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INTRODUCTION 

The first chapter provides the key motivation and importance of the current research. 

Then, the research objectives, scope of work, and the methodology and procedure are 

clearly addressed. Finally, findings and contribution of the current investigation are 

summarized.  

1.1 General 

Nano-technology will play an essential role in the industrial development because the 

current technology (micro-based technology) may reach an impasse. In the near future, 

there may be something that we have never seen before, such as ultra-fast computers, 

products which create itself, unspoiled food innovation, fully solar energy 

consumption, and new creative inventions and devices from imagination. Human can 

design and invent various materials, devices, tools and parts resulting directly from the 

progress in nano-science and nano-technology. Measuring instruments with a very tiny 

scale, not only in a millimeter (one thousand meters) or a micrometer (one million 

meters) scale but also in a nanometer scale (one billionth of a meters, the average human 

hair is about 25,000 nanometers wide), have been increasingly found. Nano-technology 

has rapidly grown and become influential in various disciplines including physics, 

chemistry, biology, electronics, engineering, and material sciences. For instance, in the 

field of biology, the evolution of nano-biosensors, biological probes, chemical 

diagnosis using bio-molecules to change the structure of drugs in order to destroy 

contiguous cells, and applications in cosmetics for passing nutrients to the human skin 

have been emerged in the past two decades. Nano-electronics is an example of nano-

products operating with high quality and efficiency; for examples, nano-

electromechanical solar cells, nano-chips for significantly enhancing the computer 

speed, and evolution of high density probe storage devices. Significant breakthrough in 

nano-materials has been also observed; for instance, a catalyst for plastic film industry 

of nano-composites which has the ability to block the passage of certain gas and steam 

for packaging to prolong the freshness of fruits and vegetables and production of nano-

particles production used for sterilizing bacteria or viruses. 
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Owing to the continuous development of nano-scale components, tools and 

devices, e.g., transistors, sensors, actuators and resonators used in the nano-electro-

mechanical systems (i.e., NEMSs) and parts of nano-chips, studies towards the 

characterization of mechanical properties at such a tiny-scale level has rapidly gained 

interest from many investigators in past several decades. Understanding the mechanical 

behavior and other properties (e.g., bending, buckling, and post-buckling) of slender 

nano-components which are commonly found as parts of nano-devices and nano-

systems (see Figure 1.1) is obviously essential and generally required in the design 

procedure to ensure the integrity and safety throughout their usage. 

 

 

 

(a) (b) 

Figure 1.1 Schematics of (a) SEM image of suspended nanowire device of 1.3 µm in 

length and 43 nm in diameter (image is taken from Husain et al. (2003)) and (b) silicon 

nanowire FET (image is taken from Koo et al. (2005)). 

1.2 Background and Review 

In the past two decades, researches have been extensively conducted to understand the 

fundamental behavior of nano-scale, slender structures such as nano-scale wires, rods, 

and beams. Most of existing studies can be separated into three categories based on the 

underlying methodology and procedure employed, one associated with experimental 

investigations and the other two concerning the discrete-based and continuum-based 

mathematical modeling.  

Several experimental techniques have been proposed to study the real bending 

and buckling behavior of slender nano-elements. For instance, Jing et al. (2006) 

performed a three-point flexural test of nano-wires by a contact atomic force 

microscopy to obtain the their elastic modulus for various diameters. It was found from 

their study that the measured modulus depends primarily on the specimen size resulting 
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directly from the surface energy effects. Riaz et al. (2008) investigated the kinking, 

flexural and buckling responses of nano-rods/nano-wires using the nano-indentation 

technique. Results from the test were used to calculate the buckling energies, identify 

the critical buckling point, and described loading and unloading characteristics of 

bending behavior of tested nano-wires. Hsin et al. (2008) used atomic force microscopy 

cantilever technique along with a scanning electron microscope to examine mechanical 

properties of a single silicon nano-wire via a buckling test. Experimental data indicated 

that the nano-wire can resist a much larger strain and possesses much higher elastic 

modulus in comparison with the bulk material. Later, Ryu et al. (2009) conducted an 

experiment together with a mathematical simulations to describe both in-plane and 

lateral buckling behavior of silicon nano-wires by using scanning electron microscope 

and atomic force microscopy. Jahed et al. (2012) applied uniaxial nano-compression 

techniques to study the buckling behavior of polycrystalline nano-pillars. The critical 

buckling was recorded and used to extract the tangent modulus. While the experimental 

methods have been commonly used by various researchers to characterize the 

mechanical properties in the nano-scale level, the testing procedure generally requires 

high precision machines and well-equipped laboratories.  

Alternative approaches using mathematical models integrating proper 

governing physics, postulates, and assumptions have increasingly gained attention from 

many investigators in the study of nano-scale structures due to their capabilities and 

cost effectiveness. Discrete-based techniques via sophisticated atomistic or molecular 

dynamics are ones of those theoretical simulations commonly used to investigate 

bending, buckling and post-buckling responses of nano-beams. Examples of those 

recent studies are briefly summarized below. Wang et al. (2008b) used atomistic 

calculations to examine the buckling responses of axially loaded GaN nano-wires. It 

was pointed out that the buckling strain and stress decrease as the wire length and the 

temperature increase. In the same year, Wang et al. (2008c) applied Stillinger-Weber-

potential molecular dynamics simulations to explore the buckling characteristics of 

axially loaded GaN nano-tubes. The length of nano-tubes, strain rate, and the 

temperature used in the simulation were found significantly influenced the buckling 

behavior. Later, Jing et al. (2009) employed the same technique as that used by Wang 

et al. (2008c) to study buckling of single crystalline silicon nano-wires. Similar findings 
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and conclusions about parameters affecting the buckling responses were reported. Wen 

et al. (2010) examined the effect of size and slenderness ratio on mechanical properties 

and failure mechanism of Au nano-wires using molecular dynamics calculations. 

Results from their study indicated that elastic properties, yield strain and stress depend 

mainly on the slenderness ratios and diameters of the wires. The effect of the axial and 

surface orientation on the buckling responses of gold-nano-wires was later examined 

by Olsson and Park (2011) using atomistic simulations. While predicted results from 

various studies using atomistic or molecular dynamics simulations have shown the 

good agreement with testing results, the involved analysis generally consumes 

significant computational resources to handle a large number of unknowns and 

complicated governing physics. 

In the past decade, classical continuum-based techniques have been increasingly 

proposed, as an alternative to atomistic and molecular dynamics simulations, and 

extensively used to study nano-beam problems. The positive features are based 

principally on the simplicity of the governing physics and low requirement of 

computational resources, in comparison with atomistic and molecular-based 

simulations. In general, existing classical Timoshenko and Euler-Bernoulli beam 

models (e.g., Timoshenko and Gere (1961)) have been enhanced by integrating Eringen 

nonlocal constitutive law (e.g., Eringen (1976); Eringen (1983); Eringen (2002)) and 

Gurtin-Murdoch surface elasticity model (e.g., Gurtin and Ian Murdoch (1975); Gurtin 

and Murdoch (1978); Gurtin et al. (1998)) to be capable of handling nano-scale 

phenomena, such as nonlocal and size-dependent behavior, observed from 

experimental investigations and atomistic calculations. Recent relevant literatures are 

reviewed and key features of those existing studies are briefly summarized in 

chronological order below.    

 Wang et al. (2006) developed an exact expression of the buckling load for 

micro- and nano-rods/tubes by including the influence of both non-locality and shear 

deformation. In their formulation, the linearized Timoshenko beam theory and Eringen 

constitutive model were employed along with the principle of virtual work to derive the 

key governing equation. Guo and Zhao (2007) explored the size-dependent bending 

behavior of nano-beams by considering the effect of both surface tension and surface 

relaxation of a layer on the surface of the beam into account. The linearized Euler-
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Bernoulli beam model along with the apparent flexural rigidity and elastic modulus 

resulting from the surface effects was employed to derive an exact expression of the 

beam deflection. Wang and Liew (2007) derived closed form deflections of micro- and 

nano-rods/tubes by employing linearized Timoshenko and Euler-Bernoulli beam 

models and Eringen nonlocal elasticity. Results from their parametric study indicated 

that the size dependent characteristics of predicted solutions are evident for nano-

elements not micro-structures.  Wang et al. (2008a) applied linearized Timoshenko 

beam theory along with Eringen nonlocal constitutive law to obtain analytical responses 

of short and stubby micro- and nano-beams. They also pointed out the significant 

contribution of the shear deformation and the small-scale effects on obtained results. 

