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CHAPTER I 
INTRODUCTION 

 
Our research study focuses on predicting the start of a new swing of a financial 

price sequence. This swing is referred to as the turning point of a financial price 
sequence, with a local minimum called the trough, and a local maximum called the 
peak. Turning points are critical local extreme points along a series, which act as 
indicators to reflect the trends in the financial markets. A trader who is able to buy 
stocks at trough prices and sell at peak prices in order to enter/exit the market 
precisely at the turning points would gain the maximum possible profit. The ability to 
anticipate the trends of the stock market and the turning points can help in guiding 
financial decisions, and subsequently, in establishing stock market trading strategies. 
Turning points have been an interest since 1946 when Arthur and Wesley [1] described 
them as intrinsic parts of business cycles in their publication entitled ‘Measuring 
Business Cycles’. Following Arthur and Wesley, Bry and Boshan [2] proposed a process 
for the detection of turning points in time series, in hindsight. Overtime, research about 
turning point prediction has gradually shifted toward the use of another prediction 
model. This prediction model has been shown to be compatible with the other 
models such as the standard linear least square method and the standard Bayesian 
approach [3, 4]. Currently, there are two research interests in the field of computational 
finance, namely, Artificial Neural Network (ANN) and Support Vector Regression (SVR). 
In 2009, Li et al [5] proposed a model for short term prediction using the Artificial 
Neural Network model, which has been presented as an ensemble of learning based 
turning point prediction frameworks. This Ensemble Artificial Neural Network (EANN) 
model functions by approximating nonlinear maps. The regression problem uses feed-
forward with a back propagation algorithm as part of the EANN. Moreover, there is a 
genetic algorithm (GA) based threshold optimization, together with a newly defined 
performance measure, named TpMSE, which has been used as a cost function in our 
research. In addition, in 2012, Ran and Alexandra [6] also presented an autoregressive 
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short-term method for the prediction of turning points using Support Vector Regression 
(SVR), and confirmed the viability of their method using a long history of the Dow Jones 
Industrial average. The autoregressive model has been shown to be useful in predicting 
turning points of small swings. This demonstrates that the current model is significantly 
more effective than the previous neural network model, in respect to directing trade 
performance. 

 
In this research, we propose a new model for predicting the turning points in 

financial sequence, and also to examine the applicability of this new method, which 
is based on the Gaussian Process and the turning point prediction framework proposed 
by Li et al [5], and El-Yaniv and Faynburd [6]. The proposed model is utilized in the 
study to predict the turning points within a time series of stock prices obtained from 
the Stock Exchange of Thailand (SET). In addition, we also test and compare the 
efficiency in the techniques of modeling among the Gaussian Process Model, the 
Neural Network and the Support Vector Regression methods [5, 6], respectively. 
Besides, the methodology also entails the implementation of codes to generate the 
model using the RStudio program. This can be used to import the time series data of 
stock prices from the Stock Exchange of Thailand. An algorithm to predict the turning 
points will then be generated. Finally, we apply the Gaussian Process to the real world 
trading strategy for the derivation of maximum profit. 

 
The data provided in the model is a segment of the financial price sequence 

of stock prices from a time series master data, from the Stock Exchange of Thailand. 
The data has been generated using the RStudio program.  We have segregated the 
financial price information as either training data or test data. The training data set is 
used in fitting the price data with the GP model, and the testing data set is used in 
predicting the turning points as well as in evaluating the performance of the models. 
 
1.1 Objectives 

We aim to predict the turning points in the end-of-day time series of stock prices 
within the Stock Exchange of Thailand through a modification of the Gaussian Process 
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model, and to compare the efficiency of the model with the Neural Network and the 
Support Vector Regression methods, when applied to stock trading. 

 
1.2 Thesis Overview 

This thesis is divided into 5 chapters. In chapter 2, we present the background 
knowledge and relevant researches related to the concept of turning point prediction, 
which is required for this thesis. In chapter 3, the work process involved in the 
construction of the models will be explained. We present the algorithm for the model 
and the experiments performed in the study to assess the validity of the Gaussian 
Process turning point prediction model. In chapter 4, we describe the dataset and the 
program needed to implement the model, along with its potential application as a 
simple trading strategy analyzer. The model is then evaluated for its performance in 
trading application, and to determine the error function TpRMSE. Finally, chapter 5 
draws a conclusion and suggests possible future work. 
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CHAPTER II  
BACKGROUND KNOWLEDGE 

 

 

In this chapter, we present the background knowledge and the relevant 
concepts related to turning point prediction based on the Gaussian Process and the 
turning point prediction framework proposed by the Neural Network models by Li et. 
al. [5] and the Support Vector Regression model by El-Yaniv and Faynburd [6]. The 
proposed model is utilized in the study to predict the turning points within a time 
series of stock prices from the Stock Exchange of Thailand. 

 
2.1 Literature review 
 The section presents the related research for turning point prediction within 
financial price sequences. There are several fields of study that also focus on the 
determination of turning points such as business studies, economics, financial 
engineering and computational sciences. In addition, the predicting of a turning points 
require the use of mathematical models such as the RBF neural network (RBF), the 
ensemble artificial neural network (ANN), and the support vector regression method 
(SVR). Moreover, the Gaussian Process Model has been used in financial predictions 
before. To illustrate the concept, researchers such as Dejan Petelin and Sofiane Brahim-
Belhouari [7, 8] presented prediction techniques in terms of the Gaussian Process 
Model related researches are as follows;  
 

El-Yaniv and Faynburd [6] have presented autoregressive short-term prediction 
of turning points using the support vector regression (SVR) method over a long history 
of the Dow Jones Industrial average. The autoregressive model is advantageous in 
predicting turning points of small swings, and when the efficiency of the model is 
compared with the support vector regression model and the artificial neural network 
model, the  better performance of the model is statistically significant [5, 6]. 
Nevertheless, the SVR model has been able to yield a higher average return. 
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Li and Deng [9] presented a machine learning approach to predict turning points 

within a chaotic financial time series. This is a proposed turning point prediction 
method based on chaotic theory and machine learning that utilizes the radial basis 
function (RBF) neural network to build a nonlinear model. The nonlinear mapping 
between different data points is conducted for primitive time series. The result shows 
that the approach has good performance but not highly precise in its exact value 
prediction. 

 
Brahim-Belhouari [8] focused on a research study problem of time series 

prediction. This problem relates to a Bayesian procedure based on the Gaussian 
process models and a nonstationary covariance function. The performance of the GP 
model is quantified using the root mean square error. For this reason, the GP model, 
using a nonstationary covariance function, show good tracking performance owing to 
the time series that is often nonstationary. 

 
 From literature, we have reviewed a range of researches about the prediction 
of turning points that can be applied to our research.  The turning points and the 
models used in the study are introduced below. 
 
2.2 Turning point 

A turning point (TP) or a pivot in a financial price sequence is considered a time 
index, denoted by t . The turning point is a local extremum. This is called a peak if it 
is a local maximum and a trough if it is a local minimum, which marks the start of a 
new swing, as shown in figure (2.1). A turning point can be categorized according to its 
“size”, which is reflected by the duration and magnitude of the trends before and 
after the reversal [2]. We can consider the usefulness of predicting a turning point since 
each time index in a financial price sequence may point out the beginning of a 
downturn. Turning point prediction has been of interest since 1946 when Burns and 
Michell [6] described a turning point in terms of business cycles in their Measuring 
Business Cycles model. The linear least squares prediction methods were first 
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introduced in 1979 to predict the turning points of a time series. This research discusses 
the relationship between the theory of minimum mean square error linear prediction 
and the turning point prediction problem [5].  
 

 
Figure 2.1: An examples for peak and trough. 

 
 We now consider three definitions including the pivot of degree K, the impact 
of a turning point and the momentum of turning points. Let 1 2, , ..., , ...tX x x x  be a 
real sequence. 
 
Definition 2.1 Pivot of degree K [5]. The time index t in a time series is an upper pivot 
or a peak of degree K, if t t ix x  and t t ix x  for  1,2, ...,i K . In the same way, t  
is a lower pivot or a trough of degree K, if t t ix x  and t t ix x  for  1,2, ...,i K . 
 
