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CHAPTER |

INTRODUCTION

Evaluation of relevant features of a given data set is one of the many important and nec-
essary processes for data analysis. The relevant features can lead to achieve the high accuracy
in supervised learning. Class label of instances, which can be viewed as an external knowledge,
are used to evaluate the relevant features while the redundancy features are reduced using mu-
tual information [1-5]. However, the results of unsupervised learning are provided by internal
knowledge. Therefore, unsupervised learning can be applied to unclassified data. Moreover, un-
supervised learning can alleviate the overfitting of an unreliable or mislabeled [6]. The selected
feature subset is expected to help achieve better result on data analysis than use original features.
But selecting the relevant features in unsupervised learning is more difficult than in supervised
learning. This is because for the given unclassified data, there is no target associated with each
training pattern in unsupervised learning. In addition, those selected relevant features must pre-
serve the actual distribution and topological structure of the data space regardless of the original
features. Since, a given set of data may consist of a mixture of noisy and relevant features. Those
noisy features possibly affect the distribution and topology of the data space when the noisy data
are projected to a lower dimensional space in the feature selection process. In general, finding
the best feature subset which optimizes the defined criterion is an NP-hard problem. Since, find-
ing the best feature subset requires an exponentially increa&ignumber of feature subset
evaluations, which is in fact impractical if the data set has a large number of features. This also
causes problem for supervised feature selection. Thus, good feature selection algorithm should
have a good criterion and achieve small number of feature subset evaluations.

In real world situation the data sets tend to have a large number of features. However, if
the number of variables is much larger than the number of data sample, it can cause problems in
measurement [7, 8]. The computational cost of measurement will increase when the number of
features increases. In addition, if there are noisy features, they can cause problems in classifica-
tion or clustering results. Therefore, knowing the actual relevant features of a given data set not
only can speed up the learning processes, but also can improve the classification and clustering

accuracy. Discrimination analysis is one of interesting and popular approach to evaluate the rel-



evantfeatures. It is one of requirement of both supervised and unsupervised learning. Because,
there would be a high probability that the clusters are separated from each other for the selected
feature subset with a high discrimination of density distribution. Therefore, this dissertation

focus on filter methods for unsupervised feature selection based on the discrimination analysis.

1.1 Objectives

The main objectives of this research are the following:
1. To develop a new univariate filter technique for unsupervised feature selection.

2. To develop a new unsupervised feature selection based on a discrimination analysis.

1.2 Problem Statement

Given a data set which consist of unknown label of instances , we wish to rearrange
features based on their discriminative value, and then, the feature subsets are selected from the

ranking for evaluating.

1.3 Contribution

This dissertation proposed an unsupervised discrimination analysis based on physical op-
tics principle. Fraunhofer approximation of optic diffraction was employed in the investigation
of the density distribution. Firstly, the probability density distribution was treated as a synthetic
aperture function. Then, the discrimination analysis was performed on a far-field diffraction
pattern simulated by the Fourier transform of the aperture function. Finally, the discrimina-
tion evaluation was measured by using Entropy of magnitude at the middle of the bright areas.
Moreover, the data orientation, which is direction of data alignment, was taken into account
for evaluating the original features by performing discrimination evaluation on bases which are
located toward a direction of data orientation. The algorithm was tested by setting up the exper-
iments with benchmark data sets and compared the experimental results with the other existing

methods using both classification and clustering algorithm.



1.4 Scope®f Work
In this research, the scopes of the work were constrained as follows:
1. The proposed technique was focused on filter technique for unsupervised selection.
2. The proposed filter technique was constrained by discrimination analysis.

3. The benchmark data sets were taken from UCI repository of machine learning database

and publish database of Microarray data set.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter Il is the related work and
concept of proposed algorithm. In Chapter Ill, the backgrounds of optic diffraction pattern
are briefly described. The discrimination analysis and the proposed algorithm are presented in
Chapter IV. The implementations of the proposed algorithm and the experimental results on real

world data set are in Chapter V. Chapter VI is the discussion and conclusion.



CHAPTER I

RELATED WORK AND CONCEPT OF PROPOSED
ALGORITHM

2.1 \Variation of Unsupervised Feature Selection

2.1.1 Type of Unsupervised Feature Selection according to its Evaluation

Unsupervised feature selection can be categorized, by its evaluation, into three techniques,
filter technique, wrapper technique, and embedded technique. The filter technique selects the
relevant features by looking only at the inherent properties of the data. In most cases, feature
relevance score is individually calculated. A criterion for evaluating the quality of the features is
defined, and then the features are rearranged according to its quality score. The variation of filter
technique are univariate filter technique, collectively, and multivariate filter technique [9]. The
wrapper technique evaluates the features by embedding the model hypothesis within the feature
subset search. Finally, embedded techniques embeds the model hypothesis within specific clas-
sification or clustering algorithm. The features are simultaneously selected within the process of

classification or clustering algorithm.

2.1.2 Type of Unsupervised Feature Selection according to its Characteristic

Unsupervised feature selection can be categorized, by its characteristic, into two main
groups, 1) preserving of original properties of data or 2) discovery of required properties from
data. The first group of feature selections is useful for reducing the computational time of al-
gorithms. The example of properties which need to be preserved are variance and closeness
between neighbourhood instances. The second group of unsupervised feature selections aim to
increase the performance of clustering algorithms or classifiers. The example of required prop-
erties are data discrimination and multimodality density distribution. The evaluation step of both
can be filter method or the dimension reduction technigue. Other methods are the wrapper meth-
ods [10], and embedded methods [11-13]. However, filter methods can be used in flexible ways

in the sense that they can be used as a data pre-processing without involving any classifier or



clustering algorithmsln the filter methods that follow the preservation approach, the features or
dimensions, data space or transformed space, are ranked according to their preserving proper-
ties compared with the original data. This dissertation focus on filter methods for unsupervised

feature selection which will be discussed in the next section.

2.2 Filler Method for Unsupervised Feature Selection

The categorized unsupervised feature selections by its characteristic are discussed in this
section including preserving approach [14-17] and discovery approach [6,18—-20]. The pre-
serving approach is useful for reducing the computational time of algorithms. A well-known
and widely used technique is Principal Component Analysis (PCA). The given data are trans-
formed into new orthogonal coordinates that are ranked according to the variance of the pro-
jected data. Classification or clustering algorithms can select a subset of the transformed fea-
tures from the ranking for their evaluation purpose. Entropy of Singular Value Decompaosition
(SVD-Entropy) [14] used a greedy search strategy to select features in a multivariate manner,
according to their preserving entropy of the Singular Value Decomposition (SVD) of the given
data. Another interesting univariate technique is Laplacian score (LS) [15]. Itis based on Lapla-
cian Eigenmaps [21] and Locality preserving projections [22]. The feature scores are evaluated
by their ability to preserve locality based on the observation of dissimilarity of neighbourhood
instances in each feature and feature variance. The neighbourhood of each instance are measured
by using the original data. A relevant feature according to the algorithm is a feature having the
minimum value of the dissimilarity over the feature variance. However, as long as algorithms
try to preserve the original data properties, they also preserve noise if the given data consist of
noisy features.

The discovery approach aim to increase the performance of clustering algorithms or clas-
sifiers. A simple univariate technique is data variance in which features are ranked in decreas-
ing order according to their variance values. The feature which has a larger value of variance
is assumed to contain more information. An interesting and popular approach to evaluate the
relevant features is discrimination analysis. A variety of discrimination analysis approaches
are widely used and successfully applied in a supervised manner [23-25]. Closeness of in-
stances belonging to the same class is preserved while the distances between different classes
are maximized. Laplacian Linear Discrimination Analysis-based Recursive Feature Elimina-

tion (LLDA-REF) [6] is an unsupervised feature selection method that was proposed based on



a discriminatie approach. Some proportion of Laplacian graph of the non-neighbourhood and
neighbourhood data is re-examined as an evaluating function. The Laplacian graph of a neigh-
bourhood as in the Laplacian score was used together with the Laplacian of a global graph such
that all vertices are connected to each other. The feature ranking is produced in a multivariate
manner based on recursive feature elimination. This algorithm gave an opportunity for discrimi-
nation analysis of unsupervised feature selection. However, there are some problems in using the
discrimination analysis approaches in unsupervised data analysis. Although the neighbourhoods
imply that the data may share some properties, e.g. they belong to the same cluster, we hardly
expect the relationship of the non-neighbourhood data, i.e. using the global graph which is used
in the LLDA-REF. They can belong to either the same cluster or the different clusters. The
authors in [18] evaluated discriminative features that are evaluated using entropy and variance
of Occurrence Numbers, a density distribution, which for one-dimensional data is a histogram
without a bin with highest value. They imply that feature selection should be invariant, at least to
some extent, with respect to metric scaling. However, histograms with arbitrary shape can have
the same value of entropy and variance since the position of histogram bins are not included in
the analysis. Therefore, in this dissertation, the shape of density distribution is investigated. The
degree of overlap or discrimination of mode of density distribution was measured using a simple

property of optics diffraction.

2.3 Related Work

The alternative methods for unsupervised feature selection were briefly reviewed in this
section. Given a set of data sampl¥s ¢ R™*", let X = (x1,%2,...,%X,) andx; =
{x1;,22,...,2m }. Eachz;; denotes the'" feature of thej!" sample,l < i < m,1 <

j < n. X can be view as a matrix of real numbers withrows andn columns. The concept of

the alternative methods are as follows:

2.3.1 Brief Concept of Laplacian Score (LS)

Laplacian Score [15] is a well known unsupervised feature selection based on filtering
approach. It can identify features with larger variances as well as stronger locality preserving
ability. The feature vector oK can be denoted by;; v; = {z;1,zi2,...,zi,}. Define
v, = %Z};l z; ; as themean value of thé’" feature. The Laplacian score of thé& feature,

L.,, which should be minimized and computed as follows.



LS, =" (2.1)

whereT; ; evaluates the similarity between tHé and;*" samples an«jT>i’i is an diag-

onal element of the diagonal matr{f'). 7; ; and(T) are defined as follows

2
i —xl|

T e ¢ if x; and x; are neighbours,
iaj =
0 otherwise
>
Lir, ifi=j
<T>i,j = T i
0, otherwise

wheret is a constantx; is the neighbour of; if the distancd|x; — x;||* betweenx; andx; are
ranked among the top nearest distances measured fram

In equation (2.1), the dividen}, (- ; — =, ;)*T; ; measures the distance betwegn
andx; only in the~!" feature. The divisob_, (@, — ¥;)? (T),,; is the variance used to nor-
malized the dividend. The value &f, is minimum if the summation of the distances among all
neighbours of the whole sample in thé feature divided by feature variance is minimum. The

relevant features indicated by Laplacian score are features with small value computed by (2.1).

