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CHAPTER I

INTRODUCTION

I.1 Introduction

Typically, a robot transports an object via grasping. With this approach, a number

of contact points have to be made appropriately and once the object is held securely

the transportation can be performed simply by moving the robot. This seemingly

simple method entails several difficulties. Precisely establishing contact as desired

requires complex control whereas maintaining all these contact points during the entire

transportation requires even more complex control. One of our main statements here

is that transportation can be done without grasping. Consider a group of robots that

position themselves around the object in such a way that the object may still move

but cannot escape from the robots’ formation, i.e., the object is captured within the

formation. Intuitively, such formation exists for any object when sufficiently many

robots are deployed. With this caging formation, the robots can transport the object

by moving the whole formation and drag the object along (see Figure I.1.) Unlike

the grasping based approach, the robots do not have to precisely synchronize their

movement; they have certain clearance for which each robot may be positioned relative

to each others while still prevent the object from escaping. With no need to maintain

contact, the robot control can be simplified. Still, planning of the formation is required.

We are interested in this kind of problems.

In particular, we are interested in the problem of capturing a concave polygon

in the plane with two fingers. To be precise, an object is captured by a set of fingers

when it is restricted to stay within a bounded region of the workspace, i.e., there

exists no trajectory to bring the object arbitrarily far from the fingers. While any

object can be captured when sufficiently many fingers are used, only two fingers are

needed to capture a concave object in the plane. Let us consider a concave polygon

being grasped by two fingers as shown in Figure I.2(a). At this point, the polygon
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Figure I.1: An object is caged and transported by two robots.

is completely immobilized, i.e., there exists an isolated configuration of the polygon.

Now let us move the two fingers slightly away from each other (Figure I.2(b)). The

polygon can now move but it still cannot escape. At this point, possible configurations

of the captured polygon form a pocket in the configuration space. The set of possible

configurations grow from a single immobilizing configuration to a larger and larger

pocket as the fingers are moved away from each other. Of course, this pocket cannot

keep growing forever; when the distance between the two fingers is sufficiently large,

pocket will break and the polygon can escape (Figure I.2(c).) This scenario can also

be viewed in the reverse direction: from the point where the pocket is about to break,

moving the fingers toward each other can bring the polygon from any configuration in

the largest pocket to an immobilizing configuration. In essence, the range of pockets

corresponds to the spectrum of uncertainty in the object configuration that can be

handled. From a practical standpoint, it is interesting to know all different ways a

concave polygon can be captured by two fingers. Also, for each such way, we want to

know the maximum distance the fingers can stay apart from each other. Answering all

these questions is the focus of this study.

I.2 Objective

Some notions need to be formally defined before stating the objective. Two fingers

are at a critical distance apart when the polygon is captured by the fingers in such a

way that moving the fingers infinitesimally away from each other will allow the polygon
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(a) (b) (c)

Figure I.2: The work space (first row) and the configuration space (second row) when:
(a) the object is under an immobilizing grasping and captured, (b) the object is captured
but not immobilized, and (c) the object is not captured.

to escape. The two fingers are said to form a maximal cage when they capture the

object with separation below the critical distance. When a polygon is captured with a

maximal cage, we may not be able to tell which grasping configuration the polygon will

reach after the fingers have been closed (i.e. moving the fingers toward each other.)

Figure I.3 shows two possible immobilizing configurations reachable from the same

maximal cage. That is, for a given maximal cage, there is an associated set of grasping

configurations reachable by the captured polygon after being squeezed by the fingers.

Of course, the polygon remains captured during the entire finger squeezing action.

So far, we have considered only the cases for which an object is captured by

being surrounded by the fingers. A concave polygon can also be captured from inside,

e.g., a polygon with a hole can be captured by fixing a finger in the hole. Obviously,

some concave polygon can be captured by two fingers in this manner by ensuring that

the distance between the two capturing fingers is not too small (see Figure I.4.) Under

this capturing situation, the polygon can be immobilized by stretching the fingers away
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(a) (c)(b)

Figure I.3: Different grasping configurations (b) and (c) from the same maximal cage
(a)

from each other. With direct analogy, this mode of capturing action provides a parallel

track with earlier discussion: we automatically obtain the notions of minimal cage. It

is worth noticing that this may also be view as if the two fingers (with a fixed distance

apart) are caged by the object. It is important to mention that our interest is not on a

set of capturing configurations that lead to a unique grasping configuration, but rather

on maximal (resp. minimal) cage that provide maximum clearance, i.e., allow the

fingers to be farthest away from (resp. closest to) each other. We therefore address the

problem of characterizing all disjoint maximal and minimal cages, assuming pointed

fingers and that the object be represented by k non-intersecting simple polygons.

Figure I.4: Occasionally, a concave object can be captured and transported by stretching
the two fingers at some configuration.

To summarize, the main objective of this thesis is to develop:
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• An efficient algorithm that computes all possible maximal cages, minimal cages

for an object with given geometry.

• An efficient algorithm that computes d+ or d− (see Chapter III.2, VI), and

identifies its containing optimal (maximal or minimal) cage.

I.3 Scope of this Work

This thesis assumes the following facts:

• The object to be captured must be represented with a finite number of non-

intersecting simple polygons on a plane (i.e there is no hole inside any of them.)

In the case of the object with holes, we can always capture it by placing a finger

inside one of those holes. On the other hand, if we use mobile robots that cannot

move over the object instead of fingers, we can ignore those holes.

• The object’s concavity is a necessary condition to capture with two fingers but

not sufficient. Therefore, two-finger caging is not guaranteed for all object. We

neither require that the input object represented with simple polygons must be

a concave polygon nor must be capturable with two fingers. However, in such

cases, the result will be reported as no possible caging set.

• Exactly two fingers are used in capturing the object. They are assumed to be

points. Our work can apply to disc-shaped fingers of the same size by growing

object with an amount equal to the fingers’ radius.

• All finger trajectories considered are on a plane, continuous and collision-free.

I.4 Organization of the Thesis

In the next chapter, we review previous works that explored and applied the

concept of capturing. Chapter III establishes the formal definition of the problem of

maximal cage and basic tools used in analyzing such problem. Chapter IV is the
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main contribution of our work describing the framework of our solution for maximal

cage problems. Part of this chapter comes from our published paper [1]. Chapter V,

based on Chapter IV, explains the algorithms for characterizing all maximal cages and

computing d+. In Chapter VI, we adopt the same framework presented in Chapter IV

to solve the minimal cage problem. Chapter VII explains how we can improve the

solution to maximal cage problem and extending it to higher dimensions. Finally, we

will conclude the thesis in the last chapter.



CHAPTER II

RELATED WORKS

II.1 Caging/Capturing Problems

Early discussions in mathematics [2, 3] influenced Kuperberg [4] to pose the

formal definition of the caging problem. In [4], Kuperberg stated that the caging

problem is a problem of designing an algorithm for finding a set of points that prevent

a polygon from moving arbitrarily far from a position. That is, the polygon will not be

able to escape unless it penetrates by some of those points. This definition isolates the

difficulties and uncertainties in dynamics, transforming the caging problem into a pure

geometrical problem.

A comprehensive review on caging and its related problems such as grasping can

be found in [5]. The concept of caging has been applied to a number of manipulation

problems such as object grasping, part feeding [6] and transportation with mobile

robots, for example [7]. Various methods to perform error-tolerant immobilizing grasp

on a planar object are presented in [8, 9, 10, 11]. They are all based on two common

steps: (i) command the fingers to enter a caging set of a desired immobilizing grasp,

then (ii) the fingers move towards the immobilizing grasp configuration. Since the

capturing is maintained during the latter phase, this approach guarantees the success

of a grasping task. The differences among these works are their methods used in

identifying caging sets, and the quality of caging sets themselves.

II.2 Error-Tolerant Grasping

Rimon and Blake [8] applied the stratified Morse theory [12] to solve the problem

of caging an object on a plane with two-finger 1-DOF gripper and introduced the notion

of caging set (also known as capture region [13]), a set of system configurations (i.e.,

finger formations) that can prevent the object from escaping. In brief, the concept is

to find critical points, where topological changes in the free space caused by varing
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finger separation distance (the free space here is the set of object configurations that

are reachable from the immobilizing configuration.) Some of those critical points are

then classified as puncture points whose the associated finger separation distance can

be used in identifying maximal cages. Roughly speaking, if the fingers at the puncture

point increase their separation distance just a little, squeezing the fingers will no longer

guarantee the desired immobilizing grasp (assuming that the immobilizing grasp in this

case requires finger squeezing.)

In this work Rimon and Blake focused on characterizing the caging set that leads

to a specified immobilizing grasp. The implementation was based on numerical gradient

descent search for the critical distance in which the topology of the free space changes.

Numerical gradient descent search allowed the object and fingers (the primitives used

in constructing the free space) to be modeled or estimated efficiently with curves.

However, this method is rather complex and because of the use of numerical approach,

the running time varies greatly depending on the shape of the free space.

Extended from [8], Davidson and Blake [9] moved towards the case of three-

finger 1-DOF caging by presenting an algorithm for constructing the free space where

the gradient descent search for critical points operated. In [14], Davidson and Blake

worked on an application of error-tolerance grasping from vision based on stated

theories in [8]. Both [8] and [9] relied on gradient descent searching for critical points

in the configuration space. These tasks are rather complex and time consuming because

they require complex geometrical computations in order to model the free space.

