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This dissertation presents an efficient numerical technique for the analysis of stress
intensity factors and T-stress components for arbitrary-shaped cracks in a homogeneous, linear
elastic half-space under various conditions on the free surface. The key governing equations
are established in a form of weakly singular boundary integral equations involving both
unknown relative and sum of the crack-face displacements. A systematic regularization
technique based on the integration by parts and special decompositions of singular kernels is
adopted to regularize all involved strongly singular and hyper-singular integrals to those
containing only weakly singular kernels and requiring only continuous crack-face data for their
validity. Besides the direct consequence of the weakly singular nature, the governing integral
equations also possess several positive features such as no requirement of free-surface
discretization and the capability to treat material anisotropy, non-planar crack geometry and
general crack-face loading conditions. In numerical implementations, a weakly singular,
symmetric Galerkin boundary element method along with the special near-front approximation
is employed to solve the traction integral equation for the relative crack-face displacement. The
sum of the crack-face displacement is then obtained by solving the displacement integral
equation via standard Galerkin method. The stress intensity factors and the T-stress components
along the crack are extracted directly from the near-front relative and sum of the crack-face
displacement data. Obtained numerical results for various scenarios clearly demonstrate the

accuracy, convergence and capability of the proposed technique.
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CHAPTER 1
INTRODUCTION

For the past several decades, designing demands of multi-functional, high performance
materials in various disciplines such as aircraft and aerospace industries, nautical
structures, and engineering applications have increased remarkably (see examples in
Figure 1.1). In general, this requirement is to ensure that all involved components must
be made from stiffer, lighter and stronger materials. At the same time, use of such
complex materials generally poses nontrivial challenges in the analysis and design
procedure to ascertain the integrity and safety throughout the lifespan of those
components. The major cause of partial damage and ultimate failure of components is
from various sources such as uncertainties in the loading, pre-existing flaws and defects
in materials, and load-induced cracks occurring during applications. As the direct
consequence, the investigation of flaws and defects in engineering components, devices
and parts is of primary interest of many researchers because information gained from
those studies can be potentially used to assess their failure mechanism, usage lifespan
and performance. Mathematical modeling and analysis is one of the most commonly
used tools to achieve those essential tasks.

There are many situations encountered in practices where damages and flaws are
induced in a region relatively near the surface and their sizes are sufficiently small when
compared with the characteristic dimensions of components and parts. A half-space
containing near-surface cracks, when supplied by a set of proper governing physics, is
one of the most commonly used mathematical models and is found adequate for
approximating those situations (see Figure 1.2). Such idealization significantly
simplifies the overall actual geometry, reduces the computational effort, and also yields
the reasonably accurate prediction relative to the full analysis of the whole body.
However, performing the stress analysis of such idealized body by conventional
domain-based numerical techniques such as the finite different method (FDM) and the
finite element method (FEM) is not computationally efficient as a result of the
unbounded nature of the domain and the irregularity induced in a localized region
around the cracks. Methods based upon boundary integral equations (BIES) have been
well-known, for several decades, as alternative, efficient numerical techniques for
modeling crack problems especially when the involved medium is unbounded (e.g.,
Cruse, 1988; Katsikadelis, 2002). This is due to that the key governing equations only
contain unknowns on the boundary and crack surfaces; as a result, it only requires the
solution discretization over a domain of reduced spatial dimensions.



Figure 1.1: (a) Aircraft engine components?, (b) an orion crew exploration vehicle?, (c)
a luxury yacht project®, and (d) a composite structure®.
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Figure 1.2: Schematics of (a) interior elliptical crack and (b) surface-breaking crack.
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Various boundary integral equation techniques have been developed to solve
cracks in an elastic half-space (e.g., Lo, 1979; Martin et al., 1993; Khaj and Sushko,
1994; Sushko and Khaj, 1996; Hrylyts'kyi et al., 2003; Gordeliy and Detournay, 2011).
It should be remarked however that most of existing techniques were developed
specifically to treat planar cracks and a half space made from isotropic materials. In
addition, the key formulation was generally based either on strongly singular or
hypersingular integral equations. The former limitation renders various practical cases
cannot be treated; for instance, components made from hexagonal crystal materials and
fiber-reinforced composites whose behavior is anisotropic in nature (see Figure 1.3)
and non-planar geometry of the crack surface which commonly occurs during the
propagation. For the latter, use of integral equations containing strongly singular and/or
hypersingular kernels generally poses both theoretical and computational difficulties
such as the interpretation and evaluation of values of singular integrals and constraints
on solution space in the discretization.
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Figure 1.3: (a) Composite materials® and (b) Transversely isotropic carbon fibers and
their composites®.

Li (1996) successfully derived a pair of singularity-reduced integral equations
involving only weakly singular kernels for cracks in a linearly elastic half-space under
several types of boundary conditions on its surface. However, the formulation is limited
to the case of isotropic materials and the implementation of those integral equations to
solve crack problems has not been found. The regularization technique proposed by Li

5 http://iceland.balticnordic.com/jiangsu-jiajing-composite-materials-co-nanjing/company.html
® http://www.jwave.vt.edu/crcd/kriz/lectures/OnePageLect.html



(1996) was later enhanced and utilized by Li and Mear (1998), Li et al. (1998),
Rungamornrat and Mear (2008a) in the derivation of the weakly singular boundary
integral equations for cracks in both isotropic and anisotropic, linear elastic infinite and
finite media. However, the similar nontrivial extension to treat material anisotropy for
cracks in a linearly elastic half-space has not been recognized in the literature. In
addition, the implementation of those weakly singular boundary integral equations to
solve cracked half-spaces for essential fracture data such as the stress intensity factors
and the T-stress components has also not been found. This significant gap of knowledge
motivates the current study.

1.1 Objectives

The current investigation aims mainly to (i) develop a set of singularity-reduced integral
relations and equations for cracks in a generally anisotropic, linearly elastic half-space,
(i) develop an accurate and computationally efficient numerical procedure, based on
the boundary element method, for solving cracks in a linearly elastic half-space under
various types conditions on the free surface, and (iii) investigate the computational
performance of the developed numerical technique such as the accuracy, convergence
behavior, and capability to treat general boundary value problems.

1.2 Scope of Work

The present study only applies to following situations: (i) a half-space that is made of a
homogeneous, generally anisotropic, linear elastic material with its material-symmetry
plane parallel to the free surface; (ii) a half-space that is free of the body force and
remote loading; (iii) tractions on the crack surface that are fully prescribed; (iv) the
crack surface that is sufficiently smooth; (v) the free surface of the half-space subjected
to one of the following four boundary conditions (i.e., symmetrical boundary condition
(BC-type-1), anti-symmetrical boundary condition (BC-type-2), traction-free boundary
condition (BC-type-3), and fully rigid boundary condition (BC-type-4)) in which the
last two boundary conditions are considered only for isotropic materials; and (vi) only
the stress intensity factors and the T-stress components along the fracture front being
of primary interest.

1.3 Methodology

A set of regularized boundary integral relations and equations for an elastic half-space
containing cracks established in the present study is the non-trivial generalization of
results presented by Li (1996) by taking the material anisotropy into account. A



systematic regularization procedure proposed by Rungamornrat and Mear (2008a) is
adopted along with techniques used by Li (1996) in handling the symmetrical and anti-
symmetrical boundary conditions to obtain the completely regularized boundary
integral relations and equations. A well-known weakly singular, symmetric Galerkin
boundary element method (SGBEM), utilized by Li et al. (1998) and Rungamornrat
and Mear (2008b), and a standard Galerkin technique are selected to solve the
associated boundary value problem. The underlying theories, proposed methodology
and research procedure can be clearly outlined as follows.

1)

)

(3)

(4)

()

A classical theory of linear elasticity is adopted, along with the concept of
linear elastic fracture mechanics, to form basic field equations governing
responses of the cracked elastic half-space such as equilibrium equations,
constitutive relations, and strain-displacement relations.

Fundamental solutions for an un-cracked elastic half-space under BC-type-
1 and BC-type-2 are established by using the superposition technique along
with existing fundamental solutions for an un-cracked elastic whole space
and the proper use of symmetrical and anti-symmetrical conditions with
respect to the free surface of the half-space.

Conventional boundary integral relations for displacements and stresses
within the cracked elastic half-space under BC-type-1 and BC-type-2 are
established by using the reciprocal theorem along with the established
fundamental solutions for an un-cracked half space with the same type of
boundary conditions.

Singularity-reduced boundary integral relations and weakly singular
boundary integral equations for the cracked elastic half-space under BC-
type-1 and BC-type-2 are obtained by applying a systematic regularization
procedure proposed by Rungamornrat and Mear (2008a) to the obtained
standard integral relations. Specifically, special decompositions of both
strongly singular and hypersingular kernels are first established using
existing results for the elastic whole space and the symmetrical and anti-
symmetrical conditions along the free surface of the half-space. Such
special decompositions are then employed along with the integration by
parts to transfer the derivative of involved kernels appearing in the
decompositions to the boundary data via Stokes’ theorem.

The singularity-reduced boundary integral relations/equations for the
cracked half-space made of isotropic materials and subjected either to BC-
type-3 or BC-type-4 on the its free surface are obtained directly by applying
a superposition technique to combine results of the first two boundary



(6)

(7)

(8)

9)

(10)

(11)

conditions and the correction terms derived by Li (1996). The boundary
value problem associated with the un-cracked half-space subjected to either
the normal or shear traction on the free surface was solved using the
potential-theory-based approach and solution representations. Again, a
similar regularization procedure as that employed for BC-type-1 and BC-
type-2 is employed to construct the final singularity-reduced boundary
integral relations/equations.

A weakly singular SGBEM is adopted to construct numerical solutions of
the weak-form traction boundary integral equation. In the solution
discretization, special crack-tip elements developed by Li et al. (1998) and
Rungamornrat and Mear (2008b) are employed along the crack boundary
to enhance the approximation of the near-front relative crack-face
displacement and, in addition, to embed special degrees of freedom along
the crack boundary which are related to the gradient of the crack-face
displacement.

Once the relative crack-face displacement is fully determined, the sum of
the crack-face displacement is determined from the regularized weak-form
displacement boundary integral equation using standard Galerkin
technique.

Special numerical quadrature based on the integrand regularization via a
family of variable transformations including both the triangular polar
transformations and the logarithmic transformations is utilized to
numerically evaluate the nearly singular and weakly singular double
surface integrals arising from the discretization of the crack surface.

An interpolation technique proposed by Rungamornrat and Mear (2008b)
is employed to evaluate weakly singular kernels for generally anisotropic
materials in order to reduce the computational effort corresponding to the
direct computation of the closed contour integral for every pair of field and
source points.

A selected indirect linear solver such as the conjugate gradient method with
and without pre-conditioning is utilized to solve the two systems of linear
algebraic equations.

Explicit formula proposed by Rungamornrat and Mear (2008b) and
Subsathaphol (2014) are implemented to compute the stress intensity
factors and the T-stress components along the crack boundary in terms of
the solved jump in and sum of the crack-face displacement, respectively.



1.4 Significance

The present study offers an accurate and computationally efficient numerical technique
for modeling shallow, near surface, and surface breaking cracks within a bulk of
material. The key formulation is established in a general three-dimensional context
integrating both material anisotropy and various types of boundary conditions and this
should enhance the capability to perform stress analysis of cracked bodies made of a
broader class of materials such as composites and rocks. Since the governing equations
are established in terms of the boundary integral equations and all types of conditions
at the half-space surface are directly incorporated in the development of fundamental
solutions, the discretization of the entire half-space and its surface is not required. This
should significantly lessen the computational resources associated with the reduction
in the number of unknowns and, in addition, provide an attractive computational tool
for simulating crack advances where the adaptation of meshes is required during the
simulations. Besides its direct applications to mathematically model a variety of
engineering problems involving cracks (e.g., machine components, structural
components, devices, geo-engineering and pressure vessels containing defects and
flaws near their free surface), the developed methodology and procedure can be
conveyed and generalized to investigate cracks in bi-material domains.

1.6 Outline of Dissertation

In this dissertation, a set of regularized boundary integral relations and equations for an
elastic half-space containing cracks and subjected to various types of boundary
conditions on the free surface is derived. In addition, the solution procedure based upon
the regularized boundary element method and standard Galerkin technique is also
established. The key motivation, research objective and scope of work, the brief
methodology and significance of work are presented in Chapter 1 whereas the
remaining portion of this dissertation is organized as follows.

In Chapter 2, a brief review of previous studies concerning the modeling and
analysis of cracks in an elastic half-space is provided. Various existing solution
techniques applied to solve cracked elastic half-space problems are summarized.
Besides, the recent advances of boundary integral equation methods relevant to the
present investigation are also briefly discussed.

Chapter 3 contains the problem description, basic field equations from a classical
theory of linear elasticity, fundamental solutions of the displacement and stress for an
un-cracked elastic half-space under symmetrical and anti-symmetrical boundary
conditions, standard integral relations for stress and displacement within an elastic half-



space containing cracks, special representations of both hyper-singular and strongly
singular functions, and the development of completely regularized integral equations
essential for formulating the governing equations of cracks within the half-space.

Chapter 4 mainly presents components essential for the development of a
computational procedure for determining the unknown crack-face data such as the sum
of and jump in the crack-face displacement and the post-process for the mixed-mode
stress intensity factors and the T-stress components. A formulation of the boundary
value problem based upon the regularized integral equations established in the previous
chapter is obtained first and, then, the discretization procedure following Galerkin
technique is briefly outlined. Essential ingredients to enhance the computational
efficiency and accuracy such as the approximation of the near-front behavior, the
numerical integration, and the evaluations of kernels for anisotropic materials are also
discussed. Finally, explicit formulae for extracting the stress intensity factors and the
T-stress components along the crack front are proposed.

Extensive results for cracks in a linearly elastic half-space under various scenarios
are reported in Chapter 5 to demonstrate the capability and accuracy of the developed
numerical procedure. In particular, results for a particular class of boundary value
problems are generated first and compared with reliable benchmark solutions to verify
both the derivation of integral equations and the implementations. Then, more
complicated problems associated with multiple and non-flat cracks are investigated and
obtained results are reported to prove the versatility and robustness of the developed
procedure.

The last chapter summarizes the essential finding associated with both the integral
formulations and implemented numerical procedure. Besides, the extension of the
present work to general types of boundary conditions and multi-field materials is also
included.