He and Lilley (2008) developed a closed-form solution of the deflected shape of 

cantilever, simply-supported, and fixed-fixed nano-beams using an enhanced linear 

Euler-Bernoulli beam model with Gurtin-Murdoch surface elasticity model. The latter 

was utilized to derive the effective flexural rigidity and fictitious transverse force along 

the beam. Their simulated results were found in agreement with existing testing data. 

In 2009, Pradhan and Phadikar (2009) explored the buckling, bending and vibration of 

single-wall and double-wall nano-tubes under various end conditions by using a 

nonlocal theory of linear elasticity and classical beam theory. In their study, both 

material and geometric data were assumed spatially dependent and a numerical 

technique based on the general differential-quadrature was implemented to solve the 

governing differential equations. Aydogdu (2009a) presented a general formulation of 

a linear beam theory incorporating Eringen nonlocal constitutive law for the analysis of 

buckling, bending and vibration of nano-elements. The obtained governing equations 

can recover those associated with various existing beam models such as Timoshenko, 

Euler-Bernoulli, Reddy, Levinson, and Aydogdu models (e.g., Levinson (1981); Reddy 

(1984); Aydogdu (2009b)). Wang and Feng (2009) derived a closed form formula for 

the buckling load of axially loaded nano-wires by considering the effect of surface 

energy via Gurtin-Murdoch surface elasticity theory. The incremental-deformation 

theory along with Timoshenko beam model was employed by Song and Huang (2009) 

to investigate both vibration and bending of nano-wires. The geometric nonlinearity 

was considered in terms of Lagrangian strain and Gurtin-Murdoch surface stress model 

was integrated via the Hamilton’s principle. Later, Jiang and Yan (2010) combined 
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linearized Timoshenko beam theory and surface stress effects to investigate the 

contribution of surface elastic modulus, residual surface tension, and shear deformation 

on the transverse displacement, modulus and stiffness of nano-wires under different end 

conditions. Results from their study were in agreement with available testing data from 

Jing et al. (2006) and also confirmed the size-dependency characteristics. Zeng and 

Zheng (2010) formulated the governing differential equations of nano-beams 

undergoing large deflection by taking the surface stress effects into account. Explicit 

results for fixed-fixed and fixed-free nano-beams under a concentrated force were also 

reported and used to demonstrate the contribution of the surface stresses. It is remarked 

that while the geometric nonlinearity was taken into account in their formulation, its 

applicability is still limited due to discarding contribution of higher order terms in 

kinematical relations. Fu et al. (2010) developed a numerical technique based on 

Galerkin procedure to simulate free vibration, buckling load, and post-buckling 

responses of nano-beams with consideration of surface energy effects. Nonlinear 

kinematics was formulated in terms of strain-displacement relations of the von Karman 

type. The influence of surface energy on the size-dependency of obtained results were 

fully investigated and discussed. It is remarked however that similar to most of previous 

studies, the contribution of the residual stress within the bulk is discarded. 

Later, Ansari and Sahmani (2011) integrated Gurtin-Murdoch surface elasticity 

model to enhance various classical linearized beam theories such as Timoshenko, 

Euler-Bernoulli, Levinson and Reddy models to predict both buckling and flexural 

responses of nano-beams. Exact expressions for both the buckling load and deflected 

shape of a simply-supported beam were derived and then used to investigate the size-

dependency behavior and significant contribution on the beam stiffness. Li et al. (2011) 

applied the classical linear strain gradient elasticity theory to formulate linear high-

order differential equations governing the transverse deflection of nano-beams. Free-

vibration, buckling and flexural responses of nano-beams were then obtained by solving 

such governing equations. It was indicated that results were in good agreement with 

testing results and the beam stiffness, buckling load and natural frequency were found 

size dependent. Wang and Yang (2011) applied the classical beam theory together with 

Gurtin-Murdoch model to compute the buckling load and post-buckling shape of a 

fixed-pinned nano-wire. In their study, the shooting method was utilized to construct 



7 

 

the post-buckling configuration and predicted results indicated the significant 

contribution of surface material parameters. Roque et al. (2011) developed a meshless 

technique with both global and local collocation schemes to investigate free vibration, 

buckling and flexural behavior of nano-beams. The linearized Timoshenko beam theory 

is utilized along with Eringen nonlocal linear elasticity to formulate the governing 

differential equations. Their numerical solutions were found in excellent agreement 

with exact results generated by Reddy (2007). Chiu and Chen (2011a), Chiu and Chen 

(2011b) examined the buckling and bending behavior of nano-beams under various end 

conditions. In their formulation, the linearized Euler-Bernoulli beam theory was 

utilized along with the high-order surface stress effects via Young-Laplace equation. 

By validating with existing experimental data, the higher-order surface stress model 

was found yielding more accurate results than the conventional one. Later, Juntarasaid 

et al. (2012) applied both Eringen nonlocal constitutive relation and Gurtin-Murdoch 

surface theory together with the linearized Euler-Bernoulli beam model to derive 

analytical solutions of both buckling load and small deflection of nano-beams subjected 

to different end conditions. It is important to point out that while their mathematical 

model can characterize the nano-scale influence but the contribution of the residual 

stress within the bulk material due to the non-zero residual surface tension was not 

considered. Samaei et al. (2012) investigated the buckling of nano-wires by taking the 

piezoelectric effect, surface stresses and transverse shear deformation into account. The 

linearized Timoshenko beam theory was utilized as a basis of their formulation and the 

critical electric potential was derived analytically in terms of surface parameters, elastic 

and piezoelectric constants, and geometry of nano-wires. The contribution of the 

transverse shear deformation was clearly demonstrated by comparing predicted results 

with those obtained from Euler-Bernoulli beam model. Janghorban (2012) developed 

the differential quadrature method to obtain the bending response of tapered nano-wires 

under fixed-fixed and simply-supported end conditions. The Eringen nonlocal 

constitutive relation was integrated into linearized Euler-Bernoulli beam theory to 

simulate the nano-scale influence. Mahmoud et al. (2013) applied both the surface and 

nonlocal elasticity models along with the linearized Euler-Bernoulli beam theory to 

derive a key differential equation governing the deflected shape of nano-beams under 

transverse loadings. A standard finite element procedure was adopted to construct 
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approximate solutions and an extensive parametric study was performed to examine the 

important role of both surface and nonlocal parameters on the size dependency of 

computed results. Yao and Yun (2012) explored the effect of non-uniform surface 

elasticity on the buckling load of ZnO nano-wires under fixed-fixed and fixed-pinned 

conditions. The exponential variation of the surface parameters was assumed and the 

analytical expression of the buckling load was derived for both cases. Thai (2012) 

derived the closed-form solutions of the buckling load, transverse deflection and natural 

frequency of nonlocal nano-beams. In the formulation, the linear shear deformation 

beam theory with a parabolic shear strain over the cross section was utilized together 

with the nonlocal constitutive law. Computed results were compared with solutions 

generated by Timoshenko, Euler-Bernoulli and Reddy beam models and also found 

strongly dependent on nonlocal parameters. Thai and Vo (2012) reinvestigated the same 

problem as that carried out by Thai (2012) except that the sinusoidal shear-deformation 

beam model was employed in their study. Exact solutions of a simply-supported beam 

were obtained and compared with results obtained by Timoshenko beam model 

integrated by nonlocal effects. Xu et al. (2012) applied Timoshenko beam theory and 

Eringen nonlocal elasticity to estimate the buckling load and post-buckling shape of a 

cantilever nano-rod. A semi-analytical technique based on the homotopy perturbation 

scheme was utilized to determine the solution of the nonlinear differential equation. 

Results from their study indicated that the shear deformation and the nonlocal 

parameters play a crucial role on the value of the buckling load and the post-buckling 

deflection. Liu et al. (2012) studied nano-wires subjected to transverse loads and 

undergoing large displacement and rotation. The residual surface tension and surface 

elasticity were incorporated in the derivation of the governing equation and the 

numerical solutions were obtained via a shooting method. Again, in this study, the 

initial residual stress within the bulk was discarded.  

