CHAPTER I

EULER'S ANGLES AND THE QUATERNIONS

1.1 Fuler's Angles

Euler's angles are used to aspecify the orientation of a
rigid body in space. We suppose that one rolnt O In the body is
fixed 1in space, and thé body 1s free to rotate in any mrbitrary
manner about 0.

Let 0X, 0¥, 0Z be axes fixed in apace and let ox’, DYF,
DZ/ be axes with the same origin flued in the body =28 in figure l.
Let O be tbe angle 202° measuredfrom 0Z toward ox, Let‘ﬁ be the
angle between the planes XO0Z and ﬁaz yeasured from Dxftnward 0F.
In the case where Dzicaincides with 04, 525 1s the angle between 0OX
and DIJ, measured in the same directiones. @ yolatwn from OX toward OY.
Let IP”be the angle between the planes Z0Z nnd X0z measured in

- ra
the same direction aa & rotatien from OX toward OY . Then O , {

and IP are the Euler- : angles for the body.
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l.2 9uaternlons

A quaternlon is a hyperconplex number in the form
q = del + 2.1 + bej + .k
where d, a, b, ¢ are resl parameters called the coefficients of the
guaternion, The alements 1, j, kK are the basls elements which

haves the properties :
2

1}.1° = 1, 1,1 = 1,i = 1,
Jol = 1.j = 3, kel = 1,k = k
2) 1% = ;% s kS = -1
Wij = k., jk = i, kKL = j
)y 1 = - %, ki = =31 , ik = = § .

It 1s obvilous that the commutative law for multipllieation
iz not obeyed. The coefficient of 1 1s ealled the “Scelar part" of
the gquaternlon. The sum ai+bj+ck 15 called the "vaetor part® of the
guaternion,

Let P = d+ ail + b + ¢k

and q

w o+ xl + ¥l + 2k

be any two quaternions. Then the product of the twe quaternions ig:

"

g = Daq = w+x1+¥3+H

(d + al + b + ek)(w + x1 + 33 + zk)

(dw — ax -« by = ez) + {aw + dx + be = ¢y) i
+ (bw + Ay + ¢x = az) 3 + {cw + dz + ay = bx) k
On the other hand
2.7 = (w+ xi + yj + 2k}{(d + ai + bj + ¢k}

(wd - ax - by = ¢z) + (aw + dx - bz + cy) 1

+ (bw + Ay = ¢x + az} j + (ow + dz = ay + hx) k
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Although the commutative law fails for mutliplicatien the
distributive and essociative lawshold :
plq + q;) = pa + pq,
and PAq, = plagy) = (pglagg
We define the conjugate value p of p by the sguation

P = d~n8il=>bl - ck,

1,3 The Relatilon between Euler's Angles and GQuerternions

,

It 12 elear from {igure that the axea m:', oYy , DZ, czn be
moved from an orientation coincildent with the fixed ames OX , OY ,
07 lolhe or1entation apecified by the Euler ! & angles 4’3 e B4 .‘)V
by the followlng process

-

1. Rotate the axes OX , OY about 0Z through an angle ¢

2, Rotate the axés DZ’ 5 CI]{! about GY’ through an angle 8
3. Rotate the axea ox’ ' OY about 07 through an angle 'Llp'
After the three rotations 4] , 2, "’.J the point (x,y,z)}

- - #
becomes (x , ¥ 4 2 ) where

x’ cosy aink O COSE O - Bin® cos¢p eing ©
¥y | =1 =s5ind cos}y O 0 1 & -8ing cosg ©
z” 0 0 1 5in@ o} co8 @ o O 1

Thus by matrix multiplication :-

x| |cosy cos® cos¢ -siny sindicos cos Bsind +ain yeoa Jr-coay 5in 8

y\= |=sink cos ¥ cosd ~cosY sir P! sinYYcos@ sin $ +cos t,V‘::t:‘.ﬁn(#j.-.=d.r1"~.(f 8in@

z’| |sin8cosd sinE\sincp cos B8
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or
x = {¢cosly cos® cond -"siny sincp'.'l x
+ (cosly cong sing+ sinycoa@ly - cos} sing .z
¥ = (-sinVy cos §cosf - coslysing )x % oasesll)
+ {=ginly com sin¢+cﬂslp.ccs¢}y + aink elng . =
2 = sinEcosqf‘).x + aineaindJ.:.r + @50 I

We ghall first show that a rotaticon in two dimensions can
bte represented by a complex number. Let 24 = x + iy denote the
point {(x, y) and let Z = x + 1y denote the polnt (x ', ¥ ) . If
8 1s the angle through which the axes DIJ . GY{ have been rotated

relatlve to OX , OY we haove

x = J|ecosB sinB x
¥y’ -8in@ cosf ¥
or
x’ = xcosld + ¥y ainBy
, } sencaarianes (2)
¥ = =x sin8 + ¥ cosg
This can be wrltten in the form
2 = Uz,
where uw = ¢oa® = 1 sln?d . For, the eguation
Zr{ = U.Z hecomes
x + ¥1 = (coa® - i sin@ X(x + iy}

x cosB + y 5inf ~ x 5in® .1 + y sin@ 1
Then by equating real and imaginary parts on both sides of

the equation we cbtain the same transformation as (2)

