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CHAPTER I
INTRODUCTION

1.1 Introduction

Let K be a number field with the ring of integers R. A triple (a, b, ¢) of elements
of R is said to be a Pythagorean triple if a*+b? = ¢*. For R = Z, Bryan Dawson [4]
defined operations on the set of all Pythagorean triples so that this set is a ring.
E. Eckert [5] defined an operation, addition, by (a1, by, ¢1) + (a9, ba, c2) = (a1ay —
b1bs, a1by+bras, c1c2) so that the set of Pythagorean triples of natural numbers and
(1,0, 1) with + is a free abelian group. P. Zanardo and U. Zannier [11] generalized
the domain from Z to the ring of integers R of any field K such that : ¢ R. R.
Beauregard and E. Suryanarayan [1] considered the set of Pythagorean triples
over Z and defined * by (ay,by,¢1) * (az, b2, c2) = (arag, bica + bacy, bibs + c1c2).
The well-known representation of Pythagorean triples in Number Theory resulted
in properties and a unique factorization theorem of primitive Pythagorean triples.
The set of equivalence classes of Pythagorean triples is a free abelian group which
is isomorphic to the multiplicative group of positive rationals. In this thesis, we
wish to investigate properties and structures of the set of Pythagorean triples.

N. Sexauer [10] investigated solutions of the equation z? + y? = 22

on unique
factorization domains satisfying some hypotheses. Later, K. Kubota [6] charac-
terized Pythagorean triples in an arbitrary unique factorization domain. Where
R is the Gaussian integers, James T. Cross [3] displayed a method for generating
all Pythagorean triples. Each equivalence class of primitive Pythagorean triples
is mapped from a certain pair of Gaussian integers. In this thesis, we wish to
determine all Pythagorean triples in the ring of integers of any number field.

In section 1.2, we introduce definitions and prove auxiliary theorems used

throughout this thesis.



In chapter 2, we describe the unique factorization of primitive Pythagorean
triples when R is the Gaussian integers.

In chapter 3, we consider a quadractic field and a biquadratic field such that
its ring of integers R is a UFD. The set P of all Pythagorean triples in R is
partitioned into P,, sets of triples («, 3,7) in P where n = v — 3. We show ring
structures of each P, and P from the ring structure of R.

In chapter 4, for any number field K with the ring of integers R, we charac-
terize all Pythagorean triples in R and demonstrate an isomorphism between the
multiplicative group of K and the group of Pythagorean triples of R. Moreover,
we describe that the group of Pythagorean triples in R whose first components
are non-zero with operation * is isomorphic to the group of Pythagorean triples

in R whose third components are non-zero with the operation + defined above.

1.2 Preliminaries

In this section, we give notation, definitions and theorems used throughout the

thesis. Details and proofs can be found in [7], [8] and [9] unless otherwise stated.

1.2.1 The Ring of Integers

Definition 1.2.1. A number field is a finite extension of Q (in C).

Definition 1.2.2. Let K be an integral domain with identity 1. « € K is an
algebraic integer in K if and only if there exist n € N and ag,ay,...,a,_1 € Z
such that

a4+ ap 10"+ +aa+ag=0.
Remark 1.2.3. « € QQ is an algebraic integer if and only if o € Z.

Definition 1.2.4. The ring of all algebraic integers in a number field K is called
the ring of integers in K and denoted by Ok.

Definition 1.2.5. An embedding of L over K in C is a one to one homomorphism
o : L — C fixing K pointwise. An embedding of L in C is an embedding of L over
Q in C.



Let K and L be number fields with K C L and [L : K] = n. Then there exist

n embeddings of L over K in C denoted by oy = idy,09,...,0,.

Definition 1.2.6. For o € L, define the relative trace of a =Try k(o) = 01 () +

o9 (a)+. . .40, () and the relative norm of « = Ny /i () = 01 (o) 02 () . . . 0, ().

If K = Q, then denote Try /g by Try and Ny, by Np and call the absolute

trace and absolute norm, respectively.

Definition 1.2.7. Let a1, as,...,a, € L. The discriminant of a1, as, ..., a, in

L over K denoted by discy/x (a1, s, ..., ay) := det[o;(c;)]?

Theorem 1.2.8. Let K be a number field of degree n over Q. Then Ok 1is a free
abelian group (or Z-module) of rank n, i.e, it is isomorphic to the direct sum of

n subgroups each of which is isomorphic to Z.
Definition 1.2.9. A Z-basis {ay,...,a,} of Ok is called an integral basis of K.
Note. An integral basis of K is also a basis of K over Q.

Proposition 1.2.10. Let {ay,...,an} and {5y, ..., 3.} be any integral bases of
K. Then disck(aq, ..., an) =disck (B, ..., 0n).

Definition 1.2.11. The discriminant of the field K = disck(aq, ..., ;) where

{ai,...,a,} is an integral basis of K over Q, we denote it by disc(K) or 0.

1.2.2 Factorization of Elements in the Ring of Integers

The factorization of elements in the ring of integers will appear in chapters 2 and
3, especially chapter 2 where we show the unique factorization of a Pythagorean

triple which comes from the prime factorization of its first component.

Definition 1.2.12. Let D be an integral domain with identity 1.

(1) Let 2,y € D such that « # 0. = divides y (or y is divisible by x), in notation
x|y, if and only if there exists z € D such that y = xz.

(2) uw € D is a unit if and only if /1.



(3) x,y € D are associates or y is an associate of z, in notation x ~ y, if and only
if there exists a unit v € D such that x = yu.

(4) A nonzero nonunit € D is irreducible if and only if for all m € D, if m|x
then m is a unit or m and x are associates.

(5) A nonzero nonunit € D is prime if and only if for all m,n € D, if z|mn then
x|m or x|n.

(6) Let x,y € D such that x # 0 or y # 0. A nonzero d € D is a greatest common
divisor of z and y, in notation d =gcd(z,y), if and only if d|x and d|y and for all
z € D, if z|z and z|y then z|d.

Note.

(1) z and y are associates if and only if z|y and y|x.

(2) If z is irreducible, then for every associate y of x, y is irreducible.
(3) If z is prime, then for every associate y of x, y is prime.
(4)

4) If x and y are associates and x = yz for some z € D, then z is a unit.

Proposition 1.2.13. Let D be an integral domain with identity 1 and x,y €
D~ {0}. Then
(i) x and y are associates if and only < x >=< y >.

(i1) x is prime if and only < x > is a prime ideal.

Proposition 1.2.14. Let x,y € Og. Then
(i) if x|y in Ok, then Ng(x)|Ng(y) in Z.
(ii) if x and y are associates, then Ni(x) = £Ng(y).

Theorem 1.2.15. Let D be a UFD. Then x € D is irreducible if and only if x s

prime.

1.2.3 Decomposition of Ideals

This subsection will be used for theorems about quadratic and biquadratic fields

in the next subsection.

Theorem 1.2.16. Every nonzero proper ideal in Ok can be written uniquely as

a product of prime ideals.



Definition 1.2.17. The norm of a nonzero ideal A in O, denoted by N(A), is
defined to be |Ok /A|.

Theorem 1.2.18. For any a # 0 in Ok, N((a) )= |[Ng(a)].

Remark 1.2.19. If P is a nonzero ideal such that N(P) = p a prime number,

then P is a prime ideal in Og.

Let L O K be a finite extension of number fields. Let P be a nonzero prime
ideal in Og. Then POy is a nonzero ideal in Op. We will consider the prime
factorization of POy, in Of. From now on, the term prime ideals means nonzero

prime ideals.

Theorem 1.2.20. Let P be a prime ideal in Ok and P be a prime ideal in Op,.
Then the following are equivalent.

(i) P|POy.

(i1) P O POy.

(11t) P O P.

(iv) PN Ok = P.

(v) PNK = P.

Definition 1.2.21. For P and P satisfying any of the above theorem, we say
that P lies over/above P or P lies under P.

Definition 1.2.22. Let PO = ﬁpfi be the prime factorization in O where
P is a prime ideal in Og. -
(1) g is called the decomposition number of P in L.
(2) For each i, e; is called the ramification index of P; over P in L over K,
denoted by e(P;/P).
P is ramified in Oy, (in L) if there exists ¢ such that e; > 1.

Pisinertin L if g=1 and e; = 1, i.e., POy is a prime ideal.

The field Ok /P is embedded in the field O /P so it can be considered as a
subfield of O /P.



Definition 1.2.23. The degree of Oy /P; over Ok /P is called the residue class
degree or inertial degree of P; over P, denoted by f(P;/P).

Remark 1.2.24. N(P;) =N(P)/ where f = f(P;/P).

