Computer t6 

Organization t7 

Image t8 

Vision t9 

Figure 1: Texts and their representative tokens in example 1 

D is transformed into the new dataset D’  

D’ = { {t1, t2, t3, t4, t5}, 

  {t1, t5, t6, t7}, 

{t3, t5, t6, t8, t9}} 

String matching using character-based similarity considers processor, 

process and processing to be similar but not the same. However, they are of 

the same meaning, and could be considered the same in text queries. Token-

based method overcomes this problem by mapping them into one token. 

Although the token-based method is used, the time consumption is 

still high in practice. Filter and verify is one of the well-known framework to 

improve the performance. 
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2.1.2 Filter-and-verify Framework for Similarity Search and Similarity Join 

To reduce the time for similarity join by brute-force method, filter-

and-verify framework first filters out non candidates, which are text data 

which cannot possibly be answers of the query, and then verifies the 

remaining candidates for the answers.  In the verification step, the similarity 

between the query and each candidate is calculated based on the similarity 

function, and only the candidate whose similarity exceeds the given 

threshold is returned as an answer.   

Basically, what is done in the verification step is the same as the 

brute-force method.   Thus, the performance of any similarity join in filter-

and-verify framework depends on two factors.  First, for each text data, 

filtering should need less time than verifying.  Second, the filter step should 

produce only small number of candidates.  The trade-off is necessary to 

minimize the filter time while maximizing the filter power. 

Many methods for filtering are proposed.  Some filtering methods 

minimize the filter time by examining only some parts of the text.  Prefix 

filtering [2], positional filtering [7] and suffix filtering [7] are based on this idea.  

AdaptSearch and AdaptJoin [3] trade off the filter time and the filter power 

by increasing the parts of text data to be examined as long as it can increase 

the filter power.  Another approach for filtering is to organize text data 

according to the similarity between the text data and a chosen text.  For this 

approach, the filter power is high when the query is similar to the chosen 

text.  For this reason, text which frequently appears in queries is chosen to 

organize all data.  High-frequency-query based filter is an example of this 

approach. Next, these methods are further described. 



 

 

8 

- Prefix Filtering 

Prefix filtering is a filter method which examines only the prefix of 

each text pair and finds out whether number of the common tokens 

between two texts exceeds the specific value or not before determines to 

keep or prune. If the record r contains s tokens, the value of needed overlap 

o is calculated from t from similarity function f, the l prefix is the first s – o +l 

tokens of r. The pair (r1, r2) is pruned if the size of intersection between them 

is less than l. The following example illustrates the prefix filtering steps. 

Example 2: Consider dataset D’ in Example 1 

D’ = { d1: {t1, t2, t3, t4, t5}, 

  d2: {t1, t2, t6, t7}, 

d3: {t3, t5, t6, t8, t9}} 

and a query q = {t1, t2, t6, t7, t8} with the specified threshold 0.8 using cosine 

similarity as f and 2-prefix. First, the least overlap value to exceed threshold 

t is calculated, as shown below. 

di ∩ q

√|di||q|
               ≥                  t 

di ∩ q                          ≥                   0.8*√5*|di| 

    oi        =  ⌈0.8*√5*|di|⌉ 

Next, it is necessary to calculate oi and 2-prefix of di, called pdi, as well as 

the least overlap value of q that exceeds t, called oq, and 2-prefix of q, 

called pdq. 

o1 = 4, pd1: {t1, t2, t3} 

o2 = 4, pd2: {t1, t2, t6} 

o3 = 4, pd3: {t3, t5, t6} 
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oq = 4, pq: {t1, t2, t6} 

After that, the number of common tokens, i.e. overlap part, between pq and 

each pdi are computed, and compared with l = 2. 

| pd1  pq | = 2  2, pd1 is a candidate of q. 

| pd2  pq | = 3  2, pd2 is a candidate of q. 

| pd3  pq | = 1< 2, pd3 is not a candidate of q. 

Finally, the cosine similarity of each candidate compare to q is calculated. 

f(d1, q) = 0.4 < 0.8 

f(d2, q) = 0.89  0.8 

So, only d2 is the answer of q. 

- Positional Filtering 

For very long text data, other filter method such as positional filtering 

and suffix filtering is used along with prefix filtering. Positional filtering 

considers the location of each token to estimate the highest possible 

similarity with another text string. The following example illustrates the 

positional filtering steps. 
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Example 3: Consider the dataset D2 

D2 = { d1: {t1, t2, t3, t4, t5}, 

  d2: {t1, t2, t6, t7}, 

d3: {t3, t5, t6, t8, t9}} 

and a query q = {t2, t3, t6, t7, t8} with the specified threshold 0.8 using cosine 

similarity. First, find the least overlap value o that makes the cosine 

similarity exceeds the threshold t, using the same calculation as in example 

2, we have 

   o        =  ⌈0.8*√5*|di|⌉ 

Therefore, o1, o2, o3 and o4 are 4. If the prefix filtering is used, d2 would 

be one of the candidates as pd2: {t1, t2, t6} and pq: {t2, t3, t6} (Assuming 2- 

prefix is used) since |pd2  pq| = 2, d1 is a candidate of q. However, if the 

positional filtering is used, the maximum overlap between two text strings 

are considered as the sum of their prefix overlap and the number of 

remaining tokens of the shorter texts. That is, the maximum overlap is |pd2  

pq| + min(1, 2) = 2+1 = 3. As we need at least 4 overlap to satisfy 0.8 

similarity threshold, d2 cannot be the answer and will be pruned. 

- Suffix Filtering 

Although the positional filtering can prune some candidates that prefix 

filtering cannot, many non-related data still pass the filter. Suffix filtering 

improves the filter performance by also using suffix of each string to filter. 

The suffix is further divided into sub-prefix and sub-suffix and sub-positional 

filtering is used to prune more candidates. This procedure can be recursively 

applied until the remaining candidate size is small enough. Obviously, the 

more the suffix filtering is recursively applied, the more candidates can be 
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pruned while the longer the filter step takes. Therefore, trade-off between 

the cost of filter and verify must be considered for the overall performance. 

Ppjoin+ [7] applies prefix filtering, positional filtering and suffix filtering, 

in this order. First the prefix filtering is applied, then, the positional filtering is 

applied with survived candidates, and finally the suffix filtering is then used. 

This method allows user to manually specify the number of times that suffix 

filtering is recursively called. Thus, the users can trade off the time and the 

number of candidates pruned.  

- Variable-length Prefix Scheme and AdaptJoin 

All of the mentioned filter method used ‘fixed-length prefix scheme’ 

in which the same prefix length is used for all strings. Specifically, the prefix 

length is fixed for all text data. The longer prefix length leads to more pruning 

power but also requires more time. However, there is no optimal prefix 

length for every string. J Wang, G. Li and J. Feng [3] suggests an efficient 

solution to this issue by adaptively choosing the length of prefix based on the 

information of estimated filter of prefix of length l in comparison  with prefix 

of length l + 1. If the (l + 1) prefix can eliminate enough strings to outweigh its 

filter cost, then the prefix length used in filtering is increased. This filter 

method is called AdaptJoin. 