Definition 2.2 Impact of a turning point [5]. The upward impact of a trough t  is the 
ratio max { , ..., } /t n tx x x , where n  is the first index greater than t , such that n tx x . 
That is, if the sequence increases after the trough t  to some maximal value maxx  and 
then decreases below tx ; the impact is the ratio max / tx x . If tx  is the global 
minimum of the sequence, then the numerator is taken as the global maximum 
appearing after time t . The downward impact of a peak is defined conversely. 
 
 

peak 

trough 

peak 
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Definition 2.3 Momentum of a turning point [5]. The upward momentum of a trough
t , with respect to a lookahead window of length w , is the percentage increase from 

tx  to the maximal value in the window 
  1 1 , ...,
t w
t t t wX x x . That is, the upward 

momentum is  1max { , ..., } /t t w tx x x . The downward momentum of a peak is defined 
conversely. 
 

        
                        (a) Pivot of degree K            (b) Turning point with impact   

 
(c) Turning point with momentum   

With respect to a lookahead window of length w 
Figure 2.2: Example of the turning point scheme. 

 
Three definitions of turning points have been described above. We find a local 

maximum (peak) and a local minimum (trough) for the construction of the alternating 
pivotal sequence, which is a characteristic feature of turning points in financial price 
sequences, through the consideration of the pivots in financial prices. Details have 
been described in section 2.2.1. 
 
2.2.1 Alternating Sequence Pivots 
 In this section, we will detect characteristic features of a turning point that we 
call alternative pivot sequence. Alternating sequence pivots ( )A X  function by 
detecting existing turning points to predict upcoming turning points. Alternating 
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sequence pivots have a class of pivotal points considered as local maximum and local 
minimum, and alternate between peaks and troughs. Figure 2.2 shows points of 
alternating sequence with pivot of degree K=15. The sequence ( )A X  is then used to 
construct a turning point oscillator.  

 

 
Figure 2.3: An example for alternative pivot sequence 

with pivot of degree K=15 
 
 By alternating the pivot sequence above, the construction of the turning point 
oscillator was achievable, which provides the target function for the prediction model. 
Details regarding the turning point oscillator has been described in the next section. 
 
2.2.2 A Turning point oscillator 

The oscillator will be normalizing the prices for the numerical interval values 
between 0 and 1. The reason for the construction of an oscillator is related to the 
existence of swings and extreme points within financial prices sequences.  The main 
function of the oscillator is essentially to normalize the financial prices. The value of 
TP oscillator is bounded in the interval [0,1] .  
 
Definition 2.4 A Turning point oscillator. Let X  be a price sequence and let ( )A X

be its alternating sequence pivots, which is a list of turning points with time in sequence
X . The TP oscillator is a mapping :  [ , ]0 1 , 
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 t 






 

0, f is a trough,

1, f is a ,

( )
otherwise,

( ) ( )
t

i t

i t peak

P t x

P t T t  
where ( )P t  and ( )T t  are the values of the time series at the nearest peak and trough 
located on opposite sides of time t . The oscillator has to normalize the price in order 
to assign value 0 to all troughs and value 1 to all peaks.  
 

To obtain the ‘turning point oscillator’, we directed the turning point oscillator 
as the target function in our model. The TP oscillator has been shown to be useful in 
turning point prediction; meaning, if we are unable to use other means to predict the 
turning points directly, we can also use the turning point oscillator (TP oscillator) to 
make the predictions instead. 
 
2.3 Neural Network models 

In this section, we briefly describe the artificial neural network (ANN). The 
model for predicting turning points with neural network has been presented by Li et 
al [5]. An Artificial neural network (ANN) is a mathematics models that can be used as 
forecasting models. A neural network can be thought of as a network of “neurons” 
organized in layer. The input from the bottom layer and the output from the top layer 
are used as the predictor for forecasts. There might also be an intermediate layer 
containing hidden neurons (hidden layer). A simple network would have no hidden 
layers and would be equivalent to linear regression. The coefficient of input (predictor) 
is called weights. At the access point of artificial neurons, the inputs are weighted. This 
means that every input value is multiplied with its individual weight. The forecasts are 
then obtained by a linear combination of these inputs. The weights are selected in the 
neural network model using a learning algorithm. We can also use linear regression, 
which is a more efficient method for training model. The neural network adds an 
intermediate layer as a hidden layer shown in figure 2.3. With this hidden layer, the 
network becomes associated with non-linear regression for training model. This is 
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known as a multilayer feed-forward network where each layer of nodes receives 
inputs from the previous layers. This can be used as a backpropagation algorithm. The 
backpropagation works by approximating the non-linear relationship between 
the input and the output by adjusting the weight values internally. It can further be 
generalized for the input that is not included in the training patterns (predictive 
abilities). The outputs of nodes in one layer are inputs to the next layer. The inputs to 
each node are combined using a weighted linear combination. The result is then 
modified by a nonlinear function before being converted to output. The 
following figure 2.4  shows the topology of the backpropagation neural network that 
includes an input layer, one hidden layer and an output layer. It should be noted that 
backpropagation neural networks can also have more than one hidden layer.  
 

 
Figure 2.4: A neural network with two input and three hidden layers 

with two neurons [10]. 
 

http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#input
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#output
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#weight
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#training patterns
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/BackPropagation.html#Figure 5
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#topology
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#input layer
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#hidden layer
http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#output layer
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Figure 2.5: Backpropagation Neural Network with one hidden layer [10]. 

 
The following describes the learning algorithm and the equations used to train 

a neural network. For feedforward, the inputs to thj  node in the hidden neuron i  on 
figure 2.4 are linearly combined to give  

                                                 jz   j


 ,
1

.
n

i j j
i
w x

                                    
(2.1) 

The equation is used to calculate the inputs to the neuron. The  j  term is the 
weighted value from a bias node that always has an output value of 1. The bias node 
is considered a "pseudo input" to each neuron in the hidden layer and the output 
layer, and is used to overcome the problems associated with situations where the 
values of an input pattern are zero. If an input pattern has zero values, the neural 
network could not be trained without a bias node. Within the hidden layer, this is then 
modified using a nonlinear function such as a sigmoid equation, 

 

                                                    ( ) zs z
e




1

1
.                                       (2.2) 

 
The equation gives the input for the next layer. This tends to reduce the effect of 
extreme input values, thus making the network somewhat robust to outliers. In 

http://www.cse.unsw.edu.au/~cs9417ml/MLP2/Glossary.html#bias
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addition, the output value for node K can also be computed from the equations (2.1) 
and (2.2). 
 
2.4 Support vector regression model 
 In machine learning, support vector machines (SVM) represent supervised 
learning models with associated learning algorithms that analyze data and recognize 
patterns, and is used for the classification and regression analysis proposed by Boser, 
Guyon and Vapnik [11, 12]. The basic concept algorithm is designed to work on dataset 
with two target classes by finding the linear hyper plane, which is used as the decision 
boundary to linearly separate instances in dataset into two sides. The hyper plane 
gives the largest minimum distance to the training set. This distance receives the 
important name of margin within the SVM theory. Therefore, the optimal separation 
of the hyper plane maximizes the margin of the training data. In the case of regression, 
a margin of tolerance (epsilon) is set in approximation to the SVM, which would have 
already been requested from the problem.  
 We will consider the problem of approximating the set of data. Suppose we 
are given a set of training data {( , ), ..., ( , )}l lx y x y1 1  , where   denotes the space 
of input patterns. Within the  SV  regression, the target is to find a function ( )f x  
that has the highest deviation from the actual obtained targets iy  for all the training 
data. We begin by describing the case of a linear function f  taking the form 
 
                               ( ) ,f x w x b   with w X ,b  ,                             (2.3) 
 
where ,   denotes the dot product in X , and where b  is the “bias” term. Often the 
data is assumed to have a zero mean (this can be achieved via preprocessing), so the 
bias term can be dropped. From the equation (2.3), a small w is desired to minimize 
the Euclidean norm. We can specify the problem as a convex optimization problem 
by requiring  
 
 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
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minimize w 21

2
 

        

,
subject to .

