FINDING SETS OF HIGH-FREQUENCY QUERIES FOR HIGH-FREQUENCY-QUERY-
BASED FILTER FOR SIMILARITY JOIN

Miss Kamolwan Kunanusont

unAngauasuitudoyaatuiinveineinusaauntnsfing 2554 Aliusnisluadetdyaig (CUIR)

\Duuitudeyavesddndvesivendnus fawiunedudinineds
The abstract and full text of theses from the academic year 2011 in Chulalongkormn University Intellectual Repository (CUIR)
are the thesis authors' files submitted through the University Graduate School.
A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Computer Science and Information
Technology
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2014

Copyright of Chulalongkorn University

ASAUNGNVBIT DAL LT UBEANNSUFINTDIDITDANNNUN I UBYEI NS UNSH T BN 188N

DNUITAANY

UNEATINUAITIU AMIYEAUD

%mﬁwuﬁﬁtﬂud'gwﬁwaamiﬁﬂmmwé’ﬂgmﬂ%mﬁgﬁmmmamumﬁmsﬁm
a1 v IneINseeuiesiazmaluladansaune AeYIALnAIERTLaYINGINTS
ADLNIADT
AEINEIANENT PAINTAINIINIFY
Unsfnen 2557

AUANSIRIPIAINTAIININGHY

Thesis Title FINDING SETS OF HIGH-FREQUENCY QUERIES FOR
HIGH-FREQUENCY-QUERIES-BASED FILTER FOR

SIMILARITY JOIN
By Miss Kamolwan Kunanusont
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Dr. Jaruloj Chongstitvatana

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat)

THESIS COMMITTEE

Chairman

(Assistant Professor Dr. Saranya Maneeroj)

Thesis Advisor

(Assistant Professor Dr. Jaruloj Chongstitvatana)
External Examiner

(Doctor Kamol Keatruangkamala)

AT ALYALS 1 MsfuenvesdesinuildUssdmiuiansesdetamany
filivesdmiunisidenshuansdnuseadne (FINDING SETS OF HIGH-FREQUENCY
QUERIES FOR HIGH-FREQUENCY-QUERY-BASED FILTER FOR SIMILARITY JOIN)

8. SnuInendinuguan: ue. a3, 3154a91 adindiaun, 75 wi.

1Y

NISAUAEANEDNVTEAAE AZNISBUMYEIESNYTEAAUTUFIA LT UNITNEATY

o

I 1 =

lugnudeyaagdnuse nsAumgaednvszAdeIzAuAszileulunsiadeiudeniny
Aol TuraenIsueuMIga188nNYTEAA18ALAIATRTELTEUNNATENINI@R IR 5197
adeiu Tuuisaniumsal MsAumAsnanIzAunmedednuieseiuluganfelny

Y o =

YOAINIULMAINIENIN VOAIAUNLTUDY F9TLBDNWUUNITNTBIAYBINUTDAINUN T UDY

Y
£

WedursauaranlunsAuterauviinll geanwuulilaseaineseniinisnediniy
pdnaiednszileuiiliifertesnan Nsasanisieainuadeszaielaedaiuignvesls
° o v Ay v Y o i < a a =4 Y

mauildusenlaanenvestomaiy agelsinu UssdnSamveinsnsesiiuegivign

& a a s A ax v Y o g v -

wiaillaense iWmingvesinerdnusifeiiosaniuuisaumdemauildussimunsaus
lgiunisnsedlaedaiutadaiunldues Feneenuuuldtunoun1siasednnguussnnas
AuAUNLILLILYE DBSCAN iiednnguignvastadiaiuiildussnaduiuwazAunve
AANFIUNUIINUARENGY HLT8URBNLUUTURNDWTITARYTS Ao DBRAN WAz DBSM Liveriin
ANUIauveItafauilduey DBRAN dangudemauilduselagld DBSCAN wagiden
TarnuildUseedgunilstaaiuseniangy DBSM 14 DBSCAN wadnngquituiu wag

nauteraulunguaunsenalianansaiiuyseansnmnisnsedls dunsunsinnafe U133

N,

eanuuulUldiunvestamauainvatendmiulenvestoyaauien wayinUsean
dl 2 % 24 d‘ 1% a dgj < Y 1 =

ANVBINTSLTOUNIBABONUTEARBNLTN1SNTeIvDaTilTusInges wu31 DBSM &

Uszan3nm@ani1 DBRAN iausazdaraiuiltussnateiutiey ag19lsAniu wWedamiaiu

Ao v v) a a o a v o o

PaUpsAatenuuLIn UseanSnInyeaiad@aaistnatAganu

'
=

M ANANEASLAYINYINTS aneilavolan

a & A A A e)
ADUNINDT aelaYe 9.NUINWURN
AN1997 INeINSARNRILMBSHasinAlulag
ansauna

Ynns@nwr 2557

5772601023 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: Similarity search; Similarity join; High-frequency queries; Cluster analysis;
DBSCAN
KAMOLWAN KUNANUSONT: FINDING SETS OF HIGH-FREQUENCY QUERIES FOR
HIGH-FREQUENCY-QUERY-BASED FILTER FOR SIMILARITY JOIN. ADVISOR:
ASST. PROF. DR. JARULOJ CHONGSTITVATANA, 75 pp.

Similarity search and similarity join are important operations in text databases. Similarity search
finds all records which are similar to the given text query while similarity join matches pairs of
similar records from two relations. In some situations, some similar queries are repeated over a
period of time. These queries are called high-frequency queries. High-frequency-query-based
filter is used to facilitate this type of queries. This method uses an index structure called
similarity table to prune non-related text records in relations. A similarity table is created based
on a chosen high-frequency query obtained from the query set. However, the performance of
this filter method depends mostly on these chosen queries. This thesis proposes a method to
find high-frequency queries for the high-frequency-query-based filter. The proposed method is
based on a density-based cluster analysis, called DBSCAN, to capture the main characteristics of
the query set by grouping them and find the representative points from each group. Two
methods — DBRAN and DBSM - to deal with redundant high-frequency queries are proposed.
DBRAN finds clusters high-frequency queries, by DBSCAN, and randomly chooses one high-
frequency query from a cluster as a representative. DBSM also uses DBSCAN to finds clusters,
and repeatedly merge the queries in these clusters until it cannot give any improvement on
similarity tables. For evaluation, the proposed method is applied on various sets of queries to
find high-frequency queries for three datasets. It is found that DBSM performs better than DBRAN
when the similarity between high-frequency queries is low. However, when the similarity
between high-frequencies is high, the performance of both DBRAN and DBSM are about the

Same.

Department: ~ Mathematics and Student's Signature

Computer Science Advisor's Signature
Field of Study: Computer Science and
Information Technology

Academic Year: 2014

ACKNOWLEDGEMENTS

| would like to express my very great appreciation to my advisor, Asst.
Prof. Dr. Jaruloj Chongstitvatana, for her beneficial advice and patient suggestion
on this thesis. My grateful thanks are also extended to Asst. Prof. Dr. Saranya
Maneeroj whose question last year is the main inspiration of this work. Moreover,

she also suggests some useful issues to improve the quality of my research.

Sincere thanks is offered to the external examiner, Dr. Kamol

Keatruangkamala, whose advice provides improvements in various issues.

Special thanks should be given to Asst. Prof. Dr. Suphakant Phimoltares

as his taught course contents provide me the idea of proposed method.

In addition, | would like to offer thanks to my junior student, Natthee

Thitinanrungkit, as his guide advice and coding skill are very helpful.

Finally, | wish to thank my family and friends for their supports and

sincere encouragement.

Kamolwan Kunanusont

vi

CONTENTS

THAI ABSTRACT ettt es et et bese s et et esese et eseseene ssssesensanas v
ENGLISH ABSTRACT .ottt sttt sttt sttt bbbt ettt seseesesessses saesesennas %
ACKNOWLEDGEMENTS .ottt saeaesesassaeaees Vi
CONTENTS ettt ettt s sttt ee bbb ese s et et s s esebasenen ssessesesesnnens Vil
LIST OF FIGURES .ottt b et setenens iX
1. CHAPTER | INTRODUCTION L.ttt ettt eees 1
2. CHAPTER Il RELATED WORKS ...ttt eeen .4
2.7 SIMILAIEY JOIN ottt bbbt 4
2.1.1 Representation of Text in Text databases ... 4
2.1.2 Filter-and-verify Framework for Similarity Search and Similarity Join 7
= Prefix FILEEING .ottt 8
= POSHIONAL FILEEING ..ottt 9
= SUFFIX FILEEIING ettt 10
- Variable-length Prefix Scheme and AJaptoin ..., 11
- High-frequency-queries-based Filter ..., 12
2.2 CLUSEET ANGLYSIS 1ottt bbbt s et s s b s s s 20
2.2.1 Density-based Clustering ALGOrthim ..o 20
= DBSCAN L.t 21
2.2.2 Center-based Clustering ALGOTthM ..o 22
= KEMBANS et 23
2.2.3 Hierarchical-based Clustering ALGOItNM ..o 24
- Divisive Hierarchical-based Clustering Algorithmcccocoeoevivininneeninne 24
- Agglomerative Hierarchical-based Clustering Algorithmcccceeuveuvennee. 25
3. CHAPTER Il PROPOSED METHODocuiiiieiieieiet ettt 38

3.1 Definition of HiIgh-freqUENCY QUETES.......c.viriit et eees 38

viii

3.2 Methods to Find Sets of High-frequency qUeries........cccooet wririiniirniseee s 39

3.2.1 Brute FOIce MethOd ... 39

3.2.2 DBSCAN with Random Core Points (DBRAN)coviueiuriniieieeieieeeieeeeeeeens 42

3.2.3 DBSCAN with Merging Strategy (DBSM) ..o a4

4. CHAPTER IV EXPERIMENT .ttt o 49
4.1 COVErage PEICENTAGEcovviiieiiicite ettt e 51

4.2 Numbers of In-coverage Candidates ...t 54

4.3 Average Number of Candidates per In-coverage QUETY ... eiees 56

5. CHAPTER V CONCLUSION ...ttt 60
REFERENCES ..ttt sheaesesenene s Xli

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

Figure 22:

LIST OF FIGURES

Texts and their representative tokens in example L. 6
A similarity table fOr Do 13
The visualization of the similar and dissimilar parts between texts 14
Visualization of figure 3 for maximum Ad, F)cccoeereeeeeeeeeeee e 15
Visualization of figure 3 for minimum Ad, F)....cccoeeieeeeeeeeeee e 15

