CHAPTER II

REAL INTERVALS AS I'-SUBSEMIGROUPS OF R

We recall from Example 1.3 that R is a I'-semigroup under usual addition
and multiplication for any nonempty subset I' of R. In this chapter, we focus
I'—subsemigroups of R in two aspects. One hand, for each real interval I, we char-
acterize which types of nonempty subsets I' of R such that I is a I'—subsemigroup
of R. On the other hand, for each real interval I, we describe types of real intervals
which are I'-subsemigroups of R.

We demonstrate these notions in two sections. In the first section, I'—subsemi-
groups of R under usual addition are considered. Next, I'—subsemigroups of R

under usual multiplication are studied.

2.1 TI'—Subsemigroups of R under Usual Addition

In this section, we consider only I'—subsemigroups of R under usual addition.
First, for each given real interval I, we look up all possibilities of nonempty sub-
sets I' of R such that I is a I'—subsemigroup of R. Later, we fix a real interval I’
in order to find all choices of real intervals I which [ is a I'—subsemigroup of R.

The following proposition will play a major role in this section.

Proposition 2.1.1. Let I and T' be nonempty subsets of R. Then
I is a T'—semigroup if and only if —I is a (—T')—semigroup.

Proof. First, assume that I is a '—semigroup. Let z,y € —I and o € —I'. Then
—z,—y € I and —a € T which imply that (—z) + (—a) + (—y) € I. Hence



z + a+y € —I. This shows that —I is a (—I')—semigroup.
Conversely, the result holds by changing I and " to —I and —T, respectively.
O

The following example shows results obtained from Proposition 2.1.1.

Example 2.1.2. For any real number q, it is clear that {—a} is a {a} —subsemigroup
of R and (a, 00) is a (—a, 00)—subsemigroup of R. By applying Proposition 2.1.1,
we also obtain that {a} is a { —a}—subsemigroup of R and (—o00, —a) is a (—00, a)—sub

semigroup of R for any real number a.

Theorem 2.1.3. Let z € R. For a nonempty subset I' of R,
{z} is a I'—subsemigroup of R if and only if T = {—z}.

Proof. First, assume that {z} is a I'—subsemigroup of R. Let £k € T. Then
z+k+z=z,50k=—z. HenceI' = {—z}. On the other hand, obviously, {z} is
a {—z}—subsemigroup of R. O

Theorem 2.1.4. Let a,b € R and a < b. Then (a,b),[a,b), (a,b] and [a,b] are not
I'—subsemigroups of R for all nonempty subsets T' of R.

Proof. Let T be a nonempty subset of R. Without loss of generality, suppose
that (a,b) is a I'—subsemigroup of R. Let £k € T. Then (2a + k,2b+ k) =
(a,b) + k + (a,b) C (a,b) + T +(a,b) C (a,b). Thusa < 2a+k < 2b+k < b.
As a result, —k < a < b < —k which is a contradiction. Hence (a,b) is not a

I' —subsemigroup. O

Theorem 2.1.5. Letb € R and T be a nonempty subset of R. Then the followings

are equivalent.



(i) (—o0,b) is a I'—subsemigroup of R.
(i) (—o0,b] is a I'—subsemigroup of R.
(iii) sup I' < —b.

Proof. First, by contrapositive, suppose that supI' > —b. Let £k € T be such
that supI’ > k > —b. Then 9;—" < b Letm € ("‘T",b) C (—o0,b). Thus
m+k+m > 55+ k+25E =b so that m+k+m ¢ (—o0,b). Therefore (—oo, b)
is not a I'—subsemigroup of R, neither is (—oo, b] by using the same argument.
Conversely, assume that sup I' < —b. Then (—o0,b)+I'+(—00,b) C (—o0,b)

and (—oo, b]J+T+(—00,b] C (—o00,b]. The result follows. O

Consequently from Theorem 2.1.5 and Proposition 2.1.1, we have

Corollary 2.1.6. Leta € R and I" be a nonempty subset of R. Then the followings
are equivalent.

(i) (a,00) is a I'—subsemigroup of R.

(ii) [a, 00) is a '—subsemigroup of R.

(iti) inf T > —a.

Proof. We obtain from Theorem 2.1.5 and Proposition 2.1.1 that
(a, 00) is a I'—subsemigroup of R
if and only if (—o0,—a) is a (—I')—subsemigroup of R
if and only if sup(-T') < —(—a)
if and only if —infI' <a
if and only if infI’ > —a. O

For a fixed I' C R, we list intervals which are I'—subsemigroups of R. Before

doing so, it is a good place to point out the following simple result.



Remark 2.1.7. If I is a T'—semigroup and I is a nonempty subset of T', then I

s a I'—semigroup.

Toward the end of this section, for each given real interval I, we characterize

all types of real intervals which are I'—subsemigroups of R.

Proposition 2.1.8. Let I be a nonempty subset of R. Then I is a {0}—subsemigroup
of R if and only if I is a subsemigroup of R under the usual addition.