Although prefix filtering is an efficient method, it still repeats the same 

computation when the same query is repeated or similar queries appear. This 

type of queries, which is called high-frequency queries, need to be taken into 

account. Next, the high-frequency-queries-based filter [4], which is proposed 

to deal with this type of queries, is described. 
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- High-frequency-queries-based Filter 

In some situations, the same or similar texts are frequently queried in 

the database. For example, after April 2015 Nepal earthquake [8], the search 

for words ‘Nepal’, ‘earthquake’ and ‘help Nepal’ dramatically increases 

compared with the previously recorded data by Google trends explorer [9]. 

These groups of words are ‘high-frequency queries’. Therefore, a set high-

frequency query in the query set Q is defined as a query such that many 

other queries in the same set are similar with it.  

If such query texts or the similar query texts are repeated often in a 

period of time, prefix filtering repeatedly processes the same or similar steps 

for every query, which is not efficient. [4] takes this into account and 

proposes an index structure called similarity table. This table keeps pointers 

to all texts in the data set sorted according to the similarity with the chosen 

high-frequency query.  

o Similarity Table 

When high-frequency queries are chosen, a similarity table is 

created based on each of them. Each table stores the pointers to all 

records in the dataset sorted by the similarity between each record 

and the corresponding high-frequency query. For the high-frequency 

query F of dataset D, the row i of s rows similarity table STF stores the 

pointers to the data records which are similar to F, with the similarity 

value between i/s and (i+1)/s. Therefore, for each row STF[i] of STF : 

STF[i] = {p | p is the pointer to r ∈ D, i/s < f(r,F)  (i+1)/s } . 

The following example illustrates the similarity table. 
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Example 4: Consider a dataset D3 

D3 = { d1: {t1, t2, t3, t4, t5}, 

   d2: {t1, t2, t6, t7}, 

d3: {t2, t3, t4}, 

d4: {t3, t4, t5, t8, t9}  } 

Suppose F = {t1, t3, t4, t5, t9} and f is jaccard similarity function, where 

f(d1, d2) = 
|𝑑1∩𝑑2|

|𝑑1∪𝑑2|
. We calculate f(di, F) for all 1   i  4. 

f(d1, F) =  3/(10-3) = 0.43 

f(d2, F) =  2/(9-2)   = 0.29 

f(d3 ,F) =  2/(8-2)   = 0.33 

f(d4, F) =  4/(10-4) = 0.67 

Next, the similarity table with 4 rows is constructed, pi denotes the 

pointer to di: 

Row 
Jaccard similarity 

(0.0-1.0] 
Records 

0 (0.0, 0.25] - 

1 (0.25, 0.5] d1, d2, d3 

2 (0.5, 0.75] d4 

3 (0.75, 1.0] - 

Figure 2: A similarity table for D3 

The similarity between a candidate text data and the query can be 

estimated from the similarity between the query and the high-frequency 

query and the similarity between the text data and the high-frequency query.  

That means, any candidate answers of a query can be in only some specific 

rows of the similarity table. The high-frequency-queries-based filter method 
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filters out some non-related candidates based on this idea. Given a high-

frequency query F and a new query q with threshold t, this filter method 

finds the upper and the lower bounds of the similarity between q and any 

text data d in the dataset from the known similarity between F and d. 

 

 

 

Figure 3: The visualization of the similar and dissimilar parts between texts 

Consider figure 3, five box patterns indicate different kinds of similarity of 

each text record. 

- The black area  indicates the sharing tokens that lead to the similarity 

value of three text records d, F and q.  

- The white area  indicates tokens that are in F but not in q. This lead 

to the dissimilarity between F and q. 

- The large-grid-pattern area   indicates the area that can be similar with 

both F and q. 

- The diagonal-brick-pattern area   indicates the sharing tokens between 

d and q but not in F. 

- The checker-pattern area   indicates the tokens in d that are not in 

both F and q. 

When q is queried, f(q, F) is calculated. Only the black areas of F and q, 

the white area and the diagonal-brick-pattern area are known. All of the areas 

in d are different according to their similarity with F. The unknown similarity 

F 

q 

d 
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area can be estimated from f(q, F). In the case, we want to find two values: 

the highest and lowest value of f(d, F) that f(q, d) still exceeds t. Two different 

scenarios are needed to be considered. 

1. Maximum f(d, F) 

This scenario happens when f(q, F)  f(d, F) and the   area 

becomes  in figure 3 as shown in figure 4 

 

    

 

Figure 4: Visualization of figure 3 for maximum f(d, F) 

In this case, the similarity between d and q is the sum of   area 

and   in d. That is, if f(q, F) < t. We need at least t – f(q, F) of   

area. In the similarity table, this is the row that covers the similarity value 

1 – (t – f(q, F)). So, the upper bound or the highest possible value of f(d, 

F) can be calculated as shown below. 

Upper bound:  f(d, F)   =  1 – (t – f(q, F)) 

       =  f(q, F) + (1 – t) 

2. Minimum f(d, F) 

This scenario happens when all tokens in q but not in F are in d. This 

means most of f(d, q) results from the   area. This scenario is shown in 

figure 5.  

 

    

F 

q 

d 

F 

q 

d 
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Figure 5: Visualization of figure 3 for minimum f(d, F). 

We want the sum of the similarity of   and   areas of d to 

exceed t. That is, f(d, F) + (1- f(q, F))  t. If we rearrange the equation, we 

have the lower bound or the lowest possible value of f(d, F) can be 

calculated as shown below. 

Lower bound:  f(d, F)   =  t – 1 + f(q, F) 

       =  f(q, F) – (1 – t) 

High-frequency-queries-based filter ensures that for the new query q, 

the candidates are in the rows in the range [f(q, F) – (1 – t), f(q, F) + (1 – t)] of 

the similarity table STF. Therefore, for a high-frequency query F and a text 

query q with threshold t, the candidates obtained from high-frequency-

queries-based filter, denoted by HFQB(F, q), is defined as follows. 

HFQB(F, q) = {d | d  STF [i], for all i such that f(q, F) – (1 – t)*s  i  f(q, F) + (1 – t)*s, s 

is the size of STF} 

Assume that the new query q is queried with threshold t, high-

frequency-queries-based filter would be processed as follows: 

- For each F in the high-frequency query set, compute f(q, F) 

- Find F that f(q, F) is highest 

- Compute f(q, F) – (1- t) and f(q, F) + (1- t). 

- For each row i  [⌊s*f(q, F) – (1 – t)⌋, ⌊s*f(q, F) + (1 – t)⌋] 

o For each text record d in row i, add d as to the candidate set of q. 

- For each text record d in the candidate set of q, compute the real f(d, q). 

If f(d, q)  t, add d to the set of answer of q. 

- Return the answer set. 
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Without loss of generality, the filter step of one similarity table is shown in 

Example 5.  

Example 5: Suppose the query q = {t1, t3, t4, t5, t10} is queried with threshold = 

0.95 with the similarity table shown in figure 2 with F = {t1, t3, t4, t5, t9}. Since 

STF is created based on jaccard similarity, f(q, F) is computed using jaccard 

similarity. Therefore, f(q, F) = 4/(10-4) = 0.67. The lower bound is 4*(0.67-(1-

0.95)) = 2.52 which is row 2. The upper bound is 4*(0.67+(1-0.95)) = 2.88 

which is also row 2. The candidate for q is only d4: {t3, t4, t5, t8, t9}. Then d4 is 

verified by calculate f(q, d4) = 3-(10-3) = 0.43. This means d4 is not the answer 

of q. 