,

i i

i i

y w x b

w x b y





  


  

                                      (2.4) 

 
SVM regression performs linear regression in a high-dimensional feature space using  
 -insensitive loss and, at the same time, tries to reduce the model complexity by

minimizing w 2 . This can be described by introducing (non-negative) slack variables

  *, ,i i  1, ..,i n , to measure the deviation of the training samples outside  -insensitive 
zone. Thus, SVM regression is formulated as a minimization of the following function 
 

              minimize w 2
1

2
*( )

l

i i
i

C  



1

 

                       

subject to
i i i

i i i

i i

y w x b

w x b y

 

 

 

   


   




*

*

,

,

, 0

.                                         (2.5) 

 
The constant C  0  determines the trade between the function f  and the amount 
up to which deviations larger than   are tolerated. The quality of estimation is 
measured by the loss function  . The SVM regression uses a new type of loss 
function called  -insensitive loss function, which is describe by 
 

                                   

if 

otherwise

 


 


 



0
.                                          (2.6) 

 
This optimization problem can be transformed into a dual problem for which the 
solution is given by  
 

             ( )f x  *( )
l

i i
i
 




1

( , )ik x x s.t.b 0  *
i ,0C  i C .              (2.7) 
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The kernel function is 

                    ( , )i jk x x exp i jx x 
  

 

2

22
.                               (2.8) 

 
The SVM generalization performance (estimation accuracy) depends on a good setting 
of meta-parameters of C and  , together with the kernel parameters.  
 
2.5 Gaussian process model  

A Gaussian process with supervised learning is the problem of establishing an input-
output map from a training dataset. In this problem, we denote the input as x  and 

the output as .y  We consider a dataset D  of n  observations {( , ) 1, ..., }i iD x y i n  . 

The training data set can be used to make predictions for a new input *X  that is not 
seen in the training set. The finite training data can be transformed into a function f  
that makes predictions for all possible input values. A Gaussian process is thus a 
generalization of the Gaussian probability distribution [13].   

Let the thi input and the corresponding output of the computer simulator be 

denoted by a d-dimensional vector 1( , ..., )Ti i idx x x and ( )i iy y x , respectively. The 
experimental design 0 1{ , ..., }nD x x  is the set of n  input trials stored in a n d matrix 

.X  
We assume [0,1]dix  , where the outputs are held in the 1n  vector 

1( ) ( ,..., y )TnY y x y  . Assuming a relationship of the form  
 
                              ( )iy x   ( ), 1, ...,iz x i n  ,                                        (2.9)      

                                                                      
where   is the mean, ( )iz x  is a Gaussian Process with 

    ( ( )) , ( ( ))iE z x Var z x 0 2 ,   

                 ( ( ), ( ))i jCov z x z x  2 ijR .                                  (2.11)
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The simulator output has a multivariate normal distribution ( (1 , )n nN   ), where 
2  R  and 1n is an  vector of all ones. The Gaussian correlation function is a 

special case of the power exponential correlation family 
 

           ( ( ), ( ))ij i jR corr z x z x =
1
exp{ }

d pk
k ik jk

k
x x



  forall , ,i j             (2.12) 

 

where 1( , ..., )d   [ , )d 0  is a vector of hyper-parameters and (0,2]kp   is the 
smooth parameter. The mean   and the variance 2  are given by  
 
                                   1 1 11 1T Tˆ ˆ( ) ( ( )) ( ),n nR R Y                                           (2.13) 

                                 
1

2 1 1Tˆ ˆ( ( )) ( ( ))
( ) n nY R Y

n

   
 

 
 .                             (2.14)           

         
The covariance function is required to be optimized in order to find the 

maximization point of the probabilistic value for this model. We use the maximum 
likelihood approach to estimate the hyper-parameters  , followed by           

 
                          12 1 1

T

n n
ˆ ˆlog log logL R n Y R Y         

 
,            (2.15) 

 

where R  is the determinant of R .The linear equation predicted at *x  is. 
 

               *ˆ ( )y x = ̂ + T
n(r R Y 1 1 ̂ ) =

1

1

T
T Tn

nT

n n

(1 1 )
1 +

1 1

r R
r

R





 
 
 

1 TR Y C Y  .          (2.16) 

 

where 
1

( ( ), , ( ))nr r x r x   , ( ) corr( ( ), ( ))i ir x z x z x  ,  while the mean square error 
2 *( )s x  is defined by  

 

    *( )s x2 = * *ˆE ( ( ) ( ))y yx x  
2   

             = 2 ( ).TC RC1 2                                                 (2.17) 
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As defined earlier, the Gaussian process (GP) models are a generalization of the 
Gaussian probability distribution. It is a supervised learning problem in a machine 
learning format.  We will use the Gaussian process to predict the turning points in 
chapter 3. Through the package of the Rstudio program, we obtain the package of 
kernlab for the regression model. 
 
2.6 Problems related to specific error functions and optimization 

Peaks and troughs are considered as the sequence turning points of our 
dataset. We introduced  ˆ t  is an approximate of  t  and the thresholds ,low highT T  as 
hyper-parameter, where  ˆ t lowT are all considered as troughs, and  ˆ t highT  are all 
considered as peaks. The parameter space (Grid) for the thresholds is as follow  

                                   2( , ) [0,1]low highT T   with step 0.01.                            (2.18) 

 
In addition, we also introduced a specific error function. The basic error function used 
in the model is the root mean square error (RMSE), where RMSE is used in conjunction 
with the predicted values. Li et al [6]. had proposed the use of specialized error 
function (TpRMSE) based on RMSE, which is given as follows  
 

          
         2

1

1/21ˆ ˆTpRMSE TpRMSE , , ,
t

low high t t
t t T T t t

n 

      
 
 ,                (2.19)      

 
where   t  is defined in terms of following the trimmed reference function 
 

                 

 

   

   

   

   

 

ˆ1 ( )

ˆ1 ( )

ˆ0 ( )

ˆ0 ( )

ˆ

high high

high high

low low

low high

T if t and t T high false negative

T if t and t T high false negative

t T if t and t T low false positive

T if t and t T low false positive

t otherwise

    


   


     


   


 . 

 
From the model, we need to optimize the thresholds lowT and highT  so that we can 
optimize the TpRMSE error. 
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    

low highT' , T'

ˆ, argmin , , ' , 'low high low highT T TpRMSE t t T T    
 

.                        (2.20) 

 
To address problem specific errors in the study, we must use the TpRMSE error 

function because RMSE considers errors from all data points (non-specific). The 
TpRMSE error function has been defined in terms of the reference function. This error 
function is programmed to consider the turning points only.  
 
2.7 Performance measures and trading strategies 

Performance measures are composed of a number and a unit of measure. The 
number gives us a magnitude and the unit gives a meaning to the number. Performance 
measures are always tied to a goal or the ultimate target of the work.  
In our research, we could evaluate our model using the error function (TpRMSE) 
defined above, and assess trading performance using cumulative return, maximum 
drawdown, Sharpe ratio and success rate. Next, we now explain a very simple trading 
strategy that can be used to specify buying and selling signals. A trader who is able to 
buy stocks at trough prices and sell at peak prices (buy low and sell high) to enter/exit 
the market can obtain the maximum possible profit. The idea of a trigger is to generate 
predictions ˆ ( )t , with well-defined thresholds lowT  and highT . The simplest trigger, which 
is often used in general, is associated with predictions based on the following rules.        
 

                           
ˆ, ( )

( ) .ˆ, ( )

low

high

Buy if t T and not in position
Trigger t

and in positionSell if t T

  
 

 

                       (2.21) 

 
These trading strategies are based on fundamental analysis, with the ‘buy signal’ being 
triggered when we are out of the market. 
 
