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CHAPTER 1 

INTRODUCTION 

For the past several decades, designing demands of multi-functional, high performance 

materials in various disciplines such as aircraft and aerospace industries, nautical 

structures, and engineering applications have increased remarkably (see examples in 

Figure 1.1). In general, this requirement is to ensure that all involved components must 

be made from stiffer, lighter and stronger materials. At the same time, use of such 

complex materials generally poses nontrivial challenges in the analysis and design 

procedure to ascertain the integrity and safety throughout the lifespan of those 

components. The major cause of partial damage and ultimate failure of components is 

from various sources such as uncertainties in the loading, pre-existing flaws and defects 

in materials, and load-induced cracks occurring during applications. As the direct 

consequence, the investigation of flaws and defects in engineering components, devices 

and parts is of primary interest of many researchers because information gained from 

those studies can be potentially used to assess their failure mechanism, usage lifespan 

and performance. Mathematical modeling and analysis is one of the most commonly 

used tools to achieve those essential tasks.  

There are many situations encountered in practices where damages and flaws are 

induced in a region relatively near the surface and their sizes are sufficiently small when 

compared with the characteristic dimensions of components and parts. A half-space 

containing near-surface cracks, when supplied by a set of proper governing physics, is 

one of the most commonly used mathematical models and is found adequate for 

approximating those situations (see Figure 1.2). Such idealization significantly 

simplifies the overall actual geometry, reduces the computational effort, and also yields 

the reasonably accurate prediction relative to the full analysis of the whole body. 

However, performing the stress analysis of such idealized body by conventional 

domain-based numerical techniques such as the finite different method (FDM) and the 

finite element method (FEM) is not computationally efficient as a result of the 

unbounded nature of the domain and the irregularity induced in a localized region 

around the cracks. Methods based upon boundary integral equations (BIEs) have been 

well-known, for several decades, as alternative, efficient numerical techniques for 

modeling crack problems especially when the involved medium is unbounded (e.g., 

Cruse, 1988; Katsikadelis, 2002). This is due to that the key governing equations only 

contain unknowns on the boundary and crack surfaces; as a result, it only requires the 

solution discretization over a domain of reduced spatial dimensions. 
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Figure 1.1: (a) Aircraft engine components1, (b) an orion crew exploration vehicle2, (c) 

a luxury yacht project3, and (d) a composite structure4.  

 

 

        

 

       

 

 

 

 

 

 

 

Figure 1.2: Schematics of (a) interior elliptical crack and (b) surface-breaking crack. 

                                                 
1  http://www.cobham.com/about-cobham/communications-and-connectivity/about-us/composites/ 

composite-engine-components.aspx 
2  http://www.nasa.gov/mission_pages/constellation/altair/altair_concept_artwork.html 
3  http://www.helicesnews.com/News/Monocoque-a-moteur/Couach-Couach-launches-a-new-26-

metre-model-and-enters-the-realm-of-80-foot-boats 
4         https://compositebuild.wordpress.com/category/architecture/ 

(a) (b) 

(d) (c) 

(a) 

Half-space surface 

 

(b) 

Half-space surface 

 

http://www.cobham.com/about-cobham/communications-and-connectivity/about-us/composites/%20composite-engine-components.aspx
http://www.cobham.com/about-cobham/communications-and-connectivity/about-us/composites/%20composite-engine-components.aspx
http://www.nasa.gov/mission_pages/constellation/altair/altair_concept_artwork.html
http://www.helicesnews.com/News/Monocoque-a-moteur/Couach-Couach-launches-a-new-26-metre-model-and-enters-the-realm-of-80-foot-boats
http://www.helicesnews.com/News/Monocoque-a-moteur/Couach-Couach-launches-a-new-26-metre-model-and-enters-the-realm-of-80-foot-boats
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Various boundary integral equation techniques have been developed to solve 

cracks in an elastic half-space (e.g., Lo, 1979; Martin et al., 1993; Khaj and Sushko, 

1994; Sushko and Khaj, 1996; Hrylyts'kyi et al., 2003; Gordeliy and Detournay, 2011). 

It should be remarked however that most of existing techniques were developed 

specifically to treat planar cracks and a half space made from isotropic materials. In 

addition, the key formulation was generally based either on strongly singular or 

hypersingular integral equations. The former limitation renders various practical cases 

cannot be treated; for instance, components made from hexagonal crystal materials and 

fiber-reinforced composites whose behavior is anisotropic in nature (see Figure 1.3) 

and non-planar geometry of the crack surface which commonly occurs during the 

propagation. For the latter, use of integral equations containing strongly singular and/or 

hypersingular kernels generally poses both theoretical and computational difficulties 

such as the interpretation and evaluation of values of singular integrals and constraints 

on solution space in the discretization.  

 

       

 

  

 

 

 

 

 

 

 

 

 

 

Figure 1.3: (a) Composite materials5 and (b) Transversely isotropic carbon fibers and 

their composites6. 

 

Li (1996) successfully derived a pair of singularity-reduced integral equations 

involving only weakly singular kernels for cracks in a linearly elastic half-space under 

several types of boundary conditions on its surface. However, the formulation is limited 

to the case of isotropic materials and the implementation of those integral equations to 

solve crack problems has not been found. The regularization technique proposed by Li 

                                                 
5 http://iceland.balticnordic.com/jiangsu-jiajing-composite-materials-co-nanjing/company.html 
6 http://www.jwave.vt.edu/crcd/kriz/lectures/OnePageLect.html 

(a) (b) 
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(1996) was later enhanced and utilized by Li and Mear (1998), Li et al. (1998), 

Rungamornrat and Mear (2008a) in the derivation of the weakly singular boundary 

integral equations for cracks in both isotropic and anisotropic, linear elastic infinite and 

finite media. However, the similar nontrivial extension to treat material anisotropy for 

cracks in a linearly elastic half-space has not been recognized in the literature. In 

addition, the implementation of those weakly singular boundary integral equations to 

solve cracked half-spaces for essential fracture data such as the stress intensity factors 

and the T-stress components has also not been found. This significant gap of knowledge 

motivates the current study. 

 

1.1 Objectives 

 

The current investigation aims mainly to (i) develop a set of singularity-reduced integral 

relations and equations for cracks in a generally anisotropic, linearly elastic half-space, 

(ii) develop an accurate and computationally efficient numerical procedure, based on 

the boundary element method, for solving cracks in a linearly elastic half-space under 

various types conditions on the free surface, and (iii) investigate the computational 

performance of the developed numerical technique such as the accuracy, convergence 

behavior, and capability to treat general boundary value problems. 

 

1.2 Scope of Work 

 

The present study only applies to following situations: (i) a half-space that is made of a 

homogeneous, generally anisotropic, linear elastic material with its material-symmetry 

plane parallel to the free surface; (ii) a half-space that is free of the body force and 

remote loading; (iii) tractions on the crack surface that are fully prescribed; (iv) the 

crack surface that is sufficiently smooth; (v) the free surface of the half-space subjected 

to one of the following four boundary conditions (i.e., symmetrical boundary condition 

(BC-type-1), anti-symmetrical boundary condition (BC-type-2), traction-free boundary 

condition (BC-type-3), and fully rigid boundary condition (BC-type-4)) in which the 

last two boundary conditions are considered only for isotropic materials; and (vi) only 

the stress intensity factors and the T-stress components along the fracture front being 

of primary interest.   

 

1.3 Methodology 

 

A set of regularized boundary integral relations and equations for an elastic half-space 

containing cracks established in the present study is the non-trivial generalization of 

results presented by Li (1996) by taking the material anisotropy into account. A 
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systematic regularization procedure proposed by Rungamornrat and Mear (2008a) is 

adopted along with techniques used by Li (1996) in handling the symmetrical and anti-

symmetrical boundary conditions to obtain the completely regularized boundary 

integral relations and equations. A well-known weakly singular, symmetric Galerkin 

boundary element method (SGBEM), utilized by Li et al. (1998) and Rungamornrat 

and Mear (2008b), and a standard Galerkin technique are selected to solve the 

associated boundary value problem. The underlying theories, proposed methodology 

and research procedure can be clearly outlined as follows. 

(1) A classical theory of linear elasticity is adopted, along with the concept of 

linear elastic fracture mechanics, to form basic field equations governing 

responses of the cracked elastic half-space such as equilibrium equations, 

constitutive relations, and strain-displacement relations. 

(2) Fundamental solutions for an un-cracked elastic half-space under BC-type-

1 and BC-type-2 are established by using the superposition technique along 

with existing fundamental solutions for an un-cracked elastic whole space 

and the proper use of symmetrical and anti-symmetrical conditions with 

respect to the free surface of the half-space. 

(3) Conventional boundary integral relations for displacements and stresses 

within the cracked elastic half-space under BC-type-1 and BC-type-2 are 

established by using the reciprocal theorem along with the established 

fundamental solutions for an un-cracked half space with the same type of 

boundary conditions. 

(4) Singularity-reduced boundary integral relations and weakly singular 

boundary integral equations for the cracked elastic half-space under BC-

type-1 and BC-type-2 are obtained by applying a systematic regularization 

procedure proposed by Rungamornrat and Mear (2008a) to the obtained 

standard integral relations. Specifically, special decompositions of both 

strongly singular and hypersingular kernels are first established using 

existing results for the elastic whole space and the symmetrical and anti-

symmetrical conditions along the free surface of the half-space. Such 

special decompositions are then employed along with the integration by 

parts to transfer the derivative of involved kernels appearing in the 

decompositions to the boundary data via Stokes’ theorem. 

(5) The singularity-reduced boundary integral relations/equations for the 

cracked half-space made of isotropic materials and subjected either to BC-

type-3 or BC-type-4 on the its free surface are obtained directly by applying 

a superposition technique to combine results of the first two boundary 
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conditions and the correction terms derived by Li (1996). The boundary 

value problem associated with the un-cracked half-space subjected to either 

the normal or shear traction on the free surface was solved using the 

potential-theory-based approach and solution representations. Again, a 

similar regularization procedure as that employed for BC-type-1 and BC-

type-2 is employed to construct the final singularity-reduced boundary 

integral relations/equations. 

(6) A weakly singular SGBEM is adopted to construct numerical solutions of 

the weak-form traction boundary integral equation. In the solution 

discretization, special crack-tip elements developed by Li et al. (1998) and 

Rungamornrat and Mear (2008b) are employed along the crack boundary 

to enhance the approximation of the near-front relative crack-face 

displacement and, in addition, to embed special degrees of freedom along 

the crack boundary which are related to the gradient of the crack-face 

displacement. 

(7) Once the relative crack-face displacement is fully determined, the sum of 

the crack-face displacement is determined from the regularized weak-form 

displacement boundary integral equation using standard Galerkin 

technique. 

(8) Special numerical quadrature based on the integrand regularization via a 

family of variable transformations including both the triangular polar 

transformations and the logarithmic transformations is utilized to 

numerically evaluate the nearly singular and weakly singular double 

surface integrals arising from the discretization of the crack surface. 

(9) An interpolation technique proposed by Rungamornrat and Mear (2008b) 

is employed to evaluate weakly singular kernels for generally anisotropic 

materials in order to reduce the computational effort corresponding to the 

direct computation of the closed contour integral for every pair of field and 

source points. 

(10) A selected indirect linear solver such as the conjugate gradient method with 

and without pre-conditioning is utilized to solve the two systems of linear 

algebraic equations. 

(11)  Explicit formula proposed by Rungamornrat and Mear (2008b) and 

Subsathaphol (2014) are implemented to compute the stress intensity 

factors and the T-stress components along the crack boundary in terms of 

the solved jump in and sum of the crack-face displacement, respectively.  
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1.4 Significance  

 

The present study offers an accurate and computationally efficient numerical technique 

for modeling shallow, near surface, and surface breaking cracks within a bulk of 

material. The key formulation is established in a general three-dimensional context 

integrating both material anisotropy and various types of boundary conditions and this 

should enhance the capability to perform stress analysis of cracked bodies made of a 

broader class of materials such as composites and rocks. Since the governing equations 

are established in terms of the boundary integral equations and all types of conditions 

at the half-space surface are directly incorporated in the development of fundamental 

solutions, the discretization of the entire half-space and its surface is not required. This 

should significantly lessen the computational resources associated with the reduction 

in the number of unknowns and, in addition, provide an attractive computational tool 

for simulating crack advances where the adaptation of meshes is required during the 

simulations. Besides its direct applications to mathematically model a variety of 

engineering problems involving cracks (e.g., machine components, structural 

components, devices, geo-engineering and pressure vessels containing defects and 

flaws near their free surface), the developed methodology and procedure can be 

conveyed and generalized to investigate cracks in bi-material domains. 

 

1.6 Outline of Dissertation  

 

In this dissertation, a set of regularized boundary integral relations and equations for an 

elastic half-space containing cracks and subjected to various types of boundary 

conditions on the free surface is derived. In addition, the solution procedure based upon 

the regularized boundary element method and standard Galerkin technique is also 

established. The key motivation, research objective and scope of work, the brief 

methodology and significance of work are presented in Chapter 1 whereas the 

remaining portion of this dissertation is organized as follows. 

In Chapter 2, a brief review of previous studies concerning the modeling and 

analysis of cracks in an elastic half-space is provided. Various existing solution 

techniques applied to solve cracked elastic half-space problems are summarized. 

Besides, the recent advances of boundary integral equation methods relevant to the 

present investigation are also briefly discussed. 

Chapter 3 contains the problem description, basic field equations from a classical 

theory of linear elasticity, fundamental solutions of the displacement and stress for an 

un-cracked elastic half-space under symmetrical and anti-symmetrical boundary 

conditions, standard integral relations for stress and displacement within an elastic half-
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space containing cracks, special representations of both hyper-singular and strongly 

singular functions, and the development of completely regularized integral equations 

essential for formulating the governing equations of cracks within the half-space. 

Chapter 4 mainly presents components essential for the development of a 

computational procedure for determining the unknown crack-face data such as the sum 

of and jump in the crack-face displacement and the post-process for the mixed-mode 

stress intensity factors and the T-stress components. A formulation of the boundary 

value problem based upon the regularized integral equations established in the previous 

chapter is obtained first and, then, the discretization procedure following Galerkin 

technique is briefly outlined. Essential ingredients to enhance the computational 

efficiency and accuracy such as the approximation of the near-front behavior, the 

numerical integration, and the evaluations of kernels for anisotropic materials are also 

discussed. Finally, explicit formulae for extracting the stress intensity factors and the 

T-stress components along the crack front are proposed. 

Extensive results for cracks in a linearly elastic half-space under various scenarios 

are reported in Chapter 5 to demonstrate the capability and accuracy of the developed 

numerical procedure. In particular, results for a particular class of boundary value 

problems are generated first and compared with reliable benchmark solutions to verify 

both the derivation of integral equations and the implementations. Then, more 

complicated problems associated with multiple and non-flat cracks are investigated and 

obtained results are reported to prove the versatility and robustness of the developed 

procedure. 

