CHAPTER 111

EQUIVALENT PLANE STRAIN MODEL

Introduction

As mentioned in Chapter 1, the simplified three-dimensional model proposed
by Hwang et al. (1975), hereafter refered to as the H.L.B. model, can be effectively
used to solve three-dimensional soil medium under seiémic excitation. In this study,
some modification over H.L.B. model is made so as to broaden the applicability
of this model to covér problems of half space under concentrated loads applied
at the surface. The proposed method is of trial-and-error in nature using available
analytical solutions in the literature as calibration vehicles. Several problems are

analysed to demonstrate the accuracy of the method.

In the first example, the validity of the ordinary two-dimensional plane
strain finite element modeling for solving the problem of rigid strip footing on
elastic halfspace is demonstrated. However, when the footing becomes circular
and finite in size, this modeling technique fails to give satisfactory results even
with the incorporation of dashpots proposed by Hwang et al. The problem is
remedied by attaching the springs to the sides of the plane strain slice to simulate
the soil reaction in the third dimension. Moreover, the mass and damping
properties are adjusted to produce results that will match as closely as possible
with existing analytical solutions. The method proposed, to be called ‘the equivalent
plane strain model’, is shown to be effective in solving three-dimensiohal soil-structure

interaction problems.
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Analysis of Strip Footing Using Finite Element Plane Strain Model.

Exact modeling of the infinite half Space in the finite element analysis is
impossible by virtue of the finite dimension of the resulting model. There are
various approaches to overcome this limitation. Lysmer (1969) used simple viscous
clements at the finite boundary to absorb the waves which must propagate through
the outer truncated infinite media, thereby preventing the waves to reflect from
the boundary. Waas (1972), Kausel et al. (1975) and some other researchers
adopted the same idea of nonreflecting boundary. Although these approaches are '
based on some simplifying assumptions, they are quite attractive owing to their

simplicity, and the results obtained are accurate enough for most practical purposes.

Judging from the degree of uncertainties of real properties and uncertainties
involved in defining forces such as those caused by earthquake excitation, it is
deemed sufficient to use the standard viscous boundary proposed by Lysmer (1969)

throughout the study. But it should be noted that other boundary treatments can be

applied as well.

Fig. 3.1a. represents a slice of the two-dimensional plane strain model
of L unit width. The depth and width of the finite soil medium are H and 2B
respectively. A rigid strip footing of 2b unit width rests symmetrically above

the soil medium. In view of symmetry, analyses can be performed on the half

model shown in Fig. 3.1b.

The basic concept to determine the standard viscous boundary properties
is to specify the stress boundary conditions at the boundary of the model. Stress

boundary conditions on surfaces AEHD, DHGC and CGFB in Fig. 3.1a are

g

apVplep, (3.1a)

T = bpVsig (3.1b)
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where ¢ and 7 are the normal stress and the shearing stress respectively; Up)
is the velocity of the normal to plane direction; U, is the velocity of the parallel
to plane direction; V, is the P-wave velocity; Vg is the S-wave velocity; p is
the mass density; and a and b are the dimensionless parameters which are equal

to 1.0 for the standard viscous boundary. S-wave and P-wave velocities are

defined by
Vs = [G 3.2
s Jp (3.2a)
v, =N (3.2b)
S
in which S? =

0.5(1-2v)/(1-v) (3.20)
G is the shear modulus and v is the Poisson’s ratio.

The equations of motion of the finite element model shown in Fig.3.1b

without internal material damping is
M@ + [Klfa} = (P} - (a%) (3.3)

where [M] is the mass matrix; [K] is the plane strain stiffness matrix; [P} is
the concentrated load acting on the centroid of the footing which can be separately
considered as vertical and horizontal load, and {d°} is the boundary damping
force vector resulting from the standard viscous boundary calculated from Egs. (3.1)

which can be expressed in terms of nodal force as :

' d?(N) &= pdei(N)A? » (3.4a)

and

d?m = va(]i(T)A? (3.4b)
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in which the subscripts ;n, and 1, indicate directions of the boundary viscous

forces in the normal and tangential directions to the boundary planes respectively;
A:’ is the average boundary surface area centering at the i™ node. Using the

assemble scheme, vector {d®] can be written in the form
(@} = [D’l(g) (3.5)

where each of the terms in the diagonal matrix [D®] equals to prA:’ and pVSAib
for the degree-of-freedoms associated with the normal and tangential directions

to the boundary planes respectively, and equals to zero elsewhere.
Substituting {d°} from Eq. (3.5) into Eq.(3.3) yields
M]@@ + [D°){a} + [Klla} = (P} (3.6)

To examine the validity of the plane strain model incorporated with
the viscous boundaries for solving the problem of strip footing on elastic half
space with prescribed by vertical and horizontal concentrated loads applied at
the footing, the finite element model wifh the dimensions shown in Fig.3.1a
and mesh discretization shown in Fig.3.1b was used. The elements are of the
four-node bilinear quadrilateral type. A brief derivation of the element stiffness
matrix is shown in the appendix. Ordinary lumped mass scheme, which can be

easily evaluated, is used as mentioned in Chapter 2.