 There are various types of measures that evaluate trading performance of the 
models. The trading performance is determined using cumulative return, maximum 
drawdown, the Sharpe ratio and the success rate.  Let t n

tx  be a financial prices 
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sequence of length n. There are L pairs of times corresponding to matching buy and 
sell signals. Let {( , ), , [ , ], 1, , }i i i ib s b s t t n i L    be defined in relation to buying the 

stock at price 
ib

x  and selling the stock at price 
is

x , which is generated by a trading 

strategy S with respect to the price sequence t n

tx  . 
 The Cumulative return of a trading strategy S is the entire amount of money 
an investment has returned for an investor. The Cumulative return expresses the total 
percentage increase in the value of investment from the time it was purchased. 
 

                      The Cumulative return is, ( )t n
S tret x   si

bi

x

x
 .                         (2.22) 

 
The annualized cumulative return is the entire amount of money the 

investment has returned for the investor in a single year. The number of trading days 
per year is assumed to be 252. 
 

          The annualized cumulative return is, ( )t n
S tRET x  

252/[ ( )]t n n
S tret x  .        (2.23) 

 
The rolling cumulative return is the curve of cumulative return through time. 
 The rolling cumulative return is, ( ),sROC t  
 

                
1

1, if ([ , ])
( )

x / , if ([ , ])
i i

s
t t i i

t b s
ROC t

x t b s


  


, 1,t t t n   .                (2.24) 

 
 The maximum drawdown (MDD) is a measure of the risk which is defined with 
respect to the rolling cumulative return curve. The MDD is the maximum decline of a 
series from a peak to a trough over a period of time. This is the accumulated loss of 
buying an investment at its highest local maximum price and selling it at its lowest 
minimum price. ( )sROC t  is the cumulative return of the sequence. We consider the 
maximum drawdown in the time interval [ , ]t t n  for MDD as follows; 
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                    1

[ , ] [ , ]
( ) { [ ( ) ( )]}max maxt

S t S S
t t n t t n

MDD x ROC k ROC
 



   
  .                     (2.24) 

 
The Sharpe ratio (SR) has been developed. It is a measure for calculating risk-

adjusted return. The SR is calculated using standard deviation of the rolling cumulative 
return and excess return to determine the associated reward per unit of risk. The 
Sharpe ratio (SR) is given as 

 

                              
1

1
1

( ) 1
sharpe ( )

(ROC )( )

t
t S t

S t t
S t

ret x
x

std x







 .                                    (2.25) 

 
The annualized Sharpe ratio (ASR) is 

 

                                
1

1
1

( ) 1
SHARPE ( )

(ROC )( ) 252

t
t S t

S t t
S t

RET x
x

std x










.                          (2.26) 

 
The rate of success is the faction or percentage of successful trades given by, 
 

                                
II( )

( ) i i

S

s bt n
S t

x x
RATE x

L




 .                                         (2.27) 

 
The performance measurements represent a process toward a desirable 

outcome, including cumulative return, maximum drawdown, the Sharpe ratio and the 
success rate. Firstly, the cumulative return is defined as the total wealth accumulated 
overtime. Secondly, the maximum drawdown explains the risk of investment. Thirdly, 
the Sharpe ratio is a risk-adjusted return measure. Finally, the success rate is the 
determination of the number of successful trades amongst all the conducted trades. 
These are often used to evaluate the overall trading performance, and in generating 
trading strategies and tactical decisions prior to future trades. The measurements 
would enable traders to determine the effectiveness of their trades and the correlated 
success. 
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Chapter 2 has provided details regarding the use of turning points in preparing 
processes and in performance measure to determine the effectiveness of the models. 
The details of the work is described in chapter 3, where the turning point prediction 
and mathematical concepts are combined. Throughout the study, we construct the 
turning point predictions using algorithms.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

21 

CHAPTER III  
PREDICTING TURNING POINTS 

 
 

This chapter introduces the concept of turning point prediction utilized in this 
research. We firstly describe data preparation process based on three turning point 
definitions described in chapter 2. After that, the chapter will focus on the definition 
of the turning point oscillator as well as the method to construct this oscillator from 
alternating pivot sequence. Then, we will briefly describe the algorithm for predicting 
this oscillator  using the Artificial Neural Network (ANN), the Support Vector Regression 
(SVR) method, and the Gaussian Process (GP) model. Finally, the framework for 
predicting turning points from the predicted oscillator as well as experimental designs 
for comparing the performance of the proposed framework are introduced.  

 
3.1 Designing Algorithm  
 Let 1 2, , ..., , ...tX x x x  be a time series of stock price, with the index t representing 
time. To predict whether the stock price at time t is a turning point or not, we will use 
the backward window 1t

t t mW X 

 , when m  is the window size, as a sole information. 
The backward window may be transformed into a feature vector, by using price 
normalization process, and considered as an input of the models. The overview of the 
algorithm is illustrated as a flowchart in Figure 3.1. The detail of each step will be 
described be described in the rest of this chapter. 
  



 
 

 

22 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: The flowchart of the entire turning point prediction model. 
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Algorithm for the prediction models 
1. The turning point prediction algorithm utilized in this study begins with the 

process of preparing data for the detection of local maximum and local 
minimum in the time series of stock prices. These local maximums and 
minimums will be called pivots if it meets the criteria previously described in 
Chapter 2. These criteria include the pivot of degree K, the impact of a turning 
point, and the momentum of a turning point. It is important to note that the 
resulting pivot sequences obtained from these three turning point criteria can 
be very different.  Figure 3.2 illustrates the resulted pivot sequences obtained 
from three different definitions which are the pivot of degree K (with K=35), the 
impact of a turning point (with =1.35 ), and the momentum of a turning point 
(with =1.35  and window of length =80w ) using PTT stock price data. The 
green dots in the figure represent troughs while the red dots represent peaks 
in the sequence. 
 

  
    (a) Turning points of degree K=35        (b) Turning points with impact =1.35  

 
(c)  Turning points with momentum =1.35  

with respect to a lookahead window of length =80w  days 
Figure 3.2: Examples of turning point types using PTT stock price data. 
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2. In this step, we consider the peaks and troughs as the sequence of turning 
points. We will extract an alternating pivot sequence ( )A X  from the given pivot 
sequences. The extracted sequences will alternate between peaks and troughs 
(i.e. a peak will always follow by a trough and vice versa). In this sequence 
every trough can be considered as a global minimum within a certain time 
interval, with registered peaks surrounding it. Similarly, every peak can be 
considered as a global maximum within a time interval, with registered troughs 
surrounding it. After obtaining the alternative pivot sequences, we will utilize it 
to construct a turning point oscillator (TP oscillator) in the next step. The 
example of the alternating  Figure 3.3 shows an example of the alternating 
pivot sequences obtained from the pivot sequences generated from the pivots 
of degree 35, pivot impact of 1.35  , and the pivot momentum of =1.35 , 
with respect to a lookahead window of length =80w  using PTT stock price 
data.    
 

 
(a) Turning points of degree K=35 

 
 (b) Turning points with impact 1.35   
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  (c) Turning points with momentum =1.35  

with respect to a lookahead window of length =80w  
Figure 3.3: Examples of turning point types using PTT stock price data. 

   
3. In this step, we construct a turning point oscillator (TP Oscillator) from the 

alternating pivot sequence using the definitions described in Chapter 2.The idea 
behind this oscillator is to normalize stock prices [0.1] interval so that 0 
represents troughs in the sequence while 1 represents peaks in the sequence.  
Similar to the alternating pivot sequences, the TP oscillator also depends on 
the type of turning points. Figure 3.4 presents an example of a TP Oscillator for 
turning points with degree K 35  and momentum =1.35 . 

 

 
The upper graph shows the turning points with degree K 35  

The lower graph shows the TP oscillator of turning point with degree K 35  
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The upper graph shows the turning point with impact =1.35  

The lower graph shows the TP oscillator of turning point with impact =1.35  
Figure 3.4: Examples of TP Oscillator types using PTT stock price data 

 
 The above figure is an example of varying TP oscillator types generated using 
the PTT stock price data. There are different types of TP oscillators. The type of TP 
oscillator depends on the construction process of turning points. Moreover, a TP 
oscillator computed with pivot degree K 35  or computed with impact =1.35 , will 
have a lower number of peaks and troughs with the increase in the number of pivot 
points.  
 