The query q in Example 5 is not quite similar with F but the threshold 

t is high. Therefore the answer range is restricted at only one row. In practical, 

the query q and F can be dissimilar, says f(q, F) < 0.5, and the threshold can 

be low. Since the equation to find the upper bound and the lower bound 

from the similarity table is f(q, F) ± (1- t), we consider two parameters 

separately: 

- The Similarity Value of the Query Text and the High-frequency Query f(q, 

F) 

The row i that covers f(q, F) of STF is the row that always contains the 

candidates. If the threshold t = 1, this row is both the upper and the lower 

bound. Otherwise, the answer range spreads up s*(1-t) rows above and below 

from this row as shown in figure 6. Therefore, if f(q, F) is higher, the upper 

bound may reaches the topmost row, which means that the number of rows 

that can contain the answers is lower. 

 



 

 

18 

 

 

 

 

Figure 6: The range between upper bound and lower bound with different f(q, F) 

 It is possible that if f(q, F) is lower, the lower bound can reaches the 

bottom row. This scenario seems similar to the previous scenario and should 

result in better performance of the filter as the number of rows to be 

checked is fewer. However, most of the records in the dataset are not and 

should not be similar with the high-frequency queries. The reason is that if 

most records are similar with F, STF may not be able to filter out the non-

related candidates for the given query if the query is similar with F which is 

unreasonable. Therefore, most of the similarity tables contain a huge number 

of pointers at the lower rows. Hence, the higher f(q, F) is more preferable. 

Although the effect of f(q, F) to the performance of high-frequency-

queries-based filter is significant, the similarity threshold t can have more 

impact. This is described in the next section. 

- Similarity Threshold t 

As mentioned earlier, the span-out of the answer rows is equal to 

2*(1-t). If the value of t is lower, more rows are needed to be verified. If f(q, 

F) = 0.9 but the similarity threshold is very low, says 0.2, the lower bound = 

0.1 and the upper bound is 1 (The exact value is 1.7, but the similarity value 

is at most 1.0). This means almost all dataset records are the candidates 

2(1-t) 

f(q, F) + (1-t) 

f(q, F) - (1-t) 

f(q, F) 

< 2(1-t) 
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although q and F are very similar. Normally, the similarity threshold is at least 

0.5 in most similarity join and similarity search researches. 

Both f(q, F) and the similarity threshold t have crucial effect on the 

performance of high-frequency-queries-based filter. Since the similarity 

threshold t is specified by users, no change can be done. On the other hand, 

the improvement regarding f(q, F) is possible. If the set of high-frequency 

queries can be chosen so that for every new query q, there is at least an F in 

the set that q and F is similar, f(q, F) would be high for every new query q 

and the filter power can be improved. Hence, appropriate set of high-

frequency queries are necessary to create the efficient similarity table for 

similarity join and search. To find such the set, we need to have the set of 

previous queries to analyze its characteristics. The query set may or may not 

contain high-frequency queries and this is undesirable. Furthermore, if there 

are any high-frequency queries, their number remains unknown until the set is 

analyzed with some method. 

This thesis focuses on the problem to find an appropriate set of high-

frequency queries. Based on high-frequency-queries-based filter method, the 

properties of the desired set of high-frequency queries can be described as 

follows. 

a. For most of the query in the query set, at least one of the members of 

this set must be similar with it. 

b. Each member should not similar with each other because it can lead to 

the redundancy in the set. 

c. The set should large enough to pass the a. constraint but not too large to 

violate the b. constraint. 
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Due to three constraints of the appropriate set of high-frequency 

queries, the information about the group of queries in the query set is 

needed. Queries that are similar should be grouped together and find the 

representative texts of the group to be the high-frequency queries. The tasks 

to find groups in the dataset are called cluster analysis. 

2.2 Cluster Analysis 

Cluster analysis [5] is an unsupervised task to find groups of data in the 

dataset. It is used in many fields such as data mining, machine learning and pattern 

recognition. Clustering algorithms, which are used in cluster analysis, has three main 

types: center-based, hierarchical-based and density-based. 

2.2.1 Density-based Clustering Algorithm 

Density-based clustering groups the data in the high density areas 

separated by lower density areas. Consider figure 7 as the examples: 

 

 

 

(a) (b) 

(b) ) 

 

 

 

(c)        (d) 

Figure 7: The example of the observable clusters 
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In figure 7, clusters from both (a) and (b) are observable as shown 

inside the dash lines in (c) and (d) respectively. This is because the natural 

clusters are the areas that the points are compactly located. Although there 

are some points that are located away from other points, they are not 

classified as clusters. This is one strategy to define ‘density’ in density-based 

cluster analysis. The main advantage of this definition is that clusters with the 

non-globular or non-structure shape can be handled efficiently. The method 

which is based on this density definition is DBSCAN. 

- DBSCAN 

DBSCAN [6] is the density-based clustering algorithm that finds 

the clusters by eliminates some points in the low density areas 

while group those in higher density areas together. Unlike another 

clustering algorithm, DBSCAN major advantage is that it can find 

clusters correctly although the data are of many noise points. 

Groups of points are classified as the clusters if there are enough 

numbers of points that located near each other. The minimum 

number of points minpt and the radius of clusters eps are two 

parameters which need to be chosen for DBSCAN. Three types of 

data points separated by DBSCAN are core point, border point and 

noise point: 

 Core points are the points that contains at least than minpt 

points in distance eps. 

 Border points are points within eps distance from one of 

core points but not core points. 

 Noise points are other points which are neither core nor 

border points. 
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Figure 8: Example of core points, border points and noise points 

Let minpt = 4 and eps be the radius of clusters. In figure 8, 

diamond-shaped objects symbolize core points, while small-

white-circles represent border points and cross-shaped objects 

represent the noise points.  

Although DBSCAN is firstly proposed to support spatial 

database [6], it can be applied with another applications 

efficiently. Similarity functions can also be used instead of 

distance function in order to define the relationship between 

data, as state by [10]. In this paper, similarity function for similarity 

join and search is used. Regardless of the functions used, the core 

points of the clusters are also of the same meaning. That is, they 

are the points with many points located not far from, in another 

word similar to, them. If the DBSCAN is applied with similarity join 

queries set, the appropriate set of high-frequency queries should 

be among the core points. Based on this assumption, the 

algorithm to find the high-frequency queries set from the query 

set is proposed and described next chapter. 

2.2.2 Center-based clustering algorithm 
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This type of clustering algorithms is used to find clusters such that 

each data point belongs to the cluster whose center is nearest to the 

point.  K-means algorithm is an example of center-based clustering. 

- K-means algorithm [5] 

K-means chooses centers of all clusters randomly, assigns 

every data in a cluster with the closest center and re-computes 

the centers until stable. Given a dataset D, the similarity function 

(or distance function) f and a number k. Cluster analysis by K-

means can be done by the following steps: 

1) Pick k data points as the center (can be done by randomly or 

another better procedure). 

2) For each of the rest data d and each center c, compute f(c, d) 

and assign d in the same group which f(c, d) is closest. 