CHAPTER 2
BACKGROUND AND REVIEW

This chapter reports results from an extensive review of literatures related to the
theoretical modeling and analysis of cracks in an elastic half-space. Various existing
solution methodologies are briefly summarized including their pros and cons. In
addition, the background and recent advances of the boundary integral equation
methods relevant to the current investigation is also briefly discussed.

2.1 Modeling of Cracked Half-Space

A half-space containing a surface of discontinuities is one of mathematical domains
commonly used to represent a physical body in the simulation of localized, near-surface
flaws, defects, and impurities if their sizes are sufficiently small when compared with
the characteristic dimensions of the body. Such idealization significantly simplifies the
real geometry, reduces the computational effort, and also yields the reasonably accurate
prediction relative to the full analysis of the whole body. To perform such theoretical
simulations, solution techniques have played a crucial role in the solution accuracy and
computational performance and they must be properly selected to suit each involved
scenario. Many investigations based upon the conventional theories of linear elasticity
and linear elastic fracture mechanics have been well recognized in the literature and
various techniques including analytical and semi-analytical approaches, conventional
domain-based numerical techniques, and boundary-based approaches have been
proposed to construct solutions of mathematical models of cracked half-spaces. In
particular, those existing solution techniques were based on integral-transform-based
and series-representation method (e.g., Srivastava and Singh, 1969; Feng et al., 2007;
Monastyrskyy and Kaczynski, 2010; Bogdanov, 2011; Eskandari-Ghadi et al., 2013),
the body force method (e.g., Murakami, 1985; Noguchi and Smith, 1995; Noguchi et
al., 1997), the iterative-based alternating method (e.g., Smith and Alavi, 1971; Shah
and Kobayashi, 1973; Dhondt, 1995), the inverse method (e.g., Keat et al., 1998), the
standard finite element technique (e.g., Ghajar and Alizadeh, 2013) and the boundary
integral equation methods (e.g., Lo, 1979; Hayashi and Abé, 1980; Mayrhoffer and
Fischer, 1989; Martin et al., 1993; Khaj and Sushko, 1994; Khaj and Sushko, 1996;
Sushko and Khaj, 1996; Movchan and Willis, 2000; Kit et al., 2000; Hrylyts'kyi et al.,
2003; Gordeliy and Detournay, 2011; Skalsky et al., 2013).
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Analytical and semi-analytical techniques based on integral transforms, dual
integral equation theories, and series representations were successfully established in
the investigation of the near-front elastic field and the stress intensity factors of some
cracks with relatively simple geometry (e.g., a penny-shaped crack) in an isotropic,
linearly elastic half-space (e.g., Srivastava and Singh, 1969; Feng et al., 2007;
Bogdanov, 2011). While those methodologies can yield very accurate results
comparable to the exact solution, their capability has been found very limited and they
cannot be applied to treat various practical scenarios due to the high complexity posed
by the general prescribed information such as crack geometries, material behavior,
boundary and loading conditions.

To further enhance and broaden the capability for modeling elastic cracked half-
spaces, a variety of numerical procedures have continuously been developed in the past
several decades. Based on the linear feature of the elastic field and a standard
superposition technique, the body force method was exploited by several investigators
to perform the stress analysis and estimate the stress intensity factors along the
boundary of planar cracks contained in an elastic half-space (e.g., Murakami, 1985;
Noguchi and Smith, 1995; Noguchi et al., 1997). Although fully mixed-mode problems
have been included in the work of Murakami (1985), it was still limited to planar cracks,
the traction-free surface and isotropic materials. Other approaches such as the
alternating techniques, which are based on an iterative solution procedure to remove
the fictitious residual stress, were also established to solve cracked half-space problems
(e.g., Smith and Alavi, 1971; Shah and Kobayashi, 1973; Dhondt, 1995). Due to the
nature of the solution strategy, the alternating technique was found yielding results of
relatively low accuracy (e.g., Mayrhoffer and Fischer, 1989). An experimental
approach was also proposed by Keat et al. (1998) in which the algorithm of inversion
for identifying embedded crack geometries and locations in a half-space from field
measurements of the surface displacement was presented. Nonetheless, this technique
can only be applied for simple cases of crack configurations and loading conditions.
Recently, a standard finite element technique was also developed to investigate cracked
half-space problems (e.g., Ghajar and Alizadeh, 2013); however, it has been found that
substantially fine mesh is required in the discretization especially in the near-front zone
and the truncation of the domain must be properly considered to treat the unbounded
dimensions. It should also be remarked that all studies indicated above were still limited
to certain crack configurations, isotropic materials, and determination of stress intensity
factors. The analysis for nonsingular terms such as the T-stress components and the
treatment of material anisotropy were still not addressed. The consideration of material
anisotropy was found in the work of Monastyrskyy and Kaczynski (2010). In their
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study, the material is assumed transversely isotropic and possessing the axis of material
symmetry normal to the free surface and only a crack of penny-shape oriented
horizontally is modeled. A technique of Hankel integral transforms along with a
selected numerical procedure was adopted to determine the stress intensity factors along
the crack front. Recently, Eskandari-Ghadi et al. (2013) applied the method of integral
transform to analytically solve a horizontal, penny-shaped crack in a transversely
isotropic, linearly elastic half-space under time-harmonic asymmetric tractions.
Among various existing solution techniques, ones based upon boundary integral
equations have been extensively employed in the analysis procedure due to their
simplicity to treat the unbounded geometry. With the proper incorporation of
fundamental solutions to satisfy the boundary conditions on the free surface of the half-
space, the key governing integral equations simply involve unknowns only on the crack
surface and this, as a result, significantly reduces the number of degrees of freedom
resulting from the discretization. In 1979, Lo applied Mindlin’s point force solution to
derive the strongly singular integral equation for an embedded planar crack oriented
parallel to the surface of an isotropic, linearly elastic half-space. While the integral
equation was successfully obtained, the implementation to solve cracked half-space
problem was not found in this study. Hayashi and Abé (1980) developed the collocation
technique based on a strongly singular traction boundary integral equation to determine
the pure mode-I stress intensity factors of a uniformly pressurized, vertical, semi-
elliptical, surface-breaking crack in an isotropic, linearly elastic half-space with the
traction-free surface. Martin et al. (1993) employed Mindlin’s fundamental solution to
obtain a system of singular boundary integral equations for a pressurized crack oriented
perpendicular to the free surface of an isotropic elastic half-space with the stress-free
surface. Although the implementation of those equations was not included in their
study, the solvability and the regularity of solutions of the developed integral equations
were proven. Later, Khaj and Sushko (1994) investigated the interaction of two
identical, near-surface, coplanar, circular cracks in an isotropic, linearly elastic, half-
space with the stress-free surface and loaded by forces perpendicular to the crack
surface. In the analysis, the opening of the cracks was determined by solving a system
of hypersingular boundary integral equations and those results were employed to extract
the stress intensity factors. Sushko and Khaj (1996) developed a system of
hypersingular integro-differential equations governing the opening displacement of a
planar surface-breaking crack in an isotropic, linearly elastic, half-space. Such
equations were solved numerically for the special case of cracks with their geometry is
a part of a circle. In the same year, Khaj and Sushko (1996) employed a conformal
mapping along with a semi-analytical technique to solve a system of hypersingular
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boundary integral equations in the investigation of the influence of the depth and
orientation of a planar crack with the shape of a limacon of Pascal. Later, Kit et al.
(2000) generalized the work of Khaj and Sushko (1994) to investigate the interaction
of multiple, planar, surface-breaking cracks of arbitrary shapes and orientations. The
solution procedure was based primary on solving a system of boundary integral
equations for the relative crack-face displacement and used that data to post-process for
the stress intensity factors. Movchan and Willis (2000) extended the work of Martin et
al. (1993) to further explore the corner singularity at locations where the crack
intersects the free boundary. In their analysis, a hypersingular integral equation
formulated in terms of the relative crack-face displacement is employed. Later,
Hrylyts'kyi et al. (2003) implemented a hypersingular boundary integral equation
method to study the interaction of planar cracks in an isotropic elastic half-space with
rigidly restrained surface. The potential method was employed to derive boundary
integral equations in terms of unknown relative crack-face displacement. The stress
intensity factors were also calculated for a circular crack perpendicular to rigid surface.
Gordeliy and Detournay (2011) developed the displacement discontinuity technique to
model axisymmetric cracks in an isotropic, linearly elastic, half-space. Their key
formulation was based primarily on the hypersingular integral equations involving the
displacement jump across the crack surface and the combined numerical integration
scheme and recursive procedure was adopted to directly integrate involved hyper and
Cauchy singular integrals. In addition, the tip-elements were also employed to enhance
the accuracy of the near-front approximation. Recently, Skalsky et al. (2013)
investigated an axisymmetric crack problem involving the mode-I11 loading condition
for an isotropic, linearly elastic half-space. The displacement-field functions were
numerically determined by the frequency-domain boundary integral equations. Still,
this particular work focuses only a boundary value problem concerning a penny-shaped
crack under the action of torsion loading. It should be remarked that, among various
existing studies described above, the key formulations were still based primarily on
strongly and/or hypersingular integral equations with limitation to isotropic materials
and such equations were implemented mainly to treat planar cracks under simple crack-
faced loading and determine the stress intensity factors.

It is well known that the displacement boundary integral equation derived directly
from Somigliana’s identity is insufficient for solving cracked bodies within the context
of a single-domain-based formulation (e.g., Cruse, 1988). An alternative means to
circumvent such difficulty besides inefficient multi-domain techniques is to employ, in
addition, the traction boundary integral equation to treat cracks. Unfortunately, the
conventional traction boundary integral equation established directly from the stress
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boundary integral relation involves both hyper-singular and strongly singular kernels
and their treatment requires special care (e.g., Guiggiani et al., 1991). In addition, the
smoothness requirement of the jump in crack-face displacement data for the validity of
the hyper-singular boundary integral equation implies the need of C!-elements in the
solution discretization (e.g., Gray et al., 1990, Martin and Rizzo, 1996). To further
alleviate such requirement and facilitate the numerical treatment of involved integrals,
a regularization technique was proposed by Li (1996) to derive the regularized
boundary integral equations for displacement discontinuities embedded in a three-
dimensional, isotropic, linearly elastic half-space under various boundary conditions.
Such technique was later enhanced and utilized by Li and Mear (1998), Li et al. (1998),
Rungamornrat and Mear (2008a) in the derivation of the weakly singular, weak-form
boundary integral equations for cracks in both isotropic and anisotropic, linear elastic
infinite and finite media. However, the similar nontrivial extension to treat material
anisotropy for cracks in a linearly elastic half-space has not been recognized in the
literature. In addition, the implementation of those weakly singular boundary integral
equations to solve cracked half-spaces for essential fracture data such as the stress
intensity factors and the T-stress components has also not been found.

2.2 Regularized BIEMs

Various regularization techniques have been continuously proposed to construct
singularity-reduced integral equations with the primary objective to reduce the
smoothness requirement in solution discretization. Within the context of the stress
analysis of cracked elastic media, a set of regularized boundary integral equations has
been recognized for past several decades and some of those relevant investigations are
briefly presented here to indicate the recent advances in the area. Bui (1977) and
Weaver (1977) simultaneously developed the singularity-reduced traction boundary
integral equation for mode-I planar cracks contained in an infinite elastic medium. In
their work, all hypersingular integrals were regularized with the final integrands
containing only Cauchy-singular kernels. Later, Sladek and Sladek (1982) generalized
the work of Bui (1977) and Weaver (1977) to treat non-flat cracks under general loading
conditions. The key component used to establish the singularity-reduced traction
integral equation indicated above was the derivative transferring between the
hypersingular kernels and the crack-face data via the integration by parts. It should be
remarked that the obtained strongly singular traction integral equation still require the
continuity of the relative crack-face displacement for its validity and, in the numerical
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implementation perspective, the computational cost associated with the use of C!-
interpolation functions is still significant (see also the work of Bonnet and Bui, 1993).

In past several decades, efforts have been invested to develop the completely
regularized boundary integral equations involving only weakly singular kernels instead
of ones involving Cauchy singular integrals. This is due mainly to the simplicity
associated with the interpretation and numerical calculation of singular integrals and
the low smoothness requirement of data. Within the context of linear elasticity
applications, the work of Gu and Yew (1988) was recognized as the first derivation of
weakly singular integral equations for crack problems. However, their formulation was
still restricted to the case of isolated, planar cracks in an isotropic elastic whole space
under the pure mode-I loading condition. Later Xu and Ortiz (1993) extended the work
of Gu and Yew (1988) to treat non-planar cracks and mixed-mode loading conditions.
In their work, the relative crack-face displacements were represented as the continuous
distribution of the dislocation loops.

To allow the treatment of cracks of arbitrary shapes in an isotropic elastic half-
space under different types of boundary conditions on the free surface, Li (1996)
proposed a systematic regularization technique based upon the special representations
of singular kernels and the integration by parts via Stokes’ theorem. It is remarked that
the formulation was limited to isotropic materials and the implementation of those
integral equations to solve crack problems was not considered. Li and Mear (1998), and
Li et al. (1998) generalized the work of Li (1996) to the case of arbitrary cracks in
isotropic, linearly elastic, unbounded and finite media. The implementation of those
equations based on the regularized SGBEM was also successfully implemented to
model crack problems under various scenarios. Later, Xu (2000) employed the
dislocation theory to establish the weak singular traction boundary integral equation for
cracks in a medium made from generally anisotropic materials. While his formulation
is applicable to treat arbitrary-shaped cracks and general loading conditions, it was still
restricted to cracks in the whole space. The treatment of general material anisotropy in
the development of boundary integral equations and the implementation of numerical
procedure via the weakly singular SGBEM was also investigated by Rungamornrat and
Mear (2008a) and Rungamornrat and Mear (2008b) for cracks in both unbounded and
finite media. While various regularization procedures have been proposed in the
literature, work concerning cracks in an anisotropic, linear elastic half-space has not
been recognized. In addition, the development of weakly singular SGBEM for the
special case of cracks in an isotropic, linearly elastic half-space under various
conditions on the free surface is also not available in the literature.
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In the present study, the systematic regularization procedure proposed by Li and
Mear (1998); Li et al. (1998); Rungamornrat and Mear (2008a); Rungamornrat and
Mear (2008b); Rungamornrat and Senjuntichai (2009) is further extended to derive a
set of regularized integral relations for a half-space containing cracks and made of
anisotropic materials possessing a plane of material symmetry parallel to the free
surface. In addition, the implementation of the derived equations in the context of
weakly singular SGBEM and standard Galerkin technique is also established. The
proposed work is carried out within a general framework allowing the treatment of
arbitrary shaped cracks and half-spaces under various conditions on the half-space
surface and the determination of both the stress intensity factors and the T-stress
components along the crack front.
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CHAPTER 3
FORMULATION

This chapter summarizes the clear problem description, basic field equations from a
classical theory of linear elasticity, fundamental solutions of the displacement and stress
within an un-cracked elastic half-space under symmetrical and anti-symmetrical
boundary conditions, standard integral relations for both stress and displacement within
an elastic half-space containing cracks, special representations of hyper-singular and
strongly singular functions, and the development of completely regularized integral
equations essential for modeling cracks within the half-space.