2.3.2 Entropy of Singular Value Decomposition (SVD-Entropy)

SVD-entropy [14] is one of the preserving approaches. It ranks features according to
the contribution of features. A feature is left out and, then the entropy of the singular value
decomposition of the remaining features is computed. If there is nothing changed, compared
with the entropy of the singular value decomposition of all features, then the feature is assumed

to be an irrelevant feature. The contribution of iHfefeature to the entropy is defined as

CE; = ®(Xpmxn) — (X ((m—1)xn]) (2.2)

where X((,,—1)xn] IS the removed*" feature of the data matrix®(X) is the entropy of the
normalized eigenvalues (only positive values)f X, whereX” denotes matrix transpose.
Let 7; is a singular values of the matriX”, then+? is the eigenvalues of the matrix &’ X.

The entropy of the normalized eigenvalues can be computed as



1 & :
P(X) = — “log T 2.3
(X) = — Zf 0g 7] (2.3)
/ 2 7. ey .
wherer;, = — 2,andm is numberof the positive eigenvalues.

S

Any feature with highC'E value is assumed to be the feature with high contribution. The

SVD-Entropy ranked the features based on@he value in a decreasing order.

2.3.3 Laplacian Linear Discriminant Analysis-based Recursive Feature Elimination (LLDA-

RFE)

The LLDA-RFE [6] was extended from the Laplacian linear discriminant analysis (LLDA)
to unsupervised cases. The LLDA algorithm aims to identify the features with high discrimina-
tion of instances between distinct classes. However, in the unsupervised case, the class label
is not present. Therefore, the LLDA-RFE re-investigates the objective function of the LLDA
algorithm for using in unsupervised feature selection. The LLDA-RFE computes feature score

based on the projection matrik that maximizes the following criterion:

Jripa(®) = trace(®T (2 — 2Q)W). (2.4)

 and$2 are the global and local scatter matrices. TetT, L andL be the global similar-
ity matrix and the local similarity matrix, the normalized global, and local Laplacian matrices,

respectively. These are defined as follows:

1

Q  =-XLxT,

n
Q ZEXLXT,

n
. . 71 . . 7l
i :I—<T> 2T<T> :
L =I-(T)2T(T) 2,

and
II¢; =11 e
B ifi#£j

Ti; =
0, otherwise

whereT; ; evaluates the similarity between tHe and;*" samples as in (2.2<T> is a diagonal

matrix defined as follows



b 0, otherwise.

Consider equation (2.4 can be found as the eigenvectors(6f — 2Q2). The feature
selection process is based on the recursive feature elimination. An eliminated feature implies
that it is less relevant than the remaining features. Therefore, when the algorithm terminates, the

features can be ranked in the relevant order. The LLDA-RFE algorithm is as follows:

Algorithm LLDA-RFE

input: no. of neighbourhood, data stand no.of selected feature:*.
output: data with selected features

1. Set) + m.
While ¥ > m* Do

2. Create the complete armdnearest neighbour graphs &hand, then, computd, T,
L andL;

3. Compute the SVD oK asX = PAQ”

4. SetZ = AQT (L — 2L)QA

5. Compute the EVD oF asZ = VAV

6. Find the eigenvectors (&) &'V corresponding to the positive eigenvalues (A).

7. Remove thg'" feature with smallest score which is computed by

S VA
wherem’ is numberof the positive eigenvalues.

8. Set) + v — 1.

End While

Note that variable®, Q, V andZ are subjecto re-defining in the next chapter.

2.4 Concept of the Proposed Algorithm

There are several possible approaches to evaluate the merit of each feature or a group of
features. In this dissertation, the selection of relevant features is performed on each dimension
based on the score computed by an evaluating function. The data are projected onto each di-
mension in the form of histograms. Suppose there are no overlaps among data clusters, each

histogram can be used to represent each cluster and the envelope of the histogram can be viewed
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as alight source, i.e. a slit. But if there are some overlaps among clusters, obviously the his-
tograms are not clearly separated. The most relevant dimension should be the dimension that has
the minimum amount of overlap between histograms. Hence, the problem of selecting the most
relevant dimension or feature is transformed to a problem of measuring the degree of overlap
of light sources. Figure 2.1 shows an example of projections and the envelopes of histogram of

data clusters in a 2-dimensional space.

envelope of histograM M

envelope of histogram

Figure 2.1: An example of projection of each data cluster onto each dimension aodrés

sponding envelope of histogram.

In the proposed approach, to measure the degree of overlap (discrimination), the set of
envelopes is considered as a set of aperture slits and the far-field diffraction patterns of light
penetrating through the slits and projected on a plane must be observed. By analyzing a well
known aperture know as grating a connection between an intensity of diffraction patterns and
the preferred properties was found. Based on this observation, the entropy of the intensity dis-
tribution of light is measured to evaluate the degree of overlap and to determine the relevancy
of the corresponding feature. The diffraction is captured in terms of a Fourier transform. With
this approach, it turns out that the proposed algorithm is invariant under feature scaling when
directly deployed on the data space.

Light diffraction analysis and Fourier transform have been used in many fields. Casasent,
Rozzi, and Fetterly [26] applied the Synthetic Discrimination function (SDF) to pattern recog-
nition. Ostrovsky, Mota, and Cuatiaquiz [27] and Jing, Wong, and Zhang [28] used Fourier
transform as a kernel function for pattern recognition in a supervised manner. Wu, Walczak,
Penninckx, and Massart [29] used Fourier transform to obtain its coefficients for classifying the
near infrared (NIR) data. The background of light diffraction and entropy measures are summa-

rized in the next chapter.



CHAPTER 1l

BACKGR OUND OF OPTIC DIFFRACTION PATTERN

The diffraction pattern can be explained by Huygens-Fresnel principle and its special case
is based on the Fraunhofer approximation in terms of Fourier transform of an aperture function
[30]. Suppose there is a plane wave of coherent light. A basic configuration for observing a
diffraction pattern is shown in Figure 3.1. The aperture is assumed to lie on the left vertical
plane. When the light travels through the aperture, its diffraction pattern occurs on the right

plane called observation plane, which is at distan@nd parallel to the aperture axis. The

observation point is denoted loy

wave front observation point o

light source

reference line

aperture plane observation plane

Figure 3.1: A basic configuration for observing a diffraction pattern. The &tical solid line

represents an aperture plane which can be viewed as a new light source while the right vertical

solid line represents an observation plane.

The following notations will be adopted to distinguish a continuous variable from a dis-
crete variable used in the function. LBt be any function withi as its variable. Ifh is a

continuous variable within a given interval then functidgris written asV’ (k). Otherwise, it is

denoted by, if h is a discrete variable.
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3.1 Diffracted Wave under Huygens-Fresnel Principle

According to the HuygenrsFresnel principle, each point on the wave front can be re-
garded as a source of secondary wavelets radiating in phase with the same frequency as the
original wave front. In Figure 3.1, the wave propagates onward from 8ifpointo as a spher-
ical wave front with radius of curvature equal to On the aperture plane at the considering
position (9 from the reference line, let’ (&) be the electric field representation of light, and
A(€) be the aperture function. The relation betwe€(¢) and A(¢) is defined by the following

equation.

A(€) = A(g)e™" (3.1)

wherei = \/—1 is the imaginary valuew is theangular frequency of the light; = 27 f, andtg

is an initial time.A’(f) is an complex value representation of light at the posi§ioRor a plane

wave at any given time, all positions on the wave front at the aperture are in phase, i.e. same
phaser. Thusd’ (&) can be considered as a real value amplitude of light. The phase change of
wave from slits to pointo depends on the distaneend the timeg. By assuming the initial time

is equal to zero and the amplitude of the light is constant along the propagation, the disturbance

ato is, then, computed by

NG A e (3.2)

where E(©)(q) denote the disturbance at the considering position on the observation plane ac-
cording to the light from th& position,¢ = 27 /X and\ is the wave length. LeE'(¢) be a total
disturbance a considering positionoawith distance; from the reference line on the observation
plane. The total disturbance atis the summation of the contributions from all points on the

aperture can be computed as

E(g) = et / A(E)erde (3.3)
3

wherer is the distance between stitand pointo. By changing the position of poind, the
diffraction pattern can be observed at any position on the observation plane. The intensity of the

diffraction pattern,P(q) , is defined by the following equation

!ChristiaanHuygens:1629-1695. Dutch mathematician and physicist.
2Augustin-Jean Fresnel: 1788-1827. French physicist.
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P(q) = [|E(q)[]*. (3.4)

3.2 Fraunhofer Approximation

The Fraunhofér diffraction, also known as the far-field diffraction, is based on the as-
sumption that the wave front at the aperture is a plane wave and the diffracted waves are also
plane. The observation plane is assumed to be located infinitely far away. This makes the diffrac-
tion angel,#, in Figure 3.1 very small with respect to the reference line. Therefni€¢)) can

be approximated byin(f) ~ tan(f) ~ 6. Furthermore, the distaneecan be estimated by

r=ry—Esin(0) (3.5)

wherer is the distance between the the position at the reference line on the aperture to the point

o . Consequently, the total disturbance at peis given by (3.3) can be rewritten as follows

E(gyere / A(€)e2mat g (3.6)
3

wherec = ¢/?ro=wt) ¢ = 27\ andg = sin(f)/\. A(¢) denotes again the function of the
aperture which is zero elsewhere outside the aperture. In gerggalis equal to one wherg

is a position in the aperture. However, this function can be any arbitrary value, by allowing a
real value ofA(-) between zero and one. This can be regarded as transparent plates of various
thickness. Any value ofi(-) less than one means that the aperture absorbs the amplitude of light
by allowing a fraction of the amplitude to transmit through the aperture. Hence, the function
A(€) can be viewed as an amplitude transmission function or an amplitude absorption aperture.

It will be discussed again and be referred as a probability density distribution.