3) For each cluster obtained in 2), recomputed the new center c. 

4) Repeat 2) and 3) until the center not change. 

 

 

 

 

 

 

Figure 9: K-means clustering results with different k 

One main disadvantage of K-means algorithm is that the number of 

clusters is needed. Consider figure 9, the different value of k leads to different 

clusters retrieved from the algorithm. [11] modified K-means by using singular 
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vector decomposition algorithm to choose the value of k before apply the 

cluster analysis. Another disadvantage of K-means is that the result depends 

mostly on the initial location of the center-point. Many researches such as 

[12] and [13] provide the solution to this issue. 

K-means can be applied to find the appropriate set of high-frequency 

queries by using the best set of c as the high-frequency queries set. However, 

due to the disadvantage of center initial location and the unknown variable k, 

it cannot be used immediately.  

2.2.3 Hierarchical-based Clustering Algorithm 

Hierarchical-based clustering algorithm groups the data together by 

their hierarchical relationship. Specifically, the data points which are located 

close together have stronger relationship and more likely to be in the same 

clusters than the data points located further. Therefore, if a cluster is needed 

to be split, the close points will be in the same cluster while the further 

points located in another cluster. Similarly, if two clusters are needed to be 

merged, there are two types of this clustering algorithm. The first one, which 

is based on top-down strategy, is divisive hierarchical-based clustering 

algorithm. 

- Divisive Hierarchical-based Clustering Algorithm 

This method starts with one cluster of all data in the dataset. 

Then try to split a cluster into two clusters. Then choose one of 

these two clusters and further split it into another two clusters, to 

produce three clusters. This procedure is repeated until each data 

point became a single cluster of itself. 
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The performance of this method depends on two factors. To 

determine which cluster is the most appropriate to split and how 

to split it. Mostly, a cluster is chosen to be split first if the 

distribution of its data points is the least compact. After the 

cluster is chosen to be spilt, Flat algorithm [14] is applied to 

determine the best way to divide. Figure 10 shows the example of 

divisive hierarchical based clustering algorithm. 

 

 

 

 

 

 

 

 

Figure 10: Divisive hierarchical-based clustering example 

- Agglomerative Hierarchical-based Clustering Algorithm 

In contrast to divisive hierarchical-based clustering algorithms, 

agglomerative method starts with each single data point and tries 

to group it with the nearest (or most similar) point to form a 

cluster. This procedure is repeated until all becomes only one 

cluster. Many techniques are applied to choose the most 

appropriate pair to be merged.  

Proximity matrix is the matrix that stores the information about 

the similarity or distance between the clusters. The values in the 
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matrix are used to determine the next pair to be merged. After 

each merge occurs, the value inside each row and column 

corresponds to the clusters are needed to be recomputed based 

on the matrices to measure the cluster distance. Some of the 

widely-used methods are described: 

o MIN or Single Link Method [5] 

Suppose there are k clusters, and the distance between 

two clusters is defined by the minimum distance between the 

data points between the two clusters. Two clusters that have 

the lowest distance between them should be merged together 

and the distance between this new cluster and another k-2 

clusters are needed to be recomputed. 

Example 6: Suppose we have six points in 2-dimensional 

space: (0.7, 2.7), (1.8, 3.2), (2.6, 0.8), (1.5, 2.3), (3.0, 1.2), (2.2, 

1.5). The scatter plot of these points is shown below in figure 

11. If the single link method for agglomerative hierarchical-

based clustering is used to group the data and the distance is 

measured by Euclidean distance. First the proximity matrix is 

constructed, shown in figure 12. 
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Figure 11: Initial data points of example 6 

 

 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8) (1.5, 2.3) (3.0, 1.2) (2.2, 1.5) 

(0.7, 2.7)  0  1.21 2.69 0.89 2.75 1.92 

(1.8, 3.2) 1.21  0 2.53 0.95 2.33 1.75 
(2.6, 0.8) 2.69  2.53 0 1.86 0.57 0.81 

(1.5, 2.3) 0.89  0.95 1.86 0 1.86 1.06 

(3.0, 1.2) 2.75  2.33 0.57 1.86 0 0.85 
(2.2, 1.5) 1.92  1.75 0.81 1.06 0.85 0 

Figure 12: Initial proximity matrix of example 6 

The minimum distance value is 0.57 which is between (2.6, 

0.8) and (3.0, 1.2). Therefore these two points are merged 

into same clusters. The merging result is shown in figure 

13. 
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Figure 13: Data points of example 6 with 5 clusters  

Now, to update the value in the proximity matrix, first the 

columns and rows related to these two points are merged 

into one column and row respectively. The value in each 

new cell is selected from the minimum value between 

two cells regards these two points. For example, the 

distance between (2.6, 0.8), (3.0, 1.2) and (0.7, 2.7) is 2.69 

as 2.69 < 2.75. The proximity matrix is shown in figure 14. 

 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8), (3.0, 1.2) (1.5, 2.3) (2.2, 1.5) 

(0.7, 2.7)  0  1.21 2.69 0.89 1.92 
(1.8, 3.2) 1.21  0 2.33 0.95 1.75 

(2.6, 0.8), 
(3.0, 1.2) 

2.69 2.33 0 1.86 0.81 

(1.5, 2.3) 0.89  0.95 1.86 0 1.06 

(2.2, 1.5) 1.92  1.75 0.81 1.06 0 
Figure 14: Proximity matrix of example 6 after first update 

Next, the minimum value is 0.81, which is the distance 

between {(2.6, 0.8), (3.0, 1.2)} and (2.2, 1.5). The point (2.2, 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4



 

 

29 

1.5) is merged with the cluster as shown in figure 15 and 

the updated proximity matrix is shown in figure 16. 

 
Figure 15: Data points of example 6 with 4 clusters 

 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) (1.5, 2.3) 

(0.7, 2.7)  0  1.21 1.92 0.89 
(1.8, 3.2) 1.21  0 1.75 0.95 

(2.6, 0.8), 
(3.0, 1.2), 
(2.2, 1.5) 

1.92 1.75 0 1.06 

(1.5, 2.3) 0.89  0.95 1.06 0 

Figure 16: Proximity matrix of example 6 after the second update 

After that, the minimum distance in the proximity matrix is 

0.89. The points (0.7, 2.7) and (1.5, 2.3) are merged to 

create a new cluster. Figure 17 shows the 3-cluster result 

and the corresponding updated proximity matrix is shown 

in figure 18. 
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Figure 17: Data points of example 6 with 3 clusters 

 

 

 

 

 

Figure 18: Proximity matrix in example 6 after the third update 

The minimum value in the proximity matrix is 0.95. The 

point (1.8, 3.2) is merged with the cluster {(0.7, 2.7), (1.5, 

2.3)}. The results and proximity matrix are shown in figure 

19 and 20 respectively. 
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 (0.7, 2.7), (1.5, 2.3) (1.8, 3.2) (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) 

(0.7, 2.7) 
(1.5, 2.3)  

0  0.95 1.06 

(1.8, 3.2) 0.95 0 1.75 
(2.6, 0.8), 
(3.0, 1.2), 
(2.2, 1.5) 

1.06 1.75 0 
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Figure 19: Data points in example 6 with two clusters 

 

 

 

 

 

 

Figure 20: Proximity matrix in example 6 after the forth update 

Finally, two clusters are merged into one cluster as in 

figure 21. 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4

 (0.7, 2.7), (1.5, 2.3) , (1.8, 
3.2) 

(2.6, 0.8), (3.0, 1.2), (2.2, 1.5) 
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Figure 21: Final result of example 6 

o MAX or Complete Link Method [5] 

In contrast to the single link method, the distance 

between two clusters is defined by the maximum distance 

between the data points between the two clusters. The 

reason behind this is that sometimes the single link 

method merges the long clusters which the nearest points 

are close but the furthest points distance is very high. 