3.1 Problem Description

BC-type-I 0} X1, €1
! . ;
\ Q S" S: !
\\‘ 19(:* II
\\\ l9: ° ///
\ v X //’
Y X3, €3 /

Figure 3.1: Schematic of elastic half-space containing isolated cracks and subjected to
BC-type-I boundary conditions on the free surface.

Let us consider an elastic half-space €2 containing an embedded crack and a surface
breaking crack as clearly illustrated in Figure 3.1. For convenience in further

development, a reference Cartesian coordinate system {O;X;,X,,X;} with the
orthonormal base vectors {e,,e,,e,} is taken such that the origin O is located on the
half-space surface; the X,-axis directs downward; and the X, - and X,-axes follow the
right hand rule. The body is made from a homogeneous, anisotropic, linearly elastic
material with the elastic constants E;, referring to the selected coordinate system and
possessing X, =0 as the plane of material symmetry. The crack surfaces in the

reference or undeformed state can be represented by two geometrically identical
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surfaces S and S_ (see Figure 3.1). The outward unit normal vectors at a smooth
point " € S and its coincident point ¢ € S_ are denoted, respectively, by n* and n~
and they clearly satisfy n* =—n". On both crack surfaces S; andS_, the traction data
is fully prescribed (i.e., t(x) =t"(x) vxeS; and t(x)=t"(x) vxeS, where t* and
t*" are known functions) whereas, on the surface x, =0, one of the following four types

of boundary conditions, termed BC-type-I for 1 =1, 2, 3 and 4, is assumed. For the BC-
type-1, the normal component of the displacement and the shear tractions vanish

identically (i.e., u, =0,0,, = 0,, =0); for the BC-type-2, the tangential components of
the displacement and the normal traction vanish (i.e., u, =u, =0,0,, =0); for the BC-
type-3, all components of the traction vanish (i.e., o,, = 0,, = 0,, =0); and for the BC-
type-4, all components of the displacement vanish (i.e., u, =u, =u, =0). In the current

investigation, the crack surfaces S; and S_ are assumed piecewise smooth (i.e., the

unit normal vector is piecewise well-defined) and the remote loading and body force
are absent.

The statement of the current research problem is to determine the complete elastic
field (including the displacement and stress fields) of the cracked elastic half-space
and the fracture data including the relative crack-face displacement, the stress intensity
factors, and the T-stress components along the crack front.

3.2 Basic Field Equations

Mechanical responses of the given half-space 2 (including the displacement, stress,
and strain fields) under external excitation are mathematically modeled by a classical
theory of linear elasticity and the concept of linear elastic fracture mechanics. All
involved field quantities and associated field equations are introduced and listed below.

From the conservation of linear and angular momentum and, in the absence of
the body force field, the stress tensor & (with its components referring to the reference

Cartesian coordinate system {O; X, X,, X} denoted by o;; ) must be symmetric (i.e.,

o; =0;) and divergence free everywhere, i.e.,

oy = 0 (3.1
where f, stands for the partial derivative of a function f with respect to the coordinate

X;. Here and in what follows, all standard Latin indices take the values from 1 to 3 and
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repeated indices imply the summation over their range. For a body made of linear elastic
materials, the stress tensor ¢ is related to the strain tensor & (with its components

denoted by &; ) via the generalized Hooke’s law, i.e.,

oy = Ejuén (3.2)

U]

where E;, are prescribed constant elastic moduli satisfying following symmetries:
Eiu = Eji = Ejiw = Ey; - For isotropic materials, the elastic moduli involve only two

independent material parameters and take a simple form

Eij :ﬂ(é}kéjl +5il5jk)+ﬂ’5ij5kl (3.3)

where , and A are Lame’s constants and J; denotes a standard Kronecker-delta

symbol. The relation between the displacement vector U and the strain tensor & are
given by

& :%(ui'j +uy;) (3.4)

where U; denotes components of the displacement vector U. In addition, the traction

vector t at any point on a smooth surface can be obtained in terms of the stress tensor
at the same point by

t =o.n. (3.5)

where t, and n; are components of the traction vector t and a unit normal vector n,
respectively. The relations (3.1), (3.2) and (3.4) form the basic field equations
governing all unknown elastic fields U=U(X), £=¢&(x) and 6 =0(x).

3.3 Fundamental Solutions of Half-Space under BC-type-1 and BC-type-2

To construct fundamental solutions for the displacement and stress of an un-cracked,
linearly elastic half-space subjected to boundary conditions of BC-type-1 and BC-type-
2, the existing fundamental solutions of an un-cracked elastic whole space (e.g., Ting
and Lee, 1997; Wang, 1997) can be used along with the symmetrical and anti-
symmetrical conditions as indicated below. It should be remarked that results presented
here are restricted only to the case that the material constituting the half-space is
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homogeneous and linearly elastic, and possesses X, =0 as a plane of material

symmetry.
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Figure 3.2: Schematic of (a) un-cracked elastic half-space with boundary condition of
BC-type-1 and subjected to unit concentrated force at point x and (b) un-cracked
elastic whole space subjected to a pair of symmetrical unit concentrated forces at a point

x and its image point X with respect to the surface X, =0.

First, consider the un-cracked elastic half-space with the boundary condition of
BC-type-1 and subjected to a unit concentrated force o€, at a source point X =X€, as
illustrated in Figure 3.2(a). It can readily be verified that an elastic field of this elastic
half-space is identical to that of the bottom half of an elastic whole space subjected to
a unit concentrated force o€, acting at a point X =X, and a unit concentrated force
5,¢; (where &, is a constant tensor defined by &, =&,, =—6,, =1, 5, =0fori= j)

acting at a point X=Xe, with X =4,

X, as indicated in Figure 3.2(b). Note, in

particular, that the loading condition of the elastic whole space is clearly symmetrical
with respect to the plane X; =0 and, as a result, the conditions U, =0,0,, =0, =0 are
automatically satisfied. Upon using the symmetry, the displacement and stress at any
field point ¢ within the half-space, denoted respectively by U}p(cf,x) and Si}"(éj,x),

can therefore be obtained as

U (&%) =UP (&~ x)+5,U (¢~ %) (3.6)
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Si°(&,%) =S (¢ —X)+5,S,(§ %) (3.7)

where the superscript “1” is utilized to emphasize that the fundamental solutions

correspond to the boundary condition of BC-type-1 and UP(¢-x) and SP($—x)
denote the displacement and stress at any point ¢ of the elastic whole space subjected
to a unit concentrated force &, at a point X=X¢€,. The explicit form of the
displacement and stress fundamental solutions U (¢ —x) and SP (¢ —x) for generally

anisotropic, linearly elastic materials is given by (see details in the work of
Rungamornrat and Mear, 2008a)

1

UP(E-x) = gS (z,2)-ds(z) (3.8)
Sijp (€-x)= Eijkl %g_x) (3.9)

where (z,2)y =2E;z;, F=&-x, I'=r]| and the line integral is taken over a unit

circle |[z|| =1 on a particular plane z-r=0. It is apparent from (3.6)-(3.7) and the
properties of the fundamental solutions UP(¢~x) and SP(¢—x) that U}p(e”,x) and
SiP(¢,x) are singular only at ¢=x of O(1/r) and O(1/r?), respectively. Explicit

form of the fundamental solutions for the isotropic case can be found in available
literatures (e.g., Xiao, 1998).

Let us consider, next, the elastic half-space with the boundary condition of BC-
type-2 and subjected to a unit concentrated force &,e; at a source point X =X€, as
shown in Figure 3.3(a). With the same analogy as the previous case, the elastic solution
of the half-space is identical to that of the bottom half of an elastic whole space

subjected to a unit concentrated force J,¢; acting at a point X=X¢€, and a unit

concentrated force —5_ipei acting at the image point X =X, as indicated in Figure

3.3(b). For this particular case, the elastic whole space apparently subjected to anti-
symmetrical loading conditions with respect to the plane xs = 0. As a result, the
displacement and stress at any field point ¢ of the half-space, denoted respectively by

U?P(&,x) and S;°(&,x), are given, in terms of U?(¢—x) and SP(¢—x), by

Ui (&%) =Uf (§—x) S, U (¢~ X) (3.10)
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S;iP(¢x) =S (§—X)—5,S; (¢ —X) (3.11)

where the superscript “2” is introduced to clearly indicate that the fundamental
solutions belong to the half-space with the boundary condition of BC-type-2. Similar

to the previous case, the singularity behavior of the fundamental solutions szp(f ,X)

and S;°(&,x) follows directly that of UP(¢—x) and UP(¢—x).
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Figure 3.3: Schematic of (a) un-cracked elastic half-space with boundary condition of
BC-type-2 and subjected to unit concentrated force at point x and (b) un-cracked
elastic whole space subjected to a pair of anti-symmetrical unit concentrated forces at

a point x and its image point X with respect to the surface x, =0.

3.4 Standard Integral Relations for Cracked Half-Space under BC-type-1 and BC-
type-2

By applying the reciprocal theorem to an elastic half-space Q containing cracks and
subjected to the boundary condition of BC-type-« (=1 or 2) as shown in Figure 3.1
along with another elastic state associated with a fundamental problem of the half-space
with the same boundary condition of BC-type-a (constructed in section 3.3), it leads
to the displacement boundary integral relation for the cracked half-space with the
boundary condition of BC-type-«:

uE(x) = [UP(& DS E)AE) — [ S (&, x)n; (§)Aus (£)dA) (3.12)
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where Xt7(&)=t)"(&)+1]"(£) denotes the sum of tractions on both crack surfaces;
AU{ (&) =u{" (&) —u; (&) denotes the jump in the crack-face displacements; and the
fundamental solutions U (&, x) and Si*(&, x) are given in terms of U (S -x) and

S; (€ —x) ina concise form as

U (& x) =TU7(E-x)+ A3, U (&-%) (3.13)

o pk

Si"(&,x)=T,5/(§~x)+A,5,S;( %) (3.14)

where I', and A, are constants definedby I', =I', =1, A, =1 and A, =-1. Here and

in what follows, the Greek index « takes the values 1 and 2 and the summation does
not apply to the repeated «. It is important to remark that the reduction to integrals over

a single crack surface S_ results directly from the continuity of the fundamental
solutions U (&, x) and S;° (&, x).

By taking spatial derivative of (3.12) along with the relation (3.4) to obtain the
strain tensor and then employing the constitutive law (3.2), it yields an integral relation

for the stress at an interior point x of the cracked elastic half-space under the boundary
condition of BC-type- «:

0= [ By = " (er00) - J o ) a0 ()0

s X q

(3.15)

From the relations (3.13) along with (3.9), the kernel E, 0U{"(&,x)/ox, can be

Tkpg

obtained explicitly in terms of the stress fundamental solution S (¢ —x) for the un-

cracked elastic whole space as follows:

oU P (&, x) oU’P(&—x) - oUT(E-X)
Eiog J@T =T E,, J@T +A,0,,E4, J@T
UIE-X) | = = =_ 0UNE-X)
= _ra Elkpq paT_'_Aaé‘pm ma " jb —lkpq T
_rg M€ s Ud)

lkpq a 5 a” jb —lkpq aX
q q
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:_rasl}c(é:_x)_FAa b lk(x 5) (3.16)

where the following crucial properties have been used:

Ujp(f—x)=Uj(§—x) (3.17)
UT(E =) = 6,u0,U; (€ —x) (3.18)
Ul (E—x)/ ox, =—aU) (E—x)/ &¢, (3.19)
50y = (320)

It should be evident from (3.16) that the kernel E, .6U{" (¢, x)/ox, is singular only at

&=x of O(/r?). From (3.14), the kernel E 0S;" (&, x)/ox, in (3.15) can be further

tkpg
simplified, in a similar fashion, to

3S7P (&, x) OSP(E—x) A oS;' (¢ —X)
E,—0 > g 8> "PIASE —0>2 77
Ikpq an a —lkpg an o~ pm —lkpg an
asp g\ N C(E_
~IE, Lmaa 5,5,,.E, Bale =x)
Pq aéq Pq axq
8SP (& — . P(x—&
_rg BN L ss o ashx-d)
Pq aéq 7 Pq axq
= T2 (€~ %)-A,8,5,% (x~&) (3:21)

where the function Z:Jk (& —x) can be given in terms of the stress fundamental solution

S; (& —x) of the un-cracked elastic whole space by

o5
(- x) =y, % (3.22)

In addition, to obtain the final expression (3.21), the relation (3.20) and the following
properties have also been employed:

57 (&~ x)/axq =-35) (& —x)/ &, (3.23)
SI] (é: x) la jb cS;b (6 x) (324)
S5 (& —x) =-S5, (x—&) (3.25)
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From (3.21), (3.22) and the singularity behavior of the fundamental solution SP (& —x),

the kernel E, 65" (&, x)/ox, is singular only at & =x of O(1/ r®) . It should be noted

Tkpq
that the boundary integral relations (3.12) and (3.15) can be used to compute the
displacements and stresses at any interior point x provided that all unknown crack-face
data is completely known. By taking an appropriate limit process of the boundary
integral relation (3.12) to a point on the crack face, it yield the conventional integral
equation for the sum of the crack-face displacement. However, such the displacement
integral equation is mathematically degenerate and not sufficient for solving the key

unknowns on the crack face. This is due to the coincidence of the crack surfaces S/

and S_ that renders the final displacement boundary integral equation containing
incomplete, crack-face traction data (i.e., it involves only the sum of the crack-face
tractions). To overcome this mathematical difficulty, the integral equation of the jump
in the traction across the crack surfaces is additionally required in the formulation of
the governing equation. Such the integral equation can readily be constructed from the
boundary integral relation for the stress (3.15) by taking the appropriate limit to any
point on the crack surface S_ . Although the conventional traction boundary integral

equation is sufficient for performing the stress analysis of cracked bodies, it still

contains both the strongly singular kernels Si* (&, x) and E,,0U (&, x)/ox, of order

lkpg

O(1/r?) and the hyper-singular kernel Einq@Si " (&, x)/0x, of order O(1/r%) that render

the involved integrals difficult to be interpreted theoretically and treated numerically.
3.5 Decompositions of Strongly Singular and Hypersingular Kernels