Proof. First, assume that [ is a {0} —subsemigroup of R. Then I+1 = I+{0}+I C
I which implies that I is a subsemigroup of R under the usual addition. The

converse is obvious. O

We see from Proposition 2.1.8 that subsemigroups of R and {0} —subsemigroups

of R (under usual addition) are identical.

Theorem 2.1.9. Let T = {a}. Then a real interval I is a I'—subsemigroup of R
if and only if I is one of the following forms :

(i) R, (i) {-a},
(1i) |y, o00) where y > —a, (iv) (y,o0) where y > —a,
(v) (—o0,y] where y < —a, (vi) (—o0,y) where y < —a.

Proof. First, according to Proposition 2.1.8 and Proposition 1.1, it suffices to sup-
pose that a # 0. Assume that I is a I'~subsemigroup of R. If I is not bounded
above and bounded below, then I = R. Thus, there are three more cases.
Case 1. I = [y, 00) or (y,00) for some y € R.

If I =[y,00), theny+a+y>y,soy > —a.

Now assume that I = (y,00). Suppose y < —a, then 32 € I. Soy =

¥52 + a + %2 € I which is a contradiction. Hence y > —a.

Case 2. [ = (—00,y| or (~o0,y) for some y € R.



Since I is a '—semigroup, by Proposition 2.1.1, —I is a (—I')—semigroup. Now,
we obtain that [—y,00) (or (—y,0)) is a {—a}—subsemigroup of R. By Case 1,
we have —y > —(—a) =aq, ie., y < —a.
Case 3. I = [r,y],[z,9), (z,y] or (z,y) for some z,y € R.

If £ < y, by Theorem 2.1.4, we obtain that I cannot be a I'—subsemigroup
of R.

Now assume that [ = {z}. Then z + a + z = z which implies that z = —a.

Conversely, it is obvious that R and {—a} are I'—subsemigroups of R. If
y > —a, then [y, 00) +a+ [y, 0) C [y, 00) and (y,00) + a+ (y,0) C (y, 00). Next,
suppose that y < —a. Thus (~o00,y] + a+ (—00,y] C (—o0,y] and (—o0,y) +a +

(—o00,y) C (—o0,y). Hence (i)—(vi) are I'—subsemigroups of R. O

Theorem 2.1.10. Let I = (a,b), [a,b), (a,b] or [a,b] where a < b. Then a real
interval I is a I'—subsemigroup of R if and only if I is one of the following forms:
(i) R, (it) [y,o0) where y > —a,

(1ii) (y,00) where y > —a, (iv) (—oo,y] where y < —b,

(v) (—o0,y) where y < —b.

Proof. First, let I be a '—subsemigroup. Clearly, I = R if I is not bounded above
or bounded below. Then there are only three cases to be considered.
Case 1. I = [y, o) or (y,00) for some y € R.

If I =[y,00), theny+zr+y>yforallz €T, ie., y> -z forall z € I which
implies that y > sup(-I)= —a.

Now, assume that I = (y,00). Suppose that y < —a and let k£ € (y,—a) N
(—=b, —a). Then y’;—k €land k€l Soy= y‘;—k—k+y;—k € I which is a
contradiction. Hence y > —a.

Case 2. [ = (—o00,y] or (—o0,y) for some y € R.

By Proposition 2.1.1, —I is a (—I')—semigroup. Now, —I = [—y, 00) or (—y, 00)

and ~T" = (=b, —a), (—b, —a], [-b, —a) or [~b, —a]. It follows from Case 1 that
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—y > —(=b) =b,ie, y < -b
Case 3. I = (z,v), [z,v), (z,y] or [z,y] for some z,y € R.

If x < y, by Theorem 2.1.4, the real interval I cannot be a I'—subsemigroup
of R. Thus I = {z}, by Theorem 2.1.3, I = {—z} which is a contradiction. As a
result, this case is impossible.

For the reverse direction, we see that

[y,00) + '+ [y,00) C [2y+ a,00) C [y, 00) where y > —a,

(y,00) + I' + (y,00) C (2y + a,0) C (y,00) where y > —a,

(—00,y] + '+ (—00,y] C (—00,2y+ b] C (—o0,y] where y < —b,

(—00,y) + '+ (—o00,y) C (—00,2y + b) C (—00,y) where y < —b.

Therefore, the proof is complete. a

Theorem 2.1.11. LetI' = (—o00,b] or (—o0,b) whereb € R. Then a real interval I
is a '—subsemigroup of R if and only if I is one of the following forms:

(1) R,

(i) (—o0,y] where y < —b,

(i3i) (—o0,y) where y < —b.

Proof. Suppose first that I is a I'—subsemigroup of R. Note that I cannot be
bounded below because I' is not bounded below. Since (b — 1,b] C (—o00,b] and
(b—1,b) C (—o00,b), it follows from Remark 2.1.7 that I is also a (b — 1,b]— or
(b — 1,b)—subsemigroup of R. By Theorem 2.1.10 and the fact that I is not
bounded below, we have I = R, (—o0,y| or (—o0,y) where y < —b.