The range between upper bound and lower bound with different fig, F) ... 18

The example of the observable clUusters........cccovvrivnnee 20
Example of core points, border points and noise points.........ccccceeerrrrenenee. 22
K-means clustering results with different K. 23
Divisive hierarchical-based clustering example........cccoveevniernnicccce, 25
Initial data points of eXaMPLe 6........ccooiiiiiiciceee 26
Initial proximity matrix of example 6.......ccoviiiieieeeeeeeee 27
Data points of example 6 with 5 clusters..........ccccvviiniiincecee 27
Proximity matrix of example 6 after first update........coovievnnicninicenns 28
Data points of example 6 With 4 cluSters.........cooeivieriicescecee 28
Proximity matrix of example 6 after the second update........ccoccevvivicnnnnee 29
Data points of example 6 with 3 clusters.........occvvcinnicnnicecee 29
Proximity matrix in example 6 after the third updateccccooviiiniccnnes 29
Data points in example 6 with two cluSters ... 30
Proximity matrix in example 6 after the forth update........cccoovviivvicnnnns 30
Final result of @XampPle 6......cccoieiicc e 31

Initial data points of EXaMPLE ..o 31

Figure 23: Initial proximity matrix of @xample 7. 32
Figure 24: Data points of example 7 With 5 cluSters........coovevriiiniiceceecee 32
Figure 25: Proximity matrix of example 7 after first update ..o 33
Figure 26: Data points of example 7 with 4 clusters..........cooiinninnnice 34
Figure 27: Proximity matrix of example 7 after the second update......cccoevviviviiinnes 34
Figure 28: Data points of example 7 with 3 CluSters.......cooeeerrieniccee 35
Figure 29: Proximity matrix in example 7 after the third update ... 35
Figure 30: Data points in example 7 with two ClUSters ... 36
Figure 31: Proximity matrix in example 7 after the forth update......ccccovvvnnininns 36
Figure 32: Final result of EXamMPLE 7 ... 36

Figure 33: Visualizations of text group that brute force method cannot efficiently

handle........covnrnneneececereeenene e e A BRIy e eeeenenenenenenen e oo seenesenenenesensoseneneneneres a1
Figure 34: Similarity tables and similarity between texts in example 8........cccceeeenen. ar
Figure 35: Details of each dataset used in the experiment.........cccovvivnnicnnniccnnnes a9

Figure 36: Coverage percentage of DBLP with 60% related to original high-frequency

queries compare with brute force Method............iiieneens 52
Figure 37: Coverage percentage of DBLP with 60% related to original high-
FTEQUENCY GUETIES ..ttt 53

Figure 38: Coverage percentage of NYTimes with 60% related to original high-

fTEQUENCY QUETIES ..ttt 53

Figure 39: Coverage percentage of Enron with 60% related to original high-

FTEQUENCY QUETIES ..ttt 54

Figure 40: In-coverage candidates of DBLP with 60% related to original high-

FTEQUENCY QUETIES ..ttt 55

Xi

Figure 41: In-coverage candidates of NYTimes with 60% related to original high-

FTEQUENCY QUETIES ..ttt 56

Figure 42: In-coverage candidates of Enron with 60% related to original high-

FTEQUENCY GUETIES ..ttt 56

Figure 43: In-coverage candidates per query percentage of DBLP with 60% related
to original high-freqQUENCY QUETIES ..o 57

Figure 44: In-coverage candidates per query percentage of NYTimes with 60%

related to original high-freqUENCY QUETIESc.oviiiieieieieeee e 58

Figure 45: In-coverage candidates per query percentage of Enron with 60%

related to original high-freqUENCY QUETIESc.cuiuiiiiririiee e 58

CHAPTER |
INTRODUCTION

Similarity join is used to retrieve all similar pairs between two relations in a
database. Texts pairs are considered to be similar if their similarity exceeds the
specified threshold. The similarity between a pair of text is calculated by a similarity
function. Many similarity functions such as Cosine similarity [1] and Jaccard similarity
[1] are used. A brute force method for similarity join is to calculate the similarity
between every pairs of text in the relations, and this takes long time to calculate.
Many researches are done to reduce the time consumption. Filter-and-verify
framework is a more efficient approach for similarity join. It eliminates some
dissimilar pairs by comparing only some part of text and calculates the similarity of
the remaining texts. Filter methods such as prefix filtering [2] are used in this

framework.

Prefix filtering first divides each text string into two disjoint parts: prefix and
suffix. The prefix part is used to evaluate the similar between pairs. If the pair of
strings is considered as dissimilar from their prefixes, it is pruned. An efficient prefix
filtering algorithm is AdaptJoin and AdaptSearch [3] which adaptively choose prefix

length based on the performance of longer prefix compare to the previous one.

However, sometimes a set of queries contains the same patterns of texts.
Prefix filtering, and most of filter method as well, do not take this type of queries in
to account. Specifically, prefix filtering repeats the same filter process for the
repeated queries or similar queries. If there are many such queries in the set, it
consumes too much unnecessary time. [4] addresses the problem of the high-
frequency queries, and proposes an index structure to support this issue called

similarity table. This structure stores pointer of all texts string data according to their

similarity compared with the chosen high-frequency queries. This method can be
applied with prefix filtering and solve the problem efficiently. However, an

appropriate set of high-frequency queries need to be determined first.

An appropriate set of high-frequency queries are the set that covers all, or
almost, of the repeated patterns in a set of queries while maintains the lowest space
usage. Otherwise, when it is applied in high-frequency-queries-based filter, it will
consume too much memory and become impractical. On the other hand, if the set
is too small that is unable to capture the main characteristic of the query set, the
time consumption of the filter method will be too high to accept. According to the
constraint, the method to find the set of high-frequency queries should be designed
in aware of both time and space complexity. To do this efficiency, the queries
should be grouped together to capture all of their patterns first. The state-of-the-art

method used to find the nature clusters of the dataset is cluster analysis [5].

Cluster analysis is an unsupervised method used in data mining, pattern
recognition and other applications. This method aims to group data together based
on the closeness between each data. Among three main types of cluster analysis are
center based, hierarchical based and density based, the last one seem to be the
best to applied in our problem. DBSCAN [6] is used to find sets of clusters in query
set with the representative points. DBRAN randomly picks one core point from each
cluster as a high-frequency query. However, these core points may not capture all
main characteristics of the query set. The merging strategy is done to all core points
to delete the redundancy as well as preserve the main characteristics of obtained
set. The method of DBSCAN using merging strategy to find the sets of high-frequency

queries is called DBSM.

DBSM and DBRAN are applied to find the high-frequency queries from the
same query set. Then both sets are used in high-frequency-queries-based filter and
the results are compared. The sets obtained from both methods are nearly the same
with the low mutated query sets while DBSM is better if the query sets are highly

mutated.

CHAPTER Il

RELATED WORKS

This chapter describes the related works which contains two main parts:

similarity join and cluster analysis.

2.1 Similarity Join

Given two text datasets D; and D, , a similarity function f and a similarity

threshold t, the similarity join SJ (D4, D,) is defined as:

SJ (Dl, Dz) = {(dl, dg)l d1 € D1 /\d2 € D2 A f (dl, dz) > t}

The brute force method to find SJ (D4, D,), which is to calculate f (dy, dy) and
compare with t for every possible pairs (di, d,) in D; x D, , consumes too much time.
Several methods are proposed to improve the efficiency of the algorithm for

similarity join based on two representations of texts, which are described next.

2.1.1 Representation of Text in Text Databases

Texts can be represented in two different viewpoints. The first viewpoint is as
the sequence of characters, called character-based viewpoint [2]. Another viewpoint

is to map and consider each of them as a token, called token-based viewpoint [2].

- Character-based Viewpoint

Each text record in a dataset is treated as a text string. For instance,
given a text ‘System analysis needs various applications and software
process’, it is represent as the sequence of ‘S’, ‘y’, ‘s’, ‘t’, ‘e’, ‘m’, * 7, and
so on. To count the number of overlapped strings between these two texts,

we need to check whether each string pair contains the same character

sequences or not. This procedure requires at least the length of the longer

string in the pair. For example, to check whether the string “system” and
“systematic” in the second text are overlapped or not, we compare ‘s’ with
s’y with ‘y’, ‘s’ with ‘s’ and so on until found they are not the same
string. We need to do this at least m times if m is the length of the longer

text.

On the other hand, if two texts are mapped into a set of tokens
instead, each string becomes an integer, which needs only one comparison to
check the equality. To reduce the time of each comparison, tokens are used
instead of texts as they require less time to compare. This is how texts are

represented in token based viewpoint [2].

- Token-based Viewpoint

For each record d in a dataset D, d contains multiple text strings which
can be mapped to tokens. These tokens are further used all along the
computation instead of the original text strings. Example of this

transformation is illustrated in example 1.

Example 1: Given a dataset D

D ={ di: {system, analysis, application, software, process},

dy: {computer, system, organization, processory},

ds: {image, processing, computer, vision, application}}

Each text string can be mapped into token as figure 1

Text Token
System b
Analysis t
Application G
Software b
[process, processor, processing ts
Computer t
Organization t
Image t
Vision b

Figure 1: Texts and their representative tokens in example 1

D is transformed into the new dataset D’

D} = { {tly t2’ t3’ t41 t5}!

{ty, ts, ts, t7},

{t31 t51 tGl t81 tg}}

String matching using character-based similarity considers processor,
process and processing to be similar but not the same. However, they are of
the same meaning, and could be considered the same in text queries. Token-

based method overcomes this problem by mapping them into one token.

Although the token-based method is used, the time consumption is
still high in practice. Filter and verify is one of the well-known framework to

improve the performance.

2.1.2 Filter-and-verify Framework for Similarity Search and Similarity Join

To reduce the time for similarity join by brute-force method, filter-
and-verify framework first filters out non candidates, which are text data
which cannot possibly be answers of the query, and then verifies the
remaining candidates for the answers. In the verification step, the similarity
between the query and each candidate is calculated based on the similarity
function, and only the candidate whose similarity exceeds the given

threshold is returned as an answer.

Basically, what is done in the verification step is the same as the
brute-force method. Thus, the performance of any similarity join in filter-
and-verify framework depends on two factors. First, for each text data,
filtering should need less time than verifying. Second, the filter step should
produce only small number of candidates. The trade-off is necessary to

minimize the filter time while maximizing the filter power.