The last chapter summarizes the essential finding associated with both the integral 

formulations and implemented numerical procedure. Besides, the extension of the 

present work to general types of boundary conditions and multi-field materials is also 

included. 
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CHAPTER 2 

BACKGROUND AND REVIEW 

This chapter reports results from an extensive review of literatures related to the 

theoretical modeling and analysis of cracks in an elastic half-space. Various existing 

solution methodologies are briefly summarized including their pros and cons. In 

addition, the background and recent advances of the boundary integral equation 

methods relevant to the current investigation is also briefly discussed. 

 

2.1 Modeling of Cracked Half-Space 

 

A half-space containing a surface of discontinuities is one of mathematical domains 

commonly used to represent a physical body in the simulation of localized, near-surface 

flaws, defects, and impurities if their sizes are sufficiently small when compared with 

the characteristic dimensions of the body. Such idealization significantly simplifies the 

real geometry, reduces the computational effort, and also yields the reasonably accurate 

prediction relative to the full analysis of the whole body. To perform such theoretical 

simulations, solution techniques have played a crucial role in the solution accuracy and 

computational performance and they must be properly selected to suit each involved 

scenario. Many investigations based upon the conventional theories of linear elasticity 

and linear elastic fracture mechanics have been well recognized in the literature and 

various techniques including analytical and semi-analytical approaches, conventional 

domain-based numerical techniques, and boundary-based approaches have been 

proposed to construct solutions of mathematical models of cracked half-spaces. In 

particular, those existing solution techniques were based on integral-transform-based 

and series-representation method (e.g., Srivastava and Singh, 1969; Feng et al., 2007; 

Monastyrskyy and Kaczyński, 2010; Bogdanov, 2011; Eskandari-Ghadi et al., 2013), 

the body force method (e.g., Murakami, 1985; Noguchi and Smith, 1995; Noguchi et 

al., 1997), the iterative-based alternating method (e.g., Smith and Alavi, 1971; Shah 

and Kobayashi, 1973; Dhondt, 1995), the inverse method (e.g., Keat et al., 1998), the 

standard finite element technique (e.g., Ghajar and Alizadeh, 2013) and the boundary 

integral equation methods (e.g., Lo, 1979; Hayashi and Abé, 1980; Mayrhoffer and 

Fischer, 1989; Martin et al., 1993; Khaj and Sushko, 1994; Khaj and Sushko, 1996; 

Sushko and Khaj, 1996; Movchan and Willis, 2000; Kit et al., 2000; Hrylyts'kyi et al., 

2003; Gordeliy and Detournay, 2011; Skalsky et al., 2013). 
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Analytical and semi-analytical techniques based on integral transforms, dual 

integral equation theories, and series representations were successfully established in 

the investigation of the near-front elastic field and the stress intensity factors of some 

cracks with relatively simple geometry (e.g., a penny-shaped crack) in an isotropic, 

linearly elastic half-space (e.g., Srivastava and Singh, 1969; Feng et al., 2007; 

Bogdanov, 2011). While those methodologies can yield very accurate results 

comparable to the exact solution, their capability has been found very limited and they 

cannot be applied to treat various practical scenarios due to the high complexity posed 

by the general prescribed information such as crack geometries, material behavior, 

boundary and loading conditions. 

To further enhance and broaden the capability for modeling elastic cracked half-

spaces, a variety of numerical procedures have continuously been developed in the past 

several decades. Based on the linear feature of the elastic field and a standard 

superposition technique, the body force method was exploited by several investigators 

to perform the stress analysis and estimate the stress intensity factors along the 

boundary of planar cracks contained in an elastic half-space (e.g., Murakami, 1985; 

Noguchi and Smith, 1995; Noguchi et al., 1997). Although fully mixed-mode problems 

have been included in the work of Murakami (1985), it was still limited to planar cracks, 

the traction-free surface and isotropic materials. Other approaches such as the 

alternating techniques, which are based on an iterative solution procedure to remove 

the fictitious residual stress, were also established to solve cracked half-space problems 

(e.g., Smith and Alavi, 1971; Shah and Kobayashi, 1973; Dhondt, 1995). Due to the 

nature of the solution strategy, the alternating technique was found yielding results of 

relatively low accuracy (e.g., Mayrhoffer and Fischer, 1989). An experimental 

approach was also proposed by Keat et al. (1998) in which the algorithm of inversion 

for identifying embedded crack geometries and locations in a half-space from field 

measurements of the surface displacement was presented. Nonetheless, this technique 

can only be applied for simple cases of crack configurations and loading conditions. 

Recently, a standard finite element technique was also developed to investigate cracked 

half-space problems (e.g., Ghajar and Alizadeh, 2013); however, it has been found that 

substantially fine mesh is required in the discretization especially in the near-front zone 

and the truncation of the domain must be properly considered to treat the unbounded 

dimensions. It should also be remarked that all studies indicated above were still limited 

to certain crack configurations, isotropic materials, and determination of stress intensity 

factors. The analysis for nonsingular terms such as the T-stress components and the 

treatment of material anisotropy were still not addressed. The consideration of material 

anisotropy was found in the work of Monastyrskyy and Kaczyński (2010). In their 
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study, the material is assumed transversely isotropic and possessing the axis of material 

symmetry normal to the free surface and only a crack of penny-shape oriented 

horizontally is modeled. A technique of Hankel integral transforms along with a 

selected numerical procedure was adopted to determine the stress intensity factors along 

the crack front. Recently, Eskandari-Ghadi et al. (2013) applied the method of integral 

transform to analytically solve a horizontal, penny-shaped crack in a transversely 

isotropic, linearly elastic half-space under time-harmonic asymmetric tractions.  

Among various existing solution techniques, ones based upon boundary integral 

equations have been extensively employed in the analysis procedure due to their 

simplicity to treat the unbounded geometry. With the proper incorporation of 

fundamental solutions to satisfy the boundary conditions on the free surface of the half-

space, the key governing integral equations simply involve unknowns only on the crack 

surface and this, as a result, significantly reduces the number of degrees of freedom 

resulting from the discretization. In 1979, Lo applied Mindlin’s point force solution to 

derive the strongly singular integral equation for an embedded planar crack oriented 

parallel to the surface of an isotropic, linearly elastic half-space. While the integral 

equation was successfully obtained, the implementation to solve cracked half-space 

problem was not found in this study. Hayashi and Abé (1980) developed the collocation 

technique based on a strongly singular traction boundary integral equation to determine 

the pure mode-I stress intensity factors of a uniformly pressurized, vertical, semi-

elliptical, surface-breaking crack in an isotropic, linearly elastic half-space with the 

traction-free surface. Martin et al. (1993) employed Mindlin’s fundamental solution to 

obtain a system of singular boundary integral equations for a pressurized crack oriented 

perpendicular to the free surface of an isotropic elastic half-space with the stress-free 

surface. Although the implementation of those equations was not included in their 

study, the solvability and the regularity of solutions of the developed integral equations 

were proven. Later, Khaj and Sushko (1994) investigated the interaction of two 

identical, near-surface, coplanar, circular cracks in an isotropic, linearly elastic, half-

space with the stress-free surface and loaded by forces perpendicular to the crack 

surface. In the analysis, the opening of the cracks was determined by solving a system 

of hypersingular boundary integral equations and those results were employed to extract 

the stress intensity factors. Sushko and Khaj (1996) developed a system of 

hypersingular integro-differential equations governing the opening displacement of a 

planar surface-breaking crack in an isotropic, linearly elastic, half-space. Such 

equations were solved numerically for the special case of cracks with their geometry is 

a part of a circle. In the same year, Khaj and Sushko (1996) employed a conformal 

mapping along with a semi-analytical technique to solve a system of hypersingular 
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boundary integral equations in the investigation of the influence of the depth and 

orientation of a planar crack with the shape of a limacon of Pascal. Later, Kit et al. 

(2000) generalized the work of Khaj and Sushko (1994) to investigate the interaction 

of multiple, planar, surface-breaking cracks of arbitrary shapes and orientations. The 

solution procedure was based primary on solving a system of boundary integral 

equations for the relative crack-face displacement and used that data to post-process for 

the stress intensity factors. Movchan and Willis (2000) extended the work of Martin et 

al. (1993) to further explore the corner singularity at locations where the crack 

intersects the free boundary. In their analysis, a hypersingular integral equation 

formulated in terms of the relative crack-face displacement is employed. Later, 

Hrylyts'kyi et al. (2003) implemented a hypersingular boundary integral equation 

method to study the interaction of planar cracks in an isotropic elastic half-space with 

rigidly restrained surface. The potential method was employed to derive boundary 

integral equations in terms of unknown relative crack-face displacement. The stress 

intensity factors were also calculated for a circular crack perpendicular to rigid surface. 

Gordeliy and Detournay (2011) developed the displacement discontinuity technique to 

model axisymmetric cracks in an isotropic, linearly elastic, half-space. Their key 

formulation was based primarily on the hypersingular integral equations involving the 

displacement jump across the crack surface and the combined numerical integration 

scheme and recursive procedure was adopted to directly integrate involved hyper and 

Cauchy singular integrals. In addition, the tip-elements were also employed to enhance 

the accuracy of the near-front approximation. Recently, Skalsky et al. (2013) 

investigated an axisymmetric crack problem involving the mode-III loading condition 

for an isotropic, linearly elastic half-space. The displacement-field functions were 

numerically determined by the frequency-domain boundary integral equations. Still, 

this particular work focuses only a boundary value problem concerning a penny-shaped 

crack under the action of torsion loading. It should be remarked that, among various 

existing studies described above, the key formulations were still based primarily on 

strongly and/or hypersingular integral equations with limitation to isotropic materials 

and such equations were implemented mainly to treat planar cracks under simple crack-

faced loading and determine the stress intensity factors. 

It is well known that the displacement boundary integral equation derived directly 

from Somigliana’s identity is insufficient for solving cracked bodies within the context 

of a single-domain-based formulation (e.g., Cruse, 1988). An alternative means to 

circumvent such difficulty besides inefficient multi-domain techniques is to employ, in 

addition, the traction boundary integral equation to treat cracks. Unfortunately, the 

conventional traction boundary integral equation established directly from the stress 
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boundary integral relation involves both hyper-singular and strongly singular kernels 

and their treatment requires special care (e.g., Guiggiani et al., 1991). In addition, the 

smoothness requirement of the jump in crack-face displacement data for the validity of 

the hyper-singular boundary integral equation implies the need of C1-elements in the 

solution discretization (e.g., Gray et al., 1990, Martin and Rizzo, 1996). To further 

alleviate such requirement and facilitate the numerical treatment of involved integrals, 

a regularization technique was proposed by Li (1996) to derive the regularized 

boundary integral equations for displacement discontinuities embedded in a three-

dimensional, isotropic, linearly elastic half-space under various boundary conditions. 

Such technique was later enhanced and utilized by Li and Mear (1998), Li et al. (1998), 

Rungamornrat and Mear (2008a) in the derivation of the weakly singular, weak-form 

boundary integral equations for cracks in both isotropic and anisotropic, linear elastic 

infinite and finite media. However, the similar nontrivial extension to treat material 

anisotropy for cracks in a linearly elastic half-space has not been recognized in the 

literature. In addition, the implementation of those weakly singular boundary integral 

equations to solve cracked half-spaces for essential fracture data such as the stress 

intensity factors and the T-stress components has also not been found. 

 

2.2 Regularized BIEMs 

 

Various regularization techniques have been continuously proposed to construct 

singularity-reduced integral equations with the primary objective to reduce the 

smoothness requirement in solution discretization. Within the context of the stress 

analysis of cracked elastic media, a set of regularized boundary integral equations has 

been recognized for past several decades and some of those relevant investigations are 

briefly presented here to indicate the recent advances in the area. Bui (1977) and 

Weaver (1977) simultaneously developed the singularity-reduced traction boundary 

integral equation for mode-I planar cracks contained in an infinite elastic medium. In 

their work, all hypersingular integrals were regularized with the final integrands 

containing only Cauchy-singular kernels. Later, Sládek and Sládek (1982) generalized 

the work of Bui (1977) and Weaver (1977) to treat non-flat cracks under general loading 

conditions. The key component used to establish the singularity-reduced traction 

integral equation indicated above was the derivative transferring between the 

hypersingular kernels and the crack-face data via the integration by parts. It should be 

remarked that the obtained strongly singular traction integral equation still require the 

continuity of the relative crack-face displacement for its validity and, in the numerical 
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implementation perspective, the computational cost associated with the use of C1-

interpolation functions is still significant (see also the work of Bonnet and Bui, 1993).  

In past several decades, efforts have been invested to develop the completely 

regularized boundary integral equations involving only weakly singular kernels instead 

of ones involving Cauchy singular integrals. This is due mainly to the simplicity 

associated with the interpretation and numerical calculation of singular integrals and 

the low smoothness requirement of data. Within the context of linear elasticity 

applications, the work of Gu and Yew (1988) was recognized as the first derivation of 

weakly singular integral equations for crack problems. However, their formulation was 

still restricted to the case of isolated, planar cracks in an isotropic elastic whole space 

under the pure mode-I loading condition. Later Xu and Ortiz (1993) extended the work 

of Gu and Yew (1988) to treat non-planar cracks and mixed-mode loading conditions. 

In their work, the relative crack-face displacements were represented as the continuous 

distribution of the dislocation loops.  

To allow the treatment of cracks of arbitrary shapes in an isotropic elastic half-

space under different types of boundary conditions on the free surface, Li (1996) 

proposed a systematic regularization technique based upon the special representations 

of singular kernels and the integration by parts via Stokes’ theorem. It is remarked that 

the formulation was limited to isotropic materials and the implementation of those 

integral equations to solve crack problems was not considered. Li and Mear (1998), and 

Li et al. (1998) generalized the work of Li (1996) to the case of arbitrary cracks in 

isotropic, linearly elastic, unbounded and finite media. The implementation of those 

equations based on the regularized SGBEM was also successfully implemented to 

model crack problems under various scenarios. Later, Xu (2000) employed the 

dislocation theory to establish the weak singular traction boundary integral equation for 

cracks in a medium made from generally anisotropic materials. While his formulation 

is applicable to treat arbitrary-shaped cracks and general loading conditions, it was still 

restricted to cracks in the whole space. The treatment of general material anisotropy in 

the development of boundary integral equations and the implementation of numerical 

procedure via the weakly singular SGBEM was also investigated by Rungamornrat and 

Mear (2008a) and Rungamornrat and Mear (2008b) for cracks in both unbounded and 

finite media. While various regularization procedures have been proposed in the 

literature, work concerning cracks in an anisotropic, linear elastic half-space has not 

been recognized. In addition, the development of weakly singular SGBEM for the 

special case of cracks in an isotropic, linearly elastic half-space under various 

conditions on the free surface is also not available in the literature.  
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In the present study, the systematic regularization procedure proposed by Li and 

Mear (1998); Li et al. (1998); Rungamornrat and Mear (2008a); Rungamornrat and 

Mear (2008b); Rungamornrat and Senjuntichai (2009) is further extended to derive a 

set of regularized integral relations for a half-space containing cracks and made of 

anisotropic materials possessing a plane of material symmetry parallel to the free 

surface. In addition, the implementation of the derived equations in the context of 

weakly singular SGBEM and standard Galerkin technique is also established. The 

proposed work is carried out within a general framework allowing the treatment of 

arbitrary shaped cracks and half-spaces under various conditions on the half-space 

surface and the determination of both the stress intensity factors and the T-stress 

components along the crack front. 
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CHAPTER 3 

FORMULATION 

This chapter summarizes the clear problem description, basic field equations from a 

classical theory of linear elasticity, fundamental solutions of the displacement and stress 

within an un-cracked elastic half-space under symmetrical and anti-symmetrical 

boundary conditions, standard integral relations for both stress and displacement within 

an elastic half-space containing cracks, special representations of hyper-singular and 

strongly singular functions, and the development of completely regularized integral 

equations essential for modeling cracks within the half-space. 