For the converse, we see that
(=00, y] + '+ (—00,y] € (=00,2y +b] C (—o0,y] where y < —b.

Therefore, the theorem is completely proved. a

Corollary 2.1.12. Let I’ = [a,00) or (a,00) where a € R. Then a real interval I

1s a I'-subsemigroup of R if and only if I is one of the following forms:
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(i) R,
(ii) [y,00) where y > —a,
(iii) (y, 00) where y > —a.

Proof. The result follows by replacing I and I" in Theorem 2.1.11 by —I and -T,
respectively, and applying Proposition 2.1.1. O

2.2 TI'—=Subsemigroups of R under Usual Multiplication

Recall from Example 1.3 that R is a I'—semigroup under usual multiplication
for any nonempty subset I' of R. In the first part of this section, for each real
interval subset I of R, we find subsets I" of R so that I is a I'—subsemigroup of R.

The following results will be used variously in this section.

Proposition 2.2.1. Let I and I' be nonempty subsets of R. Then
I is a T'—semigroup if and only if —I is a (—I')—semigroup.

Proof. The proof is similar to the proof of Proposition 2.1.1. O

Remark 2.2.2. Let I and I’ be nonempty subsets of R. If I is a I'—subsemigroup
of Rand0¢ I, then0¢&T.

Equivalently, I containing 0 implies that I must contain 0.

Proposition 2.2.3. Let I and I' be nonempty subsets of R such that I is a
I'—subsemigroup of R and I # {0}. If I is bounded, then I' is bounded.

Proof. Assume that I is bounded. Choose z € I\{0} and let « € T. By the
assumption, inf I and sup I exist. Since I is a I'—subsemigroup of R, zazx € I
so that inf I < zaz < supl. Thus %f,i <a< s—“:%l Since « is arbitrary, I is

bounded. O



12

Now, we are ready to characterize subsets [ of R which I is a ['—subsemigroup

of R for any real interval I. We consider first where [ is a singleton set.

Remark 2.2.4. Let ' be a nonempty subset of R and z € R\{0}. Then
(1) {0} is a T —subsemigroup of R,
(i) {z} is a T—subsemigroup of R if and only if T = {1}.

Now, we study where I is a bounded interval. Remark 2.2.2 suggests us to

consider in many cases depending on the existence of 0 in I.

Theorem 2.2.5. Let b € R with b > 0 and " be a nonempty subset of R. Then
the followings are equivalent :

(i) [0,b] is a T'—subsemigroup of R.

(i) [0,b) is a [—subsemigroup of R.

() 0 < infT <supl' < %

Proof. First, assume that [0,b) is a '—subsemigroup of R. If there exists k € "
and k < 0, then ($)k(2) = (2)%k < 0 s0 (2)k(%) ¢ [0,b) which is a contradiction.
Thus infI' > 0.

Suppose that supI' > 1. Let k € (},supT]NT, thus b > ¢, so b > 2
and it implies that b > \/% Let z € (\/%, b) C [0,b). Then b < z?k. Hence
zkz = 2%k ¢ [0,b) which is a contradiction. Therefore 0 <inf[' <supl < ;.

Conversely, assume that 0 < inf[' < suPF < % Let k € T and m,n € [0,b).
Then 0 < k < ; and 0 < mn < b®. Thus 0 < mkn = mnk < b’k < b, so
mkn € [0,b). The proof of (ii) if and only if (iii) is complete.

The proof of (i) if and only if (iii) is obtained similarly. O

Immediately, from Theorem 2.2.5 and Proposition 2.2.1, we have
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Corollary 2.2.6. Let a € R with a < 0 and I' be a nonempty subset of R. Then
the followings are equivalent:

(i) [a,0] is a I'—subsemigroup of R.

(ii) (a,0] is a I'—subsemigroup of R.

(i) 2 <infT' <supT < 0.

Proposition 2.2.7. Leta € R witha < 0 and I" be a nonempty subset of R. Then
the followings are equivalent:

(i) [a,0) is a ['—subsemigroup of R.

(i) (a,0) is a I'—subsemigroup of R.

(i) > <infT <sup'<0and0¢ T.

Proof. Without loss of generality, we prove (ii) if and only if (iii). First, assume
that (a,0) is a ['—subsemigroup of R. Then 0 ¢ I’ by Remark 2.2.2. If there
exists k € T and k > 0, then ($)k($) = (2)?k > 0 s0 ($)k(2) ¢ (a,0) which is a
contradiction. Thus supI’ < 0. Next, suppose that infI" < %, let k € [inf T, %) Nr.
Then a < £, so @® > £ which implies that a < —,/%. Let = € (a,—/%) C (a,0).
Thus 2k < a. Hence rkz = 7’k ¢ (a,0) which is a contradiction. Therefore,
2<infl <supl'<0and0¢ T.