4. While previous steps focus on target values of the prediction, this step will 
focus on the input for making turning point prediction. To achieve this, we will 
use previous stock price information in a form of backward window, 1t

t t mW X 

  
where m is the window size, as a sole information. The stock price in the 
backward window is then normalized into a [-1,1] range to create a feature 
vector. This process can be described by a feature extraction function ( )tF W  
which can be defined by the following equation: 
 

                                 
2( min( ))

( ) 1
(max( ) min( ))

t t
t

t t

w w
F W

w w


 


,                                   (3.1) 
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Figure 3.5 visualize this feature vector extraction process. In the next chapter, 
we will perform an experiment to find the best window size to make turning point 
prediction in our dataset as varying window size can greatly impact the performance 
of the models. This consequence of this framework is that the input of the model 
will be a vector whose dimension is m, and the output of the model will be a real 
value representing the value of the TP oscillator at some specified time. 
Consequently, the training dataset utilized to train the model in the next step can be 
defined as {( ( ),n tS F W  ( )); 0,..., }.t t n  

 

 
Figure 3.5: Examples of the feature vector extraction. 

 
5. After obtaining the training dataset Sn in the previous step, this step will utilize 

this dataset to construct models to predict TP oscillator from past stock prices. 
As our target value is a real value, we can utilize any modern regression models 
to perform this tasks. In this study we will utilize the Artificial Neural Network 
(ANN), the Support Vector Regression (SVR) method, and the Gaussian process 
(GP) model to learn this function. After we obtained the model for predicting 
TP oscillator, we will utilized the resulted model to predict the turning point 
in the step subsequence sections.      
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6. After obtaining a model for predicting the value of TP oscillator, we need a 
mechanism to decide whether a given point is a turning point or not. According 
to the definition of the TP oscillator, this can be done easily as 0 represents 
troughs in the sequence while 1 represents peaks in the sequence. However, 
the predicted values of TP oscillator, ̂ (t), rarely touch 0 and 1 regions. To 
make this decision, we will introduce thresholds ,low highT T  as parameters where 
̂ ( ) lowt T are all considered as troughs and ̂ ( ) hight T  are all considered as 
peaks. Consequently, we need to find the best thresholds for making this 
prediction and, in this study, we will utilize the thresholds that minimization 
the TpRMSE error function defined as the following, 
 

         2

1

1/21ˆ ˆTpRMSE TpRMSE , , ,
t

low high t t
t t T T t t

n 

      
 
  

 
so that the optimization of the thresholds is given by 
 

    
low highT' , T'

ˆ, argmin , , ' , 'low high low highT T TpRMSE t t T T    
 

. 

 
To achieve this, we will utilize a grid search method in a region of [0,1]x[0,1]with 
a step of 0.01.  

        
Figure 3.6:  Example of the value of an actual TP Oscillator (  ( ))t and 

the predicted turning points using the TP Oscillator (     ( ))t   
with 0.2lowT   and 0.8highT  . 
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7. After obtaining the model and the threshold value for making turning point 
prediction, this final step will evaluate the performance of the prediction 
model. To achieve this, we will test the model with the testing dataset and 
evaluate the prediction results by trading simulation as described in Section 
2.7. The trading performances measured in the study include cumulative 
return, maximum drawdown, the Shape ratio and the success rate.  
 

Through the use of the algorithm to predict the turning points, we have been 
able to construct functional models to perform the experiments. From the algorithm, 
we have also been able to manage the training segments to fit the models, use the 
segments to estimate the parameters, as well as test segments for validation.  
 

In the next chapter, we perform the experiments to test the algorithm. In addition, 
we also introduce the datasets for our experiments and the program to implement 
specific codes during the research. Furthermore, we introduce a simple trading strategy 
implemented for trading applications. 
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CHAPTER IV  

EXPERIMENTS AND RESULTS 
 

 
In this chapter, we briefly describe the dataset and the program required to 

implement the prediction model. In addition, we also describe a simple trading strategy 
implemented with the objective of trading applications. The dataset provided for 
testing the model is a real financial price sequence. The sequence contains a segment 
of the stock prices obtained from the master set of data from the Stock Exchange of 
Thailand. Because of the narrow field of computational sciences in Thailand, there has 
been a limit to the introduction of mathematical models for the prediction of turning 
points. As for the computational program, we will be using the RStudio program to 
implement the codes used during the research. The data used in this project have 
been obtained from a time series data of stock prices in Thailand. The conducted 
experiments involve the operation of trading. The models are evaluated using the error 
function TpRMSE, and the trading performance assessed using the cumulative return, 
the maximum drawdown, the Sharpe ratio and the success rate.  
  
4.1 Dataset and experiment 
  In our research, we consider a time series dataset from the Stock Exchange of 
Thailand, where a data of PTT stock, were collected. These datasets are numeric, with 
5 major attributes, containing 2000 days of record.  The attributes include open prices, 
close price, high and low prices of each day, and the adjusted stock price. From the 
dataset, we have chosen the ‘close prices’ as the input data for our prediction models. 
The close price is defined as the last trading price recorded when the market closes 
at the end of a trading day. We evaluate the performance of the proposed methods 
over a long history of the PTT close prices, with an example of 20 data inputs shown 
in table 4.1.1. However, for the actual evaluation of the model, our research used all 
2000 input data of the dataset for the PTT stocks.    
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Table 4.1: Example of a dataset of the PTT stocks 

 Open High Low Close Volume Adjusted 
2/4/2014 303 307 301 307 4119000 307 

3/4/2014 308 309 306 308 3662700 308 

4/4/2014 308 309 304 306 2980200 306 
8/4/2014 309 309 302 302 2028200 302 

9/4/2014 303 306 303 304 1726000 304 
10/4/2014 307 308 303 307 2042800 307 

11/4/2014 305 307 305 307 973400 307 

16/4/2014 309 316 309 315 5539100 315 
17/4/2014 314 315 312 312 2381400 312 

18/4/2014 312 314 311 311 1606900 311 

21/4/2014 312 312 309 310 2139700 310 
22/4/2014 311 312 306 307 3009800 307 

23/4/2014 308 311 306 308 3951500 308 
24/4/2014 308 309 306 309 2452700 309 

4/4/2014 306 310 306 307 2402000 307 

28/4/2014 307 309 306 306 1233700 306 
29/4/2014 305 306 302 303 3613200 303 

30/4/2014 306 313 304 313 7636800 313 

2/5/2014 309 312 309 309 2692000 309 
6/5/2014 310 311 308 309 1605800 309 

         
In this research, we consider the autoregressive technique for the prediction of 

the turning points, and apply the method towards the trading of stocks in the stock 
exchange of Thailand. The preparation of data for the detection of local maximum 
and local minimum has been extracted from the financial price sequences. This 
conforms to the three principle definitions explained in chapter 2. Next, we detect the 
turning point and extract the characteristics of these turning points based on the pivots 
values of pivot degree K, pivot with impact  , and pivot with momentum  , with 
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respect to a lookahead window of length w . This is an alternating sequence (X)A  of 
turning points, such that it can be used in the construction of a turning point oscillator 
(TP Oscillator). The problem with turning point prediction is that we cannot predict the 
turning points directly. To solve the problem, predictions are made using a turning 
point oscillator (TP oscillator). The oscillator has a value between 0 and 1, with the 
numerical value 0 assigned to all troughs and the numerical value of 1 assigned to all 
peak, as discussed in chapter 2. The information provided in the model is based on a 
given financial price sequence, which is a part of the stock price master data from the 
Stock Exchange of Thailand. We define the price sequence as X . Let  1 2, , ..., tX x x x  
be a real sequence, tx  . We describe tx  as the financial price sequence, where 
t  is the index of time. We have denote the backward window of day t  as 1t

t t mW X 

 , 
where m  is the window size of the prices. This feature has specifically been generated 
for the normalization of prices. The prediction of turning points involves several 
features and backward window lengths. In this research, we distinctly consider these 
features necessary for the normalization of prices. We consider the backward window 
length using the past ten prices. Throughout this research, we divided the financial 
price information as either training data or testing data. The training dataset is used in 
fitting the price data with the Artificial Neural Network, the Support Vector Regression, 
and the Gaussian Process model, while the testing dataset is used in predicting the 
turning points and in evaluating the performance of the models.  
 