Gopal, Goldberg in [10] and Luewirawong, Sudsang in [11] confined their interest

to two-finger, error-tolerance grasps at two particular concave sections. Mainly, [10]

contributed: (i) an algorithm to locate all possible concave grasps in both 2D and 3D

where fingers are cylinder, (ii) a quality metric computed from the four edges forming

the concave sections. Unlike [11], the quality metric presented is based on rotation

sensitivity of the grasp, not the maximum separation distance. In [11], a separation

distance range is directly computed from the four edges at the two concave sections.

Although the algorithm can quickly determine such distance, a caging set associated
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with this distance can be very small in the case of curved object or poorly subdivided

polygons..

II.3 Object Transportation

The problem we are addressing was also applied in object transportation tasks

using multiple mobile robots. Researchers in the field, Sudsang, Ponce, Hyman and

Kriegman in [15] studied the concept of inescapable regions which is equivalent to

the concept of caging set. They formulated how to characterize a 2-DOF inescapable

regions formed by three robots with respect to an immobilizing grasp. Again, this

work considered only three edges (the number of edges considered are equal to the

number of robots as in [11]) not the whole polygon. Sudsang, Rothganger and Ponce

in [7, 16] introduced an object manipulation and transportation method based on

independent capture regions for three robots – the robots are free to move within their

own independent regions while guaranteeing the cage. This allows a convex object to

be captured with three robots easily: the robots simply enter their own independent

region. As long as they are in their own region, the object is guaranteed to be captured.

Since the independent capture regions are close to a side of the object, the robot can

push the object in such a way that all the robots are in their own independent capture

regions during the push. By this mean, the robots can achieve a transportation task.

Another utilization classified as object transportation task is object sweeping presented

in [17].

Sudsang also presented the concept of the width of a 2D convex object in [18].

The width of an object is simply a measurement of how close two parallel lines, which

do not intersect with the object, can be. If the width of a 2D rigid convex object is

known, the object can be caged by a team of robots in a circle formation such that

the distance between any two nearby robots is less than the width of the object. This

is a simple yet sufficient condition for caging an object. The author further applied

this concept on rigid concave objects. By partitioning a concave object into convex

sub-objects, the object can clearly be caged when encircled by a team of robots for

which the distance between two nearby robots is less than the maximum width of
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the sub-objects. We can observe that the result, in this case, depends on the convex

partitioning of the concave object, best partitioning should produce a convex sub-object

with the greatest possible width.

Erickson et al. [19] proposed an algorithm using hidden surface removal tech-

niques to approximate capture region for a rigid convex object with three disc-shaped

robots. Unlike [16], the output of this method is not the independent capture region but

rather a volume in the configuration space. This means that, after specifying a robot

position, the regions allowed to place the other robots (in order to cage the object) is

shrinked. This provides greater tolerance at the cost of more complex computation and

the ease of usage.

Wang and Kumar [20, 21, 22, 23, 24, 25, 26, 27] focused on cooperative multiple

robot caging manipulation. Wang and Kumar considered that the object is rotated (by

the robots that pushes) at a negligible degree given a short time frame. Therefore,

the trajectory of object that moves to infinity is limited only with translations. This

provides larger cages and requires less complex computation. However, controlling the

robots is not only to maintain their distance, but their cage formation also need to be

updated every time slice. This is because the cage is not guaranteed when the object

rotates.

II.4 Summary

Although our work is closest to that of [8], we aim for a more specific case which

the captured object is assumed to be a simple polygon. Under this assumption, we do

not need to solve a complex optimization as in [8]. The problem is transformed into

a search in a finite discrete space. A distinct efficiency gain of our algorithm can be

seen clearly as our algorithm runs a combinatorial search for all the caging sets over

n2 graph nodes (where n is the number of vertices) instead of performing gradient

descent searches for all the caging sets in R4 configuration space.



CHAPTER III

BACKGROUND

This chapter serves as a detailed introduction to our problem. We shall present

formal definitions, assumptions and a general model that formalizes past capturing

problems and this one. At the end of this chapter, we shall introduce our fundamental

tool for analyzing the problem used throughout the rest of the thesis.

III.1 Basic Assumptions

Our definition of capturing is based on the one that was posed by Kuperberg [4].

This assumption of capturing reduces the capturing problem to a pure geometrical one.

The definition states that the object is said to be caged or captured when it cannot

move arbitrarily far from a point without penetrating its obstacles. We further define

that the captured or caged object is in a cage formed by the obstacles.

Apart from the definition of capturing, we also assume the following.

(i) The problem is a planar problem. That is, we assume that all the obstacles (all

the fingers) and the object must be on a plane. We will explain later, in Chapter

VII.2, how we extend this concepts to higher-dimensional space.

(ii) There are exactly two fingers and both of them are points. Therefore, the fingers

can be located at the same position on the plane.

(iii) There is exactly one rigid object. However, it is possible that the object consists

of a number of disjoint components rigidly bound together. For example, when

the object under consideration is a cross-section of a rigid body as shown in

Figure III.1.

(iv) The object under our consideration does not have any holes.
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(a) (b)

Figure III.1: We can consider only (a) a cross section of a rigid body object as in this
case. This results in (b) a planar caging problem with two components that are rigidly
bound together.

III.2 The Configuration Space

Since our system of interest has only three components, two fingers and a rigid

body object – both on a plane, our configuration space therefore have at most 7-DOF.

Naively, a configuration can be parameterized by: 3-DOF rigid body transformation

of the object and two 2-DOF positions of the fingers. However, parameterizing a

configuration this way poses a 3-DOF ambiguity because of the choice of coordinates.

This is because, whether the object is captured is independent from the choice of

coordinates.

Therefore, we parameterize the configuration space with 4-DOF. The two intuitive

choices of parameterizations are:

(i) Two, 2-DOF positions of the fingers.

Since the choice of coordinates is equivalent to that of possible rigid transforma-

tions of the object. We can fix the position and the orientation of the object and

concern only the positions of the two fingers relative to the object. We can write

a configuration as a pair of points: u, v. In each configuration, most of the time,
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we are interested in a separation distance of a configuration |u− v| which is the

separation distance between the two fingers corresponding to the configuration.

(ii) 3-DOF rigid body transformation of the object. and 1-DOF separation distance

between the two fingers.

In this perspective, the configuration space can be viewed as it is constrained in

such a way that one finger has to be at a fixed point, and both fingers must lie

on an axis.

In our work, we mainly use on the first method of parameterizations. The latter

parameterizations, which seems to be a more natural way to view this system, will be

useful in illustrating examples in the next section,

III.3 The Maximal Cage Problem

Before formally defining the maximal cage problem, We shall begin by observing

how an object is caged by two fingers.

First of all, let us consider two of the following extreme situations. One is when

the distance between the fingers is zero (i.e. the jaw of two fingers fully closes.) We

can say, for this situation, that the object can certainly escape from the fingers (i.e. is

not caged.) This is equivalent to the case of one finger capturing. Since the object

has no hole, according to our assumption, we cannot capture anything in this state.

The other situation is when the object is immobilized by the fingers. In this case, the

object cannot move – it is obviously captured (Figure III.2(a).)

From an immobilizing grasp, it can be easily observed that we can slightly

increase the separation between the two fingers (i.e. we expand the jaw,) in such a

way that the object is still held under captivity. At this state, if we keep the distance

between the fingers below the current separation distance, we can guarantee that the

object will be captured regardless of how it moves (Figure III.2(b).) This condition also

holds regardless of how the jaws (the fingers) move as long as the separation distance is
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(a) (b) (c)

Figure III.2: The work space (first row) and the configuration space (second row)
when: (a) the object is under an immobilizing grasping and captured, (b) the object is
captured but not immobilized, and (c) the object is not captured.

maintained. Of course, we cannot arbitrarily increase the separation distance if we do

not want to release the object. This is because, after expanding the separation distance

to some degree (Figure III.2(c),) the object can move away from the fingers (Figure

III.3(a),) letting the fingers see each other (Figure III.3(b).) At this state, the fingers

can obviously move to the same point (i.e. the distance between the fingers is zero;)

therefore, the object is no longer captured.

It can be concluded from these observations that we can set the object in a cage

and maintain that cage if the following conditions are satisfied:

(i) the fingers are initially at capturing configuration (i.e. where to place the fingers

in order to form the cage,)

(ii) the separation distance between the fingers is kept below an upper-bound separa-

tion distance.
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(a) (b)

Figure III.3: (a) at some separation distance the object will no longer be captured, (b)
the object can move arbitrarily far from the finger letting them see each other.

From these clues, the maximal cage problem is defined as follows: Given a

configuration, what is the least upper-bound distance, such that as long as the separation

distance between the two fingers is kept below such distance, the object is guaranteed

to be captured?

In the next section, we shall introduce a tool that helps analyzing this problem.

III.4 Trajectories of Fingers

To ease understanding, let us first consider a less difficult problem called 0/1

maximal cage problem. This problem questions, for a given initial configuration and

a value, whether we can capture the object if we keep the separation distance between

the fingers below such value.

In a sense, this problem can be viewed as an attempt to move the fingers from

their initial positions until the distance between the two fingers is zero, while always

keeping the largest separation distance between them below the given value. This leads

us to perform an analysis based on the trajectories of the fingers.
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Let the motion of each finger be described as a unit trajectory in the object’s

reference frame (fixing the object translation and rotation to eliminate the ambiguity

in the choice of coordinates.) As generally defined, a unit trajectory p is a trajectory

that starts at p(0) and terminates at p(1), where p(t) denotes a position on a plane at

a normalized time t ∈ [0, 1]. In order to represent the movement of the two fingers,

or the configuration trajectory, we need a pair of synchronized finger trajectories p, q.

Thus, our system’s configuration at the time t can be written as (p(t), q(t)) (Figure

III.4.)