To aid the regularization procedure of the boundary integral relations (3.12) and (3.15),

the strongly singular kernels S{* (¢, x) and E,,,0U " (&, x)/ox, and the hypersingular

tkp
kernel E,,,0S;" (&, x)/ox, are, first, decomposed into a form suiting the integration by
parts through well-known Stokes’ theorem described in the next section. The key
component to achieve such crucial task is based on the special decompositions of the
- - Ik -
strongly singular kernel S?(&—x) and the hypersingular kernel X (¢ —x) associated
with the un-cracked elastic whole space proposed by Rungamornrat and Mear (2008a):
9

S5 (€ —x)=H (¢ —x)+¢&, P G/ (¢ -x) (3.26)
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9 2 c¥ () (3.27)

T (€ ) = ~Ed(E )+ b o fin 5

where &, is an alternating symbol, 5(& —x) denote the Dirac-delta function with the
center at a point x, and the functions HP(¢-x), G (¢—x) and Ctk (E—x) are
defined by

Hif (€ - x) =3, i (3.28)
GH(E-x) =" § (2,2)62,205(2) (3.29)
zr=0
tk kjtasliJ kiap 1
C (5 - @ (Z z)ap sZ dS(Z), Antsl :gptdgpmq Edjp| Eqkms 3ElmpsEdqu (330)
z r=0

For isotropic materials, the functions G, (§—x) and Ctk (6 —x) are provided in a

closed form (see the work of Li, 1996)

p _; (é_xl)(gp_xp)
Gy (¢—x)= 82T _(1 2V)& i t Eijm = } (3.31)
e m ERNEES
Cr(§—x)= m (L=v)6y 0y + 2V, — 01045 — O } (3.32)

Note, in addition, that the kernel H(&—x) is clearly independent of material

constants and is singular only at £=x of ¢(1/r?) whereas Gy (¢ —x) and ck (& —Xx)

depends primarily on material properties and are singular only at ¢=x of O(l/r).
By using the decomposition (3.26) along with the relation (3.14), it leads to the

decomposition of the strongly singular kernel S° (¢, x):
SP(F 1) = P 9 gw 3.33
i €. x)= i (&, %)+ &g, o, (¢ x) (3.33)

where the functions Hi*(&, x) and G (¢, x) are defined by

Hf’p(é‘,x)zl"aHiP(g“—x)JrAa pk u(é x) (334)
G (&,X) =TGR (E—x)+ A, 5,GY (€~ %) (3.35)



26

Similarly, by using again the decomposition (3.26) along with the expression (3.16), it
results in

oU* (¢, x)

q

E = (X, + i G (3,0) (3.36)

in which the fact that H}(&—x) and G (§—x) are odd and even functions,

respectively, has been utilized. Finally, by applying the decomposition (3.27) along
with the relation (3.21), it yields the decomposition of the hypersingular kernel

Eoq0S; " (€, x)/0x,:
357" (¢, x) = o 0
Elkpq J(?T = Fa Eljk|5(§ - x) _Aaé]aéjb Eabkl5(x - 5) + Eism a_ésglrt aXr C i (éj x)
(3.37)
where the kernel CZ*(&, x) is given by
Ca(&,x) =T, Co (& —x)—A,5,,8,Chi (x — &) (3.38)
and following important properties have been employed:
OCri (& —x)/ 8, =—0Cy (E—x) | ox, (3.39)
OCk (Xx—&) 1 ox, =—0Ck (x— &)/ OE, (3.40)
()1 8, =6,,0()1 &¢, (3.41)
5|a51b5 gabc (342)

3.6 Weakly Singular Integral Equation for BC-type-1 and BC-type-2

In this particular section, a pair of regularized boundary integral equations, one for the
crack-face displacement and the other for the crack-face traction, is established. The
special decompositions (3.33), (3.36) and (3.37) are employed along with Stokes’
theorem to carry out the integration by parts of both hypersingular and strongly singular
integrals in order to shift the derivatives from involved kernels to the crack-face data.
This regularization procedure is similar to that used by Rungamornrat and Mear (2008a)
and Rungamornrat and Senjuntichai (2009).

3.6.1 Weakly Singular Integral Equation for Displacement



27

To establish the regularized boundary integral relation for the displacement at any
interior point X € Q, the special decomposition (3.33) is first substituted into the
integral relation (3.12) to obtain

U2 () = [UP (€ )3t (EAAQ) - [ Hi® (& 0n ()Aus ()dAEQ)

(3.43)
— [ Auf (€)D,Giip (&, x)dA&)
s
where D, (-) denotes the surface differential operator given by
()
D ()=ne_—= 3.44
m() 171Sm aés ( )

Upon performing the integration by parts of a term containing curl of the function

Grgj (& —x) via Stokes’ theorem and then using the property that the jump in the crack-

face displacement Auf identically vanishes along the crack front (i.e., Aufz =0 on S,

), it finally yields

us () = [UFP(E, St (EAAE) - [ HiP (€, ) (&)Aus (£)dAEQ)
* % (3.45)
+ [ G (¢,x)D,Auf (§)dAQ)

S

C

By taking limit x —> y € S_ of (3.45), we then obtain the integral equation of the sum

of the crack-face displacements as

c(y)Sus (y) = [ULP (& p)StUQHAE) — [ HeP (€ p)ny (§)Aus ()dAEQ)

: (3.46)
+ J. ngp (6! y) DmAU]-Z (f)dA(é)

where c is a function defined such that c(y) =1/ 2 if the surface is smooth at a point y

(i.e., the unit normal vector n at y is well-defined), otherwise c(y) € (0, 1) and
Zug(y) =us"(y)+u; (y) denotes the sum of the crack-face displacement. By

multiplying (3.46) with a sufficiently smooth test function f,(y) and then integrating
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the product over the whole crack surface S_', it finally leads to a weakly-singular, weak-

form integral equation for the crack-face displacement as

%f (V)Zug (y)dA(y) = [ t(y) j U (& y)Zt (&)dA(E)dA(y)
+ j L) j GZP (¢, y)D, A (E)dAE)IS () (3.47)

5,0 [ HEPE o @ @)aAEXS )

Note that the function ¢ =c(y) simply reduces to 1/2 since the crack face is assumed
piecewise smooth (i.e., a set of all points y that the unit normal vector n is not defined
is of measure zero). It should be remarked that the weak-form boundary integral
equation (3.47) contains only weakly singular kernels Ui™(¢,y), G;"(¢,») and

Hi? (& »)n7(€) of O(L/ ).
3.6.2 Weakly Singular Integral Equation for Traction

To establish a weakly singular, weak-form integral equation for the crack-face traction,
a similar procedure as described in the previous subsection is employed. First, the
special decompositions (3.36) and (3.37) are substituted into the integral relation for
the stress (3.15) to obtain

o (X) = j Hi) (6, €L (E)IAE) + 1~ - { [KeR (,é)Zt?(é‘)dA(é)}
(3.48)

-[D, {e o € x)}Au (&)dAE)
8¢
By, again, carrying out the integration by parts of the third integral on the right hand

side using Stokes’ theorem, it gives rise to the regularized boundary integral relation
for the stress at any interior point X € Q:

Se Se

C

a.i(x)=e.nai{ [ G2 (x, O ()IAE) + [ Ca (&, x)D, Auf (é)dA(é)}
X, (3.49)

+ [ HIZ ()2 (€)AE)
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It is noted that the boundary integral relation for the stress (3.49) still contains strongly
singular kernels of ¢(1/r?). By further forming the product n;(y)o () where y € S
and then taking appropriate limit x — vy, it leads to an integral equation for the jump
in the crack-face traction as

P(Y)AL(y) =D, { [ Gi(y. O (£)AE) + [ Ca¥ (&, ) DmAU?’(f)dA(i)}

SC

(3.50)
+07 () [ Hift (y, )20 (£)dAE)

S

where p is a function defined such that p(y) = 1/2 if the crack surface is smooth at
point y otherwise p(y) € (0, 1) and At (&) =t (&) —t> (&) represents the jump in the
crack-face traction across the crack surface. Upon multiplying the boundary integral
equation (3.50) by a smooth, well-defined test function AG, (), forming the integration

of the product over the whole crack surface S_ , carrying out the integration by parts

through Stokes’ theorem, and using the fact that the test function AG, (y) satisfies the

homogeneous condition along the crack front, it finally yields a completely regularized
weak-form boundary integral equation for the jump in the crack-face traction:

% [ AG, (y)AE (y)dA(y) = [ AG, (y) [ Hied (v, )y (y) 2] (E)dAE)dA(y)

- [ DAG ) [ G (v, )2t (£)IAE)dA(Y) (351)

S S

— [ AT, (y) [ Ciit (&) D, Auf (E)IAE)dA()

8¢ S

Again, from the assumption that the crack surface is piecewise smooth, the function
p(y) simply reduces to 1/2. It is remarked that the boundary integral equation (3.51)
involves only weakly singular kernels H;’ (y,&)n/ (»), G5 (y,¢) and C&*(&,y) of
o(1r).

While the two equations (3.47) and (3.51) form a sufficient system of governing
integral equations for determining the crack-face unknown data, the two relations (3.45)

and (3.49) can be utilized to compute the displacements and stresses at any interior
point of the body once the crack-face unknowns are solved.
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3.7 Treatment of Cracked Half-Space under BC-type-I (for | = 3, 4)

By applying the reciprocal theorem to the cracked elastic half-space Q subjected to the
boundary condition of BC-type-1 (I = 1, 2, 3, 4) along with the elastic state associated
with a fundamental problem of the un-cracked half-space under the same type of
boundary conditions on the half-space surface, the standard integral relations for the
displacement and stress at any interior point of the cracked half-space can be
generalized to

uy(X) = [ U} (&, x)Zt) (E)IAE) - j S (&, x)n (£)Au] (£)dA) (352)
o (X) = J E.kpqﬁzt (€)AE) - I E% 0y (€)Auj (€)dAE) (3.53)

where U (&, x) and S”(&,x) are the displacement and stress fundamental solutions

of an un-cracked half space under BC-type-I and the summation does not apply to the
repeated index I.

To completely regularize the boundary integral relations (3.52) and (3.53) for the
two remaining boundary conditions BC-type-1 (I = 3, 4), the same regularization
procedure can be used and the special decompositions of the strongly singular kernels

SiP(&,x) and E,,,0U P (&, x)/0x, and the hypersingular kernel E,, 85, (&, x)/0x, play

an important role in such development. To derive those decompositions, the
superposition technique similar to that employed by Li (1996) can be adopted. More
specifically, the problem of a cracked half-space under BC-type-3 can be treated as a
linear combination of two sub-problems, a sub-problem-1 associated with the original
cracked half-space with the boundary condition BC-type-3 on the free surface being
replaced by the boundary condition BC-type-1 and a sub-problem-2 corresponding to
an un-cracked half-space subjected only to the normal traction opposite to that
generated on the free surface of the sub-problem-1. Similarly, the problem of a cracked
half-space under the boundary condition BC-type-4 can also be treated as a linear
combination of two sub-problems: a sub-problem-1 associated with the original cracked
half-space with the boundary condition BC-type-4 on the free surface being replaced
by the boundary condition BC-type-2 and a sub-problem-2 corresponding to an un-
cracked half-space subjected only to the shear traction opposite to that generated on the
free surface of the sub-problem-2. Based on above linear combinations, the kernels

1kpg Tkpg
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SiP(&,x), Epg@U (&, x)I0x,, and E,, 8S;" (&, x)/ox, for | =3 and 4 can be written in

terms of the known results corresponding to BC-type-« and the correction terms as

SIP(&,x) =SiP (&, %) + S (&, %) (3.54)
Si(&,%) = S{P (&, x) + P (£, x) (3.55)
oUS® (&, x) OUP (&, x) oU" (&, x)
E —J = E ! E ! "
lkpq an lkpq an + lkpq an (3 56)
QU*P(& x) AU P (&, x) AU #P (&, x)
E i _E i +E i (3.57)
Tkpg 8Xq Ikpg axq Ikpg axq
3SP(€,x) 0S;P (&, x) 53"(6 x)
Eioq a—xq E g a—xq REi, a—xq (3.58)
35" (&, x) 0S: (&, x) S‘”’(f x)
Elkpq an EIkpq an EIkpq an (359)

where the correction terms S”(&,x), E,,,0U P (&,x)/0x,, and E,.0S. (&, x)/0x, are

obtained by solving the sub-problem-2 for each type of boundary conditions. From the
regularity of the sub-problem-2, it can readily be verified from the divergence-free

condition that all the functions SP(&,x), E,,,0U P (& x)/0x, and E,,, 05, (&, x)/0x,

Tkpg lkpg

admit the following representations

P (&, x) =&, gc; (&, x) (3.60)
oU P (&, x) 8 Ay

EIkpq J@T =& a_er": (x,$) (3.61)
aéi;p (61 x) _ 8 Itk

EIkpq axq = Ein 553 X C (é X) (3.62)

where G'p(é‘ x) and CItk (&, x) are functions that are singular only at a point &=Xx of
O(1/r). While the existence of the representations (3.60)-(3.62) can be ensured,
determination of both functions G'p(é‘ x) and C'tk (&,x) is nontrivial and generally

requires solving a system of linear partial differential equations.
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For an isotropic elastic half-space, the functions G 1 (¢, x) and CItk (&, x) were

successfully developed by Li (1996). In his study, the sub-problem-2 for both types of
boundary conditions indicated above was solved first using the method of displacement

representation in terms of Papovich-Neuber potentials and the functions G 1 (¢,x) and

CItk (&, x) in the representations (3.60)-(3.62) were derived indirectly and equivalently

using the method of stress functions. The explicit expressions for BC-type-3 are given
by

i ] aNm ]
& e, )——[ %—(B—W)prj(f,xH%] (3.69)
p p
M, (€, x) 1 oN,; (€, x)
C3tk (é: ) ‘9takx3 - - & akmj— (364)
X, 1-2v) ¥ X,

where M (&, x) and N_;(¢,x) are Papkovich-Neuber potentials (see closed-form
expressions in Li (1996) and Appendix A), and A, denotes a constant tensor defined
by