3.3 Example of Light Diffraction on well known Apertures

3.3.1 Double Slits Diffraction

Thomas Younfjobserved the diffraction pattern of light passing through two equal aper-

tures called double slits, as shown in Figure 3.2. Suppose each slit hasamidth center

3Joseph wn Fraunhofer: 1787-1826. German optician and physicist.
“Thomas Young: 1773-1829. English physician and physicist.
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slit

a{\

aperture plane observation plane

Figure 3.2: Double slits configuration for Young's observation with slits widéne placedvith
distancey from each center. The thin solid line at the observation plane models the magnitude

of diffraction pattern.

separated from each other by a distancé.dfhe observation plane is at distancand parallel
to the aperture plane. The aperture function represents the double slits. The value of the function

is equal to one only at the aperture and zero outside and it is defined as follows

A(§) = Ta(€ — 6/2) +a(§ +6/2) (3.7)

where

1 if J¢—al 2
. (8) = ¢ (3.8)
0 otherwise
TheIl, (&) denotes aectangular function which has widthand center af. The diffraction

pattern observed by Fraunhofer approximation, using (3.6) is as follows
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—(6+a) (6+a)

T2 2
E(q)=C / e 1 0 enage
a)

_ (6+a) (6—
2

2

e—27ri€q 7(5;@ e—27ri6q (5;,1)
== 2miq |——(6§“> B 2miq ‘—(6?)
_ —C |:627ri(5;a)q_e27ri7(6ga>q} + —C |:6—27ri7(6;a)q_6—27ri<5;a)q
2miq 2miq

= 2_75; [cos(miq(d — a)) + isin(mwiq(d — a)) — cos(mwiq(d + a))

—isin(mig(d + a)) + cos(mwig(d + a)) — isin(wig(d + a))
— cos(miq(0 — a)) + isin(mig(d — a))]

= f(; [sin(mq(d — a)) — sin(mwg(d + a))]

= —ii' [cos(mqd) sin(mqa)]

=C2a cos(wqé)w

qa
= (C2a cos(mqd)sinc(mqa) (3.9)

where

sin(6)

¢=—" sinc(@)zsm(e)

and  C = e iR Tt (3.10)

The aperturés limited by range) + a. Suppose the limit of the aperture is fixed, e- a,
to aconstantand, then, change the distance of the slits. Increasimg A means simultane-
ously reducing: by Ad/2. The magnitude of the diffraction pattern of two different values of
slits distances are shown as Figure 3.3. The peaks of the magnitude which represent the center
of the bright area are decreased when the observation position is far from the center position.
Equation (3.9) can be regarded as an amplitude modulation of two signals. The magnitudes of
the cosineare limited by thesincfunction. If he height of the modes of magnitude are consid-
ered, i.e. the center of each bright area, those from Figure 3.3 (a) are more closely together than
those from Figure 3.3 (b). In other words, the modes of magnitude from Figure 3.3 (b) are more
Gaussian than the one from Figure 3.3 (a). This indicates that the equality of the modes can
be viewed as the discrimination of slits. If the aperture is represented by means of a probability
density distribution, the distance between modes of density distribution can be viewed as the dis-

tance between slits. A slit can be viewed as a data cluster. Clearly, when the peaks of diffraction
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@ s a=0.050=0.9 |cosfmo)sincma)| Diffraction pattern
1
0.5
—%.5 0 0.5
(b) s a=0.30=04 |cosfmo)sincima)| Diffraction pattern
1
0.5
—%.5 0 0.5

Figure 3.3: Double slits diffraction pattern using difference width of apertures. tdmand
the bottom rows illustrate, from left to right, the slits widths, the aperture functions, and the

diffraction pattern.

pattern produced by this type of aperture are more closely together, it indicates that the clusters

are more discrimination. These are also true for the intensity of the diffraction pattern as in (3.4).

3.3.2 Grating Diffraction

Let us now observe the diffraction pattern of light passing through a well-known aperture
called grating. A grating consists of many of slits (grooves) per centimetre and is widely used in
fibre optic communication systems [31].

Consider a grating witli: similar slits shown in Figure 3.4 (a). Suppose the width of each
slit is a with its center separated from each other by a distanéeanfda < §. If a is equal to
J, then the aperture become a single slit. The aperture fundtigihrepresents the grating. The

value of the function is equal to one only at the slit but zero outside and it is defined as follows

G-1 G-1
A =) AW = (¢ - &) (3.11)
g=0 9=

wherell, (¢) denotes a rectangular function of widthand its center is at as in (3.8).4(9)(¢)
is theg'” slit function. The diffraction pattern can be observed by Fraunhofer approximation by

using (3.6). The intensity function of the grating can be expressed as in Appendix as follows

sin(Gmdq)

2
Sin(70g) } sinc?(raq) (3.12)

P(Q):C[



17

@) A (%)

Sc A% ) A9 (&)

y ’_‘T o0 — lad
] :
8o 81 139
(b)
1 5 T T T

N
208 AN 1
c .
403 AN
= 06 Y e
i} \
(0]
N 04
©
E
S 02

o

Figure 3.4: An example of grating and diffraction patterns. (a) The left imagegiaiing
consisting of a group af slits placed at the distanéeapart from each other. The width of each
slitis equal taz. The rightimage is a set of correspondiaty) (¢) functions. (b) The normalized

intensity of diffraction pattern. Only the range> 0 is shown.
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wheresinc(6) = # sin(¢) andC is a constant.

Consider the effect of (3.12) on the diffraction pattern as shown in Figure 3.4 (b). Firstly,
the first factor, i.e. the functions in the bracket, is based on the number of slits and the distance
between slits. This factor produces patterns of bright areas that the principal maxima are located
atqg = j/9; 5 = 0,£1,£2,43,.... The principal maxima called zeroth-order and first-order
principal maximum ifj = 0 andj = 1 respectively. If the distance between slits increases,
the distance between the bright areas of the diffraction pattern will decrease. The intensity of
the bright areas next to the zeroth-order principal maxima will also increase, especially the first-
order principal maxima denoted B, in Figure 3.4 (b). Secondly, the last factor is based on
the slit width, i.e. thesinc?(-), which is the dashed line in Figure 3.4 (b). It has a zeroth-order
principal maxima ay = 0 and minima ay = j/a; j = +£1,4+2,+3,.... It represents the
effect of the single slit, which is the Fourier transform of (3.8). The grating with smaller slit
width produces a diffraction pattern with more distance between the minima and the zeroth-
order principal maxima. Also the value of function slowly decreases from one to zero in the
intervalg = [0,1/a]. In addition, the values of the principal maxima of intensity are limited by
this function as shown by the solid line in Figure 3.4 (b). Their positions can be approximated

by ¢ = j/0, thus, their values can be computed as

Yy = sinc? (71'%), (3.13)

that arencreased ifs is decreased. Consequenthe principal maxima of intensity will increase
closes to the zeroth-order principal maxima for both the large distance between slits and the small
width of slits especially whep = 1, i.e. Y, as shown in (3.13). Since its value decreases from
one to zero wher increases fronzero to one. Therefore, if the equality the principal maxima

of intensity were considered, it implies that the grating consists of a large distance between slits

and small slit widths. Note that in this dissertation, a slit can be viewed as a cluster.

3.4 Discrete Fourier Transform of the Fraunhofer Diffraction

The Fraunhofer diffraction can be simulated by using discrete Fourier transform. In the
frequency domain, The Fourier transform of a given functfgh) with time variablet is a

combination of all function values given by
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F(u) = / f(t)e 2™ty (3.14)

whereu denotes a frequency variable. To makeu) realizable, a discrete Fourier transform is
considered. The value ¢f(t) is sampled at consecutive time steps. Due to the fact that a discrete
domain is being used, the following notatiofs,for 0 < ¢t < N — 1, will be used to represent
each sampled value at different time stéps
The discrete Fourier transform (DFT) of eaghdenoted by, for0 <t¢,p < N —1,is
computed by the following equation:
N-1

Fp=Y feem ™ p=0,1,...,N -1 (3.15)
t=0

However, in between two consecutive time stefjscan be made finer by allowing pa-

rameterp in the complex exponential power to be representeg by b(N — 1)/(B — 1), for
0 < b < B—1. Bbe an arbitrarily chosen number of evaluated frequencies. Thus, the refined
Fourier transform of’,, becomes
Fb:Nifte‘z’f“m,bzo,L...,B—1 (3.16)
t=0

In (3.6), if the limit of the integral is extended to the range frenx to oo, there is no
effect on the integral becausg¢) is zero outside the aperture. In addition, if the constant
the integral is discarded, the total disturbance can be regarded as the Fourier transform of the
aperture functiong can be viewed by means of the frequency of the Fourier transform in (3.14).
Hence, the total disturbance can be observed based on the following relation

B, o NzlAge_mek’((]é_ll)), b=0,1,....,B—1 (3.17)

£=0
Note thatifb = 0, thenEj is the summation of all components4f. This is equivalent to

the zero-angle coefficiertt, = 0, of the total disturbance at the center of the observation plane in
(3.6). Moreover, if the value of the aperture function is always real, then the total disturbance of
the negative angle is the complex conjugate of that of the positive angle. Therefore, the intensity
of both angles is exactly the same value. For those reasons, the first half of the total disturbance

in (3.17) is needed, including the coefficient of position zero.



CHAPTER IV

DISCRIMINA TION ANALYSIS AND PROPOSED
ALGORITHMS

According to the optic diffraction principle mentioned in the previous chapter, the height
of the principal maxima of the diffraction magnitude close to the zeroth-order principal max-
imum when the distance between slits is increased or the slits width are decreased. Consider
the probability density distribution of 1-dimensional data. If the density of distinct clusters is
considered as a slit and the distance between clusters is measured as the distance between slits,
then the further distance between slits can be viewed as a greater discrimination of density dis-
tribution of the distinct clusters. The discrimination of density distribution via the diffraction
principle and the feature discrimination analysis algorithm are proposed. The next sections will

be discussed on the following issues with regards to the proposed algorithm:
1. Connection between optic diffraction and discrimination analysis.
2. Discrimination metric.
3. Aperture representation re-examined by means of the density distribution.
4. Base orientation and computation algorithm.
5. Feature evaluation algorithm.

6. Generalization of probability density distribution and basis orientation.

4.1 Connection between Optic Diffraction and Discrimination Analysis

In order to apply the principle of optic diffraction to feature evaluation, some constraints
need to be considered. Suppose the limit of the aperturé(i.e. 1)d + a, was normalized to a
constantand, then, observeanda by analyzing the diffraction pattern. When sampling density
distribution of each feature into the same discrete amount, e.g. the same amount of histogram

bins, they can be viewed as the limited range aperture. The distance between modes of the
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density distrilntion can be regarded as the distance between slits and each slit can be considered
as a high density area. The discrimination of the high density areas is referred by means of the
separation between slits, i.€— a.

Consider the value of principal maxima intensity that represents the center of the bright
area next to the zeroth-order principal maximum intensity using a different grating as illustrated
in Figure 4.1. The important factors subject to make the value of principal maxima close to each
other, compared with Figure 4.1 (a), and their connection to discrimination analysis of density
distribution are as follows

@ Ag) ®) A@)

principal
maxima

| 1| 1.n.nnr,

q
subsidiary maxima

Figure 4.1: Comparison of the normalized intensity of diffraction pattern on different grating

configurations.

e A largerd causes the position of principal maxima close to the posifien 0, which is
the highest value, and, thus, the principal maxima are increased. The number of slits also
decreases because the range of the aperture is a constant. Figure 4.1 (b) illustrates the

effect of larger distances among slits when compared to Figure 4.1 (a).

e A smaller slit width,a, with the same number of slit§;, causes the position of the first
minimum of thesinc function (atq = 1/a in Figure 3.4 (b)) to be located at a further
distance from the center position and, thus, the principal maxima of the intensity are in-
creased. The effect of slit width and the number of slits are shown in Figure 4.1 (a) and

Figure 4.1 (c).

¢ Different numbers of slits cause different values of the principal maxima dugtoThe

smallera /6 makes the values of the principal maxima higher as discussed in Section 3.3.2.



22

This canbe viewed as the higher density of individual cluster and larger discrimination of

distinct clusters, as shown in Figure 4.1 (d) and when compared with Figure 4.1 (a).