Theorem 1.2.25. Let L O K be a number field extension of degree n and let
P, ..., Py be primes in Of, lying above a prime P of O with ramification indices
g

e, ...,eq and residue class degrees fi,..., fy. Then n = E e fi.
i=1

Definition 1.2.26. Let L O K be a number field extension of degree n and P be
a prime ideal in O such that PO, = Py Ps? ... Py’ where P; are distinct prime
ideals of Oy.
(1) P is totally ramified in L if g =1 and e; = n, so f; = 1 and PO = P}.
(2) P splits completely in L if g =n, soe; =1, f =1 for all i and PO, =
PiPy... P,

Theorem 1.2.27. Let L O K be a Galois extension number field of degree n and
Pi, P; be primes in Or, lying above a prime P of Ok. Then e(P;/P) = e(P;/P)
and f(Pi/P) = f(P;/P), i.e., POy = (P1...Py)¢, hence n = efg where e =
e(Pi/P) and f = f(P;/P).

1.2.4 Quadratic and Biquadratic Fields

We collect necessary results of quadratic and biquadratic fields here. These prop-

erties will be used in chapter 3.

Definition 1.2.28. A quadratic extension is a field extension F over F of

degree two, and a quadratic field is a quadratic extension of Q.

Let K be a quadratic field. Then [K: Q=2 and K = Q[«] where « is a root of
monic irreducible polynomial of degree 2, say f(z) = 2 + ax + b where a,b € Q,
ie, a = (—a £ Va2 —4b)/2. Since a,b € Q, a*> — 4b = d,/dy = (dydy/d3) for
some dyi,ds € Z and then there exist d,c € Z such that didy = c*d where d is
a squarefree integer. Hence K = Qo] = Q[va? — 4b] = Q[v/did3] = Q[/d] for

some squarefree integer d. The integral basis of K can be found as follows [7].



Theorem 1.2.29. Let K = Q[\/d] where d is a squarefree integer.
(i) If d=1 (mod 4), then

1++Vd
9

d
Ok = {%\u,veZ andu=v (mod 2)} =7

N

Consequently, {1, 1+2 } is an integral basis of K and dx = d.

(i) If d =2 or 3 (mod 4), then

Ok = {u +oVdu,v € Z} = Z[Vd).
Consequently, {1, \/E} 18 an integral basis of K and dx = 4d.

Next, the decomposition of principal ideals generated by 2 in quadratic fields

can be determined in the following theorem [7].

Theorem 1.2.30. Let K = Q[\/d] where d is a squarefree integer. Then

(i) 2Z is totally ramified in Ok if d =2 or 3 (mod 4).

(i1) 2Z splits completely in O if d =1 (mod 8).

(#ii) 27 is inert in Ok if d =5 (mod 8).
Moreover, if 27, s totally ramified i O, there is a prime & € Ok such that
2 ~ 6 and |Ok/ < & >| = 2. If 27 splits completely in Ok, there are non-
associate prime 6,6 € O such that 2 ~ §6 and |Og/ < 6§ >| = |(’)K/ <d>|=2.

If 27 is inert in Ok, 2 is a prime in Ok.

Definition 1.2.31. A biquadratic field is an extension of degree four over Q of

the form Q[y/m, /n| where m,n are distinct squarefree integers.

The study of the decomposition of principal ideals generated by 2 in bi-
quadratic fields can be found in [2].

Theorem 1.2.32. Let K = Q[\/dy,/dy] D k; = Q[\/d;] where, fori=1,2,3, d;
are discriminant of k;, dz = allalg/t2 andt € Z. Then

(i) 2 =0% if d; = dy =8 (mod 16) and d3 = 12 (mod 8).

(11) 2 =062 if dy = dy = 8 or 12 (mod 16) and d3 =5 (mod 8).

(iii) 2 = 6203 if dy = dy = 8 or 12 (mod 16) and d3 =1 (mod 8).



(1v) 2 = 01020304 if dy = dy = d3 =1 (mod 8).
(v) 2=0102 if dy =dy =5 (mod 8) and d3 =1 (mod 8).



CHAPTER I1
THE SEMIGROUP OF PYTHAGOREAN TRIPLES
OVER GAUSSIAN INTEGERS

Inspired by R. Beauregard and E. Suryanarayan’s work [1], this chapter investi-
gates the unique factorization of primitive Pythagorean triples over the Gaussian

integers.

2.1 The Semigroup

Let PT be the set of all Pythagorean triples in the ring of Gaussian integers where

their first components are non-zero; i.e.,
PT = {(a,b,¢) | a,b,c € Z[i] with a # 0 and a® + b* = *}.
Define the operation x on PT by
(a1,b1,¢1) * (ag, by, c2) = (arag, byca + bacy, biby + c1¢3). (2.1)

Proposition 2.1.1. The set PT under the operation * is a commutative monoid

with the identity element (1,0,1).

Proof. Let (a1, b1, 1), (ag, ba, c2), (a3, bs, c3) € PT. Tt is easy to see that (ajas)? +
(bica+bocy)? = (biba+cic2)? and [(ay, by, c1) * (ag, by, c2)] x (as, b3, c3) = (a1, by, c1) *
[(ag, be, c2)*(as, b, c3)]. Clearly, (PT, %) is commutative. Since (a,b,c)*(1,0,1) =
(a, b, c), we have that (1,0, 1) is the identity element in PT. Therefore, (PT, %) is

a commutative monoid. O

K. Kubota [6] determined the representation of Pythagorean triples in a unique

factorization domain. We applied the theorem to the ring of the Gaussian integers.
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Proposition 2.1.2. If (a,b,c) € PT, then there exist f,u,v,d € Z[i] where d is

a factor of 2 relatively prime to f and d | u® £+ v* such that

_ 2fuw _ fw?—?) [ +0?)
=g b_—d , andc-—d )

a

(2.2)

Definition 2.1.3. A Pythagorean triple (a,b,c) is said to be primitive if the

components a, b, ¢ have no common divisor.

Corollary 2.1.4. If (a,b,c) € PT is primitive, then there exist u,v,d € Zli]
where d is a factor of 2 and d | u® + v? such that

2 J 2 2
= it , and ¢ = = —C'Z_U . (2.3)

Proof. From Proposition 2.1.2, if f is not a unit, then (a, b, ¢) is not primitive. [

Parity makes things much easier in Z. James T. Cross [3] use 0 := 1+ 1
to define “even” and “odd” Gaussian integers and gave a proof of the following

lemma.
Lemma 2.1.5. Z[i]/ < 6 >={[0], [1]}.
Here [0] and [1] are the residue classes of 0 and 1 in Z[i]/ < 0 >, respectively.

Definition 2.1.6. Let a be a Gaussian integer. We say that a is even or odd

according as a is in the residue class determined by 0 or 1, respectively.

It follows that the sum of two even or two odd Gaussian integers gives an even
one, the sum of an even Gaussian integer and an odd one gives an odd one, the
product of two odd ones gives an odd one, and the product of an even one and

any Gaussian integer gives an even one.

Lemma 2.1.7. If (a,b,c) € PT is primitive, then only one of a,b, c is even and

the others are odd.

Proof. Suppose that two of a, b, ¢ are even. Since a® + b* = ¢2, all a, b, ¢ are even.

This contradicts the fact that (a,b,c) is primitive. ]
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A significant difference between the set of integers and the set of Gaussian
integers is 7. This number is the key to the next lemma which plays important

role in several following theorems. The proof is straightforward.
Lemma 2.1.8. (a,b,c) € PT if and only if (c,bi,a) € PT.

Recall that the notation a ~ b will be used when a and b are associates, i.e.,

b = +a or +ai. For example, if d | 2, then d ~ 1, § or 6%

Proposition 2.1.9. For each primitive triple (a,b,c) in PT, either a,b or c is a

multiple of 5°.

Proof. By Lemma 2.1.7, only one of a, b, ¢ is even and the others are odd. If a is
an even Gaussian integer, by Corollary 2.1.4, there exist Gaussian integers u, v, d

where d | 2 and d | u? +v? such that

2uv u® — v d u? + v?
and ¢ = .
d g & d

Case 1 : u is even and v is odd. Then u? — v? is odd. Since b is odd, we have
d ~ 1. Hence a ~ 2uv and thus a is divisible by §3.
Case 2 : u is odd and v is even. This is similar to the above case.
Case 3 : uw and v are odd. Both u — v and u + v are divisible by d. Therefore,
u? — v? is divisible by 2. Since b is odd, it follows that d ~ 6*> ~ 2 and a ~ uv.
Hence a is odd, a contradiction.
Case 4 : u and v are even. If 6% | u or 6% | v, then a is divisible by ¢ and we are
done. Suppose that 62 ¥ u and 6% t v. Thus u = du; and v = dv; where uy, v, are
odd Gaussian integers. Since b = (u? —v?)/d = 6*(u? — v?)/d and u? — v? is even,
b is even. This is a contradiction.