Conversely, assume that 2 < inf[' < sup’ < 0and 0 ¢ I'. Let £ € I' and
m,n € (a,0). Thenl < k <0and0 < mn < @®>. Thusa < e’k < mnk = mkn < 0.
So mkn € (a,0).

This proof is complete. O

Corollary 2.2.8 is obtained immediately from Proposition 2.2.7 and Proposi-

tion 2.2.1.

Corollary 2.2.8. Let b € R with b > 0 and I" be a nonempty subset of R. Then

the followings are equivalent :
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(i) (0,b] is a ['—subsemigroup of R.
(i3) (0,b) is a ['—subsemigroup of R.
() 0 < inf <supl'< § and 0 ¢ T.

The following results are the characterization of subsets I’ of R as I is a bounded

interval such that 0 is not an endpoint of I.

Theorem 2.2.9. Let a,b € R with a < 0 < b and I' be a nonempty subset
of R. Then (a,b), [a,b), (a,b] or [a,b] are ['—subsemigroups of R if and only if

max(l, &)  nfT < supl < minf}, &)

Proof. First, let I=(a,b), [a,b), (a,b] or [a,b] be a [—subsemigroup of R. Since I
is bounded and from Proposition 2.2.3, I' must be bounded. There are two cases.
Case 1. inf " > 0.

If supT > ¢, let k € (3,supT)NT, thus b> 1, so b > 2 implies that b > \/%
Let z € (\/;, b) C (a,b). Then b < z2k. Hence zkz = 2%k ¢ I which is a contra-
diction. Hence sup I’ < ;. Suppose further that supI" > L letke (%,supl)NT,
thus ¢ > ¢ implies that a < —\/g. Let z € (a,—4/2) C (a,b). Then b < z%k
Hence zkz = z%k ¢ I, again, a contradiction occurs. Hence sup[" < ;b.; This
shows that max{}, 5} < 0 <infl’ <supT < min{}, %}

Case 2. infI" < 0.

There are two subcases depending on supI'.

Subcase 2.1. supI' < 0.

IfinfT' < 2, let k € [inf [, 2) N T, thus a® > ¢ implies that a < —,/%. Let
z € (a,—+/%) C (a,b). Then zkz = 2%k < a so zkz ¢ I which is a contradiction.
Hence infI" > —. Suppose that inf ' < b%, let k € [inf T, #)NT, thus b? > £ implies
that /% < b. Let z € (,/%,b) . Then zkz = 2%k < a so zkz ¢ I which

is a contradiction. Hence infI' > . Therefore ma.x{%, F} <infl <supl'<0<

min{}, }.
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Subcase 2.2. supI" > 0.
The same proof of Case 1 shows that supI’ < min{%,;";}. Moreover,

max{2, &} < infI" from the proof of Subcase 2.1. Then the result follows.

Conversely, assume that max{l, &} < infl' < supl’ < min{%,;";} and let
k € T'. Suppose that I = [a,b]. Note that the proofs for the other choices of I are
obtained similarly. Firstly, assume that k¥ > 0. Let m,n € [a,b]. We will show
that mkn € [a,b]. Without loss of generality, there are three possibilities.
Case 1. m,n < 0.

Then a < mkn and mn < a®. Thus mkn < a%k so that mkn < a%k < b since
k<%
Case 2. m,n > 0.

Then a < mkn and mn < b%. Thus mkn < b%k and then mkn < b*k < b
because k < 1.
Case 3. m<0andn>0.

Then mkn < b. Sincea < m < 0and 0 < n <b, we have akb < mkn. Since
k < 3, it follows that a < akb.

From all cases we can conclude that mkn € [a, b].

Secondly, assume that k < 0 and m,n € [a,b] (e < 0 < b). We will show that
mkn € [a,b]. There are three different choices for m and n.
Case 1. m,n<0.

Then mkn < 0 < b. Since mn < a®> and 2 < k, we have a = % < a%k < mkn.
Case 2. m,n > 0.

Then mkn < 0 < b. Since mn < b* and 2z < k, we obtain that a = “—;’; <
b’k < mkn.
Case 3. m<0andn > 0.

Then a < mkn. Sincea <m < 0and 0 < n < b, mkn < akb. Since k >
akb < b.

Q=

From all cases we can conclude that mkn € [a, b].

Therefore I is a I'—subsemigroup of R. |
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Theorem 2.2.10. Let a,b € R\{0} and I=(a,b), [a,b), (a,b] or [a,b] with O & I.
Then I is not a I'—subsemigroup of R for any nonempty subset I' of R.

Proof. Since 0 ¢ I and a,b € R\{0}, we have either 0 < a < bor a < b < 0. First,
assume that 0 < a < b. Suppose that there exists a nonempty subset I" of R such
that I is a I'—subsemigroup of R. Since 0 ¢ I and I is bounded, 0 ¢ T" and T
is bounded so that infI" and supI" exist. If there exists k € I" with k < 0, then
(22)%k < 0 < a, thus (22)k(2f2) = (¢£2)%k ¢ I which is a contradiction. Then
infI' > 0.