Based on the observations above, the other density distributions can be analyzed as fol-
lows: First, if the silts function is a Gaussian function, i.8,(¢) = e ™(¢-4)/9° then the
three issues above still hold for this type of distribution because the last factor in (3.12) is its
normalized Fourier transform, which is™*” instead of thesinc?(-). Therefore, in the in-
terval¢ = [0,1/a], the smallera using Gaussian function produces the similar effect to the
principal maxima of intensity compared with one of tac?(-) functions. Next, if the density
distribution is uniform, then the density has the same value for all positions. This implies that
A(¢) is arectangular function and the principal maxima of intensity are the principal maxima of
the sinc?(maq), wherea is equal to the range of density distribution. Wh@ns equal to one,
the range of aperture is equald@nd the first factor of (3.12) is always equal to one. Finally, if
the density distribution is a Gaussian distribution, &) = e~*/a% then there is only one
maximum which is the zeroth-order principal maximum. This is because the Fourier transform
of a Gaussian function is a Gaussian function consisting of only one maximum. Consequently, if
the density distribution was observed by means of the aperture and the equality of the principal
maxima of intensity, then the distribution can be ranked in the following order: (1) the most
discriminative distribution, (2)uniform distribution, and (3) Gaussian distribution, respectively.

In general, A(¢) can be any arbitrary value whegés a position in the aperture. Suppose
all positions on the wave front at the aperture are in phase and located at the same wave front.
A(€) can be considered as a real value amplitude of light. If the valud(ef is between
zero and one, it can be regarded as transparent plates of various thickness. Any vé{ue of
less than one means that the aperture absorbs the amplitude of light by allowing a fraction of
the amplitude to transmit through the aperture. Hence, the funetigh can be viewed as an
amplitude transmission function or an amplitude absorption aperture. Figure 4.2 (a)-(d) show the
diffraction pattern of other aperture configurations with a mixture of various height and width of
Gaussian functions. The apertures are ranked according to a function of intensity maxima that
will be proposed as a discrimination metric in the next section.

Consider the discrimination analysis from a Fourier transform point of view, then the
observation plane of optic diffraction can be viewed as a frequency domain of the distribution
function. The lowest frequency is at the center as the zeroth-order principal maxima intensity.

Observing the height of the maxima can be viewed as observing the height of frequency of
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Figure 4.2: Comparison of the normalized intensity on different mixture of Gaussian functions.

Thefirst and second maxima are marked by the solid cycle.

the distribution. The optic analogy makes the observation clearer by analyzing the well known
aperture function. Therefore, observing the height of the maxima means that high frequency
exists in the frequency domain of density distribution. The high frequency means that the density
rapidly changes from a high value to a low value and vice versa. This indicates that some

separation exists between clusters.

4.2 Discrimination Metric

An evaluation using the diffraction pattern of an aperture represented by the probability
density distribution is introduced in this section. LEtbe a discriminatory score that is a
function of the maxima intensity’ = {Y7,...,Yn}; Y; € [0,1]. The equality ofY can be
easily measured by using the entropy and evaluated as follows

N

1
¥/log, Y/, (4.1)
1

H=—
log, N

=
wherer is a constant. Normallyr = 2 andY; = Y;/3",Y;. Consider the equation
(3.13), using the second maxima= 1, is enough for measuring the equality. Therefore, only
the first two maxima of the mode of intensities for measuring the equality in (4.1), i.e. the
zeroth-order principal maximum and the second maxifpaare selected. The discriminatory

score using the first two maximum modes of intensiligsY,,, using (4.1) is as follows
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1 Yo Yo Yo Yo
H= ( log — log
Yo+ Y, Yo+Y, Yo+Y, Yo+ Y,

o2 ). (4.2)

SinceYj is thefirst maximum peak which is the coefficieht, Yy is a summation of the aperture
function which is equal to one. Thus, the entropy of the normaliZegandY,, can be expressed

by substitutingy = 1 andlog 2 = 1 in (4.2) as follows

1 | 1 Y, | Y,
_ fo) — (0]
1Y, 814y, 11Y, 214y,
1 1 Yo
= ———|log———~+ Y, log —————
TS AN RS AR S
1
= — m [log 1= log(l + Ya) + Yoz 10g Yoz - Ya lOg(l + YO!)]
o
1
- — vy [YalogY, — (14 Yy)log(l+Y,)]
Y,
= log(1+Y,) — H“Y log Y. (4.3)
o

The lagest value of (4.3) is equal to one when the value of the second maxima is equal
to the value of the principal maximal can be viewed as a discriminatory score of density
distribution. It can be viewed as a mapped value fliggto H as shown in Figure 4.3. This
score value is used for basis evaluation and computing the discriminatory score of the original

features.

H Discriminatory score
T T T T

0.8

0.6

0.4

0.2

Figure 4.3: The discrimination score which is the entropy of the first two highest hafigié

principal maximum intensities.
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4.3 Aperture Representation

In this section, the aperture function is referred to as a probability density distribution.
LetX = {x1,%2,...,X,}, X; € R™, be a data set. Eaoty = [z z2,; ... zm ]! is viewed
as a column vector. Note that eaely; can be considered as ti#é feature of datax; Since
our method considers one feature at a time, for ﬁhyfeature, we form the!" feature set,
denoted byv;, from all data inX as a collection ofz; ; for 1 < j < n. Hence, we have
v = {zi1,zi2,...,2,}. Each feature set can be categorized iNtdins of equal range and
viewed as a density distribution of the data. This is known as a histogram. However, one of
the difficulties in using this simple technique is choosing an appropriate width of bins which
is sensitive to the outliers and the initial position. Therefore, the outliers were removed and a
smooth version of the histogram was used instead. A low pass filter was applied to the histogram
and can be viewed as a convolution between the value of histogram bins and a mask which is
used to weight the neighbourhood bin values. Forithefeature, the weight of thé” bin

compared with the consideretf* bin is defined as follows

—(r—t)2
wi(r,t) = e n; - (4.4)
0.9(N —1) _1/5

ni = maz;(z;;) — mz‘nj(xi,j)am

wherer € {0,1,..., N — 1} are the indices of bing); is adopted from [33] which is for multi-

modal estimationg; is the standard deviation of the given feature vector. ;Lidbe the mean

of the i** feature vector. Thereforey; = \/% S0 (wig — i)’ miy € vi is anoutlier if
|z; ; — ps| > 30;. The outliers are discarded for density estimation. The density estimation can

be computed bylgorithm 1.
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Algorithm 1: Density Estimation

input: a feature vectory;, no. of bins, N.
output: probability density distribution withV bins
1. Remove the outliers.
2. Categorize the data into an array/fbins named.

3. Apply a low pass filter

Ag = ]:201 Aawi (€, 1)

WhereA; is value of histogram of th¢/" bin.
4. Normalize the histogram by

N—1
Ag — Ag/ Z At
t=0

In Algorithm 1, the mean and the standard deviation are computed in step 1. Therefore,
the timecomplexity of this algorithm i€)(n). This can be viewed as a special case of kernel
density estimation, but much faster if the number of data is more than the number of bins.
The density distribution that is represented by the histogram in atrigyused as the synthetic
amplitude absorption aperture or amplitude transmission function. The value of a bin indicates
the remaining amplitude of light. The synthetic aperture completely absorbs the amplitude of

light when the value of a bin is equal to zero.

4.4 Basis Orientation and Computation Algorithm

In a real world situation, the orientation of given data is normally unknown. The given
data can lie in any direction which can cause data projection onto a standard basis (called an orig-
inal feature) hard to analyze because distinct clusters can be projected onto the same position.
Therefore, it is reasonable to explore the orientation of the given data beforeAlgorghm 1.

The independent component Analysis (ICA) is a statistical method aiming to find the statisti-
cally independent component, not necessarily transformed by orthonormal bases. The algorithm
can be divided into two main steps. First, the data are centered at the origin (zero-meaned) and
uncorrelated (whitened). Second, some suitable optimization algorithms are used to find the
independent components (ICs) with some constraints. FastICA is one of ICA algorithms maxi-
mizing the non-gaussianity distribution of the estimated components. This dissertation used the
FastICA [34] algorithm to find the bases and orientation of the given data. Given a dXaiset

can be decomposed into two matrices as follows
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X = ME, (4.5)

whereM is amixing matrix and= is a matrix of independent components (ICs). Both of them

are unknown. However, (4.5) can be rewritten in the form of

[
I

M
UTx. (4.6)

If every vector in matrixU is constrained by a unit norm, then ICs can obviously be
viewed as a linear combination of the given data and the bases. In additiah,U can be
viewed as a basis for transforming the input data into a new space. Therefore, an independent
component consists of appropriate properties of original features constrained by a contrast func-
tion of the ICA algorithm. The univariate density estimation, adlgorithm 1 on an IC, can
be viewed as the multivariate estimation on original features. Also, univariate evaluation on an
IC can be referred to as an evaluation of a combination of original features. The bases can be
computed as shown idlgorithm 2

The basis vectors ifJ are at the origin with the centred da¥a The ICs centred at the

origin are the linear transformation &f using the de-whitened bases can be computed by (4.6).
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Algorithm 2: Basis computation Algorithm

First step
1. centetthe data at the originX
2. calculate eigenvalues and eigenvectors of the covariance matrix Q(XXT) such
that
CE =ED
whereE is the matrix of orthonormal eigenvectors abidis the diagonal matrix of
eigenvalues
3. setZ = (D1?2ET)X
whereD~1/2 = diag(dl'l/z,d;m,...,d;l}ﬂ) andm’ is the numbers of positive
eigenvalue
4. sett =1
Second step
5. randomly choose an initial basis of unit norm,
6. if i > 1, orthogonalized basis by
i—1

u; < u; — Z (uiTuj)uj
7=1

7. letu; < w;/||u|
8. let
u, < u; and
u; — %Z(ZTui)3 — 3u;
9. orthogonalize@nd normalized basis by steps 6, 7.
10. if ||u, — u;|| > € and ||u, + u;|| > e then
repeat steps 8 to 9.
11. ifi < m/, seti + i + 1, repeat steps 5 to 10.
12. de-whitened the basis, 36t« ED~1/2U.
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4.5 Proposed Feature Evaluation Algorithm

When the basis vectors are not standard bases, feature evaluation needs to be re-investigated.
Suppose there is a unit vectoy = [u; j, u2 ;|7 in R2. The coordinates of each basis vector cor-
responding to the standard basis gr@|” and[0, 1]7. The cosine of the angle between a basis
vector and its standard basis is the coefficient of the vector itself. For instance=if[1, 0]"
then the projection onto the first standard basis can exactly represent thewga@srshown in
Figure 4.4.

‘ Standard basis 2
u; \ (Original feature 2)

(-0.58,0.81)

u.

i @o

3>
=

Standard basis 1
(Original feature 1)

Figure 4.4: The unit vectors and the standard basis which represent the featuresctbna;
has a tendency to be parallel to feature 2 axis than feature 1 axis while the wecsquarallel

to feature 1.