4.1.1 Train, validation and test set 
 The financial price sequence of the PTT stock consists of train, validation and 
test segments, as shown in figure 4.1.1. The training segment is used in fitting the 

models, the validation segment to estimate the parameters low
T  and 

highT , and the test 
segment to assess the performance of the prediction models. The percentage of each 
data segment considered as train, validation and test segment is 60%, 20% and 20%, 
respectively.  
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   Figure 4.1: Separating data (PTT) into train and test segments. 

 

4.2 Experimental settings 
In this section, we will conduct three experiments to compare the performance 

of the proposed turning point prediction models on the PTT stock price.  
In the first experiment, we make use of directed analyses to determine the 

most suitable definition out of the three definitions (i.e. turning points with pivot K, 
turning points with impact  , and turning points with momentum  , with respect to 
a lookahead window of length w days).  We assume simulated trading by computing 
the commission rate that a trader will pay at 0.2% of the net sale price. We then 
perform a sample trading by buying at a trough and selling at a peak. Then, we select 
the definition that has highest cumulative return for further analysis in the 
subsequence experiments. 

In the second experiment, we find the best backward window size for modeling 
TP oscillator. This is achieved by training the model with different window sizes using 
training set and selects the one that has lowest root mean square error in the 
validation set. The models utilized in this experiment include Artificial Neural Network, 
Support Vector Regression and Gaussian Process Regression model.  

In the last experiment, we evaluate the performance of our turning point 
prediction model on the testing set. The performance of our models is evaluated using 
both TpRMSE and trading performance, which includes cumulative return, maximum 
drawdown, Shape ratio and success rate. 
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 4.2.1 Experiment 1 
 The experimental in the study is comprised of the following; points of 
alternating pivot sequence, average time period, cumulative return and average of 
cumulative return from an different turning point of degree K, impact   and 
momentum  with respect to a lookahead window of length w days. In a particular 
scheme, we consider the cumulative return while keeping in mind that the ultimate 
objective is to pick the most suitable dataset. In the experiment, we also consider the 
simulation of stock trading. The simulated stock trading makes use of the PTT stock 
price. Additionally, if the pivot of a turning point has a degree of K, we consider an 
increase equivalent to the degree of K value. By definition, pivots of higher degrees 
correspond to larger price swings. Therefore, the points of alternating pivot sequences 
present as small. For this reason, the profitability of stock trading can be low. 
Nevertheless, the degree K value can also manifest as being small. As a result, traders 
make more frequent trades in order to make a certain amount of profit from stock 
trading. This explanation is applicable to the other two definitions as well. 
 
Table 4.2: Experimental data of turning points with pivot degree K=1 to K=15. 

Degree 
K 

Points of 
alternating pivot 

sequence 
Mean period 

time 
Cumulative 

Return 

Average 
Cumulative 

Return 

Turning points with pivot degree K=1 to K=15 
1 1091 1.83211 13.26033 1.004754 

2 591 3.377966 12.71224 1.008656 

3 391 5.089744 11.70892 1.012697 
4 305 6.529605 11.22745 1.016038 

5 248 8.02834 10.4772 1.019283 
6 221 8.972727 10.10788 1.021253 

7 177 11.21591 9.506384 1.025921 

8 147 13.47945 8.807815 1.030252 
9 117 16.96552 8.004242 1.036512 
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10 107 18.38679 7.512015 1.03878 

11 101 19.49 7.362883 1.040737 
12 95 20.73404 7.231862 1.042994 

13 89 22.14773 7.027595 1.045311 

14 87 22.53488 6.918705 1.046009 
15 79 24.84615 6.709076 1.050017 

 
Table 4.3: Experimental data of turning points of impact  =1.01-1.15. 

 

Points of 
alternating pivot 

sequence 
Mean period 

time 
Cumulative 

Return 

Mean Cumulative 
Return 

Turning points of impact  =1.01-1.15 
1.01 566 3.532743 13.40152 1.009246 

1.02 368 5.422343 12.32284 1.013818 

1.03 268 7.453184 11.38446 1.018456 
1.04 186 10.75676 10.05935 1.02541 

1.05 140 14.31655 9.167361 1.032632 
1.06 122 16.44628 8.702487 1.036718 

1.07 98 20.51546 8.127758 1.044619 

1.08 84 23.9759 7.712312 1.051087 
1.09 65 30.71875 7.044938 1.062909 

1.1 53 37.80769 6.524254 1.074801 

1.11 49 40.95833 6.330131 1.079922 
1.12 39 51.73684 5.771344 1.096648 

1.13 37 53.86111 5.654985 1.101037 
1.14 29 69.25 5.175137 1.124591 

1.15 29 69.25 5.175137 1.124591 

 
 


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Table 4.4: Experimental data of turning points with momentum  =1.01-1.15, 
with respect to a lookahead window of length 1 day. 

 

Points of 
alternating pivot 

sequence 
Mean period 

time 
Cumulative 

Return 

Mean Cumulative 
Return 

Turning points with momentum  =1.01-1.15, with respect to a lookahead 
window of length 1 day 

1.01 565 3.535461 13.40152 1.009246 
1.02 368 5.419619 12.32284 1.013818 

1.03 268 7.449438 11.38446 1.018456 

1.04 186 10.71892 10.05935 1.02541 
1.05 140 14.26619 9.167361 1.032632 

1.06 122 16.38843 8.702487 1.036718 

1.07 98 20.4433 8.127758 1.044619 
1.08 83 23.89024 7.712312 1.051087 

1.09 65 30.60938 7.044938 1.062909 
1.1 53 37.67308 6.524254 1.074801 

1.11 49 40.8125 6.330131 1.079922 

1.12 39 51.55263 5.771344 1.096648 
1.13 37 54.41667 5.654985 1.101037 

1.14 29 69.96429 5.175137 1.124591 

1.15 29 69.96429 5.175137 1.124591 
 
  We have made use of the datasets from tables 4.2-4.4 to assure that we have 
selected the most appropriate definition. The definitions include pivot of degree K=1, 
turning point of impact  =1.01 and turning point with momentum  =1.01, with 
respect to a lookahead window of length 1 day. From these definitions, the objective 
of the study is to achieve the maximum cumulative return. This information will also 
be utilized as part of further examinations to discover the backward window length. 
 


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4.2.2 Experiment 2 
 In our experiment, we consider the backward window size for normalized 
prices. We based the operation of our developed model on the ANN, SVR and GP 
models. From experiment 1, the cumulative return of turning point of impact =1.01  
was no different than the results achieved with momentum  =1.01, with respect to 
a lookahead window of length 1 day. Throughout the study, turning point of impact
=1.01 presented with the most comprehensive results. In addition, we were also able 
to find the size of the backward window with impact  =1.01. 
 
Table 4.5: Experimental data of the ANN model, with turning points of impact 
 =1.01 and the feature vector consisting of the past 5-30 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.261567 0.295412 

6 0.256612 0.315298 

7 0.252777 0.314972 
8 0.246899 0.314689 

9 0.246466 0.313333 

10 0.244357 0.318461 
11 0.238091 0.32634 

12 0.236412 0.321028 
13 0.236096 0.315785 

14 0.227263 0.32611 

15 0.224134 0.336539 
16 0.226137 0.314598 

17 0.226451 0.342214 

18 0.221023 0.325664 
19 0.224593 0.359878 

20 0.209488 0.355116 

21 0.217084 0.339934 
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22 0.206083 0.357662 

23 0.203778 0.355387 
24 0.210245 0.342973 

25 0.201366 0.368187 

26 0.200678 0.375248 
27 0.194892 0.368655 

28 0.201911 0.384932 

29 0.190798 0.373902 
30 0.185483 0.389509 

 

 
Figure 4.2: The RMSE between training set and validation set  

of the ANN model with turning point of impact  =1.01. 
 

