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CHAPTER |

INTRODUCTION

1.1 Motivation

Nowadays, commercial air transports are highly competitive. Both premium
airlines and low-cost airlines emerge in order to support the advancement of business.
Therefore, the airline companies need to adjust themselves because of the advent of
innovation. The increasing number of customers leads to the increasing number of
planes, routes and crew (pilots and flight attendants). Consequently, the cost of fuel,
cost of operation and crew cost increase. According to Anbil [1] after costs for fuel,
crew costs are the second largest expenses of an airline. For this reason, cost-efficient
crew scheduling plays an important role in cost saving. A few percent of crew reduction
usually has an impact on annual savings of tens of millions US dollars for large airlines
[2].

Efficient crew scheduling results in a significant cost saving. As a consequence,
there have been a considerable number of researchers who were interested in solving a
crew scheduling problem for the past decades. Crew scheduling method has been
applied to transportation systems such as airlines railway and bus; emergency service
such as police, ambulance and fire brigade; nurse scheduling in health care systems
and many other service organizations such as hotels, restaurants and retail stores [3].

The planning and scheduling of aircraft and crews in airline industry is
considered to be one of the largest and the most complex. For example one major U.S.
airline must schedule about thousands of flight segments per day [4]. The airline must

assign aircraft and specific cockpit crew and flight attendant crew to all of these



thousands of flight segments and determine a monthly schedule. Therefore, the
planning process is usually separated into several planning steps including fleet
assignment, scheduling design, aircraft maintenance routing, and crew scheduling [5].
However, this work focuses on the crew scheduling problem for the Thai Airways in case
of international flights. Conventionally, airlines divide the construction of crew scheduling
into two parts: a crew pairing problem and a crew rostering problem. The objective of
two stages is mostly to find the minimum-cost schedule that also satisfies all given rules
and regulations. We will elaborate each of these two stages in section 2.2.

In our research study, we assume that the crew pairing problem has been
solved because the data of the crew pairing has already given by Thai Airways. This
thesis presents the crew rostering problem for the international flights of Thai Airways.
We propose a 0-1 multi-commodity flow model whose objective function is to minimize
the sum of the upper bound of workload and per-diem. Ultimately, from this model, we
wish to obtain the optimal monthly schedule determining a monthly schedule (for in-flight

managers only).

1.2 Research objective

The objective of a crew rostering is to assign each individual crew member to a
flight schedule while satisfying work rules and regulations. A flight pairings, which
composes of flight segments and rest periods, can be constructed to cover one
workday or several workdays. In this research, we consider only the pairings that
originate and terminate at the base airport in Bangkok and construct a monthly roster for
each In-flight manager crew of the Thai Airways. The rosters are constructed so that the

sum of the upper bound of per-diem and workloads are minimized.



1.3 Structure of the thesis

The rest of the thesis is described as follows.

In Chapter Il, The backgrounds and related research in the literature are
described. This includes airline crew scheduling problem, some well-known
combinatorial optimization problems, the heuristic approaches, and the solution

approaches. The network flow problems and their appreciations are also reviewed.

In Chapter I, rules and regulations of Thai Airways is presented and then the
characteristics of multi-commodity flow model correspond to Thai Airways crew

rostering problem are described.

In Chapter IV, the experiments and results are presented.

In Chapter V, the results are discussed and analyzed and the conclusion from

the study is drawn.



CHAPTER Il

LITERATURE REVIEW

2.1 Airline Crew Scheduling Problem

The propose of this chapter is to provide the background of the airline

scheduling problem and review some approaches for solving crew scheduling problem.

2.1.1 Crew pairing problem

The airline crew scheduling problem is usually divided into two problems. The
first problem in the crew scheduling is called crew pairing and the second is called crew
rostering. The crew pairing problem involves construction of flight pairings for an
unspecified crew member. Each flight pairing begins and ends at the same base station
for the crew. Moreover, all flight pairings must satisfy all of the governmental regulations
and collective agreements which vary from airline to airline. The main objective of the
crew pairing is to find a minimum cost of pairings that cover all flights for the scheduling
period (usually one month). Traditionally, during the past decades, the crew pairing
problem has been formulated as a set covering problem or a set partitioning problem [6]
[7] [8] [9]. It is usually solved by the generate-and-optimize principle [6]. Unfortunately
very large set partitioning problems are generated (400 rows, 30,000 columns) and
found to be unsolvable by any available techniques [7][8]. Consequently, there are
several other approaches such as a network model [9], a nonlinear multi-commodity

network flow [10], heuristics approach [11] [12].