Consider the dataset in Example 6. 

Example 7: Suppose we have six points in 2-dimensional 

space: (0.7, 2.7), (1.8, 3.2), (2.6, 0.8), (1.5, 2.3), (3.0, 1.2), (2.2, 

1.5). The scatter plot of these points is shown below in 

figure 22. If the complete link method for agglomerative 

hierarchical-based clustering is used to group the data and 

the distance is measured by Euclidean distance. First the 

proximity matrix is constructed as shown in figure 23. 
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Figure 22: Initial data points of example 7 

 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8) (1.5, 2.3) (3.0, 1.2) (2.2, 1.5) 

(0.7, 2.7)  0  1.21 2.69 0.89 2.75 1.92 

(1.8, 3.2) 1.21  0 2.53 0.95 2.33 1.75 
(2.6, 0.8) 2.69  2.53 0 1.86 0.57 0.81 

(1.5, 2.3) 0.89  0.95 1.86 0 1.86 1.06 

(3.0, 1.2) 2.75  2.33 0.57 1.86 0 0.85 
(2.2, 1.5) 1.92  1.75 0.81 1.06 0.85 0 

Figure 23: Initial proximity matrix of example 7 

The minimum distance value is 0.57 which is between (2.6, 

0.8) and (3.0, 1.2).Therefore these two points are merged 

into same clusters as in figure 24. 
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Figure 24: Data points of example 7 with 5 clusters 

Now, to update the value in the proximity matrix, first the 

columns and rows related to these two points are merged 

into one column and row respectively. The value in each 

new cell is selected from the maximum value between 

two cells regards these two points. For example, the 

distance between (2.6, 0.8), (3.0, 1.2) and (0.7, 2.7) is 2.75 

as 2.69 < 2.75. The proximity matrix after this step is 

shown in figure 25. 

Figure 25: Proximity matrix of example 7 after first update 
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 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8), (3.0, 1.2) (1.5, 2.3) (2.2, 1.5) 
(0.7, 2.7)  0  1.21 2.75 0.89 1.92 

(1.8, 3.2) 1.21  0 2.53 0.95 1.75 
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(3.0, 1.2) 

2.75 2.53 0 1.86 0.85 

(1.5, 2.3) 0.89  0.95 1.86 0 1.06 
(2.2, 1.5) 1.92  1.75 0.85 1.06 0 
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Next, the minimum value is 0.85, which is the distance 

between {(2.6, 0.8), (3.0, 1.2)} and (2.2, 1.5). The point (2.2, 

1.5) is merged with the cluster as in figure 26 and the 

proximity matrix is updated in figure 27. 

 
Figure 26: Data points of example 7 with 4 clusters 

 (0.7, 2.7)  (1.8, 3.2) (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) (1.5, 2.3) 

(0.7, 2.7)  0  1.21 2.75 0.89 
(1.8, 3.2) 1.21  0 2.53 0.95 

(2.6, 0.8), 
(3.0, 1.2), 
(2.2, 1.5) 

2.75 2.53 0 1.86 

(1.5, 2.3) 0.89  0.95 1.86 0 
Figure 27: Proximity matrix of example 7 after the second update 

After that, the minimum distance in the proximity matrix is 

0.89. The points (0.7, 2.7) and (1.5, 2.3) are merged to 

create a new cluster. Figure 28 and 29 show the data 

point clusters and the proximity matrix respectively. 
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Figure 28: Data points of example 7 with 3 clusters 

 (0.7, 2.7), (1.5, 2.3) (1.8, 3.2) (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) 

(0.7, 2.7) 
(1.5, 2.3)  

0  1.21 2.75 

(1.8, 3.2) 1.21 0 1.75 

(2.6, 0.8), 
(3.0, 1.2), 
(2.2, 1.5) 

2.75 1.75 0 

Figure 29: Proximity matrix in example 7 after the third update 

The minimum value in the proximity matrix is 1.21. The 

point (1.8, 3.2) is merged with the cluster {(0.7, 2.7), (1.5, 

2.3)}.The result is shown in figure 30 while the updated 

proximity matrix is in figure 31. 
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Figure 30: Data points in example 7 with two clusters 

 (0.7, 2.7), (1.5, 2.3) , (1.8, 3.2) (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) 

(0.7, 2.7), 
(1.5, 2.3), 
(1.8, 3.2)  

0  2.75 

(2.6, 0.8), 
(3.0, 1.2), 
(2.2, 1.5) 

2.75 0 

Figure 31: Proximity matrix in example 7 after the forth update 

Finally, two clusters are merged into one cluster as in 

figure 32. 

 

Figure 32: Final result of example 7 
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In this example, the order which the points are merged 

is the same for both single link and complete link but the 

value in the proximity matrix is different. There is some 

situations that this different leads to the different order or 

merging since the criteria to select the next pair to merge 

depends on the minimum value. 

Hierarchical-based clustering method is not appropriate to find 

the set of high-frequency queries as they are not in the hierarchy 

structure. However, the idea of merging each data can be applied 

when a pair of chosen high-frequency queries is similar. The distance 

function can be changed into the similarity function and the idea to 

merge the minimum distance pair can be changed into the most 

similar pair. However, this method forces us to merge until only one 

cluster is found. Therefore, some modification is needed as many 

high-frequency queries may contained in one query set. 



 

 

CHAPTER III 

PROPOSED METHOD 

 This thesis proposes methods to find a set of high-frequency queries which 

can be used to build similarity tables as an index structure for high-frequency-

queries-based filtering.   High-frequency queries can be obtained by examining the 

query history.  Given a set of queries, it is needed to find queries which appear 

frequently, or are similar to many queries from this set.  First, the concept of high-

frequency queries is defined in section 3.1.  Based on this definition, a high-frequency 

query is a representative of a group of similar queries.  Clustering algorithms can be 

used to find such queries. DBSCAN is used to find high-frequency queries because it 

is less susceptible to noise data.   From the definition, if queries are clustered 

densely, there are many high-frequency queries which are similar to each other.   It is 

redundant to create two similarity tables based on two similar high-frequency 

queries.  Two methods to choose an optimal set of high-frequency queries for high-

frequency-queries-based filtering are proposed in Section 3.2.  One, called DBRAN, 

randomly chooses one of the high-frequency queries from each cluster of high-

frequency queries. The other one, called DBSM, merges similar high-frequency 

queries together to create a representative of these queries.  The performance of 

DBRAN and DBSM is evaluated in Chapter 4. 

3.1 Definition of High-frequency Queries 

 To make it possible to find useful high-frequency queries from a set of 

queries, a definition of high-frequency queries is formulated.  First, the concept of 

friends is defined to allow the measure of frequency of a query from similar queries.  