(b)

|p(1)-q(1)| = 0

q(t) q(0)=v

p(0)=u
p(t)

(a)

p(t)

q(t)

p(0)

q(0)q(1)

p(1)

Figure III.4: (a) a synchronized trajectory pair. (b) an escape synchronized trajectory
pair, a synchronized trajectory pair that both trajectories end when the distance between
the two fingers reaches zero.

The most important property regarding a movement of the two fingers is the max-

imum separation distance between the two fingers during the entire movement. Given

a synchronized pair of trajectories (p, q), such separation distance can be expressed as:

dp, qe = max0≤t≤1|p(t)− q(t)|.

In the maximal cage problem, we are interested in a synchronized trajectory pairs

of p, q such that p and q starts at some specific positions, say p(0) = u and q(0) = v,

and until the distance between the two fingers is zero (i.e. |p(1) − q(1)| = 0.) Such

trajectory pair is refered as an escape trajectory pair. An example of an escape trajectory

pair is illustrated in Figure III.4(b). This synchronized trajectory pair (p, q) clearly
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allows the object to escape. In particular, to solve the 0/1 maximal cage problem for

a given value is to determine whether there exists an escape trajectory pair (p, q) such

that dp, qe is less than the value. For the general maximal cage problem, rather than

answering a qualitative query, we need to find the least upper-bound distance which is

the least possible dp, qe.

Since the least upper-bound separation distance will be frequently refered later,

let us denote such distance by d+. Formally, we can define d+ of a configuration (u, v)

as follows.

d+ = min∀p∀qdp, qe,

where (p, q) is a synchronized escape trajectory pair starting at (u, v).

Before proceeding to the next chapter, let us summarize what we have obtained

so far. We have learned that the maximal cage problem is all about finding d+ given an

initial configuration u, v. Furthermore, the object is guaranteed to be captured as long

as the two fingers’ separation distance is kept below d+. This also imply that: only

when |u − v| < d+, we can guarantee that we can capture the object by maintaining

the separation distance below d+.



CHAPTER IV

SEARCH SPACE FORMULATION

In this chapter, the main contribution of this work, i.e., to reduce the configuration

space into a finite graph, is presented. The solution to the maximal cage problem can be

searched from this finite graph, which is smaller than the configuration space. For the

problem of minimal cage, the search space formulation requires another methodology

slightly different from this one. Those issues and the definitions of minimal cage

problem are to be defined and explained in Chapter VI.

IV.1 Overview

Before delving into detail regarding the methodology proposed to transform the

configuration space, let us first observe its underlying intuition. Recall the sequence of

actions mentioned in the previous chapter:

(i) the fingers perform an immobilizing grasp of the object and

(ii) the fingers move away from each other but still do not allow the object to escape.

For illustration, we can again refer to Figure III.2(a)-(b). It is not difficult to tell that

d+ of both configurations are the same. Given that, at (ii), the object is captured,

any escape trajectory pair must have its upper-bound distance at least d+ with initial

configuration at (ii). Since, from (ii), we can gradually reduce the separation distance

so as to return to (i) without allowing the object to escape, this implies that d+ of (i)

and (ii) are the same.

From this clue, we can roughly say that, in general, configurations sharing a

common d+ are located near one another. This guides us to partition the configuration

space into connected subsets each of which is to be referred to as a configuration piece.

For a simple case shown in Figure IV.1(a), we shall demonstrate how a maximal cage is
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(a)

A

B

C

D
(b)

AB

CD

AC

AA BB

CCDD

AD BC

BD

Figure IV.1: (a) A, B, C,D are convex regions after partitioning the free space. (b)
The pieces and the topology.

characterized. First of all, let us partition the configuration space into 10 configuration

pieces each of which is the cartesian product of two convex regions. For reference, we

denote each configuration piece by two letters corresponding to the two convex regions

involved (Figure IV.1(b).) Note that we neglect the other 6 pieces BA, CB, DC, DB,

CA and DA. This is because the two fingers are considered identical, e.g., the piece

AB is equivalent to BA.

We can visualize a synchronized trajectory pair (Figure IV.2(a)) as a motion that

travels across the configuration pieces (Figure IV.2(b)2.) The motion ends when a

piece containing a configuration with d+ = 0 is reached (AA in this case.) We call

such configuration piece an escape piece.

Let us observe the case of Figure IV.1. Clearly, we can immediately tell that

AA, BB, CC, DD are all escape pieces. In fact, AB is also an escape piece. This

is because we can find a pair of points, one in A and the other in B that are close

2For simplicity of analysis, the link BD → AA is ignored (without any effect) by assuming that
the two fingers cannot cross the boundaries of the convex regions at the same time. Likewise, we also
ignore BD → CC, AD → BB and AD → DD.
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(a)

A

B

C

D

p(0)

q(0)

q(0.3)

p(0.5)

|p(1)-q(1)| = 0

(b)

AB

CD

AC

AA BB

CCDD

AD BC

BD

Figure IV.2: (a) Trajectories of fingers in free space. (b) Its corresponding travel as a
sequence of pieces.

to each other. With the same reason, BC, CD and AD are escape pieces as well. In

this case, it can be observed that no configurations in any escape pieces can cage the

object.

Let us define the local minimum of a configuration piece be the configuration

with the least separation distance in that piece. In case of AC, its local minimum is on

the boundary of DD. Obviously, every configuration (u, v) in AC can reach the local

minimum of AC with a synchronized trajectory pair (p, q) with dp, qe = |u′ − v′|.
Moreover, since we know that DD is an escape piece, no configurations in AC can

cage the object. For the last piece BD, We can definitely cage the object when the

fingers are initially at either the local minimum of BD, or some configuration (u, v)

around the local minimum such that |u − v| is less than d+ of the local minimum.

To characterize the maximal cage that contains (u, v), we need to compute d+ of BD

which is obviously greater than |u− v|. Fortunately, we have already determined that

we cannot cage the object when the fingers are in the four neighboring escape pieces

(namely AC, CD, AD and BC.) We can shift our interest to the configurations of

BD near those neighboring pieces (boundary between BD and its neighboring pieces)

because any escape synchronized trajectory pair starting from a configuration in BD
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must pass at least one configuration on the boundary. Consequently, d+ of BD is

simply the least separation distance among those boundary configurations.

From this example, we have developed an important insight on how to characterize

the maximal cages. We have learned that we can start from trivially determining some

escape pieces. Then, gradually determine maximal cages of the neighboring pieces

until all the pieces are visited. In the next section, we will turn this insight into a

concrete strategy. Mainly, we shall focus on how to identify space partitioning rules

that allow us to reduce the search space into a finite graph.

IV.2 Characterizing All Maximal Cages

From the example observed previously, we need to identify required properties

which can enforce the partitioned pieces to obey some properties so that we can apply

our strategy which is resemble to the well known Dijkstra’s shortest path algorithm [28]

to characterize all the maximal cages. To begin, let us state the following proposition

which follows directly from the definition of d+.

Proposition IV.2.1 Given a configuration (u, v) such that |u − v| < d+, every

configuration (u′, v′) has the same d+ when it is reachable from (u, v) with a

synchronized trajectory pair (p, q) such that dp, qe < d+

Definition IV.2.2 A maximal cage is a connected set of configurations (u, v) such

that |u− v| is less than its d+.

The maximal cage problem and the problem of characterizing all the maximal

cages are closely related. Solving both problems are our objectives. By first character-

izing all the maximal cages, a maximal cage problem is then reduced to identifying a

containing maximal cage of a given configuration.

Ideally, our goal is to partition the configuration space into maximal cage and

the rest. However, this cannot be accomplished directly, since we do not know exactly
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what the configurations on the boundaries of the maximal cages are. To simplify the

problem, we first partition the configuration space into connected subsets in such a

way that each of which intersects with at most one maximal cage (no piece contains

members from distinct maximal cages.) As in the previous section, we shall address

these connected subsets as configuration pieces. We also define that each partitioned

piece P is associated with d+
P which is the least d+ of configurations in the piece.

Apart from a constraint that P can intersect at most one maximal cage, a configuration

(u, v) in the piece P is either:

(i) in the only maximal cage that intersects this piece, when |u− v| < d+
P , or

(ii) not in any maximal cage, otherwise.

The space partitioning that satisfies the aforementioned properties obviously im-

plies basic constraints imposed by each piece to its neighbors.

Proposition IV.2.3 Let P and Q be two pieces that share a boundary B, the dis-

tance d+
P is at most

max(min(u,v)∈B|u− v|, d+
Q)

Proof:

(i) For the case that there is (u, v) in B such that |u − v| < d+
Q, there must exist

(u′, v′) in Q near (u, v) such that |u′ − v′| = |u − v|, because the separation-

distance function f(u, v) = |u−v| is continuous, Since (u′, v′) is in the maximal

cage of Q, d+
P is at most d+

Q.

(ii) For the other case that there is no such (u, v) in B that |u − v| < d+
Q, every

(u′, v′) in Q near B is not in he maximal cage of Q. Hence, d+
P is at most

min(u,v)∈B|u− v|.
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From (i) and (ii), we can conclude that

d+
P ≤ max(min(u,v)∈B|u− v|, d+

Q)

This leads to the most important fact that:

Lemma IV.2.4 Given a piece P and the set of its neighbors Q, the distance d+
P is

equal to

min∀Q∈Q
{

max(min(u,v)∈B(P,Q)|u− v|, d+
Q)

}
,

where B(P, Q) is the boundary between P and Q.

The proof of this lemma is shown in Appendix A.

With Lemma IV.2.4, the relationship among d+ of the pieces have been formal-

ized. This can be viewed as constraints placed over d+ of the pieces. To visualize this,

we can represent the configuration pieces and the boundaries between pairs of pieces

using states and transitions (resp.) of a graph. In this graph:

(i) Each state (configuration piece) P is labelled with d+
P .