Recently, Şimşek and Yurtcu (2013) developed closed-form results associated 

with flexural response and buckling load of a simply-supported nano-beam made from 

a functionally graded material with power-law effective properties. The nonlocal 

elasticity model and linearized Timoshenko and Euler-Bernoulli beam theories were 

utilized in the formulation to simulate effects of the transverse shear deformation and 

small-scale influence. Li and Zhang (2013) utilized a classical Euler-Bernoulli beam 
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model to estimate the critical load and length of nano-wires rested on the elastic 

substrate due to the self-weight and tip force. The supporting elastic substrate was 

replaced by a rotational spring at the base of the wire in the modeling and an integral 

equation method was proposed to derive a simplified approximate expression for the 

buckling load. Emam (2013) proposed a general formulation to model buckling and 

post-buckling of nano-beams by incorporating Eringen nonlocal elasticity and a 

generalized kinematics suitable for handling Timoshenko, Euler-Bernoulli and higher-

order shear-deformation beam theories. Closed-form solutions of both the critical load 

and the amplitude of the post-buckling shape were reported for both simply-supported 

and fixed-fixed end conditions. Chiu and Chen (2013) derived analytical expressions 

for transverse displacement and resonance frequency of nano-wires by using high-order 

surface stresses and a linearized Timoshenko beam model. Predicted solutions were 

compared extensively with existing experimental results and those generated by Euler-

Bernoulli beam theory including simple surface stresses. It was pointed out from their 

study that the high-order surface stresses show strong influence on the response of 

nano-wires with relatively small cross section. Ghannadpour et al. (2013) examined the 

buckling, flexural and free-vibration problems by utilizing the linearized Euler-

Bernoulli beam model along with the nonlocal linear elasticity. The Ritz method was 

adopted to construct approximate solution of beams under general loading and 

boundary conditions. Ansari et al. (2013) integrated Gurtin-Murdoch surface elasticity 

into the classical Euler-Bernoulli beam model to investigate the post-buckling behavior 

and size-dependency of predicted responses of nano-beams. In their study, the virtual 

work principle along with the generalized differential quadrature technique and 

Newton-Raphson scheme was utilized to obtain numerical solutions. Eltaher et al. 

(2013) studied the size-dependent behavior and the influence of end conditions and 

material property profile on the buckling load of a nano-element made from a 

functionally graded material. The Eringen nonlocal elasticity was integrated into a 

classical linear Euler-Bernoulli beam theory to formulate the governing equation and a 

standard finite element procedure was adopted to obtain numerical solutions. Later, 

Ansari et al. (2014) revisited the post-buckling of nano-beams reported by Ansari et al. 

(2013) by replacing Euler-Bernoulli beam model by Timoshenko beam theory. The 

same surface elasticity model and similar numerical procedure were adopted in their 
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work. Hu et al. (2014) applied both the nonlocal constitutive model and the surface 

stresses to enhance the classical linearized beam theory in the study of the buckling 

load and vibration of nano-wires. Analytical solutions for both cases were derived using 

a fundamental approach in a theory of differential equations. It should be remarked that 

in their formulation, the initial residual stress within the bulk was fully ignored and the 

effect of the residual surface tension was lumped to the fictitious longitudinal force. Li 

et al. (2014) presented analytical solutions of linearized Timoshenko nano-beams 

subjected to concentrated transverse force. The nano-scale influence was incorporated 

in their formulation via Gurtin-Murdoch model with the contribution of both surface 

elasticity and residual surface tension. Results from their study confirm the significant 

effect of surface stresses on the overall stiffness of the beam and size-dependency 

characteristic of computed solutions. Eltaher et al. (2014b) combined the linearized 

Timoshenko beam theory and Eringen nonlocal linear elasticity to study both bending 

and buckling of functionally graded nano-beams for various end conditions. In their 

work, a standard finite element method is adopted to construct the numerical solutions 

and the influence of nonlocal parameters, boundary conditions and material properties 

on the predicted results was fully investigated. Eltaher et al. (2014a) developed a finite 

element technique based upon Eringen nonlocal elasticity with higher-order strain 

gradient and linearized Euler-Bernoulli theory to investigate bending, buckling and free 

vibration of a single nano-beam subjected to different end conditions. The ability of the 

higher order strain gradient model to predict the size-dependent behavior of nano-

beams was concluded. Most recently, Wu et al. (2015) presented a continuum-based 

mathematical model by integrating small-rotation Euler-Bernoulli beam theory, surface 

elasticity theory, and nonlocal linear elasticity effects to examine the bending response 

of nanowires for various boundary conditions. 

As clearly demonstrated, results from an extensive review of existing studies 

indicate the vast applications of nonlocal constitutive models and surface elasticity 

theory to investigate the size-dependent characteristic and nano-scale influence of 

bending, buckling, and post-buckling of nano-beams. It is crucial to point out however 

that integration of both nonlocal and surface stresses effects to investigate bending and 

post-buckling behavior of nano-elements within the context of large displacement and 

rotation is not well established. In addition, most of existing investigations fully 
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neglected the contribution of the residual stress within the bulk material when Gurtin-

Murdoch model was utilized. The contribution of the non-zero residual surface tension 

was integrated mainly through the fictitious longitudinal force. This ignorance can lead 

to either inaccurate or erroneous predicted solutions as pointed out by Wang et al. 

(2010). 

1.3 Research Objectives 

The main objectives of the present study are to  

(i) develop a theoretical model capable of simulating the nano-scale 

influence on responses of nano-beams,  

(ii) develop a semi-analytical technique to obtain bending, buckling, and 

post-buckling responses of nano-beams under various end conditions, 

and  

(iii) fully investigate the nano-scale influence and size-dependency of 

predicted solutions. 

1.4 Scope of Research 

The present study is carried out within following context:  

(i) a single nano-element of a rectangular cross section is treated; 

(ii) a bulk material is assumed linear, homogeneous, and isotropic with its 

behavior governed by Eringen’s nonlocal linear elasticity model; 

(iii) the effect of surface stresses is fully described by a complete Gurtin-

Murdoch surface model;  

(iv) external excitations are modeled in terms of loads applied only at the 

end of the beam and their direction remains unchanged for the entire 

loading history; 

(v) solution procedure and results are presented only for fixed-free and 

fixed-pinned beams; and 

(vi) axial and shear deformations are fully ignored.  



12 

 

1.5 Research Methodology 

Fundamental theories and key assumptions, methodology and research procedures 

essential for the present study are summarized below. 

(i) A classical Euler-Bernoulli beam theory within the context of the large 

displacement and rotation is used to formulate equilibrium equations and 

geometric relations of the beam. The well-known assumptions of the 

cross-section kinematics, such as “plane section remains plane” and 

“axial and shear deformations are negligible”, are also employed. 

(ii) The theory of linear nonlocal elasticity and Gurtin-Murdoch surface 

elasticity are employed to integrate the influence of nonlocal and surface 

stresses into the moment-curvature relationship. 

(iii)  The technique analogous to the elliptic integral method is applied to 

transform governing nonlinear differential equations to a set of nonlinear 

algebraic equations governing nano-elements under general end 

boundary conditions.  

(iv) A small-rotation-based approximation is applied to derive a linear, 

fourth-order, ordinary differential equation governing the buckled shape 

of the beam. 

(v) A standard analytical procedure for determining eigen values and eigen 

functions is adopted to determine the buckling load and corresponding 

buckled shape of axially loaded nano-elements. 

(vi) A nonlinear solver based on Newton-Raphson iteration is employed to 

solve a system of nonlinear algebraic equations. 

(vii) A selected variable transformation along with standard Gaussian 

quadrature is adopted to accurately and efficiently integrate all weakly 

singular integrals. 

(viii) A verified in-house computer code is then utilized in the parametric 

study for investigating the nano-scale influence and size-dependency on 

predicted solutions. 
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1.6 Research Significance 

The present study offers a continuum-based mathematical model along with an efficient 

and accurate solution procedure for simulating bending, buckling, and post-buckling 

responses of nano-beams with consideration of the nano-scale influence. Due to the 

vast capability of the proposed technique, it should provide an attractive alternative 

tool, in addition to experimental methods and atomistic and molecular dynamic 

simulations, to explore the mechanical behavior of slender nano-scale elements. In 

addition, results and findings from the current parametric study should also enhance the 

fundamental understanding of the nano-scale influence on the size-dependent 

characteristics of predicted results.  
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PROBLEM FORMULATION 

In this chapter, a clear problem description is presented along with the integration of 

three basic field equations including constitutive relations, equilibrium equations and 

kinematics to form a complete set of nonlinear differential equations governing an 

element of nano-beams undergoing large displacements and rotations. 