 

3.1 Problem Description  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic of elastic half-space containing isolated cracks and subjected to 

BC-type-I boundary conditions on the free surface. 

 

Let us consider an elastic half-space   containing an embedded crack and a surface 

breaking crack as clearly illustrated in Figure 3.1. For convenience in further 

development, a reference Cartesian coordinate system 1 2 3{ ; , , }x x xO  with the 

orthonormal base vectors 1 2 3{ , , }e e e
 
is taken such that the origin O  is located on the 

half-space surface; the 3x -axis directs downward; and the 1x - and 2x -axes follow the 

right hand rule. The body is made from a homogeneous, anisotropic, linearly elastic 

material with the elastic constants ijklE  referring to the selected coordinate system and 

possessing 3 0x   as the plane of material symmetry. The crack surfaces in the 

reference or undeformed state can be represented by two geometrically identical 

 

 

 
 

 

x1, e1 

 

x3, e3 

 

x 
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BC-type-I 
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surfaces cS 
 and cS 

 (see Figure 3.1). The outward unit normal vectors at a smooth 

point cS ξ  and its coincident point cS ξ  are denoted, respectively, by n  and n  

and they clearly satisfy   n n . On both crack surfaces cS 
 and cS 

, the traction data 

is fully prescribed (i.e., 
0

( ) ( ) 
c

S
 

  xt t x x  and 
0

( ) ( ) 
c

S
 

  xt t x x  where 
0

t  and 

0
t  are known functions) whereas, on the surface 3 0x  , one of the following four types 

of boundary conditions, termed BC-type-I for I = 1, 2, 3 and 4, is assumed. For the BC-

type-1, the normal component of the displacement and the shear tractions vanish 

identically (i.e., 3 13 23
0, 0u     ); for the BC-type-2, the tangential components of 

the displacement and the normal traction vanish (i.e., 1 2 33
0, 0u u    ); for the BC-

type-3, all components of the traction vanish (i.e., 13 23 33
0     ); and for the BC-

type-4, all components of the displacement vanish (i.e., 1 2 3
0u u u   ). In the current 

investigation, the crack surfaces cS 
 and cS 

 are assumed piecewise smooth (i.e., the 

unit normal vector is piecewise well-defined) and the remote loading and body force 

are absent. 

The statement of the current research problem is to determine the complete elastic 

field (including the displacement and stress fields) of the cracked elastic half-space   

and the fracture data including the relative crack-face displacement, the stress intensity 

factors, and the T-stress components along the crack front. 

 

3.2 Basic Field Equations  

 

Mechanical responses of the given half-space   (including the displacement, stress, 

and strain fields) under external excitation are mathematically modeled by a classical 

theory of linear elasticity and the concept of linear elastic fracture mechanics. All 

involved field quantities and associated field equations are introduced and listed below. 

From the conservation of linear and angular momentum and, in the absence of 

the body force field, the stress tensor σ  (with its components referring to the reference 

Cartesian coordinate system 1 2 3{ ; , , }x x xO  denoted by ij ) must be symmetric (i.e., 

ij ji  ) and divergence free everywhere, i.e., 

 

, 0ij j 
 

                          (3.1) 

where , jf  stands for the partial derivative of a function f  with respect to the coordinate 

jx . Here and in what follows, all standard Latin indices take the values from 1 to 3 and 
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repeated indices imply the summation over their range. For a body made of linear elastic 

materials, the stress tensor σ  is related to the strain tensor ε  (with its components 

denoted by ij ) via the generalized Hooke’s law, i.e.,  

 

ij ijkl klE 
 

                       (3.2) 

 

where ijklE  are prescribed constant elastic moduli satisfying following symmetries: 

ijkl ijlk jikl klijE E E E   . For isotropic materials, the elastic moduli involve only two 

independent material parameters and take a simple form 

 

( )ijkl ik jl il jk ij klE                                  (3.3) 

 

where   and   are Lame’s constants and ij  denotes a standard Kronecker-delta 

symbol. The relation between the displacement vector u  and the strain tensor ε  are 

given by
 

 

 , ,

1

2
ij i j j iu u                           (3.4) 

 

where iu  denotes components of the displacement vector u . In addition, the traction 

vector t  at any point on a smooth surface can be obtained in terms of the stress tensor 

at the same point by 
 

 

i ij jt n                         (3.5) 

 

where it  and in  are components of the traction vector t  and a unit normal vector n , 

respectively. The relations (3.1), (3.2) and (3.4) form the basic field equations 

governing all unknown elastic fields ( )u u x , ( )ε ε x  and ( )σ σ x . 

 

3.3 Fundamental Solutions of Half-Space under BC-type-1 and BC-type-2  

 

To construct fundamental solutions for the displacement and stress of an un-cracked, 

linearly elastic half-space subjected to boundary conditions of BC-type-1 and BC-type-

2, the existing fundamental solutions of an un-cracked elastic whole space (e.g., Ting 

and Lee, 1997; Wang, 1997) can be used along with the symmetrical and anti-

symmetrical conditions as indicated below. It should be remarked that results presented 

here are restricted only to the case that the material constituting the half-space is 
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homogeneous and linearly elastic, and possesses 3 0x   as a plane of material 

symmetry.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Schematic of (a) un-cracked elastic half-space with boundary condition of 

BC-type-1 and subjected to unit concentrated force at point  and (b) un-cracked 

elastic whole space subjected to a pair of symmetrical unit concentrated forces at a point 

 and its image point  with respect to the surface . 

 

First, consider the un-cracked elastic half-space with the boundary condition of 

BC-type-1 and subjected to a unit concentrated force ip i e  at a source point k kxx e  as 

illustrated in Figure 3.2(a). It can readily be verified that an elastic field of this elastic 

half-space is identical to that of the bottom half of an elastic whole space subjected to 

a unit concentrated force ip i e  acting at a point k kxx e  and a unit concentrated force 

ip i e  (where 
ip  is a constant tensor defined by 11 22 33 1      , 0 for ij i j   ) 

acting at a point k kxx e  with 
k kp px x  as indicated in Figure 3.2(b). Note, in 

particular, that the loading condition of the elastic whole space is clearly symmetrical 

with respect to the plane 3 0x   and, as a result, the conditions 3 13 230, 0u      are 

automatically satisfied. Upon using the symmetry, the displacement and stress at any 

field point ξ  within the half-space, denoted respectively by 1 ( , )p

jU ξ x  and 1 ( , )p

ijS ξ x , 

can therefore be obtained as 

 
1 ( , ) ( ) ( )p p k

j j pk jU U U   ξ x ξ x ξ x
 

        (3.6) 

x

x x
3 0x 

x1, e1 

 

x3, e3 
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O 
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1 ( , ) ( ) ( )p p k

ij ij pk ijS S S   ξ x ξ x ξ x
 

   (3.7) 

 

where the superscript “1” is utilized to emphasize that the fundamental solutions 

correspond to the boundary condition of BC-type-1 and ( )p

jU ξ x  and ( )p

ijS ξ x  

denote the displacement and stress at any point ξ  of the elastic whole space subjected 

to a unit concentrated force ip i e  at a point k kxx e . The explicit form of the 

displacement and stress fundamental solutions ( )p

jU ξ x  and ( )p

ijS ξ x  for generally 

anisotropic, linearly elastic materials is given by (see details in the work of 

Rungamornrat and Mear, 2008a) 

 

1

2

0

1
( ) ( , ) ( )

8

p

j jpU ds
r



 

  
z r

ξ x z z z

 

                      (3.8) 

( )
( )

p
p k

ij ijkl

l

U
S E

ξ

 
 



ξ x
ξ x

 

                                              (3.9) 

 

where ( , )kl i iklj jz E zz z ,  r ξ x ,  || ||r  r   and the line integral is taken over a unit 

circle 1z  on a particular plane 0 z r . It is apparent from (3.6)-(3.7) and the 

properties of the fundamental solutions ( )ξ xp

jU  and ( )p

ijS ξ x  that 1 ( , )p

jU ξ x and 

1 ( , )p

ijS ξ x  are singular only at ξ x  of (1/ )rO  and 
2(1/ ),rO

 respectively. Explicit 

form of the fundamental solutions for the isotropic case can be found in available 

literatures (e.g., Xiao, 1998). 

Let us consider, next, the elastic half-space with the boundary condition of BC-

type-2 and subjected to a unit concentrated force ip i e  at a source point k kxx e  as 

shown in Figure 3.3(a). With the same analogy as the previous case, the elastic solution 

of the half-space is identical to that of the bottom half of an elastic whole space 

subjected to a unit concentrated force ip i e  acting at a point k kxx e  and a unit 

concentrated force 
ip i e   acting at the image point k kxx e  as indicated in Figure 

3.3(b). For this particular case, the elastic whole space apparently subjected to anti-

symmetrical loading conditions with respect to the plane x3 = 0. As a result, the 

displacement and stress at any field point ξ  of the half-space, denoted respectively by 

2 ( , )p

jU ξ x  and 2 ( , )p

ijS ξ x , are given, in terms of ( )p

jU ξ x  and ( )p

ijS ξ x , by 

 
2 ( , ) ( ) ( )p p k

j j pk jU U U   ξ x ξ x ξ x           (3.10) 
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2 ( , ) ( ) ( )p p k

ij ij pk ijS S S   ξ x ξ x ξ x          (3.11) 

 

where the superscript “2” is introduced to clearly indicate that the fundamental 

solutions belong to the half-space with the boundary condition of BC-type-2. Similar 

to the previous case, the singularity behavior of the fundamental solutions 2 ( , )p

jU ξ x  

and 2 ( , )p

ijS ξ x  follows directly that of  ( )p

jU ξ x  and ( )p

jU ξ x .      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic of  (a) un-cracked elastic half-space with boundary condition of 

BC-type-2 and subjected to unit concentrated force at point  and (b) un-cracked 

elastic whole space subjected to a pair of anti-symmetrical unit concentrated forces at 

a point  and its image point  with respect to the surface . 

 

3.4 Standard Integral Relations for Cracked Half-Space under BC-type-1 and BC-

type-2   

 

By applying the reciprocal theorem to an elastic half-space   containing cracks and 

subjected to the boundary condition of BC-type- ( = 1 or 2) as shown in Figure 3.1 

along with another elastic state associated with a fundamental problem of the half-space 

with the same boundary condition of BC-type-  (constructed in section 3.3), it leads 

to the displacement boundary integral relation for the cracked half-space with the 

boundary condition of BC-type-:  

 
0( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

c c

p p

p j j ij i j

S S

u U t dA S n u dA   

 

    x ξ x ξ ξ ξ x ξ ξ ξ

 

                   (3.12) 
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where 0 0 0( ) ( ) ( )j j jt t t   ξ ξ ξ  denotes the sum of tractions on both crack surfaces; 

( ) ( ) ( )j j ju u u     ξ ξ ξ  denotes the jump in the crack-face displacements; and the 

fundamental solutions ( , )p

jU
ξ x  and ( , )p

ijS
ξ x  are given in terms of ( )p

jU ξ x  and 

( )p

ijS ξ x  in a concise form as  

 

( , ) = ( - ) +Λ ( - )αp p k

j α j α pk jU U δ Uξ x ξ x ξ x

 

    (3.13) 

( , ) ( ) ( )p p k

ij α ij pk ijS S S

   ξ x ξ x ξ x  (3.14) 

 

where   and   are constants defined by 1 2 1    , 1 1   and 2 1   . Here and 

in what follows, the Greek index  takes the values 1 and 2 and the summation does 

not apply to the repeated . It is important to remark that the reduction to integrals over 

a single crack surface cS 
 results directly from the continuity of the fundamental 

solutions ( , )p

jU
ξ x  and ( , )p

ijS
ξ x .   

By taking spatial derivative of (3.12) along with the relation (3.4) to obtain the 

strain tensor and then employing the constitutive law (3.2), it yields an integral relation 

for the stress at an interior point x  of the cracked elastic half-space under the boundary 

condition of BC-type-:   
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( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

c c

p p

j ij

lk lkpq j lkpq i j

q qS S

U S
E t dA E n u dA

x x

 
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 


 

   
  

ξ x ξ x
x ξ ξ ξ ξ ξ   

       (3.15) 

 

From the relations (3.13) along with (3.9), the kernel ( , )/p

lkpq j qE U x ξ x  can be 

obtained explicitly in terms of the stress fundamental solution ( )p

ijS ξ x  for the un-

cracked elastic whole space as follows: 
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j j j
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                           ( ) ( )j b

α lk jb lkS S    ξ x x ξ                       (3.16) 

 

where the following crucial properties have been used: 

 

( ) ( )p j

j pU U  ξ x ξ x           (3.17) 

( ) ( )m a

j ma jb bU U   ξ x ξ x           (3.18) 

( ) / ( ) /j j

p q p qU x U ξ      ξ x ξ x               (3.19) 

ia aj ij       (3.20) 

 

It should be evident from (3.16) that the kernel ( , )/p

lkpq j qE U x ξ x  is singular only at 

ξ x  of 
2(1/ )rO . From (3.14), the kernel ( , )/p

lkpq ij qE S x ξ x  in (3.15) can be further 

simplified, in a similar fashion, to 
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p c
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E E
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ξ x ξ x
 

                          
( ) ( )

p p
ij ab

α lkpq ia jb lkpq

q q

S S
E E

ξ x
 

   
  

 
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                          ( ) ( )lk lk

α ij ia jb ab       ξ x x ξ
 

         (3.21) 

 

where the function ( )lk

ij ξ x  can be given in terms of the stress fundamental solution 

( )p

ijS ξ x  of the un-cracked elastic whole space by 

 

( )
( )

p

ijlk

ij lkpq

q

S
E

ξ

 
  



ξ x
ξ x           (3.22) 

 

In addition, to obtain the final expression (3.21), the relation (3.20) and the following 

properties have also been employed: 

 

( ) / ( ) /p p

ij q ij qS x S ξ      ξ x ξ x               (3.23) 

( ) ( )m c

ij ia jb mc abS S    ξ x ξ x           (3.24) 

( ) ( )c c

ab abS S   ξ x x ξ           (3.25) 
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From (3.21), (3.22) and the singularity behavior of the fundamental solution ( ),p

ijS ξ x  

the kernel ( , )/p

lkpq ij qE S x ξ x  is singular only at ξ x  of 
3(1/ )rO . It should be noted 

that the boundary integral relations (3.12) and (3.15) can be used to compute the 

displacements and stresses at any interior point x  provided that all unknown crack-face 

data is completely known. By taking an appropriate limit process of the boundary 

integral relation (3.12) to a point on the crack face, it yield the conventional integral 

equation for the sum of the crack-face displacement. However, such the displacement 

integral equation is mathematically degenerate and not sufficient for solving the key 

unknowns on the crack face. This is due to the coincidence of the crack surfaces cS 
 

and cS 
 that renders the final displacement boundary integral equation containing 

incomplete, crack-face traction data (i.e., it involves only the sum of the crack-face 

tractions). To overcome this mathematical difficulty, the integral equation of the jump 

in the traction across the crack surfaces is additionally required in the formulation of 

the governing equation. Such the integral equation can readily be constructed from the 

boundary integral relation for the stress (3.15) by taking the appropriate limit to any 

point on the crack surface cS 
. Although the conventional traction boundary integral 

equation is sufficient for performing the stress analysis of cracked bodies, it still 

contains both the strongly singular kernels ( , )p

ijS
ξ x  and ( , )/p

lkpq j qE U x ξ x  of order 

2(1/ )rO  and the hyper-singular kernel ( , )/p

lkpq ij qE S x ξ x  of order 
3(1/ )rO  that render 

the involved integrals difficult to be interpreted theoretically and treated numerically.  