Definition 1 states that a friend of a query their similarity is not lower than a specified 

threshold t.  
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Let Q be a set of query containing n text queries. 

Let t be a specified similarity threshold between friends in range [0, 1] and minf is a 

positive integer  n. 

Let f(p, q) be any similarity function used to calculate the similarity value between p 

and q. 

Definition 1: A text q1 is called a ‘friend’ of another query q2 in iff f(q1, q2) ≥ t. 

Lemma 1: q1 is a friend of q2 iff q2 is a friend of q1. 

Then, a high-frequency query is defined based on the number of friends, as 

shown in Definition 2.   The minimum number of friends and t must be chosen. 

Definition 2: A text query q is called a ‘high-frequency query’ of the query set Q iff q 

has more than minf friends in Q. 

 According to this definition, a high-frequency query is a query that has a 

sufficient number of friends.  There are several ways to find high-frequency queries 

from a query set Q. The performance of the filter method using the set found by 

each method is different.  

3.2 Methods to Find Sets of High-frequency Queries 

3.2.1 Brute Force Method 

The brute force method is to find the best set of high-frequency queries by 

examining every combination of clusters and choosing the one that gives the best 

filter result. This is guaranteed to obtain the most appropriate set of high-frequency 

queries from the query set Q as every possible set are evaluated. However, this 

method generates too many high-frequency queries.  Thus, it requires very large 
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memory space to store similarity tables for high-frequency-based filtering.  This 

makes the brute force method to find appropriate set of high-frequency queries take 

very long time as the time complexity is O(n! tn) if n is the number of queries in the 

set and tn is the time to create the similarity tables for n records, which is n*qlogq if 

q is the average length of texts in the dataset. Therefore, this method is impractical. 

To improve the brute-force method, the number of friends of all queries can be 

calculated first.  That is, the similarity between every pair of queries is first calculated 

and the number of friends is counted based on the similarity. After that, only the 

texts with more than minf friends are chosen as the high-frequency queries. 

Therefore, the time complexity is reduced into O(n2
 tn) 

However, the number of high-frequency queries can be very high, and only 

queries with higher number of friends can be chosen. Therefore, this method is 

modified by choosing only maxf queries that have at least minf friends. But this may 

not improve the filter power because many of these high-frequency queries are 

similar. 

This method has two major drawbacks.  One is that the query set may contain 

more than maxf high-frequency queries. Hence, the set obtained may not cover some 

queries in the set. The other disadvantage is that some query set may contain many 

of the similar texts. Therefore, the high-frequency queries retrieved are similar.  

- The set may not cover some queries that have more than minf friends 

Obviously, if only maxf queries are chosen, some queries, with more 

than minf friends, might be omitted. The groups of these queries may 

contain fewer queries than the one chosen but they may be parts of the 

main characteristics of Q. Consider figure 33, suppose figure 33 is the 

visualization of queries relationship. The nearer each objects located state 
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the more similar the texts are. There are three groups of text here 

represented by crosses, triangles and circles. If maxf = 5, only texts 

represented by cross object are chosen as the high-frequency queries. 

This is because there are more members in the group of cross’ text than 

the others. If the similar query set is queried while only the cross text are 

used to construct the similarity table, texts represented by triangles and 

circles would not be covered. This leads to poor performance of high-

frequency-queries-based filter. 

 

 

 

 

 

Figure 33: Visualizations of text group that brute force method 

cannot efficiently handle 

- The high-frequency queries are similar to each other 

In some situations, high-frequency queries in a query set are very 

similar with each other. If there are many of these high-frequency queries, 

the brute force method might found only them as they have many 

friends in the set. When these queries are used to construct the similarity 

table for high-frequency-queries-based filter, the similarity tables would 

nearly the same for all queries. This leads to the redundancy and a waste 

of space. If the new query set is queried, each query may suffer to choose 

the similarity table as the similarity value is almost equal. 
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 Most of the query sets with high-frequency queries contain more than 

one unequal size groups of similar text. Therefore, many sets applied brute 

force method suffer from both suggested issues. To avoid such problems, we 

need more information about the relationship between the texts. If the 

details about the group of similar texts are available, we may be able to 

choose only some texts from each group. So, none of the smaller groups are 

accidentally ignored. 

The task to automatically find groups of objects without any 

suggestions of the groups label is called cluster analysis. As mentioned in 

Chapter 2, there are three main types of the methods to solve this task. Two 

of them are applied in this section. The first one is DBSCAN. 

 

3.2.2 DBSCAN with Random Core Points (DBRAN)  

When high-frequency queries are closed together, similarity tables 

created from these queries can be so much alike that they are redundant.  

To avoid this redundancy, only some high-frequency queries must be chosen.  

This thesis proposes to use clustering algorithm to group queries together.  

DBSCAN is used to find clusters of queries, and a representative of each 

cluster is chosen.  Based on the definition of high-frequency query, DBSCAN 

method can be used to find high-frequency queries with minf is minpts and t is 

the similarity threshold. However, the distance function used in DBSCAN is 

different from the similarity function.  The distance between two data points 

is high if they are different.  On the other hand, the similarity between two 

data points is low if they are different.  According to [10], a distance function 

can be mapped into similarity function using three conversion functions: 
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linear, sigmoidal and inverted. In this section, the linear conversion function is 

used. 

We already discussed that the DBSCAN clustering algorithm can be 

applied to find a set of high-frequency queries. The method to find the set of 

high-frequency queries by DBSCAN is illustrated in Algorithm 1 

Algorithm 1 

Input: a query set Q, a threshold t, a similarity function f, an 

integer minf 

Output: a set of high-frequency queries F, a set of border points B 

F    

B    

for every pair q1 and q2 in Q 

  if q1, q2 are friends, put them in the same cluster and put 

them in each other border set 

  count  number of border point of q1 

  if count exceeds minf 

   add q1 to F 

   add border set of q1 to B 

  end if 

end for 

return <F, B> 

This method provides the information of clusters of which each core 

points are member. This can be used further if the set of high-frequency 

queries generated is very large and need to pick only the best subset to use. 

 We applied DBSCAN to find the set of high-frequency queries. 

However, sometimes core points in the same clusters are similar to each 

other. That leads to the redundancy in the high-frequency queries set. This 

can be solved by randomly choose only one text from each cluster as the 
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high-frequency query. The modified method is called DBRAN. The algorithm 

for DBRAN is described in Algorithm 1.1. 

 Algorithm 1.1 

Input: a query set Q, a threshold t, a similarity function f, an 

integer minf 

Output: a set of high-frequency queries F, a set of border points B 

F    

B    

P   

for every pair q1 and q2 in Q 

  if q1, q2 are friends, put them in the same cluster and put 

them in each other border set 

  count  number of border point of q1 

  if count exceeds minf 

   add q1 to P 

   add border set of q1 to B 

  end if 

end for 

for every cluster C, randomly pick one c  C from P and add c to F 

return <F, B> 

However, if the cluster is large, the random text might not cover every 

text in the cluster. DBSM method extends the DBSCAN by merging similar 

points, i.e. text data, together to reduce the redundancy and also preserve 

the core point coverage as much as possible. This method is described next. 