Many methods for filtering are proposed. Some filtering methods
minimize the filter time by examining only some parts of the text. Prefix
filtering [2], positional filtering [7] and suffix filtering [7] are based on this idea.
AdaptSearch and AdaptJoin [3] trade off the filter time and the filter power
by increasing the parts of text data to be examined as long as it can increase
the filter power. Another approach for filtering is to organize text data
according to the similarity between the text data and a chosen text. For this
approach, the filter power is high when the query is similar to the chosen
text. For this reason, text which frequently appears in queries is chosen to
organize all data. High-frequency-query based filter is an example of this

approach. Next, these methods are further described.

- Prefix Filtering

Prefix filtering is a filter method which examines only the prefix of
each text pair and finds out whether number of the common tokens
between two texts exceeds the specific value or not before determines to
keep or prune. If the record r contains s tokens, the value of needed overlap
0 is calculated from t from similarity function f, the | prefix is the first s — o +l
tokens of r. The pair (ry, y) is pruned if the size of intersection between them

is less than I. The following example illustrates the prefix filtering steps.

Example 2: Consider dataset D’ in Example 1

D’ ={ di: {ty, to, ts, ty, ts},

dz: {ty, ta, 85, t7},

ds: {ts, ts, &6, ts, to}}
and a query q = {t, t, t, t7, ts} with the specified threshold 0.8 using cosine
similarity as f and 2-prefix. First, the least overlap value to exceed threshold
t is calculated, as shown below.

d;Ngq
\d;lq]

v
~

A%

diNgqg

0.8*,/5%(d]]
0; = [0.8*/5*d|

Next, it is necessary to calculate o;and 2-prefix of di, called pd;, as well as
the least overlap value of q that exceeds t, called o4, and 2-prefix of q,

called pd,.
01 =4, pdy: {ty, t, ts}

0, = 4, pdy: {ty, t, te}

03 =4, pds: {t5, ts, te}

Oq = 41 pq {tl’ t2; tﬁ}
After that, the number of common tokens, i.e. overlap part, between pq and

each pd; are computed, and compared with | = 2.
|pds N pq| =22 2, pd, is a candidate of q.
|pd, N pa | = 3 2 2, pd, is a candidate of q.
| pds N pg | = 1< 2, pd; is not a candidate of q.
Finally, the cosine similarity of each candidate compare to q is calculated.
f(d;,9) =04 <08
f(d,, q) = 0.89 = 0.8
So, only d,is the answer of q.
- Positional Filtering

For very long text data, other filter method such as positional filtering
and suffix filtering is used along with prefix filtering. Positional filtering
considers the location of each token to estimate the highest possible
similarity with another text string. The following example illustrates the

positional filtering steps.

10

Example 3: Consider the dataset D,

Dy, ={ di: {ty, tp, t3, t4, ts},

da: {ts, to, ts, 17},

ds: {ts, ts, t6, ts, to}}
and a query q = {t,, t3, t, t;, ts} with the specified threshold 0.8 using cosine
similarity. First, find the least overlap value o that makes the cosine
similarity exceeds the threshold t, using the same calculation as in example

2, we have

0 = [0.8*,/5%(d]]]|

Therefore, 01, 0,, 03 and 04 are 4. If the prefix filtering is used, d, would
be one of the candidates as pdy: {ti, ta, ts} and pq: {tz, ts, ts} (Assuming 2-
prefix is used) since |pd, N pg| = 2, d; is a candidate of q. However, if the
positional filtering is used, the maximum overlap between two text strings
are considered as the sum of their prefix overlap and the number of
remaining tokens of the shorter texts. That is, the maximum overlap is |pd, N
pgl + min(Z, 2) = 2+1 = 3. As we need at least 4 overlap to satisfy 0.8

similarity threshold, d, cannot be the answer and will be pruned.

- Suffix Filtering

Although the positional filtering can prune some candidates that prefix
filtering cannot, many non-related data still pass the filter. Suffix filtering
improves the filter performance by also using suffix of each string to filter.
The suffix is further divided into sub-prefix and sub-suffix and sub-positional
filtering is used to prune more candidates. This procedure can be recursively
applied until the remaining candidate size is small enough. Obviously, the

more the suffix filtering is recursively applied, the more candidates can be

11

pruned while the longer the filter step takes. Therefore, trade-off between

the cost of filter and verify must be considered for the overall performance.

Ppjoin+ [7] applies prefix filtering, positional filtering and suffix filtering,
in this order. First the prefix filtering is applied, then, the positional filtering is
applied with survived candidates, and finally the suffix filtering is then used.
This method allows user to manually specify the number of times that suffix
filtering is recursively called. Thus, the users can trade off the time and the

number of candidates pruned.

- Variable-length Prefix Scheme and AdaptJoin

All of the mentioned filter method used ‘fixed-length prefix scheme’
in which the same prefix length is used for all strings. Specifically, the prefix
length is fixed for all text data. The longer prefix length leads to more pruning
power but also requires more time. However, there is no optimal prefix
length for every string. J Wang, G. Li and J. Feng [3] suggests an efficient
solution to this issue by adaptively choosing the length of prefix based on the
information of estimated filter of prefix of length | in comparison with prefix
of length I + 1. If the (I + 1) prefix can eliminate enough strings to outweigh its
filter cost, then the prefix length used in filtering is increased. This filter
method is called AdaptJoin.

Although prefix filtering is an efficient method, it still repeats the same
computation when the same query is repeated or similar queries appear. This
type of queries, which is called high-frequency queries, need to be taken into
account. Next, the high-frequency-queries-based filter [4], which is proposed

to deal with this type of queries, is described.

12

- High-frequency-queries-based Filter

In some situations, the same or similar texts are frequently queried in
the database. For example, after April 2015 Nepal earthquake [8], the search
for words ‘Nepal’, ‘earthquake’ and ‘help Nepal’ dramatically increases
compared with the previously recorded data by Google trends explorer [9].
These groups of words are ‘high-frequency queries’. Therefore, a set high-
frequency query in the query set Q is defined as a query such that many

other queries in the same set are similar with it.

If such query texts or the similar query texts are repeated often in a
period of time, prefix filtering repeatedly processes the same or similar steps
for every query, which is not efficient. [4] takes this into account and
proposes an index structure called similarity table. This table keeps pointers
to all texts in the data set sorted according to the similarity with the chosen

high-frequency query.

O Similarity Table

When high-frequency queries are chosen, a similarity table is
created based on each of them. Each table stores the pointers to all
records in the dataset sorted by the similarity between each record
and the corresponding high-frequency query. For the high-frequency
query F of dataset D, the row i of s rows similarity table STg stores the
pointers to the data records which are similar to F, with the similarity
value between i/s and (i+1)/s. Therefore, for each row STg[i] of STe:

STe[i] = {p | p is the pointer to r € D, i/s < f(r,F) < (i+1)/s } .

The following example illustrates the similarity table.

13

Example 4: Consider a dataset Ds

D3 = { dl: {t11 t21 t31 t41 t5}1
do: {ty, to, t6, t7},
ds: {to, t3, ta},

dy: {ts, ty, ts, tg, to} }
Suppose F = {t;, t3, t4, ts, to} and f is jaccard similarity function, where
f(dy, dp) = %. We calculate f(di, F) forall 1 < i < 4.
f(dy, F) = 3/(10-3) = 0.43
f(d,, F) = 2/(9-2) =0.29
f(ds,F) = 2/(8-2) =0.33
f(ds, F) = 4/(10-4) = 0.67

Next, the similarity table with 4 rows is constructed, p; denotes the

pointer to d;:

Jaccard similarity
Row Records
(0.0-1.0]

0 (0.0, 0.25] r

1 (0.25, 0.5] dy, dp, ds

2 (0.5, 0.75] ds

3 (0.75, 1.0] -

Figure 2: A similarity table for Ds

The similarity between a candidate text data and the query can be
estimated from the similarity between the query and the high-frequency
query and the similarity between the text data and the high-frequency query.
That means, any candidate answers of a query can be in only some specific

rows of the similarity table. The high-frequency-queries-based filter method

14

filters out some non-related candidates based on this idea. Given a high-
frequency query F and a new query g with threshold t, this filter method
finds the upper and the lower bounds of the similarity between gq and any

text data d in the dataset from the known similarity between F and d.

Figure 3: The visualization of the similar and dissimilar parts between texts

Consider figure 3, five box patterns indicate different kinds of similarity of

each text record.

- The black area . indicates the sharing tokens that lead to the similarity
value of three text records d, F and q.

- The white area D indicates tokens that are in F but not in g. This lead
to the dissimilarity between F and q.

- The large-grid-pattern area E indicates the area that can be similar with
both F and q.

- The diagonal-brick-pattern area @ indicates the sharing tokens between
d and g but not in F.

- The checker-pattern area E indicates the tokens in d that are not in

both F and q.

When q is queried, f(q, F) is calculated. Only the black areas of F and q,
the white area and the diagonal-brick-pattern area are known. All of the areas

in d are different according to their similarity with F. The unknown similarity

15

area can be estimated from f(qg, F). In the case, we want to find two values:
the highest and lowest value of f(d, F) that f(q, d) still exceeds t. Two different

scenarios are needed to be considered.

1. Maximum f(d, F)
This scenario happens when f(g, F) < f(d, F) and the E area

becomes . in figure 3 as shown in figure 4

o

Figure 4: Visualization of figure 3 for maximum f(d, F)

In this case, the similarity between d and q is the sum of . area
and E in d. That is, if f(g, F) < t. We need at least t - f(q, F) of @
area. In the similarity table, this is the row that covers the similarity value
1-(t—1(q, F)). So, the upper bound or the highest possible value of f(d,

F) can be calculated as shown below.

Upper bound: f(d, F) 1-(t—f(a, F)

flq, F) +(1-1)
2. Minimum f(d, F)

This scenario happens when all tokens in q but not in F are in d. This

means most of f(d,) results from the @ area. This scenario is shown in

figure 5.

16

Figure 5: Visualization of figure 3 for minimum f(d, F).

We want the sum of the similarity of . and @ areas of d to
exceed t. That is, f(d, F) + (1- f(q, F)) > t If we rearrange the equation, we
have the lower bound or the lowest possible value of f(d, F) can be

calculated as shown below.

Lower bound: f(d, F) t—1+1(q, F)

f(a, F) - (1-1)

High-frequency-queries-based filter ensures that for the new query q,
the candidates are in the rows in the range [f(q, F) — (1 —t), f(q, F) + (1 —t)] of
the similarity table STg. Therefore, for a high-frequency query F and a text
query g with threshold t, the candidates obtained from high-frequency-

queries-based filter, denoted by HFQB(F, q), is defined as follows.