(ii) Each transition is labeled with t+ the least separation distance in its corresponding

boundary (for a transition that links between pieces P and Q, t+ is the least

separation distance of a configuration on the boundary between P and Q.)

The constraint placed on a state P can be interpreted as follows.

d+
P is equal to the minimum of max(t+, d+

Q); for all Q, an adjacent state of P ,

where t+ is the transition distance of the transition linking P and Q.
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The similar pattern can be observed in Dijkstra’s shortest path algorithm. Let us

suppose (for a few statements) that d+
P is the shortest distance from an initial state to

P instead of the least upper-bound distance of P to an escape piece (an initial state.)

We have that:

d+
P is equal to the minimum of t+ + d+

Q; for all Q, an adjacent state of P , where

t+ is the transition distance of the transition linking P and Q.

Obviously, the only different is that the addition operator is used instead of the

maximum operator. Since t+ is a function of P and Q (the transition,) we can change

the maximum operator to the addition operator by replacing t+ with τ+ such that

τ+ + d+
Q = max(t+, d+

Q)

Therefore, we have:

τ+ = max(t+, d+
Q)− d+

Q

Since τ+ is clearly not less than zero, this proves that our problem can be reduced to

the shortest path problem.

In Dijkstra’s shortest path algorithm, the constraints are gradually resolved by

propagating d+ from the initial state (defined by the user) whose d+ is zero Our

algorithm mimics this behavior by propagating our d+ (the least upper-bound distance)

from an initial state whose d+ is zero. That is, we need to know at least one piece

with d+ = 0, which can be found by identifying a piece containing a configuration

(u, v) such that |u− v| = 0.

Here is the sketch of the algorithm:

(1) Initially, every state’s d+ (except initial state which is set to 0) is set to infinity.

(2) Initially, every state is not visited.

(3) Add an initial state to a Heap (a min-heap data structure.)

(d+ is used as the priority for this Heap.)
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(4) While the Heap is not empty

(5) Extract a state which is not visited, call it P .

(6) Then, update d+ of each adjacent state Q as follow.

d+
Q ← min(d+

Q, max(t+, d+
P )),

where t+ is the transition distance for the transition linking P and Q.

(7) If Q is not already in the Heap add Q to the Heap

otherwise, update the priority of Q.

(8) Mark P as a visited state.

To summarize this section, our strategy for characterizing all the maximal cages

is explained in detail. This strategy requires us to first partition the configuration space

such that the partitioned pieces must obey the following conditions.

(i) each piece must intersect at most one maximal cage, and

(ii) if the piece intersects a maximal cage, every configuration (u, v) in the piece

such that |u − v| is less than d+ of the maximal cage is in the intersecting

maximal cage.

Once d+ of all pieces are determined, the maximal cages are characterized by union

of connected maximal cages inside the pieces.

In the following section, an efficient configuration space partition rule will be

introduced.

IV.3 Space Partitioning

Here, we narrow down our consideration to polygonal objects by including a few

additional geometrical assumptions. We require that the object be represented by k
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non-intersecting simple polygons with n vertices in total. Let us denote by e1, e2, ..., en

the edges of the simple polygons.

Before formally stating the space partitioning rule let us define an operation called

squeeze.

u

u'

v

v'

l

Figure IV.3: An illustration for a squeeze operation that squeezes u, v along the line
segment l (a line segment joining u and v) to u′ and v′.

Let l be a line segment joining u and v as in Figure IV.3. A configuration

obtained after squeezing configuration (u, v), not visible to each other, is configuration

(u′, v′) when u′ (resp. v′) is the point of l that is near an object’s edge and is closest

to u (resp. v).

Of course, configurations (u, v) such that u and v are visible to each other always

have its d+ equal to |u−v|. We can ignore these configurations from our consideration

since their d+ can be trivially determined. With this in mind, we partition the rest

of the configuration space in such a way that: configurations in the form (u, v) that

squeeze to the same pair of edges belong to the same piece. This way, we obtain at

most n2 pieces from all possible combinations of any two edges. We shall refer to

our partitioned pieces as Pij where i, j ∈ {1, 2, ..., n}. It is possible that some pieces

are empty (i.e. no configuration that squeezes to the edge pair of such piece.) Those
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empty pieces can be safely discarded from our considerations.

To verify whether this configuration space partitioning satisfies all the desired

properties listed in the previous section, it is sufficient to show that the following

proposition is true.

(a)

je

ie

(b)

je

ie

Figure IV.4: (a) first, squeeze a configuration in Pij to a pair of edges ei, ej . (b) then,
follow the gradient descent to a local minimum of Pij .

Proposition IV.3.1 The fingers starting from a configuration (u, v) can move to

another configuration (u′, v′) without increasing the fingers’ separation distance dur-

ing the motion. Given that both configurations are in Pij , and (u′, v′) is a local

minimum of Pij .

Proof: it is clear that (u′, v′) is situated on an edge pair, namely ei, ej . We first

squeeze the fingers to such edge pair by gradually reducing their separation distance

(Figure IV.4(a).) From here, we can just follow the gradient descent to the local
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minimum of Pij (Figure IV.4(b).) Obviously, these two-step operations would not

increase the separation distance.

We can imply the following facts from this proposition:

(i) it is not possible for Pij to intersect more than one maximal cage. Consider the

situation that (u, v) is in one maximal cage while a local minimum is in another

maximal cage. Upper-bound separation distance of a synchronized trajectory pair

(p, q) from (u, v) to the local minimum (dp, qe) must not be less than d+ of

(u, v), which is greater than |u− v|. This is a contradiction.

(ii) if Pij intersects a maximal cage, all local minima are in the maximal cage.

Suppose that a local minimum is not in the maximal cage, then its d+ is equal to

its separation distance. However, any configuration can reach this local minimum

without increasing the separation distance; therefore, Pij does not intersect any

maximal cage. This is a contradiction.

(iii) if Pij intersects a maximal cage, every configuration having the separation dis-

tance less than d+ of the maximal cage is in the maximal cage. Suppose that

a configuration (u, v) for which |u− v| is less than d+ of the maximal cage is

not in the maximal cage, then its d+ is equal to its separation distance. However,

from a local minimum configuration, (u, v) can be reached with a synchronized

trajectory pair with the separation distance of |u− v|; therefore, d+ of the local

minimum is equal to |u− v|. This contradicts with (ii).

Consequently, we can conclude that:

Lemma IV.3.2 For the problem of characterizing all the maximal cages, every par-

titioned pieces derived from the partitioning rule stated earlier satisfies the required

properties.
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In the next section, we shall proceed to the analysis on how the pieces are

connected to one another under this partition rule.

IV.4 Topology of Pieces

Due to the nature of squeeze operation applied in the space partitioning, we can

restrict our consideration to configurations on the edges. Roughly speaking, Pij has

a chance to connect to Pik when some point on ej sees ek. One obvious necessary

condition is that, ej and ek share a common vertex (Figure IV.5(a).) Sliding fingers

infinitesimally to the right will change the fingers’ containing piece from Pij to Pik.

The other is when one finger on ej is about to leave ej (Figure IV.5(b).) If the finger on

ej infinitesimally moves to the right, both fingers will be squeezed to ei, ek; therefore,

inside Pik instead of Pij . When any two pieces, say Pij and Pik, are connected, we say

that they are connected with a transition. A transition is associated with its cost, t+ijk,

which is the least separation distance from a configuration on the boundary between

Pij and Pik. In this section, we address the problem of characterizing the transitions

and how to compute the cost of those transitions in this section. After this, we will

have all of our search space components, which consists of the pieces (states,) the

transitions and the transition costs, summarized.

(a)

je

ie

ke

x
(b)

je

ie

ke

x

Figure IV.5: For both (a) and (b), if we move the finger on ej to the right infinitesimally,
the piece containing the fingers will change from Pij to Pik.
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In the worst case situation, the number of transitions a piece associated with can

be as high as O(n). Fortunately, we have found out that we do not need to include

all possible transitions in our search space. That is: some transitions can be ignored

without affecting the computation of any pieces’ d+.

Given a vertex v and an edge ei, also let x be the point closest to v on

ei, Only transitions linking Pij and Pik, a piece near the configuration v, x will be

included in the search space. Such transitions are called basic transitions. To gain a

better understanding, we can further classify basic transitions into two types, based on

whether or not ek is adjacent to ej . Their transition distances and explanations are as

follows:

(i) Transition between adjacent edges (Figure IV.5(a).)

It is obvious that any configuration associated with a situation when a finger is

at v is on the boundary of Pij and Pik. v, x is therefore always a valid choice

to transit from Pij to Pik because it is clearly on the boundary between Pij and

Pik. Moreover, this configuration has the least separation distance among other

configurations on such boundary. Hence, t+ijk = |v − x|.

(ii) Transition between non adjacent edges (Figure IV.5(b),)

where ek is the first edge with which a ray from v to x intersects (Figure

IV.7.) Here, we can apply the same reasoning as previously so as to prove that

t+ijk = |v − x|.

For the situation that either Pij or Pik is an empty piece, a transition is not valid;

therefore, not included.

Let us consider the case as in Figure IV.6(a). Pim is connected to Pij but not

directly linked by a transition from Pij to Pim

The question that arises is whether d+ of Pim can be computed correctly with
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(a) ie
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(b) ie

me

v

je ke

x y

Figure IV.6: (a) possible transition from Pij to Pim but not a basic transition, (b)
trajectory for a finger (the other is placed on ei) that can be converted to a sequence
of basic transitions.

the described d+ propagation method using only basic transitions. We can answer

this question by showing that we can apply successive basic transitions starting from

Pij to Pim (we are interested in the case when there is no basic transition from Pij

to Pim) such that the maximum transition cost in such sequence is not greater than

t+ijm = |v−y|. Actually, we can easily determine such sequence. This is because it can

be converted from a trajectory of finger in Figure IV.6(b) paired together with another

trajectory on ei.