Therefore, the higher the value of the coefficient is, the more representative a standard
basis can be. Selecting any feature as a discriminative representation will depend upon its dis-
criminative score, denoted I#y;. The value ofS; is a weighted summation of coefficients from

the set of basis vectofgi;, uy, ...,u, , } € R and is defined as follows

m/
Si = ZHJ"’U,Z‘J" (4.7)
j=1

where H; is the discriminatory score of basis vectay. The process for evaluating relevant
features in forms of basis vectors are summarized in the Discrimination Evaluation via Optic

Diffraction Analysis (DEODA) algorithm.
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DEODA Algorithm: Feature Evaluation Algorithm

Input: Matrix U, all feature vectord/, no. of samples3
Output: Set of discriminatory score for all features,
For each basisi; Do

1. ProjectV with respect tau;

vj = ujTV.

2. Estimate the probability density of; which represents the aperture by using Algo-
rithm 1.

3. Compute the intensities of the far-field diffraction by applying the discrete Fourier
transform

b(

N-1 —omit N-—1) N
Py=|| > Ace T NED|
=0

whereb = 0,1, ..., B — 1 andi = /—1 is the imaginary value.
4. Findthe second maximum mode of intensiti&s,
5. Compute the discriminatory score of the bases
Hj =log(1+ Ya) — 3% log Ya.
EndFor

6. Compute discriminatory scores of original features

’
m

Si: ZHj|ui7j,1§i§m
J=1

7. Rank features according to their discriminatory scétga decreasing order.

The main computation dDEODA Algorithm is inside thefor loop. Step 1 is the data
projection, which is done in O(mn). In step 2, dueflgorithm 1, the time complexity is O(%

In steps 3 to 5, the computations are independent from the properties of data but are dependent

upon the number of the histogram bins in step 3 which is a constant. Thus, the time complexity

of these steps is O(1). Since these steps are iterataines, the overall time complexity of

DEODA Algorithm is in O(m/mn), wherem is the number of featuresy’ is the number of

bases, and is the number of instances. However, if the bases are not standard bases, then some

extra computation is needed to find the bases before apply the algorithm. If the bases are the

standard base®] = I, then the projection data in step 1 can be obtained directly from the data

in each feature. Moreover, steps 5 and 6 need not be computed because the ¥alearobe

used as a discriminatory score of the original feature. The features are ranked in the same order.

Consequently, the overall time complexity@EODA Algorithm with U = I is in O(mn).
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4.6 Generalization

Themain analysis of the proposed algorithm is performed on a probability density distri-
bution of the projected data onto the bases. However, there have been open problems of gener-
alization of both probability density distribution and basis orientation. In this dissertation, the
simple estimation of the probability density distribution is proposed. The FastICA is deployed
for discover the basis orientation, which is not necessarily orthonormal. Since the proposed
probability density estimator is invariant to matrix scaling, thus, there is no need to pre-process
the data by normalization in the caseléf= I. An outlier is detected by comparing the distance
between the corresponding feature vector and the mean of all feature vectors with three times the
data standard deviation. Those methods can be changed arbitrarily according to the nature of the
given data. Another concern is the number of sampled data for the Discrete Fourier transform.
The fast Fourier transform algorithm [35] performs faster when the number of discrete values
is a power of 2. This can be computed in advance before using the algorithm. In addition, the

number of bins of the discrete probability density distribution should also be a power of 2 also.



CHAPTER YV

EXPERIMENTAL RESULTS

5.1 lllustrative Examples by the Proposed Algorithms

The proposed algorithm was tested on a synthetic data. There were two experiments,
namely evaluation on data space known as feature selection and on the transformed space known
as feature extraction. Note that the proposed algorithm can evaluate features on data space using
the information from the transformed space. This approach is also referred to as feature selection.
All bases given irDEODA Algorithm are not necessarily standard bases. When the algorithm
is applied to the bases from the ICA algorithm, the notab&@ODA (ICs) is used to denote this
process.

Consider the following example data in 20 dimensions or 20 features. The data set were
generated with some noisy features so that they can affect the distance measure when all original
features were used. The distribution of these data based on the first two features were shown in
Figure 5.1 (a) for the feature selection experiments and in Figure 5.1 (b) for the feature extraction
experiments. The data were smeared with different types of noise in the other remaining 18
features, namely uniform noise for features 3 to 8, Gaussian noise for features 9 to 14, and t-
distribution PDF noise with degree of freedoms 1 to 6 for features 15 to 20. Prior to applying all

algorithms, the data were normalized with zero mean and one unit variance for all features.

5.1.1 Feature Selection

Typically, in a feature selection approach, the features of the given data are rearranged
according to their criterion. They are not restricted to any classification and clustering algorithm.
One of the advantages of this approach is to reduce the search spac® frmmn candidate
subspaces. The feature subsets are subsets of sizes 1, 2, ....,., m, respectively, where
feature subset of size* consists ofm* features having the highest score. It should be noted
that although a univariate evaluation can reduce the search space, it can sometimes omit useful
feature combinations. The classification and clustering algorithm evaluation are performed on

them subspaces.
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Figure 5.1: Synthetic data set. (a) The scatter plot of first two bases of original (Batahe

scatter plot of first two bases of transformed data.

In the example previously discussed, the probability density distributions of the projec-
tions onto the basas;, us, us, uyg, andu;; of the first synthetic data set were shown in Figure
5.2 (a). The bases here are standard bdSes,I. The intensities of the diffraction and their
patterns were shown in Figure 5.2 (b). Note that only the second maximum mode of the in-
tensities was needed for computing the discriminatory score. The discriminatory scores of the
corresponding bases were plotted in Figure 5.2 (c). To compare with the discriminatory scores
of the other bases, Figure 5.3 shows the discriminatory scores of all bases. It can be seen that the
first two bases had higher discriminatory scores than the others’. Thus, these two bases got the
two highest ranks. The optimal classification and clustering algorithm needs to evaluate only the
first two subspaces without noisy features.

The result was compared with the following measures: LLDA-RFE, SVD-Entropy, and
Laplacian Score. Figure 5.4 shows only the first two features having highest scores. The pro-
posed algorithm selected the features that showed clusters better than the features selected by

the other measures.
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Figure 5.2: The density distribution, diffraction patterns, and discriminatory scotesset 1,
2, 5, 10, and 15, respectively. (a) Density distribution of bases. (b) Diffraction patterns. (c)

Discriminatory scores of bases.
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Figure 5.3: The discriminatory scores of all features of the first synthetic datwvalefated by

the proposed algorithm.
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Figure 5.4: Scatter plots of the first two top score features evaluated by different algoiighms.

LLDA-RFE. (b) SVD-Entropy. (c) Laplacian score. (d) The proposed algorithm.

5.1.2 Feature Extraction and Selection

To select the essential features, i.e. the relevant features in data space indicated by al-
gorithms, the natural distribution direction, which is the direction of data alignment, must be
computed first. This is followed by the measurement of the discriminatory score of each basis.
PCA and ICA are considered to find the natural distribution direction of the given data and is
here that a special technique of ICA called FastICA previously mentioned is used. The example
in Figure 5.1 (b) was deployed here. Features containing different types of noise were added
and, thus, produce only a few relevant features. For illustration purposes, first, PCA was applied
to this data set and the bases with the highest eigenvalues, hamely bases 1 and 2, were selected.
Figure 5.5(a;) shows the distribution of data based on bases 1 and 2 having maximum eigen-
values. However, if the discriminatory score in equation (4.7) was used instead by $&ttimg
the eigenvalues to select the essential features, the first two essential features became 19 and 18,
respectively. The scatter plot of the data based on both features 19 and 18 was given in Figure
5.5 (az). Next, FastICA was deployed to the same data set. The same procedure was repeated

with FastICA. Figure 5.5b;) summarizes the distribution of data on the first two ICs in ICA
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space andrigure 5.5(b,) shows the distribution of data based on the selected features 11 and 9,
which were the first two highest scores computed by (4.7) by sefjrtg unity for all bases. In

the case of DEODA algorithm, Figure 5(6;) and(c2) show the distribution of data based on

the bases with highest discriminatory scores after steps 5 an@E@DA Algorithm. These

were the first two highest scores of ICs and the first two highest scores of original features, re-
spectively. The proposed algorithm can evaluate the true discriminatory features in both given
space and transformed space.

Figure 5.6 shows another comparison of PCA, FastICA, and DEODA algorithm. The data
are generated by randomly choosing some positions of an image as the first two features and,
then, smeared them by some noisy features. Figuréds)eand(az) in the first column are the
PCA results. Figure 5.6b;) and(b2) in the second column are the FastICA results. The last

column is the results from the proposed algorithms.
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Figure 5.5: Scatter plots of the first two top scores of bases, (top row) in transformedasiiace

(bottom row) features in given space using (4.7). (a) PCA. (b) FastICA. (c) DEODA.
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Figure 5.6: Scatter plots of the first two top scores of bases in transformed spafigutepand
features in given space (bottom figure). (a) PCA. (b) ICA. (c) DEODA.
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5.2 ExperimentSetting

The proposed algorithm is applied to classification and clustering tasks. In order to
demonstrate the performance of the feature selection algorithms, data sets with less than 100
features from the UCI repository [36] as well as the data set with more than 2,000 features of
gene micro-array data set were considered. The gene micro-array data set is one of challenging
data set for feature selection, since it consists of a large amount of features but small number of
samples. The features of the data sets are reordered in relevant order via the feature selection
algorithm. Since our algorithm is not based on trial-and-error on all combinations of selected
features, therefore, the evaluation was performed only omitlvandidate subsets. The candi-
date subsets are subsets of sizes 1, 2;m’, ..., m, respectively, where feature subset of size
m™* consists ofn* highest scored features.

The performance of our algorithm was compared with existing unsupervised algorithms
including Laplacian score, LLDARFE and SVD-Entropy. All of them are unsupervised filter
approaches that rearrange the order of the features of data based on the criterion of each algo-
rithm. Class labels were not used in the ranking step of all algorithms. The experiments were
performed in two different ways to compare the results from different spaces as follows.

In the first setting, all algorithms used information from the given data space to evaluate
features. When itis in the case®©f= I and steps 1, 5 and 6 need no computation our algorithm
will be named “DEODA". But, when the base are obtained from FastICA, the algorithm will be
named “DEODA (ICs)”. The number of bingy, was set to 32 and the number of samples of
DFT, B, was set to 1024 for all experiments as mentioned in section IV-F. For Laplacian score,
the number of nearest neighbours for constructing the Laplacian graph was setto 5 asin [15]. For
LLDA-RFE, the number of nearest neighbours for constructing the Laplacian graph was set to
3 as suggested in [6]. For SVD-Entropy, the features were evaluated based on the leave-one-out
strategy as in [14].

