CHAPTER 1V
- SOIL-PILE ELEMENT

As revealed in Chapter 3, the proposed equivalent plane strain model
is quite effective for solving three-dimensional soil-structure interaction problems
when no piles are present. Comparisons were made between ihe result obtained
by the proposed model and that of Wolf and von Arx (1978). Unfortunate’ly,'
the proposed model yields unsatisfactory results. It appears that the complex
soil-pile interaction behavior in three-dimensional deformafion cannot be simély
represented by the over-simplified equivalent two-dimensional plane strain model.

Therefore, no further attempt was pursued.

Formulation

The element stiffness of a soil-pile element can be formulated by
considering the summation of the strain energy of the host soil medium and piles
inserted within the soil. Piles are vertically placed, thus their neutral axes are

parallel with the vertical sides of the host soil medium element as typically

shown in Fig. 4.1.

By the assumption of perfect bond between the surfaces of the piles and
soil, no slip occurs. Therefore, the displacement fields of the pile neutral axes
can be expressed in terms of the nodal displacements of the host elements by

linear interpolation.

In this study, rectangular four-node isoparametric plane strain elements
are adopted for modeling the soil medium. Thus the strain energy of the soil-pile

element can be splitted into two parts :



Ue = Us + Ub (4])

where U is the straih energy of the host soil medium commonly described in
standard textbooks on the finite element method, and 'Ub is the strain energy
of the embedded piles, considered as beam elements. For completeness, the
formulation of Uj is briefly described in the appendix for a four-node isoparametric -

plane strain element.

Since the shape function used is of C° type, the elementary beam
~ theory based on the Euler-Bernoulli hypothesis which involves second derivatives
cannot be employed. Consequently, the so-called Timoshenko’s beam theory

in which the transverse shear effect is included is selected.
The modulus of elasticity of the beam portion is taken as
Byvio=eEp=v, By ’ 4.2)

where E, is the true value of the pile’s modulus of elasticity and E; is the modulus
of elasticity of the soil. The reason for reducing the modulus of elasticity of
the pile is that the strain energy within the pile volume is determined twice, first

for the full host soil medium and Second for the pile element.

The spatial coordinate values and displacement fields of any point

within the element are related through the shape functions as:

4
y(s,t) = ,El NiGs, 1) - y; (4.3a)
1=
. :
z(s,t) = Y Ni(s,t) -z (4.3b)
i=1

and
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4

vis,t) = Y N, t) - v (4.4a)
i=i '
4

ws, ) = X NG, t) - w (4.4b)
=1

in which y; and z are coordinates of element nodal points; v; and w; are nodal
displacements in y and z directions, respectively, and N, t) are the local

shape functions of the host soil element shown in the appendix.

An elegant derivation of beam strain energy is given by Washizu (1968).

The result is

4 2 SNV 2

. 1 ow a°w av | dw
U =-§ [EA(—>+EI(—=——)+G){A(——+———)]dz 4.5
b 2 1y [Eofol5; vl 573y b Xofol5, + 3y (4.5)
in which w and v are the longitudinal and transverse displacements of the pile
neutral axis, respectively; G, is the shear modulus; J, is the shear correction
factor; A, is the pile cross-section area, and I, is the moment of inertia of the

pile cross section.

In matrix notation, compared with the first term of the right hand

side of Eq. (2.17), Eq. (4.5) can be written as

U= ¥ 1| @imiosiaer “6)

N | —

in which {q} = {v;, w}" is the vector of the nodal point displacements, and

|B] = |BS, BS, Bj, B§] is the strain transformation matrix given by
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[0 M
: dz
’N;

] = | 0 == @.7)
NN,
L62 ay 1

and

E,A, 0 0

[Df] = 0 E,l, 0 4.8)

0 0  GyyA,

Formulation of the element stiffness can be proceeded as described in

Chapter 2. In view of Eq. (2.22), we have

.
K = | (seTTosisgee “9)

Calculation of the element stiffngss matrix, Eq.(4.9), by mapping global

y—2z domain into local s—t domain can be performed using the following chain

rule of derivative :

dz = —=ds + —=dt 4.10
z ds : at ( )
For the special case of rectangular element, % = 0. Thus,
0z : :
dz = —=dt 4.11
z 5 @4.11)

in which 3—: can be easily determined from Eq. (4.3b) aS:
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4

dz 0 e

—_— = ——N ’[° P =
;at . 1)~ 5

at i

£
s (4.12)

The element stiffness matrix, Eq.(4.9), in view of Eq.(4.11) and Eq.(4.12),

becomes

| |
K5 = [ BsrTogisg Car @13

Evaluation of the strain matrix, [B{ ], can be easily done by means of the chain

rule also. The result is

— | |
0 (1;5)1 0 (l—s)|
| b |
| _ |
1 1 1
el = A 0 1 AN
B 4 ab; 2 ab :
|
(149 1+, (-5 1+
. b a | b ) a |
|
_(-y9) _(+5s)
0 A : 0 Al ]
|
1 A (4.14)
¢ ab : ¢ ab
|
_(1-5) _=1 . (1+3) (1-1)
b a | b a |
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Verification of Soil-Pile Element

The proposed soil-pile element was tested for its validity in case of static
loading. Since analytical solutions are readily available for a narrow two-dimensional
plane stress medium reinforced with beam type elements which collectively can be
treated as a composite beam, verification of the soil-pile element concept: Wz;s ,
performed for the plane stress rather than the plane strain host element. This
approach is deemed sufficient in so far as the stiffness property is concerned. In
this study, the limiting case of an extremely soft soil medium was considered, ie.
the modulus of elasticity of the host element was almost zero. Two model shown
in Fig.4.2a and Fig.4.2b, with concentric and eccentric piles respecti>vely were
anélyzed for the effect of applied point loads at the top. The finite elemeni
solutions obtained using the soil-pile elements agree very well with the classical
beam theory solutions, with only 0.03 and 3.6% discrepancies for the concentric

and eccentric piles, respectively.
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