Another interesting case is shown in Figure IV.7, it is clear that we can take a

transition between Pik and Pil without placing at least one finger at a vertex of the

object. Again, we can use the same approach to show that this kind of transition is

not necessary. Consequently, this generalizes that only basic transitions are sufficient.

IV.5 The Reduced Search Space

From insights we have obtained so far, we are now ready to concrete the definition

of our search space. Our search space is simply an undirected graph reduced from the
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ie

v

x
leke

je

Figure IV.7: Possible transition from Pik to Pil when neither of the two fingers are at
a vertex of the object.

configuration space such that, only with this reduced information, searching this graph

is sufficient to answer the maximal cage problem and to characterize all the maximal

cages.

Given an object geometry described with k simple non-intersecting simple poly-

gons with the edges e1, e2, ...en, this graph is a collection of states and transitions

(S, T) defined as follows.

1. States (S).

Each distinct state is exactly a distinct non-empty partitioned piece Pij with

respect to the input object (see Section IV.3.)

S = {Pij | Pij 6= ∅}

We also assume that the two fingers are the same; therefore, piece Pij is equivalent

to Pji. Each piece Pij is associated with d+
ij , where d+

kk for any k ∈ {1, 2, ..., n}
is trivially known to be zero.

2. Transitions (T).

A transition is a combination of two distinct pieces, which can be written in the

form {Pij, Pik}. However, not all transitions are included in this graph. This is to
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improve the efficiency of the search algorithm. Only basic transitions described

in the previous section are included in the graph.

T = {{Pij, Pik} | {Pij, Pik} is a basic transition}

A transition {Pij, Pik} is also associated with a transition distance t+ijk, an im-

portant information used during propagating d+ among the pieces.



CHAPTER V

THE ALGORITHMS

In the previous chapter, we have shown how we reduce the configuration space

to a graph. This chapter intends to fill in the implementation detail of all algorithms

related to this graph, ranging from the graph construction, the d+ propagation, and the

d+ query algorithms.

V.1 Identifying Empty Pieces

Whether a piece Pij is empty depends on the relative transformation between ei

and ej . In particular, we seek to answer whether there are any two points in the free

space that squeeze to the edge pair, ei and ej . In a sense, the answer to this problem

requires the knowledge on the facing direction of both ei and ej , called −→ni and −→nj

(resp.)

Let us consider a trivial case when ei and ej are simply a point ei = {vi},
ej = {vj}. The precondition for the fingers to squeeze to ei and ej is that both fingers

must be on the line defined by vi and vj . Intuitively, we say that the ei and ej can

only support finger squeezing (hence, form a valid piece) when the following algebraic

condition is satisfied (see Figure V.1.(a),(b) for a couple of examples.)

{
(vi − vj) · −→ni < 0

}
∧

{
(vj − vi) · −→nj < 0

}

In general cases, ei and ej are lines defined by vi, vi+1 and vj , vj+1 (resp.) We

can simply answer this problem by determining whether at least one of the four possible

vertex pairs (i.e. (i) vi, vj , (ii) vi, vj+1, (iii) vi+1, vj or (iv) vi+1, vj+1 supports finger

squeezing. Although we neglect possible combinations of any two points on ei and ej ,

this is still sufficient because ei and ej are straight edges (Figure V.2.)
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Figure V.1: (a) vi and vj can support finger squeezing, (b) vi and vj cannot support
any finger squeezing.)

V.2 Generating Transitions

This section, we shall focus on the task of characterizing all the basic transitions

in the graph. As transitions are defined on three edges, exhaustively verifying whether

each possible transition is a basic transition would consume too much time. Fortunately,

this can be avoided by generating all the basic transitions from every distinct pair of a

vertex and an edge.

It can be easily observed that every basic transition is always associated with a

vertex and an edge. Given v and ei, at most three basic transitions can be generated.
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Figure V.2: Determining whether a piece Pij is valid (see text.)

They are:

(i) {Pij, Pik},

(ii) {Pij, Pil},

(iii) {Pik, Pil}.

Given that ej , ek, el, and x are defined as in Chapter IV.4. All these transitions have

the same distance of t+ijk = t+ijl = t+ikl = |v − x|. By generating basic transitions form

all distinct pairs of a vertex and an edge, we obtain all the basic transitions.

V.3 Propagating Least Upper-Bound Distance

As seen in the previous chapter, least upper-bound distance propagation and

Dijkstra shortest path algorithm are alike. In the case of least upper-bound separation

distance propagation, the goal is to find paths with least upper-bound distance to all

possible Pij . Those paths must begin at some Pkk. The main structure of the algorithm

for this task can be readily adopted from that of the famous Dijkstra’s shortest path.

Only two minor modifications are required. They are:



37

(i) we will propagate d+ instead of the shortest distance. When Pij is being visited,

for every neighboring state Pik, d+
ik will be updated to min(d+

ik, max(d+
ij, t

+
ijk))

(ii) the propagation starts from all possible Pkk, whose d+ are known to be zero.

instead of starting points whose shortest distances are known to be zero. Equiv-

alently, this can be achieved by combining all pieces of the form Pkk to a single

piece.

V.4 Identifying All Maximal Cages

After Pij is labeled with its d+
ij , we can say that Pij is associated with a caging

set Cij , where

Cij = {u ∈ ei, v ∈ ej ||u− v| < d+
ij}.

Most of the time, caging sets are not disjoint. By the definition of maximal cage and

Chapter IV.4, it can be seen clearly that any two caging sets, Cij and Cik, are of the

same maximal cage, if all of the following conditions are satisfied:

(i) {Pij, Pik} is a basic transition.

(ii) t+ijk < d+
ij = d+

ik,

Actually, these conditions are from the definition of maximal cage (Definition IV.2.2.)

A couple of examples are illustrated in Figure V.3(a) and Figure V.3(b).

In the implementation, we need a disjoint set data structure for this task. The

union between Cij and Cik will be performed during the propagation The pseudo code

for identifying maximal cages and propagating d+ is shown in Figure V.4. After the

algorithm execution, the maximal cages are represented with the roots of this disjoint-

set structure.

Some results, each produced under 0.1 second using a PC with 1.8 GHz CPU,

are listed in Figure V.5.
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(a)

ie

keje

+d

+t

(b)

ie

keje

+d
+t

Figure V.3: Two example situations when to, (a), and when not to, (b), merge two
maximal cages (a) t+ = t+ijk < d+ = d+

ij = d+
ik, Cij and Cik are of the same maximal

cage. (b) t+ = t+ijk = d+
ik > d+ = d+

ij , Cij and Cik are not of the same maximal cage.

V.5 Querying Least Upper-Bound Distance and Maximal Cage

We can query whether a pair of fingers, initially placed on u and v, is in which

maximal cage by squeezing them using two ray shoot queries. If the two fingers are

not already visible to each other, they would land on a pair of edges, supposedly ei

and ej . Hence, d+ of u, v is:

d+ =

 d+
ij, d+

ij < |u− v|;
|u− v|, otherwise.

If d+
ij < |u − v|, they are not inside Cij and; therefore, they will not be in any

maximal cage. Otherwise, the maximal cage they are in is the root of Cij . Here, root

refers to the root in the disjoint-set structure constructed as in the previous section.

V.6 Time Complexity Analysis

The process of obtaining d+ of all the pieces and all maximal cages splits into

two sequential tasks:
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procedure Propagate(S, T)

1: Ψ← ∅
2: for 1 ≤ i ≤ j ≤ n do
3: HeapInsert(Pii)

4: d+
ij ←

{
0, i = j;
∞, otherwise.

5: end for
6: while not IsHeapEmpty( ) do
7: Pij ← HeapExtractMin( )
8: if Pij /∈ Ψ then
9: Ψ← Ψ ∪ {Pij}

10: Cij ← {(u, v) ∈ Pij | |u− v| < d+
ij}

11: for all T = {Pij, Pik} ∈ T do
12: if Pik /∈ Ψ then
13: d+

ik ← min(d+
ik, max(d+

ij, t
+
ijk))

14: HeapInsert(Pik)
15: else if t+ijk < d+

ij = d+
ik then

16: DisjointSetUnion(Cij, Cik)
17: end if
18: end for
19: end if
20: end while

Figure V.4: This algorithm determines d+ for all states (pieces) in S and modifies the
disjoint set data structure (initially all Cij are disjoint.) For the variable, Ψ is a set
containing visited nodes.

(i) creating the graph: partitioning the configuration space and generating the basic

transitions,

(ii) propagating d+ in such graph, and modifying the disjoint set.

The first task spent n2 ray shoot queries on determining transitions between non-

adjacent edges. We applied the ray shoot algorithm proposed by Hershberger and

Suri [29] which has O(
√

k lg n) query time (for k simple polygons) and below O(n2)

pre-computation time (required in performing Steiner triangulation on the input ob-

ject.) This task, therefore, runs in O(n2
√

k lg n). For the other task, we need n2

HeapExtractMin’s, at most 3n2 HeapInsert’s, and at most n2 DisjointSetUnion’s. Each

of those operations run in O(lg n). Hence, the overall running time ((i) and (ii)) is
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(a) (b)

(c) (d)

Figure V.5: Examples of outputs from characterizing all maximal cages. Line segments
in the figures roughly indicates the location of maximal cages, whose d+ are represented
with segments’ length.