3.2.3 DBSCAN with Merging Strategy (DBSM) 

DBRAN deals with the problem of core point redundancy in DBSCAN 

by randomly choosing one core point for each cluster. However, one core 

point may not cover every query in the large cluster. Two dissimilar core 

points in the same cluster should both be chosen as high-frequency queries 

to capture the main characteristic of their cluster. However, sometimes two 

core points in the same cluster can be merged as a high-frequency query if 
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they are similar. Therefore, we need the criteria to determine whether a pair 

of core points should be picked both as the high-frequency queries or only 

their similar section. We propose the merging scheme to deal with both this 

problem and the core point redundancy problem. 

For each cluster, the high-frequency queries are brought to find the 

pair with highest similarity. This is similar to the hierarchical agglomerative 

clustering. In this algorithm, the decision for merging is based on the resulting 

similarity table. Suppose we have two high-frequency queries d1 and d2 which 

are most similar with each other, compare with other pairs of core-points in 

the same clusters. The merged text query is created and it contains only the 

common tokens between d1 and d2. Specifically, the merged query m = d1  

d2. Then, the number of candidates in the similarity table created with m as 

the high-frequency query and the number of candidates in the similarity table 

created with d1 and d2 as the high-frequency queries are compared. The 

candidates are obtained by doing high-frequency-queries-based filter using 

their friends as queries with the specified threshold t. If the latter one is larger 

or equal, we use this new text as the high-frequency queries instead of d1 and 

d2. Otherwise, we do not merge them and continue trying to merge other 

pairs until they are all unable to merge. The remaining set is the set of high-

frequency queries. 

The time complexity of DBSCAN is O(n2) if n is the number of the 

queries in the query set. As the time complexity of agglomerative hierarchical-

based clustering algorithm is O(d3) if d is the number of data in the dataset, 

the merging strategy based on agglomerative hierarchical clustering algorithm 

takes O(km
3
 t3m) if k clusters are found and m is the average number of core 

points per cluster. Therefore, the time complexity of DBSM is O(n2
+ km

3
 t3m). 

 The details of DBSM algorithm are stated in Algorithm 2. 
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Algorithm 2 

Input: a query set Q, a threshold t, a similarity function f, an 

integer minf, a data set D 

Output: a set of high-frequency queries F 

<C, B>  DBSCAN(Q, t, f, minf) 

F   

while (some pair can be merged) 

find pair c1 and c2 with highest similarity  

bc1  friends of c1 

bc2  friends of c2 

merge  c1  c2 

bm  bc1  bc2 

Cm  high-freq-based(D, f, t, merge, bm) 

//high-freq-based(dataset, //function, threshold, a high-

frequency //query, query set) 

Cc  high-freq-based(D, f, t, c1, bc1)+ high-freq-based(D, f, 

t, c2, bc2) 

if(Cc > Cm) 

  add merge to F 

end if 

else 

set this pair similarity value = 0 //prevent further 

//recalculation 

end else 

end while 

return F 

  

 The high-freq-based function in Algorithm 2 is used to find the 

number of candidates before and after the merging strategy is done. The 

example of how the function is processed is in Example 8.  

  

Example 8: Suppose there are two texts query q1 = {t1, t2, t3, t4, t5} and 

q2 = {t2, t3, t5, t6}. q1 has two friends b1 = {t1, t2, t3, t4} and b2 = {t1, t2, t3, t4, 

t6} while q2 has one friend b3 = {t1, t2, t3, t4, t6}. To determine whether 

q1 and q2 should be merged or not, finds m = q1  q2 = {t2, t3, t5}. Then, 
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compute the similarity between m and b1, b2 and b3, which is shown in 

figure 34 (b). The similarity table for m is created from the dataset. 

Suppose similarity tables for q1, q2 and m is shown in figure 34(a).  

After that, the candidate numbers for q1 and q2 are calculated 

from STq1 and STq2. The candidate number of q1 using b1 and b2 is 1+1 

= 2 while candidate number of q2 using b3 is 1.Therefore, the 

candidate number before merge is 2+1 = 3. 

Then, the candidate number for m using b1, b2 and b3 is 

calculated from STm, which is 0+4+4 = 8. Since 8 > 4, which means 

the candidate after merge is more than the candidate before merge, 

q1 and q2 will not be merge. Otherwise they are merged into m and 

all of their friends are added to the friend list of m 

. 

STq1 

1 
2 

4 

15 
28 

 

(a) Similarity tables of q1, q2 and m 

 b1 b2 b3 

q1 0.89 0.8 Not necessary 

q2 Not necessary 0.75 

m 0.57 0.52 0.86 

(b) Similarity between each texts 

Figure 34: Similarity tables and similarity between texts in example 8 
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In this chapter, two methods are proposed to find the appropriate set of high-

frequency queries as brute force methods are claimed low performance. Therefore, 

only DBRAN and DBSM are implemented to compare the performance in the 

experiment section. 



 

 

CHAPTER IV 

EXPERIMENT 

 This section describes the experiment results of proposed method to find the 

appropriate set of high-frequency queries. Two methods, which are DBRAN and 

DBSM, are implemented in Java and compile with Netbeans IDE 7.1.2 on Windows 7 

professional machine with 8 GB memory.  

Datasets 

The datasets Enron and NYTimes from UCI machine learning databases [15] 

and dataset DBLP [16] are used in this experiment. The detail of each dataset is 

shown in figure 35. 

Dataset Number of 
possible words 

Number of record Average length 
per record 

Enron 28,099 39,861 160 
NYTimes 101,636 299,749 232 

DBLP 467,446 1,385,952 14 

Figure 35: Details of each dataset used in the experiment 

Original Sets of High-frequency Queries 

 To evaluate the performance of the proposed methods to find the high-

frequency queries from the query set, the query sets which contain high-frequency 

queries are needed. A query set is generated by choosing some text records from the 

dataset and changing some tokens in the records.  The number of high-frequency 

queries is controlled by choosing some text records more often.  Initially, from each 

dataset, 8, 16, 32, 64 and 128 records are randomly chosen as the original high-

frequency queries which are labeled in the experiment as the ‘Original’ set. 
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Query Sets 

Query sets are generated for each dataset, with different characteristics of 

high-frequency queries. Using the original set, high-frequency-queries based filter 

should give the best performance. Therefore, the results from these sets are used as 

the base line to compare with the results from both proposed methods. 

In these chosen queries, some tokens in the queries are mutated to create 

the new queries with specific mutation value.  Mutation can be done by inserting, 

deleting or substituting a token in a query. A certain percent of tokens in each query 

are mutated, and the mutation percentage is varied from 20% to 50%.  Each query 

set contains mutated high-frequency queries and randomly chosen records in the 

dataset. The percentage of the high-frequency queries are 50, 60 and 80 percent. 

However, since the percentage of queries related to high-frequency queries does not 

affect the difference of the result between each method, only the results from 60% 

related sets are shown. 

Half of each query set is randomly chosen as a train set that DBRAN and 

DBSM use to find high-frequency queries. The other half of the set is used as a test 

set. That is, the test set is used as query sets for high-frequency-queries based filter 

to measure the performance.  