For the case that b is even, we can prove in a similar way.

When ¢ is even by Lemma 2.1.8, (¢,bi,a) € PT and the above proof shows
that c is divisible by §°. O

From Proposition 2.1.9 and Lemma 2.1.7, there are no Gaussian integers
b1, be, c1, ¢ such that (J,b1,¢;) and (2, b, c2) are primitive. However, every odd

prime appears in specific forms of primitive Pythagorean triples.
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Proposition 2.1.10. Let p be an odd prime in the Gaussian integers (i.e., p = ¢ ).
If p occurs as a component of a primitive Pythagorean triple in PT, then it must

be one of the following forms:

pPP—-1 p*+1 pPP+1. pP—1,

() b E=——F——) and (p,=——i, £=——1)
21 241 241 21
(i) (= p ) and (i p )
241 21 21 241
(iii) (£ 2+ £2 ——i.p) and (2 > i, +L 2+ ).
2 _q 241 241 21
Proof. First we will show that (p,j:p 5 ,j:p ; ) and (p,j:p ;— z',j:p 5 i)
are elements in PT. If p is a prime in Z, then p = 3 (mod 4) and it is obvious
241
that b €Z. Ifp ¢ Z, then p ~ a+ bi where a,b € Z, a > 0, b # 0 and

a’+ 0> =1 (mod 4). Hence a*> —b* =1 (mod 2) and

pPE1  F(a+bi)*£1  A(a®—b*+2abi) £1  £(a® — b £ 1)+ 2abi
2 2 / 2 B 2

are Gaussian integers.
Now we will show that case (i) is the only way in which p can occur as the first
component of a primitive Pythagorean triple. Let (p,b,c¢) € PT. By Corollary

2.1.4, there exist Gaussian integers u,v,d where d | 2 and d | u? + v? such that

2uv u? — v? u? + v?

v b= T and ¢ = y

p:

Since p is odd, p » 2/d. Therefore, p ~ uw or p ~ v. If p ~ u, then v ~ 1
and d follows from p = 2uv/d. Tt can be seen that there exist exactly sixteen
combinations that satisfy the conditions that p ~ u (i.e., p = u, —u, ui, —uz)
and v ~ 1 (i.e., v = 1,—1,4,—i). Upon substituting each of these combinations
into the formulas for b and ¢, we obtain four possible forms as follows: (p, (p* —
1)/2, (5 +1)/2), (0~ — 1)/2,—( + 1)/2), (0, (7% + 1)i/2, (5 — 1)i/2) and
(p, —(p* + 1)i/2, —(p* — 1)i/2). If p ~ v, then u ~ 1. Substituting the sixteen
combinations that satisfy the condition into the formulas given in Corollary 2.1.4,
we obtain four formulas where each of the middle components has the different sign
from the four previous formulas as follows: (p, —(p* —1)/2, (p* +1)/2), (p, (p* —
1)/2, =% +1)/2), (b, (5 + 1)i/2, (% = 1)i/2) and (p, (0* +1)i/2, —(* — 1)i/2).

Case (ii) can be proved similarly and case (iii) follows from Lemma 2.1.8. [
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Since each Gaussian integer has the unique factorization up to units, this fact
effects the unique factorization of each Pythagorean triple. We then introduce

units and irreducible elements in PT.

Definition 2.1.11. (a,b,c¢) € PT is called a unit if there exists (d,e, f) € PT
such that (a,b,c) * (d,e, f) = (1,0,1).

Lemma 2.1.12. All units in PT are (£1,0,£1), (£1,=£i,0), (£4,0,%i) and
(44, %1,0).

Proof. 1f (1,b,c) € PT, then there exist u,v,d € Z[i] where d | 2 and d | u? £ v?

such that
2uv Ut — v u? + v?
and ¢ =

d AN d
by Corollary 2.1.4. This implies that d ~ 2, u ~ 1, v ~ 1 and all triples satisfying

these conditions are (1,0,+1) and (1,+4,0). Since the first component of a unit

in PT must associate 1, we are done. O

Definition 2.1.13. Let (a,b,¢),(d, e, f) € PT. If there exists a unit (z,y,2) €
PT such that (a,b,c) = (d,e, ) * (x,y, z), we say that (a,b,c) associates (d,e, f)
denoted by (a,b,c) = (d, e, f).

For example, (3,4,5) ~ (3, 57, 47) since (3, 5i,44) = (3,4,5) * (1,4,0).

Definition 2.1.14. A non-unit (a,b,¢) € PT is said to be irreducible provided
that: whenever (a, b, c) = (u,v,w) * (x,y, z) we will have (u,v,w) or (z,y,2) is a

unit.

For example, (14 2i, —2+ 2i, —1+ 2i) is irreducible but (12,5,13) = (3,4, 5) *
(4,-3,5) is not. Furthermore, every triple in case (i) of Proposition 2.1.10 is

irreducible because the prime p cannot be factored.

Proposition 2.1.15. For each positive integer k > 3, 6% occurs as the first com-
ponent of a primitive Pythagorean triple in PT as follows and in no other way:
(6%, £(6%4 + 1), £(0%* — 1)) and (0%, £(6%~* — 1)i, £(6%~* + 1)i). Moreover,

these triples are irreducible.
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Proof. Let (6%,b,c) € PT be primitive. By Lemma 2.1.7, b and ¢ must be odd.

Then
_ 2uw -y u? + v?

5’“—7, b= , and ¢ = 7

for some Gaussian integers u, v, d where d | 2 and d | u* £ v? by Corollary 2.1.4.

Case 1 : wu is even and v is odd. Then u? — v? is odd. Since b is odd, d ~ 1
and 0% ~ 2uv. Hence v ~ 1 and u ~ §*72. These conditions give rise to four
possible forms, namely, (6%, §2F=% +1, 6%~ — 1), (6%, —(6%~1 + 1), —(6%~1 - 1)),
(6%, (6%=% — 1)i, (64 4+ 1)i) and (6%, —(6%~* — 1)i, — (0%~ + 1)i).
Case 2 : u is odd and v is even. Similarly, d ~ 1, v ~ 1 and v ~ 6*~2. We obtain
another four possible forms where the middle components have different signs
from the previous case: (6%, —(§2F74 + 1), 821 — 1), (6%, 624 + 1, — (621 — 1)),
(6%, — (6%~ — 1)i, (6%=* +1)i) and (6%, (6%* = 1)i, — (6% ~* + 1)i).
Case 3 : u and v are odd. Since 6* = 2uv/d and k > 3, this is a contradiction.
Case 4 : u and v are even. Since b = (u* — v?)/d is odd, d ~ 2 and u, v cannot
be both divisible by §2. If u ~ §, then v ~ §*~! and the result is the same as in
case 2. For v ~ 6, we have u ~ §*~! and the result is the same as in case 1.

Now suppose that (6%, b,¢) = (6%, by, ¢) * (6%, by, cy) where by, by, c1,co € Zi]
and 7,7 € N. Since (6%, b, c) is primitive, (6%, by,¢;) and (87, by, cy) are primitive.
By Lemma 2.1.7, by, bs, ¢1, ¢o are odd. Then ¢ = b1by+c1¢9 is even, a contradiction.

Hence (6%, b, ¢) is irreducible. O

2.2 Unique Factorization Theorem

The unique factorization of any primitive Pythagorean triple (a, b, c) is reflected
by the unique factorization of a, its first component. The following theorem shows
how a primitive Pythagorean triple can be factored into a product of irreducible
triples. We use the usual integer-exponent notation. For example, A° = (1,0, 1),

A= A A2 = Ax Afor A e PT.

Theorem 2.2.1. (Unique factorization theorem,)

Let A = (a,b,c) € PT be primitive and a = pd*°pi*...pF, where p is a unit, p;
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are non-associate odd primes, s; are non-negative integers and so # 1,2. Then A

has the unique (up to order of factors and the multiplication of factors by units)

factorization
A=Pyx P/ s .. .x PrF
where
(1,0,1) if a is odd,
PO ~
(6%, £(0%%071 4+ 1),6%07* — 1) if a is even
and
2 2
p; —1 pi+1
P~ (pi, + )

ANy
fori > 1. The choice of + depending on (a,b,c).

Proof. There exist Gaussian integers u, v, d where d | 2 and d | u® & v? such that

2uv u? — v? u? + 0?2
a=—, b= and ¢ = )

d . — d
If a is odd, then d ~ 2. We obtain
22—y 2= vz)
e ! 2

u2—1u2+1)*( 1 —v? 1—1—1}2)
v
RKORN2 RSITY ' 2

(a,b,c) = (uv,

= (u,

where the two triples on the right-hand side are elements in PT. Mathematical
induction implies the factorization in this case.