O(n2
√

k lg n) + O(n2 lg n) = O(n2
√

k lg n).



CHAPTER VI

MINIMAL CAGE

In addition to the maximal cage problem, the explained concept in Chapter IV

can be applied to solve that of minimal cages. Generally, a minimal cage are at a pair

of two opposite reflex sections facing each other (see Figure VI.1.) Once the object

is caged in a minimal cage, it can be maintained by keeping the fingers’ separation

distance greater than a critical distance. That critical distance is the simply greatest

lower-bound distance (called d−) of synchronized trajectory pairs that escape to infinity.

(a) (b)

Figure VI.1: Examples of outputs from characterizing all minimal cages. Positions
and critical distances of minimal cages are roughly illustrated by line segments whose
length represent d−.

VI.1 Minimal Cage Problem

Like maximal cage problem, this problem involves whether we can guarantee

to capture an object given a configuration to initiate a certain (separation distance

constrained) finger motion. Let us first, again, start from observations.

Consider an immobilizing grasp located at some pair of opposite reflex concave

sections (Figure VI.2(a),) the object here can not move; therefore, it is captured.

From that configuration, we can reduce the separation distance to a certain critical

distance such that the object is still unable to escape; however, no longer immobilized
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(a) (b)

(c)

2d1d
0d

p(0.6)

q(0.6)
q(0.3)

p(0)=p(0.3)

q(0)

Figure VI.2: Shown in (a), an immobilizing grasp from stretching fingers, (b) it is
possible to slightly reduce the separation distance while the object remains captured.
(c) At some of time point in the escape (stretching the fingers to infinity) synchronized
trajectories: p and q, the separation distance must be less than a critical value. This
is illustrated as d1 < d0, d2.

(Figure VI.2(b).) Intuitively, if the fingers are infinitely far apart, the object is no

longer captured. Interestingly, we cannot increase separation distance towards infinity

right from the start without reducing it below a certain critical distance first (Figure

VI.2(c).) On the contratary, for the case of the maximal cage problem, we cannot

decrease without first increasing it.

This observation draws our attention to the critical distance such that keeping the

fingers’ separation distance greater than this would result in a cage. Like in maximal

cage problem, we can focus on analyzing synchronized trajectory pairs. The only two
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differences are that, firstly, we limit our interest to trajectory pairs that escape to infinity

(not the same point.) Secondly, the answer to the minimal cage problem is simply the

greatest lower-bound distance among those escape trajectory pairs.

Formally, we define our convention for lower-bound distance of a synchronized

trajectory pair as:

bp, qc = min0≤t≤1|p(t)− q(t)|.

For the synchronized trajectory pair of interest, given an initial configuration u and v,

we can classify them by p, q that satisfy the following conditions.

(i) p(0) = u, q(0) = v, and

(ii) limt→1 |p(t)− q(t)| → ∞

Our short form for the greatest lower-bound distance is also defined as follow.

d− = max∀p∀qbp, qc

VI.2 Characterizing All Minimal Cages

This section aims to explain the strategy used in characterizing all the minimal

cages.

If we replace the separation-distance function |u− v| with [u− v] = 1/|u− v|
for all the definitions regarding maximal cage. The following relationships emerge.

dp, qe = max0≤t≤1[p(t)− q(t)] (VI.1)

= max0≤t≤11/|p(t)− q(t)| (VI.2)

= 1/min0≤t≤1|p(t)− q(t)| (VI.3)

= 1/bp, qc (VI.4)
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d+ = min∀p∀qdp, qe (VI.5)

= min∀p∀q(1/bp, qc) (VI.6)

= 1/max∀p∀qbp, qc (VI.7)

= 1/d− (VI.8)

Obviously, the new separation-distance function f(u, v) = [u− v] is continuous.

Substitution of the separation-distance function reverts the direction of configuration

ordering (i.e. if a configuration (u, v) is near a configuration (u′, v′) and |u − v| ≥
|u′ − v′| prior to the substitution, then, after the substitution, nearness between (u, v)

and (u′, v′) is preserved; however, |u− v| ≤ |u′ − v′|.)

It can be observed from Definition IV.2.2 that the problem of characterizing set

of configurations that can cage the object depends only on comparison of separation

distance between configurations, not the absolute value. In other words, to classify

whether a configuration can cage the object, we do not need to know about the absolute

value of any separation distance1. Therefore, the Definition IV.2.2 immediately

becomes definition of minimal cage after the separation-distance function substitution.

Furthermore, it can be observed that Lemma IV.2.4 (see Appendix A) used only

comparison of separation distance between configurations as well.

Consequently, we can take the same problem reduction strategy as presented in

Chapter IV.2 to characterize all the minimal cages by demanding that the partitioned

pieces must satisfy the following conditions.

(i) Each piece must intersect at most one minimal cage.

(ii) If such piece intersects a minimal cage, every configuration (u, v) in the piece

1The only exception is the absolute value 0 which is used in determining the condition of escape. It
is obvious that our new separation-distance function maps the condition of escape in the case of minimal
cage (∞) to that of maximal cage (0.)
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Figure VI.3: A stretching operation first moves (a) the fingers initially at u, v towards
the direction of u − v, v − u (resp.) until obstructed by edges. Then, (b) continue
to increase their separation distance while constrained on the edges until they are at a
pair of vertices.

is in the minimal cage when |u− v| is greater than d− of the minimal cage.

VI.3 Space Partitioning

Let us include a vertex at infinity to the object. Consequently, we add v0, a vertex

at infinity, to the existing object vertices v1, v2, ...,vn. Taking the modified object as

input, we partition the configuration space in such a way that: configurations that are

stretched (see Figure VI.3) to the same pair of vertices are in the same piece.

Unlike squeezing operation (defined in Chapter IV.3,) this stretching operation

contains two sub-steps. The first step moves the fingers from u and v towards the

direction of u − v and v − u (resp.) until obstructed by edges as illustrated in the

Figure VI.3(a). The other step (Figure VI.3(b)) requires a more concrete definition. Let
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us suppose that, after the first step, the two fingers land on two edges ei and ej at x

and y (resp.) To move to a vertex pair, we first fix one finger at y and move the other

at x to the direction from x′ to x until it reaches a vertex w, where x′ is a projection

of y on ei. In fact, this is a move that strictly increases the fingers’ separation distance.

Likewise, we then fix the finger at the vertex w, and move the other from y towards a

vertex of ej . At this point, the second step movement is done. This two-step movement

defines the stretching operation. One important property, which can be easily observed,

is that, during an execution of the stretching operation, the fingers’ separation distance

never decreases (the fingers never move closer to each other.) The best analogue for

this in maximal cage problem is the operation used in the proof of Proposition IV.3.1,

shown in figure IV.4.

After we partition the free space into pieces, each partitioned piece contains

exactly one configuration corresponding to a pair of object’s vertices. Moreover, such

configuration has the largest separation distance among all other configurations in its

containing piece. We call such configuration the local maximum of the containing

piece.

Since a configuration (u, v) can follow a trajectory (p, q), that imitates the

stretching operation (as in Figure VI.3(a),(b)) to the local maximum. We can see

clearly that bp, qc is equal to |u − v| by the property of the stretching operation

(fingers’ separation distance never decreases during the operation.) From this, given a

piece Pij (a piece associated with vertices vi and vj ,) we can imply the two following

facts:

(i) Pij intersects at most one minimal cage.

(ii) If Pij intersects a minimal cage, every configuration having the separation dis-

tance less than d− of the minimal cage is in the minimal cage.

The proof can be derived in the same manner as shown in Chapter IV.3. Hence,
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Lemma VI.3.1 For the problem of characterizing all the minimal cages, every par-

titioned piece derived from the partitioning rule stated earlier satisfies the required

properties.

At this point, we can now restrict our consideration only a pair of object’s vertices

and configurations on the boundaries, ignoring other configurations.

VI.4 Topology of Pieces

The goal of this section is to characterize the connectivity (the transitions) among

pieces parameterized with a pair of vertex indices. Like maximal cage problem, we

will not add all possible transitions to the search graph. Two types of basic transitions

required are classified as transitions between adjacent and non-adjacent vertices. The

latter links between a vertex pair and that vertex pair after being stretched. These two

types of transitions are sufficient for characterizing all minimal cages.

Given a vertex vi and an edge e, also let x be the point closest to vi on e, the

two basic transitions are:

(i) Transition between adjacent vertices (Figure VI.4(a).)

Since we can restrict our consideration only configurations on edges, placing one

finger to be at vi and the other on x is associated with a configuration on the

boundary between Pij and Pik. On such boundary, this configuration also has

the greatest separation distance. Hence, t−ijk = |vi − x|.

(ii) Transition between non adjacent vertices (Figure VI.4(b),)

where Pik is a piece near vi and vj (such that k 6= j.) From the illustration, we

can clearly state that t−ijk = |vi − vj|.

Please note that there is no such piece Pij that is empty because vi and vj is always

in such piece.
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Figure VI.4: (a) transition between adjacent vertices, (b) transition between non-
adjacent vertices.

Whether d− of Pim can be computed correctly with the described d+ propagation

method (see Chapter V) depends on the minimum cost of a sequence of basic transitions

from Pij to Pim (no direct basic transition from Pij to Pim.) Such sequence’s minimum

transition cost must not be less than t−ijm = |vi − vj|. Such sequence can be easily

determined because it can be converted from a trajectory of finger in Figure VI.5(b)

(the other finger is fixed at vi all the time.) This generalizes that only basic transitions

are sufficient.