Suppose that supT" > 3, let k € (3,supT] N T, thus b > 4, so b > £ implies
that b> /L. Let 2 € (1/2,6)1(a,b). Then b < 2%k, Hence zkz = 2% ¢ I which
is a contradiction. Thus 0 <infT' < supT < } < . Since infI" < %, there exists
k € [infT, 1) NT. Thus a® < ¢ implies that a < |/§. Let y € (a, /%) N (a,b).
Then yky = y%k < a. So yky ¢ I. A contradiction occurs.

Consequently, I is not a '—subsemigroup of R for any nonempty subset I" of R
and 0 < a <b.

Finally, assume a < b < 0. Suppose that there exists a nonempty subset
I' of R such that I is a '—subsemigroup of R. By Proposition 2.2.1, —1I is a
(—=T')—subsemigroup of R which contradicts the first case of the proof.

This proof is complete. g

The following results are the characterization of subsets I' of R as [ is an

unbounded interval.

Theorem 2.2.11. For any nonempty subset T of R,
(—00,0] is a I'—subsemigroup of R if and only if supT" < 0.

Proof. First, assume that (—o0, 0] is a I'—subsemigroup of R. If there exists k € I'
with k > 0, then (—1)k(—1) = k ¢ (—00,0] which leads to a contradiction. Hence
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sup I' <0.
Conversely, it is clear that (—o0, 0] is a '—subsemigroup of R provided supI" < 0.
O

The following corollary results from Theorem 2.2.11 and Proposition 2.2.1.

Corollary 2.2.12. For any nonempty subset I' of R,

[0, 00) is a T'—subsemigroup of R if and only if infT" > 0.

Proposition 2.2.13. For any nonempty subset I' of R,
(—00,0) is a ['—subsemigroup of R if and only if supT’ <0 and 0 ¢ T".

Proof. First, assume that (—o0,0) is a ['—subsemigroup of R. From the argument
in the proof of Theorem 2.2.11, we have supI' < 0. By Remark 2.2.2, 0 ¢ I since
0 ¢ (—00,0).

Conversely, it is clear that (—o0,0) is a I'—subsemigroup of R provided sup’ < 0
and 0 ¢ I O

Applying Proposition 2.2.1 and Proposition 2.2.13, we obtain the following

corollary.

Corollary 2.2.14. For any nonempty subset I' of R,
(0,00) is a [ —subsemigroup of R if and only if infI' > 0 and 0 ¢ T".

The next results are the characterization of subsets I' of R as I is an unbounded

real interval which does not contain 0.
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Theorem 2.2.15. Letb € R withb < 0 and I be a nonempty subset of R. Then
the followings are equivalent:

(i) (—o0,b) is a I'—subsemigroup of R.

(1) (—o0,b] is a I'—subsemigroup of R.

(i) sup T < §.

Proof. Let I be (—o0,b) or (—o0,b]. First, assume that I is a ['—subsemigroup
of R. Note that 0 ¢ I because 0 ¢ I. If there exists k € I" with k¥ > 0, then
(b—1)%k > 0 so that (b— 1)k(b— 1) = (b— 1)k ¢ I which is impossible. Hence
k < 0 for all k € . Suppose that there exists k € I' with k > 1. Then b%k > b,
s0 B2 < & Nowb > -/t Letz e (/%) € I, thus 2% > b. Hence
zkz = 2%k ¢ I. A contradiction occurs. Therefore for all k € T, k < %, ie.,

sup’ < %.

Conversely, it is clear that I is a '—subsemigroup of R where sup I' < d

S

Immediately from Theorem 2.2.15 and Proposition 2.2.1, we have the following.

Corollary 2.2.16. Let a € R with a > 0 and I" be a nonempty subset of R. Then
the followings are equivalent:

(i) (a,00) is a I'—subsemigroup of R.

(i) [a,00) is a I'—subsemigroup of R.

(i) inf T > 1.

The following results are the characterization of subsets I' of R as I is an un-

bounded real interval containing 0.

Theorem 2.2.17. Let a € R\{0} and I be (—o0,a), (—o0,a], (a,00) or [a,o0)
with 0 € I. Then for any nonempty subset I' of R,

I is a T'—subsemigroup of R if and only if I = {0}.
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Proof. First, assume that I=(—o00,a). Then a > 0. We prove by contrapositive.
Let I' be a nonempty subset of R such that I" # {0}. Then there exists k € I'\{0}.
Case 1. k£ > 0.

Since —3,—2a € I, it follows that (—4)(k)(—2a) = 2a ¢ (—00,qa).

Case 2. £ < 0.

Since %, % € I, it follows that (£)k(%) = 2a ¢ (—00,a).

We can conclude from all cases that (—o0,a) is not a I'—subsemigroup of R.

The converse is obvious.