In case that a is even, b and ¢ are odd by Lemma 2.1.7. The parity of u and
v can be divided into four cases as follows:
Case 1 : u is even and v is odd. Since b = (u? —v?)/d is odd, d ~ 1. Let 2u = §*n

where n is an odd Gaussian integer and k£ € N. Then

(a,b,c) =~ (2uv,u* — v*,u? +v?)
— (8% nw, —6%4n? — o2, 5% 12

= (6, — (0% + 1), =(6%* = 1)) * (nv, (n? —v?)/2, (n* 4+ 0?)/2).
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Since n and v are odd, (nv, (n* — v?)/2, (n* + v?)/2) € PT is primitive. We then
factor (nv, (n? —v?)/2, (n* + v*)/2) as in the odd case.
Case 2 : u is odd and v is even. This is similar to the above case.
Case 3 : u and v are odd. Then §* does not divide a. This is a contradiction.
Case 4 : u and v are even. Thus u = dm and v = dn for some m,n € Z[i]. Since
b= (u?—v?)/d = (6°m* — 6*n?)/d is odd, we have d ~ 2 and b ~ m? — n?. This
means that m and n must have the different parity. Then (a,b,c) ~ (2mn, m? —
n?,m? + n?) which can be factored as in case 1 or case 2.

From the property that (z,v,2) * (z, -y, 2) = (22,0, 2?) for all (z,y,2) € PT,
the choice £ of the term P;* of A cannot vary, otherwise A would not be primitive.

Since a determines the first components of all factors of A, we assume that
A=FPyx PV x . x P = Qo+ Q7" * ... x Q)

where for each i, P; and (); are irreducible triples with identical first components.
Now if P = (z,v, z), we define P’ = (z,—y, z). If P; = @, for some j, it can be
cancelled by multiplying P; on both sides of the equation. Repeating this process

until we have

Py x Pk .. x Py = Quy % Quy * ... % Qg

which is a factor of A and P,, does not associate (),,. Propositions 2.1.10 and
2.1.15 and Lemma 2.1.12 show that P,, ~ @/ . Then, by multiplying the above

equation by each of the @, we have
(P * Py, % ... Py )? = (r%,0,7%)

where the Gaussian integer r is the product of the first components of P,,. It
follows that P, * Py, % ... % P, =~ (r,0,r) which contradicts primitivity. This
completes the proof. O

Observe that (1,0,1) * (a,b,c) = (la,lb,lc). We will use the notation {(a, b, c)
for (1,0,1) * (a,b,c) in the next proposition which indicates how (6%, +(§2F~* +
1),5%*=* — 1) can be generated from (6%, £(6% + 1),6% — 1).
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Proposition 2.2.2. If k > 3 is an integer, then 0°¢76(6% 6%~4 41,624 — 1) =
(6%, 8241, 62— 152 and §%-5(5%, — (52=441), 62+=4_1) e (53, — (5241), 62—1)k—2.

Proof. 1t is trivial when k = 3. For k > 3,

5k+2,52k—2 4 5275216—2 o 52)

5k+2’ _(52]’672 _ (52>i, _(52]@‘72 4 52)2)

52<(5k,62k_4 + 1,(52k_4 . 1)

(6%)(8°71), (62 + 1)(8%7° = 1) + (6% = 1)(6*° + 1),
S+ 1D+ 1) + (62— 1)(0* % - 1))

= (
~ (
— (5]@-"—2, 252k‘—4 _ 27 252]6—4 _|_ 2)
= (
( 2
= ((53, 1,05 —1)% ((5]“71, §2F=6 41,626 — 1).

Mathematical induction gives the desired result. When middle components

have different signs the proof is similar. O]

Example 2.2.3. For the primitive triple (96 + 72i, —24 + 1514,24 + 137i) and
96+72i = §°-3-(1+24)?, Proposition 2.2.1 provides (96+72i, —24+1514, 24+1374)
= (6%,6% +1,0% — 1)  (3,54,44) * (1 + 2,2 — 2i, —1 + 24)*. By Proposition 2.2.2,
65(96 + 724, —24 + 151,24 + 137i) can be written as (1, —i,0) * (63,62 + 1,6% —
1)% 5 (3,50, 4) * (1 + 23,2 — 20, —1 + 2i)2.



CHAPTER III
THE RING OF PYTHAGOREAN TRIPLES OVER
QUADRATIC FIELDS AND BIQUADRATIC FIELDS

Let K be a number field such that the ring of integers R of K is a UFD. Let P
be the set of all Pythagorean triples in R; i.e.,

P={(e,B,7) € B’ | o®+ * = 7*}.
The set P is partitioned into sets

P, ={(a,8,7) € P|v—pB=n}

for all n € R. Bryan Dawson [4] gave a construction in such a way as to give P
and P, ring structures when R = Z. We apply his ideas on quadratic fields and
biquadratic fields.

Throughout this chapter, all variables will be assumed to represent algebraic
integers unless otherwise stated. The notation [r] will be used for the smallest

rational integer greater than or equal to the real number 7.

3.1 Pythagorean Triples Over Quadratic Fields

This section shows how to find all elements of each P, with all elements of P as
the byproducts when K = Q[v/d] where d is a squarefree integer.

The parity is significant in many theorems about Pythagorean triples. Lemma
2.1.5 shows that 1417 plays a role in the ring of Gaussian integers like that played
by 2 in Z. We employ this concept by using Theorem 1.2.30.

We will separate each case of R into three subsections. If 2 is ramified in R,
there is a prime § € R such that 2 ~ §* and |R/ < § >| = 2. For a € R, we may

say that « is even if « is divisible by 0 and « is odd otherwise. It follows that
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all elementary properties of evenness and oddness hold. For example, the sum of
an even algebraic integer and an odd one is odd. Moreover, since §|2, 2 and all
integers that are divisible by 2 are even algebraic integers. All units in R are odd.
In case that 2 splits completely in R, there are non-associate primes 4,6 € R such
that 2 ~ 66 and |R/ <& >| = |R/ <& >| = 2. If 2 is inert in R, 2 is a prime in
R.

Let m be a prime in R. The set R~ mR contains all elements of R which are
not divisible by m. We use the countability property of R to show a connection
between R \ R and R which leads to a one-to-one correspondence between P,

and R.

Definition 3.1.1. Let 7 be a prime in R. All non-associate primes in R can be

put into order, say m, my, T, 73,... Define ¥, : (R~ 7R) — R by

ai,_a2, a3 W\ ay a2 ,..as3
U, (uritmg?mg...) = urai?mgs...

where {ay,as,...} C Z¢§ and u is a unit in R. Tt is not difficult to see that the

mapping ¥, is a one-to-one correspondence.
First, we consider the case that n = 0.

Theorem 3.1.2. Py = {(0,8,05) | B € R} and the mapping ¢ : Py — R defined
by
¢((0,8,8)) =5

s a one-to-one correspondence.

3.1.1 2 is Ramified in R

In this subsection, there is a prime § € R such that 2 ~ 6% and |R/ < >| = 2.
To show a ring structure of P, and P, we characterize P, and define bijections
by considering three cases of n where n is odd, d||n, and §?|n in the following

theorems.
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Theorem 3.1.3. Let n be an odd algebraic integer and n = uny'my*.. 7% where

ar € 7, w is a unit and T, € R are non-associate odd primes. Set p = 7' b2, wbm
— [ak ),
where by = [%]. Then P, is

2,2 2. 2
a,a 777044‘77 | a=Tp for some odd T € R} .
2n 2n

Moreover, the mapping ¢ : P, — R defined by

0]
o((a, B8,7)) = ‘I&s(;)
s a one-to-one correspondence.

Proof. Suppose («, 3,7) € P,. Since n =~ — 3, we have
Q@ — % o 4 P
2n 2n

(@,ﬁ,'Y):(Oé, )

)

Therefore, 2n|a? +n*. Thus a® + n? is even. Since n? is odd, a? is odd and so is

a. We also have n|a? + n?. Hence n|a?. This means that w{'73%...7%"|a?. Since

for each k = 1,....m, by = [%]. we have 70 7%2...wbm|o. Then o = 7p for some
[ ) 2 | 172 m

odd 7 € R.