VI.5 The Reduced Search Space

We conclude here, again, the concrete definition of the search space for minimal

cage problem. Given an object geometry described with k simple non-intersecting

simple polygons with the vertices v0, v1, ...vn, where v0 is a vertex at infinity, this

graph is a collection of states and transitions (S, T) defined as followings.

1. States (S).

Each distinct state is exactly a distinct partitioned piece Pij with respect to the
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jv

iv

e
mv

Figure VI.5: The figure shows a trajectory of a finger at vj to vm. Such trajectory,
when paired with another trajectory obtained from fixing the other finger at vi all the
time, is a trajectory pair whose lower-bound distance is exactly |vi − vj|.

input object (Chapter VI.3.)

S = {Pij | Pij 6= ∅}

We also assume that the two fingers are the same; therefore, piece Pij is equivalent

to Pji. Each piece Pij is associated with d−ij , where d−0k, for any k ∈ {0, 1, ..., n},
is trivially known to be infinity.

2. Transitions (T).

A transition is a combination of two distinct pieces, which can be written in the

form {Pij, Pik}. Only basic transitions described in VI.4 are required.

T = {{Pij, Pik} | {Pij, Pik} is a basic transition}

A transition {Pij, Pik} is also associated with a transition distance t−ijk, an im-

portant information used during propagating d− among the pieces.
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VI.6 Propagating Greatest Lower-Bound Distance

We will propagate d− in the same manner as d+ in maximal cage problem. The

propagation starts from all possible P0k, whose d− are known to be close to infinity.

To identify all minimal cages, we can say that Pij is associated with a caging set Cij ,

after Pij is labeled with its d−ij . We define Cij in the minimal cage problem as follow.

Cij = {u ∈ ei, v ∈ ej ||u− v| > d−ij}.

The two caging sets, Cij and Cik, are of the same minimal cage, if all of the following

conditions are satisfied:

1. {Pij, Pik} is a basic transition.

2. t−ijk > d−ij = d−ik,

These conditions can be derived from a case analysis as in the case of the maximal

cage problem.

We will modify the pseudo-code in Figure V.4 to match the minimal cage problem

as shown in Figure VI.6. Therefore, the propagation algorithm runs in O(n2 lg n). Since

the construction of S and T requires O(n2) ray-shooting as well, the overall running

time becomes O(n2
√

k lg n).
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procedure Propagate(S, T)

1: Ψ← ∅
2: for 0 ≤ i ≤ j ≤ n do
3: HeapInsert(Pii)

4: d−ij ←
{
∞, i = 0 or j = 0;
0, otherwise.

5: end for
6: while not IsHeapEmpty( ) do
7: Pij ← HeapExtractMax( )
8: if Pij /∈ Ψ then
9: Ψ← Ψ ∪ {Pij}

10: Cij ← {(u, v) ∈ Pij | |u− v| > d−ij}
11: for all T = {Pij, Pik} ∈ T do
12: if Pik /∈ Ψ then
13: d−ik ← max(d−ik, min(d−ij, t

−
ijk))

14: HeapInsert(Pik)
15: else if t−ijk > d−ij = d−ik then
16: DisjointSetUnion(Cij, Cik)
17: end if
18: end for
19: end if
20: end while

Figure VI.6: This algorithm determines d+ for all states (pieces) in S and modifies the
disjoint set data structure (initially all Cij are disjoint.) For the variable, Ψ is a set
containing visited nodes.



CHAPTER VII

IMPROVEMENTS ON SOLVING THE MAXIMAL

CAGE PROBLEM

Based on the framework laid in Chapter IV, we present an improved method

of configuration space partition which is more superior than the previous one in all

aspects. The reason that we do not present this at the beginning is because similar

methodology as good as to this one has not been discovered for the case of minimal

cage problem. This will become clear as we continue the discussion.

VII.1 The Improved Configuration Space Partitioning

The most important process of our framework is undoubtedly that of the con-

figuration space partitioning. Good partitioning reduces the number partitioned pieces

and eases the task of characterizing the piece topology. Therefore, good partitioning

contributes a significant speed up gain to all subsequent tasks, especially the process

of constructing the search graph. Discussions in this section focus on how we improve

such partitioning for the case of maximal cage problem.

With this new partitioning, the partitioned pieces are exactly a pair of convex

regions of the free space (as in Chapter IV.1.) Suppose that we will partition our

configuration space this way. We need to partition the free space into, say r, convex

regions first. An easiest way is to start by finding a convex hull that covers all simple

polygons. Then, partition the rest of the free-space into convex regions. We simply

apply the heuristic convex partitioning algorithm by Hertel and Mehlhorn in [30],

which runs in O(n), after the free-space is triangulated in any manner. This algorithm

guaranteed that r is at most four times larger than the minimum possible number of

convex regions. Since a straight-forward triangulation algorithm takes O(n lg n) [31],

partitioning the free-space into r regions would also take O(n lg n). Though the linear-

time triangulation algorithm is available [32], it is claimed in [33] that it is hopeless
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to implement.

Following the aforementioned approach, we have partitioned our configuration

into r2 pieces: by pairing up the convex regions (each configuration piece is a catesian

product of a pair of two convex regions.) We have to prove that these pieces have the

properties as in Chapter IV.3. Again, we need to show that all the pieces satisfy the

condition as in Proposition IV.3.1. Since each piece is formed by a pair of convex

regions, fingers from any configuration in a piece can reach a local minimum of the

piece with a pair of straight line paths (Figure VII.1.) With such path, the two fingers

just follow the gradient descent to the local minimum (the proof is then reduced to the

case when fingers are on edges as in the proof of Proposition IV.3.1.)

Figure VII.1: A pair of straight trajectories to the local minimum of a piece are always
collision-free because all regions are convex.

This way of partitioning the configuration space reduces the graph construction

time to O(n2) because ray shooting is not required. The overall running time also drops

to O(n2 + r2 lg r). Another significant improvement is that, we can easily determine

the piece topology because we know the topology of convex regions. Furthermore,

we do not need to generate basic transitions since the number of transitions must be

O(r2) since there are O(r) connectivity among r convex regions (we can view convex

regions as nodes with edges linking between adjacent regions to obtain a planar graph.)

Regretfully, pairs of convex regions are clearly not valid pieces for the case of minimal



54

cage because it is possible for multiple local maxima to be inside a piece. As in

minimal cage problem, d− of two adjacent vertices can be different even if they are in

the same convex.

VII.2 Extension To Higher Dimension

Generally speaking, the concept of searching reduced configuration space is not

based on the number of dimensions of the configuration space. Once the graph is

constructed, the problem is independent from the dimension of the configuration space.

However, using ray-shooting based method for configuration space partitioning would

suffer from determining the piece topology. Generating basic transitions in higher

dimensional space can be very complicated. This is the main reason why the improved

method is more suitable to extend to higher dimension.

In case of 3D, we can use a convex partitioning method presented by Chazelle

in [34] to partition the free space into convex polyhedra.



CHAPTER VIII

CONCLUSIONS

We have presented the concepts that are applied in solving both two-finger caging

problems: the maximal cage problem and the minimal cage problem. A common

framework for both problem is established. This framework can be further divided into

two phases. The first phase is to pre-compute two of the following data sets.

• The reduced configuration space represented as a graph of partitioned pieces,

each piece is labeled with an optimum bound distance.

• The disjoint-set structure that is capable of representing optimal cage (if exists)

in the piece.

After the first phase is completed, the second phase which actually produces the

output given the two data sets can be repeated as many times without re-executing

the first phase as long as the object geometry remains the same. The first phase that

characterizes all optimal cages consists of the following steps.

(i) Configuration Space Partition

This step partitions the configuration space (R4 in 2D Euclidean space) into

connected subsets (pieces.) The pieces must also intersect with at most one

optimal cage. In addition, configurations in each piecehaving separation distance

within capturing range (either [0, d+) or (d−,∞)) must be in the optimal cage

intersecting such piece.

(ii) Piece Topology Construction

After partitioning, any two neighboring pieces can be linked by a transition.

This step try to reduce such transitions by generating only basic transitions (in

the improved space partitioning of the maximal cage problem, all transitions are

basic.)
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(iii) Optimum Bound Separation Distance Propagation

Finally, the optimum separation distance will be propagated starting from states

of trivially known optimal separation distance (or escape states.) During the

propagation, information of optimal cages is also obtained and stored inside the

disjoint-set structure.

Once these three steps are completed we will obtained the two data sets for the second

phase where a configuration can be queried for the optimal cage it resides in.

We have summarized the running time of the algorithms in the first phase the

table in Figure VIII.1. For the overall running time of the first phase and the running

time per query of the second phase, please refer to Figure VIII.2.

solutions (i) (ii) (iii)
2D maximal cage O(n2) O(n2

√
k lg n) O(n2 lg n)

2D minimal cage O(n2) O(n2
√

k lg n) O(n2 lg n)
2D improved maximal cage O(n lg n) O(n2) O(r2 lg r)
3D improved maximal cage O(nr3/2) O(n2) O(r2 lg r)

Table VIII.1: Running time of algorithms in the first phase given an input object with
n vertices, represented with k simple polygons (polyhedra in 3D case) and its space
can be partitioned into r convex regions.

solutions first phase second phase
2D maximal cage O(n2

√
k lg n) O(

√
k lg n)

2D minimal cage O(n2
√

k lg n) O(
√

k lg n)
2D improved maximal cage O(n2 + r2 lg r) O(lg n)
3D improved maximal cage O(n2 + nr3/2 + r2 lg r) O(lg n)

Table VIII.2: Total running time of the first phase and running time for each query in
the second phase.