In the second setting, all algorithms used information from transformed space to evaluate
original features. The data sets were transformed into new spaces by the FastICA algorithm to
find the new bases and ICs of data. In general, Laplacian score, SVD-Entropy and LLDA-RFE
compute feature score using information from the given data space as the reference property.
Therefore, when the data were transformed, the referenced property was computed using ICs

instead. Then, the scores of the original features were computed as usual. Note that when the
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SVD-Entropywas performed on the transformed space, the score values were added by the same
constant and, therefore, the features were ranked in the same order. Our algorithm computed the
scores of original features using the proposed strategy. The ICs were performed a priori and,

then for each experiment, the same set of ICs was used.

5.3 Performance Measurement on Classification

This experiment was based on the assumption that a set of data belonging to the same
class should be closely located to each others in the feature space and the selected features must
preserve this assumption. To concern the closeness of data, the techriigueasést neighbour
algorithm was used for evaluating the performance of the ranking. A 5-fold crossed validation
strategy is used. Four subsets without class labels were used as the training set for feature ranking
and the remainder were used as the test set for evaluating the performance of the algorithms.
However, each random fold produced data sets with different distributions. Therefore, in each
experiment, the data were iteratively and randomly divided into five subsets. There were 10
experiments and the averages of the accuracy were computed. For all experiments, all algorithms
performed feature ranking on the same training set without class label and the feature subsets
were evaluated on the same test set of data for comparison proposes.

Tables 5.1 - 5.8 show the average performance evaluations of UCI and micro-array data
sets under different numbers of nearest neighbours. For micro-array data, the objective is to
reduce number of genes causing diseases. Hence, each gene is considered as a feature and each
disease is regarded as a class. For each percentage of accuracy, the superscript denotes the
number of selected features and the subscript denotes the standard deviation of percentage of
accuracy. For each data set, the highest performance obtained from different number of nearest

neighbours were shown in bold numbers. The experimental results are summarized as follows.
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Table 5.1:Average classification rate of selected feature subset using information from different

spaces of the WDBC data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Scorg 91.520'7) 92.91{'%) 92.94(7) 93.28{"%) 93.36!)

SVD-Entropy | 91.52%%)  92.89(), 92.87("). 93.24(".  93.36\"),

LLDA-RFE 91.5002) 92.89(%) 92.87\%) 93.24{*” 93.36)
DEODA 91.60{'s) 92.89(%0) 92.87{%) 93.24{*) 93.36{*)

All 30 features 91.46¢p35 92.89330 92.87p9 93.24918 93.36¢.09

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Scorg 91.465") 92,919 92.91(2) 93.26{*) 93.40')
SVD-Entropy | 91.52'%) 92.89(7), 92.87(). 93.24{"). 93.367,
LLDA-RFE 91.46(*) 92.890) 92.87%) 93.24{*)  93.36/)
DEODA (ICs) | 93.82\%) 94.26(’) 94.61%) 94.78{*)) 9454

All 30 features | 91.46p35 92.89p32 92.87p26 93.240185 93.360.09

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

A) WDBC Data Setonsists of two classes of 569 data with 30 features. Tables 5.1 (A)
and 5.1 (B) summarize the comparison results with each other method for both experiments.
Laplacian score achieved slightly higher accuracy than those of other methods. DEODA algo-
rithm showed the comparable mean results with those of the other methods for the given data
space. However, for the transformed space, the selected feature subsets from DEODA achieved
the highest average accuracy for all of number of nearest neighbours with smallest standard

deviation.
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Table 5.2:Average classification rate of selected feature subset using information from different

spaces of the Sonar data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 82.066@ 81-30%3 78.72&?53 74.31%& 69.425521%
SVD-Entropy | 85.1053) 821151 80.4507  76.99{'%  74.50(")
LLDA-RFE 82.102) 81.30!°0) 78.84{7) 77.26'7)  75.48('3)
DEODA 82.490°7) 81.30{0)  78.96(%) 74.26{%0)  69.28{0)
All 60 features | 81.91¢s 81.30167 78.72350 74.26009 69.28309

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k/# .3 k=25 k=17 k=9

Laplacian Score 84.82\") ~ 81.64())  79.337°0) 76.66(*) 72.48'%)

SVD-Entropy | 85.100,)  82.11{)) 80.45y7) 76.99{'Y  74.50")

LLDA-RFE 82.627) 81.30\%)  79.050% 75.47\\"  7455(),

DEODA (ICs) | 84.775%)) 83.76() 82720 80.16{*)) 78.99})

All 60 features | 81.91p43 81.301 47 78.7238) 74.26599 69.283. 90

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

B) Sonar Data Setonsists of two classes of 208 data with 60 features. In Tables 5.2 (A)
and 5.2 (B), the accuracy of SVD-Entropy was higher than those of other methdds-for3, 5
using data space arid = 1 using transformed space. The degree of accuracy of LLDA-RFE
was higher than those of other methods fore= 7,9. DEODA performed better than those
of the other methods fok = 3,5,7,9 using the transformed space. Note that this data set
was previously experimented in [5] by using supervised feature selection and classifying by
multilayer perceptron (MLP) neural networks. They obtained the accuracy ranging in between

80-87% with 15 features.
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Table 5.3:Average classification rate of selected feature subset using information from different

spaces of the Parkinsons data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 83.90\), 83.97(), 84.33)) 82.95(") 81.78\),
SVD-Entropy | 83.9012) 83.9702) 84.43) 83.250*)) 81.72(*)

LLDA-RFE 83.90\")) 83.970'Y) 8454, 83.88%, 83.62\%,
DEODA 83.90*2) 84.38!"") 8531 84.13("). 83.63F)

All 22 features 83.905 19 83.972.63 84.332_47 82.691.10 81.725 99

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 85.16, 85.32{'0) 85677 83.43{")) 82.08!7)
SVD-Entropy | 83.907) 83.972) 84.431) 8325%) 81.72(*)
LLDA-RFE 84.117°) 83.97%2) 84.43('%) 82.70\"%) 82.44\").
DEODA (ICs) | 89.01{") 89.15{"2) 88.54'%) 89.05*) 88.43(*)

All 22 features 83.905 19 83.972.63 84.332.47 82.691.10 81.725 99

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

C) Parkinsons Data Setonsists of two classes of 195 data with 22 features. In Tables
5.3 (A) and 5.3(B), the accuracy of DEODA algorithm on data space was comparable or slightly
superior to those of the other methods. In addition, when using the information from transformed
space, the accuracy of the selected feature subset from DEODA was also superior to the others’

regardless of the numbers of nearest neighbours.
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Table 5.4:Average classification rate of selected feature subset using information from different

spaces of the lonosphere data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 88.37\"%) 87.40{') 85.72'7) 84.93('7) 84.30()

SVD-Entropy | 86.75%) 85.120%0) 84.47°" 83.64\*) 83.22\*)

LLDA-RFE 87.32\'2) 86.270'%) 84.96{), 83.99\". 83.56\*)
DEODA 91.11{7, 90.85 ). 91207, 90.66"), 89.83\)

All 33 features 86.32p43 84.52049 84.16009 83.33p17 83.22)17

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 86.61\"7) 86.95{"") 86.55{") 85.30{") 84.98!)
SVD-Entropy | 86.75 5, 85.12\%%) 84.47%0) 83.64(*) 83.22(*)
LLDA-RFE 86.7272) 85.90), 84.850"), 8373 83.47\%)
DEODA (ICs) | 88.140% 87.26\”.. 86.30\7), 85.24{%), 84.10!"})
All 33 features | 86.320435 84.52)40 84.16000 8333017 83.22017

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

D) lonosphere Data Sebnsists of two classes of 351 instances with 33 features. In Tables
5.4 (A) and 5.4(B), the accuracy of the DEODA algorithm was superior to the others’ regardless
of the numbers of nearest neighbours in the data space. In the transformed space, the accuracy
of the selected feature subset from Laplacian score was higher than those of other methods for
k = 5,7,9 but the selected feature subset from DEODA algorithm achieved the highest accuracy

fork =1.
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Table 5.5:Average classification rate of selected feature subset using information from different

spaces of the Soybean data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 100.05%)  99.80{") 100.0{3) 98.49{"?) 95.08!")
SVD-Entropy | 100.02%  100.08%  100.08%  98.93(*)  95.98*)

LLDA-RFE 98.09%1) 99.16%)) 98.07{%) 96.60{>) 91.89\%)
DEODA 100.0{%) 100.0{3) 100.0{'?) 99.80{'¢) 99.78(')

All 35 features 98.09945 99.16191 97.44455y 96.40307 91.47404

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score 99.165_27% 99.40%% 99.78842 97.44%)% 94.89%2
SVD-Entropy | 100.0°0)  100.00’% 100.030) 98.93(%) 95.98*%)
LLDA-RFE 98.0971) 9958 98.38('%) 97.64{") 95312
DEODA (ICs) | 100.0%), 100.0{'2 100.0{'2) 100.0{”, 100.0{2)
All 35 features | 98.09045 99.16, 5 97.44050 96.4030; 91.47404

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

E) Soybean Data Sebnsists of four classes of 47 instances with 35 features. In Tables
5.5 (A) and 5.5 (B), the accuracy of the DEODA algorithm was superior to the others’ regardless
of the numbers of nearest neighbours when being applied directly on the individual features in

the original data space and the transformed space.
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Table 5.6:Average classification rate of selected feature subset using information from different

spaces of the SRBCT data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=T k=9

Laplacian Score | 89.385%4° 83.40%%)  79.885%Y  78.328%)  76.928%)
SVD-Entropy | 93.420%9 88.750%) 86.795%y 84.59(;%, 81.76(3%),
LLDA-RFE 89.70%%7 84.233%Y 80.78%%y  77.67\;%. 76.5355%,
DEODA 100.0§79, 99.715%. 98.89¢%  98.44%%,  98.25%%,
All 2308 features| 88.79549 82.62565 7845460 75.321302 73.4210.67

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 K/ 3 k=15 k=17 k=9

Laplacian Score | 88.795%5  83.22%%)  78.77%%)  75.63% 0, 73.42(3%.
SVD-Entropy 93.4209 88.75%%) 86.795%) 84.59(7%. 81.76(:%)
LLDA-RFE 89.870%2  83.62{;, 80.33(;%, 78.33(:%, 76.86%%
DEODA (ICs) 89.555%7 83.92%Y  78.46%%9  77.26\)%; 76.57(%
All 2308 features| 88.792.49 82.625¢65 78.45462 75.321302 73.421047

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

F) SRBCT Data S€87] consists of four distinct diagnostic categories of small and round
blue tumor cells. Itis gene-expression data from cDNA micro-arrays containing 2,308 genes and
63 samples. All genes were normalized to zero mean and unit variance. The degree of accuracy
of SVD-Entropy was the highest, i.e. 93.42%, with 1,188 genes in the transformed space as
shown in Table 5.6 (B). However, the degree of accuracy of the DEODA algorithm was superior
to the others’s regardless of the numbers of nearest neighbours in the data space as shown in
Table 5.6 (A). Moreover, the accuracy of selected feature subset from DEODA using one nearest
neighbour reached 100% with a subset of 74 features. Obviously, this feature subset was smaller

than the subset of size 94 features found in [37] using a supervised feature selection.
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Table 5.7:Average classification rate of selected feature subset using information from different

spaces of the ALL-AML data set

(A) original data space

Accuracy of nearest neighbour classifier

Algorithm

k=1

k=3

k=5

k=T

k=9

Laplacian Score
SVD-Entropy
LLDA-RFE
DEODA

96.140°2
87.99(3)5.9;;)
93.745%)
97.380%)