HFQB(F, q) = {d | d e STk [i], for all i such that f(g, F) — (1 -)*s <i <f(q, F) + (1 — O)*s, s

is the size of STg}

Assume that the new query g is queried with threshold t, high-

frequency-queries-based filter would be processed as follows:

- For each F in the high-frequency query set, compute f(q, F)
- Find F that f(qg, F) is highest
- Compute f(q, F) — (1-t) and f(q, F) + (1- t).
- For each row i € [|s*f(g, F)— (1 - 9|, |s*flg,) + (1 - 1)|]
O For each text record d in row i, add d as to the candidate set of q.
- For each text record d in the candidate set of g, compute the real f(d,).
If f(d, g) > t, add d to the set of answer of q.

- Return the answer set.

17

Without loss of generality, the filter step of one similarity table is shown in

Example 5.

Example 5: Suppose the query q = {ty, 3, 14, ts, t10} is queried with threshold =
0.95 with the similarity table shown in figure 2 with F = {ty, t3, ty, ts, to}. Since
STk is created based on jaccard similarity, f(q, F) is computed using jaccard
similarity. Therefore, f(q, F) = 4/10-4) = 0.67. The lower bound is 4%0.67-(1-
0.95)) = 2.52 which is row 2. The upper bound is 4%0.67+(1-0.95)) = 2.88
which is also row 2. The candidate for q is only dg: {t3, ts, ts, tg, to}. Then dg is

verified by calculate f(q, dy) = 3-(10-3) = 0.43. This means d, is not the answer
of q.

The query g in Example 5 is not quite similar with F but the threshold
t is high. Therefore the answer range is restricted at only one row. In practical,
the query q and F can be dissimilar, says f(g, F) < 0.5, and the threshold can
be low. Since the equation to find the upper bound and the lower bound
from the similarity table is f(g, F) + (1- t), we consider two parameters

separately:

- The Similarity Value of the Query Text and the High-frequency Query f(q,
F)

The row i that covers f(q, F) of STg is the row that always contains the
candidates. If the threshold t = 1, this row is both the upper and the lower
bound. Otherwise, the answer range spreads up s*(1-t) rows above and below
from this row as shown in figure 6. Therefore, if f(q, F) is higher, the upper
bound may reaches the topmost row, which means that the number of rows

that can contain the answers is lower.

2(1-t)

18

<—— f(q, F) + (1-1)

7 < 2(1t)

/

f(a, F)
. —

S——f(a. F)- (1Y

Figure 6: The range between upper bound and lower bound with different fig, F)

It is possible that if f(g, F) is lower, the lower bound can reaches the
bottom row. This scenario seems similar to the previous scenario and should
result in better performance of the filter as the number of rows to be
checked is fewer. However, most of the records in the dataset are not and
should not be similar with the high-frequency queries. The reason is that if
most records are similar with F, STe may not be able to filter out the non-
related candidates for the given query if the query is similar with F which is
unreasonable. Therefore, most of the similarity tables contain a huge number

of pointers at the lower rows. Hence, the higher f(q, F) is more preferable.

Although the effect of f(q, F) to the performance of high-frequency-
queries-based filter is significant, the similarity threshold t can have more

impact. This is described in the next section.

= Similarity Threshold t

As mentioned earlier, the span-out of the answer rows is equal to
2*(1-t). If the value of t is lower, more rows are needed to be verified. If f(q,
F) = 0.9 but the similarity threshold is very low, says 0.2, the lower bound =
0.1 and the upper bound is 1 (The exact value is 1.7, but the similarity value

is at most 1.0). This means almost all dataset records are the candidates

19

although g and F are very similar. Normally, the similarity threshold is at least
0.5 in most similarity join and similarity search researches.

Both f(g, F) and the similarity threshold t have crucial effect on the
performance of high-frequency-queries-based filter. Since the similarity
threshold t is specified by users, no change can be done. On the other hand,
the improvement regarding f(q, F) is possible. If the set of high-frequency
queries can be chosen so that for every new query q, there is at least an F in
the set that q and F is similar, f(q, F) would be high for every new query q
and the filter power can be improved. Hence, appropriate set of high-
frequency queries are necessary to create the efficient similarity table for
similarity join and search. To find such the set, we need to have the set of
previous queries to analyze its characteristics. The query set may or may not
contain high-frequency queries and this is undesirable. Furthermore, if there
are any high-frequency queries, their number remains unknown until the set is
analyzed with some method.

This thesis focuses on the problem to find an appropriate set of high-
frequency queries. Based on high-frequency-queries-based filter method, the
properties of the desired set of high-frequency queries can be described as
follows.

a. For most of the query in the query set, at least one of the members of
this set must be similar with it.

b. Each member should not similar with each other because it can lead to
the redundancy in the set.

c. The set should large enough to pass the a. constraint but not too large to

violate the b. constraint.

20

Due to three constraints of the appropriate set of high-frequency
queries, the information about the group of queries in the query set is
needed. Queries that are similar should be grouped together and find the
representative texts of the group to be the high-frequency queries. The tasks

to find groups in the dataset are called cluster analysis.
2.2 Cluster Analysis

Cluster analysis [5] is an unsupervised task to find groups of data in the
dataset. It is used in many fields such as data mining, machine learning and pattern
recognition. Clustering algorithms, which are used in cluster analysis, has three main

types: center-based, hierarchical-based and density-based.
2.2.1 Density-based Clustering Algorithm

Density-based clustering groups the data in the high density areas

separated by lower density areas. Consider figure 7 as the examples:

(©) (d)

Figure 7: The example of the observable clusters

21

In figure 7, clusters from both (a) and (b) are observable as shown
inside the dash lines in (c) and (d) respectively. This is because the natural
clusters are the areas that the points are compactly located. Although there
are some points that are located away from other points, they are not
classified as clusters. This is one strategy to define ‘density’ in density-based
cluster analysis. The main advantage of this definition is that clusters with the
non-globular or non-structure shape can be handled efficiently. The method

which is based on this density definition is DBSCAN.

- DBSCAN

DBSCAN [6] is the density-based clustering algorithm that finds
the clusters by eliminates some points in the low density areas
while group those in higher density areas together. Unlike another
clustering algorithm, DBSCAN major advantage is that it can find
clusters correctly although the data are of many noise points.
Groups of points are classified as the clusters if there are enough
numbers of points that located near each other. The minimum
number of points minpt and the radius of clusters eps are two
parameters which need to be chosen for DBSCAN. Three types of
data points separated by DBSCAN are core point, border point and
noise point:

® Core points are the points that contains at least than minpt

points in distance eps.

® Border points are points within eps distance from one of
core points but not core points.

® Noise points are other points which are neither core nor

border points.

222

22

Figure 8: Example of core points, border points and noise points

Let minpt = 4 and eps be the radius of clusters. In figure 8,
diamond-shaped objects symbolize core points, while small-
white-circles represent border points and cross-shaped objects

represent the noise points.

Although DBSCAN is firstly proposed to support spatial
database [6], it can be applied with another applications
efficiently. Similarity functions can also be used instead of
distance function in order to define the relationship between
data, as state by [10]. In this paper, similarity function for similarity
join and search is used. Regardless of the functions used, the core
points of the clusters are also of the same meaning. That is, they
are the points with many points located not far from, in another
word similar to, them. If the DBSCAN is applied with similarity join
queries set, the appropriate set of high-frequency queries should
be among the core points. Based on this assumption, the

algorithm to find the high-frequency queries set from the query

set is proposed and described next chapter.

Center-based clustering algorithm

23

This type of clustering algorithms is used to find clusters such that
each data point belongs to the cluster whose center is nearest to the
point. K-means algorithm is an example of center-based clustering.

= K-means algorithm [5]

K-means chooses centers of all clusters randomly, assigns
every data in a cluster with the closest center and re-computes
the centers until stable. Given a dataset D, the similarity function
(or distance function) f and a number k Cluster analysis by K-
means can be done by the following steps:

1) Pick k data points as the center (can be done by randomly or

another better procedure).

2) For each of the rest data d and each center ¢, compute f(c, d)

and assign d in the same group which f(c, d) is closest.

3) For each cluster obtained in 2), recomputed the new center c.

4) Repeat 2) and 3) until the center not change.

o ° o o

° o

x oy X °
) I
%0 0 °,

Figure 9: K-means clustering results with different k

One main disadvantage of K-means algorithm is that the number of
clusters is needed. Consider figure 9, the different value of k leads to different

clusters retrieved from the algorithm. [11] modified K-means by using singular

24

vector decomposition algorithm to choose the value of k before apply the
cluster analysis. Another disadvantage of K-means is that the result depends
mostly on the initial location of the center-point. Many researches such as

[12] and [13] provide the solution to this issue.

K-means can be applied to find the appropriate set of high-frequency
queries by using the best set of ¢ as the high-frequency queries set. However,
due to the disadvantage of center initial location and the unknown variable k,

it cannot be used immediately.
2.2.3 Hierarchical-based Clustering Algorithm

Hierarchical-based clustering algorithm groups the data together by
their hierarchical relationship. Specifically, the data points which are located
close together have stronger relationship and more likely to be in the same
clusters than the data points located further. Therefore, if a cluster is needed
to be split, the close points will be in the same cluster while the further
points located in another cluster. Similarly, if two clusters are needed to be
merged, there are two types of this clustering algorithm. The first one, which
is based on top-down strategy, is divisive hierarchical-based clustering

algorithm.

= Divisive Hierarchical-based Clustering Algorithm
This method starts with one cluster of all data in the dataset.
Then try to split a cluster into two clusters. Then choose one of
these two clusters and further split it into another two clusters, to
produce three clusters. This procedure is repeated until each data

point became a single cluster of itself.

25

The performance of this method depends on two factors. To
determine which cluster is the most appropriate to split and how
to split it. Mostly, a cluster is chosen to be split first if the
distribution of its data points is the least compact. After the
cluster is chosen to be spilt, Flat algorithm [14] is applied to
determine the best way to divide. Figure 10 shows the example of

divisive hierarchical based clustering algorithm.