To summarize the thesis, we proposed a method of solving the two-finger cap-

turing problem in a combinatorial approach to obtain exact solutions. From the dis-

cussions, it is obvious that this approach outperforms numerical method presented in
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[8] in situations when the input object can be efficiently represented with polygons.

Especially, the improved solution of maximal cage problem, which can be extended

its usage to 3D Euclidean space, contributes a significant improvement to this field.

However, the solution of minimal cage problem is still underdeveloped. Improving such

solution is an interesting point for further researches.



References
[1] Peam Pipattanasomporn and Attawith Sudsang. Two-finger caging of concave polygon. In

Proceeding of IEEE International Conference on Robotics and Automation, May

2006.

[2] Abram Samoilovitch Besicovitch. A net to hold a sphere. Math Gazette, 41:106–107,

1957.

[3] G. C. Shephard. A sphere in a crate. London Math Society, 40:433–434, 1965.

[4] Wlodzimierz Kuperberg. Problems on polytopes and convex sets. DIMACS Workshop on

Polytopes, pages 584–589, January 1990.

[5] Antonio Bicchi and Vijay Kumar. Robotic grasping and contact: A review. In Preecedings

of IEEE International Conference on Robotics and Automation, 2000.

[6] Sebastien J. Blind, Christopher C. McCullough, Srinivas Akella, and Jean Ponce. Manip-

ulating parts with an array of pins: a method and a machine. IEEE Transactions

on Robotics and Automation, 2002.

[7] Attawith Sudsang, Fred Rothganger, and Jean Ponce. An implemented planner for ma-

nipulating a polygonal object in the plane with three disc-shaped mobile robots.

In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, volume 3, pages 1499–1506, October 2001.

[8] Elon Rimon and Andrew Blake. Caging 2d bodies by 1-parameter two-fingered gripping

systems. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 1459–1464, April 1996.

[9] Colin Davidson and Andrew Blake. Caging planar object with a three-finger one-parameter

gripper. In Proceedings of IEEE International Conference on Robotics and

Automation, 1998.

[10] Kakkala "Gopal" Gopalakrishnan and Ken Goldberg. Gripping parts at concave vertices.

In Proceedings of IEEE International Conference on Robotics and Automation,

pages 1590–1596, May 2002.



59

[11] Attawith Sudsang and T. Luewirawong. Capturing a concave polygon with two disc-

shaped fingers. In Proceedings of IEEE International Conference on Robotics

and Automation, 2003.

[12] Goresky and Macpherson. Stratified morse theory. Springer-Verlag, 1980.

[13] Attawith Sudsang, Jean Ponce, and Narayan Srinivasa. Algorithms for constructing immo-

bilizing fixtures and graps of three dimensional objects. Algorithmic Foundations

of Robotics II, pages 363–380, 1997.

[14] Colin Davidson and Andrew Blake. Error-tolerant visual planning of planar grasp.

In Proceedings of IEEE International Conference on Conference on Computer

Vision, pages 911–916, 1998.

[15] Attawith Sudsang, Jean Ponce, Mark Hyman, and David J. Kriegman. On manipulating

polygonal objects with three 2-dof robots in the plane. In Proceedings of IEEE

International Conference on Robotics and Automation.

[16] Attawith Sudsang, Fred Rothganger, and Jean Ponce. Motion planning for disc-shaped

robots and pushing a polygonal object in the plane. IEEE Transactions on

Robotics and Automation, 2002.

[17] Attawith Sudsang. Sweeping the floor: moving multiple objects with multiple disc-shaped

robots. In Proceedings of IEEE/RSJ International Conference on Intelligent

Robots and System, volume 3, pages 2825–2830, October 2002.

[18] Attawith Sudsang. A sufficient condition for capturing an object in the plane with disc-

shaped robots. In Proceedings of IEEE International Conference on Robotics and

Automation, pages 682–687, 2002.

[19] Jeff Erickson, Shripad Thite, Fred Rothganger, and Jean Ponce. Capturing a convex object

with three discs. In Proceedings of IEEE International Conference on Robotics

and Automation, pages 2242–2247, September 2003.



60

[20] ZhiDong Wang and Vijay Kumar. Object closure and manipulation by multiple cooperating

mobile robots. In Proceedings of IEEE International Conference on Robotics and

Automation, 2002.

[21] ZhiDong Wang, Vijay Kumar, Yasuhisa Hirata, and Kazuhiro Kosuge. A strategy and a fast

testing algorithm for object caging by multiple cooperative robots. In Proceedings

of IEEE International Conference on Robotics and Automation, volume 2, pages

2275–2280, September 2003.

[22] ZhiDong Wang, Yasuhisa Hirata, and Kazuhiro Kosuge. Control multiple mobile robots

for object caging and manipulation. In Proceedings of IEEE/RSJ International

Conference on Intelligent Robots and Systems, volume 2, pages 1751–1756,

October 2003.

[23] ZhiDong Wang, Yasuhisa Hirata, and Kazuhiro Kosuge. Cc-closure object and object

closure margin of object caging by using multiple robots. In Proceedings of

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, vol-

ume 1, pages 344–349, July 2003.

[24] ZhiDong Wang, Yasuhisa Hirata, and Kazuhiro Kosuge. Cooperative object caging

by using multiple mobile-manipulators. In Proceedings of IEEE International

Conference on Robotics, Intelligent Systems and Signal Processing, volume 1,

pages 184–189, October 2003.

[25] ZhiDong Wang, Yasuhisa Hirata, and Kazuhiro Kosuge. Control a rigid caging formation

for cooperative object transportation by multiple mobile robots. In Proceedings

of IEEE International Conference on Robotics and Automation, volume 2, pages

1580–1585, May 2004.

[26] ZhiDong Wang, Yasuhisa Hirata, and Kazuhiro Kosuge. Deformable caging forma-

tion control for cooperative object transporation by multiple mobile robots. In

Proceedings of IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, pages 1158–1163, 2005.



61

[27] ZhiDong Wang, Yugo Takano, Yasuhisa Hirata, and Kazuhiro Kosuge. A pushing leader

based decentralized control method for cooperative object transportation. In

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and

Systems, volume 1, pages 1035– 1040, September 2004.

[28] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, chapter Graph Algorithms, pages 595–599. The

MIT Press, 2001.

[29] John Hershberger and Subhash Suri. A pedestrian approach to ray shooting: shoot a

ray, take a walk. In SODA ’93: Proceedings of the fourth annual ACM-SIAM

Symposium on Discrete algorithms, pages 54–63, Philadelphia, PA, USA, 1993.

Society for Industrial and Applied Mathematics.

[30] Stefan Hertel and Kurt Mehlhorn. Fast triangulation of the plane with respect to simple

polygons. Information and Control, 64(1-3):52–76, 1985.

[31] Michael R. Garey, David S. Johnson, Franco P. Preparata, and Robert E. Tarjan. Trian-

gulating a simple polygon. In Information Processing Letters, volume 7, pages

175–179, 1978.

[32] Bernard M. Chazelle. Triangulating a simple polygon in linear time. In Discrete and

Computational Geometry, volume 6, pages 485–524, 1991.

[33] Steve Skiena. Triangulation. The Algorithm Design Manual, pages 355–357, 1997.

[34] Bernard M. Chazelle. Convex decompositions of polyhedra. In STOC ’81: Proceedings

of the thirteenth annual ACM symposium on Theory of computing, pages 70–79,

New York, NY, USA, 1981. ACM Press.



Appendix



APPENDIX A

PROOF OF LEMMA

Before proving Lemma IV.2.4, we require the following implication.

Proposition A.0.1 Given that (i) the distance function f(u, v) = |u − v| is contin-

uous, (ii) a piece P , there exists a configuration on the boundary between P and

another piece Q must have its d+ equal to d+
P .

Proof: We divide the proof into three cases depending on how P intersects a

maximal cage, each is separated in its own paragraph.

P intersects a maximal cage but no maximal cage is a subset of P . Clearly,

the boundary of P contains configuration with d+ equal to d+
P . This is because there

must exist at least another piece Q that shares with P a boundary which also intersects

the maximal cage.

A maximal cage is a subset of P . Suppose that no configurations on the

boundary between P and another piece Q have d+ equal to d+
P . This implies that

all configurations (u, v) that satisfies the following conditions are in P . (u, v) is

reachable by a synchronized trajectory (p, q) starting from a configuration in the

maximal cage inside P such that dp, qe ≤ d+
P (therefore, the set of possible (u, v)

is slightly larger than the maximal cage when the distance function is continuous.)

Due to the partitioning rule, no such (u, v) with separation distance than d+
P must not

be in P . Since the distance function is continuous, this is impossible unless d+
P is

infinitesimally greater than it currently is.

P does not intersect with any maximal cage. Let R be a set of configurations

configurations in P whose separation distance is equal to d+
P . Suppose that R does not

intersect the boundary of P , then R must be surrounded by configurations with greater
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separation distance because the distance function is continuous. Therefore, R must be

a maximal cage. This is a contradiction.

With this proposition and Proposition IV.2.3, we can begin the proof of Lemma

IV.2.4.

Proof: The Proposition IV.2.3 constraints d+ of each piece P such that:

d+
P ≤ min∀Q∈Q

{
max(min(u,v)∈B(P,Q)|u, v|, d+

Q)
}

,

For each piece, at least one configuration in the maximal cage is guaranteed to

be on the boundary of the piece, according to Proposition A.0.1. Suppose that one

of those configuration is (u, v) on B(P, Q) (for some piece Q ∈ Q,) the lower-bound

evidence of d+ of this piece can be obtained from d+ of (u, v). Therefore,

d+
P = min∀Q∈Q

{
max(min(u,v)∈B(P,Q)|u− v|, d+

Q)
}

,
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