2.1.2 Crew rostering problem

Once the crew pairing problem is solved, the second problem is the crew
rostering problem. The output of crew pairing will become the input of the crew
rostering. Crew rostering assigns individual crew members to each pairing that
constructs in the crew pairing process. In a process of the crew rostering one needs to
consider other pre-assignment activities such as training periods, annual leaves, and
holidays as well as government regulations and contractual agreements. Generally, the
aim of crew rostering is to minimize cost or maximize the quality of life among the crew

members.

All of these constraints add more complexity to the crew rostering problem, and
this explains why most researchers in the literature proposed solution methods based on
heuristics [5] [13] [14]. For non-heuristics approaches, many researchers constructed
combinatorial optimization models, such as a set partitioning or a set covering and a

network flow model for modeling a crew rostering problem.

The set partitioning problem or the set covering problem has traditionally been
applied to the crew rostering for almost two decades [5] [11]. Methods for solving the
set partitioning(covering) problem are often based on branch-and-bound, branch-and-
cut, etc.[11] [15]. When the numbers of decision variables are small, most integer
programming solvers can handle these problems. However, when numbers of decision
variables are large, other techniques must be used. A popular choice of such

techniques is the column generation approach.

A set partitioning model was proposed by G. Yu [15] for a rostering problem.
The problem was solved by a column generation technique and a branch-and-bound

algorithm. The author proposed a strategy for decreasing a solution time. The strategy



was called "disjoint columns". Details of this strategy can be found in [15]. It could

decrease solution time by at least 40% in their test problems.

Kato and Jeenanunta [21] presented the set partitioning model for solving a
crew rostering problem using thai domestic flight data from Nok Air and the main goal
was the balancing the quality of life among crew members in term of the faimess of

workloads, destinations, and holidays.

Desaulniers et al [10] have proposed two models for Daily Aircraft Routing and
Scheduling. The first model was constructed as a set partitioning problem and a column
generation method was employed to solve the linear relaxation of the set partitioning
problem. The second model was constructed as a time constrained multicommodity flow
formulation and a Dantzig-Wolfe decomposition method was used to solve the linear
relaxation of the problem. Finally a branch-and bound algorithm was used to obtain

integer solutions of the two models.

Yan, S. et al [8] presented models that incorporate three factors: home bases,
aircraft, or cabin classes, into the crew scheduling problem in order to improve the
construction of cabin crew schedules. The authors developed eight models for
minimizing crew cost and planning proper pairings under the real constraints for a
Taiwan airline. The networks were constructed using weekly flight schedules and cabin
crew information. Eight models were formulated as integer programs which are solved

by a column-generation-based algorithm developed by the authors.

Yan S. & Tu Y.-P. [9] constructed pure network models which can both efficiently
and effectively solve crew scheduling problems for a Taiwan airline. The flow

decomposition method [18] was used to generate pairings that cover all duties.



Cappanera and Gallo [22] formulated the airline crew rostering problem as a 0-1
multicommodity flow problem and focused on minimizing the number of noncovered
activities in the objective function. They used a preprocessing phase in order to reduce
the size of the network and proposed some families of valid inequalities that had proved

to be computationally effective.

Moz and Pato [14] presented two new integer multicommodity flow formulations
for solving the problem of rerostering nurse schedules. The authors did not specify the
technique used for solving this problem, but focused on the comparison of the two
models in terms of solution quality and computational time. The first model was based
on a directed multilevel acyclic network. The second model was obtained by

aggregating some nodes in the first model.

Although exact methods have been applied in the rostering problem for past
decades, a nature of this problem is a large-scaled and complex optimization.
Therefore, many literatures have proposed heuristic approaches to solve the rostering
problem. A heuristic is an approach that can seek a good approximate result in a
reasonable time. Examples of heuristic approaches used in crew rostering are a

simulated annealing such as [16], and Genetic algorithm such as [17], etc.



2.2 Network Flow Problems

In this section, we review the features of a single-commodity network and a
multi-commodity network that we use in this thesis. Their applications are also review in

the end of this section.

The single- commodity flow problem is the minimum cost flow problem. It is a
rudimentary network flow problem. The objection of this problem aims to find a minimum

cost. A flow in a network has to satisfy some constraints which explained below.

Let G= (N, A) be a directed graph, where N is the set of nodes and A is the set

of arcs.
Cij be the per-unit cost on arc (i,j)
x;; be the flow on arc (i, )
u;; be the upper limit on arc (i, j)

The formulation of the single-commodity can be shown as follows:
min Z Cijxij
(i,j)eA

subject to

Xij = Z Xy VieN (1)
J:G,)EA 1:(L,i)eA

Ole'jSuij V(i,j)EA (2)



The objective is to minimize total cost such that the amount of flow into and out
of each node must be equal. The flow on each arc (i,j) cannot exceed its upper limit
u;j. Condition (1) is called a flow conservation constraint and (2) is called an arc

capacity constraint.