Table 4.6: Experimental data of the SVR model, with turning points of impact  
 =1.01 and the feature vector consisting of the past 5-30 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.278801 0.294922 

6 0.273275 0.291627 

7 0.274171 0.301726 
8 0.269271 0.300891 

9 0.26442 0.303078 

10 0.262658 0.312805 

RMSE of validation set 
RMSE of training set 
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11 0.262969 0.305313 

12 0.261951 0.308417 
13 0.262458 0.30628 

14 0.2619 0.307694 

15 0.260215 0.309502 
16 0.257545 0.314255 

17 0.256569 0.313088 

18 0.256488 0.309465 
19 0.255117 0.312607 

20 0.251462 0.310392 
21 0.250305 0.31659 

22 0.248438 0.321995 

23 0.247626 0.324815 
24 0.246318 0.320671 

25 0.246467 0.318857 

26 0.246557 0.316854 
27 0.246714 0.316432 

28 0.246511 0.319657 

29 0.247273 0.325352 
30 0.247053 0.327385 

 

 
Figure 4.3: The RMSE between training set and validation set  

of the SVR model with turning point of impact  =1.01. 

RMSE of validation set 
RMSE of training set 
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Table 4.7: Experimental data of the GP model, with turning points of impact  
 =1.01 and the feature vector consisting of the past 5-30 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.679467 0.276986 

6 0.670473 0.276691 
7 0.667247 0.282992 

8 0.661249 0.284526 

9 0.659346 0.287587 
10 0.658846 0.295222 

11 0.653058 0.292477 

12 0.651675 0.294024 
13 0.646558 0.292982 

14 0.645501 0.29325 

15 0.642487 0.293973 
16 0.640269 0.295448 

17 0.638717 0.294738 
18 0.635992 0.29272 

19 0.637093 0.293537 

20 0.634494 0.294225 
21 0.630442 0.298053 

22 0.632246 0.302175 

23 0.630093 0.303595 
24 0.627994 0.300692 

25 0.628542 0.299527 
26 0.625918 0.298325 

27 0.624776 0.298629 

28 0.622897 0.300903 
29 0.620781 0.30292 

30 0.619439 0.305056 
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Figure 4.4: The RMSE between training set and validation set  

of the GP model with turning point of impact  =1.01. 
 

 In table 4.5-4.7, we restricted attention to turning points with impact  =1.01 
with the ANN, SVR and GP models. In this experiment, the feature vector consisted of 
the past five, six and six price values in association with the ANN, SVR and GP models, 
respectively. This information will be utilized as part of further examinations in the 
construction of the TP oscillator model for turning point prediction in the last 
experiment. 
 

From previous experiments, we restricted attention to turning points with 
impact  =1.01 to be used with the ANN SVR and GP models, with the feature vectors 
consisting of the past five, six and six prices, respectively.  
 
4.2.3 Experiment 3 

From the outcomes of the previous experiments (1 and 2), the results of the 
current experiment have been determined. The results represent a comparative study 
of the ANN, SVR and GP models. The experimental data show the number of stocks 
traded, the mean cumulative return from the stocks, and the mean number of days 
each stock was held for. Moreover, this experiment also shows a comparison of the 
cumulative return, the annualized cumulative return, the Sharpe ratio, the annualized 
Sharpe ratio and the success rate generated using the three models. The definitions 

RMSE of validation set 
RMSE of training set 
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we considered in this study were based on turning point with impact  =1.01, and 
used with the ANN, SVR and GP models, with the feature vectors constituting of the 
past three, five and three prices, respectively.  The turning point identification has been 
achieved using two additional hyper-parameters, lowT and highT . 

 
Table 4.8: Performance of the models in predicting turning point of impact  
 =1.01, with the ANN, SVR and GP model (using RBF for SVR and GP) 

Models ANN SVR GP 

low
T and 

high
T  0.23, 0.75 0.33, 0.65 0.35, 0.67 

TpRMSE 0.1103241 0.143029 0.0204369 

cumulative return 0.8557061 1.093163 1.151083 

Average cumulative return 0.9954273 1.001857 1.002562 
Annualized  
cumulative return 

0.9062701 1.05787 1.092933 

Maximum drawdown 0.12638 0.1294585 0.1294585 

Sharpe ratio -10.16415  5.477872  8.897039  

Annualized Sharpe ratio -0.4159116 0.2143516 0.3447475 
success rate 0.4857143 0.4375 0.4363636 

Number of stock traded 35 48 55 

Mean number of days 
each hold stock. 

5.457143 4.145833 3.727273 

 
Table 4.8 presents the results of these tests for the turning point with impact 

 =1.01. The GP model performed better than the ANN and the SVR models in terms 
of TpRMSE, the cumulative return, maximum drawdown and the Sharpe ratio. 
However, the maximum drawdown is the lowest for the ANN model. When considering 
the success rate, we observe that the ANN model achieved a higher success than both 
the SVR and the GP models. Figure 4.5-4.10, shows predictions obtained by the ANN, 
SVR and GP models over a test set of PTT stock prices.  
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In figure 4.5-4.9, we show the turning point predictions obtained by the ANN, 
SVR and GP models over a test segment of the PTT stock prices. We are only interested 
in turning point with impact  =1.01. In this experiment, we trained the models over 
06-09-2007 to 27-07-2012. The thresholds lowT and highT  were selected over a validation 
segment from 07-08-2012 to 14-03-2014, and predictions were performed for test 
segment from 24-03-2014 to 04-11-15. 
 

 
Figure 4.5: TP Oscillator and its prediction by the ANN model  

with low
T =0.23 and high

T =0.75 over the PTT, 24-03-2014 to 19-01-2015. 

 

 
Figure 4.6: The circles mark the predicted turning points of the ANN model over 

a test set of PTT stock prices over the PTT, 24-03-2014 to 11-11-2015. 
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Figure 4.7: Figure 4.7: TP Oscillator and its prediction by the SVR model 

          with low
T =0.33 and high

T =0.65 over the PTT, 24-03-2014 to 19-01-2015. 

 

 
Figure 4.8: The circles mark the predicted turning points of the SVR model over 

a test set of PTT stock prices over the PTT, 24-03-2014 to 11-11-2015. 
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Figure 4.9: TP Oscillator and its prediction by the GP model 

with low
T =0.35 and high

T =0.67 over the PTT, 24-03-2014 to 19-01-2015. 

 

 
Figure 4.10: The circles mark the predicted turning points of the GP model over 

a test set of PTT stock prices over the PTT, 24-03-2014 to 11-11-2015. 
 

From the comparative analysis, based on the cumulative return and the Sharpe 
ratio, we can conclude that the SVR model performed better than the ANN and the 
GP models. However, the GP model has an overall higher accuracy of prediction 
compared to the other two models. On the other hand, the ANN model has a higher 
rate of success. The GP model also showed the best performance in terms of TpRMSE 
and  other performance measures, based on turning point with impact  =1.01. The 
results additionally support the point that the proposed models are more useful for 
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predicting turning points with turning point with impact  =1.01, with the feature 
vectors consisting of the past six prices for the PTT stock. 

 
From previous experiments, we restricted attention to turning point with impact 

 =1.01 to be used with the ANN SVR and GP models, with the feature vectors 
consisting of the past five, six and six prices, respectively.  
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CHAPTER V  

CONCLUSION 

 
5.1 Conclusion 

We began this research with a review of the concept of turning points (TP) in 
order to accumulate some basics necessary for the study of turning point prediction. 
In particular, we have reviewed the literature about turning point prediction using the 
Support Vector Regression method and the Artificial Neural network model. These 
models encompass the underlying knowledge for the study of turning point prediction. 
In this study, we proposed and studied a prediction model for turning points that relies 
on the ANN, SVR and GP models. We also made an attempt to gather useful 
information from the publications of Li et. al. and El-Yaniv and Faynburd [5, 6].  In the 
next step, we conducted experiments using the three models (ANN, SVR and GP). The 
experimental results pointed towards the performance of the models in predicting the 
turning points. We have also compared the efficiency of the three models, when 
applying them to stock trading. 