.
.
N -
JAN A JANGESSSSEEES
y
A y
\
A 4 A
VANAN A YAYS:
IA VAN
A VAN
A
A . ¥ JAN
A A A AL
A SENRVAN
————— \\\ PN
¥is AN NS _ ’ N
4 N AT P = e RS LN IA
7 v AN INRTNERAY,
I/ 1 \, \\ ' 1 \ ~ = TN
i ! A . \ YA AP N N
' i A \ AN [N P [1
\ oy \ ’ X I [P N N !
\ 7 [\ | NG O \ /
[N / oy \ L DRV AR Vi | AN
2 N e 7 i RS -~ " N
\‘ ——— ‘I H s \ ‘\ ’ 2 AY
\ = ; PEIN ASYON
N) i W IS 1
N A 5 IA ot A - M=
AN N ’ i 1 SN
S PRSSA = VA
B ~ & — > A \ ’

Figure 10: Divisive hierarchical-based clustering example

Agglomerative Hierarchical-based Clustering Algorithm

In contrast to divisive hierarchical-based clustering algorithms,
agglomerative method starts with each single data point and tries
to group it with the nearest (or most similar) point to form a
cluster. This procedure is repeated until all becomes only one
cluster. Many techniques are applied to choose the most
appropriate pair to be merged.

Proximity matrix is the matrix that stores the information about

the similarity or distance between the clusters. The values in the

26

matrix are used to determine the next pair to be merged. After
each merge occurs, the value inside each row and column
corresponds to the clusters are needed to be recomputed based
on the matrices to measure the cluster distance. Some of the
widely-used methods are described:

O MIN or Single Link Method [5]

Suppose there are k clusters, and the distance between
two clusters is defined by the minimum distance between the
data points between the two clusters. Two clusters that have
the lowest distance between them should be merged together
and the distance between this new cluster and another k-2

clusters are needed to be recomputed.

Example 6: Suppose we have six points in 2-dimensional
space: (0.7, 2.7), (1.8, 3.2), (2.6, 0.8), (1.5, 2.3), (3.0, 1.2), (2.2,
1.5). The scatter plot of these points is shown below in figure
11. If the single link method for agglomerative hierarchical-
based clustering is used to group the data and the distance is
measured by Euclidean distance. First the proximity matrix is

constructed, shown in figure 12.

27

3.5

2.5

1.5 A 2

Figure 11: Initial data points of example 6

(0.7,2.7) | (1.8,3.2) | (2.6,0.8) | (1.5,2.3) | (3.0, 1.2) | (2.2, 1.5)
0.7, 2.7) 0 1.21 2.69 0.89 2.75 1.92
(1.8,3.2) | 1.21 0 2.53 0.95 2.33 1.75
(2.6,0.8) | 2.69 2.53 0 1.86 0.57 0.81
(1.5,23) | 0.89 0.95 1.86 0 1.86 1.06
(3.0,12) | 275 2.33 0.57 1.86 0 0.85
(2.2, 1.5) 1.92 1.75 0.81 1.06 0.85 0

Figure 12: Initial proximity matrix of example 6

The minimum distance value is 0.57 which is between (2.6,
0.8) and (3.0, 1.2). Therefore these two points are merged
into same clusters. The merging result is shown in figure

13

3.5 1

2.5 -

1.5 -

Figure 13: Data points of example 6 with 5 clusters

28

Now, to update the value in the proximity matrix, first the

columns and rows related to these two points are merged

into one column and row respectively. The value in each

new cell is selected from the minimum value between

two cells regards these two points. For example, the

distance between (2.6, 0.8), (3.0, 1.2) and (0.7, 2.7) is 2.69

as 2.69 < 2.75. The proximity matrix is shown in figure 14.

(0.7,2.7) | (1.8,3.2) | (2.6,0.8),(3.0,1.2) | (1.5,2.3) | (2.2,1.5)
(0.7,2.7) 0 1.21 2.69 0.89 1.92
(1.8, 3.2) 1.21 0 2.33 0.95 1.75
(2.6, 0.8), 2.69 2.33 0 1.86 0.81
(3.0, 1.2)
(1.5, 2.3) 0.89 0.95 1.86 0 1.06
(2.2,1.5) 1.92 1.75 0.81 1.06 0

Figure 14: Proximity matrix of example 6 after first update

Next, the minimum value is 0.81, which is the distance

between {(2.6, 0.8), (3.0, 1.2)} and (2.2, 1.5). The point (2.2,

29

1.5) is merged with the cluster as shown in figure 15 and

the updated proximity matrix is shown in figure 16.

3.5 1

3 -

2.5 A

2

1.5 A

1 -

0.5

0

0

1 2 3

Figure 15: Data points of example 6 with 4 clusters

(0.7,2.7) | (1.8,3.2) | (2.6, 0.8), (3.0, 1.2), (2.2, 1.5) | (1.5, 2.3)
(0.7, 2.7) 0 121 1.92 0.89
(1.8, 3.2) 1.21 0 1.75 0.95
(2.6, 0.8), 1.92 1.75 0 1.06
(3.0, 1.2),
(2.2, 1.5)
(1.5, 2.3) 0.89 0.95 1.06 0
Figure 16: Proximity matrix of example 6 after the second update

After that, the minimum distance in the proximity matrix is

0.89. The points (0.7, 2.7) and (1.5, 2.3) are merged to

create a new cluster. Figure 17 shows the 3-cluster result

and the corresponding updated proximity matrix is shown

in figure 18.

30

3.5

, .
N
I/ N
.
! \
1.5 - 7 SN .
. 1 -7 S
' \
\

Figure 17: Data points of example 6 with 3 clusters

(0.7, 2.7),(1.5,2.3) | (1.8,3.2) | (2.6,0.8),(3.0,1.2), (2.2, 1.5)
(0.7, 2.7) 0 0.95 1.06
(1.5, 2.3)
(1.8, 3.2) 0.95 0 1.75
(2.6, 0.8), 1.06 1.75 0
(3.0, 1.2),
(2.2,1.5)

Figure 18: Proximity matrix in example 6 after the third update

The minimum value in the proximity matrix is 0.95. The
point (1.8, 3.2) is merged with the cluster {(0.7, 2.7), (1.5,
2.3)}. The results and proximity matrix are shown in figure

19 and 20 respectively.

2.5

0.5 -

Figure 19: Data points in example 6 with two clusters

(0.7, 2.7), (1.5, 2.3) , (1.8,

(2.6, 0.8), (3.0, 1.2), (2.2, 1.5)

3.2)
(0.7, 2.7) 0 0.95
(1.5, 2.3),
(1.8, 3.2)
(2.6, 0.8), 0.95 0
(3.0, 1.2),
(2.2,1.5)

31

Figure 20: Proximity matrix in example 6 after the forth update

Finally, two clusters are merged into one cluster as in

figure 21.

32

2.5 -

\ N
\ s AN
\ / AN
\ D Y
1.5 A . @ SR
. \ f .- RNRY
\ - AR
N I . Wy
l v
N '

0.5 -

Figure 21: Final result of example 6

O MAX or Complete Link Method [5]

In contrast to the single link method, the distance
between two clusters is defined by the maximum distance
between the data points between the two clusters. The
reason behind this is that sometimes the single link
method merges the long clusters which the nearest points
are close but the furthest points distance is very high.
Consider the dataset in Example 6.

Example 7: Suppose we have six points in 2-dimensional
space: (0.7, 2.7), (1.8, 3.2), (2.6, 0.8), (1.5, 2.3), (3.0, 1.2), (2.2,
1.5). The scatter plot of these points is shown below in
figure 22. If the complete link method for agglomerative
hierarchical-based clustering is used to group the data and
the distance is measured by Euclidean distance. First the

proximity matrix is constructed as shown in figure 23.

33

3.5 -
*
3 -
*
2.5 A
2 -
1.5 2
*
1 -
*
0.5 A
O T T T 1
0 1 2 3 4
Figure 22: Initial data points of example 7
0.7,27) | (1.8,3.2) | (2.6,0.8) | (1.5,2.3) | (3.0,1.2) | (2.2, 1.5)
(0.7, 2.7) 0 1.21 2.69 0.89 2.75 1.92
(1.8, 3.2) 1.21 0 2.53 0.95 2.33 1.75
(2.6, 0.8) 2.69 2.53 0 1.86 0.57 0.81
(1.5, 2.3) 0.89 0.95 1.86 0 1.86 1.06
(3.0, 1.2) 2.75 235 0.57 1.86 0 0.85
(2.2, 1.5) 1.92 1.75 0.81 1.06 0.85 0

Figure 23: Initial proximity matrix of example 7

The minimum distance value is 0.57 which is between (2.6,

0.8) and (3.0, 1.2).Therefore these two points are merged

into same clusters as in figure 24.

3.5 -

1.5 -

0.5 -

Figure 24: Data points of example 7 with 5 clusters

34

Now, to update the value in the proximity matrix, first the

columns and rows related to these two points are merged

into one column and row respectively. The value in each

new cell is selected from the maximum value between

two cells regards these two points. For example, the

distance between (2.6, 0.8), (3.0, 1.2) and (0.7, 2.7) is 2.75

as 2.69 < 2.75. The proximity matrix after this step is

shown in figure 25.

(0.7,27) |(1.8,3.2) | (26,0.8),(3.0,1.2) | (1.5,23) | (2.2, 1.5
(0.7, 2.7) 0 1.21 2.75 0.89 1.92
(1.8, 3.2) 1.21 0 2.53 0.95 1.75
(2.6, 0.8), 2.75 2.53 0 1.86 0.85
(3.0, 1.2)
(1.5, 2.3) 0.89 0.95 1.86 0 1.06
(2.2,1.5) 1.92 1.75 0.85 1.06 0

Figure 25: Proximity matrix of example 7 after first update

35

Next, the minimum value is 0.85, which is the distance
between {(2.6, 0.8), (3.0, 1.2)} and (2.2, 1.5). The point (2.2,
1.5) is merged with the cluster as in figure 26 and the

proximity matrix is updated in figure 27.

35 -
3 -
25 -
2 - e
15 - 0
1

0.5 -

O T T T 1
0 1 2 3 4

Figure 26: Data points of example 7 with 4 clusters

(0.7,2.7) | (1.8,3.2) | (26,0.8),(3.0, 1.2), (2.2, 1.5) | (1.5, 2.3)
0.7, 2.7) 0 1.21 2.75 0.89
(1.8,3.2) 1.21 0 2.53 0.95
(2.6, 0.8), 2.75 2.53 0 1.86
(3.0, 1.2),
(2.2, 1.5)
(1.5, 2.3) 0.89 0.95 1.86 0

Figure 27: Proximity matrix of example 7 after the second update
After that, the minimum distance in the proximity matrix is
0.89. The points (0.7, 2.7) and (1.5, 2.3) are merged to
create a new cluster. Figure 28 and 29 show the data

point clusters and the proximity matrix respectively.