For multi-commodity, all types of commodities do share the same arc capacity c.

Let t define the number of the different commodities,
c;‘j be the per-unit cost on arc (i, j) for commodity &,
x{‘j be the flow on arc (i, j) for commodity k,
u;; be the upper limit on the sum of all commodities on arc @, ).

The formulation of the multi-commodity can be express as follows:

min Z Z cl’jxl’j
k=1 (i,j)€A

subject to

xk = Z X VieNVk=1,..t 3)

J:(i,j)eA I:(L,i))eA

t

oszx{; < uy v(i,j)) EAVKk=1,..,t (4)

k=1

The objective is to minimize total cost. Condition (3) is called a flow conservation
constraint. The amount of flow into and out of each node must be equal Condition (4) is
called an arc capacity constraint. The total of the flow from all commodities cannot

exceed its upper limit u;;.
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The multi-commodity flow approach is wildly used in routing of multiple
commodities, warehousing of seasonal products, train scheduling and airline
scheduling. The size of the airline scheduling problem makes the multi-commodity
network flow problem difficult to solve. Therefore, many approaches such as Lagrangain
relaxation, column generation, and Dantzig-Wolfe decomposition are used for solving

the LP relaxation of the corresponding multi-commodity network flow problems.



CHAPTER I

THAI AIRWAYS CREW ROSTERING PROBLEM

In this chapter, we describe the rules and regulations of the Thai Airways which
are important in the network construction used in our network flow model. The
formulation of the multi-commodity flow problem as a 0-1 programming model is also

described.

3.1 Rules and Regulations in Thai Airways

There are two types of services in Thai Airways: International and Domestic
services. Their routes can be grouped as North America routes, Europe routes, Africa
routes, Australia and New Zealand routes, Regional routes, and Domestic routes. There
are six categories of crew members: In-flight manager (IM), Air purser (AP), F (who
works only on the first class), E (who works on the business class), R (who works on the

business class) and, Y (who works on the economic class).

First, we make a note on our definition of some important terms:

1. A Block Time/Flight Time is the time period from which the aircraft starts moving from

the parking at the departure airport until the aircraft stops moving at the arrival airport.

2. A Flight Duty Period is the period of the time starting from one hour before the block

time until thirty minutes after the end of the block time.

Table 3.1 and 3.2 show the regulations for cabin attendants of Thai Airways

which are considered in our model.
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Table 3.1: Block Time Constraints for each cabin crew.

Number of Days Total Block Time
Every 7 consecutive days should not exceed 34 hours
Every 28 consecutive days should not exceed 110 hours
Every 365 consecutive days should not exceed 1000 hours

Table 3.2: Rest Period Constraints for each cabin crew.

Flight Duty Period Rest Period
<8hrs =8 hrs
8-10 hrs =10 hrs
10-12 hrs > 12 hrs
12— 14 hrs > 14 hrs
14 - 16 hrs =16 hrs
16 - 20 hrs > 24 hrs
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3.2 Multi-commodity Flow Model Construction

In this section we represent the crew rostering problem for Thai Airways with a
multi-commodity network flow model. First, the construction of the network model is
described. Then we discuss the multi-commodity flow constraints and the model

objective function.

3.2.1 Network Construction

We construct a network that satisfies flight duty period constraints. Moreover, we
assume that the crew pairing problem has been solved. In our case study, we consider

the crew rostering problem for the in-flight managers only.

3.2.1.1 Model |

This is a preliminary model that relaxes the rest period constraints and is
presented in [23]. In this model, we formulate the crew rostering problem as a
multicommodity network, which is a directed graph G= (N, A), where N is the set of

nodes and A is the set of arcs.

We describe the network using a small example shown in Figure 3.1. In this
example, the multi-commodity network flow model represents possible scheduling for 2
working days and 4 pairings. Every node represents a point in time. There are four types

of arcs which are day-off arcs, duty arcs, rest arcs, and a cyclic arc.

1. Day-off arcs: a day-off arc represents a day off. The head node and the tail node of
a day-off arc indicate the beginning time of the day, which is 0:00 and the ending
time of the day, which is 24:00, respectively. The arc cost is zero. The lower bound

is zero and the arc upper bound is infinite.
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2. Duty arcs: a duty arc represents a work duty for a pairing. The arc cost is given and

depends on the corresponding pairing. The arc lower bound and upper bound are
equal to one, meaning that exactly one crew member serves as IM for that duty.
Rest arcs: the rest arcs connect the head node of a day-off arc with all starting
nodes of the duty arcs of the same day. The rest arcs also connect all ending nodes
of the duty arcs with tail nodes of the day-off arc of the same day. The arc cost is
zero. The arc lower bound is zero and the arc upper bound is infinite.