Conversely, suppose o = 7p where 7 is odd. Then « is odd and o?® =
T2t e Since 2b, = 2[%] > ay, we have 7{'m32..w%|a?. Hence

n|la?® — 2. Since a and n are odd, o + 7 and « — n are divisible by §. Then
2|a® — % Since ged(n,2) = 1, we have 2n|a? — n? and thus 2n|a? + 7%
If (o, B,7) € P,, then a/p is an odd algebraic integer and Ws(a/p) makes the

mapping ¢ injective and surjective. O]

Example 3.1.4. Let R = Z[i]. For n =i, we have p =1 and

7 odd a=T1 |fB= 0‘2;;1 v = a22;1
+1 +1 —1 0
+1 +1 0 1

+(1+2) | £(1+2i) | 2+ 2+ 2i
+(1—2) | £(1—2) | —24i | —2+2
+(2+i) | £2+1i) | 2—2i 2~
+(2—id) | £(2—i) | —2—-2i | —2—i
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ay a2

Theorem 3.1.5. Let n be an even algebraic integer and n = udny'my>...wem

where a, € Zg, u is a unit and m, € R are non-associate odd primes. Set

p = om w2, .wbm where by = [%]. Then P, is
2.2 2 .2
{(a’a 77’05+77> \ &:TpforsomeoddreR}.
2n 2n

Moreover, the mapping ¢ : P, — R defined by

e((a, 8,7)) = ‘1’5(;)

1S a one-to-one correspondence.

Proof. Suppose (a, (o —n?)/2n, (a* + n*)/2n) € P,. Then 2n|a? + n*.

We have 378752, w0 |02 + u?d?ni" 5% .w20m, Hence 8°m®'7$2..m%|a? and

thus 67175 ...7bm | where by, ..., by, are defined as in theorem. Therefore, there
exist an algebraic integer 7 such that a = 7p. If 7 is even, then 3|a?® and thus

636%™ 3% .w2em  This is a contradiction, so 7 is odd.

Conversely, suppose o = 7p where 7 is odd. We have a?+1? = 72627201 n22 | 72bm

+ w2022 202 plem — §2(p2pipdte  p2mgq2pitigez  gplem) SQince T2rtlga2 |, gp2bm

2 2(11 2(12

and w?m{" 5% .. .w2% are odd and the summation of these two numbers is even,

§3|a?+n%. Since 2by > ap, we have w{*my?... 7% |a? +n*. Hence o? +n? is divisible
by &3n{tns?.. w2, Consequently, 2n|a® + .

It is not difficult to see that the mapping ¢ is a one-to-one correspondence. [

Example 3.1.6. Let R =Z[i]. For =9+ 9: = ¢ x 3%, we have p=§ x 3 and

rod | a=mp |- |- 5
+1 +3+3i) | —4-4 5+ 5i
+i +(—3+3i)| —-5-—"5i 4+ 44

+(1426) | £(—3+9) | —8—4i 1+ 5i
£(1—2i) | £(9-30) | —4-8 54
+(2+4) | £(3+9i) —5—i 4+ 8i
£(2-d) | £O9+3) | —1-5i 8+ 4i
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Theorem 3.1.7. Let n be an even algebraic integer and n = ud™ny*my?..wom

where ag > 2 and for k > 1, a; € Za“, u 18 a unit and T, € R are non-associate

odd primes. Set p = s"rb x> 7bm where by = (227 and by, = [%]. Then P, is

2 .2 2. 2
{(a,a 77’04‘1‘7]) \ a:TpforsomeTeR}.
2n 2n

Moreover, the mapping ¢ : P, — R defined by

w@m@vﬁzz

1S a one-to-one correspondence.

Proof. Suppose («a, (&® —n?)/2n, (o +1?)/2n) € P,. Then §*2x{ n3?. .w8m|a? +
u?d2eo g2z p2am - Therefore, 6%0t2n 52 mom|a?. Hence d"rb'zl. zwbm|a.

m

Thus a = 7p for some 7 € R.

Conversely, suppose a = 7p where 7 € R. We have o? = 7252”0#%{’17?%(’2...%53’”
which is divisible by 27. Moreover, n? is divisible by 2n because 2|n. Hence
2nla? + n?.

Since any algebraic integer can be written in the form «/p, the mapping ¢ is

bijective. 0

Example 3.1.8. Let R = Z[i]. For n = —2 + 2i = ¢*, we have p = §° and

rezl] | a=tp |B=2E | v=250
0 0 1—i 14
1] £(=2+2i) 0 —2 4 2i
+1 +(-2-2i) | 2-2i 0

+£(1+14) T4 —1-3i | —3—i

(1 —14) +44 34 1+ 3

3.1.2 2 Splits Completely in R

There are non-associate primes 0,6 € R such that 2 ~ 65 and |R/ < d >| =
}R/ <4 >| = 2. Notice that the ideas of even and odd we used in the proofs of
the previous theorems are also practical in this subsection where we consider four

cases of 17 depending on the divisibility by § and 6.
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Theorem 3.1.9. Letn € R and n = ugaoﬁfl...wam where ag > 1, and for k > 1,

m

ay € Za“, u 1s a unit and T, € R are non-associate primes where my, ~ §,0. Set

_ 3" 70 wbm where by = (2] and b, = [%]. Then P, is

m 2

2 _ .2 2 2
{(Oé,a 7)704-1-77) | a:TpforsomeTeRwheredfT}.
2n 2n

Moreover, the mapping ¢ : P, — R defined by

Q@
e((a, 8,7)) = ‘115(;)
15 a one-to-one correspondence.

Proof. Suppose (a, (o —n%)/2n, (a® +1°)/2n) € P,. Then 277!a2 +n? and thus

—ap+1 ao
507 nti g pam| o2 4 25 2 720 | r2am Therefore, 3 w02, wom |a .

—<b
Hence & "nt'7l2 . .7wbm|o. Thus o = 7p for some 7 € R. If 6|7, then §|a? and

S|u2s 20 292 | 2 o contradiction. This means that 6 1 7.

Conversely, suppose o = 7p where 7 € R and § { 7. We have én|a? +n?. Since
§ 1 a? (odd wrt 6) and § 1 7%, we have 6|a® + n? (even wrt §). Since 2 ~ 69,
2n|a? + n2.

It is easy to check that the mapping ¢ is a one-to-one correspondence. O
The next three theorems can be proved similarly.

Theorem 3.1.10. Letn € R and n = ud®xy*...t%™ where ag > 1, and for k > 1,

m

ar € Z¢, u is a unit and 7, € R are non-associate primes where m, = 6,5. Set

p = ool wbm where by = (2], and by = [%]. Then P, is

m

2 .2 2., .2 -
{(Oé,a 7)704-1-77) | a:TpforsomeTeRwheredfT}.
2n 2n

Moreover, the mapping ¢ : P, — R defined by

(o, B,7)) = ‘Ifg(;)

15 a one-to-one correspondence.

Theorem 3.1.11. Letn € R and n = w65 it mim where ag > 1, ag > 1,

m

and for k > 1, a, € Zg, u is a unit and 7, € R are non-associate primes where
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T % 0,0. Set p = (Sbogboﬁll’l...wbm where by = [22H], by = [22H] and by, = [%].

m 2 2
Then P, is

2,2 2., .2
{(a,a 77704"‘77) | a:TpforsomeTER}.
2n 2n

Moreover, the mapping ¢ : P, — R defined by

o((a, 8,7)) = "

1S a one-to-one correspondence.

The following theorem use the idea that all non-associate primes in R can be

put into order, say 8, 0, 71, Ta,...

Theorem 3.1.12. Let n € R and n = un{*...7% where ay € Z, u is a unit

and T, € R are non-associate primes where m, ~ §,0. Set p = Wi)l...

by = [%]. Then P, is

2 .2 2, .2 B
047a 77’04+77 | a=7p for some T € R where 6t 1,047 ¢ .
2n 2n

b
mom where

Moreover, the mapping ¢ : P, — R defined by

o(a,8,7)) = %(%(%))

1S a one-to-one correspondence.

3.1.3 2 is Inert in R

By Theorems 1.2.29 and 1.2.30, R = {%\/& | u,v € Z and uw = v (mod 2)} and
2 is a prime in R. Notice that the norm of 2 in Q[v/d] is 4, this means that the

parity is not as useful as in the previous subsections.

Theorem 3.1.13. Let n € R and n = ur{*wy?...7% where a € Zg, u is a unit

and T, € R are non-associate primes such that 21 m,. Set p = w75 7bm where

b = [%]. Then P, is

2,2 2 2
{(C%a 77704—1-77) | oz:TpforsomeTERwhereQJ(T}.
2n 2n
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Moreover, the mapping ¢ : P, — R defined by

(o, B,7)) = ‘1’2(;)

1 a one-to-one correspondence.

Proof. Suppose (a, (o —n?)/2n, (a® +n*)/2n) € P,. Then 2nja® 4+ n* and thus

2a1 2
2r iy mim|a? + wlny M wyt? . w29 Therefore, miims?...m%m %, Hence pla, say

o = 7p for some 7 € R. If 2|7, then 2|a? and 2|u?m2* 73%%...72%m  a contradiction.
This means that 2 1 7.