2.1 Problem Description 

Consider a perfectly straight, prismatic, nano-element with length l  and rectangular 

cross-section of width b  and depth h . The bulk material of the nano-element is made 

from an isotropic, homogeneous, linear elastic material governed by a non-local 

constitutive model with fully prescribed material constants. The surface of the element 

is made from a linearly elastic material with its behavior fully described by a complete 

version of Gurtin-Murdoch model with both the residual surface tension and in-plane 

elastic constants fully prescribed. An element with four different end conditions (see 

Figure 2.1) are considered; (i) a fixed-free element under a transverse concentrated 

force at the free end, (ii) a fixed-free element under a longitudinal concentrated force 

at the free end, (iii) a fixed-rollered element under a concentrated moment at the rollered 

end, and (iv) a fixed-rollered element under a longitudinal concentrated load at the 

rollered end. 

 

 

 

 

 

 

 

  

  

 

Figure 2.1 Schematics of perfectly straight nano-beams subjected to various types of 

end loads and restraints considered in the present study 
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The problem statement is to establish a solution procedure to obtain responses of 

the nano-beam such as the deformed shape, internal forces, buckling load, and post-

buckling behavior with the integration of the nano-scale influence via the surface and 

nonlocal effects. In addition, the size-dependency and the nano-scale influence of 

predicted solutions is also investigated. 

2.2 Basic Equations 

The classical theory of Euler-Bernoulli beam (e.g., Lowe (1971); Altenbach et al. 

(2004)), the non-local linear elasticity theory (e.g., Eringen (1983)), and the Gurtin-

Murdoch surface-elasticity model (e.g., Gurtin and Ian Murdoch (1975); Gurtin and 

Murdoch (1978); and Gurtin et al. (1998)) are employed to derive basic field equations 

governing responses of the nano-beam undergoing large displacements and rotations. 

Details of such formulation are presented below.  

The centroidal axis of a nano-element in its undeformed state is represented by 

a straight line connecting points (0,0)  and ( ,0)l  as indicated in Figure 2.2(a). This one-

dimensional representation together with the information of the cross section 

completely describes the three-dimensional aspect of the initial beam geometry. Under 

the action of external loads, the beam displaces and deforms to a new configuration 

with the deformed centroidal axis defined by a locus of points ( ( ), ( ))x S y S  where 

[0, ]S l  denotes the initial length coordinate measured from the left end to any cross 

section in its undeformed state. The deformed arc-length coordinate measured from the 

left end to any cross section in its deformed state is denoted by [0, ]s l  where l  

denotes the arc length of the deformed element. It is noted that the information of the 

deformed centroidal axis and the assumed cross-section kinematics provide the 

complete description of the deformation of the entire element.  

The displacements of any cross section located at point ( ,0)S  in the x  and 

y directions are denoted by ( )u u S  and ( )v v S , respectively, and they are related 

to the coordinates ( )x S  and ( )y S  by 

 

( ) ( )u S x S S                                                                                                                                              (2.1) 

( ) ( )v S y S                                            (2.2) 
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Due to the slenderness of typical nano-beams, it is common to ignore the contribution 

of the axial deformation in the response prediction and the centroidal axis of the element 

is assumed inextensible in the current investigation. Based on such assumption along 

with the consideration of the deformed centroidal axis of the element, it leads to the 

following relationship among the displacements u  and v , the rotation   at any cross 

section, and the initial and deformed arc length S

 

and s : 

 

1
ds

dS
                                            (2.3) 

sin
dy dv

ds dS
                                (2.4) 

cos 1
dx du

ds dS
                                  (2.5) 

 

 

 

 

 

 

 

 

       

 

 

Figure 2.2 (a) Schematic indicating undeformed and deformed states of centroidal axis 

of nano-element and (b) free body diagram of infinitesimal deformed element ds  

 

The relation (2.3) indicates that there is no difference of using the initial or deformed 

arc length S

 

and s  as the reference coordinate. From equilibrium of the deformed state 

of an infinitesimal element with the length ds  in the absence of interior loadings (see 

Figure 2.2(b)), the force resultant in the x direction denoted by xf , the force resultant 

(a) 

fy 

fy + dfy 

fx 

m 

fx + dfx 

m + dm 

ds 

(x,y) 

 

x 

y 

ds 

s 

dS S 

(b) 
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in the y direction denoted by 
yf , and the bending moment denoted by m  at any cross 

section must satisfy following partial differential equations:    

   

0xdf

dS
                               (2.6) 

0
ydf

dS
                                            (2.7) 

sin cosx y

dm
f f

dS
                                               (2.8) 

   

It can be seen from (2.4) and (2.5) that the member free of the interior load possesses 

constant resultant forces xf  and 
yf   for its entire length. In addition, the resultant axial 

force (measured perpendicular to deformed cross section) and resultant shear force 

(measured parallel to the deformed cross section), denoted respectively by F  andV , 

can be related to the force resultants xf  and 
yf  by   

   

cos sinx yF f f                                               (2.9) 

sin cosx yV f f                                                     (2.10) 

   

From a well-known “plane section remains plane” assumption along with discarding 

the shear deformation, the engineering normal strain within the cross section, denoted 

by  , depends primarily on the distance from the centroidal axis of the cross section, 

denoted by z , via the following linear relation: 

   

d
z

dS


                                               (2.11) 

   

By applying the theory of nonlocal linear elasticity to treat the nonlocal phenomena 

(e.g., Eringen (1983); Peddieson et al. (2003)) and the surface elasticity theory 

developed by Gurtin and Ian Murdoch (1975) to capture the effect of the surface free 

energy along with the kinematics of the cross section (2.10), the final nonlocal 
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relationship between the gradient of the rotation /d dS  (i.e., the curvature of the 

deformed centroid axis) and the bending moment m  is given by 

 

 
2

2 *

0 2

d m d
m e a EI

dS dS


                                            (2.12) 

 

where a  denotes the internal intrinsic length, 0e  denotes a dimensionless constant, and 

*EI  represent the apparent flexural rigidity of the cross section taking the surface 

stresses into account. 

To determine
*EI , Gurtin-Murdoch model (e.g., Gurtin and Ian Murdoch 

(1975); Gurtin and Murdoch (1978); and Gurtin et al. (1998)) is utilized. In this model, 

the surface or boundary of the body is treated as an infinitesimally thin layer of material 

adhering perfectly to the bulk with its own properties. For an isotropic case, a linear 

constitutive relation is completely described by 

 

, 3 3,2( ) ( )   ;   s s s s s s s s s s s s su u                                      (2.13) 

 

where the superscript “ s ” is employed to designate quantities associated with the 

surface; 
3

s

  and 
s

  denote components of the out-of-plane and in-plane surface 

stresses, respectively; 
s

  denotes components of the in-plane surface strain; 
3

su

 

and su  

denote components of the out-of-plane and in-plane surface displacement, respectively; 

s  and 
s  denote Lamé constants of the surface; 

s  denotes the residual surface 

tension;   is a two-dimensional Kronecker symbol; and standard indicial notations 

apply. By specializing the constitutive relation (2.13) to the nano-beam along with the 

use of assumed cross-section kinematics, the explicit expression of 
*EI  can be derived. 