Similarly, (—o0, a] is a I'—subsemigroup of R if and only if I' = {0}. Besides,
let I=(a,0) or [a,00). Then a < 0 because 0 € I and a # 0. Applying Proposi-
tion 2.2.1, we obtain that (a, 00) or [a, 00) are I'-subsemigroups of R if and only
if ' = {0}. O

From now on, for each real interval I" we characterize all types of real intervals I
such that I is a I'—subsemigroup of R. We consider the case that I' is a singleton

set.

Remark 2.2.18. Let I be a nonempty subset of R.

I is a {0}—subsemigroup of R if and only if 0 € I.

Theorem 2.2.19. Let a > 0. Then a real interval I is a {a}—subsemigroup of R

if and only if I is one of the following forms:

(i) R, (1) {0}, (i) {3}
(iv) (0,00), (v) [0,00),

(vi) (z,00) where > 1 (vii) [z,00) where z > 1,

(viii) [z,y] where -1 <z<0<z?a<y<3,

(iz) [z,y) where -—

@ =

1
<z<0<zla<y<y,
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(z) (z,y] where -

1 0
(zi) (z,y) where —1<z<0<7%<

Proof. First, let a real interval I be a {a}—subsemigroup.
Case 1. I is not bounded above and below. Then I =R.
Case 2. I = [z, 00) or (z,00) for some = € R.

If z < 0, then 2z = (2)(a)(&) € I which is a contradiction. Thus z > 0.
Suppose that 0 < z < 1. Then z*> < Zso z < /2. Let k € (z,,/%) C I so that
k?a < z. Thus kak = k?a ¢ I which is a contradiction. Hence £ =0 or z > 1.
Case 3. I = (—o00, z] or (—o00, z) for some z € R.

If > 0, then 2z = (—1)(a)(—2) € I which is a contradiction. Thus z < 0.
Note that a(z — 1)2 > 0. Then (z — 1)a(z — 1) = a(z — 1)? ¢ I which is a contra-
diction. Hence this case is impossible.

Case 4. I = [z,y],[z,y), (z,9] or (z,y) for some z,y € R.

If I = {z}, then zaz = z implies that t =0 or z = 3.

Now, assume that z < y. If y < 0, then a(%$¥)? > 0 so that (53¥)a(%£) =
a(£$2)? ¢ I which leads to a contradiction. Thus y > 0. Suppose that y > i
Then 42 > ¥, 50y > /L. Let k € (z,y) N (y/%,y). Thus y < k%a and then
kak = k%a ¢ I which is a contradiction. Hence 0 < y < 1

Next, suppose that = > 0. Then0<a:<y< ,s0 z2 < £, Thus z < \/—
Then there exists k € (z,y) N (z,/%) and k%a < z. As a result, kak = k*a ¢ I
which is a contradiction. Thus z < 0. Suppose further that z < —i. Then let
k € (z,—1) C (z,y). Thus ¥ > 2 and k%a > 1 > y. Hence kak = k?a ¢ I, again,
a contradiction occurs. Thus —1 ., <z<0

Finally, suppose that z2a > y. Then 22 > ¥ and z < —/Z. Let k €
(z,—/%) C (z,y). Therefore k%a > y. This leads to a contradiction because
kak = k®a ¢ I.

From the above argument, we can see that k was chosen with k € (z,y). Con-

sequently, if I = [z,9)], [z,y), (z,y] or (z,y) (where z < y), then —2 <z <0<
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z?a < y < 1. Moreover, if I = [z,y), then the inequality z?a < y is, in fact,

z%a < y since zaz € I.

Conversely, it is clear that (i)—(v) are {a}—subsemigroups of R. Next, we show
that (vii) is a {a}—subsemigroup of R.
If z > 1, then z > 0 and [z,00){a}[z, 00) C [z%a, 00) C [z, 00).

If-l<z<0<z’a<y<i thenza<0<ya<1s0z<zya<y andthen

[z, yl{a}z, 4] = [z, 4][z, yl{a}
C [zy,k]{a} where k = max{z? y*}
C [zya, ka]

C [z,y]-

The other cases can be shown similarly to the above argument. a

Corollary 2.2.20. Let I be a nonempty subset of R. Then a real interval I 15 a
{1}-subsemigroup of R if and only if I is a subsemigroup of R.

Proof. This follows from {1} =II. O

The following corollary is the immediate result from Theorem 2.2.19 and Propo-

sition 2.2.1.

Corollary 2.2.21. Let a < 0. Then a real interval I is a {a}—subsemigroup of R
if and only if I is one of the following forms:

() R, (@) {0}, (i) {%),

() (=0,0), (v) (=00,0],

(vi) (—o0,z) where z < ¢ (vii) (—oco,x] where z < 1,

(viii) [z,y] where 1<z<y?a<0<y< —q,
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(iz) [z,y) where 1<z<y’a<0<y<—g,
(x)  (z,y] where %Sx<y2a§0_<_y§_%,
(zi) (z,y) where 1<z<y’a<0<y< -1

Next, we find all nonempty subsets I of R which are I'—subsemigroups of R as

I’ is an interval which is not bounded above.