       

3.5 Decompositions of Strongly Singular and Hypersingular Kernels   

 

To aid the regularization procedure of the boundary integral relations (3.12) and (3.15), 

the strongly singular kernels ( , )p

ijS
ξ x  and ( , )/p

lkpq j qE U x ξ x  and the hypersingular 

kernel ( , )/p

lkpq ij qE S x ξ x  are, first, decomposed into a form suiting the integration by 

parts through well-known Stokes’ theorem described in the next section. The key 

component to achieve such crucial task is based on the special decompositions of the 

strongly singular kernel ( )p

ijS ξ x  and the hypersingular kernel ( )lk

ij ξ x  associated 

with the un-cracked elastic whole space proposed by Rungamornrat and Mear (2008a):      

 

( ) ( ) ( )p p p

ij ij ism mj

s

S H G
ξ




    


ξ x ξ x ξ x  (3.26) 
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( ) ( ) ( )lk tk

ij ijkl ism lrt mj

s r

E C
ξ ξ

  
 

      
 

ξ x ξ x ξ x  (3.27) 

 

where ism  is an alternating symbol, ( ) ξ x  denote the Dirac-delta function with the 

center at a point x , and the functions ( )p

ijH ξ x , ( )p

mjG ξ x  and ( )tk

mjC ξ x  are 

defined by 

 

3
( )

4

p i i
ij jp

ξ x
H

r





  ξ x                                                          (3.28) 

1

2
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( ) ( , ) ( )
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mqa qjklp

mj kp a l

E
G z z ds

r







 

  
z r

ξ x z z z                                                (3.29) 

1

2

0

1
( ) ( , ) ( ),   

8 3

kjap
tk kjapmtsl
mj ap s l mtsl ptd pmq djpl qkms lmps djkq

A
C z z ds A E E E E

r
 





 

 
    

 


z r

ξ x z z z      (3.30) 

 

For isotropic materials, the functions
 

( )p

mjG ξ x  and ( )tk

mjC ξ x  are provided in a 

closed form (see the work of Li, 1996)    

 

2

( )( )1
( ) (1 2 )

8 (1 )

i i p pp

mj mpj ijm

x x
G

r r

 
  

 

  
    

  
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(3.31) 

2

( )( )
( ) (1 ) 2

4 (1 )

k k j jtk

mj tk mj tj km tm kj tm

x x
C

r r

 
       

 

  
      

  
ξ x

 
(3.32) 

 

Note, in addition, that the kernel ( )p

ijH ξ x  is clearly independent of material 

constants and is singular only at ξ x  of 
2(1/ )rO  whereas ( )p

mjG ξ x  and ( )tk

mjC ξ x  

depends primarily on material properties and are singular only at ξ x  of (1/ )rO . 

By using the decomposition (3.26) along with the relation (3.14), it leads to the 

decomposition of the strongly singular kernel ( , )p

ijS
ξ x : 

 

( , ) ( , ) ( , )p p p

ij ij ism mj

s

S H G
ξ

  


 


ξ x ξ x ξ x

 

                     (3.33) 

 

where the functions ( , )p

ijH
ξ x  and ( , )p

mjG
ξ x  are defined by 

 

( , ) ( ) ( )p p k

ij ij pk ijH H H

    ξ x ξ x ξ x                       (3.34) 

( , ) ( ) ( )p p k

mj mj pk mjG G G

    ξ x ξ x ξ x                       (3.35) 
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Similarly, by using again the decomposition (3.26) along with the expression (3.16), it 

results in  
 

( , )
( , ) ( , )

p

j j j

lkpq lk lrt tk

q r

U
E H G

x x



 
 

 
 

ξ x
x ξ x ξ                       (3.36) 

 

in which the fact that ( )j

lkH ξ x  and ( )p

mjG ξ x  are odd and even functions, 

respectively, has been utilized. Finally, by applying the decomposition (3.27) along 

with the relation (3.21), it yields the decomposition of the hypersingular kernel 

( , )/p

lkpq ij qE S x ξ x : 
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ξ x x ξ ξ x  

                            (3.37) 

where the kernel ( , )tk

mjC
ξ x  is given by 

 

( , ) ( ) ( )tk tk tk

mj mj am bj abC C C

      ξ x ξ x x ξ
 

                     (3.38) 

 

and following important properties have been employed:  

 

( ) / ( ) /tk tk

mj q mj qC ξ C x      ξ x ξ x             (3.39) 

( ) / ( ) /tk tk

mj q mj qC x C ξ      x ξ x ξ             (3.40) 

( ) / ( ) /q mq qξ ξ                 (3.41) 

ijk ia jb kc abc                (3.42) 

 

3.6 Weakly Singular Integral Equation for BC-type-1 and BC-type-2   

 

In this particular section, a pair of regularized boundary integral equations, one for the 

crack-face displacement and the other for the crack-face traction, is established. The 

special decompositions (3.33), (3.36) and (3.37) are employed along with Stokes’ 

theorem to carry out the integration by parts of both hypersingular and strongly singular 

integrals in order to shift the derivatives from involved kernels to the crack-face data. 

This regularization procedure is similar to that used by Rungamornrat and Mear (2008a) 

and Rungamornrat and Senjuntichai (2009).     

 

3.6.1 Weakly Singular Integral Equation for Displacement 
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To establish the regularized boundary integral relation for the displacement at any 

interior point x , the special decomposition (3.33) is first substituted into the 

integral relation (3.12) to obtain 

 

0( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )
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  (3.43) 

 

where ( )mD   denotes the surface differential operator given by  

 

( )
( )m i ism

s

D n
ξ


 

 


  (3.44) 

 

Upon performing the integration by parts of a term containing curl of the function 

( )p

mjG ξ x  via Stokes’ theorem and then using the property that the jump in the crack-

face displacement ju  identically vanishes along the crack front (i.e., 0ju   on cS 

), it finally yields   
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    (3.45) 

 

By taking limit cS  x y  of (3.45), we then obtain the integral equation of the sum 

of the crack-face displacements as 
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  (3.46) 

 

where c is a function defined such that ( ) 1/ 2c y  if the surface is smooth at a point y  

(i.e., the unit normal vector n  at y  is well-defined), otherwise c(y)  (0, 1) and 

( ) ( ) ( )p p pu u u     y y y  denotes the sum of the crack-face displacement. By 

multiplying (3.46) with a sufficiently smooth test function ( )pt y  and then integrating 
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the product over the whole crack surface cS 
, it finally leads to a weakly-singular, weak-

form integral equation for the crack-face displacement as 
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S
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  (3.47) 

 

Note that the function ( )c c y  simply reduces to 1/2 since the crack face is assumed 

piecewise smooth (i.e., a set of all points y  that the unit normal vector n  is not defined 

is of measure zero). It should be remarked that the weak-form boundary integral 

equation (3.47) contains only weakly singular kernels ( , )p

jU
ξ y , ( , )p

mjG
ξ y  and 

( , ) ( )p

ij iH n 
ξ y ξ  of (1/ )rO . 

 

3.6.2 Weakly Singular Integral Equation for Traction 

 

To establish a weakly singular, weak-form integral equation for the crack-face traction, 

a similar procedure as described in the previous subsection is employed. First, the 

special decompositions (3.36) and (3.37) are substituted into the integral relation for 

the stress (3.15) to obtain  
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    (3.48) 

By, again, carrying out the integration by parts of the third integral on the right hand 

side using Stokes’ theorem, it gives rise to the regularized boundary integral relation 

for the stress at any interior point x : 
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  (3.49) 
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It is noted that the boundary integral relation for the stress (3.49) still contains strongly 

singular kernels of 
2(1/ )rO . By further forming the product ( ) ( )l lkn 

y x  where cS y  

and then taking appropriate limit x y , it leads to an integral equation for the jump 

in the crack-face traction as 
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 (3.50) 

 

where   is a function defined such that ( ) y = 1/2 if the crack surface is smooth at 

point y  otherwise ( ) y   (0, 1) and 
0 0 0( ) ( ) ( )k k kt t t   ξ ξ ξ  represents the jump in the 

crack-face traction across the crack surface. Upon multiplying the boundary integral 

equation (3.50) by a smooth, well-defined test function ( )
k

u y , forming the integration 

of the product over the whole crack surface cS 
, carrying out the integration by parts 

through Stokes’ theorem, and using the fact that the test function ( )
k

u y  satisfies the 

homogeneous condition along the crack front, it finally yields a completely regularized 

weak-form boundary integral equation for the jump in the crack-face traction:  
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 (3.51) 

 

Again, from the assumption that the crack surface is piecewise smooth, the function 

( ) y  simply reduces to 1/2. It is remarked that the boundary integral equation (3.51) 

involves only weakly singular kernels ( , ) ( )j

lk lH n y ξ y , ( , )j

tkG y ξ  and ( , )tk

mjC
ξ y  of 

O(1/r). 

While the two equations (3.47) and (3.51) form a sufficient system of governing 

integral equations for determining the crack-face unknown data, the two relations (3.45) 

and (3.49) can be utilized to compute the displacements and stresses at any interior 

point of the body once the crack-face unknowns are solved. 
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3.7 Treatment of Cracked Half-Space under BC-type-I (for I = 3, 4)  

 

By applying the reciprocal theorem to the cracked elastic half-space   subjected to the 

boundary condition of BC-type-I (I = 1, 2, 3, 4) along with the elastic state associated 

with a fundamental problem of the un-cracked half-space under the same type of 

boundary conditions on the half-space surface, the standard integral relations for the 

displacement and stress at any interior point of the cracked half-space can be 

generalized to   

 
0( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( )

c c

I Ip Ip I

p j j ij i j

S S

u U t dA S n u dA
 

    x ξ x ξ ξ ξ x ξ ξ ξ

 

                   (3.52) 

0
( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( )

c c

Ip Ip

j ijI I

lk lkpq j lkpq i j

q qS S

U S
E t dA E n u dA

x x


 


 

   
  
ξ x ξ x

x ξ ξ ξ ξ ξ    (3.53) 

 

where ( , )Ip

jU ξ x  and ( , )Ip

ijS ξ x  are the displacement and stress fundamental solutions 

of an un-cracked half space under BC-type-I and the summation does not apply to the 

repeated index I. 

To completely regularize the boundary integral relations (3.52) and (3.53) for the 

two remaining boundary conditions BC-type-I (I = 3, 4), the same regularization 

procedure can be used and the special decompositions of the strongly singular kernels 

( , )Ip

ijS ξ x  and ( , )/Ip

lkpq j qE U x ξ x  and the hypersingular kernel ( , )/Ip

lkpq ij qE S x ξ x  play 

an important role in such development. To derive those decompositions, the 

superposition technique similar to that employed by Li (1996) can be adopted. More 

specifically, the problem of a cracked half-space under BC-type-3 can be treated as a 

linear combination of two sub-problems, a sub-problem-1 associated with the original 

cracked half-space with the boundary condition BC-type-3 on the free surface being 

replaced by the boundary condition BC-type-1 and a sub-problem-2 corresponding to 

an un-cracked half-space subjected only to the normal traction opposite to that 

generated on the free surface of the sub-problem-1. Similarly, the problem of a cracked 

half-space under the boundary condition BC-type-4 can also be treated as a linear 

combination of two sub-problems: a sub-problem-1 associated with the original cracked 

half-space with the boundary condition BC-type-4 on the free surface being replaced 

by the boundary condition BC-type-2 and a sub-problem-2 corresponding to an un-

cracked half-space subjected only to the shear traction opposite to that generated on the 

free surface of the sub-problem-2. Based on above linear combinations, the kernels 
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( , )Ip

ijS ξ x , ( , )/Ip

lkpq j qE U x ξ x , and ( , )/Ip

lkpq ij qE S x ξ x  for I = 3 and 4 can be written in 

terms of the known results corresponding to BC-type- and the correction terms as    

 
3 1 3ˆ( , ) ( , ) ( , )p p p

ij ij ijS S S ξ x ξ x ξ x

 

                     (3.54) 

4 1 4ˆ( , ) ( , ) ( , )p p p

ij ij ijS S S ξ x ξ x ξ x

 

                     (3.55) 

3 1 3ˆ( , ) ( , ) ( , )p p p

j j j

lkpq lkpq lkpq

q q q

U U U
E E E

x x x

  
 

  

ξ x ξ x ξ x
                      (3.56) 

4 2 4ˆ( , ) ( , ) ( , )p p p

j j j

lkpq lkpq lkpq

q q q

U U U
E E E

x x x

  
 

  

ξ x ξ x ξ x
                      (3.57) 

3 1 3ˆ( , ) ( , ) ( , )p p p

ij ij ij

lkpq lkpq lkpq

q q q

S S S
E E E

x x x

  
 

  

ξ x ξ x ξ x
                      (3.58) 

4 2 4ˆ( , ) ( , ) ( , )p p p

ij ij ij

lkpq lkpq lkpq

q q q

S S S
E E E

x x x

  
 

  

ξ x ξ x ξ x
                      (3.59) 

 

where the correction terms ˆ ( , )Ip

ijS ξ x , ˆ ( , )/Ip

lkpq j qE U x ξ x , and ˆ ( , )/Ip

lkpq ij qE S x ξ x  are 

obtained by solving the sub-problem-2 for each type of boundary conditions. From the 

regularity of the sub-problem-2, it can readily be verified from the divergence-free 

condition that all the functions ˆ ( , )Ip

ijS ξ x , ˆ ( , )/Ip

lkpq j qE U x ξ x  and ˆ ( , )/Ip

lkpq ij qE S x ξ x  

admit the following representations 

 

ˆ ˆ( , ) ( , )Ip Ip

ij ism mj

s

S G
ξ







ξ x ξ x

 

                     (3.60) 

ˆ ( , )
ˆ ( , )

Ip

j Ij

lkpq lrt tk

q r

U
E G

x x


 


 

ξ x
x ξ

 

                     (3.61) 

ˆ ( , )
ˆ ( , )

Ip

ij Itk

lkpq ism lrt mj

q s r

S
E C

x x
 



  


  

ξ x
ξ x                       (3.62) 