@-2v) a=k=12

Ay =3-1 a=k=3 (3.65)
0 azk

Similarly, the functions G4p(§ x) and C4tk (&, x) for BC-type-4 can also be obtained

in a closed form as

1. ORy(S x)

GaP (&, )_ [ P ———(B-4)5,,R,; (&, x)] (3.66)
p
C4tk (€,x)=[1-2v)g,,P mj (&, x)*‘ﬂaﬂ@#"‘z(l_v)éskgmw (3.67)

where P,; (¢, x) is the Papkovich-Neuber potential and Q,, (¢, x) is obtained directly
by integrating the potential P, (¢, x). The closed-form expressions of B,;(¢,x) and

Q,; (¢, x) can also be found in Li (1996) and Appendix B.
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Now, based on the relations (3.54)-(3.59) and the representations (3.60)-(3.62),
the decompositions (3.33), (3.36) and (3.37) can be now generalized to all types of
boundary conditions on the half-space surface:

S7 (&%) =H{ (¢, %)+ aé Gy (¢, x) (3.68)
U P (¢&,
Elkpq % (X é:) + glrt (x é:) (369)
Xq X
85" (&, x) _ 0 ,
EIkpq JaT - 1_‘I Eljk|5(§ - x) - AI 5|35]b Eabklg(x - f) + Esm 6_53 St 7 8X C ‘ (é )

(3.70)

where I'; =I",, I', =T',, A, =A,, A, =A, and the functions H'p(é‘ x), GP (£, x) and
Cy (&, x) for I =3 and 4 are defined by

H? (&, »)=H" (&) (3.71)
HiP (&, x) =H" (& x) (3.72)
G(&,3) =G (&, »)+ G (£, y) (3.73)
Gol (&%) =GP (£,%) + G2 (&, x) (3.74)
C(&,3) =Ci (&, »)+C3X (&, ) (3.75)
Co (&, x) =C2¥ (&,x) +Ca¥ (&, x) (3.76)

Upon using the decompositions (3.68)-(3.70) along with the regularization technique
presented for BC-type-1 and BC-type-2, the regularized boundary integral relations for
both displacements and stresses and the weakly singular, weak-form integral equations
for both crack-face displacements and crack-face tractions of the cracked half-space
under one of the four types of boundary conditions can also be obtained in the same
form as

uh(x) = j U ()2t (E)IA) - j HYP (.20 ()Au) (£)dA)

(3.77)
+ j Gyp (&, X)D, AU} ()dAE)
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o1 ()= & %{ [ Gl(x, (AR + [ C¥ (&, x)D,Au! (é)dA(é)}

: (3.78)
+ [ HY(x,€)28 (£)dAEQ)
% [ £, 0)Zup(V)dAY) = [ £,() [ U P (&, »)Zt (£)IAE)dAR)
+[£,0) ] G (¢, »)D, AU} (€)dAE)IS () (3.79)
= [E0) [ HP (€ 9N (&)Au] (€)dAE)dS ()
% [ AG ()AL (Y)AAY) = [ Ad, (y) [ HE(y, ) (5)2t] (E)dAE)dAR)
- [ DAG(y) [ G (Y, &)2t) (E)IAE)dAR) (3.80)

- j DtAUk(y)j Cri (&, ») D, Au; (§)JAS)dAR)

St

C C

The last two boundary integral equations form a sufficient set of governing integral
equations for determining the unknown crack-face data whereas the first two relations
can be utilized to compute the displacements and stresses at any interior point of the
body once the crack-face unknown data is solved.
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CHAPTER 4
SOLUTION METHODOLOGY

This chapter mainly presents an efficient and accurate numerical procedure for
determining the unknown crack-face data and related fracture information such as the
stress intensity factors and the T-stress components. A formulation of the boundary
value problem based upon a pair of singularity-reduced, weak-form boundary integral
equations established in the previous chapter is obtained first and, then, the solution
procedure based on the weakly singular SGBEM and standard Galerkin method is
briefly outlined. Essential ingredients to enhance the computational efficiency and
accuracy such as the approximation of the near-front unknown relative crack-face
displacement, the numerical integration, and the evaluations of kernels for generally
anisotropic materials are also discussed. Finally, an explicit formula for extracting the
stress intensity factors and the T-stress components along the crack boundary is
presented.

4.1 Solution Procedure

To obtain the complete elastic field of the given problem described in section 3.1 (i.e.,
the displacement and stress fields), it is sufficient to determine the unknown crack-face
data including the sum of and jump in the crack-face displacement. The displacement
and stress at any interior point can be post-processed from a pair of regularized
boundary integral relations (3.77) and (3.78).

In the present study, the weakly singular, weak-form integral equations for the
crack-face displacement and crack-face traction (3.79) and (3.80) is exploited to form
a complete set of equations governing the sum of and jump in the crack-face
displacements. Those two equations can be written in a more concise form as

B, Zu)=U{,2t°)+ @, Au")+ Z(T,Au") (4.1)
C(AUG,AU") = @(Zt°, AG) + F (Zt°, Al) + B (AT, At°) (4.2)

where the linear integral operator 2,%,¢, # and € are defined by

BXY) =2 [ X, (Y, (1) (y) @3

UXY) = [ X, (] UPE2)Y;()dS()dS(y) (4.4)
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G(X.Y) = [ X, (V)] GE& DY, ()dS()s(5) (45)
H(XY)==[ X, (D], HF €20 (@Y, (S (£)S(y) (46)
(X, Y) ==[_ DX, (], CH (& 1D,Y,()dS()dS () (4.7)

| | Itk .
where X and Y are argument vectorsand U ", G¥, H.n; and C,;" are weakly singular

kernels associated with the elastic half-space under the boundary condition BC-type-I

on the free surface. It should be evident from the symmetry of the kernel Cr:jk and the

integral form of (4.3) and (4.7) that the linear integral operators & and € satisfy the
relations Z(X,Y)=2(Y,X) and €(X,Y)=€(Y,X). As a result, the boundary
integral equations (4.1) and (4.2) are in a symmetric form with respect to the unknown
sum of and jump in the crack-face displacements, respectively. Since the integral
equation for the jump in the crack-face traction (4.2) is independent of the sum of the
crack-face displacement, it can be solved first to obtain the jump in the crack-face
displacement. Once Au' is fully determined on the entire crack face, the sum of the

crack-face displacement >u' can subsequently be obtained by solving the crack-face
displacement integral equation (4.1).

To construct the numerical solution of the crack-face traction integral equation
(4.2), a well-known, weakly singular, symmetric Galerkin boundary element method
(SGBEM) is adopted (also see details in the work of Li et al., 1998 and Rungamornrat
and Mear, 2008b). Both the jump in the crack-face displacement Au' and the test
function AU on the entire crack face are approximated by

AU (€)= D A (©) @9
AU(E) = 3 A4 (&) 9

where ¢ (&) is a selected nodal basis function; N is the number of nodes; Au'® denotes

the unknown nodal quantities; and AG® are arbitrary nodal constants. In the current
study, the basis function ¢ (&) is constructed locally in an element-wise fashion by

using standard, two-dimensional, C%-isoparametric elements on the majority of the
crack face and special crack-tip elements on the remaining region adjacent to the crack
boundary. The special crack-tip element was originally proposed by Li et al. (1998) to
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properly integrate the square-root-type behavior into the shape functions in the
modeling of cracks in an isotropic, linearly elastic medium and later modified by
Rungamornrat and Mear (2008b) to model cracks in anisotropic bodies. It has been
found in their study that use of those special crack-tip elements to model the near-front
relative crack-face displacement can significantly enhance both the accuracy of
numerical solutions and the computational efficiency regarding to the significant
reduction of a level of mesh refinement. To allow the treatment of general prescribed
traction data on the crack face, the sum of and the jump in the crack-face tractions are
interpolated from

(&) = izf“”wi ©) (4.10)
At°(&) = im‘“”wi 9 (4.11)

where (&) is a nodal basis function constructed by standard, two-dimensional, C°-

isoparametric elements for the entire crack front; %t°” is the prescribed sum of the

crack-face traction at the i node; and At°® denotes the prescribed jump in the crack-
face traction at the i'" node. By substituting (4.8)-(4.11) into (4.2) and then invoking the

arbitrariness of the constant AG®, it finally yields a system of linear algebraic
equations:

CAU' =(G+H)ZT®+BAT® (4.12)

where AU' is a vector containing unknown nodal quantities Au'® with its entries

given by [AU'],; . =[AU'®],; =T° is a vector containing prescribed sum of nodal
tractions Xt°® with its entries given by [ZT°ly, ., =[Zt°"]; AT® is a vector

containing the prescribed jump in nodal tractions At°® with its entries given by

[AT Ly =[At°P]; and C, G, H and B are known coefficient matrices

associated with the linear integral operators € , ¢, # and % , respectively, and their
entries are given explicitly by

[C]s(i—1)+k,3(j—1)+l = _L: D.¢ (y)J.sg Cn|1t|k &,y Dm¢j (£)dS(£)dS(y) (4.13)
[Glig yorcai v == [ DAW) [ G (v, )y, (E)IAE)IAR) (4.14)
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[H ]3(i—1)+k,3(j—1)+| = _[ : ) (y)jsg Hr:k &, »)n, (é)'//j (£)dS(&)dS(y) (4.15)

[B]3(i—1)+k,3(j—l)+l = %Lg & (Y)'//j (¥)6,dS(y) (4.16)

It is evident that terms on the right hand side of (4.12) are completely known and the
coefficient matrix C is symmetric.

To discretize the weakly singular, weak-form, crack-face displacement boundary
integral equation (4.1), a similar strategy following Galerkin approximation procedure
is utilized. Specifically, the sum of the crack-face displacement “u' and the test
function f are discretized by

su'(¢) = iZu'“’wi © (4.17)
()= D7 %,(©) (4.18)

where Zu'® and t® are the unknown sum of the crack-face displacements and an
arbitrary constant vector at the i node, respectively. It is worth noting that the same

nodal basis functions y;(¢) as those employed in (4.10) and (4.11) are utilized in the

discretization (4.17) and (4.18) since the unknown >u' is well-behaved for the entire
crack surface. By substituting (4.8), (4.10) and (4.17)-(4.18) into (4.1), it yields a
system of linear algebraic equations

BXU' =DXT°+(G+ H)AU' (4.19)

where XU" is a vector containing the unknown nodal quantities Zu'® with its entries
given by [ZU' L. =[Zu'®], and B, D, G and H are known matrices associated
with the linear integral operators # , % , ¢ and J# , respectively, and their entries

are given explicitly by

[E]S(i—l)+k,3(j—l)+l = % J.sg i (Y)y;(¥)6,dS(y) (4.20)
[Pl s = [ i (N, U (€ )y (£)dS(£)dS (v) (4.21)
[Clyi o = | Vi(Y) | Gl (v,€)Dg, (E)IAE)IAY) (4.22)

S S
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[I__I]3(i—l)+k,3(j—l)+l == 5t wi(Y) 5; HrLkI (&, »)n, (§)¢J (£)dS(&)dS(y) (4.23)

It should be remarked that the matrix B is symmetric and, once the unknown AU' is
obtained from (4.12), the system (4.19) can be subsequently solved for the unknown

TU'.
4.2 Computation of Coefficient Matrices

To form the two systems of linear algebraic equations (4.12) and (4.19), the coefficient

matrices B, B, C, D, G, G, H and H are computed numerically as described
below.

Al entries of the matrices B and B clearly involve the single surface integral of
regular elementary functions and the numerical calculation of their value can be
achieved efficiently using standard Gaussian quadrature. On the contrary, evaluation of

all entries of matrices C, D, G, G, H and H is more computationally challenging
since it requires to evaluate the double surface integrals containing weakly singular
kernels. Resulting from the discretization, double surface integrals for a pair of finite
elements can generally be separated into three groups depending mainly on the behavior
of the integrand. A regular double surface integral for a pair of relatively remote
elements can be efficiently integrated by standard Gaussian quadrature since the
involved integrand is sufficiently well-behaved. For a weakly singular double surface
integral over a pair of identical elements, a systematic numerical integration scheme
based on a series of special variable transformations is employed to regularize the
weakly singular integrand allowing the resulting integrals to be efficiently integrated
by standard Gaussian quadrature. For a double surface integral over a pair of relatively
close or adjacent elements, the integrand possesses a rapid variation behavior
introduced by pairs of relatively close source and field points and, as a result, it cannot
be integrated efficiently by standard Gaussian quadrature (see also the work of Xiao
(1998)). In the present study, a family of logarithmic variable transformation is
introduced to eliminate the nearly singular feature of the integrand and the final integral
can be computed using standard Gaussian quadrature. Details of special numerical
quadrature for both nearly and weakly singular integrals can be found in the work of
Xiao (1998).

In addition to the numerical integration scheme described above, it still requires

the efficient computation of all involved kernels H;"(&,y), U (&,»), G (&, y) and
k - - - -
Cr:j (&,y) for every pair of points (&, y). Since the kernel Hi}p (¢,») involves only
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elementary functions and is independent of the material properties, its value can readily
and efficiently be obtained by a direct substitution. Unlike the kernel Hi}p (&,p), the

kernels UP(&,p), GE(&,p) and C (&, p) are expressed in terms of a line integral

mj
over a unit circle and the direct computation of such integral for every pair of field and
source points (&,y) can be computationally massive. In the present study, an
interpolation scheme similar to that exploited by Rungamornrat and Mear (2008b) is
adopted. In this technique, the direct calculation of the line integral is only required at
interpolation grid points and this can be accomplished efficiently via standard Gaussian
quadrature. Values of each kernel at any pair of field and siurce points (&, y) within

the interpolation grid can be approximated from their nodal-based interpolants. The
accuracy of such approximation can be controlled by adjusting the number of grid
points and the order of the interpolation functions employed.

4.3 Determination of Stress Intensity Factors and T-stress Components

Figure 4.1: Local Cartesian coordinate system and all involved parameters for
determining stress intensity factors and T-stress components.

Let Xc be a point on the crack front and {x.;x,X,,X,} be a local Cartesian coordinate
system with the origin at Xc and the corresponding orthonormal base vectors {g,,,,&.}.