Conversely, suppose o = 7p where 7 € R and 2 1 7. We have n|a? — n?. Let
a = (z +yVd)/2 and = (u+ vV/d)/2 where z,y,u,v € Z and = = y,u = v
(mod 2). Since 2fa and 217, v =y =u=v =1 (mod 2). Hence 2|ae — n and
thus 2|a? — n?. Since ged(n,2) = 1, 2n|a® + .

Clearly, the mapping ¢ is a one-to-one correspondence. O

Theorem 3.1.14. Let n € R and n = u2n{'n5>...w%" where ag > 1 and for

m

k>1,a, €Z§, uis a unit and m, € R are non-associate primes such that 21 7.

Set p = 2on w2 . .wbm where by = [ and by, = [%]. Then P, is

2 W92
a,a 77,044’77 | a=Tp for someT € R} .
2n 2n

Moreover, the mapping ¢ : P, — R defined by

o((a, 8,7)) = >

1S a one-to-one correspondence.

Proof. The proof is similar to the proof of Theorem 3.1.7. n
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3.2 Pythagorean Triples Over Biquadratic Fields

In this section, let K be a biquadratic field such that the ring of integers R of
K is a UFD. We extend ideas in the previous section and show how to find all
elements of the set P and P,.

By Theorem 1.2.32, R is separated into five cases depending on factorization
of 2 which are 2 = §*, 2 = §2, 2 = §203, 2 = 01020304 and 2 = §;55. We need the

following lemmas to show features of elements of P,.

Lemma 3.2.1. Let §, o, 8 € R. If § is a prime such that 5|2 and §|a® — (3%, then
dla— 3 and d|la+ .

Proof. Assume d|a® — 32. Then d0|a — 3 or 6|la+ 3. Since a — 3 = (a + ) — 20,

we are done. O

Lemma 3.2.2. Let 6,«,3 € R. If § is a prime such that 2 = 6* and §|a® — 32,
then §%la — 3.

Proof. Assume §3|a? — 32. By Lemma 3.2.1, |a — 3, i.e., a — 3 = &7 for some
v € R. Tt follows that a? = 32 = (o= B)(a = B+ 23) = (07)(67 + §*3) is divisible
by 6%. Hence 6|(7)(y + 638). This means that |y and 6%|a — 3. O

The case that n = 0 is similar to the case for quadratic fields. However, we

state it here for completeness.

Theorem 3.2.3. By, = {(0,5,0) | B € R} and the mapping ¢ : Py — R defined

by
©((0,8,8)) =5

1 a one-to-one correspondence.

3.2.1 2=¢*

In this subsection, there is a prime § € R such that 2 = §*. We consider two cases

of n as follows.
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Theorem 3.2.4. Let n € R and n = ud®™ni*..7%m where ag = 0,1,2,3 and for

m

k>1,a, € Z$, uis a unit and 7, € R are non-associate primes where Ty » §.

Set p = 5%t 7bm where by, = [%]. Then P, is

m

2,2 2 2 .
{(a,a 5 7 ,a 24'77 ) | a=7p where7:5[4701p+wr‘f1_bl...7rglm’bm andueR}.
n n

Moreover, the mapping ¢ : P, — R defined by

[ a1—b A —bm
o(a, B,7)) =
5[TOW

15 a one-to-one correspondence.

Proof. Suppose (a, (& — n?)/2n,(a® + n?)/2n) € P,. Therefore, 2n|a® —n*. Thus
seotdpin | gam|a? —y2§%00m?™ | 72m  We obtain 02707, % |2, This means that
5%t 7wbm|a. Then oo = 7p for some 7 € R and

2 2
§aotdgn qim|r2§2a0p 00 gr2bm g 25260 | gp2am

Thus §4-@0r8 | rom |2 g2m 22 720 Since ged (940, 7t p2bm) = 1,
_ _ = 4—aq
we have §490 |72 —2r 1 =21 | p20m=2m  From Lemmas 3.2.1 and 3.2.2, 8/~ |7 —
— _ 3300 - -
ur{ et Hence 7 = 612 1y 4 um TP g@m—bm for some pu € R.

Conversely, suppose o« = 7p where 7 = (ﬂwm +u7r?1_b1...7rfnm_bm and pu € R.

We have

d-ag —b - 2b 2
o —? = (617 T4 umsr b, gam—bm)2g200201 b _ g 25200 5201 plam

4—aq 4—ag
= H2a°u27r%b1...7r727i’m+2(5[ 2 H2“°uu7rf1+b1...7rzlm+bm

which is divisible by 2. Tt follows that 2nja? — n?.
If (o, 8,7) € P,, then ¢((a, 8,7)) = p for some p € R. Indeed, the mapping

© is injective and surjective. O

Theorem 3.2.5. Let n € R and n = ud®ni'...m%" where ay > 4 and for k > 1,

m

ap € Z§, u is a unit and m, € R are non-associate primes where m, ~ §. Set

b where by = [%] and by, = [%]. Then P, is

m 2

2,2 2. 2
{(a,a 77’04"’77)| a—upwhere,uER}.
2n 2n

p=oor
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Moreover, the mapping ¢ : P, — R defined by

ol B,m) =

1S a one-to-one correspondence.

Proof. Suppose (a, (o —n?)/2n, (a* +n?)/2n) € P,. Then 2n|a? — n*.
We have §%0+478t . rom|a? — 2620729 w20 Hence %0+ 7¢" .. 1% |a? and thus

m

storbt  wbm|ar. Therefore, there exist an algebraic integer p such that a = pp.

Conversely, suppose o = jup where p € R. We have a®—n? = p2520n20t 2bm
w620 w2em - Hence 2n|a? — n?.
Clearly, the mapping ¢ is a one-to-one correspondence. O

3.2.2 2=§°

There is a prime 6 € R such that 2 = §2. We consider 2 cases of 1 depending on
the divisibility by 4.

Theorem 3.2.6. Let n € R and n = ud®x{*...wt%™ where ag = 0,1 and for k > 1,

m

ap € Z(T, u is a unit and m, € R are mon-associate primes where m, ~ 0. Set

p = d%ry . .whm where by = [%]. Then Py is

2 .9 2 2
{(a,a 5 1 ,Oé 24'77 ) | o =T7p where T = dp + umi* gl —bm anduER}.
n U

Moreover, the mapping ¢ : P, — R defined by

am—bm

o a1—by
° m

= —umy T
o

p((a,8,7)) =+

1S a one-to-one correspondence.

Proof. Suppose (a, (a® —n?)/2n, (o +1?)/2n) € P,. We obtain 2n|a® — n?, ie.,

2
5002t | pim|g2 —q 25200200 | p2am  Thyg §207% 19 |o?. Hence 6%75" .7l |av.

m .

Then a = 7p for some 7 € R and §%+278t . qwom| 7252000200 | 2bm _g,2§5200 7201 gr2am

Thus 629 |72 — u27i™ =2 729m=2m  From Lemma 3.2.1, §|7 — um® b1, qam=bm

a1—by am—bm

Therefore, 7 = op + um{* ... for some 1 € R.
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Conversely, suppose a = 7p where 7 = dp + ur "' .7 ~bn and u € R. We

have

o —n? = (6p + um® 0 pim—bm)2520 300

% _ 25200 201 2am
o —u“d

m T,

_ 52+2a0u2ﬂ_$b1 ’/T2bm + 251—&-2(10#“7_(?1-1—171 ,Nam-l—bm

which is divisible by 2r. Hence 2n|a? — n%.
Moreover, for (o, 5,7) € P,, ¢((a, 3,7)) = p for some ¢ € R and the mapping

 is a one-to-one correspondence. O

Theorem 3.2.7. Let n € R and n = ud®ni'...m%" where ay > 2 and for k > 1,

m

ar € Za“, u is a unit and m, € R are non-associate primes where m, ~ 0. Set

p=dvrlt . abm where by = [“2] and by, = [“%]. Then P, is

2 <o A//] 2
a,a 77704‘1‘77 | = up where p € R p .
2n 2n

Moreover, the mapping ¢ : P, — R defined by

(0%
QO((O[, 57 ’Y)) N
P
1S a one-to-one correspondence.

Proof. The proof is similar to the proof of Theorem 3.2.5. O]

3.2.3 2= 5263
There are non-associate primes 01, € R such that 2 = §243.

Theorem 3.2.8. Letn € R andn = udy65*mit...wém where ¢, ax, € Zg , u is a unit

and T, € R are non-associate primes where m ~ 01,05. Set p = 5?15327#1’1...#%

where
Cj ifc; =0,1
d; - j j
(<227 ife; > 2
and b, = [%]. Set
1 ife;=0,1
ej =

0 Zij 2 2.
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. a?—n? o2+4n? _ __ ge1ges
Then P, is { (a’T’T | = 7p where T = 07052

Fudg o5 o and i € R},
Moreover, the mapping ¢ : P, — R defined by

—dy sca—dy _a1—b -
o _ gy gedapa=b  ran—bn

(o, 8,7)) = £ P

15 a one-to-one correspondence.