For instance, Wang et al. (2010) exploited the virtual work principle along with the 

constitutive relation of the bulk material with the presence of initial residual stress to 

derive the formula of 
*EI  due to the contribution of the residual surface tension 

s  and 
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the in-plane surface parameters.  For a member with the length l and the rectangular 

cross-section of depth h  and width b , the normalized 
*EI  can be obtained as 

 

2 2
2

2 2

6 2 2
1 2

sEI b l

EI h b b h h


 

  
      

  
                                      (2.14) 

 

Where   and E  denote Poisson’ ratio and Young’s modulus of the bulk material; I  is 

the cross-section moment of inertia; and /s s E  , /h h  , /b b  , /l l  , 

/sE E  , and (2 3 ) / ( 3 )s s s s s sE        . It is apparent from (2.14) that in the 

absence of the residual surface tension (i.e., 0s  ), the apparent flexural rigidity is 

always higher than that of the classical case and such discrepancy becomes more 

significant when the cross section is relatively small in comparison with the intrinsic 

length parameter  . On the contrary, presence of the positive residual surface tension 

can reverse the effect due to the residual compressive stress generated within the bulk 

material and such influence is substantially magnified when the slenderness ratio of the 

member increases. A different expression of the modified flexural rigidity due to the 

presence of surface effects was utilized by He and Lilley (2008), Wang and Feng 

(2009), Jiang and Yan (2010), and Juntarasaid et al. (2012) in the study of bending and 

buckling of nano-elements. The normalized 
*EI  for a rectangular cross section is 

proposed as  

 

6 2
1

EI

EI h b




                                             (2.15) 

 

Clearly, this expression is independent of the residual surface tension and identical to 

that of (2.14) when 0s  . The independence of   results directly from that the 

equilibrium of the entire body in its unstrained state is maintained using a set of 

fictitious forces at the boundary of the surface instead of considering the initial residual 

stress within the bulk. As a direct consequence of this unrealistic assumption, the effect 

of the surface residual surface tension was integrated into the governing equation in 

terms of such fictitious forces. 
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It can be remarked further that the nonlocal effect simulated through the linear 

theory of nonlocal elasticity influences the constitutive relationship via the appearance 

of the first term on the right-hand side of (2.12). From the study of Yang and Lim 

(2011), an extensive parametric study was carried out by calibrating results predicted 

by nonlocal Timoshenko beam model with solutions generated by molecular dynamic 

simulations and they finally suggested the suitable range of the non-local parameters as 

follows: 2 2

0( ) / 0.04e a l    and 140 e . In the present investigation, values of both 

parameters  0e  and a  used in numerical simulations are chosen to satisfy this range.    

By substituting the equilibrium equation (2.8) into the constitutive relation 

(2.12), it yields the moment/curvature relationship: 

 

  cos sinx y

d
m f f

dS


                                                      (2.16) 

 

where /m ml EI , 2 2

0( ) /e a l  , 2 /x xf f l EI , 
2 /y yf f l EI  and /S S l . By 

substituting (2.16) back into (2.8), an alternative form of the moment equilibrium 

equation is obtained as 

 

  cos sin sin cosx y x y

d d
f f f f

dS dS


     

 
    

 
                         (2.17) 

 

To suit the direct integration of the differential equation (2.12) with respect to the 

rotation , the left hand side of (2.17) is first re-expressed by using the chain rule as 

 

     cos sin cos sin
  

       


   
        

   
x y x y

d d d d d
f f f f

dS dS dS d dS
      (2.18) 

 

By substituting the relation (2.18) into the equilibrium equation (2.17) and then 

multiplying both sides of by a function  cos sinx yf f     , the resulting 

differential equation can subsequently be integrated to obtain 
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      
2

2

cos sin 2 cos sin cos sin


         
 

       
 

x y x y x y

d
f f C f f f f

dS
  (2.19) 

 

where C  denote a constant arising from the integration process and it can be obtained 

from prescribed end conditions. As apparent from (2.12), both the normalized bending 

moment m  and the term   cos sin /x yf f d dS       must have the same sign; as a 

result, only one of the two solutions of /d dS  obtained from (2.19) is physically 

acceptable. The unique solution can therefore be expressed in the form 

 

  

   
2

( ) cos sin

2 cos sin cos sin

x y

x y x y

sign m f fdS

d
C f f f f

   


     

 


   

             (2.20) 

 

where ( )sign m  is a moment-dependence function defined by    

  1,    0

( ) 1,    0

  0,    0

m

sign m m

m




  
 

                                        (2.21) 

 

Combining (2.20) and the geometric relations (2.4) and (2.5) yields two differential 

equations governing the displacements u  and v : 

    

    

   
2

( ) cos 1 cos sin

2 cos sin cos sin

x y

x y x y

sign m f fdu

d
C f f f f

    


     

  


   

                      (2.22) 

  

   
2

( )sin cos sin

2 cos sin cos sin

x y

x y x y

sign m f fdv

d
C f f f f

    


     

 


   

                      (2.23) 

where /u u l  and /v v l . A set of three generic differential equations (2.20), (2.22) 

and (2.23) is sufficient for formulating the key governing equations of nano-beams 

under various end conditions. It is worth noting that both   and   appearing in above 

equations are essential parameters concerning the surface stresses and the nonlocal 
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linear elasticity, respectively, and are used to simulate the nano-scale influence on the 

responses of the nano-beams. By setting 1   and 0  , the above equations reduces 

directly to those obtained by Rungamornrat and Tangnovarad (2011) for a classical 

beam (i.e., without the influence of nonlocal elasticity and surface stresses). By 

performing the direct integration of (2.20), (2.22) and (2.23) with respect to the 

independent variable    from 0S   to [0,1]S   , it leads to  

    

  

   1

( )

2

( ) cos sin

2 cos sin cos sin

x y

x y x y

sign m f f
d

C f f f f

 



   
 

     

 


   
                         (2.24) 

    

   1

( )

1
2

( ) cos 1 cos sin
( )

2 cos sin cos sin

x y

x y x y

sign m f f
u u d

C f f f f

 



    
 

     

  
 

   
             (2.25) 

  

   1

( )

1
2

( )sin cos sin
( )

2 cos sin cos sin

x y

x y x y

sign m f f
v v d

C f f f f

 



    
 

     

 
 

   
                    (2.26) 

 

where 
1 ( 0)u u S  , 

1 ( 0)v v S   and 
1 ( 0)S   . By setting 1  , above 

relations (2.24)-(2.26) become 

 

  

   

2

1

2

( ) cos sin
1

2 cos sin cos sin

x y

x y x y

sign m f f
d

C f f f f





   


     

 


   
              (2.27) 

    

   

2

1

2 1
2

( ) cos 1 cos sin

2 cos sin cos sin

x y

x y x y

sign m f f
u u d

C f f f f





    


     

  
 

   
             (2.28) 

  

   

2

1

2 1
2

( )sin cos sin

2 cos sin cos sin

x y

x y x y

sign m f f
v v d

C f f f f





    


     

 
 

   
             (2.29) 

 

where 2 ( 1)u u S  , 2 ( 1)v v S   and 2 ( 1)S   . A system of nonlinear algebraic 

equations (2.27)-(2.29) along with the well-posed natural and essential end conditions 
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of an element is sufficient for determining the unknown constant C  and kinematical 

unknowns from a set 1 2 1 2 1 2{ , , , , , }u u v v   . Once all primary unknowns at both ends of 

the member are solved, the displacement and rotation of any cross section can readily 

be obtained from the relations (2.24)-(2.26). The support reactions can also be 

determined from static equilibrium of the whole beam in its deformed state whereas the 

internal forces at any cross section such as the shear force V , axial force F   and the 

bending moment m  are obtained from the method of sections and static equilibrium 

of a portion of the beam. 

2.3 Linearized Equations for Buckling Load Analysis 

For a perfectly straight nano-beam with proper end restraints and subjected only to the 

action of a pure axial compression force P , it is apparent that the straight configuration 

(i.e., 0u v    ) and the pure axial state (i.e., , 0x yf P f m    ) is always an 

equilibrium state (i.e., equations (2.3)-(2.8) and (2.12) are automatically satisfied). 

Besides this trivial solution, it is more informative to determine the critical compression 

force P  at the onset of the buckling, i.e., a state that the beam begins to admit a non-

straight equilibrium configuration. At the onset of the buckling, the rotation   is 

infinitesimally small and, as a result, the first-order approximations sin ,cos 1     

are admissible. The kinematical relations (2.4)-(2.5), the equilibrium equations (2.6)-

(2.8), and the moment-curvature relationship (2.16) for this particular case reduce to 

    

dv

dS
                                        (2.30) 

0
du

dS
                                             (2.31) 

0xdf

dS
                                        (2.32) 

0
ydf

dS
                                             (2.33) 

x y

dm
f f

dS
                                             (2.34) 
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 x

d
m f

dS


                                           (2.35) 

 

It is evident from the relation (2.31) along with the prescribed displacement in the 

longitudinal direction of the element to prevent the rigid body motion that u  must 

vanish. Similarly, the equilibrium equation (2.32) and the prescribed compression force 

P  at the end of the beam imply that 2 /xf Pl EI k    . By applying the result 
xf k   

and the relation (2.30) to (2.34) and (2.35), it yields the normalized resultant force yf  

and the normalized bending moment m  in terms of the normalized displacement v    

 

 
3

3y

d v dv
f k k

dS dS
                                           (2.36) 

 
2

2

d v
m k

dS
                                           (2.37) 

 

Finally, the linearized governing equation for the normalized displacement v is 

obtained, by substituting (2.36) into the equilibrium equation (2.33), as     

 

 
4 2

4 2
0

d v d v
k k

dS dS
                                           (2.38) 

 

The linear differential equation (2.38) along with the prescribed essential and natural 

boundary conditions forms the eigenvalue problem for determining the buckling load 

and buckled shape. 
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BENDING PROBLEMS 

In this chapter, the basic governing equations established in the previous chapter are 

employed to formulate a set of nonlinear equations governing the bending responses 

both fixed-free and fixed-pinned nano-beams. The constant C resulting from the 

integration process and certain components of internal forces are obtained by properly 

enforcing the boundary conditions.   