 

where ˆ ( , )Ip

mjG ξ x  and ˆ ( , )Itk

mjC ξ x  are functions that are singular only at a point  ξ x  of 

O(1/r). While the existence of the representations (3.60)-(3.62) can be ensured, 

determination of both functions ˆ ( , )Ip

mjG ξ x  and ˆ ( , )Itk

mjC ξ x  is nontrivial and generally 

requires solving a system of linear partial differential equations.    
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For an isotropic elastic half-space, the functions ˆ ( , )Ip

mjG ξ x  and ˆ ( , )Itk

mjC ξ x  were 

successfully developed by Li (1996). In his study, the sub-problem-2 for both types of 

boundary conditions indicated above was solved first using the method of displacement 

representation in terms of Papovich-Neuber potentials and the functions ˆ ( , )Ip

mjG ξ x  and 

ˆ ( , )Itk

mjC ξ x  in the representations (3.60)-(3.62) were derived indirectly and equivalently 

using the method of stress functions. The explicit expressions for BC-type-3 are given 

by    

 

3

3 3

( , ) ( , )1ˆ ( , ) [ (3 4 ) ( , ) ]
2

mj mjp

mj p mj

p p

M N
G x M

x x
 



 
   

 

ξ x ξ x
ξ x ξ x                     (3.63) 

3

3

( , ) ( , )1ˆ ( , )
(1 2 )

mj mjtk

mj tak ta ak

a

M N
C x

x x




  


 
 

  

ξ x ξ x
ξ x   (3.64) 

 

where ( , )mjM ξ x  and ( , )mjN ξ x  are Papkovich-Neuber potentials (see closed-form 

expressions in Li (1996) and Appendix A), and ak  denotes a constant tensor defined 

by 

 

(1 2 ) 1, 2

1 3

0

ak

a k

a k

a k





  


   
 

  (3.65) 

 

Similarly, the functions 
4ˆ ( , )p

mjG ξ x  and 
4ˆ ( , )tk

mjC ξ x  for BC-type-4 can also be obtained 

in a closed form as 

 

4

3 3

( , )1ˆ ( , ) [ (3 4 ) ( , )]
2

mjp

mj p mj

p

P
G x P

x
 




  



ξ x
ξ x ξ x                      (3.66) 

4

3 3 3 3

( , ) ( , )
ˆ ( , ) (1 2 ) ( , ) 2(1 )

mj mjtk

mj tk mj tak k t

a

P Q
C P x

x x




     
 

    
 

ξ x ξ x
ξ x ξ x   (3.67) 

 

where ( , )mjP ξ x  is the Papkovich-Neuber potential and ( , )mjQ ξ x  is obtained directly 

by integrating the potential ( , )mjP ξ x . The closed-form expressions of ( , )mjP ξ x  and 

( , )mjQ ξ x  can also be found in Li (1996) and Appendix B.   
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Now, based on the relations (3.54)-(3.59) and the representations (3.60)-(3.62), 

the decompositions (3.33), (3.36) and (3.37) can be now generalized to all types of 

boundary conditions on the half-space surface: 

 

( , ) ( , ) ( , )Ip Ip Ip

ij ij ism mj

s

S H G
ξ




 


ξ x ξ x ξ x

 

                     (3.68) 
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j Ij Ij
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U
E H G

x x

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ξ x
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( , )
( ) ( ) ( , )
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ij Itk

lkpq I ijkl I ia jb abkl ism lrt mj

q s r

S
E E E C

x x
     



  
     

  

ξ x
ξ x x ξ ξ x  

                            (3.70) 
 

where 3 1   , 4 2   , 3 1   , 4 2    and the functions ( , )Ip

ijH ξ x , ( , )Ip

mjG ξ x  and 

( , )Itk

mjC ξ x  for I = 3 and 4 are defined by 

 
3 1( , ) ( , )p p

ij ijH Hξ y ξ y                                                 (3.71) 

4 2( , ) ( , )p p

ij ijH Hξ x ξ x                                         (3.72) 

3 1 3ˆ( , ) ( , ) ( , )p p p

mj mj mjG G G ξ y ξ y ξ y                      (3.73) 

4 2 4ˆ( , ) ( , ) ( , )p p p

mj mj mjG G G ξ x ξ x ξ x                                             (3.74) 

3 1 3ˆ( , ) ( , ) ( , )tk tk tk

mj mj mjC C C ξ y ξ y ξ y                                                  (3.75) 

4 2 4ˆ( , ) ( , ) ( , )tk tk tk

mj mj mjC C C ξ x ξ x ξ x                                             (3.76) 

 

Upon using the decompositions (3.68)-(3.70) along with the regularization technique 

presented for BC-type-1 and BC-type-2, the regularized boundary integral relations for 

both displacements and stresses and the weakly singular, weak-form integral equations 

for both crack-face displacements and crack-face tractions of the cracked half-space 

under one of the four types of boundary conditions can also be obtained in the same 

form as 
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 
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  (3.77) 
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0
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  (3.78) 
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 (3.80) 

 

The last two boundary integral equations form a sufficient set of governing integral 

equations for determining the unknown crack-face data whereas the first two relations 

can be utilized to compute the displacements and stresses at any interior point of the 

body once the crack-face unknown data is solved. 
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CHAPTER 4 

SOLUTION METHODOLOGY 

This chapter mainly presents an efficient and accurate numerical procedure for 

determining the unknown crack-face data and related fracture information such as the 

stress intensity factors and the T-stress components. A formulation of the boundary 

value problem based upon a pair of singularity-reduced, weak-form boundary integral 

equations established in the previous chapter is obtained first and, then, the solution 

procedure based on the weakly singular SGBEM and standard Galerkin method is 

briefly outlined. Essential ingredients to enhance the computational efficiency and 

accuracy such as the approximation of the near-front unknown relative crack-face 

displacement, the numerical integration, and the evaluations of kernels for generally 

anisotropic materials are also discussed. Finally, an explicit formula for extracting the 

stress intensity factors and the T-stress components along the crack boundary is 

presented.   

 

4.1 Solution Procedure   

 

To obtain the complete elastic field of the given problem described in section 3.1 (i.e., 

the displacement and stress fields), it is sufficient to determine the unknown crack-face 

data including the sum of and jump in the crack-face displacement. The displacement 

and stress at any interior point can be post-processed from a pair of regularized 

boundary integral relations (3.77) and (3.78). 

In the present study, the weakly singular, weak-form integral equations for the 

crack-face displacement and crack-face traction (3.79) and (3.80) is exploited to form 

a complete set of equations governing the sum of and jump in the crack-face 

displacements. Those two equations can be written in a more concise form as     

 
0( , ) ( ) ( ) ( )I I I      , , ,t u t t t u t uB G HU

 
(4.1)

 
0 0 0( , ) ( , ) ( , ) ( , )I          u u t u t u u tC G H B

 
(4.2) 

 

where the linear integral operator , , ,B U G H  and  C  are defined by 
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( , ) ( ) ( ) ( ) ( ) ( )
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X G D Y dS dS
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c c
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D X C D Y dS dS
 
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where X and Y are argument vectors and 
Ip

jU , 
Ip

mjG , Ip

ij iH n  and 
Itk

mjC  are weakly singular 

kernels associated with the elastic half-space under the boundary condition BC-type-I 

on the free surface. It should be evident from the symmetry of the kernel 
Itk

mjC  and the 

integral form of (4.3) and (4.7) that the linear integral operators B  and C  satisfy the 

relations ( , ) ( , )X Y Y XB B  and ( , ) ( , )X Y Y XC C . As a result, the boundary 

integral equations (4.1) and (4.2) are in a symmetric form with respect to the unknown 

sum of and jump in the crack-face displacements, respectively. Since the integral 

equation for the jump in the crack-face traction (4.2) is independent of the sum of the 

crack-face displacement, it can be solved first to obtain the jump in the crack-face 

displacement. Once Iu  is fully determined on the entire crack face, the sum of the 

crack-face displacement Iu  can subsequently be obtained by solving the crack-face 

displacement integral equation (4.1). 

To construct the numerical solution of the crack-face traction integral equation 

(4.2), a well-known, weakly singular, symmetric Galerkin boundary element method 

(SGBEM) is adopted (also see details in the work of Li et al., 1998 and Rungamornrat 

and Mear, 2008b). Both the jump in the crack-face displacement Iu  and the test 

function u  on the entire crack face are approximated by 

 

( )
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I I i

i

i




  u ξ u ξ  
(4.8)

 

( )
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N

i

i

i


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  u ξ u ξ  
(4.9) 

 

where ( )i ξ  is a selected nodal basis function; N is the number of nodes; ( )I iu  denotes 

the unknown nodal quantities; and ( )iu  are arbitrary nodal constants. In the current 

study, the basis function ( )i ξ  is constructed locally in an element-wise fashion by 

using standard, two-dimensional, C0-isoparametric elements on the majority of the 

crack face and special crack-tip elements on the remaining region adjacent to the crack 

boundary. The special crack-tip element was originally proposed by Li et al. (1998) to 
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properly integrate the square-root-type behavior into the shape functions in the 

modeling of cracks in an isotropic, linearly elastic medium and later modified by 

Rungamornrat and Mear (2008b) to model cracks in anisotropic bodies. It has been 

found in their study that use of those special crack-tip elements to model the near-front 

relative crack-face displacement can significantly enhance both the accuracy of 

numerical solutions and the computational efficiency regarding to the significant 

reduction of a level of mesh refinement. To allow the treatment of general prescribed 

traction data on the crack face, the sum of and the jump in the crack-face tractions are 

interpolated from                
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i
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(4.11) 

 

where ( )i ξ  is a nodal basis function constructed by standard, two-dimensional, C0-

isoparametric elements for the entire crack front; 0( )it  is the prescribed sum of the 

crack-face traction at the ith node; and  0( )it  denotes the prescribed jump in the crack-

face traction at the ith node. By substituting (4.8)-(4.11) into (4.2) and then invoking the 

arbitrariness of the constant ( )iu , it finally yields a system of linear algebraic 

equations: 

 
0 0( )I     C U G H T B T

 
(4.12)

 
 

where IU  is a vector containing unknown nodal quantities ( )I iu  with its entries 

given by ( )

3( 1)[ ] [ ]I I i

i k k   U u ; 0T  is a vector containing prescribed sum of nodal 

tractions 0( )it  with its entries given by 0 0( )

3( 1)[ ] [ ]i

i k k   T t ; 0T  is a vector 

containing the prescribed jump in nodal tractions 0( )it  with its entries given by 

0 0( )

3( 1)[ ] [ ]i

i k k   T t ; and C , G , H  and B  are known coefficient matrices 

associated with the linear integral operators C , G , H  and  B , respectively, and their 

entries are given explicitly by 
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S
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(4.16)
 

 

It is evident that terms on the right hand side of (4.12) are completely known and the 

coefficient matrix C  is symmetric. 

To discretize the weakly singular, weak-form, crack-face displacement boundary 

integral equation (4.1), a similar strategy following Galerkin approximation procedure 

is utilized. Specifically, the sum of the crack-face displacement Iu  and the test 

function t  are discretized by 
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where ( )I iu  and ( )i
t  are the unknown sum of the crack-face displacements and an 

arbitrary constant vector  at the ith node, respectively. It is worth noting that the same 

nodal basis functions ( )i ξ  as those employed in (4.10) and (4.11) are utilized in the 

discretization (4.17) and (4.18) since the unknown Iu  is well-behaved for the entire 

crack surface. By substituting (4.8), (4.10) and (4.17)-(4.18) into (4.1), it yields a 

system of linear algebraic equations 

 
0 ( )I I     B U D T G H U

 
(4.19)

 
 

where IU  is a vector containing the unknown nodal quantities ( )I iu  with its entries 

given by ( )

3( 1)[ ] [ ]I I i

i k k   U u  and B , D , G  and H  are known matrices associated 

with the linear integral operators B , U , G  and H , respectively, and their entries 

are given explicitly by 

 

3( 1) ,3( 1)

1
[ ] ( ) ( ) ( )

2 c
i k j l i j kl

S
dS  

     B y y y
 

(4.20)
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c c
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S S
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3( 1) ,3( 1)[ ] ( ) ( ) ( ) ( ) ( ) ( )
c c

Ik

i k j l i ml m j
S S

H n dS dS 
 



       H y ξ y ξ ξ ξ y  (4.23) 

 

It should be remarked that the matrix B is symmetric and, once the unknown IU  is 

obtained from (4.12), the system (4.19) can be subsequently solved for the unknown 

IU .  

 

4.2 Computation of Coefficient Matrices   

 

To form the two systems of linear algebraic equations (4.12) and (4.19), the coefficient 

matrices B , B , C , D , G , G , H  and H  are computed numerically as described 

below. 

All entries of the matrices B  and B  clearly involve the single surface integral of 

regular elementary functions and the numerical calculation of their value can be 

achieved efficiently using standard Gaussian quadrature. On the contrary, evaluation of 

all entries of matrices C , D , G , G , H  and H  is more computationally challenging 

since it requires to evaluate the double surface integrals containing weakly singular 

kernels. Resulting from the discretization, double surface integrals for a pair of finite 

elements can generally be separated into three groups depending mainly on the behavior 

of the integrand. A regular double surface integral for a pair of relatively remote 

elements can be efficiently integrated by standard Gaussian quadrature since the 

involved integrand is sufficiently well-behaved. For a weakly singular double surface 

integral over a pair of identical elements, a systematic numerical integration scheme 

based on a series of special variable transformations is employed to regularize the 

weakly singular integrand allowing the resulting integrals to be efficiently integrated 

by standard Gaussian quadrature. For a double surface integral over a pair of relatively 

close or adjacent elements, the integrand possesses a rapid variation behavior 

introduced by pairs of relatively close source and field points and, as a result, it cannot 

be integrated efficiently by standard Gaussian quadrature (see also the work of Xiao 

(1998)). In the present study, a family of logarithmic variable transformation is 

introduced to eliminate the nearly singular feature of the integrand and the final integral 

can be computed using standard Gaussian quadrature. Details of special numerical 

quadrature for both nearly and weakly singular integrals can be found in the work of 

Xiao (1998). 

In addition to the numerical integration scheme described above, it still requires 

the efficient computation of all involved kernels ( , )Ip

ijH ξ y , ( , )Ip

jU ξ y , ( , )Ip

mjG ξ y  and 

( , )Itk

mjC ξ y  for every pair of points ( , )ξ y . Since the kernel ( , )Ip

ijH ξ y  involves only 
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elementary functions and is independent of the material properties, its value can readily 

and efficiently be obtained by a direct substitution. Unlike the kernel ( , )Ip

ijH ξ y , the 

kernels ( , )Ip

jU ξ y , ( , )Ip

mjG ξ y  and ( , )Itk

mjC ξ y  are expressed in terms of a line integral 

over a unit circle and the direct computation of such integral for every pair of field and 

source points ( , )ξ y  can be computationally massive. In the present study, an 

interpolation scheme similar to that exploited by Rungamornrat and Mear (2008b) is 

adopted.  In this technique, the direct calculation of the line integral is only required at 

interpolation grid points and this can be accomplished efficiently via standard Gaussian 

quadrature. Values of each kernel at any pair of field and siurce points ( , )ξ y  within 

the interpolation grid can be approximated from their nodal-based interpolants. The 

accuracy of such approximation can be controlled by adjusting the number of grid 

points and the order of the interpolation functions employed.  