Theorem 2.2.22. Let I' = [a,00) and a > 0. Then a real interval I is a
—subsemigroup of R if and only if I is one of the following forms:

(1) R, (i) {0},

(111) [0, 00), (iv) (0, 00),

(v) [z,00) wherez > 1~ (vi) (z,00) wherez > ;.

Proof. First, assume that a real interval I is a I'—subsemigroup of R. Then

I{a}I CI[a,00)] CI.

Thus ! is a {a}—subsemigroup of R. By Theorem 2.2.19, I is one of the following

forms: (i) R, (i) {0}, (i) {1},

(iv) (0,00), (v) [0,00),

(vi) [z,00) where z>1  (vii) (z,00) where z >,

(viii) [z,y] where —-1<z<0<z%fa<y<2,

(ix) [z,y) where —-1<z<0<2’a<y<:,

(x) (z,y] where -1<z<0<z%a<y<y,

(xi) (z,y) where —1<z<0<zfa<y<

1

If I = {1}, then 1 + % = %(a+1) = L(a+1); = % which is a contradiction. Thus
(iii) is impossible. Furthermore, I cannot be (ix)—(xi) because I is unbounded and
by Proposition 2.2.3.

Conversely, it is clear that (i)—(ii) and (iv)-(v) are ['—subsemigroups of R. Note
that if z > 1, then [z, 00)[a, 0)[z, 00) C [z%a, 00) C [z, 00) and (z, 00)[a, o0)(z, 00) C

(z%a,00) C (x,00). Hence (vi) and (vii) are I'~subsemigroups of R. O
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The following corollary is a result of Theorem 2.2.22 and Proposition 2.2.1.

Corollary 2.2.23. Let I' = (—00,a] and a < 0. Then a real interval I is a
I'—subsemigroup of R if and only if I is one of the following forms:

(i) R, (i) {0},

(2") (—0070]: (Z’U) (—00,0),

(v) (—oo,z| where z <1 (vi) (—o0,z) where z <

8 1

Theorem 2.2.24. Let I' = [0,00). Then a real interval I is a T'—subsemigroup
of R if and only if I is one of the following forms:

(1) R, (i) {0}, (iii) [0, 00).

Proof. First, let areal interval I be a I'—subsemigroup of R. Since I{1}I C I[0,00)I C I.
This shows that I a is {1}—subsemigroup of R. Note that I' is unbounded. By
Proposition 2.2.3 and 0 € I, I is one of the forms R, {0} and [0, o0).

The converse is obvious. g

Immediately from Theorem 2.2.24 and Proposition 2.2.1, we have

Corollary 2.2.25. Let ' = (—00,0}. Then a real interval I is a I'—subsemigroup
of R if and only if I is one of the followtng forms:
(i) R, (1) {0}, (i) (—00,0].

Theorem 2.2.26. Let I' = [a,00) and a < 0. Then a real interval I is a
I'—subsemigroup of R if and only if I =R or {0}.

Proof. First, let a real interval I be a I'—subsemigroup of R. Then

I{a}I C I[a,00)I €I and I[0,00)] C I[a,00)I C I.
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By Corollary 2.2.21 and Theorem 2.2.24, I must be either R or {0}.

The converse is obvious. O

As a consequence of Theorem 2.2.26 and Proposition 2.2.1, we have

Corollary 2.2.27. Let I' = (—o00,b] and b > 0. Then a real interval I is a
I'—subsemigroup of R if and only if I =R or {0}.

Finally, we find all real intervals I of R which is a I'—subsemigroup of R as "

is a bounded interval.

Theorem 2.2.28. Let ' = [a,0]. Then a real interval I is a '—subsemigroup of R
if and only if I 1is one of the following forms:

(x) R, (1) {0}, (1) (—00,0],

(v) [z,y) where 1<z<y?la<0<y<-1
(v) [z,y) where 1<z<yla<O0<y< -1
(vi) (z,y] where 1<z<y?a<0<y< -1
(vii) (z,y) where 1<z<y’a<0<y< -1

Proof. First, let a real interval I be a I'—subsemigroup. Since I{a}I C I[a,0] C I
and 0 € I, we obtain that I is a {a}—subsemigroup of R. Applying Corol-
lary 2.2.21, we have I is one of the mentioned forms.

Conversely, it is clear that R, {0} and (—o0, 0] are I'—subsemigroups of R. If

Q=

§x§y2a<0§y§—%,thenxa§lsoxSOSxyaSyand
[z, 9][a, ][z, ¥} = [z, 9][z, y][a, O]
C [zy, k][a, 0] where k = max{z? y?}
C [ka, zya)
< [z,y].