3.1 Fixed-free Nano-beam 

Consider a fixed-free nano-beam clamped at the left end and subjected to a transverse 

concentrated force P  at the right end as indicated in Figure 3.1. The corresponding 

natural and essential end conditions for this particular case can be summarized as 

follows: 

 

 

P

, , l 

 

x

y

 

 

xR

yR

R

 

Figure 3.1 A fixed-free nano-beam clamped at left end and subjected to a transverse 

concentrated force P  at free end 

 

( 0) 0u S                      (3.1) 

( 0) 0v S                      (3.2) 

( 0) 0S                      (3.3) 

( 1) 0xf S                                            (3.4) 

2( 1) /yf S Pl EI k                                         (3.5) 

( 1) 0m S                                                 (3.6) 
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By using (3.4) and (3.5) along with the fact that the resultant forces 
xf  and yf  are 

constant throughout the element, it can be concluded that  

 

( ) 0,    ( )     [0,1]x yf S f S k S                     (3.7) 

 

By using the relation (2.11) and the end condition (3.6), it implies that 

 

( 1) 0
d

S
dS


                     (3.8) 

    

Enforcing the conditions (3.7) and (3.8) along with the relation (2.19) leads to the 

unknown constant C , for this particular case, as 

    

2 2

2 22 sin sinC k k                      (3.9) 

    

By combining the results (3.7) and (3.9) along with the essential boundary conditions 

(3.1)-(3.3), a set of nonlinear algebraic equations (2.27)-(2.29) simply reduces to  

    

   

2

2 2 2
0 2 2

sin
1

2 sin sin sin sin

k
d

k k


  


     




  
               (3.10) 

  

   

2

2
2 2 2

0 2 2

sin cos 1

2 sin sin sin sin

k
u d

k k


   


     

 


  
                          (3.11) 

 

   

2

2
2 2 2

0 2 2

sin sin

2 sin sin sin sin

k
v d

k k


   


     




  
              (3.12) 

    

Note that the moment-dependent function ( )sign m  takes the value 1 for the entire beam 

since the normalized bending moment is always positive except at the right end where 

m  vanishes. A set of equations (3.10)-(3.12) is sufficient for determining the unknown 

rotation and displacements at the right end of the element (i.e., 2u , 2v  and 2 ). 
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Similarly, the post-processing equations (2.24)-(2.26) for computing the rotation and 

displacements at any point (0,1)S    take the form 

    

   

( )

2 2 2
0 2 2

sin

2 sin sin sin sin

k
d

k k

 
  

 
     




  
               (3.13) 

  

   

( )

2 2 2
0 2 2

sin cos 1
( )

2 sin sin sin sin

k
u d

k k

     
 

     

 


  
               (3.14) 

 

   

( )

2 2 2
0 2 2

sin sin
( )

2 sin sin sin sin

k
v d

k k

     
 

     




  
               (3.15) 

    

Once the rotation and displacement for the whole element are determined, the support 

reactions at the clamped end and the internal forces at any cross section can be 

determined as described below. By enforcing static equilibrium of the whole beam in 

its deformed state, the support reactions  { , , }x yR R R  are given explicitly by  

    

2 / 0x xR R l EI                                (3.16) 

2 /y yR R l EI k                                 (3.17) 

2/ (1 )R R l EI k u                       (3.18) 

    

The shear force, the axial force, and the bending moment at any cross section 

(0,1)S    are obtained by first portioning the beam along that particular cross 

section and then enforcing static equilibrium of the right portion of the beam in its 

deformed state. The final results are given by 

  

2 / sin ( )F Fl EI k                                 (3.19) 

2 / cos ( )V Vl EI k                       (3.20) 

2/ (1 ( ))m ml EI k u u                       (3.21) 
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3.2 Fixed-rollered Nano-beam 

Consider, next, a fixed-rollered nano-element clamped at the left end and subjected to 

a point moment 0M  at the right end (i.e., the roller support) as shown in Figure 3.2. 

The corresponding natural and essential end conditions for this particular case are given 

by 

    

( 0) 0u S                    (3.22) 

( 0) 0v S                    (3.23) 

( 0) 0S                    (3.24) 

( 1) 0v S                                                       (3.25) 

( 1) 0xf S                                          (3.26) 

0 0( 1) /m S m M l EI                  (3.27) 

 

 

, , l 

 

x

y

 

 

xR

yR

R

 

 

0M

 

yf
 

 

Figure 3.2 A perfectly straight nano-element clamped at left end, pinned at right end 

and subjected to point moment 0M at left end 

    

The constant C appearing in (2.27)-(2.29) can be obtained by enforcing the condition 

at an interior inflection point 
zS   (i.e., ( ) 0zm S  

 
and the result is given by 

    

2 22 sin siny z y zC f f                                                                (3.28) 
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where 
z  is the rotation at the inflection point. By applying the two natural boundary 

conditions (3.26) and (3.27), it leads to 

 

( ) sinyF f                     (3.29)

 2 2 2 2

0 2 2(sin sin ) 2 (sin sin )y z y zm f f                      (3.30) 

  

Finally, by employing essential boundary conditions (3.22)-(3.25), the two relations 

(3.29)-(3.30), and the governing equations (2.27)-(2.29), it yields a set of four nonlinear 

algebraic equations governing the four unknowns 2 2, , ,z yu f  : 
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2 2 2 2

0 2 2(sin sin ) 2 (sin sin )y z y zm f f                                                        (3.34) 

 

To obtain the displacement and rotation at any point 
* [0,1]S    , the beam must be 

divided into three segments due to the variation of the rotation across the member: the 

first segment is taken from the fixed end to the interior inflection point with the rotation 

at any normalized coordinate 
1
  ranging from 0 to z ;  the second segment is from the 

inflection point to the point of zero-rotation with the rotation at any normalized 
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coordinate 
2
  ranging from z  to 0; and the last segment is from the point of zero-

rotation to the right end with the rotation at any normalized coordinate 
3
  ranging from 

0 to 2 . A final set of integral relations used for determining the interior displacement 

and interior rotation of the first, second and third segments are given by 
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The support reactions at the clamped end { , , }x yR R R  can be readily determined from 

equilibrium of the whole element and final results are obtained as  

    

2 / 0x xR R l EI                                (3.44) 

2 /y y yR R l EI f                                 (3.45) 

2 0/ (1 )     yR R l EI f u m                  (3.46) 

    

The internal forces (including axial and shear forces and bending moment) at any cross 

section (0,1)S    are obtained by using the method of section together with 
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enforcing static equilibrium of the right portion of the beam in its deformed state. The 

final results are given explicitly by 

  

2 / sin ( )yF Fl EI f                                 (3.47) 

2 / cos ( )yV Vl EI f                       (3.48) 

2 0/ (1 ( ))      ym ml EI f u u m                 (3.49) 
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BUCKLING AND POST-BUCKLING PROBLEMS 

This chapter demonstrates how to apply basic equations established in Chapter II to 

formulate the boundary value problem for buckling and post-buckling of nano-beams 

under prescribed end conditions. The enforcement of essential and natural boundary 

conditions to obtain both the unknown constant C  and a final set of key governing 

equations and the determination of support reactions and internal forces for each 

particular problem are clearly described.  

