CHAPTER I

INTRODUCTION

M.K. Sen and N.K. Saha [5] introduced the notion of Γ -semigroups and obtained some properties in semigroup theory analogous to those in Γ -semigroups. Because the structure of a Γ -semigroup is similarly defined to semigroup theory, so almost all results should be alike. For example, in 1987, M.K. Sen and N.K. Saha defined relations in Γ -semigroup analogous to Green's relations in a semigroup, deduced a condition for an element in a Γ -semigroup to be regular and proved that if α is a regular element in a \mathcal{D} -class D_{α} containing α , then every element of D_{α} is regular in the Γ -semigroup. In fact, every semigroup admits a Γ -semigroup structure, by choosing $\Gamma = S$. On the other hand, let S be a Γ -semigroup and α be a fixed element of Γ . We define $a \circ b$ in S by $a \circ b = a\alpha b$ for all $a, b \in S$, then it can be shown that (S, \circ) is a semigroup. Thus, every Γ -semigroup admits a semigroup structure.

The purpose of this thesis is to conduct research on the structure of some Γ -semigroups. We characterize different types of Γ -semigroups in three topics which are real intervals, sets of $m \times n$ matrices over $\mathbb R$ and sets of linear operators on a vector space over a division ring. In Chapter II, we investigate real intervals as Γ -subsemigroups which are motivated by the following propositions:

Proposition 1.1. ([2]) Let I be a real interval. Then I is a subsemigroup under addition if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$,

(iii) $[a, \infty)$ where $a \ge 0$, (iv) (a, ∞) where $a \ge 0$,

(v)
$$(-\infty, b]$$
 where $b \le 0$, (vi) $(-\infty, b)$ where $b \le 0$.

Proposition 1.2. ([2]) Let I be a real interval. Then I is a subsemigroup under multiplication if and only if I is one of the following forms:

(i)
$$\mathbb{R}$$
, (ii) $\{0\}$, (iii) $\{1\}$, (iv) $(0, \infty)$, (v) $[0, \infty)$, (vi) (a, ∞) where $a \ge 1$ (vii) $[a, \infty)$ where $a \ge 1$, (viii) $(0, b)$ where $0 < b \le 1$ (ix) $(0, b]$ where $0 < b \le 1$, (x) $[0, b]$ where $0 < b \le 1$, (xi) $[0, b]$ where $0 < b \le 1$, (xii) (a, b) where $-1 \le a < 0 < a^2 \le b \le 1$, (xiii) (a, b) where $-1 \le a < 0 < a^2 \le b \le 1$, (xiv) $[a, b)$ where $-1 < a < 0 < a^2 < b \le 1$,

In Chapters III and IV, we investigate sets of $m \times n$ matrices over \mathbb{R} and sets of linear operators on a vector space over a division ring as Γ -subsemigroups, respectively.

We first recall some definitions and examples from [3], [4] and [5].

Definition Let S and Γ be two nonempty sets. Then S is called a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \to S$, written the image of (a, γ, b) as $a\gamma b$, satisfying the identity $(a\alpha b)\beta c = a\alpha(b\beta c)$ for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$.

Definition Let S be a Γ -semigroup. A nonempty subset B of S is said to be a Γ -subsemigroup of S if $B\Gamma B \subseteq B$ where $B\Gamma B = \{a\alpha b \mid a, b \in B \text{ and } \alpha \in \Gamma\}$.

We give some examples of Γ -semigroups.

(xv) [a, b] where $-1 \le a < 0 < a^2 \le b \le 1$.

Example 1.3. For any nonempty subset Γ of \mathbb{R} , \mathbb{R} is a Γ -semigroup under usual addition and multiplication.

Example 1.4. For any nonempty subset Γ of $M_{nm}(\mathbb{R})$, $M_{mn}(\mathbb{R})$ is a Γ -semigroup under usual matrix multiplication.

Example 1.5. Let $m \in \mathbb{N}$ with m > 1 and $n \in N_{m-1}$. Then $m\mathbb{Z} + n$ is a $(m\mathbb{Z} + (m-n))$ -semigroup under usual addition since for each $a, b, c \in \mathbb{Z}$ $(ma+n) + (mb+m-n) + (mc+n) = m(a+b+c+1) + n \in m\mathbb{Z} + n$.

Example 1.6. Let L(V) be the set of all linear operators on a vector space V over a division ring. Then L(V) is a Γ -semigroup under composition for any nonempty subset Γ of L(V).

Example 1.7. In \mathbb{R} , let $a, b \in [0, 1]$ and $c \in [0, a]$. Then [0, a] is a [0, b]-semigroup and [0, c] is a [0, b]-subsemigroup of [0, a] under usual multiplication.

Example 1.8. Let $S = 4\mathbb{Z} + 3$, $B = \{4n-1 \mid n \in \mathbb{Z}^+\}$ and $\Gamma = \{4n+1 \mid n \in \mathbb{Z}^+\}$. Then it can be shown that S is a Γ -semigroup and B is a Γ -subsemigroup of S under usual addition.

Example 1.9. Let $S = M_{32}(\mathbb{R})$, $\Gamma = M_{23}(\mathbb{R})$ and $B = \{\begin{bmatrix} 0 & 0 \\ a & b \\ c & d \end{bmatrix} | a, b, c, d \in \mathbb{R} \}$. Then S is a Γ -semigroup and B is a Γ -subsemigroup of S under usual matrix multiplication.

Example 1.10. Let X and Y be two nonempty sets. Denote the set of all functions from X into Y by S, $\{g \in S \mid g \text{ is a constant function}\}$ by B and the set of all functions from Y into X by Γ . Then S is a Γ -semigroup and B is a Γ -subsemigroup of S under composition.

Proposition 1.11. A nonempty subset I of \mathbb{R} is a \mathbb{Q}^c -semigroup under usual addition if and only if $I = \mathbb{R}$.

Proof. It is obvious that $\mathbb R$ is a $\mathbb Q^c$ -semigroup. Next, let I be a nonempty subset of $\mathbb R$ such that I is a $\mathbb Q^c$ -semigroup under addition. If $I\cap \mathbb Q^c=\phi$, then let $x\in I\cap \mathbb Q$, so $x+\sqrt{2}+x\in I\cap \mathbb Q^c$ which is a contradiction. Hence $I\cap \mathbb Q^c\neq \phi$. Let $y\in I\cap \mathbb Q^c$, thus $-2y\in \mathbb Q^c$ and $0=y+(-2y)+y\in I$ which implies that $\mathbb Q^c=0+\mathbb Q^c+0\subseteq I$. Next, to show that $\mathbb Q\subseteq I$, let $r\in \mathbb Q$. Thus for any $y\in I\cap \mathbb Q^c$, $r=0+(r+y)+(-y)\in I$. Then we conclude that $I=\mathbb R$.