Cyclic arc: a cyclic arc connects the end schedule node to the start schedule node.

The arc cost is zero. The arc lower bound is zero and the arc upper bound is infinite.

The set of nodes N contains the following types of node:

The node of a day-off arc on the day d, denoted by ag.

The starting node of a duty arc associated with the pairing number p,
denoted by u,,.

The ending node of a duty arc associated with the pairing number p,

denoted by v,

We build the crew rostering network as follows:

1.

2.

3.

4.

The starting nodes of a day-off arc are constructed for each day and the nodes are
linked by the day-off arcs. The number of day-off arcs is exactly the total number of
days covered by all pairings.

The duty arcs are constructed according to the pairing data.

The rest arcs are constructed by joining the head node of a day-off arc with all
starting  nodes of the duty arcs of the same day. The rest arcs also connect all
ending nodes of the duty arcs with tail nodes of the day-off arc of the same day.

The cyclic arc connects the sink node to the source node.
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Figure 3.1: An example of the crew rostering network for Model |.

@

0:00 24:00 0:00 24:00 0:00 24:00

(1) > day-off arc
(2) susseetrreidio it > duty arc
B) —————— > rest arc

4) —> cyclic arc

3.2.1.2 Model Il

In this model, we improve Model | by adding the rest period constraints. The
previous network must be modified since it can generate infeasible solution in this
model. For example, Table 3.3 shows the data set that we use for formulating the
network in Figure 3.2. The next possible departure day and the next possible departure
time indicate the day and the time that the next possible pairing can start in a feasible

schedule. They are calculated by incorporating the appropriate rest period.
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Table 3.3: The example of the data set

Pairing
1 2 3 4 5 6
number
Departure
403 319 664 403 319 664
Flight
Avrrival Flight 404 320 665 404 320 665
Departure Day 1 1 1 2 2 2
Departure
8:00 10:35 11:00 8:00 10:35 11:00
Time
Arrival Day 1 1 4 2 2 2
Arrival Time 13:45 18:35 21:00 13:45 18:35 21:00
Block
5:45 8:00 10:00 5:45 8:00 10:00
Time(hrs)
Flight Duty
7:15 9:30 11:30 715 9:30 11:30
Period (hrs)
Restperiod | 28hrs | =10hrs | =12hrs | =28hrs | =10hrs | = 12hrs
Next possible
Departure 1 2 2 2 3 3
Day
Next possible
Departure 21:45 4:35 9:00 21:45 4:35 9:00
Time

From Table 3.3, the pairing number 1 has the departure flight 403, departure day
1 and departure time 8:00. This pairing has the arrival flight 403, arrival day 1 and arrival
time 13:45. The block time is the arrival time — the departure time = 13:45 — 8:00 = 5:45.
Therefore, the flight duty period of the pairing number 1 is the block time (hrs) +1:30
(hrs) = 5:45+1:30 = 7:15 (hrs). The rest period must be at least 8 consecutive hours. The

next possible departure time is the arrival time + the rest period. Thus the next possible
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departure time is 13:45+8:00 = 21:45 and the next possible departure day is 1. The data

set of other pairings is obtained in a similar manner.

Figure 3.2: The crew rostering network form Model | using the data set from Table 3.3

Iy W\ /
// // ........... .>@\\§\ / =V (N WV > a
/ / -
I/ W PSS \\\
/ / - N %}L
0:00 2400 0:00 24:00
Day d=1 Dayd=2

If we use Model | to construct the network using data from Table 3.3, we will
obtain a network show in Figure 3.2. Every path from node a4 to node asrepresents a
possible 2-day schedule for a particular crew member. However, if the path
is aq,Us, U3, Ay, Uy, Uy, A3, A4, it Will be infeasible schedule because the pairing 3 has
the next possible departure time = 9:00 and the next possible depart day = 2 but the
pairing 4 has departure time = 8:00, which cause the violation on the rest time period
constraints. Thus, this thesis proposes a new network construction to the rostering

network in order to eliminate the shortcomings of the previous model.
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The multi-commodity network flow model for Thai Airways crew rostering
problem in this thesis is a directed graph G= (N, A), where N is the set of nodes and A
is the set of arcs. Figure 3.3 shows an example of the crew rostering network. The set of

nodes N contains the following types of node:

