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a) ‘ b)

FIGURE 3.1 a) Soil-structure model

b) Finite element discretization B/b 43, H/B = 1.5,

v = 0.25
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FIGURE 3.2 Non-dimensional displacement  functions comparihg the plane

strain finite element and analytical solutions



FIGURE 3.3 Simplified three-dimensional model using dashpots

u u

1.0 .o \ i
os analytical solution o.g o

° . N
0.6+— 0.6 o \

—F —
+/ L s

Q4 s I . + = 0.4 + * /

a) ' b)
FIGURE 3.4 Non-dimensional displacement functions of circular footing on

elastic half space comparing the Hwang’s simplified three-

dimensional model and analytical solutions
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FIGURE 3.5 Equivalent plane strain model using dashpots together with

side springs
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FIGURE 3.6 Non-dimensional displacement functions of circular footing on

elastic half space comparing the proposed model using Hwang’s

parameters and analytical solutions
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FIGURE 3.7 Non-dimensional displacement functions of circular footing on
elastic half space comparing the proposed model after adjustment
of parameters C,, and C; and analytical solutions
a) C, # 0.535969(= 0.35%and C, = 0.0259
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FIGURE 4.1 Typical soil-pile element
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APPENDIX

Element Stiffness of Two-dimensional Plane Strain Elem_ent

As described in the introductory chapter, the two-dimensional plane
strain model is used as the host soil element for the soil-pile elemem. Derivation
of the plane strain element stiffness is simple and normally appears as an example
in. most finite element text books. The following presentation on plane strain
element stiffness is to review the basic concept and to usé the pertinent quantities

as the basis in derivation of the soil-pile element stiffness.

Since the soil mass is a large medium and only the global effect on
the super-structure due to soil is required, modeling of the soil element in the

shape of simple rectangular with four corner nodes as shown in Fig. 4.1 is adequate

and widely adopted.

For isoparametric elements, both the spatial coordinates and the -dis-
placement fields of any point within the element can be expressed by the same

interpolation functions; thus we have

4
yG6, ) = _El NI G, 1) -y (A.la)
1=
4
2588 = FE N, 1)z (A.1b)
=1
and
i .
Vis,t) = Y NG, 1) v (A.2a)
=1
: :
wis, ) =) Ni(s, 1) © w; (A.2b)
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The local shape functions of the four-node two-dimensional rectangular

element are in the form

1

NG, 1) = 0+ 0+ (A.3a)
NG, ) = ‘—"(1—5) (1+1) (A.3b)
NG, 1) = ‘1‘(1—5) (1-1) (A30
NiGs, t) = -i(l+s) (1-1) (A3d)

The strain energy U, already derived in Chapter 2 and appears as the

first term on the right hand side of Eq.(2.17), is

v = T3] o e s L5

in which [q], the vector of generalized displacement defined by Eq. (2.10), is

taken as the nodal point displacements :

v 4 |N; 0]{v
= X = [Nl{d} ; (A.5)
w RBWIFNN NI Y,
{B}: = [BS, BS, BS, BS] (A.6)
in which
[ aN¢ ]
ik 0
ay
g ON;
el = | 4 oz (A.7)
N ON
0z ay
L -




and |

[D°]

where E is the modulus of elasticity and v is the Poisson’s ratio.

E(l1-v) 1Y

— 11w

1-2v

2(1-v)
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(A.8)

Formulation of element stiffness matrix follows as described in Chapter 2.

In view of Eq. (2.22), we have

K] =

[B<]"|D¢][B%] d>®
o

L4

(A.9)

To find the shape function derivatives appearing in Eq.(A.7), we begin

with the basic mathematical concepts. Since the transformation from the global

X, y to the local s, t is assumed to be one-to-one mapping, any shape function,

N;, can be expressed in terms of both coordinates. We can write, using the chain

rule, the shape function derivatives as

oN;
0s -

N,
ot

dy 0z

where e — |

ds as

at ot

dy o] (ON;
ds ds| |ady
ay oz |oN,
ot at] \oz

is called the Jacobian matrix

[J].

(A.10)
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Each term in the Jacobian matrix can be evaluated by differentiating
Egs. (A.1); g—s& and gtﬁ are obtained by differentiation of Egs. (A.3). Then gTNL
and Z—ZNL can be solved by matrix inversion of Eq. (A.10). Integration of element
stiffness in Eq.(A.9) can be performed on the local coordinate domain by using

the relation from elementary calculus :
dQ® = det|J] tdsdt (A.11)

- where det[J] is the determinant of the Jacobian matrix; t is the thickness of
the two-dimensional element in the direction perpendicular to the y—z plane.

Substituting dQ° from Eq.(A.11) into Eq. (A.9) yields

K] ='jl l jl B¢]"| D[ B detmtdsdi (A.12)
1

An appropriate numerical procedure can be adopted in the evaluation of |K¢|

in Eq.(A.12).
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