L IBAGIB04
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%e shall now try to represent the rotation shown in figure
1 (a) , in a similar guaternion form. Let g = xi + yj + zk denote
the point {(x, ¥, z}, and 1let d = x i + ¥ j + © k denote the

point {x’, Y; z ). The relation is Eiven by

x’ eos § sing O x
:fz = -Ein¢ GU‘S¢) O :pr "I R EEEEEEEX: (:5}
z" o 0 1 z

Suppose that p a d4+ ail + b] + ok 1s the quaternien
that represents this rotation, and auwppuse that the trapaformation
may be written

L
4 = Feq FEE RN BA R A {h‘}
We have
- & -’
Xi+¥yj+zk = (=ex-by=cz)+{de+ bz =-ocy) i
+ {dy = az + ox)] + {dz + ay -~ bx} k
We reguire

- BX = hy = £=x = o

dx + bz ~ ¢y cosqu+sincf) Y

dy = az + ex - sind x + cns(f_).jr
dz + ay - bx = = F
From the fourth equation d =1, a = 0, v = O, and then from
the first sguaticn ¢ = C. Now thE.Eeccn& and third eqguations are
!

satisfied only when (b = 0 , Hence the guaternion equation q = pg

eannot represent the rotation shown in figure 1(a).
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It has been shown by Cayley (1, pp. 69=70) that a rotation
in thres dimenslions can be expressed by the guaternion equatlom
q' = P‘q.ﬂp-' 4 P A X N {5)

where p, 9+ 4 &are guaternions, and P 1s the quaternion

conjugate of p.

=2l + ¥i + zk

q
P = 4+ al + bji + ck ,

d - ail = bj - ck ,

)
1

F

1

F
1

x L+ yfj + = K .

The rotation in figure 1{a) is represented by equaticn (3),

Which msey alsoc be written

x = xcc:sd) + ¥ sind)
:.r’ = - Ein¢‘ +}FGDE¢5 qiril#.r-i‘-l- (6}
T-J = o

Suppose this traoformation can be wriltten 1n quaterailon

form

-

A" = P, apy s

xi+y 3+ 2k = (dralsbjrek){xityj+zk)(dmal=bi=ck) +..co..n.(7)
By guaternion multiplication, and comparing coefficients of

the quaternion basis elements 1, i, j, &k we get

(a%+a®-b’ag®)x+2{ab-cd ) y+2(ac+bddz

® =
yx = E{ab+cd)x+(d2+b2-c2—az]3+2(bc-ad}z eeensass (B)
2’ = 2(ac-bd)x+2(be+rad)y+(d°+e a1z

S5ince x, ¥y & are arbitrary , the coefficients from the

systema (6) and (8) are egqual. We get nine equations :-



3% a2 vi- o = cos @ vesmasnssrs L(9)
2{ab = cd) = sin ¢ snssrsensssa(10)
2{ac + bd) = 0 crarieranss (11D
2(ab + cd) = - sing RPTRN & F-)
a2y b2a a?o 2 = cnad) veasesran=s L135)
2(be - ad) = 0 vesseasunae (1H)
2({ac = bad) = 0O eanssmrasna (15)
2(bc + ad) = 0 cerraeranss (16)
4% ¢ a2’ po =1 ceerernenss (17)
From (11} and (15) ac = 0 4, bd 2 O siassscrecs (18)
From (14) and (16} be = 0O, ad T S 1-)
From (10) and {12) ab = 0, ed = = % ein@ .u.-. (20)
From (9} and (13} d%= ¢% - cos(:p ’ a2-bZ = 0 or a=b" ..(21)
From (20) and {21} a = 0, b = O
Egquations (18) and {19) are now useless :
There remain only
ed = = % sin g cerssnsaneas (22}
a%a - coad‘: reereseacnas  (23)
From (17)  d% o= 1 Ceveieraeess (20
From {22) and (2%) a% 2¢d + ¢® =1 - sin ¢
tre o s [TTod cerereees (23
and dE- Zed + {:2 = 1 + sindi
d-c = 3+ 14+ sing ceesresras (26}
From (25) and {26) & = + i [ Jiesing + f1+ain;§~],...... (29)
¢ = + % ljl-sin¢ -!1+sind;].......(za)
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¢here the signs ocutside the brackets in (27) and (28} must

be the same. It 1s casy to verlfy that (27) and {2B) satisfy (23).

so p, =% %[ ll 1-sing Jl+sin¢} . {.}1-ain¢ - flmind)\'}k.]o

For convenience we choose =

P = élim + J1+sin¢} + Hl-singp - J1+sin¢j kJ ...129]

