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SCME PROPERTIES OF THE MAGIC STULRES
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4.4 Ve shell now discuss the relation between magic
squares and Labtin squares. First of all we shall state
the fellowing definition:

Definiticn? & Latin squate of side n 1s an arrangement

of n letters {or n integers from O to n-1) into ng cells
of a squﬁre in such a way that every row and every column
contains every letter (integer) exactly once. Two Latin
sguares are termed orthogonal if, when one is superimposed
upon the other, every ordered peir of symbols occurs exactly
once in the resulting square.

How consider the magic square obtained by our method.
From 2.6 we can see that in each rovw and in sach coluan
both valuen of q and s are distinct. Sinecg the velues
of q and 3 run through the complete set of integers O, 7....
cooa; =7 then every row and every column contsins every
integer. exactly once. Thersfore the values of q and 3
both form Leatin squares. &and since thers is one and only
one 5 for each q and each s is distinet from all the others
in sach row and in each column, we can s¢e that when g and s

are written together in each cell es ordsred pairs (g,s)

5.5, Mann, Analysis and Desipn of Experiments.

(New York: Dover Publications, Inmc., 1943), p.87.
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every ordered pair (g;s) occurs exactly once in the sguare.
Thus the Latin squares of ¢ and s are orthogonel,

Therefore from the magic squares of odd order obteinsd
by our method we can find pairs of orthogornal Letin sgquares
by writing the values of g and s in place of the integers n
where q, 5 and m satisfy the relation m = ng+s+1 as in 2,5,

Since the numbers in the diagonals of the Latin
squares and orthogonal Latin squares are subject to no
spacial conditions; we can obtzin orthogomal Tatin sguares
from the gquasi-magic squares of 2.8.

It follows that from a given pair of orthogonal
Latin squares we can always obtain a quasi-megic square.

This holds both for odd and cven order squares, The converse
is not alweys true for there may be maglc sgquarTes such

that the values of g and s do not Tun through the complete
set of integers fromw 0 to u-1, as our discussion of the
diagonals in the various cases of chapter II shows. Ths
following magic squares are examples of even and odd orderas

which do not give pairs of orthogonal Latin Squares,

31 82225 7

1w 271 5|3 2l 1w} gl 1al ca
5[11]10 | 8 21111131 15{ 5
71 6|12 20| 12 ,17( 10| s

—| b e
(4l la5) 1) 19118 4| 1123

Ficure 4,.1. Magic squares which do not give

orthogonal Latin squares.
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However, every guasi-mazic square and every megic
square of any odd order obtained hy our methed always
gives a pair of orthegomal Latin scuares,

bBxample. If in the magic scuare of order 7 on
page 17 in 2.11 of chapter JI, we replace every integer o
in each cell by the ordered pair (g,s) which setisfies
the relaticn m = ng+s+1, we have the following pair of

crthogonal Latin squares of order ?:

53] 0o aaf 1] es| a2] 36
05 [ 25| 40| 6| 11| 35| 52|
22|46 [ 65| 0] 5% 571 05
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Fipure 4.2. A pair of orthepgonal Tatin squares

of order 7¥.

The underlined set of integers is the Latin square
fermed by the values of g and the other set of intepgers

1s the Latin sguare formed by the values of s.
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4.2 If we add the same wvalue to the intzszer in each
cell of a magic square we sgain zet a magic square with
the ¢ommon sum increased by the order of the square times
the added value.
From this fact we can see that the set of na consecutive
integers starting from any nuvuber can be arranged in the
form of a magic square the same manner as we have discussed
in chapfer II. The sum of the integers in each row and
each column, as well as in each main diagonal is Eﬁgfggyjj)$
where n 1s the order of the magic sguare and the consecubive
integers start from the number x+1. This is becausc stacting

2 " -
from x+1 n consecutvive numbers reach the number = ey

since the sum of all numbers 4, 2, .-.:0a, x+n2 amovnts te
2y 2 '

iﬁiﬂﬂlisiﬁ_iﬂ). and the sum of all numbers 1, 2, s.use i

amounts to Eiﬁijl? the sum of all the numbers x+4, %+2,¢040

2
coeos Xn” 15 (xn)Oenta1) - x(x+1)  or_n2(nS2%i1).
5 (i), 0= (" 2x)

Hence the common value of the sum in each row, each colvmn
and each main diagonal 1is Rﬂ@%%@ﬁiil N

Hour if the zet of integers is not consecutive but is
the set of arithmetical progression with common differencs
d and the first term is 4; that is , this set of integers
is in the form 4, A+d, ﬁ+2d;nog=u,qpﬁﬁ+(n2m2)d, ﬁ+(n2—4)ﬁn
Ye can show that by arrangements similar to those of ths
magic square discussed in chapter 1i we way also form &

nagic square,
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wlnce if we put all the integers of this set inte
the square in a way similar to that of the magic spuares
ve constructed formerly svery czll) will have onsz of tha
values listved above. %Ye can tihen subtract ths comrcn
value 4 Irom every cell without losing the magic poropoety
of the sums in the columns,; rowe and main diamenals, for
we have subtracted the samz value {rom eack sum, "To:iget .=
of integers is now O, d, 2d; c.onca, (ngmﬁ)d. e coa see
that every integer has d as common diviscr. e may therafors
divide every integer by d without losing the magic sroventy
of the sums. The set of integers will uow be O, 1, 2, voss
P ngmﬂ wihich is the set of consecutive numbers From O
up to nguﬂc Therefore these consecutive inverers Iowvm &
magic souare. Hence above arithmetical progression forms =

ﬂd(ﬂ%:il
2

magic squars with the commen svm ~-- + N4, TRETT N
is the order of the magic square, ¢ is tha common difference
of the arithmetical progzression and i is the first term of
this progression.
e tnerefore can say that every arithmetical progression

containing nE terms may be arvanged in the form of a maglic

squarz the same manner as a sat of consecutive numbers.

k.3 We shall now siiow that il we can construct masie
squares of order n and m, then we can construct a nagic

square of order nm by dividing the squaire of (mn)2 cells
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into n° small squered’, HNumber eech of these m~

small

squares from 1 to mg in such a manner thet the numerical

labels construct a magic sgquare of order m. Then in each

small square which is divided into n2 cells, construct a

magic square of order n by arranging the consecutive integors
from 1 to nE in the small squersz labelled 1, and the consecutive
integers from n2+1 to 2n° in the small scuare of number 2,

and so on, until the consecutive integers from (mEmﬂ)n2+1

to menE

have been inserted into the small Square labelled meﬂ
We then have a magic sguare of order mn,
The reason is that the common sums of the maglc squares

in each small souare labelled 1 200N, ,Dozua, m2 can be

2
determined as 1n 4,2 to be Eﬁﬁziﬂl n{jg +q) EL25-+1) BoG D
2 2
azay ni2nn E +1) respectively. From which we can ges

that these are the arithmetical progression with the common
difference 115n By 4.2 we therasfore have magic sguare of

grder m composed of the integsrs 1n the arithmetical progression

ne E 2

2 9 I:\{*EDD*I}D'-J

sum of thls nagic square is Eﬂﬁu uiil

S

chllier‘s Encyclopedia vol, 13. (New York:
C.F. Collier‘s & Son Corporation, 1958), p.b4
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