1. The starting node of a day-off arc on the day d, denoted by a4.

2. The ending node of a day-off arc on the day d, denoted by by.

3. The starting node of a duty arc associated with the pairing number p,
denoted by w,.

4. The ending node of a duty arc associated with the pairing number p,

denoted by v,

In the network, the nodes defined above can be linked by one of the following
arc types. Figure 3.3 shows each type of arc with the label indicating the type number:
1. Day-off arcs: a day-off arc represents a day off. The arc cost is zero. The lower
bound is zero and the upper bound is infinite.
2. Day-link arcs: a day-link arc links the ending day-off node of the day d to the
beginning day-off node of the day d+71. The arc cost is zero. The lower bound is zero
and the upper bound is infinite.
3. Duty arcs: a duty arc represents a work duty for a pairing. The arc cost is given and
depends on the corresponding pairing. The arc lower bound and upper bound are
equal to one, meaning that exactly one crew member serves as IM for that duty.
4. Duty-link arcs: If a pairing that can be followed by another pairing within 24-hour
period without violating the rest period constraints, those two pairing will be joined by a
duty-link arc. The arc cost is zero. The arc lower bound is zero and the arc upper bound

is infinite.
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5. R1 arcs: Some R1 arcs are the rest arcs that join the head node of the day-off arc on
the first day with all pairings on the same day. The other R1 arcs join the tail node b, of
a day-off arc with all starting nodes of the duty arcs in the day = d+7.The arc cost is
zero. The arc lower bound is zero and the arc upper bound is infinite.

6. R2 arcs: R2 are the rest arcs that connect all ending nodes of the duty arcs on the
day d with starting nodes of the day-off arc on the day d+7. The arc cost is zero. The arc
lower bound is zero and the arc upper bound is infinite.

7. Cyclic arc: a cyclic arc connects the end-of-schedule node to the start-of-schedule-
node. The arc cost is zero. The arc lower bound is zero and the arc upper bound is
infinite.

Figure 3.3: Each type of arc

Dayd=1 Dayd =2 Dayd =3

..................... 7
 EE—
/
! // =@\. i
./ ~
w4
/?('.(///
(1) @ i @ ...........................................
£\
(2)
(1) ............................................ » day_oﬁ‘ arc (5) ——————— | g R1 arc
(2) > day-link arc (6) —— = » R2arc
(3) > duty arc (7) » cyclic arc
(4) »  duty-link arc
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We demonstrate the network construction using an example from Table 3.3,

which consists of 6 pairings that must be covered.

1. Two day-off nodes are constructed for each day representing the start and the end of
the day. The nodes in the same day will be linked by the day-off arcs. A day-link arc will
link the ending node j = by and beginning node i = a441 - The number of day-off arcs
is exactly the total number of days covered by all pairings. Since all six pairings together

span 3 working days, we must have 3 day-off arcs.
2. The duty arcs are constructed according to the pairing data. Figure 3.4 displays the
day-off arcs and the duty arcs constructed from the data table.

Figure 3.4: Construction of the day-off and duty arcs.

- 0—0
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3. For the first day, the R1 arcs are constructed by joining the head node of the day-off

arc with all starting nodes of the duty arcs of the same day. For the following days, the

R1 arcs join the tail node j = by of a day-off arc with all starting nodes of the duty arcs

in the day d+7. The R2 arcs connect all ending nodes of the duty arcs with starting

nodes of the day-off arc in the next day. (See Figure 3.5.)

Figure 3.5: Construction of the R1 and R2 arcs.

4. The next possible departure time and the next possible departure day from Table

3.3 are used for constructing duty-link arcs. For any two pairing, if one pairing can

follow another pairing within a 24-hour period without violating the rest period

constraints, they will be linked by a duty-link arc. Figure 3.6 illustrates all duty-link

arcs using data from Table 3.3.
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Figure 3.6: Construction of the duty-link arcs.

5. The cyclic arc connects the sink node to the source node. (See Figure 3.7.)

Figure 3.7: Construction the cyclic arc.

3.2.2 Notations

The formulation of the crew rostering problem is presented in this subsection.
First we introduce the notations then the formulation.

The following variables are used in the model:

Xij is the binary decision variable where
xicj = 1ifacrew member C is assigned to arc (i, )

and xicj = 0 otherwise



MW is the variable representing the maximal total workload
assigned among the crew members.
MP is the variable representing the maximal total per-diem

assigned among the crew members.

The following parameter sets are to be used:

Wij is the workload rating for arc (i, j)

Pij is the per-diem for arc (i, j)

bij is the block time (in minutes) for arc (i, j)

L;j is the lower bound for arc (i, j)

Uij is the upper bound for arc (i, j)

N is the set of all nodes.

A is the set of all arcs.

C is the set of crew members

DAY is the set of valid departure days = {7,8,9,...,last day}.
AP is the set of arcs where the starting node lies in day D
pP¢ is the set of pre-assignments arc for crew member ceC.