Performance Measure 

The set of high-frequency queries obtained from DBRAN and DBSM is used to 

measure the performance of the two methods.  The method performs well if, given 

the set of high-frequency queries obtained from the method, high-frequency-queries 

based filtering works well.  Two factors – coverage and the number of candidates - 

indicate that high-frequency-queries based filtering works well.  The coverage of a set 

of high-frequency queries is the number of queries in a query set that similar to at 
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least one high-frequency query. These queries are called in-coverage queries while 

the rest are called out-of-coverage queries. Large coverage indicates that the 

similarity tables can be used for many queries. When a query is in-coverage, a 

similarity table is used and the candidates are obtained from the table.  These 

candidates are called in-coverage candidates. A smaller number of in-coverage 

candidates indicates that the filter works well. On the other hand, when a query is 

out-of-coverage, high-frequency-queries based filter does not use similarity tables 

and switches to AdaptSearch.  In this case, the candidates obtained from similarity 

tables, called out-of-coverage candidates, are too numerous to be of use.  It is 

preferable for a set of high-frequency queries to have large coverage large and a 

small number of in-coverage candidates because this makes the number of 

candidates for each query very small.  Thus, the number of in-coverage candidates 

per in-coverage query is also an important indicator.  

4.1 Coverage Percentage 

The coverage percentage is the percent of the in-coverage queries in a query 

set. High coverage percentage indicates that many queries are similar to at least one 

of the chosen high-frequency queries. In this case, a similarity table is used for 

filtering, and the number of candidates should be small.  Thus, it is desirable that a 

set of high-frequency queries gives high coverage percentage. 

To show that the sets of high-frequency queries obtained from the improved 

brute force method gives low coverage percentage, it is  compared with the results 

from DBRAN and DBSM, when applied on DBLP. The result, shown in figure 36, 

indicates that the high-frequency queries found by the brute force method cover 

fewer queries than those from both proposed method. 
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Figure 36: Coverage percentage of DBLP with 60% related to original high-

frequency queries compare with brute force method 

Figure 37-39 shows the coverage percentage from 3 datasets when 60% of the 

queries are related to the original high-frequency queries. The charts show that, 

when the mutation is low, i.e. at 20%, the coverage percentages of high-frequency 

queries obtained from DBRAN, DBSM and original sets are nearly the same. This 

means sets of high-frequency queries retrieved from these two methods similar with 

the original sets. With at least 40% mutation, the coverage percentages from DBSM 

sets are better than DBRAN but lower than original sets. For the original set of high-

frequency queries, it remains the same when the queries are mutated at lower level. 

On the other hand, if the queries are mutated more than 40%, the coverage 

percentage decreases when the mutation level increases. 

Another point to consider is the effects of the number of original high-

frequency queries. If queries are mutated 20%-30%, numbers of high-frequency 

queries do not affect the coverage percentage. On the other hand, coverage 

percentage of the DBSM and DBRAN results moderately decrease if the train sets 
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contain more high-frequency queries. However, the original sets of high-frequency 

queries are not affected by this parameter. 

 

 

Figure 37: Coverage percentage of DBLP with 60% related to original high-

frequency queries 

 

Figure 38: Coverage percentage of NYTimes with 60% related to original high-

frequency queries 
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Figure 39: Coverage percentage of Enron with 60% related to original high-

frequency queries 

The higher number of in-coverage queries lead to higher in-coverage 

candidates which is shown next section. 

4.2 Numbers of In-coverage Candidates 

If a query is in-coverage, its candidates are retrieved from the similarity table of 
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coverage candidates indicates how much verification is required for similarity join. 

Figure 40-42 shows the in-coverage candidate number of every datasets when 60% 

of train sets are related to the original high-frequency queries. 

For every datasets, when the queries are 20% mutated, the number of in-

coverage candidates are low. The number of in-coverage candidates from DBSM and 
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of original high-frequency query set dramatically increase from 20% mutation level 

and reach the highest value at 40% query mutation. 

In contrast, in-coverage queries of the original sets generate very few 

candidates when the queries are mutated 20%-30%. However, the in-coverage 

candidate numbers dramatically increase to almost the same with DBSM and DBRAN 

when the queries are 40% mutated. With 50% query mutation level, the in-coverage 

candidate number decreases as well as the result from other methods.  This means 

out-of-coverage candidates increase as the queries are more mutated. 

 

Figure 40: In-coverage candidates of DBLP with 60% related to original high-

frequency queries 
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Figure 41: In-coverage candidates of NYTimes with 60% related to original high-

frequency queries 

 

Figure 42: In-coverage candidates of Enron with 60% related to original high-

frequency queries 
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computed from the number of all in-coverage candidates divides by the number of 

in-coverage queries. As the value is different according to the total number of 

records in each dataset, it is shown as the percentage compared with overall dataset 

instead. 

Figure 43-45 shows the mentioned percentage of each dataset when 60% of 

the test sets related to the original high-frequency queries with various mutation 

levels. For every dataset, if the query is 20% mutated, the in-coverage queries using 

original high-frequency queries generate significantly low amount (less than 0.01%) of 

in-coverage candidates from the whole dataset while both DBSM and DBRAN values 

are bounced from 2%-6%. When the query set are more mutated, DBSM and DBRAN 

high-frequency queries generated in-coverage candidates per query at nearly the 

same level. In contrast, with the highly mutated queries, says more than 40%, each 

of the in-coverage queries using the original high-frequency query sets generate 

dramatically higher candidates. 

 
Figure 43: In-coverage candidates per query percentage of DBLP with 60% related to 

original high-frequency queries 
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Figure 44: In-coverage candidates per query percentage of NYTimes with 60% related 

to original high-frequency queries 

 
Figure 45: In-coverage candidates per query percentage of Enron with 60% related to 

original high-frequency queries 
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strategy still performs well. On the other hand, if the queries are highly mutated, 

DBRAN and DBSM give slightly different sets of high-frequency queries which lead to 

moderately different in coverage percentage, candidate numbers and the percentage 

of candidate numbers per query in the dataset. The sets obtained from DBSM 

provide better results in most of the experiment. This means that the merging 

strategy is necessary for the highly mutated query set. 

 



 

 

CHAPTER V 

CONCLUSION 

 This thesis proposes a method to find a set of high-frequency queries from a query 

set. The set of high-frequency queries is used to create a similarity table for high-

frequency-queries-based filter in filter-and-verify framework for similarity join. DBSCAN 

clustering algorithm is applied to find the clusters of queries. DBRAN, which is DBSCAN 

with random core points, finds high-frequency queries and removes redundant core 

points by randomly selecting one core point from each cluster. However, one core 

point may not cover every query in a cluster. DBSM, which is DBSCAN with merging 

strategy, removes redundant core points and also preserves the coverage of each 

core points. This method merges two core points if they are similar. Then, the 

remaining core points are used as high-frequency queries. Experiment results show 

that DBSM and DBRAN are nearly the same when the high-frequency queries are 

similar, or the clusters are compact. On the other hand, if the high-frequency queries 

are highly varied, DBSM outperforms DBRAN as the resulting sets of high-frequency 

queries provide better performance for high-frequency-queries-based filter. 

 Although DBSM found the sets that cover more queries in the test sets than 

DBRAN, it takes much longer to compute if there are many core points in each cluster. 

Therefore, the strategy to determine whether the merging strategy is necessary for the 

set of core points should be studied further. 
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