3.5

2.5 -

1.5 A

0.5 -

Figure 28: Data points of example 7 with 3 clusters

36

(0.7, 2.7),(1.5,2.3) | (1.8,3.2) | (26,0.8), (3.0, 1.2), (2.2, 1.5)
(0.7, 2.7) 0 2 2.75
(1.5, 2.3)
(1.8, 3.2) 1.21 0 1.75
(2.6, 0.8), 2.75 1.75 0
(3.0, 1.2),
(2.2, 1.5)

Figure 29: Proximity matrix in example 7 after the third update

The minimum value in the proximity matrix is 1.21. The

point (1.8, 3.2) is merged with the cluster {(0.7, 2.7), (1.5,

2.3)1.The result is shown in figure 30 while the updated

proximity matrix is in figure 31.

35 - s

2.5

0.5 A

Figure 30: Data points in example 7 with two clusters

37

(0.7,2.7),(1.5,2.3), (1.8, 3.2)

(2.6, 0.8), (3.0, 1.2), (2.2, 1.5)

(0.7, 2.7),
(1.5, 2.3),
(1.8, 3.2)

0

2.75

(2.6, 0.8),
(3.0, 1.2),
(2.2,1.5)

2.75

Figure 31: Proximity matrix in example 7 after the forth update

Finally, two clusters are merged into one cluster as in

figure 32.

1.5 -
1 .
0.5 -

3.5 - /¢;:=:::::::: -

%
//,
S
3 A s
147 =~<
7 ~<
i N
S .
1A N
. T I \
RN G
VY o
N S~ L
2 N S
N >
LN -
\ eeioo-

0 T

Figure 32: Final result of example 7

38

In this example, the order which the points are merged
is the same for both single link and complete link but the
value in the proximity matrix is different. There is some
situations that this different leads to the different order or
merging since the criteria to select the next pair to merge

depends on the minimum value.

Hierarchical-based clustering method is not appropriate to find
the set of high-frequency queries as they are not in the hierarchy
structure. However, the idea of merging each data can be applied
when a pair of chosen high-frequency queries is similar. The distance
function can be changed into the similarity function and the idea to
merge the minimum distance pair can be changed into the most
similar pair. However, this method forces us to merge until only one
cluster is found. Therefore, some modification is needed as many

high-frequency queries may contained in one query set.

CHAPTER Il

PROPOSED METHOD

This thesis proposes methods to find a set of high-frequency queries which
can be used to build similarity tables as an index structure for high-frequency-
queries-based filtering. High-frequency queries can be obtained by examining the
query history. Given a set of queries, it is needed to find queries which appear
frequently, or are similar to many queries from this set. First, the concept of high-
frequency queries is defined in section 3.1. Based on this definition, a high-frequency
query is a representative of a group of similar queries. Clustering algorithms can be
used to find such queries. DBSCAN is used to find high-frequency queries because it
is less susceptible to noise data. From the definition, if queries are clustered
densely, there are many high-frequency queries which are similar to each other. It is
redundant to create two similarity tables based on two similar high-frequency
queries. Two methods to choose an optimal set of high-frequency queries for high-
frequency-queries-based filtering are proposed in Section 3.2. One, called DBRAN,
randomly chooses one of the high-frequency queries from each cluster of high-
frequency queries. The other one, called DBSM, merges similar high-frequency
queries together to create a representative of these queries. The performance of

DBRAN and DBSM is evaluated in Chapter 4.

3.1 Definition of High-frequency Queries

To make it possible to find useful high-frequency queries from a set of
queries, a definition of high-frequency queries is formulated. First, the concept of
friends is defined to allow the measure of frequency of a query from similar queries.
Definition 1 states that a friend of a query their similarity is not lower than a specified

threshold t.

40

Let Q be a set of query containing n text queries.

Let t be a specified similarity threshold between friends in range [0, 1] and mins is a

positive integer < n.

Let f(p, q) be any similarity function used to calculate the similarity value between p

and q.
Definition 1: A text q; is called a ‘friend” of another query q, in iff f(qi, g2) > t.
Lemma 1: q, is a friend of . iff Oz is a friend of q;.

Then, a high-frequency query is defined based on the number of friends, as

shown in Definition 2. The minimum number of friends and t must be chosen.

Definition 2: A text query q is called a ‘high-frequency query’ of the query set Q iff q

has more than min; friends in Q.

According to this definition, a high-frequency query is a query that has a
sufficient number of friends. There are several ways to find high-frequency queries
from a query set Q. The performance of the filter method using the set found by

each method is different.
3.2 Methods to Find Sets of High-frequency Queries
3.2.1 Brute Force Method

The brute force method is to find the best set of high-frequency queries by
examining every combination of clusters and choosing the one that gives the best
filter result. This is guaranteed to obtain the most appropriate set of high-frequency
queries from the query set Q as every possible set are evaluated. However, this

method generates too many high-frequency queries. Thus, it requires very large

41

memory space to store similarity tables for high-frequency-based filtering. This
makes the brute force method to find appropriate set of high-frequency queries take
very long time as the time complexity is O(n! t) if n is the number of queries in the
set and t, is the time to create the similarity tables for n records, which is n*qlogq if

g is the average length of texts in the dataset. Therefore, this method is impractical.

To improve the brute-force method, the number of friends of all queries can be
calculated first. That is, the similarity between every pair of queries is first calculated
and the number of friends is counted based on the similarity. After that, only the
texts with more than min¢ friends are chosen as the high-frequency queries.

Therefore, the time complexity is reduced into O(n2 tn)

However, the number of high-frequency queries can be very high, and only
queries with higher number of friends can be chosen. Therefore, this method is
modified by choosing only max; queries that have at least mins friends. But this may
not improve the filter power because many of these high-frequency queries are

similar.

This method has two major drawbacks. One is that the query set may contain
more than max¢ high-frequency queries. Hence, the set obtained may not cover some
queries in the set. The other disadvantage is that some query set may contain many

of the similar texts. Therefore, the high-frequency queries retrieved are similar.

- The set may not cover some queries that have more than mins friends
Obviously, if only max; queries are chosen, some queries, with more
than min¢ friends, might be omitted. The groups of these queries may
contain fewer queries than the one chosen but they may be parts of the
main characteristics of Q. Consider figure 33, suppose figure 33 is the

visualization of queries relationship. The nearer each objects located state

42

the more similar the texts are. There are three groups of text here
represented by crosses, triangles and circles. If max; = 5, only texts
represented by cross object are chosen as the high-frequency queries.
This is because there are more members in the group of cross’ text than
the others. If the similar query set is queried while only the cross text are
used to construct the similarity table, texts represented by triangles and
circles would not be covered. This leads to poor performance of high-

frequency-queries-based filter.

X x X
X XX
NN
i O

Figure 33: Visualizations of text group that brute force method
cannot efficiently handle

The high-frequency queries are similar to each other

In some situations, high-frequency queries in a query set are very
similar with each other. If there are many of these high-frequency queries,
the brute force method might found only them as they have many
friends in the set. When these queries are used to construct the similarity
table for high-frequency-queries-based filter, the similarity tables would
nearly the same for all queries. This leads to the redundancy and a waste
of space. If the new query set is queried, each query may suffer to choose

the similarity table as the similarity value is almost equal.

43

Most of the query sets with high-frequency queries contain more than
one unequal size groups of similar text. Therefore, many sets applied brute
force method suffer from both suggested issues. To avoid such problems, we
need more information about the relationship between the texts. If the
details about the group of similar texts are available, we may be able to
choose only some texts from each group. So, none of the smaller groups are

accidentally ignored.

The task to automatically find groups of objects without any
suggestions of the groups label is called cluster analysis. As mentioned in
Chapter 2, there are three main types of the methods to solve this task. Two

of them are applied in this section. The first one is DBSCAN.

3.2.2 DBSCAN with Random Core Points (DBRAN)

When high-frequency queries are closed together, similarity tables
created from these queries can be so much alike that they are redundant.
To avoid this redundancy, only some high-frequency queries must be chosen.
This thesis proposes to use clustering algorithm to group queries together.
DBSCAN is used to find clusters of queries, and a representative of each
cluster is chosen. Based on the definition of high-frequency query, DBSCAN
method can be used to find higsh-frequency queries with ming is minpts and t is
the similarity threshold. However, the distance function used in DBSCAN is
different from the similarity function. The distance between two data points
is high if they are different. On the other hand, the similarity between two
data points is low if they are different. According to [10], a distance function

can be mapped into similarity function using three conversion functions:

44

linear, sigmoidal and inverted. In this section, the linear conversion function is

used.

We already discussed that the DBSCAN clustering algorithm can be
applied to find a set of high-frequency queries. The method to find the set of

high-frequency queries by DBSCAN is illustrated in Algorithm 1

Algorithm 1

Input: a query set ¢ a threshold ¢ a similarity function 7, an
integer min,

Output: a set of high-frequency queries F, a set of border points B

Fe ¢
B« ¢
for every pair ¢, and ¢, in @
if ¢q, q,are friends, put them in the same cluster and put
them in each other border set
count < number of border point of g,
if count exceeds min;
add g, to F
add border set of ¢, to B
end if
end for
return <F, B

This method provides the information of clusters of which each core
points are member. This can be used further if the set of high-frequency

queries generated is very large and need to pick only the best subset to use.

We applied DBSCAN to find the set of high-frequency queries.
However, sometimes core points in the same clusters are similar to each
other. That leads to the redundancy in the high-frequency queries set. This

can be solved by randomly choose only one text from each cluster as the

45

high-frequency query. The modified method is called DBRAN. The algorithm

for DBRAN is described in Algorithm 1.1.

Algorithm 1.1

Input: a query set ¢ a threshold ¢ a similarity function £, an
integer min,

Output: a set of high-frequency queries F, a set of border points B

F« 0
B« ¢
P« ¢
for every pair ¢, and ¢, in @
if ¢q, q, are friends, put them in the same cluster and put
them in each other border set
count < number of border point of ¢,
if count exceeds min,
add ¢, to P
add border set of ¢, to B
end if
end for
for every cluster (, randomly pick one ¢ € C from P and add ¢ to F
return <F, B

However, if the cluster is large, the random text might not cover every
text in the cluster. DBSM method extends the DBSCAN by merging similar
points, i.e. text data, together to reduce the redundancy and also preserve

the core point coverage as much as possible. This method is described next.