Note: w;;= p;j=b;j = 0forallarcs (i,j) which are not duty arcs.

23



3.2.3 Model Fomulation

The multi-commodity flow model for Thai Airways is given by:

Minimize MW + MP

24

Subject to
C c A,
z Xij Z Xiet RSO Vi €N,Vc€C 2)
J:LjeA k:(k,i)E A
c (3)
Z Wijxi 5 /)Y Ve €C
(i,j)eA
c (4)
Z Pij Xij =/ | MG Vc €C
(i,j)eA

d

vd € DAY,Vc e C

Ly = xXj < Uy v(i,j) EA
(i,)eA
x5 =1 v(i,j) € Cyclic arc,Vc € C (7)
xf =1 v(i,j) € P¢,Vc €C (8)
x5 € {0,1} v(i,j) € A,Vc €C (9)

The objective of this model is to minimize the sum of the upper bound of
workload and per-diem, which is a linear function. The set of constraints can be

explained as follows:

Flow Conservation Constraints (2) state that the amount of flow into and out of

each node i must be equal for each crew member.
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Upper bound Workload Constraints (3) ensure that the workload of each crew

member does not exceed the upper bound.

Upper bound Per-diem Constraints (4) ensure that the per-diem of each crew

member does not exceed the upper bound.

Block Time Constraints (5) ensure that for each crew member ¢ cannot work

more than 2040 minutes (34 hours) a week on any 7 consecutive days.

Arc Capacity Constraints (6) demonstrate the minimum number and maximum

number of crew members required for each arc.

Cyclic Arc Constraints (7) show that the flow on the cyclic arc for each crew
member must be one in order to force a flow from the end-of- schedule node to the start-

of-schedule node.

Pre-assignments Constraints (8) can be different events, such as annual leave,

training period, etc that are pre-assigned to each crew member.



CHAPTER IV

EXPERIMENTS AND RESULTS

To evaluate how well the model can be applied in the real situations, we
performed 3 sets of case study using data from some international flights of the Thai
Airways and only focused on the in-flight manager (IM) crew members. To construct the
rostering network, we used the R scripting language. The multi-commodity flow problem
is solved by using IBM ILOG CPLEX 12.10. running on Intel Core 2 Duo 2.67 GHz, RAM

2.00 GB

4 1 Data Set

The model proposed in this work is tested using 3 sets of flight data of Thai
Airways. Data set 1, 2, and 3 consist of the pairing data for 7, 14, and 28 working days
respectively. Each data set is composed of 5 instances, which are varied by the

numbers of pairings and the numbers of crew members being considered.

Table 4.1: The details of the data set 1.

Instances
Instances’ details
7A 7B 7C 7D 7E
Number of days 7 7 7 7 7
Number of pairings/day 7 7 14 14 26
Total number of pairings 49 49 98 98 182
Number of crew members 15 15 45 45 56
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Table 4.1 shows data set 1, which contains pairing data for 7 consecutive

working days. There are 5 different instances in this data set, namely, 7A, 7B, 7C, 7D,

and 7E. The Instance 7E is a scaled-down 7-day version of the real data, which contains

728 pairings from 28 days.

The instances 7A and 7B comprise of 7 pairings per day with different sets of

flight legs. Each of these two instances contains the combination of pairings for each

day shown in Table 4.2. The instances 7C and 7D comprise of 14 pairings per day using

the pairing combination whose number of each pairing type is twice as many as that of

Table 4.2.

Table 4.2: The combination of pairings for each day of 7A and 7B instances.

Pairings with flight duty period

Number of pairings

< 8 hours

2

8 - 10 hours

1

10-12 hours

12-14 hours

14-16 hours

16-20 hours

Table 4.3 shows data set 2, which contains pairings for 14 consecutive working

days. There are 5 instances in this data set, namely, 14A-14E. The pairings in these

instances are chosen using the same combination of types of pairing as data set 1.




Table 4.3: The details of the data set 2.
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Instances
Instances’ details 14A 14B 14C 14D 14E
Number of days 14 14 14 14 14
Number of pairings/day 7 7 14 14 26
Total number of pairings 98 98 196 196 364
Number of crew members 30 30 61 61 113

Table 4.4 shows data set 3, which contains pairings for 28 consecutive working

days. There are 5 instances in this data set, namely, 28A-28E. The pairings in these

instances are chosen using the same combination of types of pairing as data set 1.

Table 4.4: The details of the data set 3.