In particular, the X,-axis is selected to be tangent to the crack boundary; the X -axis
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directs outward and perpendicular to the crack front such that X - X, plane forms a local

tangent plane of the crack surface at Xc; and X,-axis follows the right hand rule as

depicted in Figure 4.1. From the asymptotic stress analysis, the near-front stress field

in the neighborhood of the point X, takes the form

r,0) = ZSZ f£ (0) +T;(x.)g" (6’)+irm’2&;‘(xc;0) (4.24)

p-1

where (r,8) are polar coordinates of any point in the x - x,plane; K,, K, and K,

denote the mode-I, mode-II and mode-IIl stress intensity factors, respectively; T,

denotes the T-stress tensor; and f.°, g" and 6 6 are functions independent of the

radial coordinate r. It is important to remark that the angular dependent function f°

and g can be fully determined from the eigen analysis of the near-front field and, as

a result, the singular term and the first non-singular term of the near-front stress field
are completely known once the stress intensity factors and the T-stress tensor are

1]

computed. Unlike the functions f,” and g”, both K, and T, cannot be obtained

directly from the asymptotic analysis but still requires solving the full boundary value
problem.

In the present study, an explicit formula proposed by Rungamornrat and Mear
(2008b) for cracks in generally anisotropic infinite and finite media is employed to
compute the mixed-mode stress intensity factors. This formula only requires the
information of extra nodal degrees of freedom along the crack front as follows:

ki(xc) = WBH {a(xc) éI (Xc)} (425)

where k=K, , k=K, and k=K, ; J, =lor/on(c,-DI; I, =lor/og(c.-DIl;
r=r(&n)=x(&n)-x(&,-1); (£,n) denote the natural coordinates of a point X on

the crack-tip element; (&£ ,-1) are natural coordinates of a point x_; B denotes an angle
between the wunit vectors € ={or/on(S,-D¥J, and &, ={or/o&(S,,-D}HI,;
a(x.) ==Aup (£,-1) with Au® denoting the extra degree of freedom of the special

crack-tip element obtained from equation (4.12), ¢ denoting the standard shape



42

functions, and the summation taken over all nodes along the crack front of the crack-
tip element containing the point xc; and

8, == [ (@), 0.5 0.2), - (a.), Jds (4.26)

with a and b denoting orthonormal vectors in the plane X, =0, ¢ denoting the angle

between a and the unit vector &, as indicated in Figure 4.1, (a, b)ij = amEimnjbn, and

(b,b)™* denoting the inverse of (b,b).

The unknown T-stress components along the crack front can also be extracted
from the sum of the crack-face displacement as described below. First, components of
the T-stress tensor at Xc are related to the non-singular part of the strain at the same
point via the following linear constitutive relation

T; (x.)= Eijk| (X.)&4 (X.) (4.27)

where E;, (x,) and &,(x,) are elastic constants and components of the finite part of the

strain tensor relative to the local coordinate system at x. . It can readily be verified from

the continuity of the tensor T; (x.) that the three components Ti2, T2z, and T2z are known

and equal, respectively, to the X -, X,-, and X,-components of the applied crack-face

traction at the limiting point of Xc. The finite strain components z

11!

z, and z, at xccan

also be calculated from the sum of the crack-face displacement in the neighborhood of
Xc through the following expressions

102y (x,)

z, 4.28
gll(xc) 2 ail ( )
_ 1 ouf(x,)
— -8\ %) 4.29
£ (%) =2 x (4.29)
/4 V4
4 oX, ox,

The derivatives involved in the expressions (4.28)-(4.30) can be carried out directly
within elements along the crack front. From the prescribed information of T12, T2, and
T2 and the computed strain components ¢, z,, and g, , the unknown components T,

T3 and Tazz at any point xc along the crack front, commonly termed the T-stress
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components, can now be obtained by solving a system of six independent linear
algebraic equations (4.27).
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CHAPTER 5
NUMERICAL RESULTS

In this chapter, a selected set of boundary value problems involving cracks in an elastic
half-space under various scenarios is analyzed by the implemented solution procedure.
First, the proposed technique and the underlying integral formulation is fully validated
by comparing computed numerical results with existing reliable reference solutions for
both an isotropic cracked half-space under all four types of boundary conditions and an
anisotropic cracked half-space under symmetrical and anti-symmetrical boundary
conditions on the free surface. Then, more complex boundary value problems involving
multiple and non-flat cracks are also investigated to clarify the capability and
robustness of the proposed numerical procedure.

In the numerical simulations, both isotropic and transversely isotropic linearly
elastic materials with the elastic constants given in Table 5.1 are considered. For the
transversely isotropic cracked half-space, the axis of material symmetry is taken to
direct normal to the half-space surface. Other classes of anisotropic materials, such as
cubic and orthotropic materials, are also treated to illustrate the capability of the current
method and results are reported in Appendix C. To additionally explore the
convergence behavior of numerical solutions, a series of meshes with different levels
of refinement is adopted in the analysis. Special 9-node crack-tip elements are adopted
along the crack boundary whereas standard 8-node quadrilateral elements and 6-node
triangular elements are used to discretize the majority of the crack surface.

Table 5.1: Elastic constants for isotropic material (associated with Poisson’s ratio v =
0.3 and E = 2.6GPa) and transversely isotropic material with the axis of material
symmetry normal to half-space surface (Kassir and Sih, 1975).

Elastic constants (GPa)

Ellll E1122 Ell33 E2222 E1313

Isotropic material 3.500 | 1.500 1.500 3.500 | 1.000

Materials

Transversely isotropic material | 16.090 | 3.350 | 5.010 | 6.100 | 3.830
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5.1 Verification

This section aims to verify the integral formulation and the implemented numerical
scheme. Results for both isotropic and anisotropic cracked half-space under various
conditions on the free surface are reported and compared with the benchmark solutions.
Both interior cracks and surface breaking cracks under mode-1 and mixed-mode
conditions are investigated.

5.1.1 Isotropic Cracked Half-Space under BC-type-I

In this particular sub-section, the proposed technique is validated for the case of an
isotropic cracked half-space under all four types of boundary conditions on the free
surface (i.e., BC-type-1: symmetrical boundary condition; BC-type-2: anti-symmetrical
boundary condition; BC-type-3: traction-free boundary condition; and BC-type-4:
rigidly-fixed boundary condition).

a. Horizontal penny-shaped crack

BC-type-aa 0O X1
| I
l2.l.a |_ =

\\\ A\ 4 ,ll

X )
(@
Mesh 1 Mesh2  Mesh3  Mesh4 Tt e
(d) (c)

Figure 5.1: (a) Schematic of horizontal penny-shaped crack contained in half-space
under BC-type-1 or BC-type-2, (b) tractions acting on crack surfaces, (c) equivalent
whole space problem, and (d) four meshes adopted in the analysis.

Consider a penny-shaped crack contained in a half-space with the depth h and the crack
surface parallel to the free surface as shown in Figure 5.1(a). The crack radius is denoted

by a and the crack front is parameterized by x, =acosf, x,=-asinf, X,=h for
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S €[0,2x]. The crack surface is subjected only to a self-equilibrated, uniform traction
t'=-t =0,, t, =—t; =0, t; =—t; =0, (see Figure 5.1(b)) whereas the half-space
surface is under the boundary conditions BC-type-1 and BC-type-2. In the analysis,
four meshes are utilized as indicated in Figure 5.1(d) and the normalized depth h/a =
0.5 is considered.

Computed results for the stress intensity factors and the T-stress components at
B ={0°,90°,180°} of both boundary conditions are normalized by the reference

solution and reported in Table 5.2 and Table 5.3, respectively. It is remarked that the
reference solution is taken as the solution of an equivalent whole space containing a

pair of symmetric penny-shaped cracks about the surface x, =0 shown in Figure 5.1(c),

which is generated by the SGBEM proposed by Rungamornrat and Mear (2008b) with
use of the Mesh 4. As can be seen from results in Table 5.2, numerical solutions display
the excellent agreement with the reference solution for the first three meshes and they
are weakly dependent on the level of refinement. In particular, the discrepancy between
the stress intensity factors generated by the coarsest and intermediate meshes and the
reference solution is less than 2.4% and 0.2%, respectively, whereas results generated
from the Mesh 3 are nearly identical to the reference solution. The high quality of the
numerical solutions, while employing relatively coarse meshes, is the direct
consequence of using special crack-tip elements to enhance the approximation of the
near-front relative crack-face displacement.

Table 5.2: Normalized stress intensity factors at #=0°, 90° and 180° for horizontal

penny-shaped crack embedded in half-space under BC-type-1 or BC-type-2 and
h/a=05.

£ Mesh BC-type-1 BC-type-2

KI /Klref KII /KIrIEf |‘(III /Klrﬁf I<I /Klref I‘(II /Klrlef |‘(III /Klrﬁf

0° 1 0.9949  0.9896 - 0.9844  0.9806 -

2 1.0004  1.0001 - 0.9987  0.9987 -

3 1.0003  1.0002 - 0.9999 1.0001 -
90° 1 0.9935 1.0011 0.9817 0.9861 0.9901 0.9947
2 1.0002 1.0016 0.9990 0.9988 0.9998  1.0007
3 1.0003 1.0004 1.0000 0.9999 1.0001 1.0002

180° 1 0.9916  0.9911 - 0.9874  0.9761 -

2 1.0000 1.0003 - 0.9990 0.9982 -

3 1.0002  1.0002 - 1.0000 1.0000 -
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Similar convergence behavior can also be observed for results of the T-stress
components shown in Table 5.3; however, it is evident that the difference between the
computed solutions T13 from the Mesh 1 and Mesh 2 and the benchmark solutions is
larger than the case of the stress intensity factors. The reduction in the accuracy results
directly from the fact that the derivatives of the sum of the crack-face displacement are
required in the calculation of the T-stress components.

Table 5.3: Normalized T-stress components at £=0° 90° and 180° for horizontal

penny-shaped crack contained in half-space under BC-type-1 or BC-type-2 and
h/a=05.

£ Mesh BC-type-1 BC-type-2

Tll / Tl;ef T33 / T3I:f T13 / Tlgef Tll / Tl;ef T33 /TS?f T13 / Tlgef

0° 1 1.0359  1.0252 - 0.9322  0.9593 -

2 1.0186 1.0166 - 0.9625 0.9789 -

3 1.0055  1.0049 - 0.9909 0.9944 -
90° 1 1.0037  0.9988  0.9626 0.9895 0.9906 1.0874
2 1.0042 1.0013 1.1549 0.9878 0.9968 1.0928
3 1.0021 1.0008 1.0662 0.9969 0.9993 1.0337

180° 1 0.9658  0.9603 - 1.0334  1.0136 -

2 0.9873  0.9790 - 1.0072  1.0099 -

3 0.9980 0.9947 - 1.0016  1.0029 -

b. Vertical penny-shaped crack

Consider, next, a vertical penny-shaped crack of radius a contained in a half-space with
a depth h (measured from the center of the crack to the free surface) as indicated in
Figure 5.2(a). The crack front is parameterized by X =0, X,=-acospf,

X; =h—asin g for Be[0,2z]. The crack is subjected only to the self-equilibrated
uniform normal traction t' =t =0,, t;, =—t, =0, t; =—t; =0 (see Figure 5.2(b))

whereas the half-space surface is under all four types of boundary conditions, BC-type-
I. It is evident from the symmetry of the crack-face loading with respect to the plane

X, =0 that the mode-I1 and mode-I1I stress intensity factors identically vanish along
the boundary of the crack. In the numerical study, four meshes of the penny-shaped

crack are exploited as illustrated in Figure 5.2(d) and the aspect ratio h/a=1.5 is
considered.
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Figure 5.2: (a) Schematic of vertical penny-shaped crack embedded in half-space under
BC-type-/ (b) uniform normal traction acting to crack surfaces, (c) equivalent whole
space problem for BC-type- ¢, and (d) four meshes adopted in the analysis.

For the first two types of boundary conditions, BC-type-«, the computed stress
intensity factors and the T-stress components are first normalized by the reference
solution (generated from an equivalent whole space containing a pair of geometrically
symmetric cracks with respect to the surface X, =0 shown in Figure 5.2(c) and

subjected to the symmetric loading condition for BC-type-1 and the anti-symmetric
loading condition for BC-type-2 by using the SGBEM with the Mesh 4) and then
reported in Table 5.4 and Table 5.5, respectively. Results for the stress intensity factors
for the last two boundary conditions (i.e., BC-type-3 and BC-type-4) normalized by

K™ =20,\alz are compared with those obtained by Hrylyts'kyi et al. (2003) in

Table 5.6. As indicated by results shown in Table 5.4, the stress intensity factors
generated from the first three meshes for BC-type-1 and BC-type-2 are only slightly
different from those obtained from the equivalent whole space problem. The
discrepancy between the two solutions is small even though the coarsest mesh is utilized
in the analysis. However, as shown in Table 5.5, results of the T-stress components
indicate that the discrepancy between Ti3 generated by the Mesh 1 and the reference
solution is larger than the case of the stress intensity factors. Again, the reduction of
accuracy results directly from that the derivatives of the sum of the crack-face
displacement are required in the calculation of the T-stress components. For BC-type-
3 and BC-type-4, numerical solutions for the mode-I stress intensity factors are in good
agreement with those presented by Hrylyts'kyi et al. (2003) and the weak dependence
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on the level of refinement is also observed for this case. Only coarse meshes with few
elements can be utilized to generate reasonably accurate results. This high quality of
the computed solutions is due primarily to the application of special crack-tip elements
to capture the near-front field.

Table 5.4: Normalized stress intensity factors at £ ={0°,90°} for vertical penny-
shaped crack embedded in half-space under BC-type-1 or BC-type-2 and h/a =15,

f  Mesh BC-type-1 BC-type-2

K, /K™ K, /K™

0° 1 0.9909 0.9918
2 0.9997 0.9998

3 1.0001 1.0001

90° 1 0.9916 0.9912
2 1.0000 0.9996

3 1.0002 1.0001

Table 5.5: Normalized T-stress components at 4 ={0°,90°} for vertical penny-shaped
crack embedded in half-space under BC-type-1 or BC-type-2 and h/a =1.5.

£ Mesh BC-type-1 BC-type-2

Tll /TIEEf T33 / T3;ef T13 / Tl;Ef Tll / Tl;.ef T33 /T3r3ef Tl3 /Tlgef
0° 1 1.0033 0.9970 1.1834 1.0084 0.9992 1.1848
2 1.0024 1.0009 1.0287 1.0025 1.0000 1.0264
3 1.0014 1.0006 1.0029 1.0013 1.0003 1.0029

90° 1 1.0038  0.9904 - 1.0078  1.0060 -

2 1.0016 1.0011 - 1.0033  0.9998 -

3 1.0015 1.0012 - 1.0012  0.9996 -

Table 5.6: Normalized stress intensity factors at g ={0°,90°}% for vertical penny-
shaped crack embedded in half-space under BC-type-3 or BC-type-4 and h/a=1.5.