3.2.3 DBSCAN with Merging Strategy (DBSM)

DBRAN deals with the problem of core point redundancy in DBSCAN
by randomly choosing one core point for each cluster. However, one core
point may not cover every query in the large cluster. Two dissimilar core
points in the same cluster should both be chosen as high-frequency queries
to capture the main characteristic of their cluster. However, sometimes two

core points in the same cluster can be merged as a high-frequency query if

46

they are similar. Therefore, we need the criteria to determine whether a pair
of core points should be picked both as the high-frequency queries or only
their similar section. We propose the merging scheme to deal with both this
problem and the core point redundancy problem.

For each cluster, the high-frequency queries are brought to find the
pair with highest similarity. This is similar to the hierarchical agglomerative
clustering. In this algorithm, the decision for merging is based on the resulting
similarity table. Suppose we have two high-frequency queries d; and d, which
are most similar with each other, compare with other pairs of core-points in
the same clusters. The merged text query is created and it contains only the
common tokens between d; and d,. Specifically, the merged query m =d; n
d,. Then, the number of candidates in the similarity table created with m as
the high-frequency query and the number of candidates in the similarity table
created with d; and d, as the high-frequency queries are compared. The
candidates are obtained by doing high-frequency-queries-based filter using
their friends as queries with the specified threshold t. If the latter one is larger
or equal, we use this new text as the high-frequency queries instead of d; and
d,. Otherwise, we do not merge them and continue trying to merge other
pairs until they are all unable to merge. The remaining set is the set of high-
frequency queries.

The time complexity of DBSCAN is o) if n is the number of the
queries in the query set. As the time complexity of agglomerative hierarchical-
based clustering algorithm is o) if d is the number of data in the dataset,
the merging strategy based on agglomerative hierarchical clustering algorithm
takes O(km® tay) if K clusters are found and m is the average number of core
points per cluster. Therefore, the time complexity of DBSM is O+ km® tap).

The details of DBSM algorithm are stated in Algorithm 2.

47

Algorithm 2

Input: a query set ¢ a threshold ¢ a similarity function £, an
integer min, a data set D
Output: a set of high—frequency queries F
<C, B> <« DBSCAN(®, t, f, min,)
Fe¢
while (some pair can be merged)
find pair ¢, and ¢, with highest similarity
be, < friends of ¢,
bc, < friends of ¢,
merge < ¢; N ¢,
bm < be, U be,
Cn < high—freq-based(D, £, t, merge, bm)
//high—-freq-based(dataset, //function, threshold, a high-
frequency //query, query set)
Cc <« high-freq-based(s, £, t, ¢, bc)+ high-freq-based(), 1,

t, c, bc,)
if(Ce > Cm)
add merge to F
end if
else
set this pair similarity value = 0 //prevent further
//recalculation
end else
end while
return F

The high-freg-based function in Algorithm 2 is used to find the
number of candidates before and after the merging strategy is done. The

example of how the function is processed is in Example 8.

Example 8: Suppose there are two texts query q; = {ty, ty, t3, s, ts} and
g2= {tz, 13, ts, t5} 01 has fWOfriendS bl = {tl, o, t3, t4} and b2 = {tl, b, 13, 1y,
ts} while g, has one friend bs = {ty, ty, t3, t4, te}. TO determine whether

q: and q, should be merged or not, finds m = q; N g2 = {to, t3, ts}. Then,

48

compute the similarity between m and by, b, and bs, which is shown in
figure 34 (b). The similarity table for m is created from the dataset.
Suppose similarity tables for qi, g, and m is shown in figure 34(a).

After that, the candidate numbers for q; and q, are calculated
from STy and STg,. The candidate number of q; using by and by, is 1+1
= 2 while candidate number of q, using bz is 1.Therefore, the
candidate number before merge is 2+1 = 3.

Then, the candidate number for m using by, b, and bs is
calculated from STy, which is 0+4+4 = 8. Since 8 > 4, which means
the candidate after merge is more than the candidate before merge,
g: and @, will not be merge. Otherwise they are merged into m and

all of their friends are added to the friend list of m

STQI Squ STm
1 1
0
2 1
4 2 2
15 13 &
28 33 28
16
(a) Similarity tables of qi, ; and m
b, b, bs
01 0.89 0.8 Not necessary
02 Not necessary 0.75
m 0.57 0.52 0.86

(b) Similarity between each texts

Figure 34: Similarity tables and similarity between texts in example 8

49

In this chapter, two methods are proposed to find the appropriate set of high-
frequency queries as brute force methods are claimed low performance. Therefore,
only DBRAN and DBSM are implemented to compare the performance in the

experiment section.

CHAPTER IV

EXPERIMENT

This section describes the experiment results of proposed method to find the
appropriate set of high-frequency queries. Two methods, which are DBRAN and
DBSM, are implemented in Java and compile with Netbeans IDE 7.1.2 on Windows 7

professional machine with 8 GB memory.

Datasets

The datasets Enron and NYTimes from UCI machine learning databases [15]
and dataset DBLP [16] are used in this experiment. The detail of each dataset is

shown in figure 35.

Dataset Number of Number of record Average length
possible words per record
Enron 28,099 39,861 160
NYTimes 101,636 299,749 232
DBLP 467,446 1,385,952 14

Figure 35: Details of each dataset used in the experiment

Original Sets of High-frequency Queries

To evaluate the performance of the proposed methods to find the high-
frequency queries from the query set, the query sets which contain high-frequency
queries are needed. A query set is generated by choosing some text records from the
dataset and changing some tokens in the records. The number of high-frequency
queries is controlled by choosing some text records more often. Initially, from each

dataset, 8, 16, 32, 64 and 128 records are randomly chosen as the original high-

frequency queries which are labeled in the experiment as the ‘Original” set.

51

Query Sets

Query sets are generated for each dataset, with different characteristics of
high-frequency queries. Using the original set, high-frequency-queries based filter
should give the best performance. Therefore, the results from these sets are used as

the base line to compare with the results from both proposed methods.

In these chosen queries, some tokens in the queries are mutated to create
the new queries with specific mutation value. Mutation can be done by inserting,
deleting or substituting a token in a query. A certain percent of tokens in each query
are mutated, and the mutation percentage is varied from 20% to 50%. Each query
set contains mutated high-frequency queries and randomly chosen records in the
dataset. The percentage of the high-frequency queries are 50, 60 and 80 percent.
However, since the percentage of queries related to high-frequency queries does not
affect the difference of the result between each method, only the results from 60%

related sets are shown.

Half of each query set is randomly chosen as a train set that DBRAN and
DBSM use to find high-frequency queries. The other half of the set is used as a test
set. That is, the test set is used as query sets for high-frequency-queries based filter

to measure the performance.

Performance Measure

The set of high-frequency queries obtained from DBRAN and DBSM is used to
measure the performance of the two methods. The method performs well if, given
the set of high-frequency queries obtained from the method, high-frequency-queries
based filtering works well. Two factors — coverage and the number of candidates -
indicate that high-frequency-queries based filtering works well. The coverage of a set

of high-frequency queries is the number of queries in a query set that similar to at

52

least one high-frequency query. These queries are called in-coverage queries while
the rest are called out-of-coverage queries. Large coverage indicates that the
similarity tables can be used for many queries. When a query is in-coverage, a
similarity table is used and the candidates are obtained from the table. These
candidates are called in-coverage candidates. A smaller number of in-coverage
candidates indicates that the filter works well. On the other hand, when a query is
out-of-coverage, high-frequency-queries based filter does not use similarity tables
and switches to AdaptSearch. In this case, the candidates obtained from similarity
tables, called out-of-coverage candidates, are too numerous to be of use. It is
preferable for a set of high-frequency queries to have large coverage large and a
small number of in-coverage candidates because this makes the number of
candidates for each query very small. Thus, the number of in-coverage candidates

per in-coverage query is also an important indicator.

4.1 Coverage Percentage

The coverage percentage is the percent of the in-coverage queries in a query
set. High coverage percentage indicates that many queries are similar to at least one
of the chosen high-frequency queries. In this case, a similarity table is used for
filtering, and the number of candidates should be small. Thus, it is desirable that a

set of high-frequency queries gives high coverage percentage.

To show that the sets of high-frequency queries obtained from the improved
brute force method gives low coverage percentage, it is compared with the results
from DBRAN and DBSM, when applied on DBLP. The result, shown in figure 36,
indicates that the high-frequency queries found by the brute force method cover

fewer queries than those from both proposed method.

53

DBLP 60% related to original high-frequency
gueries coverage percentage compare with
brute force method

70
60 +—
50]

40 H
30 -
20 -
10 -

H Brute Force
@ DBRAN
oDBSM

o
BT

‘E‘g‘
m|©
| 40m

Figure 36: Coverage percentage of DBLP with 60% related to original high-

frequency queries compare with brute force method

Figure 37-39 shows the coverage percentage from 3 datasets when 60% of the
queries are related to the original high-frequency queries. The charts show that,
when the mutation is low, i.e. at 20%, the coverage percentages of high-frequency
queries obtained from DBRAN, DBSM and original sets are nearly the same. This
means sets of high-frequency queries retrieved from these two methods similar with
the original sets. With at least 40% mutation, the coverage percentages from DBSM
sets are better than DBRAN but lower than original sets. For the original set of high-
frequency queries, it remains the same when the queries are mutated at lower level.
On the other hand, if the queries are mutated more than 40%, the coverage

percentage decreases when the mutation level increases.

Another point to consider is the effects of the number of original high-
frequency queries. If queries are mutated 20%-30%, numbers of high-frequency
queries do not affect the coverage percentage. On the other hand, coverage

percentage of the DBSM and DBRAN results moderately decrease if the train sets

54

contain more high-frequency queries. However, the original sets of high-frequency

queries are not affected by this parameter.

DBLP 60% related to original high-frequency queries
coverage percentage
70
60 -
50 -
40 1 1
% 59 | rgl'fll @DBSM
- 4
20 | A sosran
. L1 B
gle|lelele (slelel8le |8
O OIN |0 O O|N |0 [o]
| 30m 40m | 50m |
Figure 37: Coverage percentage of DBLP with 60% related to original high-
frequency queries
NYTimes 60% related to original high-frequency
gueries coverage percentage
70
60 - _
50 - .
()/ 40 7 : g g
° 30 - | . . ODBSM
ig 1 Z Z Z ©DBRAN
0 - : | | m Original
glelelelel |elelelele &8 Slele |S8E|Ee
(O || O (O || O V(O || O DO\ ||
—AMlO N —AM O N —AM|O (N —A MO (N
— — — —
20m 30m 40m | 50m

Figure 38: Coverage percentage of NYTimes with 60% related to original high-

frequency queries

55

Enron 60% related to original high-frequency queries
coverage percentage
70
60 -
50 -
40 -

% 5 EDBSM
20 - = DBRAN
10 - m Original

0 i
g2|e|lelel |gleelelel |geelelel |8eelele
o0 | © < | O WO OIN |0 0 OIN X |0 0 O|IN |0
— O N —AM O N —AM|O (N —A MO (N
— — — —
20m | 30m 40m 50m

Figure 39: Coverage percentage of Enron with 60% related to original high-

frequency queries

The higher number of in-coverage queries lead to higher in-coverage

candidates which is shown next section.