 

4.3 Determination of Stress Intensity Factors and T-stress Components   

 

 
 

Figure 4.1: Local Cartesian coordinate system and all involved parameters for 

determining stress intensity factors and T-stress components. 

 

Let xc be a point on the crack front and 1 2 3{ ; , , }c x x xx  be a local Cartesian coordinate 

system with the origin at xc and the corresponding orthonormal base vectors 
1 2 3{ , , }.e e e  

In particular, the 3x -axis is selected to be tangent to the crack boundary; the 1x -axis 
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directs outward and perpendicular to the crack front such that 1x - 3x  plane forms a local 

tangent plane of the crack surface at xc; and 2x -axis follows the right hand rule as 

depicted in Figure 4.1. From the asymptotic stress analysis, the near-front stress field 

in the neighborhood of the point c
x  takes the form 

 
3

/2

1 1

( )
ˆ( ; , ) ( ) ( ) ( ) ( ; )

p c p ij m m

ij c ij ij c ij c

p m

K
r f T g r

r
     



 

   
x

x x x
 

(4.24)
 

 

where ( , )r   are polar coordinates of any point in the 
1x - 

2x plane; IK , IIK  and IIIK  

denote the mode-I, mode-II and mode-III stress intensity factors, respectively; ijT  

denotes the T-stress tensor; and p

ijf , 
ijg  and ˆ m

ij  are functions independent of the 

radial coordinate r. It is important to remark that the angular dependent function p

ijf  

and 
ijg  can be fully determined from the eigen analysis of the near-front field and, as 

a result, the singular term and the first non-singular term of the near-front stress field 

are completely known once the stress intensity factors and the T-stress tensor are 

computed. Unlike the functions p

ijf  and 
ijg , both pK  and ijT  cannot be obtained 

directly from the asymptotic analysis but still requires solving the full boundary value 

problem.  

In the present study, an explicit formula proposed by Rungamornrat and Mear 

(2008b) for cracks in generally anisotropic infinite and finite media is employed to 

compute the mixed-mode stress intensity factors. This formula only requires the 

information of extra nodal degrees of freedom along the crack front as follows:  

  

 ˆ( ) ( ) ( )
2 sin

i c il c l ck B
J




 x u x e x

 

(4.25) 

 

where 
1 IIk K , 

2 Ik K  and 
3 IIIk K ; || / ( , 1) ||cJ     r ; || / ( , 1) ||cJ     r ; 

( , ) ( , ) ( , 1)c c       r r x x ; ( , )   denote the natural coordinates of a point x  on 

the crack-tip element; ( , 1)c   are natural coordinates of a point 
cx ;  denotes an angle 

between the unit vectors { / ( , 1)}/c J     e r  and { / ( , 1)}/c J     e r ; 

( )ˆ( ) ( , 1)i

c i c
i

   u x u  with ( )iu  denoting the extra degree of freedom of the special 

crack-tip element obtained from equation (4.12), 
i  denoting the standard shape 
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functions, and the summation taken over all nodes along the crack front of the crack-

tip element containing the point xc; and 

2
1

0

1
( , ) ( , ) ( , ) ( , )

2
il im mn nl il

B d






    a b b b b a a a

 

(4.26) 

 

with a and b denoting orthonormal vectors in the plane 3 0x  ,  denoting the angle 

between a and the unit vector 3e  as indicated in Figure 4.1, (a, b)ij = amEimnjbn, and 

1( , )b b  denoting the inverse of ( , )b b .    

The unknown T-stress components along the crack front can also be extracted 

from the sum of the crack-face displacement as described below. First, components of 

the T-stress tensor at xc are related to the non-singular part of the strain at the same 

point via the following linear constitutive relation 

 

( ) ( ) ( )ij c ijkl c kl cT E x x x  (4.27) 

 

where ( )ijkl cE x  and ( )kl c x  are elastic constants and components of the finite part of the 

strain tensor relative to the local coordinate system at cx . It can readily be verified from 

the continuity of the tensor ( )ij cT x  that the three components T12, T22, and T23 are known 

and equal, respectively, to the 1x -, 2x -, and 3x -components of the applied crack-face 

traction at the limiting point of xc. The finite strain components 
11
 , 

33
  and 

13
  at xc can 

also be calculated from the sum of the crack-face displacement in the neighborhood of 

xc through the following expressions   
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The derivatives involved in the expressions (4.28)-(4.30) can be carried out directly 

within elements along the crack front. From the prescribed information of T12, T22, and 

T23 and the computed strain components 
11 , 

33
  and 

13
 , the unknown components T11, 

T13 and T33 at any point xc along the crack front, commonly termed the T-stress 
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components, can now be obtained by solving a system of six independent linear 

algebraic equations (4.27). 
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CHAPTER 5   

NUMERICAL RESULTS  

In this chapter, a selected set of boundary value problems involving cracks in an elastic 

half-space under various scenarios is analyzed by the implemented solution procedure. 

First, the proposed technique and the underlying integral formulation is fully validated 

by comparing computed numerical results with existing reliable reference solutions for 

both an isotropic cracked half-space under all four types of boundary conditions and an 

anisotropic cracked half-space under symmetrical and anti-symmetrical boundary 

conditions on the free surface. Then, more complex boundary value problems involving 

multiple and non-flat cracks are also investigated to clarify the capability and 

robustness of the proposed numerical procedure.  

In the numerical simulations, both isotropic and transversely isotropic linearly 

elastic materials with the elastic constants given in Table 5.1 are considered. For the 

transversely isotropic cracked half-space, the axis of material symmetry is taken to 

direct normal to the half-space surface. Other classes of anisotropic materials, such as 

cubic and orthotropic materials, are also treated to illustrate the capability of the current 

method and results are reported in Appendix C. To additionally explore the 

convergence behavior of numerical solutions, a series of meshes with different levels 

of refinement is adopted in the analysis. Special 9-node crack-tip elements are adopted 

along the crack boundary whereas standard 8-node quadrilateral elements and 6-node 

triangular elements are used to discretize the majority of the crack surface.  

 

 

Table 5.1: Elastic constants for isotropic material (associated with Poisson’s ratio ν = 

0.3 and E = 2.6GPa) and transversely isotropic material with the axis of material 

symmetry normal to half-space surface (Kassir and Sih, 1975).  

 

Materials 

Elastic constants (GPa) 

1111E  1122E  1133E  2222E  1313E  

Isotropic material 3.500 1.500 1.500 3.500 1.000 

Transversely isotropic material 16.090 3.350 5.010 6.100 3.830 
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5.1 Verification 

 

This section aims to verify the integral formulation and the implemented numerical 

scheme. Results for both isotropic and anisotropic cracked half-space under various 

conditions on the free surface are reported and compared with the benchmark solutions. 

Both interior cracks and surface breaking cracks under mode-I and mixed-mode 

conditions are investigated. 

 

5.1.1 Isotropic Cracked Half-Space under BC-type-I  

 

In this particular sub-section, the proposed technique is validated for the case of an 

isotropic cracked half-space under all four types of boundary conditions on the free 

surface (i.e., BC-type-1: symmetrical boundary condition; BC-type-2: anti-symmetrical 

boundary condition; BC-type-3: traction-free boundary condition; and BC-type-4: 

rigidly-fixed boundary condition).        

 

a. Horizontal penny-shaped crack 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: (a) Schematic of horizontal penny-shaped crack contained in half-space 

under BC-type-1 or BC-type-2, (b) tractions acting on crack surfaces, (c) equivalent 

whole space problem, and (d) four meshes adopted in the analysis.  

 

Consider a penny-shaped crack contained in a half-space with the depth h and the crack 

surface parallel to the free surface as shown in Figure 5.1(a). The crack radius is denoted 

by a and the crack front is parameterized by 1 cos ,x a  2 sin , x a  3 x h  for 
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[0,2 ]  . The crack surface is subjected only to a self-equilibrated, uniform traction 

1 1 0t t     , 2 2 0t t    , 3 3 0t t      (see Figure 5.1(b)) whereas the half-space 

surface is under the boundary conditions BC-type-1 and BC-type-2. In the analysis, 

four meshes are utilized as indicated in Figure 5.1(d) and the normalized depth h/a = 

0.5 is considered. 

Computed results for the stress intensity factors and the T-stress components at 

0 0 0{0 ,90 ,180 }   of both boundary conditions are normalized by the reference 

solution and reported in Table 5.2 and Table 5.3, respectively. It is remarked that the 

reference solution is taken as the solution of an equivalent whole space containing a 

pair of symmetric penny-shaped cracks about the surface 3 0x  shown in Figure 5.1(c), 

which is generated by the SGBEM proposed by Rungamornrat and Mear (2008b) with 

use of the Mesh 4. As can be seen from results in Table 5.2, numerical solutions display 

the excellent agreement with the reference solution for the first three meshes and they 

are weakly dependent on the level of refinement. In particular, the discrepancy between 

the stress intensity factors generated by the coarsest and intermediate meshes and the 

reference solution is less than 2.4% and 0.2%, respectively, whereas results generated 

from the Mesh 3 are nearly identical to the reference solution. The high quality of the 

numerical solutions, while employing relatively coarse meshes, is the direct 

consequence of using special crack-tip elements to enhance the approximation of the 

near-front relative crack-face displacement.  

 

Table 5.2: Normalized stress intensity factors at 00, 900 and 1800 for horizontal 

penny-shaped crack embedded in half-space under BC-type-1 or BC-type-2 and 

.  

 

  Mesh BC-type-1  BC-type-2 

  / ref

I IK K  / ref

II IIK K  / ref

III IIIK K   / ref

I IK K  / ref

II IIK K  / ref

III IIIK K  

00 1 0.9949 0.9896 -  0.9844 0.9806 - 

 2 1.0004 1.0001 -  0.9987 0.9987 - 

 3 1.0003 1.0002 -  0.9999 1.0001 - 

         
900 1 0.9935 1.0011 0.9817  0.9861 0.9901 0.9947 

 2 1.0002 1.0016 0.9990  0.9988 0.9998 1.0007 

 3 1.0003 1.0004 1.0000  0.9999 1.0001 1.0002 

         
1800 1 0.9916 0.9911 -  0.9874 0.9761 - 

 2 1.0000 1.0003 -  0.9990 0.9982 - 

 3 1.0002 1.0002 -  1.0000 1.0000 - 

 

/ 0.5h a
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Similar convergence behavior can also be observed for results of the T-stress 

components shown in Table 5.3; however, it is evident that the difference between the 

computed solutions T13 from the Mesh 1 and Mesh 2 and the benchmark solutions is 

larger than the case of the stress intensity factors. The reduction in the accuracy results 

directly from the fact that the derivatives of the sum of the crack-face displacement are 

required in the calculation of the T-stress components. 

 

Table 5.3: Normalized T-stress components at 00, 900 and 1800 for horizontal 

penny-shaped crack contained in half-space under BC-type-1 or BC-type-2 and 

. 

  

  Mesh BC-type-1  BC-type-2 

  11 11/ refT T  
33 33/ refT T  

13 13/ refT T   11 11/ refT T  
33 33/ refT T  

13 13/ refT T  

00 1 1.0359 1.0252 -  0.9322 0.9593 - 

 2 1.0186 1.0166 -  0.9625 0.9789 - 

 3 1.0055 1.0049 -  0.9909 0.9944 - 

         
900 1 1.0037 0.9988 0.9626  0.9895 0.9906 1.0874 

 2 1.0042 1.0013 1.1549  0.9878 0.9968 1.0928 

 3 1.0021 1.0008 1.0662  0.9969 0.9993 1.0337 

         
1800 1 0.9658 0.9603 -  1.0334 1.0136 - 

 2 0.9873 0.9790 -  1.0072 1.0099 - 

 3 0.9980 0.9947 -  1.0016 1.0029 - 

 

  

b. Vertical penny-shaped crack 

 

Consider, next, a vertical penny-shaped crack of radius a contained in a half-space with 

a depth h (measured from the center of the crack to the free surface) as indicated in 

Figure 5.2(a). The crack front is parameterized by 1 0x  , 2 cosx a   , 

3 sinx h a    for [0,2 ]  . The crack is subjected only to the self-equilibrated 

uniform normal traction 1 1 0t t     , 2 2 0t t    , 3 3 0t t     (see Figure 5.2(b)) 

whereas the half-space surface is under all four types of boundary conditions, BC-type-

I. It is evident from the symmetry of the crack-face loading with respect to the plane 

1 0x   that the mode-II and mode-III stress intensity factors identically vanish along 

the boundary of the crack. In the numerical study, four meshes of the penny-shaped 

crack are exploited as illustrated in Figure 5.2(d) and the aspect ratio / 1.5h a   is 

considered. 

 

/ 0.5h a
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Figure 5.2: (a) Schematic of vertical penny-shaped crack embedded in half-space under 

BC-type-, (b) uniform normal traction acting to crack surfaces, (c) equivalent whole 

space problem for BC-type-, and (d) four meshes adopted in the analysis. 

 

For the first two types of boundary conditions, BC-type-, the computed stress 

intensity factors and the T-stress components are first normalized by the reference 

solution (generated from an equivalent whole space containing a pair of geometrically 

symmetric cracks with respect to the surface 3 0x  shown in Figure 5.2(c) and 

subjected to the symmetric loading condition for BC-type-1 and the anti-symmetric 

loading condition for BC-type-2 by using the SGBEM with the Mesh 4) and then 

reported in Table 5.4 and Table 5.5, respectively. Results for the stress intensity factors 

for the last two boundary conditions (i.e., BC-type-3 and BC-type-4) normalized by 

02 / ref

IK a  are compared with those obtained by Hrylyts'kyi et al. (2003) in 

Table 5.6. As indicated by results shown in Table 5.4, the stress intensity factors 

generated from the first three meshes for BC-type-1 and BC-type-2 are only slightly 

different from those obtained from the equivalent whole space problem. The 

discrepancy between the two solutions is small even though the coarsest mesh is utilized 

in the analysis. However, as shown in Table 5.5, results of the T-stress components 

indicate that the discrepancy between T13 generated by the Mesh 1 and the reference 

solution is larger than the case of the stress intensity factors. Again, the reduction of 

accuracy results directly from that the derivatives of the sum of the crack-face 

displacement are required in the calculation of the T-stress components. For BC-type-

3 and BC-type-4, numerical solutions for the mode-I stress intensity factors are in good 

agreement with those presented by Hrylyts'kyi et al. (2003) and the weak dependence 
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on the level of refinement is also observed for this case. Only coarse meshes with few 

elements can be utilized to generate reasonably accurate results. This high quality of 

the computed solutions is due primarily to the application of special crack-tip elements 

to capture the near-front field. 

 

Table 5.4: Normalized stress intensity factors at  for vertical penny-

shaped crack embedded in half-space under BC-type-1 or BC-type-2 and . 