£ Mesh Present results Hrylyts’kyi
BC-type-3 BC-type-4 BC-type-3 BC-type-4

0° 1 1.0114 0.9763 1.0200° 0.97907
2 1.0209 0.9838
3 1.0213 0.9841

90° 1 1.0440 0.9477 1.0500" 0.95307
2 1.0524 0.9560
3 1.0524 0.9567

tResults obtained by means of extraction from certain figures reported by Hrylyts'kyi et al. (2003)
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c. Elliptical crack perpendicular to half-space surface

Consider, next, an elliptical crack oriented vertically within the half-space as indicated
in Figure 5.3(a). The semi-major and semi-minor axes of the crack are denoted by a
and b, respectively; the orientation of the major axis relative to the free surface is
denoted by the angle « ; the depth of the crack measured from the free surface to its
center is denoted by h ;and S <[0,27] is an angle used for parameterizing the position
along the crack boundary. The crack is loaded by uniformly distributed pressure o,

whereas the half-space surface is under the traction-free condition (i.e., BC-type-3). In
the analysis, two scenarios of the crack are considered: type A associated with a =0,
a/b =2 and type B correspondingto « #0, a/b=2, h/b=1.8, and three meshes
as depicted in Figure 5.3(b) are used.

BC-type-3 7 BC-type-3

Type A Type B

Figure 5.3: (a) Elliptical crack oriented vertically within the half-space and (b) three
meshes used in analysis (Mesh 1 containing 168 elements and 32 crack-tip elements;
Mesh 2 containing 392 elements and 64 crack-tips elements; and Mesh 3 containing
840 elements and 128 crack-tip elements).

Computed stress intensity factors for both type A and type B are first normalized
by K,ref =00\/7zb and then compared with those obtained by Noguchi et al. (1997) as

reported in Figure 5.4(a) and Figure 5.4(b), respectively. It can be concluded from these
results that numerical solutions computed from the proposed technique are highly
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accurate and in good agreement with the reference solution for both type A and type B.
In particular, the stress intensity factors in the current study are weakly dependent on
the meshes used. Again, this high quality of numerical solutions results directly from
the use of special interpolation functions to approximate the near-front jump in the
crack-face displacement.

16
[ —----= Noguchi
14 [ Mesh 3
L o Mesh2
A Mesh1

12}

0.50 0.75 1.00 1.25 1.50
prr
(a)

1.0 ¢

H —--- Noguchi
0.4 a2 Mesh 3
r o Mesh2
0.3 - A Mesh1
0.2'....1....1....1....
0.0 0.5 1.0 15 2.0
P
(b)

Figure 5.4: Normalized mode-I stress intensity factors for vertical elliptical crack of
(@) type A and (b) type B, in half-space under BC-type-3.
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d. Surface-breaking crack

Consider another example associated with a semi-circular surface breaking crack of
radius a and oriented vertically in a half-space as shown in Figure 5.5(a). The crack

front is parameterized by x, =—-acosf, X, =0, x, =asin g for B <[0,]. The half-
space is subjected to three cases of loading and boundary conditions: (i) half-space
under BC-type-1 and crack subjected to uniform normal traction t” =0, t; =—o,,
t, =0; (ii) half-space under BC-type-2 and crack subjected to linear normal traction
t'=0, t, =—0,(x;/a), t; =0; and (iii) half-space under BC-type-3 and crack
subjected to three types of loading conditions: uniform distributed pressure (denoted by
0), linear distributed pressure (denoted by 1), and quadratic distributed pressure

(denoted by 2) as shown in Figure 5.5(b). In the numerical simulations, three different
meshes are adopted as shown in Figure 5.5(c).

X2

Y X3

(0)

Mesh 1 Mesh 2

(©)
Figure 5.5: (a) Schematic of semi-circular surface-breaking crack in half-space under
BC-type-3, (b) crack under three loading conditions, and (c) three meshes used in

analysis.
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Figure 5.6: (a) Normalization of mode-I stress intensity factor and (b) normalized T-

stress for semi-circular surface-braking crack in half-space under BC-type-2 and

subjected to linear normal traction.
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For the first two cases, the computed stress intensity factors and the non-zero T-
stress components are compared with the existing analytical solutions. As indicated in
Table 5.7, numerical results obtained for the uniform normal traction under BC-type-1

are normalized by K™ =2c,+/a/ 7 for the mode-1 stress intensity factor and those

proposed by Wang (2004) for the non-zero T-stress components. Clearly, the present
results agree with the analytical solutions. The maximum difference is less than 0.2%
for the stress intensity factor and 0.57% for the T-stress components. For the case of
linear normal traction under BC-type-2, the normalized mode-I stress intensity factor
and T-stress components are compared with the benchmark solution obtained from
Shah and Kobayashi (1971) and Rungamornrat and Pinitpanich (2015) (also found in
Wang, 2004), respectively, and reported in Figure 5.6. It is clear that the obtained
numerical results are nearly indistinguishable from the reference solution.

For the last case, as shown in Table 5.8, the computed stress intensity factors

normalized by Kf“ :GO\/ﬂa at the intersection point between the crack boundary and

the free surface (a surface breaking point) and the deepest point are compared with
those obtained by Noguchi and Smith (1995) and Murakami (1985). It is seen that
results generated by the proposed technique exhibit good agreement with the
benchmark solutions. In particular, the discrepancy between the computed stress
intensity factors and the solution reported by Noguchi and Smith (1995) and Murakami
(1985) at the surface-breaking point is larger than that at the deepest point. In
additkb8yannhion, results obtained from the coarse and intermediate meshes are nearly
indistinguishable from those generated by the Mesh 3 (with the maximum discrepancy
less than 2%).

Table 5.7: Normalized mode-1 stress intensity factors and T-stresses at g ={0°,90°}

for semi-circular surface-breaking crack within half-space under BC-type-1 and
subjected to uniform normal traction.

£ Mesh Stress intensity factor T-stress
KI / Klexact Tll /Tlixact T33 /Tsesxact
0° 1 0.9995 0.9989 0.9944
2 1.0004 0.9971 0.9989
3 1.0005 0.9964 0.9989
30° 1 0.9992 1.0018 1.0013
2 1.0011 0.9970 0.9993
3 1.0009 0.9954 0.9987
90° 1 0.9981 1.0023 1.0006
2 1.0010 0.9965 0.9990
3 1.0011 0.9951 0.9987
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Table 5.8: Normalized mode-I stress intensity factors for semi-circular surface-
breaking crack within half-space under BC-type-3 and subjected to three types of
loading conditions.

Loading Mesh p=0° S =90°
condition Present Noguchi Murakami  Present Noguchi Murakami
results results
0 1 0.783 0.760 0.748 0.660 0.656 0.666
2 0.777 0.659
3 0.772 0.659
1 1 0.662 0.644 0.193 0.191
2 0.658 0.192
3 0.655 0.192
2 1 0.588 0.573 0.111 0.111
2 0.585 0.113
3 0.583 0.113

5.1.2 Anisotropic Cracked Half-Space under BC-type-a

In this particular sub-section, the integral formulation and the implemented numerical
procedure are verified for the case of an anisotropic cracked half space under symmetric
boundary condition (BC-type-1) and anti-symmetric boundary condition (BC-type-2).
Results are reported for a selected representative material which is transversely
isotropic with the elastic constants shown in Table 5.1 and compared with the reference
solution generated from an equivalent whole space problem (obtained from invoking
the symmetrical and anti-symmetrical conditions) by the weakly singular SGBEM
proposed by Rungamornrat and Mear (2008b).

a. Horizontal penny-shaped crack

Consider the same problem corresponding to a horizontal penny-shaped crack indicated
in Figure 5.1(a) except that the half-space is made of the transversely isotropic, linearly
elastic material. The normalized stress intensity factors and the T-stress components
along the crack boundary are reported and compared with the reference solutions in
Figure 5.8 and Figure 5.9 for BC-type-1 and BC-type-2, respectively. As can be
observed from these results, the computed stress intensity factors and T-stress
components for both BC-type-1 and BC-type-2 are highly accurate when compared
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with the reference solutions and weakly dependent on the meshes used. Similar
convergence behavior and the high quality of numerical solutions can also be observed
for other types of anisotropic materials such as cubic and orthotropic solids (see
Appendix C).

b. Vertical penny-shaped crack

Next, consider the same problem of a vertical penny-shaped crack under the uniform
normal traction as shown in Figure 5.2 with the material being replaced by one that is
transversely isotropic. In the analysis, the ratio h/a=1.25 is utilized and the same
three meshes are employed. The computed stress intensity factors and the T-stress
components are normalized and compared with the reference solutions in the same
manner as the case of the horizontal penny-shaped crack.

As can be observed from numerical results shown in Figure 5.10, the computed
mode-1 stress intensity factor show very good agreement with the reference solution for
all three meshes and both types of boundary conditions. Similarly, numerical solutions
for the T-stress components shown in Figure 5.11 also indicate the good convergence
behavior and the slight dependence on the level of refinement. Clearly, results
generated by the coarsest, intermediate and finest meshes are almost indistinguishable
from the benchmark solution. The high quality of the numerical solutions results
directly, again, from using special crack-tip elements to capture the near-front relative
crack-face displacement. It should also be remarked that, for this particular case, the
symmetric and anti-symmetric boundary conditions have only weak influence on both
the value and distribution of the stress intensity factor and the T-stress components
along the crack front. Results for cubic and orthotropic materials are also generated for
this particular crack problem and reported in Appendix C.

c. Surface-breaking crack

As a final example, consider a semi-circular, surface-breaking crack of radius a and
oriented vertically in a half-space as shown in Figure 5.7(a) and (b). The crack front is

parameterized by X, =—acos S, x, =0, X, =asin S for B [0, ]. The surface X; =0
of the half-space is subjected to the boundary conditions BC-type-1 and BC-type-2
whereas the crack is subjected to three types of loading conditions: the non-uniform
normal traction t =t; =0, t; =—0,(X,/a)®, the non-uniform horizontal shear traction

t'=t; =0, t =o,(x/a)’, and the non-uniform vertical shear traction t =t; =0,
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t; =o,(x,/a)’. Three meshes as depicted in Figure 5.7(d) are exploited in the

simulations and the reference solution obtained from the Mesh 4 in Figure 5.2(d) is
constructed based on an equivalent whole space containing a vertical penny-shaped

crack of radius a with the plane X, =0 passing through its center and subjected to

symmetric and anti-symmetric tractions on the crack surface (see Figure 5.7(c)).

For the first loading condition, the mode-Il and mode-I11 stress intensity factors
vanish whereas the mode-I stress intensity factor and the T-stress components vary
along the fracture boundary. The computed mode-1 stress intensity factor and the non-
zero T-stress components are reported in Figures 5.12 and 5.13, respectively. In
addition to the good agreement between the computed numerical results and the
benchmark solution and the weak dependence on the mesh refinement, it is also
observed that the discrepancy between mode-1 stress intensity factor and all T-stress
components for BC-type-1 and BC-type-2 are insignificant.

2a
1 x X2

(@) e |
(b) |
Mesh 1 Mesh 2
(d)

Figure 5.7: (a) Schematic semi-circular surface breaking crack, (b) semi-circular
surface-breaking crack in half-space, (c) equivalent whole space problem, and (d) three
meshes used in analysis.
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Figure 5.8: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in transversely isotropic half-space
under BC-type-1.
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Figure 5.9: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in transversely isotropic half-space

under BC-type-2.
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Figure 5.10: Normalized mode-I stress intensity factor for vertical penny-shaped

crack in transversely isotropic half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure 5.11: Normalized T-stress components for vertical penny-shaped crack in
transversely isotropic half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure 5.12: Normalized mode-I stress intensity factors for semi-circular surface-
breaking crack subjected to non-uniform normal traction in transversely isotropic half-
space under (a) BC-type-1 and (b) BC-type-2.
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Figure 5.13: Normalized T-stress components for semi-circular surface-breaking crack
subjected to non-uniform normal traction in transversely isotropic half-space under (a)
BC-type-1 and (b) BC-type-2.
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Figure 5.14: Normalized stress intensity factors for semi-circular surface-breaking
crack subjected to non-uniform shear traction in xi-direction in transversely isotropic
half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure 5.15: Normalized stress intensity factors for semi-circular surface-breaking
crack subjected to non-uniform shear traction in xz-direction in transversely isotropic
half-space under (a) BC-type-1 and (b) BC-type-2.
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Unlike the first loading case, the applied shear traction in either X - or X,-

direction yields zero mode-I stress intensity factor and the T-stress components along
the fracture front. The non-zero mode-I1 and mode-I1I stress intensity factors for the
second and third loading conditions are reported for all three meshes along with the
reference solution in Figures 5.14 and 5.15, respectively. Similar to all previous cases,
it is apparent that the proposed technique yields highly accurate numerical solutions
which are comparable to the benchmark results for all three meshes employed. In
addition, obtained results also suggest that both the value and distribution of the stress
intensity factors are weakly dependent on the boundary condition posed on the half-
space surface.

Additional results for both cubic and orthotropic materials for all three types of
crack-face loading are also reported in Appendix C.

5.2 Investigation for complex problems

Once the integral formulation and implemented solution procedure are fully tested,
more complex boundary value problems involving multiple and non-flat cracks are
presented here to additionally demonstrate both the robustness and capability of the
proposed technique. The convergence behavior of numerical results is investigated by
performing the simulations using a series of meshes.

5.2.1. Embedded Spherical Cap Crack

Consider a linearly elastic half-space containing a spherical cap crack of radius a and a
half-subtended angle « as depicted in Figure 5.16(a). The orientation of the crack is
such that its surface can be parameterized by x, =asin@cos 8, x, =-asinésin g,

x,=h+a—acos® where 0¢[0,a], B[0,27] and h is the distance from the half-

space surface to the top of the spherical cap crack. The half-space is subjected to the
remote uniform biaxial tensions o,, = o,, = o, as indicated in Figure 5.16(b). In the

simulations, the half-subtended angle is taken as o =45°; the depth is taken as
h/a =0.5; and four meshes indicated in Figure 5.16(c) are exploited. Similar to the
previous section, two types of materials (e.g., isotropic and transversely isotropic
materials with the elastic constants shown in Table 5.1) are chosen in the simulations.
Additional results generated for other types of anisotropic materials (e.g., cubic and
orthotropic materials) are provided in Appendix C.