4.2 Numbers of In-coverage Candidates

If a query is in-coverage, its candidates are retrieved from the similarity table of
the closest high-frequency query. The number of in-covered candidates depends on
the similarity threshold, which is 0.5 in this experiment, and the similarity between
each query and the chosen high-frequency query. Therefore, the number of in-
coverage candidates indicates how much verification is required for similarity join.
Figure 40-42 shows the in-coverage candidate number of every datasets when 60%

of train sets are related to the original high-frequency queries.

For every datasets, when the queries are 20% mutated, the number of in-
coverage candidates are low. The number of in-coverage candidates from DBSM and
DBRAN high-frequency queries is highest when the queries are 30% mutated and

then decrease when queries are mutated more. In contrast, in-coverage candidates

56

of original high-frequency query set dramatically increase from 20% mutation level

and reach the highest value at 40% query mutation.

In contrast, in-coverage queries of the original sets generate very few
candidates when the queries are mutated 20%-30%. However, the in-coverage
candidate numbers dramatically increase to almost the same with DBSM and DBRAN
when the queries are 40% mutated. With 50% query mutation level, the in-coverage
candidate number decreases as well as the result from other methods. This means

out-of-coverage candidates increase as the queries are more mutated.

DBLP 60 % related to original high-frequency queries
in-coverage candidates per query
12
3
§ 10 ;
g 8 :
S 6]
» i] : ODBSM
| §
4 X | : EDBRAN
2 - Sl y -
. m m | !] m Original
o TO|OT| T O O O
Se53R |° =
—
20m |

Figure 40: In-coverage candidates of DBLP with 60% related to original high-

frequency queries

57

NYTimes 60 % related to original high-frequency
gueries in-coverage candidates per query

3

3

I

I

8

B Il 1 . EDBSM
NN soeea
-EII§I§I = Original

Figure 41: In-coverage candidates of NYTimes with 60% related to original high-

frequency queries

Enron 60 % related to original high-frequency
gueries in-coverage candidates per query

0.2
o
o
S 015
o
<]
= 0.1 [DBSM
0.05 I EDBRAN
0 ' ® Original

Figure 42: In-coverage candidates of Enron with 60% related to original high-

frequency queries
4.3 Average Number of Candidates per In-coverage Query

The total number of in-coverage candidates increase with more in-coverage
queries. Therefore, candidate numbers alone are not enough to judge the
performance of the retrieved high-frequency queries. The average number of

candidates generated by each in-covered query must also be considered. This is

58

computed from the number of all in-coverage candidates divides by the number of
in-coverage queries. As the value is different according to the total number of
records in each dataset, it is shown as the percentage compared with overall dataset

instead.

Figure 43-45 shows the mentioned percentage of each dataset when 60% of
the test sets related to the original high-frequency queries with various mutation
levels. For every dataset, if the query is 20% mutated, the in-coverage queries using
original high-frequency queries generate significantly low amount (less than 0.01%) of
in-coverage candidates from the whole dataset while both DBSM and DBRAN values
are bounced from 2%-6%. When the query set are more mutated, DBSM and DBRAN
high-frequency queries generated in-coverage candidates per query at nearly the
same level. In contrast, with the highly mutated queries, says more than 40%, each
of the in-coverage queries using the original high-frequency query sets generate

dramatically higher candidates.

DBLP 60 % related to original high-frequency queries
In-coverage candidates per query

20
15 K H Eq_
% 10 : ODBSM
\
Lo] ©@DBRAN
1]
‘ - a
\ m Original
v \
o NI mmﬂ ;
O| O| T O T O
5|58 %% &
—A M O N N
— —
20m

Figure 43: In-coverage candidates per query percentage of DBLP with 60% related to

original high-frequency queries

59

NYTimes 60 % related to original high-frequency
gueries in-coverage candidates per query

25
20 i
H »
4 1
15 y = \
o 8 g §
% g R ODBSM
10 g S
TR R
1 7 § R & L .
5 I E 5 H E ' m Original
§ - 0
0 i +A |F | LE [F H
O Ol Tl T O O T oy
= v= | v= | = — v [v= —
V| O N © <t | O <t
M| © — O (N (o}
—
20m 40m

Figure 44: In-coverage candidates per query percentage of NYTimes with 60% related

to original high-frequency queries

Enron 60 % related to original high-frequency queries
In-coverage candidates per query

15
10
% ODBSM
5 EDBRAN
] ® Original
NRmnm
oO| OO T T
|88 5%
—A M O N
—
20m

Figure 45: In-coverage candidates per query percentage of Enron with 60% related to

original high-frequency queries

The results from these three measurements lead to two important
conclusions. First, if the queries are mutated at low level, high-frequency-queries-
based filter using the high-frequency queries found from DBRAN and DBSM give the
similar results. Query set with low mutation contains many similar queries which lead

to denser cluster. Therefore, the merging strategy is not necessary as the random

60

strategy still performs well. On the other hand, if the queries are highly mutated,
DBRAN and DBSM give slightly different sets of high-frequency queries which lead to
moderately different in coverage percentage, candidate numbers and the percentage
of candidate numbers per query in the dataset. The sets obtained from DBSM
provide better results in most of the experiment. This means that the merging

strategy is necessary for the highly mutated query set.

CHAPTER V

CONCLUSION

This thesis proposes a method to find a set of high-frequency queries from a query
set. The set of high-frequency queries is used to create a similarity table for high-
frequency-queries-based filter in filter-and-verify framework for similarity join. DBSCAN
clustering algorithm is applied to find the clusters of queries. DBRAN, which is DBSCAN
with random core points, finds high-frequency queries and removes redundant core
points by randomly selecting one core point from each cluster. However, one core
point may not cover every query in a cluster. DBSM, which is DBSCAN with merging
strategy, removes redundant core points and also preserves the coverage of each
core points. This method merges two core points if they are similar. Then, the
remaining core points are used as high-frequency queries. Experiment results show
that DBSM and DBRAN are nearly the same when the high-frequency queries are
similar, or the clusters are compact. On the other hand, if the high-frequency queries
are highly varied, DBSM outperforms DBRAN as the resulting sets of high-frequency

queries provide better performance for high-frequency-queries-based filter.

Although DBSM found the sets that cover more queries in the test sets than
DBRAN, it takes much longer to compute if there are many core points in each cluster.
Therefore, the strategy to determine whether the merging strategy is necessary for the

set of core points should be studied further.

[9]

REFERENCES
M. Hadjieleftheriou and D. Srivastava, "Approximate String Processing." in
Foundations and Trends in Databases, pp. 267-402, 2011.
S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for similarity joins in
data cleaning.” in Proceedings of International Conference on Data Engineering
(ICDE), pp. 5-16, 2006.
J. Wang, G. Li and J. Feng, “Can we beat the prefix filtering?: An adaptive
framework for similarity join and search.” in Proceedings of ACM Management of
Data (SIGMOD), pp. 85-96, 2012.
K. Kunanusont and J. Chongstitvatana, “An Index Structure for Similarity Join
Based on High-frequency queries” in Proceedings of International Computer
Science and Engineering Conference (ICSEC), pp. 415 - 420, 2014
J. Han and M. Kamber, Data Mining: Concepts and Techniques 2" edition,
Morgan Kaufman Publishers Inc., CA
M. Ester, H. Kriegel, J. Sander and X. Xu, “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise” in Proceedings of the
second International Conference on Knowledge Discovery and Data Mining
(KDD-96), pp. 226-231, 1996.
C. Xiao, W. Wang, X. Lin, J. Xu Yu and G. Wang, “Efficient Similarity Joins for Near
Duplicate Detection.” In Proceedings of international conference on World Wide
Web (WWW’ 08), pp. 131-140, 2011.
“April 2015 Nepal Earthquake”
http://earthquake.usgs.gov/earthquakes/eventpage/us20002926#general _summar
y

“Google trends explorers” http://www.google.com/trends/explore#tcmpt=q

[10] M. Setten, M. Veenstra, A. Nijholt and B. Dijk, “Cased-Based Reasoning as a

Prediction Strategy for Hybrid Recommender Systems” in Proceeding of Atlantic

Web Intelligence Conference (AWIC), pp. 13-22, 2004

Xiii

[11] H. Gupta and R. Srivastava. “k-means Based Document Clustering with Automatic
“k” selection and Cluster Refinement” in Proceedings of International Journal of
Computer Science and Mobile Applications (IJCSMA), pp. 7-13, 2014.

[12] P. Bradley and U. Fayyad, “Refining Initial Points for K-Means Clustering” in
Proceedings of the 15th International Conference on Machine Learning (ICML98),
pp. 91-99, 1998

[13] A. Barakbah and Y. Kiyoki, “A Pillar Algorithm for K-means Optimization by
Distance Maximization for Initial Centroid Designation” in Computational

Intelligence and Data Mining (CIDM), pp. 61-68, 2009

[14] C. Manning, P. Raghaven and H. Schutze, Introduction to Information Retrieval,

Cambridge University Press

[15] “UCI Machine Learning Repositary” https://archive.ics.uci.edu/ml/datasets.html

Obtained on 8" January 2015

[16] The DBLP bibliography of published researchers in computer science obtained
on 25" November 2013 from

http://www.cs.berkeley.edu/~jnwang/codes/adapt.tar.gz

https://archive.ics.uci.edu/ml/datasets.html
http://www.cs.berkeley.edu/~jnwang/codes/adapt.tar.gz

VITA

Miss Kamolwan Kunanusont was born on July 13th, 1992 in Bangkok,
Thailand. In 2014, she received her first class honour Bachelor degree in Computer
Science from Chulalongkorn University. After graduation, she pursued her graduate
study for Master’s Degree in Computer Science and Information Technology at
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University in 2014. Her paper “Finding a Set of High-frequency
Queries for High-frequency-query-based Filter for Similarity Join” is accepted for
oral presentation on June 26, 2015 at 2015 12th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON), Hua Hin, Thailand.

	CONTENTS
	LIST OF FIGURES
	REFERENCES