Similarly, rotates about OY through an angle € , we get :-

-

x cas B O - 5in@ x

jl" = 0 1 0 ¥

z’ ging O gos & z
LY

We obtaln nine equations whieh give the solutlon i-

a = ¢ = O ;
: et ——,
1
d=i§[ll—sin5+ 1+51n6]"
b:ié[m- ./1+sin5]

—————

S? P, = %[[Jl-sina + f 1+aine?} + {Jl-aina - J1+ain‘3}j} .. (302

And also when rotates about GZ’ through an anglel’v s Wwe get

x"l gosy siny O x
y'l= | -8in y cos LI, o ¥
L z’ | C 0 1 z J

Wa obtain nine equations which give the scolution i=

a = b
a = + ]-E-l 1-51111,0‘ + m\l
oL e S
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Pe = 1 l (/1 - sinly + 1 + sinl¥
3 P
+ ( Jll - Ein.&’ - /1 + Ei.rlll*gbr ) klﬂ R EEEEE N 0{31—}

Example GConsider the successive rotatiens in figure {(2), namely

' s , W
a rotation (1) of E about the OX axils and a rotatien {2) of - =

”,
abhout the O0F axis.

. L1
Ya ¥ o R— E
o
i [ \ z’
(a}
x’
¥ (e m e

Figure 2
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We shall show that the product of the quaternlona for the

succesive rotations (1) and (2) is the same as the quaterniona for

the resultant rotation .

For rotation (1), from figure 1l{a) to figure 1{b} , the
Fuler  angles are
- =-]'|" ,ﬁ*
<$ = 2, &= - ' 1? = =
2 2 2
Then by (29}

>
1
= = (1 = 3)
[z
By (31) ,
L - T-i; ]-{u i r’i
p} = E\{/l Si]"lE + 1 sin E!
+ ljl-sing - /1+sin£ }I‘EJ
2
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Then tha quaternion for retation (1) 1s

(1 - 1)

For rotatlon (2) from figures 2(b} to 2(c)} , the Euler- : angles are
!
d).-_ _"E . eg 0 ' F':,V: D,

and by the same method as that gilvenabove we find that the quaternicn

for rotation {2} is

&

P L (1 + k) .

'F

The guaternion for the result of perferming first rotation {1) and

then rotaticn [(2) is

¥
PF

(1 +k) . = (1 -~ 1)

2

H

(1 =414 =3+ k)

Mo 1= mIH

For rotation (3), from figures 2(a) tec 2{c¢), the Euler-: angles are

¢: :ﬂr,’ 6= L' .!')U= 0
2 2
Therefore the quaternion for the rotation dis
1
= .Z¥(l -1i~3j+ k)
P > 1 ]+

Then, the quaternion which we get from the product of the
quaternion fow: rotation (1) and quaternion fay: rotatiom {2) is
gqual to the éuaterninn fow: rotation (3) .,

We shall now examine the result of performing rotation {1)

and (2} in the reverse order by the succesive rotatlonsas in -

figure 3.
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The cunternion for the result of performing first rotation

{2} =nd then rotation (1) is

v = E=’.ZIL--1.}.E(1+H
2 2
s T (1 -+ 34K
2

For rotntion {4) ,from figure 3(al} to 3{¢c}, the Euler

ancles
are
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By (29} ..
P, = = H{,Jl-sin o+ Jl+sin Q }.+ %’Jl-sin 0 = Jl4sin © }k 1
2
= 1
By {3b)
Py, = [ Jl-sin:ii +~f 1+sinL } + 2 l-Eln J1+sin72 g E
a 2 2 2
= 4 (1+3)
J_
By (31)
B
P = l [ fl-sln 4 4 Hl+ain'ﬂ} + %jl-a;n L - l+sin‘11} k}
3 2 2 2 2
1
= = {1 + %)
W2
p = p,}. PE‘ Pl
1 1 .
= = (1l + k) .=€1+3) .1
J2 J2
= % (1 =4+ 3 + k)

Then, the quaternion which we get from rotation (4) is equal
to the product of the quaternions which we get from rotationa (2)
and (1).

From this example we can sce the noncommutative law of the
multiplication of the guaternions and the product of the rotations.

Similarly , given the gquaternion

P = d+ ai + bj + ck ,

succedslve rotations through angles |¢ v O q; » ¢an be represented
by the gquaternion equation

/ -
9 = P .4 . P
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By comparing coefficients of x, ¥, 2z from systems(l) and

(8 we obtain

cCoB e = dE.{- GE- aE_ 'bE
sin 9 cos ¢} = 2{ac = bdl) ,
- 8in @ cos ¥ = 2{ac + bd} ,

Then from these three equatlons we get Euler's angles in
terma of the coefficientsofiquaternion as follows

"6 = cos™t (d2+ e2e ala b)Y

| ac = bd
Cp = cos ¥ X
J{a2+h23(02+ dz}

-1 = (ae + bd)
LP’ = cos8

f:ﬁ b e+ a2)

-
e
L0
™)
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