94.85(71‘%5)
91. 13&16.9526)
03.67157%
98.93¢%)

90.296%)
86.16%
89.78(%)
95,2944

87.95(%)
81.6167)
89.13¢2)
91.895%

87.625%)
80.86('7)
86.547:%,
86.735%)

All 7129 features

86.713.77

90.88¢ 54

85.083.15

80.35¢ 54

79.073.08

(B) transformed space

Accuracy of nearest neighbour classifier

Algorithm

k=1

k=3

k=5

k=T

k=9

Laplacian Score
SVD-Entropy
LLDA-RFE
DEODA (ICs)

88.28(%20)
87.99??5)
90.63%_“0{38)
88,245

90.885%9
9Ly
ILETHT,
90.880%7

85,8769
86.16(55275)
85.930%%)
85.08¢°

81.420%)
81.61577
83.38(2%,
80.35(7)

80.924
80.86('7Y
80.58¢19)
79.074%0

All 7129 features

86.713.77

90.88¢ 54

85.083.15

80.35¢ 54

79.073.08

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

G) ALL-AML Data Sef38] consists of two classes of 38 leukemia cell samples and 7,129

genes. All genes were normalized to zero mean and unit variance. The degree of accuracy of
LLDA-RFE was the highest, i.e. 91.67%, with 1,177 genes in the transformed space as shown
in Table 5.7 (B). However, the best subset was the subset of 463 genes indicated by DEODA
algorithm with accuracy of 98.93% using 3-nearest neighbour algorithm in the data space as

shown in Table 5.7 (A).
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Table 5.8:Average classification rate of selected feature subset using information from different

spaces of the MLL data set

(A) original data space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score | 88.20%%5 86.615%; 87.09(%¢ 84.328%2  81.14%%)
SVD-Entropy 83.4540Y 81.895%2Y 82.59(%% 81.48(%% 77.324%%"
LLDA-RFE 89.41¢%Y  86.80%% 86.38Y%7 84.67Yi) 82.86%)
DEODA 91.58(%2 88.33(%) 86.420%) 86.42%%) 85.53(%Y
All 12582 features 83.27354 81.89345 82.59145 81.30909  76.7911.06

(B) transformed space Accuracy of nearest neighbour classifier

Algorithm k=1 k=3 k=5 k=17 k=9

Laplacian Score | 83.45(%0” 82.24(%:% 82.59(%%Y 81.475%%Y 77.33(%%)
SVD-Entropy | 83.45{1% 81.89%2) 82.59(%) 81.483%% 77.324%%
LLDA-RFE 84.15(49  83.50(%) 84.500%7) 82.88(%H  79.79L%Y
DEODA (ICs) 83.64;2‘;6) 82.41(11_273f8) 82.59(112‘51) 81.67%221510) 77.328_21352)
All 12582 features| 83.27554 81.89345 82.59:48 81.30909 76.7911.06

* the superscripand subscript next to the performance denote the feature

subset size and the standard deviation of the performance respectively

H) MLL Data Se{39] consists of three kinds of leukemia samples with 12,582 genes and
57 samples. All genes were normalized to zero mean and unit variance. The data set is available
at [40]. The degree of accuracy of SVD-Entropy was the highest, i.e. 84.50%, with 7,647 genes
in the transformed space as shown in Table 5.8 (B). However, the best subset wa s the subset of
1,072 genes indicated by DEODA algorithm with accuracy of 91.58% using 1-nearest neighbour
algorithm in the data space as shown in Table 5.8 (A). Note that this data set was also used in [6].
They filtered the genes before applying feature selection and the degree of accuracy ranged in
between 94-96% using the Nearest Mean Classifier (NMC).

To compare the performance of every algorithm, an average performance evaluation is
introduced. The accuracy using all original features are used as a base line performance and

the performance of every algorithm is computed with respect to the base line. The average
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performance eluation of algorithms ori** data set can be computed by

1

nez

Q=—>3, Q1 /QLY x 100% (5.1)

wheren,, is the total number of experiments using differéntin this casen., = 5. Q%*)
anng.f,i”) are the average accuracy/ohearest neighbours of selected subset giZzeand all

original features of thg*" data set, respectively. These can be taken from Tables 5.1 - 5.8.
Then, the overall average performances over the base line can be computed by averaging the

performances over the base line as follows

Q4 Zij (5.2)

Ndata

wheren,,. is the total number of data set.

The average performance of all algorithms when using the information from original space
over the base line were shown in Figure 5.7. For WDBC data set, all algorithms achieve the
mean performance comparable with the other methods. LLDA-RFE and SVD-Entropy have
the average performance over the base line higher than that using DEODA for Sonar data set.
However, the average performances over the base line of DEODA are superior for Parkinsons,
lonosphere and Soybean data sets. Figure 5.8 shows the average performances of all algorithms
in the transformed space over the base line. Observe that the average performances over the base
line of DEODA were superior for all data sets. The average performance of all algorithms when
using the information from original space over the base line on the large feature data set were
shown in Figure 5.10. The average performances over the base line of DEODA were superior
for all data sets.

The overall average performances over the base line (performances for short) of all algo-
rithms on the UCI data set were shown in Figure 5.9. The performance of DEODA algorithm
was higher than those of the other algorithms when using the information from both data space
and transformed space. The performances of all algorithms on the large feature data set were
shown in Figure 5.12. The performances of all algorithms on data space were higher than those
using the information on the transformed space. On the transformed space, the performances
of SVD-Entropy was higher than those of the other algorithms. However, the performances of
DEODA algorithm was higher than those of the other algorithms when using the information
from the data space and much higher than those of using the transformed space. These results

indicated that the prediction accuracy can be improved by using feature selection algorithms.
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5.4 PRerformance Measurement on Clustering

In this section, we applied feature selection and clustering on the gene micro-array data
sets because the analysis in the previous studies was usually based on cluster analysis. Because,
the clustering results reflect true structure in the data [39] which is constrained by clustering
algorithm. In addition, the data distribution of the best gene subset was rather clearly separated
as reported in [37—39]. The hierarchical clustering algorithm based on correlation distance and
average link strategy as in [37] was used. The clustering experiments were conducted only on
the data space. Since, the results as shown in Figure 5.12 indicated that, for these data sets, it
was appropriate to apply the algorithms on the original data space.

Let us introduce an index for selecting the proper genes subset from the candidate subsets.
The Calinski-Harabasz Index (CH-index) [41] is one of cluster separation measures. The max-
imum value of the CH-index indicates that the clusters are mostly separated among each other
and the data in cluster are highly dense distribution. The CH-index is an unsupervised index and

can be computed as follows

t’l“(SB) ) G-1
tr(Sw) n—G

= (5.3)

wheretr(Sy) = S5, S [Ix( — x9)|%, andtr(Sp) = S5, [IK9) - x| G is
the number of clusters:,gg) denotes the'” instance which presents in tb@ cluster,x9) is the
mean vector of the'” cluster,x is the mean vector of the the given dat&) is the number of
memberships of the'” cluster. However, any cluster with a few instances being viewed as an
outlier instances, can maximize the (5.3). This issue can be reduced by multiplying (5.3) with

the entropy of number of clusters members. Therefore, the modified CH-index is as follows

€]
mCH = (— Z n' @ logn' W\CH (5.4)
g=1

wheren'(9) = n(9)/ 3> n(9) is the normalized membership number of g cluster.

The experiments were conducted in two different ways as follows.

5.4.1 Genes Selection for Class Discovery

This evaluation was conducted based on the assumption that the given data set consisted of

irrelevant genes which can negatively affect the cluster analysis. Therefore, it also was expected
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that theclustering result of selected genes subset should be better than the result based on all

given genes. The experiment consisted of the following steps.
1. The genes were rearranged by each feature selection algorithm.

2. The hierarchical clustering was applied toraltandidate subsets selected from the ranked

genes. The number of clusters was set equal to the number of classes.
3. The mCH-index was applied for selecting the appropriated genes subsetwf‘size

4. The cluster labels of the selected genes subset were compared with known class labels

[37-39].

The clustering results were shown in Table 5.9. The second column was the results of
gene subsets selected by the modified CH-index. The results of the fixed subset size, which was
equal to the subset size of the best subset selected by the modified CH-index, were shown in the
third column. The maximum results were also shown in the last column.

The clustering results of the selected feature subset using the DEODA algorithm were
much higher than that using other alternative methods as well as all original genes as shown
in Table 5.9. There were results indicated that a feature subset existed such that the clustering
results were exactly the same with the given class label. These were the feature subsets indicated
by the DEODA algorithm on SRBCT and ALL-AML data set. Note that our algorithm is fully
unsupervised. Moreover, the maximum accuracy of clustering results of all algorithms were also
higher than the original features. This supported the assumption that the data set consists of some
irrelevant features that negatively affect the cluster analysis. Figure5.13 are the performance of
clustering results of all feature subset sizes. The clustering accuracy of feature subsets indicated
by the DEODA algorithm were higher than those using the other algorithms. Moreover, the
relevant genes were ranked in the top order since the clustering accuracy of small feature subset

sizes were higher than the large subset sizes as well as all original genes.

5.4.2 Genes Clustering

This experiment was conducted for finding the representative sample subset for gene clus-
tering. In this experiment, each gene can be viewed as an data and each sample can be viewed
as a feature. Note that since the alternative methods used information from the given data, it was
generally expected to perform better than our algorithm for finding the representative feature

subset. The experiment is as follows.
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Table 5.9:Clustering performance of the micro-array data set using information from the original

data space. The superscript next to the performance denote the feature subset size.

(A) SRBCT Clustering accuracy

Algorithm Selected subset fixed subset size Maximum
Laplacian Scorg 55.56(*) 52.38(10) 57.14(1536)
SVD-Entropy | 53.97(2308) 36.51(10) 95.24(767)
LLDA-RFE 41.27(1) 42.8610) 60.32(4)
DEODA 87.3(10) 87.3(10) 100149

All original 2308 gene$3.97

(B) ALL-AML Clustering accurac

Algorithm Selected subset fixed subset size Maximum
Laplacian Scorg 84.21(29) 68.42(36) 89.47(41)
SVD-Entropy | 65.79(2) 68.42(36) 100(2831)
LLDA-RFE 71.0503) 73.68(36) 76.32(2)
DEODA 94.74(36) 94.74(36) 100(%%)

All original 7129 gene§6.32

(C) MLL Clustering accurac

Algorithm Selected subset fixed subset size Maximum
Laplacian Scorg 68.42(4) 71.93(394) 78.95(5219)
SVD-Entropy | 43.86(® 40.35(399) 75.44(11195)
LLDA-RFE 80.7(46) 73.68(394) 80.7(46)
DEODA 91.23(394) 91.23(394) 98.25(100)

All original 12582 gene§3.68
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horizontal axis is feature subset sizes.
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1. Thegenes were clustered with the numbers of clusters equal to 2, 3, ..., 10, respectively.