 

  Mesh BC-type-1  BC-type-2 

  / ref

I IK K   / ref

I IK K  

00 1 0.9909  0.9918 

 2 0.9997  0.9998 

 3 1.0001  1.0001 

     
900 1 0.9916  0.9912 

 2 1.0000  0.9996 

 3 1.0002  1.0001 

 

Table 5.5: Normalized T-stress components at  for vertical penny-shaped 

crack embedded in half-space under BC-type-1 or BC-type-2 and . 

 

  Mesh BC-type-1  BC-type-2 

  11 11/ refT T  
33 33/ refT T  

13 13/ refT T   11 11/ refT T  
33 33/ refT T  

13 13/ refT T

 00 1 1.0033 0.9970 1.1834  1.0084 0.9992 1.1848 

 2 1.0024 1.0009 1.0287  1.0025 1.0000 1.0264 

 3 1.0014 1.0006 1.0029  1.0013 1.0003 1.0029 

         
900 1 1.0038 0.9904 -  1.0078 1.0060 - 

 2 1.0016 1.0011 -  1.0033 0.9998 - 

 3 1.0015 1.0012 -  1.0012 0.9996 - 
 

Table 5.6: Normalized stress intensity factors at  for vertical penny-

shaped crack embedded in half-space under BC-type-3 or BC-type-4 and . 

 

  Mesh Present results  Hrylyts’kyi 

  BC-type-3 BC-type-4  BC-type-3 BC-type-4 

00 1 1.0114 0.9763  1.0200† 0.9790† 

 2 1.0209 0.9838    

 3 1.0213 0.9841    

       
900 1 1.0440 0.9477  1.0500† 0.9530† 

 2 1.0524 0.9560    

 3 1.0524 0.9567    
    †Results obtained by means of extraction from certain figures reported by Hrylyts'kyi et al. (2003) 

0 0{0 ,90 } 

/ 1.5h a

0 0{0 ,90 } 

/ 1.5h a

0 0{0 ,90 } 

/ 1.5h a 
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c. Elliptical crack perpendicular to half-space surface 

 

Consider, next, an elliptical crack oriented vertically within the half-space as indicated 

in Figure 5.3(a). The semi-major and semi-minor axes of the crack are denoted by a 

and b, respectively; the orientation of the major axis relative to the free surface is 

denoted by the angle  ; the depth of the crack measured from the free surface to its 

center is denoted by h ; and [0,2 ]   is an angle used for parameterizing the position 

along the crack boundary. The crack is loaded by uniformly distributed pressure 
0  

whereas the half-space surface is under the traction-free condition (i.e., BC-type-3). In 

the analysis, two scenarios of the crack are considered: type A associated with 0  , 

/ 2a b   and type B corresponding to 0  , / 2a b  , / 1.8h b  , and three meshes 

as depicted in Figure 5.3(b) are used.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: (a) Elliptical crack oriented vertically within the half-space and (b) three 

meshes used in analysis (Mesh 1 containing 168 elements and 32 crack-tip elements; 

Mesh 2 containing 392 elements and 64 crack-tips elements; and Mesh 3 containing 

840 elements and 128 crack-tip elements). 

 

Computed stress intensity factors for both type A and type B are first normalized 

by 0

ref

IK b   and then compared with those obtained by Noguchi et al. (1997) as 

reported in Figure 5.4(a) and Figure 5.4(b), respectively. It can be concluded from these 

results that numerical solutions computed from the proposed technique are highly 
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accurate and in good agreement with the reference solution for both type A and type B. 

In particular, the stress intensity factors in the current study are weakly dependent on 

the meshes used. Again, this high quality of numerical solutions results directly from 

the use of special interpolation functions to approximate the near-front jump in the 

crack-face displacement. 
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Figure 5.4: Normalized mode-I stress intensity factors for vertical elliptical crack of 

(a) type A and (b) type B, in half-space under BC-type-3. 
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d. Surface-breaking crack 

 

Consider another example associated with a semi-circular surface breaking crack of 

radius a and oriented vertically in a half-space as shown in Figure 5.5(a). The crack 

front is parameterized by 1 cosx a   , 2 0x  , 3 sinx a   for [0, ]  . The half-

space is subjected to three cases of loading and boundary conditions: (i) half-space 

under BC-type-1 and crack subjected to uniform normal traction 1 0t  , 2 0t    , 

3 0t  ; (ii) half-space under BC-type-2 and crack subjected to linear normal traction 

1 0t  , 2 0 3( / )  t x a , 3 0t  ; and (iii) half-space under BC-type-3 and crack 

subjected to three types of loading conditions: uniform distributed pressure (denoted by 

0), linear distributed pressure (denoted by 1), and quadratic distributed pressure 

(denoted by 2) as shown in Figure 5.5(b). In the numerical simulations, three different 

meshes are adopted as shown in Figure 5.5(c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 5.5: (a) Schematic of  semi-circular surface-breaking crack in half-space under 

BC-type-3, (b) crack under three loading conditions, and (c) three meshes used in 

analysis. 
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Figure 5.6: (a) Normalization of mode-I stress intensity factor and (b) normalized T-

stress for semi-circular surface-braking crack in half-space under BC-type-2 and 

subjected to linear normal traction. 
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For the first two cases, the computed stress intensity factors and the non-zero T-

stress components are compared with the existing analytical solutions. As indicated in 

Table 5.7, numerical results obtained for the uniform normal traction under BC-type-1 

are normalized by 
02 /exact

IK a   for the mode-I stress intensity factor and those 

proposed by Wang (2004) for the non-zero T-stress components. Clearly, the present 

results agree with the analytical solutions. The maximum difference is less than 0.2% 

for the stress intensity factor and 0.57% for the T-stress components. For the case of 

linear normal traction under BC-type-2, the normalized mode-I stress intensity factor 

and T-stress components are compared with the benchmark solution obtained from 

Shah and Kobayashi (1971) and Rungamornrat and Pinitpanich (2015) (also found in 

Wang, 2004), respectively, and reported in Figure 5.6. It is clear that the obtained 

numerical results are nearly indistinguishable from the reference solution.              

For the last case, as shown in Table 5.8, the computed stress intensity factors 

normalized by 
0

ref

IK a   at the intersection point between the crack boundary and 

the free surface (a surface breaking point) and the deepest point are compared with 

those obtained by Noguchi and Smith (1995) and Murakami (1985). It is seen that 

results generated by the proposed technique exhibit good agreement with the 

benchmark solutions. In particular, the discrepancy between the computed stress 

intensity factors and the solution reported by Noguchi and Smith (1995) and Murakami 

(1985) at the surface-breaking point is larger than that at the deepest point. In 

additkb8yannhion, results obtained from the coarse and intermediate meshes are nearly 

indistinguishable from those generated by the Mesh 3 (with the maximum discrepancy 

less than 2%). 

 

Table 5.7: Normalized mode-I stress intensity factors and T-stresses at  

for semi-circular surface-breaking crack within half-space under BC-type-1 and 

subjected to uniform normal traction. 

  Mesh Stress intensity factor  T-stress 

    / exact

I IK K    11 11/ exactT T  
33 33/ exactT T  

00 1 0.9995  0.9989 0.9944 
 2 1.0004  0.9971 0.9989 
 3 1.0005  0.9964 0.9989 
      

300 1 0.9992  1.0018 1.0013 
 2 1.0011  0.9970 0.9993 
 3 1.0009  0.9954 0.9987 
      

900 1 0.9981  1.0023 1.0006 
 2 1.0010  0.9965 0.9990 
 3 1.0011  0.9951 0.9987 

0 0{0 ,90 } 
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Table 5.8: Normalized mode-I stress intensity factors for semi-circular surface-

breaking crack within half-space under BC-type-3 and subjected to three types of 

loading conditions. 

 

Loading 

condition 

Mesh 00    090   

Present  

results 

Noguchi Murakami  Present 

results 

Noguchi Murakami 

0 1 0.783 0.760 0.748  0.660 0.656 0.666 

 2 0.777    0.659   
 3 0.772    0.659   
         1 1 0.662 0.644   0.193 0.191  
 2 0.658    0.192   
 3 0.655    0.192   
         2 1 0.588 0.573   0.111 0.111  
 2 0.585    0.113   
 3 0.583    0.113   

 

 

5.1.2 Anisotropic Cracked Half-Space under BC-type-α 

 

In this particular sub-section, the integral formulation and the implemented numerical 

procedure are verified for the case of an anisotropic cracked half space under symmetric 

boundary condition (BC-type-1) and anti-symmetric boundary condition (BC-type-2). 

Results are reported for a selected representative material which is transversely 

isotropic with the elastic constants shown in Table 5.1 and compared with the reference 

solution generated from an equivalent whole space problem (obtained from invoking 

the symmetrical and anti-symmetrical conditions) by the weakly singular SGBEM 

proposed by Rungamornrat and Mear (2008b). 

  

a. Horizontal penny-shaped crack 

 

Consider the same problem corresponding to a horizontal penny-shaped crack indicated 

in Figure 5.1(a) except that the half-space is made of the transversely isotropic, linearly 

elastic material. The normalized stress intensity factors and the T-stress components 

along the crack boundary are reported and compared with the reference solutions in 

Figure 5.8 and Figure 5.9 for BC-type-1 and BC-type-2, respectively. As can be 

observed from these results, the computed stress intensity factors and T-stress 

components for both BC-type-1 and BC-type-2 are highly accurate when compared 
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with the reference solutions and weakly dependent on the meshes used. Similar 

convergence behavior and the high quality of numerical solutions can also be observed 

for other types of anisotropic materials such as cubic and orthotropic solids (see 

Appendix C).   

 

b. Vertical penny-shaped crack      

 

Next, consider the same problem of a vertical penny-shaped crack under the uniform 

normal traction as shown in Figure 5.2 with the material being replaced by one that is 

transversely isotropic. In the analysis, the ratio / 1.25h a  is utilized and the same 

three meshes are employed. The computed stress intensity factors and the T-stress 

components are normalized and compared with the reference solutions in the same 

manner as the case of the horizontal penny-shaped crack.  

As can be observed from numerical results shown in Figure 5.10, the computed 

mode-I stress intensity factor show very good agreement with the reference solution for 

all three meshes and both types of boundary conditions. Similarly, numerical solutions 

for the T-stress components shown in Figure 5.11 also indicate the good convergence 

behavior and the slight dependence on the level of refinement. Clearly, results 

generated by the coarsest, intermediate and finest meshes are almost indistinguishable 

from the benchmark solution. The high quality of the numerical solutions results 

directly, again, from using special crack-tip elements to capture the near-front relative 

crack-face displacement. It should also be remarked that, for this particular case, the 

symmetric and anti-symmetric boundary conditions have only weak influence on both 

the value and distribution of the stress intensity factor and the T-stress components 

along the crack front. Results for cubic and orthotropic materials are also generated for 

this particular crack problem and reported in Appendix C. 

 

c. Surface-breaking crack 

 

As a final example, consider a semi-circular, surface-breaking crack of radius a and 

oriented vertically in a half-space as shown in Figure 5.7(a) and (b). The crack front is 

parameterized by 1 cosx a   , 2 0x  , 3 sinx a   for [0, ]  . The surface 3 0x   

of the half-space is subjected to the boundary conditions BC-type-1 and BC-type-2 

whereas the crack is subjected to three types of loading conditions: the non-uniform 

normal traction 
1 3

0,t t
 
 

2

2

0 3( / )t x a
  , the non-uniform horizontal shear traction 

2 3
0,t t

 
   

1

2

0 3( / )t x a
 , and the non-uniform vertical shear traction 

1 2
0,t t

 
   
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3

2

0 3( / )t x a
 . Three meshes as depicted in Figure 5.7(d) are exploited in the 

simulations and the reference solution obtained from the Mesh 4 in Figure 5.2(d) is 

constructed based on an equivalent whole space containing a vertical penny-shaped 

crack of radius a with the plane 3 0x   passing through its center and subjected to 

symmetric and anti-symmetric tractions on the crack surface (see Figure 5.7(c)). 

For the first loading condition, the mode-II and mode-III stress intensity factors 

vanish whereas the mode-I stress intensity factor and the T-stress components vary 

along the fracture boundary. The computed mode-I stress intensity factor and the non-

zero T-stress components are reported in Figures 5.12 and 5.13, respectively. In 

addition to the good agreement between the computed numerical results and the 

benchmark solution and the weak dependence on the mesh refinement, it is also 

observed that the discrepancy between mode-I stress intensity factor and all T-stress 

components for BC-type-1 and BC-type-2 are insignificant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: (a) Schematic semi-circular surface breaking crack, (b) semi-circular 

surface-breaking crack in half-space, (c) equivalent whole space problem, and (d) three 

meshes used in analysis. 
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Figure 5.8: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in transversely isotropic half-space 

under BC-type-1. 
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Figure 5.9: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in transversely isotropic half-space 

under BC-type-2. 
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Figure 5.10: Normalized mode-I stress intensity factor for vertical penny-shaped 

crack in transversely isotropic half-space under (a) BC-type-1 and  (b) BC-type-2. 
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Figure 5.11: Normalized T-stress components for vertical penny-shaped crack in 

transversely isotropic half-space under (a) BC-type-1 and (b) BC-type-2. 
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Figure 5.12: Normalized mode-I stress intensity factors for semi-circular surface-

breaking crack subjected to non-uniform normal traction in transversely isotropic half-

space under (a) BC-type-1 and (b) BC-type-2. 



 

 

63 

           
0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

ref sol

Mesh 3

Mesh 2

Mesh 1

0

T



T
13

T
11

T
33

 
                    (a) 

 

 

 

       

0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

ref sol

Mesh 3

Mesh 2

Mesh 1

0

T



T
13

T
11

T
33

 
                 (b) 

 

Figure 5.13: Normalized T-stress components for semi-circular surface-breaking crack 

subjected to non-uniform normal traction in transversely isotropic half-space under (a) 

BC-type-1 and (b) BC-type-2. 



 

 

64 

          
0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ref sol

Mesh 3

Mesh 2

Mesh 1

0

K

a

K
II

K
III

 
                          (a) 

 

 

 

 

       
0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ref sol

Mesh 3

Mesh 2

Mesh 1

K
II

K
III

0

K

a

 
                      (b) 

 

Figure 5.14: Normalized stress intensity factors for semi-circular surface-breaking 

crack subjected to non-uniform shear traction in x1-direction in transversely isotropic 

half-space under (a) BC-type-1 and (b) BC-type-2. 
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Figure 5.15: Normalized stress intensity factors for semi-circular surface-breaking 

crack subjected to non-uniform shear traction in x3-direction in transversely isotropic 

half-space under (a) BC-type-1 and (b) BC-type-2. 
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Unlike the first loading case, the applied shear traction in either 1x - or 3x - 

direction yields zero mode-I stress intensity factor and the T-stress components along 

the fracture front. The non-zero mode-II and mode-III stress intensity factors for the 

second and third loading conditions are reported for all three meshes along with the 

reference solution in Figures 5.14 and 5.15, respectively. Similar to all previous cases, 

it is apparent that the proposed technique yields highly accurate numerical solutions 

which are comparable to the benchmark results for all three meshes employed. In 

addition, obtained results also suggest that both the value and distribution of the stress 

intensity factors are weakly dependent on the boundary condition posed on the half-

space surface.  

Additional results for both cubic and orthotropic materials for all three types of 

crack-face loading are also reported in Appendix C. 