Proof. Suppose (a, (a* —n?)/2n, (a® +n*)/2n) € P,. Therefore, 2n|a* — n* and

c14+2 sea+2__ar a 2 2 ¢2c1 S2¢0 _2aq 2a
so 07 0T Lmam | — w07 0P .2 . Hence

min{c1+2,2¢ min{ca+2,2¢
9 ter 1}52 te2 z}ﬂi‘l...ﬂfnﬂof.

This means that 66827 . xbm|o. Thus o = 7p for some 7 € R and
c1+2§ce+2__aq a 2 §2d1 §2dy__2by 2b 2 52c1 §2¢2 _2a1 2a
51 52 7T1 ...Wmm|7_ 51 52 ﬂ-l ...7Tmm — U 61 62 7T1 ...Wmm.
We obtain §§1652 |72 —u2§ ~ 2 g2c2 7202 p201=201 | 72am—2bm By T emma 3.2.1, 65652 |7—

ud§ MR Rl pm=bn | Hence T = 69052 4 ud M 0T Rt 0 ptm—bm for

some [ € R.

5;1—d1 552—d27r?1—b1 y 7Tam—bm

Conversely, suppose a = 7p where 7 = §{'05°pu + u T

and p € R. We have

2 2 e1 ceo c1—d1 sco—ds __a1—b1 am —b. 2 ¢2d1 $2do _2bq 2b
a® —n° = (071052 4 wopt M Og2T BwtT Lmam TOm ) 26T 6y P

% 2
— 259 5202 20 | 2o

2e1+2d1 §2ea+2d2 , 2, 2b 2b; d d
_ 5161-1— 16262 2,u T 1"‘7Tm noy 25%1-1—01-1- 15§2+C2+ 2

a1+by
1 Ty .

am+bm
/JL'M . 'ﬂ-m

which is divisible by 2n. Therefore, (o, (o — 1?)/2n, (¢ +n*)/2n) € P,.

It is straightforward to check that ¢ is a one-to-one correspondence. O

3.2.4 2= 01020304
There are non-associate primes 01, d9, 3,94 € R such that 2 = §102030,.

Theorem 3.2.9. Let n € R and n = ud{ 05205205 w{t...wem where ¢;,ay, € Zg,

m

w is a unit and m, € R are mon-associate primes where w, = 01,09,03,04. Set
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p = 60682535570 b where

0 ifc; =0
dj: ’
[ ife;>1
and by = [4]. Set
1 Z.ij:()
€j:
0 ZfCJZ:[

. 2_ 2 2 2
Then P, is { (a, oot %) | a=Tp where T = 07105205205 1

+u6f1*d1652*d26§3*d3624*d4ﬂ.?17b1mﬂ_zlm—bm and = R}
Moreover, the mapping ¢ : P, — R defined by
a u5§1—d1 5gz—d2 5§3—d3 524—d4 7T¢111—b1 . ram—bm

_p m
90((05a s, 7)) = 551852553 55

1S a one-to-one correspondence.

Proof. Suppose (a, (o —n?)/2n, (a® 4+ 1?)/2n) € P,. Therefore, 2n|a* — n* and

SO 5;1+16§2+15§3+1524+1ﬂ_i11 ---Wf,{” a? “Cy u26%c1 5502 5?03 55047_‘_%(11 mﬂ_zgm _ Hence

min{c1+1,2¢c min{ca+1,2¢ min{c3+1,2¢ min{cq+1,2c.
gimattial ghiniatlla) gunicatl o) guinlectl il | ram o2,

This means that 676526836%4 7% 7bm|a. Thus a@ = 7p for some 7 € R and
5fl+15§2+15§3+1524+17r‘1“ o Om |7'25fd1 6§d2 5§d3 5id47rfb1 LT2bm 27 53¢ 5;03 Sicaq2an  glam,
: el gea ses geq| 2 2 cc1—2d1 $2¢2—2ds $2¢3—2d3 $2c4—2dy _2a1—2b1 2., —2b.

Lemma 3.2.1, 61652053654 |7 — udSt ~ M 5242 g5~ s §6a—daga1=b1  gam—bm - Hence 1 =
€1 $€e2 $€3 £€q c1—dy Sco—d2 sc3—d3 sca—dg,_a1—by am—b
07105205304  p 4 wdy' 1057 o7 ot Mt T mam=om for some p € R.

onverse su ose & = Tp. € nave

C ly, We h

a? — 2
__ (€1 5€e2 se3 seq c1—dy gca—da sc3—d3 ccqa—dy,_a1—b1 Am—bm \2 §2d1 §2d2 $2d3 $2d4, 201 2b
(5616265 550 b Gt e —da gea—da 1=t o~y 2521 5202 525 5247201 o,

2 ¢c1 S2¢9 (2¢3 (2¢q4 _2aq 2a

_ (2e1+42d; (2e2+2ds (2e3+2d3 ¢2eq4+2dy , 220y 2bm
=0 05 03 oy [V e o

4 g1 Tertd geateatds gestestds geateatds g parthy | gamtbm which is divisible by 27.

Therefore, 2n|a® — n?.
It is not difficult to check that the mapping ¢ is injective and surjective. [
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3.2.5 2 =010
There are non-associate primes 01, 0 such that 2 = d;0s.

Theorem 3.2.10. Let n € R and n = ud{' 052wy ..w%m where c;,a, € Z§, u

m

is a unit and 7w, € R are non-associate primes where mw, o~ 01,00. Set p =

6 5% b wbm where

0 ’iij =0
dj —
(%=1 ife>1
and by = [%]. Set
1 Zij =0
€; =
0 Zij Z 1.

- a2—n2 a2+7]2 L __ Se1 g€
Then P, is { (Q,T,—%— | o= Tp where T = 070521

Hud§ B R gtmb | pam—bm gpd g € R}.
Moreover, the mapping ¢ : P, — R defined by
(Ol u5§1—d15§2—d2 a1—b1m7ram—bm

_»r i
@((aaﬁu 7)) = (5%1(552

1S a one-to-one correspondence.

Proof. Through the proof of Theorem 3.2.9, this theorem can be proved in a

similar way. O

3.3 The Ring Structure

Let K be a quadratic/biquadratic field such that the ring of integers R of K is
a UFD. We define bijections between P, and R, which construct a one-to-one

correspondence between P and R X R.

Corollary 3.3.1. Let n be a algebraic integer. (P,,®,®) is a commutative ring
with identity where ® and © are operations on P, defined by

(@, 8,7) @ (1, v, N) = o~ (e((, 8,7)) + (1, v, N)))
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and

(@, 3,7) @ (v, A) = o~ (oo, B,7)) - (1, v, N))).

Proof. The ring structures of P, are constructed from the ring structure of R by
using mappings in Theroems 3.1.2, 3.1.3, 3.1.5, 3.1.7, 3.1.9, 3.1.10, 3.1.11, 3.1.12,
3.1.13, 3.1.14, 3.2.3, 3.2.4, 3.2.5, 3.2.6, 3.2.7, 3.2.8, 3.2.9 and 3.2.10. O

Corollary 3.3.2. The mapping ® : P — R x R given by

d((a, 8,7)) = (v — B, 0((a, 5,7)))

is a bijection. Consequently, (P,H,[) is a commutative ring with identity where

H and [J are operations on P defined by

(0, B, 7) B, v, X) = @7 H2((a, 8,7)) + (1, v, 1))

and

(o, B,7) B (i, v, A) = @7 H(D((ar, B,7)) - @((, v, N)))-



CHAPTER IV
THE GROUP OF PYTHAGOREAN TRIPLES OVER
NUMBER FIELDS

Let K be a number field and R be the ring of integers in K. In this chapter, we
determine all Pythagorean triples in R and study the set of Pythagorean triples

in terms of its structure.

4.1 The Representation of Pythagorean Triples

K. K. Kubota [6] characterized Pythagorean triples in a UFD. We extend his work

to the ring of integers of any number field.