The other cases can be shown similarly to the above argument. O
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The immediate result from Theorem 2.2.28 and Proposition 2.2.1 is

Corollary 2.2.29. Let I' = [0,a]. Then a real interval I is a I'—subsemigroup
of R if and only if I is one of the following forms:

(1) R, (i) {0}, (i) [0, 00),

() [z,y] where —-i<z<0<z?a<y<y,

(v) |[z,y) where —

IN

z<0<zg%a<y<?

a’

IA

z<0<z?a<y<

’

1
(vi) (z,y] where -1
1

Q= BI=—

(vii) (z,y) where -1 <z<0<z?a<y<
Theorem 2.2.30. Let I' = [a,b] and 0 < a < b. Then a real interval I is a
I'—subsemigroup of R if and only if I is one of the following forms:

(1) R, (%) {0}, (i) [0, 00), (w) (0,00),

(v) [z,00) where z>1,

(vi) (z,00) where = >1

(vii) [r,y] where z<0<z?<

)
(viti) [r,y) where z<0<z’b<y<
(i) (z,y] where z<0<z?b<y

)

(z) (z,y) where z<0<z%<

Proof. First, assume that I is a I'-subsemigroup of R. Then I{a}] C ITI C I and
I{b}I C ITI C I. Thus I is both a {a}—subsemigroup of R and a {b} —subsemigroup

of R. By Theorem 2.2.19 and % > %, the interval I must be one of the mentioned

forms.

Conversely, it is obvious that (i)—(iv) are I'—subsemigroups of R. If z > 1

then [z, 00)[a, b][z,00) C [za,o0)[z,0) C [z%a,00) C [z,00), ie., [z,00) is a
I'—subsemigroup of R. Next, assume that z < 0 < z? < y < 1. Let n =
max{z2b,y%b}. Then [z,y|[a,bl[z,y] C [zb, yb][z,y] C [zby,n] C [z,y]. Again, this

shows that [z, y] is a '—subsemigroup of R.
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The other cases can be shown similarly to the above argument.

This proof is complete. a

Applying Theorem 2.2.30 and Proposition 2.2.1, we obtain the following result.

Corollary 2.2.31. Let I'=[a,b] and a < b < 0. Then a real interval I of is a
I'—subsemigroup of R if and only if I is one of the following forms:

() R, (#) {0}, (i) (—o0,0], (iv) (—00,0),

(v) (—o0,z] where z <

1
b
(vi) (—oo,z) wherez < 1,

(vii) [z,y] where ;<z<y’a<0<Ly,
(viii) [z,y) where :<z<3y?’a<0<y,
(iz) (z,y] where 1<z<y?a<0<y,
() (z,y) where 1<2<y?a<0<y

Finally, the remaining type of I is [a,b] where a < 0 < b. We look up all

possibilities of intervals I such that I is a '—subsemigroup of R.

Theorem 2.2.32. Let I' = [a,b] and a < 0 < b. Then a real interval I is a
I'—subsemigroup of R if and only if I is one of the following forms:
(i) R, (1) {0},

1 1

(iii) [z,y] where max{l,~1} <z <y%a <0<z <y<min{},-1},

(iv) (z,y] where max{i, -1} <z <y?a <0<z’ <y < min{3, -1},

(v) |z,y) where max{}, -1} <z <y?a <0<z’ <y < min{3, -},
(vi) (z,y) where max{},—}} <z < y?a <0<z <y < min{g, -2}

a’

Proof. First, let a real interval I be a I'—subsemigroup of R. Then I[a,0] C
ITI C I and I[0,b] C ITI C I. Thus I is both a [a, 0]—subsemigroup of R and
a [0, b]—subsemigroup of R. Suppose that I = [z,y], (z,y], [z,y) or (z,y) where
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z <y. Ifz >0, then (2¥)a(2) = (%)% < 0. So (%)% ¢ I which is a
contradiction. Thus z < 0. Suppose y < 0, then (Z2)b(£¥) = (££¥)% > 0. So
(2:%)%a ¢ I which is a contradiction. Hence z < 0 < y. By Theorem 2.2.28,
Proposition 2.2.1 and Corollary 2.2.29, we obtain that I is one of the mentioned
forms.

Conversely, it is obvious that R and {0} are I'—subsemigroups of R. Assume
that I = [z,y] and max{i, -1} <z < 3?2 < 0 < 2% < y < min{},—1}. Then
<2<y’ <0<2%<y< 4 Let m = min{zb,ya} and n = max{za, yb}.
Thus

[z, 9]la, B[z, ] € [m, ][z, 9] < [¢.d],

where ¢ = min{my,nz} and d = max{mz,ny}. Claim that z <cand d <y, ie,

r < zby, z<y?a z<z%a, r2b<vy, yar <y and y?b <y. Since yb < 1 and

za < 1, we see that z < zby, ¥?b < y, yaz < y and z < z2a. Thus [z,y], where

max{2, -3} <z<y’a<0< <y < min{}, -1}, is a ['—subsemigroup of R.
The other cases can be shown similarly to the above argument.

O
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