Instances
Instances’ details
28A 28B 28C 28D 28E
Number of days 28 28 28 28 28
Number of pairings/day 7 7 14 14 26
Total number of pairings 196 196 392 392 728
Number of crew members 61 61 122 122 227




4.2 Result and Discussion

Table 4.5: Computational results of the data set 1.

29

(Mw)

TA 7B 7C 7D 7E
Computational
Time 00:00:23 00:00:21 09:15:42 09:57:12 12:16:01
(hh:mm:ss)
Number of Nodes 114 114 212 214 384
Number of Arcs 375 410 1226 1236 3507
Number of
5628 6153 55173 554443 196395
Variables
Number of
7785 8345 66161 66572 221795
Constraints
Non-Zero
25485 27585 238455 242055 842520
Coefficients
Maximum
Per-diem 29260 36024.24 24264.32 24864.22 40975.71
(MP)
Maximum
Workload 200.36 184.5 142.83 135.01 228.08
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Our main objective is to minimize the sum of the upper bound of workload and

per-diem. That means the maximum of the workload and per-diem assigned to the crew

members should be close to the average value. Table 4.6 displays the detailed

statistical values of the per-diem and the workload that are assigned to all crew

members by the optimal solution in each example.

Table 4.6: Solution Quality of the data set 1.

TA 7B 7C 7D TE
Standard
1985.415 2950.769 3282 .541 3621.547 3841.751
Deviation
5
'TE Mean 26458.24 33044.11 19834.12 19990.929 33808.235
(]
o Max 29260.47 36024.24 24264.3 24864.22 40975.71
Min 23694.21 24452 .63 14628 12696.35 27162.19
Standard
28.22391 15.4773 19.15785 15.21 8.7595
- Deviation
®
_%) Mean 155.0173 157.6167 104.2113 106.1169 175.19
(@]
= Max 200.36 184.5 142.83 135.01 228.08
Min 85.34 130.53 74 63.92 140.17

From the Table 4.6, the standard deviation of a per-diem is calculated from

—)2 —_
’Z(xTx) when n = the numbers of crew members, x = a per-diem and x = the average

per-diem. The standard deviation of the workload is also calculated in the same way.




Figure 4.1: Per-diem distribution of 7A
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Figure 4.3: Per-diem distribution of 7B

per-diem

38000

36000

34000

32000

30000

28000

26000

24000

Distribution of perdiem

?\_. ._,.«\_ _

"’U{ LS s

123456 7 8 9101112131415

=—¢— perdiem

mean
=+ mean+5%

= == mean-5%

crew member

Figure 4.4: Workload distribution of 7B
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Figure 4.5: Per-diem distribution of 7C
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Figure 4.6: Workload distribution of 7C
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Figure 4.7: Per-diem distribution of 7D
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Figure 4.8: Workload distribution of 7D
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Figure 4.9: Per-diem distribution of 7E
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Figure 4.10: Workload distribution of 7E
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Table 4.7: Computational results of the data set 2.

36

14A 14B 14C 14D 14E
Not done
Computational Time
00:01:33 00:01:58 31:53:54 34:15:07 within 60
(hh:mm:ss)
hours
Number of Nodes 226 226 422 421 762
Number of Arcs 802 900 2724 2790 8127
Number of Variables 24063 27003 166167 169949 918354
Number of Constraints 32002 35040 195362 199389 1014166
Non-Zero Coefficients 116910 128670 748531 761097 3993985
Maximum
32930.9 40172.07 35901.61 36739.1 -
Per-diem(MP)
Maximum
191.58 218.08 220.1 221.51 -
Workload(MW)
Table 4.8: Solution Quality of the data set 2.
14A 14B 14C 14D 14E
Standard
3328.92 3142.088 3544 122 3443.324 -
Deviation
5
'TE Mean 26458.241 33044.107 29263.45 29494.81 -
(0]
o- Max 32930.9 40172.07 35901.61 36739.1 -
Min 21396.24 25137.79 20522.77 19718.76 -
Standard
25.34 19.624376 28.07855 27.59304 -
- Deviation
o
_%) Mean 155.0173 157.61666 153.7544 156.5659 -
(@]
= Max 191.58 218.08 220.1 221.51 -
Min 105.58 109.66 84.6 85.34 -




Figure 4.11: Per-diem distribution of 14A
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Figure 4.12: Workload distribution of 14A
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Figure 4.13: Per-diem distribution of 14B
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Figure 4.14: Workload distribution of 14B
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Figure 4.15: Per-diem distribution of 14C
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Figure 4.16: Workload distribution of 14C
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Figure 4.17: Per-diem distribution of 14D
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Figure 4.18: Workload distribution of 14D
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Table 4.9: Computational results of the data set 3.