4.1 Fixed-free Nano-beam 

Consider a perfectly straight nano-element clamped at the left end and subjected to a 

longitudinal concentrated force P  at the right end as depicted in Figure 4.1. Natural 

and essential boundary conditions for this particular element can be described by 

 

 

P, , l 

 

x

y

 

 

xR

yR

R

 

 

Figure 4.1 A perfectly straight nano-beam clamped at left end and subjected to 

longitudinal concentrated force P at the tip 

    

( 0) 0u S                      (4.1) 

( 0) 0v S                      (4.2) 

( 0) 0S                      (4.3) 

2( 1) /xf S Pl EI k                                            (4.4) 

( 1) 0yf S                                         (4.5) 

( 1) 0m S                      (4.6) 
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By enforcing the boundary conditions (4.2), (4.3), (4.5) and (4.6) along with the 

relations (2.30), (2.36) and (2.37), an eigenvalue boundary value problem for 

determining the buckling load and buckled shape of this particular beam is given by  
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To construct the key governing equations for post-buckling of this particular element, 

the same procedure as that described in the previous chapter is followed. From the 

natural boundary conditions (4.4) and (4.5) and the relations (2.6) and (2.7), the 

resultant forces xf   and yf  at any cross section of the beam are known as  

    

( ) ,    ( ) 0    [0,1]x yf S k f S S                   (4.12) 

    

The relation (2.11) and the condition (4.6) imply that 
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By applying the relation (2.19) at 1S   and then using the conditions (4.12)-(4.13), it 

leads to the unknown constant C : 

    

2 2

2 22 cos cosC k k                     (4.14) 
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By substituting the constant C  from (4.14), the conditions (4.12)-(4.13), and the 

essential boundary conditions (4.1)-(4.3) into (2.27)-(2.29), it yields a set of three 

nonlinear algebraic equations containing the unknown rotation and displacements at the 

right end of the element (i.e., 2u , 2v  and 2 ): 
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Note that the moment-dependent function ( )sign m  is chosen equal to 1 without loss of 

generality since the post-buckling shape possesses a single-curvature and the 

normalized bending moment m  at any point possesses the same sign. Once the end 

displacements and rotations are solved, the displacement and rotation at any interior 

point (0,1)S    can be obtained from (by specializing (2.24)-(2.26) to this particular 

case)  

 

   

( )

2 2 2
0 2 2

cos

2 cos cos cos cos

k
d

k k

 
  

 
     




  
               (4.18) 

  

   

( )

2 2 2
0 2 2

cos cos 1
( )

2 cos cos cos cos

k
u d

k k

     
 

     

 


  
              (4.19) 

 

   

( )

2 2 2
0 2 2

cos sin
( )

2 cos cos cos cos

k
v d

k k

     
 

     




  
              (4.20) 

 

Similarly, the support reactions at the clamped end can be obtained from static 

equilibrium of the whole beam in its deformed state and the final results are given by  
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2 /x xR R l EI k                     (4.21) 

2 / 0y yR R l EI                     (4.22) 

2/R R l EI kv                      (4.23) 

 

The normalized internal forces (i.e., axial force F , shear force V , and bending 

moment m ) at any point (0,1)S    are obtained, by the method of sections, as 

    

2 / cos ( )F Fl EI k                       (4.24) 

2 / sin ( )V Vl EI k                       (4.25) 

2/ ( ( ))m ml EI k v v                      (4.26) 

4.2 Fixed-roller Nano-beam 

Next, consider a perfectly straight nano-beam clamped at the left end, rollered at the 

right end and subjected to a longitudinal concentrated force P  at the right end as 

depicted in Figure 4.2. The corresponding natural and essential end conditions can be 

summarized below.  
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y
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Figure 4.2 A perfectly straight nano-beam clamped at left end, rollered at right end and 

subjected to longitudinal concentrated force P at right end 

 

( 0) 0u S                    (4.27) 

( 0) 0v S                    (4.28) 

( 0) 0S                    (4.29) 
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2( 1) /xf S Pl EI k                                          (4.30) 

( 1) 0v S                                       (4.31) 

( 1) 0m S                    (4.32) 

 

By applying the boundary conditions (4.28), (4.29), (4.31) and (4.32) and the relations 

(2.30) and (2.37), a boundary value problem for the buckling of this particular beam is 

given by 
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By using (4.30) along with the fact that the internal resultant forces 
xf  is constant 

throughout the member, it can be concluded that  

 

( ) ,   [0,1]xf S k S                              (4.38) 

 

Since the element possesses an interior inflection point, the internal moment at that 

particular point vanishes, or equivalently  

 

( ) 0z

d

dS


                   (4.39) 

 

where 
z  denote the rotation at the interior inflection point. By enforcing (4.39) along 

with (2.13), the constant C  for this particular case is given by 
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22 ( cos sin ) ( cos sin )z y z z y zC k f k f                                (4.40)  

 

By combining the results (4.33) and (4.40) along with the essential boundary conditions 

(4.27)-(4.29), the key governing nonlinear algebraic equations (2.21)-(2.23) reduce to 
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where the two-argument functions f and g are defined by 

 

( , ) (cos cos ) (sin sin )z y z y zf f k f                                          (4.44) 

2 2( , ) (cos cos ) (sin sin )z y z z yg f k f                                          (4.45) 

 

By using the relation (2.10) and the end condition (4.32), it results in 
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Enforcing (4.40) and (4.46) along with (2.13) leads to another essential nonlinear 

equation  
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After properly incorporating the moment-dependent function ( )m

 

to each part of the 

beam and then applying to the nonlinear equations (4.41)-(4.43), it yields a final set of 

governing equations 
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where the two-argument functions f and g are defined by 

 

2 2 2( , ) (cos cos ) (sin sin )y yf f k f                                          (4.51) 

2 2

2 2 2( , ) (cos cos ) (sin sin )y yg f k f                                          (4.52) 

 

To obtain the displacement and rotation at any interior point 
* [0,1]S    , the nano-

beam must be separated into three segments due to variation of the rotation across the 

member: the first segment is taken from the right end to the interior inflection point 

with the rotation at any normalized coordinate 
1
  ranging from 0 to z ;  the second 

segment is from the inflection point to the point of zero-rotation with the rotation at any 

normalized coordinate 
2
  ranging from z  to 0; and the last segment is from the point 

of zero-rotation to the pinned-end with the rotation at any normalized coordinate 
3
  
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ranging from 0 to 2 . The final set of integral relations used for determining the interior 

displacement and interior rotation of the first segment is given by 
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The interior displacement and rotation of the second segment can be computed from 
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Finally, the displacement and rotation of the last segment can be computed from 
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The support reactions at the clamped end can be obtained from static equilibrium of the 

whole beam in its deformed state and the final results are given by  

    

2 /x xR R l EI k                     (4.62) 

2 /y y yR R l EI f                      (4.63) 

2/ (1 )yR R l EI f u                       (4.64) 

 

The internal forces (i.e., axial force F , shear force V , and bending moment m ) at any 

point (0,1)S    are obtained, by the method of sections, as 

    

2 / sin ( ) cos ( )yF Fl EI f k                      (4.65) 
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2 / cos ( ) sin ( )yV Vl EI f k                       (4.66) 

2 2/ (1 ( )) ( ( ))ym ml EI f u u k v v                        (4.67) 
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SOLUTION METHODOLOGY 

In this chapter, a solution procedure for determining the bending behaviors, buckling 

load, and buckled shape of nano-beams, a selected numerical technique for obtaining a 

full set of nonlinear equations, and the quadrature rule adopted in the numerical 

evaluation of all involved integrals are briefly summarized.  