Fig. 3.2a and Fig.3.2b depict the vertical and horizontal non-dimensional
displacement functions of the center point O as functions of the dimensionless
frequency, a,, which is wb/V,. The analytical solutions given by Luco and
Westmann (1972) are shown for comparison. It should be noted that the finite -
element solutions compare fairly well with the analytical results; however, the
solutions are very sensitive to mesh configurations, thus it is difficult to evaluate

percentages of such errors.
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Analysis of Circular Footing Using Simplified Three-dimensional Model

We next investigate the validity of the simplified three-dimentional model
as proposed by Hwang et al. (1975) for solving rigid massless circular footing
on the three-dimensional half space under concentrated loads. Analytical solutions
of circular footing with the same diameter as the width of strip footing used in
the finite element model are referred to as the exact solutions. It should be noted
that, to the writer’s knowledge, the H.L.B. model has not been tested for the

case of a point load prescribed directly on the footing. We will first briefly

describe the H.L.B. model.

The basic idea conceived by Hwang et al. is that the waves propagating
in the direction perpendicular to the plane should be absorbed by attaching
damping elements on both sides of the slice, to prevent them from reflecting into
the slice. Adopting the definitions and properties of these damping elements
used by Lysmer and Kuhlemeyer (1969), the stress boundary conditions on both

sides of the slice are in the same form as Eq.(3.1b); i.e.
T = pVsi 3.7

Therefore, modifying Eq.(3.3) by adding the damping forces {d*} which act on

both sides of the plane strain slice of width L (see Fig. 3.3), we have
LIMJ@@} + LIKllg) = L{d"} - 2{a9 (.8)

The damping force vector {d*} can be written in terms of the nodal

forces as :
diqy = P VsGimA; - (3.9

in which the subscript im) indicates tangential component of the forces at node i,
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and Aj is the average area on the side surface centering at i™ node. Note that

‘both the vertical and horizontal forces are of the same form. Following the same

- procedure as in deriving the nodal forces for the viscous boundary elements,

we have
[} = [Dg} : | (3.10)

where each of the diagonal terms in the diagonal matrix [D°] equals to pV,A}
for every degree-of-freedom associated with the soil slice. Substituting {d®}

and (d°] from Eq.(3.5) and Eq.(3.10) into Eq.(3.8) yields
M@ + [(D%)+ (2 )0 @ + (K} = (P} @.11)

The solutions of Eq.(3.11) using the finite element mesh shown in
Fig.3.1b for the vertical and horizontal displacement functions of the center point
}O are shown in Fig.3.4a and 3.4b for the vertical and horizontal load cases,
respectively. The finite element solutions do not agree well with the analytical
resuiiﬁ presented by Luco and Westmann (1971) which are also plotted in the
same figure for comparison. The characteristics of the finite element H.L.B.
solutions still resemble the plane strain model solutions but the amplitudes are
much reduced. Overdamping phenomena are observed in the high-frequency

range. Consequently, the solutions obtained by H.L.B. for concentrated loads

are not on the safe side for design purposes. This indicates that the simplified

three-dimensional model cannot capture the actual three dimensional behaviour

very well. The difference in characteristics of the two models is also discussed by
Luco and Hajian (1974). Some attempts were made to improve this model by
varying the thickness of the plane strain medium. However, it is obvious that since
the static solution of the plane strain problem is singular at the load point whereas

that of the three-dimensional continuum is finite, such attempts are not possible.

'



Modification of the Plane Strain Model for Three-dimensional Analyses

As discussed in the last article, the simplified three-dimensional model
is not applicable in case of a point load acting directly on a footing of finite size.
To achieve more acceptable solutions, further modification must be conducted.
Recalling an earlier work by Lysmer and Richart (1966), the half space was simply
modeled as a single degree-of-freedom system only, comprising a spring and a dashpot.
The validity of this concept hints that there may exist a suitable system of forces
acting on the two-dimensional plane strain system]to be equivalent to the real three-
dimensional continuum. Therefore, an ‘equivalent plane strain model’ is proposed

and tested to demonstrate the validity of such a simple model for analyses of three-

dimensional soil-structure interaction problems.