2. The mCH-index was applied to select the appropriated number of cldsteand, then,

the cluster labels were used as cluster targets.
3. The features were rearranged by each feature selection algorithm.

4. All candidate feature subsets (as in section VI) selected from the ranking were clustered

as in step 1 with number of clusters equalit.

5. The cluster labels of all candidate subsets were compared with the cluster targets in step

2.

Figure 5.14 showed the clustering accuracy of all feature subset sizes. We can observe the
correctness of clustering results using DEODA algorithm were comparable with other methods

which use some information from all original features.

5.4.3 Parameter Sensitivity

This experiment was conducted for comparing the performance of using different num-
ber of histogram binsV and different number of discrete Fourier transform samgptesWe
conducted experiments as in section VI-A with both UCI and Micro-array data set and, then
computed the overall performance as (5.2). Firdilywas restricted to 1024 while the numbers
of histogram binsV was set to 8, 32, 64, 128, 256, and 512, respectively. The overall average
performance were shown in Figure5.15 (a). We can observed that the number of bins should be
set in the range of 32 to 256. SecondW,was restricted to 32 whilé& was set to 32, 64, 128,

256, 512, 1024, 2048, and 4096, respectively. The overall average performance were shown in
Figure5.15 (b). We can observed that the number of discrete Fourier transform samples should

be set higher than 128 or four times the number of histogram bins.
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CHAPTER VI

DISCUSSION AND CONCLUSION

6.1 Discussion

Experimental results have shown the usefulness of the features selection algorithms. In
most cases, feature subsets selected by each algorithm achieved a higher performance than the
one using all of the original features. This indicated that the features of the given data were
not always relevant because the selected features were a subset of the original features from the
given data. Therefore, using all given features without removing irrelevant features can nega-
tively affect the performance of the analysis, as shown in both the classification and clustering
experiments.

According to the experimental results, the discrimination analysis via a diffraction pat-
tern of a synthetic aperture is useful for unsupervised feature selection. In this dissertation, the
proposed DEODA algorithm achieved a higher performance for both the classification and clus-
tering than those of the other algorithms and also higher than using all of the original features.
For lonosphere and gene micro-array data set, the performance using the given data space was
better than that of the transformed space. This indicated that the relevant discriminative distribu-
tions were found in data space, as illustrated in chapter V. But the transformation can negatively
affect the discriminative capability of the original features. One possible reason is that the trans-
formed space is not the optimum space required by the objective function of the transformation
algorithm. Since the learning processes are needed to initiate the basis, which are randomly se-
lected. The algorithm can convert to a local optimum that has more effect on higher dimension
data, as shown in the micro-array results. Contrast functions are another possible reason. There
are many ICA approaches with different contrast functions and different learning algorithms.
This can have different effects on the discriminative capability of the original features. A fast
fixed-point algorithm using Kurtosis as a contrast function was applied in this dissertation. Other
approaches can be found in [43, 44] and some implemented codes can be found in [45].

Although the performance of selected features using DEODA algorithm was rather high,

it still depends on a probability density estimation which is still an open problem for optimal
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solution. Inthis dissertation, only a simple algorithm for density estimation was implemented.
Another probability density estimation algorithm can be found in [32]. But when this algo-
rithm [32] was used instead of the proposed density estimation, the performance of the feature
subset selection was comparable to the proposed algorithm. Moreover, equation (4.3) can be
viewed as a mapping functiodf = K(Y,). K(-) can be changed to any arbitrary mapping
function, e.g. a sigmoidal function. These should be tested in order to achieve a higher perfor-
mance. Also, an appropriate approach for reducing redundancy features can be combined in the
score function (4.3) as in the supervised feature selection algorithm [5]. The experiments as in
chapter 5.3 by using 3-NN on the UCI data sets were conducted. The results of combining the
normalized mutual information criterion in the score function were shown in Table 6.1. How-
ever, it takes much more computation time while the number of features not much different and

the performance of the selected feature subset were comparable to our algorithm.



(A1) WDBC Accuracy ofk-NN classifier (Data space)
Algorithm k=1 k=3 k=5 =7 k=9
DEODA 91.480%) 92.89(0) 92.87(0) 93.2400) 93.36(%C)
DEODA with MI | 91.820%%) 92.89%0) 92.91{*) 93.240") 93.36*)
(B1) Sonar

Algorithm k=1 = k=5 k=17 k=9
DEODA 82.54\%) 8130/ 79.1507)  74.270%)  69.28{%)
DEODA with MI | 82.5817)  81.30\%0)  79.29%)  74.26(%0) 69.28{")
(C1) Parkinsons

Algorithm k= k= k=5 k=17 k=
DEODA 83.901?) 84.38{'0) 8516 83.93(7, 83.06\,
DEODA with MI | 83.90(*2) 84.08\%) 85.20\'2) 84.08!) 83.47('2

(D1) lonosphere

Algorithm k= k= k= k= k=
DEODA 90.51\%), 90.71%, 90.74"%) 89.85!°) 89.26"),
DEODA with MI | 90.51(%.  90.77'%), 90.66"), 90.20"), 89.49\"),
(E1) Soybean

Algorithm k=1 k=3 k=5 k=17 k=9
DEODA 100.0{%)  100.0%'2) 100.0{3) 99.80{'¢) 99.60{'
DEODA with MI | 99.80{"2) 99.78{'%) 100.0{'S) 99.80{'?) 99.38(")

61

Table 6.1Average classification rate of algorithm with mutual information of the UCI data set

Note that, some results of DEODA algorithm may slightly different friiva one shown in chapter 5.3 due to the

random dividing. The superscript and subscript next to the performance denote the feature subset size and the standard

deviation of the performance respectively



62

6.2 Conclusion

In this dissertation, a new discrimination analysis for unsupervised feature selection was
proposed. The concepts of physical optics have been employed for discrimination evaluation of
data distribution. The data distribution is assumed to be a synthetic aperture. Then, the far-field
diffraction pattern was, then, observed by passing a plane of light waves through the synthetic
aperture. The observation can be simulated using Fourier transform. Then, the magnitude of the
Fourier transform of the synthetic aperture function is used as the intensity of diffraction pattern
for discrimination analysis.

The discrimination of data distribution is observed by measuring the equality of the mode
of magnitude in terms of the entropy of the first two highest modes of intensity. Moreover, these
processes are analyzed with respect to a basis that can be rotated according to the distribution of
the data. Then, the discriminative scores of all features are, then, computed using the information
of the bases. If the bases are not standard bases, the discrimination analysis is performed on the
transformed space produced by the bases.

The proposed algorithm can also be used as a univariate technique by restricting the bases
equal to standard bases. The proposed feature evaluation algorithm evaluates the feature of the
given data on original feature space in O(hwhen standard bases are used. Furthermore, the
discrimination analysis does not depend on any scaling parameters because the distribution of
the data does not change when the data are scaled. Experimental results on several real world

data sets have demonstrated the effectiveness of the proposed method.
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APPENDIX

Grating diffraction pattern approximation

The total disturbance of diffraction pattern according to the light passing through the grating
with G similar slits with the width of each slit ig with its center separated from each other by

a distance ob anda < § can be expressed as follow:
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Consequentlythe intensity function of the grating can be expressed as

sin(raq) ) 2 (sin(Gﬂq5) ) ?

(maq) sin(mqd)

P(q)= P0<



71

Biography

PraisanPadungweang was born in Chaiyaphum, Thailand, on April, 1979. He received
B.Science. and M.Science., in Physics and Information Technology, from Khonkaen University,
Thailand, in 2001 and 2006, respectively. His undergraduate study, from 1997 to 2000, was sup-
ported by the scholarship project of the promotion of science and mathematics talented teachers
(PSMT.) from the institute for the Promotion of Teaching Science and Technology (IPST). In
2006, he has received a grant from the Thailand Research Fund through the Royal Golden Ju-
bilee Ph.D. Program under Grant No. Ph.D.1.0.CU/48/A.1. His field of interest includes various
topics in Machine Learning including pattern analysis and image processing.

Education:

e Ph.D. Program in Computer Science, epartment of Mathematics, Faculty of Science, Chu-

lalongkorn University, Bangkok, Thailand (October 2006 - September 2011).

e Visiting Ph.D. researcher in LINC laboratory at the Center for Advanced Computer Stud-
ies (CACS), University of Louisiana at Lafayette, United States (November 2010 - June
2011).

e M.Sc. in Information Techonology, Department of computer Science, Faculty of Science,

Khonkean University, Khonkean, Thailand (May 2004 - March 2006).

e B.Sc. in Physics, Department of Physics, Faculty of Science, Khonkean University, Khon-

kean, Thailand (May 1997- March 2001).

Publication: Praisan Padungweang, Chidchanok Lursinsap and Khamron Sunat, “Univariate
Filter Technique for Unsupervised Feature Selection Using a new Laplacian Score based Lo-
cal Nearest Neighbors”, iRroc. of 2009 Asia-Pacific Conference on Information Processing

(APCIP 2009), Shenzhen, China, July 18-19, pp. 449-453, 2009.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Abbreviations
	Chapter I Introduction
	1.1 Objectives
	1.2 Problemstatement
	1.3 Contribution
	1.4 Scopesofwork
	1.5 Dissertationoutline

	Chapter II Relatedworkandconceptofproposedalgorithm
	2.1 Variationofunsupervisedfeatureselection
	2.2 Fillermethodforunsupervisedfeatureselection
	2.3 Relatedwork
	2.4 Conceptoftheproposedalgorithm

	Chapter IIIbackgroundofopticdiffractionpattern
	3.1 Diffractedwaveunderhuygens-Fresnelprinciple
	3.2 Fraunhoferapproximation
	3.3 Example of Light Diffraction on Well Known Apertures
	3.4 Discrete Fourier Transform of the Fraunhofer Diffraction

	Chapter IV Discrimination Analysis and Proposed Algorithms
	4.1 Connection Between Optic Diffraction and Discrimination Analysis
	4.2 Discriminationmetric
	4.3 Aperturerepresentation
	4.4 Basisorientationandcomputationalgorithm
	4.5 Proposedfeatureevaluationalgorithm
	4.6 Generalization

	Chapter V Experimentalresults
	5.1 Illustrativeexamplesbytheproposedalgorithms
	5.2 Experimentsetting
	5.3 Performancemeasurementonclassification
	5.4 Performancemeasurementonclustering

	Chapter VI Discussionandconclusion
	6.1 Discussion
	6.2 Conclusion

	References
	Appendix
	Vita