 

5.2 Investigation for complex problems 

 

Once the integral formulation and implemented solution procedure are fully tested, 

more complex boundary value problems involving multiple and non-flat cracks are 

presented here to additionally demonstrate both the robustness and capability of the 

proposed technique. The convergence behavior of numerical results is investigated by 

performing the simulations using a series of meshes.  

 

5.2.1. Embedded Spherical Cap Crack 

 

Consider a linearly elastic half-space containing a spherical cap crack of radius a and a 

half-subtended angle  as depicted in Figure 5.16(a). The orientation of the crack is 

such that its surface can be parameterized by 
1 sin cos ,x a    

2 sin sin ,x a   

3 cosx h a a     where [0, ]  , [0,2 ]   and h  is the distance from the half-

space surface to the top of the spherical cap crack. The half-space is subjected to the 

remote uniform biaxial tensions 
11 33 0     as indicated in Figure 5.16(b). In the 

simulations, the half-subtended angle is taken as 045  ; the depth is taken as 

/ 0.5h a  ; and four meshes indicated in Figure 5.16(c) are exploited. Similar to the 

previous section, two types of materials (e.g., isotropic and transversely isotropic 

materials with the elastic constants shown in Table 5.1) are chosen in the simulations. 

Additional results generated for other types of anisotropic materials (e.g., cubic and 

orthotropic materials) are provided in Appendix C. 

For isotropic case, the computed stress intensity factors and T-stress components 

under all four types of boundary conditions are first normalized by 0refK a  and 
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0refT  , respectively, and then reported in Figure 5.17 and Figure 5.20 for all the first 

three meshes. It can be observed that the numerical results generated from the coarsest 

and intermediate meshes are nearly identical to that generated by the Mesh 3 for all 

cases. Similarly, the computed stress intensity factors and T-stress components for the 

transversely isotropic elastic half-space under the boundary conditions BC-type-1 and 

BC-type-2 are first normalized by 0refK a  and 0refT  , respectively, and then 

reported in Figure 5.21 and Figure 5.22 for all the first three meshes. It can be seen, 

again, for this relatively complex boundary value problem posed by the material 

anisotropy and non-planar crack geometry that results obtained from the three different 

meshes are still in excellent agreement. This good convergence behavior and the 

requirement of using relatively coarse meshes to accurately capture the numerical 

solutions should result directly from the selection of suitable shape functions for crack-

tip elements to approximate the near-front relative crack face displacement. Besides, 

results from the first two boundary conditions are also compared with the reference 

solutions generated from an equivalent whole space containing a pair of geometrically 

symmetric cracks with respect to the plane x3 = 0  using the SGBEM with the Mesh 4. 

The good agreement between obtained results and the reference solution is observed 

for both the stress intensity factors and the T-stress components (see Figure 5.17-5.18 

and Figure 5.21-5.22).     

              

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.16: (a) Schematic of spherical cap crack embedded in an elastic half-space, 

(b) remote uniform biaxial tensions, and (c) three meshes adopted in analysis. 
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Figure 5.17: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in isotropic half-space under BC-type-1. 
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Figure 5.18: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in isotropic half-space under BC-type-2. 
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Figure 5.19: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in isotropic half-space under BC-type-3. 
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Figure 5.20: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in isotropic half-space under BC-type-4. 
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Figure 5.21: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in transversely isotropic half-space under BC-type-

1. 
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Figure 5.22: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in transversely isotropic half-space under BC-type-

2. 
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5.2.2. Two Embedded Elliptical Cracks 

 

Consider an elastic half-space containing two identical, vertical elliptical cracks as 

indicated in Figure 5.23(a). The half-space is subjected to a uniform remote uniaxial 

tension
0  as shown in Figure 5.23(b). The crack front of both is parameterized by  

 

1 2 3Crack 1: 0; sin ; cosx x d a x h b       (5.1) 

1 2 3Crack 2 : 0; sin ; cosx x d a x h b        (5.2) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

Figure 5.23: (a) Schematic of two identical elliptical cracks embedded in elastic half-

space, (b) half-space under remote uniaxial tension in x1-direction, and (c) three meshes 

adopted in analysis.   
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where d  is the distance between the center of each crack and 
3x -axis; a  and b  are the 

major and minor semi-axes of the elliptical cracks; and [0,2 ]  . In the simulations, 

the aspect ratio / 1.5a b   and / 1.1, 2.0d a   and two types of materials including 

isotropic and transversely isotropic solids are considered and three meshes shown in 

Figure 5.23(c) are employed. Due to the symmetry, the computed stress intensity factors 

and the T-stress components are reported only for the crack 1. 

The stress intensity factors and the T-stress components generated from the three 

meshes for all four types of boundary conditions along the front of the crack 1 are 

reported in Figures 5.24-5.31. It is evident that the numerical solutions for the stress 

intensity factors and the T-stress components exhibit the good convergence behavior; 

in particular, the discrepancy between results obtained from the Mesh 1 and Mesh 2 

and that from the Mesh 3 is insignificant for the two crack depths / 1.1d a   and 

/ 2.0d a   considered in the simulations. In addition, the dependence of results along 

the crack front on the ratio /d a  is also investigated. It is observed that the variation of 

both the stress intensity factors and the T-stress components at points on the crack front 

relatively close to those on the other crack is significant and strongly dependent on the 

ratio d/a. Clearly, the higher value of the ratio /d a , the less variation of the stress 

intensity factors and the T-stress components.  

The normalized stress intensity factors and T-stress components obtained from 

the transversely isotropic half-space under BC-type-1 and BC-type-2 along the front of 

the crack 1 are reported in Figures 5.32-5.35. Similar to results of the isotropic case, 

the good convergence of both the stress intensity factors and the T-stress components 

for / 1.1d a   and 2.0 are observed. In particular, results obtained from the coarse and 

intermediate meshes are almost indistinguishable from those computed from the fine 

mesh. Results shown in Figures 5.32-5.35 also indicate that the interaction of the two 

elliptical cracks and its influence on the stress intensity factors and the T-stress 

components is obviously dependent on the ratio /d a . The variation of the stress 

intensity factors and the T-stress components is found significant along the region of 

the crack front where the two cracks are relatively close. In particular, this variation is 

more rapid when the value of  d  is close to a .   
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Figure 5.24: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-1. 11T
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Figure 5.25: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-1. 
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Figure 5.26: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-2. 11T
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Figure 5.27: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-2. 
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Figure 5.28: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-3. 11T
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Figure 5.29: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-3. 
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Figure 5.30: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-4. 11T
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Figure 5.31: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in isotropic half-space under BC-type-4. 
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Figure 5.32: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in transversely isotropic half-space under BC-type-

1. 
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Figure 5.33: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in transversely isotropic half-space under BC-type-

1. 
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Figure 5.34: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in transversely isotropic half-space under BC-type-

2. 
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Figure 5.35: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in transversely isotropic half-space under BC-type-

2. 
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CHAPTER 6 

CONCLUSIONS  

6.1. Summary 

 

A set of singularity-reduced integral relations and equations has been established for a 

generally anisotropic, linearly elastic half-space containing arbitrary shaped cracks with 

the free surface subjected to symmetrical and anti-symmetrical boundary conditions on 

the free surface. The systematic regularization procedure based upon the integration by 

parts through Stokes’ theorem and special representations for both hypersingular 

kernels and strongly singular kernels has been developed and the final regularized 

integral equations containing only weakly singular kernels have been established. In 

addition, results proposed by Li (1996) has been adopted to form a set of singularity-

reduced boundary integral relations/equations for an isotropic, linearly elastic half-

space subjected to the traction-free boundary condition and the fully-restrained 

boundary condition on the half-space surface. Another key feature of the developed 

integral equations is the automatic treatment of the free surface via the use of the 

fundamental solutions of the half-space with the same type of boundary conditions. 

This therefore avoids the discretization of the half-space surface in the solution 

procedure. A weakly singular, symmetric Galerkin boundary element method has been 

successfully implemented to numerically solve the weak-form crack-face traction 

boundary integral equation for the jump in the crack-face displacement and such 

information has then been utilized as the known data to determine the sum of the crack-

face displacement from the weak-form crack-face displacement integral equation by 

standard Galerkin method. Special crack-tip elements have also been exploited to 

enhance the approximation of the near-front field. The fracture data along the crack 

boundary such as the stress intensity factors and the T-stress components has been 

directly extracted from the relative and sum of crack-face displacement using the 

explicit formula. 

Results from extensive numerical experiments and the comparison with several 

benchmarked cases have revealed that the proposed numerical procedure is highly 

accurate and computationally robust for the analysis of anisotropic cracked half-spaces 

under symmetric and anti-symmetric boundary conditions and isotropic cracked half-

space under various types of boundary conditions. Applying the special crack-tip 

elements along the crack boundary has indicated that the stress intensity factors and the 

T-stress components can be accurately captured using relatively very coarse meshes 
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and this therefore renders the technique more suitable for linear fracture analysis than 

the standard finite element method which generally requires sufficiently fine mesh to 

capture the near-front field and experiences difficulty in the treatment of an unbounded 

domain.  

 

6.2. Limitation and Essential Future Studies 

 

While the proposed technique has been successfully implemented, it is still restricted, 

for an anisotropic cracked half-space, to symmetric and anti-symmetric boundary 

conditions and the material must possess the plane of material symmetry parallel to the 

free surface. The potential extension of the current work to treat other types of boundary 

conditions such as the traction-free and rigid surfaces and other types of materials such 

as multi-field and smart solids is considered essential. It is important to emphasize that 

besides the reduction of the computational cost directly gained from using the half-

space model instead of the full treatment of a cracked whole space under symmetric 

and anti-symmetric conditions, the key ingredients and results established in the present 

study also form the useful and essential basis for such nontrivial generalization. 
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APPENDIX A 

FORMULATIONS OF Mmj(ξ, x) AND Nmj(ξ, x) 
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where the constants  and  are defined by 
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and ih  (i = 1, 2, and 3) are harmonic functions defined in the domain x3 > 0 as follows  
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APPENDIX B    

FORMULATIONS OF Pmj(ξ, x) AND Qmj(ξ, x)   
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APPENDIX C   

ADDITIONAL RESULTS 

This Appendix shows additional results of a half-space made of cubic and orthotropic 

materials and subjected to BC-type-α.   

 

Table C.1: Independent, relative elastic constants for cubic Gnaupel-Herold et al., 1998 

and orthotropic materials Kaw, 2006. The plane  is taken as a plane of material 

symmetry. 

 

 

Materials 
1111E  1122E  1133E  2222E  2233E  3333E  1212E  1313E  2323E  

Cubic 114.100 65.300 65.300 114.100 65.300 114.100 28.500 28.500 28.500 

Orthotropic 185.000 7.269 7.204 16.380 9.938 16.370 7.168 6.998 3.000 

  

 

 

C.1 Results for Cubic and Orthotropic Materials under BC-type-α 

 

C.1.1 Horizontal Penny-Shaped Crack 
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Figure C.1: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in cubic half-space under BC-type-1.  
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Figure C.2: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in cubic half-space under BC-type-2. 
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Figure C.3: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in orthotropic half-space under BC-

type-1. 
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Figure C.4: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for horizontal penny-shaped crack in orthotropic half-space under BC-

type-2. 

 

 

C.1.2 Vertical Penny-Shaped Crack 
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Figure C.5: Normalized mode-I stress intensity factors for vertical penny-shaped crack 

in cubic half-space under (a) BC-type-1 and (b) BC-type-2. 
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Figure C.6: Normalized T-stress components for vertical penny-shaped crack in cubic 

half-space under (a) BC-type-1 and (b) BC-type-2. 
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Figure C.7: Normalized mode-I stress intensity factors for vertical penny-shaped crack 

in orthotropic half-space under (a) BC-type-1 and (b) BC-type-2. 
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Figure C.8: Normalized T-stress components for vertical penny-shaped crack in 

orthotropic half-space under  (a) BC-type-1 and (b) BC-type-2. 

 

 

 

C.13 Surface-Breaking Crack 
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Figure C.9: Normalized mode-I stress intensity factors for surface-breaking crack 

subjected to non-uniform normal traction in cubic half-space under (a) BC-type-1 and 

(b) BC-type-2. 
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Figure C.10: Normalized T-stress components for surface-breaking crack subjected to 

non-uniform normal traction in cubic half-space under (a) BC-type-1 and (b) BC-type-

2. 

 

 

 


0.0 0.2 0.4 0.6 0.8 1.0

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ref sol

Mesh 3

Mesh 2

Mesh 1

0

K

a

K
II

K
III

 



0.0 0.2 0.4 0.6 0.8 1.0
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

ref sol

Mesh 3

Mesh 2

Mesh 1

K
II

K
III

0

K

a

 

               (a)                (b) 

 

Figure C.11: Normalized stress intensity factors for surface-breaking crack subjected 

to non-uniform shear traction in x1-direction in cubic half-space under (a) BC-type-1 

and (b) BC-type-2. 
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Figure C.12: Normalized stress intensity factors for surface-breaking crack subjected 

to non-uniform shear traction in x3-direction in cubic half-space under (a) BC-type-1 

and (b) BC-type-2. 
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Figure C.13: Normalized mode-I stress intensity factors for surface-breaking crack 

subjected to non-uniform normal traction in orthotropic half-space under (a) BC-type-

1 and (b) BC-type-2. 
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Figure C.14: Normalized T-stress components for surface-breaking crack subjected to 

non-uniform normal traction in orthotropic half-space under (a) BC-type-1 and (b) BC-

type-2. 
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Figure C.15: Normalized stress intensity factors for surface-breaking crack subjected 

to non-uniform shear traction in x1-direction in orthotropic half-space under (a) BC-

type-1 and (b) BC-type-2. 
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Figure C.16: Normalized stress intensity factors for surface-breaking crack subjected 

to non-uniform shear traction in x3-direction in orthotropic half-space under (a) BC-

type-1 and (b) BC-type-2. 

 

 

 

C.2 Results for More Complex Problems 

 

C.2.1 Spherical Cap Crack 
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Figure C.17: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in cubic half-space under BC-type-1. 
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Figure C.18: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in cubic half-space under BC-type-2. 
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Figure C.19: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in orthotropic half-space under BC-type-1. 
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Figure C.20: (a) Normalized stress intensity factors and (b) normalized T-stress 

components for spherical cap crack in orthotropic half-space under BC-type-2. 

 

 

 

C.2.2 Two Embedded Elliptical Cracks 
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Figure C.21: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in cubic half-space under BC-type-1. 11T
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Figure C.22: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in cubic half-space under BC-type-1. 
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Figure C.23: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in cubic half-space under BC-type-2. 
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Figure C.24: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in cubic half-space under BC-type-2. 
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Figure C.25: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in orthotropic half-space under BC-type-1. 
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Figure C.26: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in orthotropic half-space under BC-type-1. 
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Figure C.27: (a) Normalized mode-I stress intensity factor and (b) normalized T-stress 

component  for elliptical crack 1 in orthotropic half-space under BC-type-2. 
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Figure C.28: (a) Normalized T-stress component  and (b) normalized T-stress 

component  for elliptical crack 1 in orthotropic half-space under BC-type-2. 
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