For isotropic case, the computed stress intensity factors and T-stress components

under all four types of boundary conditions are first normalized by K, = aoJa and
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T.. =0,, respectively, and then reported in Figure 5.17 and Figure 5.20 for all the first

ref

three meshes. It can be observed that the numerical results generated from the coarsest
and intermediate meshes are nearly identical to that generated by the Mesh 3 for all
cases. Similarly, the computed stress intensity factors and T-stress components for the
transversely isotropic elastic half-space under the boundary conditions BC-type-1 and

BC-type-2 are first normalized by K, =00J5 and T, =o,, respectively, and then

reported in Figure 5.21 and Figure 5.22 for all the first three meshes. It can be seen,
again, for this relatively complex boundary value problem posed by the material
anisotropy and non-planar crack geometry that results obtained from the three different
meshes are still in excellent agreement. This good convergence behavior and the
requirement of using relatively coarse meshes to accurately capture the numerical
solutions should result directly from the selection of suitable shape functions for crack-
tip elements to approximate the near-front relative crack face displacement. Besides,
results from the first two boundary conditions are also compared with the reference
solutions generated from an equivalent whole space containing a pair of geometrically
symmetric cracks with respect to the plane x3 = 0 using the SGBEM with the Mesh 4.
The good agreement between obtained results and the reference solution is observed
for both the stress intensity factors and the T-stress components (see Figure 5.17-5.18
and Figure 5.21-5.22).
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Figure 5.16: (a) Schematic of spherical cap crack embedded in an elastic half-space,
(b) remote uniform biaxial tensions, and (c) three meshes adopted in analysis.
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Figure 5.17: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in isotropic half-space under BC-type-1.
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Figure 5.18: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in isotropic half-space under BC-type-2.
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Figure 5.19: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in isotropic half-space under BC-type-3.



—s— Mesh 3
O Mesh 2
A Meshl

0.2 0.4 0.6 0.8
Yo%

(@)

1.0

—— Mesh 3
O Mesh2

A Mesh1l

0.2 0.4 0.6 0.8

Yo%
(b)

1.0

71

Figure 5.20: (a) Normalized stress intensity factors and (b) normalized T-stress

components for spherical cap crack in isotropic half-space under BC-type-4.



10 f

— ref sol
¢ Mesh3
O  Mesh 2
A

Mesh 1

-15 Lo
0.0

0.2 0.4 0.6 0.8

plr
(@)

1.0

— ref sol
e Mesh2
O  Mesh2
O Mesh2

T L
o, N
12 F

16 F

20 F

2.4 L

0.0

plr
(b)

1.0

72

Figure 5.21: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in transversely isotropic half-space under BC-type-

1.
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Figure 5.22: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in transversely isotropic half-space under BC-type-

2.
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5.2.2. Two Embedded Elliptical Cracks

Consider an elastic half-space containing two identical, vertical elliptical cracks as
indicated in Figure 5.23(a). The half-space is subjected to a uniform remote uniaxial
tension o, as shown in Figure 5.23(b). The crack front of both is parameterized by

Crack1: x,=0; x,=d-asing; x,=h+bcosp (5.1)
Crack 2: x,=0; x,=-d-—asinf; Xx,=h+bcosp (5.2)
X2 0O
@
—d d__|
SED|EED
Y X3
Crack 1 Crack 2
(a)
O] X1
- i I > 1' >
- :.‘ h ,': —_
< \\\ //I —
00 \ —r . o
-~ \\ b // —
— \\\ s———— II’ e
-~ \~‘~“\\\ l X3 /,//
(b)

Figure 5.23: (a) Schematic of two identical elliptical cracks embedded in elastic half-
space, (b) half-space under remote uniaxial tension in x;-direction, and (c) three meshes
adopted in analysis.
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where d is the distance between the center of each crack and x, -axis; a and b are the
major and minor semi-axes of the elliptical cracks; and g <[0,2x]. In the simulations,
the aspect ratio a/b=1.5 and d/a=1.1, 2.0 and two types of materials including

isotropic and transversely isotropic solids are considered and three meshes shown in
Figure 5.23(c) are employed. Due to the symmetry, the computed stress intensity factors
and the T-stress components are reported only for the crack 1.

The stress intensity factors and the T-stress components generated from the three
meshes for all four types of boundary conditions along the front of the crack 1 are
reported in Figures 5.24-5.31. It is evident that the numerical solutions for the stress
intensity factors and the T-stress components exhibit the good convergence behavior;
in particular, the discrepancy between results obtained from the Mesh 1 and Mesh 2
and that from the Mesh 3 is insignificant for the two crack depths d/a=1.1 and
d /a=2.0 considered in the simulations. In addition, the dependence of results along
the crack front on the ratio d / a is also investigated. It is observed that the variation of
both the stress intensity factors and the T-stress components at points on the crack front
relatively close to those on the other crack is significant and strongly dependent on the
ratio d/a. Clearly, the higher value of the ratio d/a, the less variation of the stress
intensity factors and the T-stress components.

The normalized stress intensity factors and T-stress components obtained from
the transversely isotropic half-space under BC-type-1 and BC-type-2 along the front of
the crack 1 are reported in Figures 5.32-5.35. Similar to results of the isotropic case,
the good convergence of both the stress intensity factors and the T-stress components
for d /a=1.1 and 2.0 are observed. In particular, results obtained from the coarse and
intermediate meshes are almost indistinguishable from those computed from the fine
mesh. Results shown in Figures 5.32-5.35 also indicate that the interaction of the two
elliptical cracks and its influence on the stress intensity factors and the T-stress
components is obviously dependent on the ratio d /a. The variation of the stress
intensity factors and the T-stress components is found significant along the region of
the crack front where the two cracks are relatively close. In particular, this variation is
more rapid when the value of d iscloseto a.
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Figure 5.24: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in isotropic half-space under BC-type-1.
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Figure 5.25: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in isotropic half-space under BC-type-1.
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Figure 5.26: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in isotropic half-space under BC-type-2.



1 crack

A Mesh1
o  Mesh?2
Mesh 3

—-——- Mesh 3 (1 crack)

0.5 1.0 1.5 2.0

pr
(a)

0.2

01F

1 crack
d/a = 2 3 ) "

o

00
'O.l &
da=11
_0'2:_ & Mesh1l
i © Mesh?2
0.3 | Mesh 3
I —--—- Mesh 3 (1 crack)
04 L e
0.0 0.5 1.0 15 2.0
pr
(b)

79

Figure 5.27: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in isotropic half-space under BC-type-2.
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Figure 5.28: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in isotropic half-space under BC-type-3.
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Figure 5.29: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in isotropic half-space under BC-type-3.
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Figure 5.30: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in isotropic half-space under BC-type-4.
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Figure 5.31: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in isotropic half-space under BC-type-4.
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Figure 5.32: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress
component T, for elliptical crack 1 in transversely isotropic half-space under BC-type-

1.
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Figure 5.33: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in transversely isotropic half-space under BC-type-

1.
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Figure 5.34: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress

component T, for elliptical crack 1 in transversely isotropic half-space under BC-type-

2.
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Figure 5.35: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in transversely isotropic half-space under BC-type-

2.
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CHAPTER 6
CONCLUSIONS

6.1. Summary

A set of singularity-reduced integral relations and equations has been established for a
generally anisotropic, linearly elastic half-space containing arbitrary shaped cracks with
the free surface subjected to symmetrical and anti-symmetrical boundary conditions on
the free surface. The systematic regularization procedure based upon the integration by
parts through Stokes’ theorem and special representations for both hypersingular
kernels and strongly singular kernels has been developed and the final regularized
integral equations containing only weakly singular kernels have been established. In
addition, results proposed by Li (1996) has been adopted to form a set of singularity-
reduced boundary integral relations/equations for an isotropic, linearly elastic half-
space subjected to the traction-free boundary condition and the fully-restrained
boundary condition on the half-space surface. Another key feature of the developed
integral equations is the automatic treatment of the free surface via the use of the
fundamental solutions of the half-space with the same type of boundary conditions.
This therefore avoids the discretization of the half-space surface in the solution
procedure. A weakly singular, symmetric Galerkin boundary element method has been
successfully implemented to numerically solve the weak-form crack-face traction
boundary integral equation for the jump in the crack-face displacement and such
information has then been utilized as the known data to determine the sum of the crack-
face displacement from the weak-form crack-face displacement integral equation by
standard Galerkin method. Special crack-tip elements have also been exploited to
enhance the approximation of the near-front field. The fracture data along the crack
boundary such as the stress intensity factors and the T-stress components has been
directly extracted from the relative and sum of crack-face displacement using the
explicit formula.

Results from extensive numerical experiments and the comparison with several
benchmarked cases have revealed that the proposed numerical procedure is highly
accurate and computationally robust for the analysis of anisotropic cracked half-spaces
under symmetric and anti-symmetric boundary conditions and isotropic cracked half-
space under various types of boundary conditions. Applying the special crack-tip
elements along the crack boundary has indicated that the stress intensity factors and the
T-stress components can be accurately captured using relatively very coarse meshes
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and this therefore renders the technique more suitable for linear fracture analysis than
the standard finite element method which generally requires sufficiently fine mesh to
capture the near-front field and experiences difficulty in the treatment of an unbounded
domain.

6.2. Limitation and Essential Future Studies

While the proposed technique has been successfully implemented, it is still restricted,
for an anisotropic cracked half-space, to symmetric and anti-symmetric boundary
conditions and the material must possess the plane of material symmetry parallel to the
free surface. The potential extension of the current work to treat other types of boundary
conditions such as the traction-free and rigid surfaces and other types of materials such
as multi-field and smart solids is considered essential. It is important to emphasize that
besides the reduction of the computational cost directly gained from using the half-
space model instead of the full treatment of a cracked whole space under symmetric
and anti-symmetric conditions, the key ingredients and results established in the present
study also form the useful and essential basis for such nontrivial generalization.
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and h (i =1, 2, and 3) are harmonic functions defined in the domain xs > 0 as follows
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APPENDIX C
ADDITIONAL RESULTS

This Appendix shows additional results of a half-space made of cubic and orthotropic
materials and subjected to BC-type-a.

Table C.1: Independent, relative elastic constants for cubic Gnaupel-Herold et al., 1998
and orthotropic materials Kaw, 2006. The plane X, =0 is taken as a plane of material

symmetry.

Materials
Ellll E1122 E1133 E2222 E2233 E3333 E1212 E1313 E2323

Cubic 114.100 | 65.300 | 65.300 | 114.100 | 65.300 | 114.100 | 28.500 | 28.500 | 28.500
Orthotropic | 185.000 | 7.269 7.204 | 16.380 | 9.938 | 16.370 | 7.168 6.998 | 3.000

C.1 Results for Cubic and Orthotropic Materials under BC-type-a

C.1.1 Horizontal Penny-Shaped Crack
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Figure C.1: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in cubic half-space under BC-type-1.
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Figure C.2: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in cubic half-space under BC-type-2.
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Figure C.3: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in orthotropic half-space under BC-
type-1.
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Figure C.4: (a) Normalized stress intensity factors and (b) normalized T-stress
components for horizontal penny-shaped crack in orthotropic half-space under BC-
type-2.

C.1.2 Vertical Penny-Shaped Crack
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Figure C.5: Normalized mode-1 stress intensity factors for vertical penny-shaped crack
in cubic half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure C.6: Normalized T-stress components for vertical penny-shaped crack in cubic
half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure C.7: Normalized mode-I stress intensity factors for vertical penny-shaped crack
in orthotropic half-space under (a) BC-type-1 and (b) BC-type-2.
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Figure C.8: Normalized T-stress components for vertical penny-shaped crack in
orthotropic half-space under (a) BC-type-1 and (b) BC-type-2.

C.13 Surface-Breaking Crack
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Figure C.9: Normalized mode-I stress intensity factors for surface-breaking crack
subjected to non-uniform normal traction in cubic half-space under (a) BC-type-1 and
(b) BC-type-2.
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Figure C.10: Normalized T-stress components for surface-breaking crack subjected to
non-uniform normal traction in cubic half-space under (a) BC-type-1 and (b) BC-type-

2.
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Figure C.11: Normalized stress intensity factors for surface-breaking crack subjected
to non-uniform shear traction in xz-direction in cubic half-space under (a) BC-type-1

and (b) BC-type-2.
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Figure C.12: Normalized stress intensity factors for surface-breaking crack subjected
to non-uniform shear traction in xz-direction in cubic half-space under (a) BC-type-1

and (b) BC-type-2.
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Figure C.13: Normalized mode-I stress intensity factors for surface-breaking crack
subjected to non-uniform normal traction in orthotropic half-space under (a) BC-type-

1 and (b) BC-type-2.
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Figure C.14: Normalized T-stress components for surface-breaking crack subjected to
non-uniform normal traction in orthotropic half-space under (a) BC-type-1 and (b) BC-

type-2.
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Figure C.15: Normalized stress intensity factors for surface-breaking crack subjected
to non-uniform shear traction in xi-direction in orthotropic half-space under (a) BC-

type-1 and (b) BC-type-2.
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Figure C.16: Normalized stress intensity factors for surface-breaking crack subjected
to non-uniform shear traction in xz-direction in orthotropic half-space under (a) BC-
type-1 and (b) BC-type-2.

C.2 Results for More Complex Problems

C.2.1 Spherical Cap Crack
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Figure C.17: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in cubic half-space under BC-type-1.
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Figure C.18: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in cubic half-space under BC-type-2.
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Figure C.19: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in orthotropic half-space under BC-type-1.
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Figure C.20: (a) Normalized stress intensity factors and (b) normalized T-stress
components for spherical cap crack in orthotropic half-space under BC-type-2.

C.2.2 Two Embedded Elliptical Cracks
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Figure C.21: (a) Normalized mode-1 stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in cubic half-space under BC-type-1.
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Figure C.22: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in cubic half-space under BC-type-1.
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Figure C.23: (a) Normalized mode-1 stress intensity factor and (b) normalized T-stress

component T,, for elliptical crack 1 in cubic half-space under BC-type-2.
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Figure C.24: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in cubic half-space under BC-type-2.
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Figure C.25: (a) Normalized mode-1 stress intensity factor and (b) normalized T-stress
component T,; for elliptical crack 1 in orthotropic half-space under BC-type-1.
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Figure C.26: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in orthotropic half-space under BC-type-1.
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Figure C.27: (a) Normalized mode-1 stress intensity factor and (b) normalized T-stress

component T,; for elliptical crack 1 in orthotropic half-space under BC-type-2.
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Figure C.28: (a) Normalized T-stress component T,, and (b) normalized T-stress

component T, for elliptical crack 1 in orthotropic half-space under BC-type-2.
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