The basic idea for modifying the plane strain model to make it capable
of representing three-dimensional behavior is to invoke the condition that the
total potential energy and the kinetic energy of the proposed system to be
approximately the same as the real three-dimensional medium. Firstly, transverse
spring elements are attached at each node on both sides of the plane strain slice
as shown in Fig.3.5. The forces ih these springs represent, in an approximate
way, the interactive forces between the slice and the soil mass outside the slice.
The spring stiffness is varied until the static displacement of the equivalent model
is equal to that of the three-dimensional analytic solution. This strategy ensures
that the total potential energy of the equivalent system is approximately the same
as that of the three-dimensional continuum. Concerning the kinetic energy, it
may be not‘cd that the kinetic energy of the Soil medium in the plane strain state
should be greater than the actual value of the three-dimensional continuum whose
displacement decays with distance in the transverse direction. The last quantity

to be adjusted is the viscous damping force acting on both sides of the plane



26

strain slice. Transforming the above stated idea into a mathematical expression

results in the following equations of ' motion
CnL[MJd@ + L[K]{a] = L{P} - L{d"] - 2C,{d*} — 2C/s"] (3.12)

One might observe that Eq.(3.12) is a modified form of Eq.(3.8), with the
parameters C,,, and C, introduced in order that the amount of mass and viscous
damping forces can be adjusted, and the quantity 2C,{S*] results from the equivalent

transverse interaction forces.

Determination of the vector {S°} is similar to that of the vector {d®].
The difference is that {S*] depends on spring stiffness and nodal displacements
Tather than damping coefficient and velocities. The shearing stress occurring

on the sides of the plane strain slice, area ABCD and EFGH in Fig.3.1a is

assumed to be

(3 = g*GU(S) (3.]3)

where g* is the multiplying paraméter to adjust the shear modulus G. Thus,

in analogy with Eq.(3.4), the nodal spring forces are
Sim = g*GamA; (3.14)
These nodal forces can be directly assembled to yield the force vector :

(s = [S’]id} ' (3.15)

where each of the diagonal terms in the diagonal matrix [S*] equals to g*GA;

. for every degree-of-freedom associated with the soil slice. Substituting Eq.(3.5),

Eq.(3.10) and Eq.(3.15) into Eq.(3.12) leads to

Ml + [ID°] + (E)cdol)i@ + [IK] + (E)cisi]i = ® @16
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As described in the introductory part, to apply this model, C, is to be
determined first. A numerical trial-and-error process is used. Eq. (3.16) is
first solved for the static énalysis, using some trial value of C,. The center
displacement is compared with the relevant analytical solution given by Luco and

Westmann (1971), and C; is then adjusted accordingly.

The next step is to determine the parameters C,, and Cy. As the first
trial we set them equal to 1.0, corresponding to H.L.B. model. The finite
element solutions obtained are shown in Fig.3.6a and Fig.3.6b together with
the analytical results. Clearly there is the big discrepancy between the analytical
and finite element solutions. Consequently, further adjustment on C, and C,

must be performed.

As stated earlier that the kinetic energy of the plane strain model is
always greater than that of the three-dimensional continuum, the parameter C,,
should therefore be less than 1.0 Finally, careful inspection of the results in
Fig.3.6a and Fig.3.6b leads to the conclusion that, for C4 = 1.0, the simplified

model contains too much damping. Thus C, must be less than 1.0 also.

By using the trial-and-error scheme within the domain 0 < Cnh < 1.0
and 0 < Cy < 1.0, the solutions most conforming to the three-dimensional
continuum analyses were obtained. The results are shown in Fig.3.7a and

Fig.3.7b.

Parametric Studies

It is of interest to study the sensitiveness of the numerical results to
the variations of C, and Cy. With C, kept constant while C,, varied within a
small range, the solutions of the displacement functions were obtained and shown

in Fig. 3.8a and Fig. 3.8b for comparison. Conversely, the solutions for C,, held
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constant while varying Cy are depicted in Fig.3.9a and Fig.3.9b. Variations of C,,

and Cy were taken within 20 to 30 percent of the best values obtained earlier

It should be observed that a wide range of the coefficients C,, and C, can be adopted

without causing significant errors in the solutions.
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