41

28A 28B 28C 28D 28E
Not done Not done Not done
Computational Time
00:38:47 00:29:00 within 60 within 60 within 60
(hh:mm:ss)
hours hours hours
Number of Nodes 450 450 842 844 1518
Number of Arcs 1656 1880 5720 5944 17367
Number of Variables | 101019 114683 697843 725171 -
Number of Constraints 131708 145596 809456 837374 -
Non-Zero Coefficients 505873 560529 3198230 3317790 -
Maximum
32469.79 39577.46 - - -
Per-diem(MP)
Maximum
196.11 198.75 - - -
Workload(MW)

28C, 28D, and 28E are the three largest instances in all of our data sets.

Unfortunately, IBM ILOG CPLEX 21.10 cannot obtain the solutions of these instances

within 60 hours of computation as shown in Table 4.9.




Table 4.10: Solution Quality of the data set 3.

42

28A 28B 28C 28D 28E
Standard
3666.276 3855.295 - - -
Deviation
5
'1;3 Mean 26024.5 32502.4 - - -
(]
o- Max 32469.79 | 39577.46 . _ _
Min 15294.06 23165.29 - - -
Standard
19.77472 23.92913 - - -
- Deviation
3
x Mean 152.4761 155.0328 - - -
o
= Max 196.11 198.75 S ] ]
Min 85.34 109.66 - - -




Figure 4.19: Per-diem distribution of 28A
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Figure 4.20: Workload distribution of 28A
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Figure 4.21: Per-diem distribution of 28B
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Figure 4.22: Workload distribution of 28B
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From the result, the largest instance we can solve the matrix size 169949 x
199389 which takes about under 35 hours to obtain the solution. However, solving the
instance with the matrix size larger than 169949 x 199389 cannot be done within 60
hours. For the instances that can be solved, we can minimize the sum of the upper
bound of workload and per-diem but it is not guaranteed that the per-diem and the
workload are distributed evenly among crew members as we can see from Figure 4.1-

Figure 4.22.

The distribution of the per-diem and the workload from the 3 sets of example
tends to vary beyond the range of the mean = 5%, which are the preferred bounds.
Ideally, the variation from the optimal solution should be small but our results show

otherwise. This can be explained as follows:

By inspecting data, we find that the pairings in each day are the same.
Moreover, for some examples such as 7D and 14D most pairs in each day are long (at
least 2 days). This increases the chance of overlapping among these pairs resulting in
smaller number of selections of the next pairs. Therefore, balancing the workload and

the per-diem is difficult due to the limitation of choices of pairings.

In addition, the value of per-diem in each pair does not depend on the length of
duty in the pair. Even if the lengths of two pairs are comparable, the per-diems can be
very different. Therefore, such choices make balancing the workload and the per-diem

very difficult.

Moreover, the value of workload rating is smaller than 100 while the value of per-
diem ranges between 2,000 and 17,000. The difference in the scale of these two

quantities is quite large. Hence, from the objective function, the significance of the
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workload will be dominated by the per-diem. Therefore, this could cause the big

variation in the workload distribution.

In summary, although our objective aims to minimize the upper bounds of the
workload rating and the per-diem, it does not guarantee that the variation will be small.

In fact the variation is quite large due to the reasons mentioned above.



CHAPTER V

CONCLUSION

In this thesis, we have studied the multi-commodity flow model for solving the
Thai Airways crew rostering problem that minimizes the upper bound of the per-diem
and the workload of each crew member. The main objective in crew rostering is to
minimize the sum of the maximum of the per-diems and workloads among the crew
members. By minimizing the objective function, we are hoping the solution will keep the
upper bounds of the per-diems and workloads close to the average and, in turn,
distribute the workload and per-diem somewhat evenly among crew members. In fact, if
the workload and per-diem of all pairings are roughly the same, minimizing the objective

function is equivalent to balancing the workload and per-diem among crew members.

In our case study, we focus on the in-flight manager crew members. The
proposed model was tested for the solution quality on 3 sets of case study. The network
structure of the crew rostering problem for each set is generated using R script
language and the problem is solved by using IBM ILOG CPLEX 12.10. running on Intel

Core 2 Duo 2.67 GHz, RAM 2.00 GB.

The results show that the instance with the matrix size at most 169949 x 199389
can be solved under 35 hours but the instance with the larger matrix size at least cannot
solved within 60 hours. The sum of the upper bound of workload and per-diem is
minimized for the instances that can be solved, but the distribution of the workloads and
the per-diems varies greatly on each instance. It should be the result of the limitation of
the choices of pairings available where most of them are long flight duty pairs.

Moreover, the multi-objective function makes the structure of the problem more
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complicated, making balancing both workload and per-diem difficult and the solving

process slow.
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