Theorem 4.1.1. Let R be the ring of integers of a number field K. If (a,b,c) is
a Pythagorean triple in R, then there exist f,u,v,d € R where d | u*> £ v* and
d | 2uv such that

2 2 2
= fduv, NSIPAT? andc:—f(u;v).

a

(4.1)

Proof. Let (a,b,c) be a Pythagorean triple in R. If b+ ¢ = 0, then a = 0 and we
choose f =b,u=0,v=1,d = —1 which satisfy equation (4.1).
Suppose b + ¢ # 0. Let f be a common divisor of a,b,c. Let a; = a/f,
by =b/f, c1 =c/f € R. Define u =by + ¢y, v =ay, d =2(by + ¢1). Then
2fuv  2f (b1 +c1)ay

d 2(by +c1) A
=) J A e —ad) _ fOR+ M),
d 2(by + 1) 2(b1 + 1) |
fw+0%) _ fOi+c+2he+a7) [+ 2her) _ fa=c
. 2in + 1) 2Abter) T

Since (2uv)/d = ay, (u* —v?)/d = by and (u? 4+ v?)/d = ¢y, it follows that d | 2uv

and d | u? £+ v? and the proof is complete. O
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4.2 The Group of Equivalence Classes

In this section, we show the isomorphisms between the multiplicative group of K

and the groups of Pythagorean triples with different operations.

Definition 4.2.1. Let (a,b,¢), (d, e, f) be Pythagorean triples in R. We say that
(a,b,c) is equivalent to (d, e, f) if there exists a nonzero element k € K such that

(a,b,c) = (kd, ke, kf). Denote the equivalence class of (a,b,c) by [a,b, c].

In a UFD, the set of all equivalence classes of Pythagorean triples may be

considered as the set of all primitive Pythagorean triples. For this reason, let
PPTg = {[a,b,c] | a,b,c € R with a # 0 and a* + b* = ¢*}

be the set of all equivalence classes of Pythagorean triples in R where first com-

ponents are not zero. Define the operation * as in (2.1) as follows:
[a1, by, e1] * [ag, ba, o] = [aras, bica + bacy, biby + cicol.
It is not hard to see that PPTx with % is an abelian group.

Proposition 4.2.2. (PPTg,x) is an abelian group. The identity element in
PPTg is [1,0,1], and the inverse of |a, b, c] is [a, —b, c].

Corollary 4.2.3. (PPTyp,x) is an abelian group.
Next we investigate a free abelian group, making use of the subgroup
H :={][1,0,1],[1,0,-1],[1,4,0],[1,—1,0]}
of PPTy;). Propositions 2.2.1, 2.2.2 and 4.2.3 give the following corollary.

Corollary 4.2.4. (PPTyy/Hx) is a free abelian group which is generated by the

set of [a,b,c|H with a = &> or a is an odd prime.

We establishs an isomorphism between the group of Pythagorean triples of R
and the multiplicative group of its quotient field K.

Proposition 4.2.5. (PPTg,x) is isomorphic to (K*,-).
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Proof. Note that if [a, b, c| € PPTg, then b+c # 0. Define ¢ : (PPTg,x) — (K*,")
by ¢([a,b,c]) = (b+ ¢)/a. Tt is clear that o is well-defined. Let [a, b, ], [d, e, f] €
PPTg. Then

©(la,b,c] x [d, e, f]) = ¢([ad,bf + ec,be + cf])

_betcf +bf tec
B ad
_bdc et f
a d

= ¢(la,,¢]) - p((d, ¢, f1).

To show that ¢ is injective, let [a, b,c] € PPTg be such that ¢([a,b,]) =

e =

Hence (b+c¢)/a =1, i.e., a =0b+ c. Since a? + b* = ¢, we obtain 2b(b + ¢) =
Then b =0 or b+ c¢ = 0. But b+ ¢ = a which is not 0, then b = 0 and a = c.
Therefore, [a,b, ] = [a,0,a] =1,0, 1] as desired.

Now let u/v € K* where u,v € R~ {0}. Choose a = 2uv,b = u? —v? ¢ =
u? +v* € R. Then p([a,b,c]) = (b+c)/a = (u® +v? +u* — v?)/2uv = u/v. This

implies that ¢ is an isomorphism. O]
Corollary 4.2.6. (PPTyy.x) is isomorphic to (Q[i]*,-).

In order to make PPTg a field, we add [0, 1, 1] into PPTg and define the
operation addition @ by using the isomorphism ¢ between (PPTg,*) and (K*,-).
The mapping ¢ : PPTrU{[0,1,1]} — K given by

(p([au b7 C]) if [a’bu C] € PPTR7
0 if [a,b,c] = [0, 1,1]

¢([a,b,]) =
is both injective and surjective. Define the operation & on PPTrU{[0,1,1]} by
[a,b,c] @ [d e, f] = ¢~ (é([a, b,c]) + ¢([d, e, f])).

Proposition 4.2.7. (PPTRU{[0,1,1]}, @, *) is a field.

Proof. First, we show that (PPTrU{[0,1,1]}, @) is an abelian group. Clearly,
(PPTRU{[0,1,1]}, @) is closed and commutative. Let [a,b,c],[d, e, f],[x,y, 2] €
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PPTrU{[0,1,1]}. We have

([, b, @ [d, e, f]) @ [2,y, 2] = 6 (6([a, b, c]) + ¢([d; e, f])) @ [2,y, 2]
= ¢~ ((6([a, b, c]) + o([d, e, f])) + [z, y, 2]))
= ¢~ (¢([a,b,c]) + (¢([d, e, f]) + d([2, ¥, 2])))
= ¢~ (o([a, b, c]) + (o (0([d, e, f]) + o([z,y, 2]))))
(by definition of &) = [a,b,d & ¢~ (4([d, e, f]) + ¢([z, v, 2]))
= la,b,c] @ ([de, fl @ [2,y, 2]).

Let [a,b,c] € PPTRrU{[0,1,1]} and a # 0. Then

[CL, b, C] D [07 L 1] o ¢_1(¢([a7 b, C]) + 925([07 L 1]))

:¢%(bzc+0>

= la,b, (|

and

[CL, b, C] ® [_a> b, C] 7 ¢_1(¢([a’ b, C]) + Qﬁ([—CL, b, CD)

:¢4(b+c+b+0)
a —a
=¢7(0)

=[0,1,1].

Moreover, [0,1,1] & [0,1,1] = [0,1,1]. Hence [0,1,1] is the identity element in
(PPTRU{[0,1,1]}, &) and the inverse element to [a, b, ¢| is [—a, b, ¢].

Next, it is easy to see that [0,1,1] * [a,b,¢c] = [0,0+ ¢,b+ ¢] = [0, 1, 1] for all
la,b,c] € PPTRU{[0,1,1]}.

It remains to prove the distributive law. Let [a, b, c], [d, €, f], [z, vy, 2] € PPTRU
{[0,1,1]}. Notice that the distributive law holds if a,d, or x = 0, so we consider
the case where a,d, and x are non-zero. We have

(la,b,d] @ [d,e, f]) x [2,y, 2]

= o (plla, b ) + ((d, e, 1) %[5, 7]

= o (e([a,b,c]) + ([d, e, f1)) * o~ (e[, y, 2]))
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“(p([a, b, c]) + o([d, e, f1)) - o([z,y, 2])) (since ! is a homomorphism)

) -
“(e([a b c]) - ([z,y, 2])) + (o([d, e, f1) - ([, 9, 2]))) (by distributive law

I
< 6

= o (p(la,b,c]) - ([x,y, 2])) ® o~ (@([d, e, f]) - @([2, ¥, 2])) (by definition of

= ([a,b,c] x [z,y,2]) ® ([d, e, f] * [x,9, 2]) (since ¢! is a homomorphism). [
The set of Pythagorean triples with operation + defined by
la,b,c] + [d, e, f] = [ad — be, ae + bd, cf] (4.2)

was also studied in terms of its structure. In [11], P. Zanardo and U. Zannier
described on a ring of integers R such that i = v/—1 ¢ R. In case of a ring of
integers R where ¢ € R, let

PPT g = {[a,b,c] | a,b,c € R with ¢ # 0;a* + b* = ¢*}.

With operation + in (4.2), PP7  is a group. Note that i comes in handy when

we show the relation between two operations.

Lemma 4.2.8. Assume that i € R. |a,b,c] € PPTg if and only if [c,bi,a] €
PPT g.

The next proposition will show that (PPTg,*) and (PP7T g, +) are isomorphic.
Hence (PPT g, +) is isomorphic to (K*,-) as well.
Proposition 4.2.9. Assume thati € R. (PPTg,x) is isomorphic to (PPT g, +).
Proof. Define A : (PPTg,x) — (PPT g, +) by Aa,b,c]) = [c, bi, al.
Let [a,b,¢],[d,e, f] € PPTg. Then
Ma, b, % [d,e, f]) = M[ad, bf + ec, be + cf])
= [be + cf, (bf + ec)i, ad]
= [cf — biei, cei + fbi,ad]
= [c,bi,a] + [f, ei,d]
= Aa, b, c]) + A([d, e, f]).

The rest of the proof comes from the above lemma. n
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