 

In our research, we devised three experimental tasks for turning point 
prediction based on three definitions (i.e. turning points with pivot K, turning points 
with impact  , and turning points with momentum  , with respect to a lookahead 
window of length w days). The experiments were conducted in order to find the 
appropriate parameter for each definition in predicting turning points. For the purpose 
of evaluation, we used the PTT stock prices obtained from the Stock Exchange of 
Thailand. The tools for the prediction of turning points have been summarized in table 
5.1. 

 

 

 

Table 5.1 Summary of turning point properties and feature vector length. 
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Turning point with impact  =1.01 

 Models Feature vector length 

 

Experiment 

- Artificial Neural Network 

- Support Vector  Regression  

- Gaussian Process 

- past 5 prices 

- past 6 prices 

      -    past 6 prices 

 

The conclusions we have drawn is in regards to the three turning point 
properties (table 5.1). In terms of the performance, the GP model performed better 
than the ANN and SVR models, when applied to stock trading. It has been observed 
that the performance of the GP model has a better outcome for cumulative returns. 
In the same way, the ANN model has also achieved a lowest risk just return (the Sharpe 
ratio), compared to the SVR and GP models. On the other hand, in terms of error 
values (TpRMSE), the three models presented with similar results. In brief, the GP 
model is the most suitable model (out of the three models) to utilize in the trading 
for PTT stocks. 

 
5.2 Future work 

In a future study, we will improve upon this technique and will investigate the 
possibility of using another model to support the current model in the prediction of 
turning points within a financial price sequence. Another extension will be to construct 
a mathematical model to test with a different type of stock price sequence. 
Furthermore, we will also utilize the developed turning point prediction model to 
device a more effective trading strategy for the derivation of maximum profit. 
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Appendix A: Software 
We will be using the RStudio program as a tool in implementing the 

necessary codes during the research. The data used in this project have been 
obtained from a time series data of stock prices in Thailand. Dataset for this thesis 
have been generated from the packages provided in the RStudio program. This 
package is in the form of quantmod, where the package for R has been designed to 
assist a quantitative trader in the development, testing, and deployment of 
statistically based trading models. Figure (a) presents a template from the RStudio 
program. The conducted experiments involve the operation of trading. The GP model 
is evaluated using the error function (TpRMSE), and the trading performance assessed 
using cumulative return, maximum drawdown, the Sharpe ratio and the success 
rate.  

We used the models to predict the turning points in chapter 3. Through the 
package of the Rstudio program, we obtain the package of nnet, e1071 and kernlab 
for the Neual Network, Support Vector Regression and Gaussian Process model, 
respectively.   
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Figure A: Template from the RStudio program 

 
Figure (b1) contains the workspace for a history of R commands. Any plot 

generated will show up in this region and will assist the R program shown in Figure 
(b2). Figure (b3) shows the R console including the inserted commands and the 
observable output. 
 

Appendix B: Experimental results 
Experiment B1  
 We consider the backward window size for normalized prices. We based the 
operation of our developed model on the ANN, SVR and GP models. 
Table 1: Experimental data of the ANN model, with turning point with impact 
=1.01 and the feature vector consisting of the past 5-50 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.260335 0.296978 

6 0.260795 0.308332 
7 0.252058 0.301903 

8 0.24873 0.29193 
9 0.247594 0.320221 

b2 

b1 

b3 



 
 

 

53 

10 0.246407 0.31291 

11 0.23749 0.31221 
12 0.238392 0.315434 

13 0.238985 0.312224 

14 0.234053 0.3426 
15 0.227616 0.324911 

16 0.2317 0.336684 

17 0.225476 0.342253 
18 0.220052 0.354673 

19 0.220011 0.333045 
20 0.21786 0.347102 

21 0.209617 0.347368 

22 0.218532 0.336545 
23 0.220618 0.358176 

24 0.208224 0.360535 

25 0.203029 0.359512 
26 0.197153 0.368283 

27 0.213 0.345987 

28 0.190387 0.390049 
29 0.190455 0.363062 

30 0.198181 0.360963 
31 0.19223 0.372689 

32 0.188112 0.359373 

33 0.184959 0.386715 
34 0.186894 0.3834 

35 0.184701 0.372902 

36 0.187192 0.391107 
37 0.173453 0.390862 

38 0.166628 0.37992 

39 0.175045 0.376365 
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40 0.157202 0.383985 

41 0.155796 0.3995 
42 0.172397 0.384869 

43 0.178108 0.378502 

44 0.154586 0.402115 
45 0.172034 0.391831 

46 0.160643 0.386979 

47 0.153069 0.415254 
48 0.14764 0.393748 

49 0.156857 0.395991 
50 0.163968 0.368429 

 

 
Figure 1: The RMSE between training set and validation set  
of the ANN model with turning point with impact  =1.01. 

 
Table 2: Experimental data of the SVR model, with turning point with impact  
 =1.01 and the feature vector consisting of the past 5-50 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.278801 0.294922 

6 0.273275 0.291627 
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7 0.274171 0.301726 

8 0.269271 0.300891 
9 0.26442 0.303078 

10 0.262658 0.312805 

11 0.262969 0.305313 
12 0.261951 0.308417 

13 0.262458 0.30628 

14 0.2619 0.307694 
15 0.260215 0.309502 

16 0.257545 0.314255 
17 0.256569 0.313088 

18 0.256488 0.309465 

19 0.255117 0.312607 
20 0.251462 0.310392 

21 0.250305 0.31659 

22 0.248438 0.321995 
23 0.247626 0.324815 

24 0.246318 0.320671 

25 0.246467 0.318857 
26 0.246557 0.316854 

27 0.246714 0.316432 
28 0.246511 0.319657 

29 0.247273 0.325352 

30 0.247053 0.327385 
31 0.246993 0.327233 

32 0.245607 0.327855 

33 0.244859 0.329857 
34 0.244297 0.32623 

35 0.243134 0.321508 

36 0.242341 0.314835 
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37 0.24303 0.31327 

38 0.241233 0.312298 
39 0.239206 0.312278 

40 0.237406 0.31204 

41 0.237151 0.316683 
42 0.236871 0.316935 

43 0.236674 0.314252 

44 0.236664 0.311482 
45 0.237205 0.309473 

46 0.237249 0.310947 
47 0.236962 0.311109 

48 0.236743 0.311267 

49 0.236475 0.311057 
50 0.2365 0.315957 

 

 
Figure 2: The RMSE between training set and validation set  
of the SVR model with turning point with impact  =1.01. 
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Table 3: Experimental data of the GP model, with turning point with impact  
 =1.01 and the feature vector consisting of the past 5-50 prices. 

Backward window 
size 

RMSE of 
training set 

RMSE of 
validation set 

5 0.6795 0.276991 

6 0.6705 0.276657 
7 0.667611 0.282785 

8 0.662331 0.283952 

9 0.659681 0.287525 
10 0.658222 0.295396 

11 0.654984 0.292377 

12 0.652283 0.294025 
13 0.646713 0.292994 

14 0.647538 0.293393 

15 0.644309 0.294096 
16 0.642364 0.295582 

17 0.640623 0.294728 
18 0.638291 0.292849 

19 0.635188 0.293502 

20 0.633893 0.294276 
21 0.631968 0.297767 

22 0.633023 0.301953 

23 0.630788 0.303378 
24 0.628544 0.300544 

25 0.628952 0.299408 
26 0.626141 0.298261 

27 0.62499 0.29857 

28 0.625514 0.300067 
29 0.620997 0.302856 

30 0.61812 0.305487 
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31 0.618374 0.305365 

32 0.614926 0.306625 
33 0.613322 0.308084 

34 0.612614 0.30677 

35 0.610382 0.305247 
36 0.608633 0.302126 

37 0.605564 0.301193 

38 0.602467 0.301668 
39 0.598525 0.302044 

40 0.596505 0.303044 
41 0.596761 0.305395 

42 0.59419 0.306276 

43 0.59234 0.305261 
44 0.590558 0.304735 

45 0.588782 0.303427 

46 0.586207 0.304102 
47 0.583582 0.304804 

48 0.583856 0.303934 

49 0.582449 0.30383 
50 0.579205 0.306115 
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Figure 3: The RMSE between training set and validation set  
of the GP model with turning point with impact  =1.01. 
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