5.1 Determination of Buckling Load and Buckled Shape  

The buckling load and the corresponding buckled shape of a fixed-free nano-element 

clamped at the left end and subjected to the longitudinal force at the right end (shown 

in Figure 4.1) can be obtained using a standard procedure similar to that employed by 

Timoshenko and Gere (1961) in the determination of the buckling load of elastic 

columns. First, the general solution of the homogeneous, 4th-order, linear, ordinary 

differential equation (4.7) is obtained, from a fundamental theory of differential 

equations, as  

 

1 2 3 4( ) cos sinv S C S C S C S C                                      (5.1) 

   

where the unknowns 
1C , 

2C , 
3C  and 

4C  are constant and /( )k k    . By 

applying homogenous boundary conditions (4.8)-(4.11), it leads to the following 

homogeneous set of linear equations  
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        

     
         

                                 (5.2) 

   

It is evident that 
1 2 3 4 0C C C C     is always a solution of (5.2) for any value of   

or normalized load k , and this trivial solution corresponds directly to an equilibrium 

state of a straight configuration. The condition allowing the system (5.2) to admit a non-
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zero solution (i.e., yielding an equilibrium state associated with a non-straight 

configuration) is that the determinant of the coefficient matrix is zero, i.e.,  
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2 2
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                                  (5.3) 

   

The lowest value of   satisfying the characteristic equation (5.3), denoted by min , can 

be readily determined using a selected nonlinear solver and the corresponding 

normalized buckling load k  can then be computed from   

   

2

min

2

min1
k

 

 



                                     (5.4) 

   

The buckled shape corresponding to min   can be obtained by solving the eigen 

vector from (5.2) and then substituting into the general solution (5.1). While the 

technique is demonstrated specifically for the fixed-free case, the same procedure 

applies equally to nano-beams under different end restraints. The only difference is the 

form of the coefficient matrix of (5.2) which results directly from the different 

prescribed end conditions. By noting that the normalized classical buckling load is

2

min

ck  , the ratio / ck k  or / c

cr crP P  is given by  

   

2

min1

cr

c c

cr

Pk

k P



 
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
                                       (5.5) 

   

For the special cases of pinned-rollered, fixed-free, fixed-fixed, fixed-guided, and 

fixed-rollered beams, min  takes the value  , / 2 , 2 , and 1.4303 , respectively. 

5.2 Solution Procedure for System of Nonlinear Equations 

To obtain the complete response of a nano-beam subjected to four types of boundary 

conditions indicated in Chapter III (for fixed-free and fixed-rollered beams under 

bending load) and Chapter IV (for fixed-free and fixed-rollered beams under axial 
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load), the four systems of nonlinear algebraic equations (3.10)-(3.12), (3.31)-(3.34), 

(4.15)-(4.17) and (4.47)-(4.50) must be solved. Due to the strong nonlinearity of those 

governing equations and their fully coupled feature, their solution can be obtained 

numerically using the well-known Newton-Raphson iterative scheme (e.g., Hamming 

(1987)). Once all primary unknowns at both ends of the beam and at the interior 

inflection point for the fixed-roller case are fully determined, the rotation and 

displacements at any location of the element can be obtained from the post-process 

equations (3.13)-(3.15), (3.35)-(3.43), (4.18)-(4.20), and (4.53)-(4.61) whereas all 

support reactions at the clamped end and internal resultant forces can be obtained from 

(3.16)-(3.21), (3.44)-(3.49), (4.21)-(4.26), (4.62)-(4.67). 

5.2.1 Fixed-free Nano-beam 

For the special case of a fixed-free nano-element shown in Figure 3.1, the nonlinear 

equation (3.10) is fully uncoupled from (3.11) and (3.12) and it involves only the 

unknown rotation at the right end 2  and the normalized load k . Such similar feature of 

the governing equations is also observed for the case of a fixed-rollered nano-element 

shown in Figure 4.1. As a result, for a prescribed normalized load k , the equation (3.10) 

or (4.15) is solved directly via Newton-Raphson iterative scheme to obtain 2 . Once the 

end rotation 2  is determined, the normalized end displacements 2u  and 2v  can be 

obtained directly from (3.11)-(3.12) or from (4.16)-(4.17), respectively. Once 

2 2 2{ , , }u v   are determined for a given normalized load k , the displacement and rotation 

at any interior point, support reactions and internal forces can be computed using the 

post-processing equations (3.13)-(3.21) for the nano-beam shown in Figure 3.1 and 

(4.18)-(4.26) for the nano-beam shown in Figure 4.1. 

5.2.2 Fixed-rollered Nano-beams 

On the contrary, the set of governing nonlinear equations for the fixed-rollered case is 

not fully-uncoupled; therefore, the technique used in the fixed-free case cannot be 

applied. For the fixed-rollered nano-beam under the end moment 0M , its response is 

governed by a set of four nonlinear algebraic equations (3.31)-(3.34) involving four 

unknowns 2 2, , ,z yu f  . Since equations (3.31), (3.32) and (3.34) are independent of the 
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unknown 2u , they are solved simultaneously using Newton-Raphson algorithm to 

obtain 2 , ,z yf   for a prescribed end moment 0m . Once 2 , ,z yf   are determined, the 

unknown 2u  can be readily obtained from (3.33). Once all primary unknowns are 

solved, the relations (3.35)-(3.43) are utilized to post-process for the displacement and 

rotation at any interior point. Finally, the support reactions at the clamped end and all 

internal forces are calculated from (3.44)-(3.49). 

For the fixed-rollered nano-beam under the tip axial force shown in Figure 4.2, the key 

governing equations (4.47)-(4.50) contains four unknowns 2 2{ , , , }z yu f  . Similar to the 

previous case, 2{ , , }z yf   are determined first by solving a set of three nonlinear 

algebraic equations (4.47)-(4.49) for a prescribed load k  using Newton-Raphson 

iterative scheme. Then, the displacement 2u  can be computed from the relation (4.50). 

Once the complete set of 2 2{ , , , }z yu f   for the prescribed load k  is determined, the 

interior displacement and rotation can be readily computed from the post-process 

relations (4.53)-(4.61) and the support reactions and internal forces are obtained from 

(4.62)-(4.67). 

5.3 Numerical Integration of Weakly Singular Integrals  

It is apparent that the integrand of all integrals in the governing nonlinear algebraic 

equations exhibit weakly singular behavior at points where the bending moment 

vanishes, e.g., the free end of beams shown in Figure 3.1 and Figure 4.1, the rollered 

end of a beam shown in Figure 3.2, and the interior inflection point of fixed-rollered 

beams shown in Figure 3.2 and Figure 4.2. While such singularity does not affect the 

convergence of those integrals in the sense of Riemann, it can render the numerical 

integration by standard Gaussian quadrature computationally inefficient. To overcome 

this difficulty, a technique based on the regularization of the integrand through a 

variable transformation is employed. While the procedure is demonstrated here only for 

the case that the singularity present at the free end of the element shown in Figure 3.1, 

it can be applied equally to other locations of the singularity. By introducing the 

following variable transformation  
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2( )                    (5.16) 

   

where   is a selected constant. The differential form of (5.16) is given by 

   

1

2(1/ )( )d d                     (5.17) 

 

By substituting (5.16) and (5.17) into (3.10)-(3.12), it leads to 
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Since the term    2 2 2

2 22 sin sin sin sink k         is of 
2( ) O , the 

singularity of the integrand of (5.18)-(5.20) can be completely eliminated if 1/ 2   is 

chosen. This regularization procedure can be equally applied to the equations (3.31)-

(3.33), (4.15)-(4.17), and (4.48)-(4.50) for nano-beams under other end conditions. 

Once the integrand is completely regularized, the final integral can be integrated 

efficiently by standard Gaussian quadrature. 
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NUMERICAL RESULTS AND DISCUSSION 

In this chapter, numerical results obtained from the proposed model is reported and also 

compared with existing solutions for the classical case to verify the current formulation 

and implementations. The effect of surface stresses and nonlocal elasticity on the 

buckling load, bending and post-buckling responses for both fixed-free and fixed-

rollered nano-beams is also discussed. In the numerical study, material parameters 

reported by Juntarasaid et al. (2012) are employed; in particular, the Poisson ratio and 

modulus of elasticity of the bulk material are chosen to be   = 0.3 and E  = 76 GPa 

and the surface modulus of elasticity and residual surface tension are taken as 
sE  = 

1.22 N/m and 
s  = 0.89 N/m. For the nonlocal effect, Yang and Lim (2011) performed 

an extensive parametric study by calibrating results generated by a nonlocal 

Timoshenko beam model with solutions generated from molecular dynamic 

simulations and they finally suggested the suitable range of the non-local parameters as 

follows: 2 2

0( ) / 0.04e a l    and 140 e . 

It is seen from equation (2.14) that the normalized apparent flexural rigidity    

is a function of the surface modulus of elasticity 
sE , the residual surface tension

s  

and dimensions of the element. To demonstrate the influence of 
sE  and 

s  on the 

values of  , the aspect ratio of the cross section and the slenderness ratio of the nano-

beam are taken as / {0.5,1,2}b h  and / {5,10,15}l h , respectively. The relationship 

between   and 
sE  is reported in Figure 6.1 for 0s   and 0.89s   N/m. It can be 

deduced that increase of the surface modulus of elasticity tends to enhance the apparent 

flexural rigidity for the fixed value of residual surface tension. Clearly, the apparent 

flexural rigidity is always greater than the classical flexural rigidity (i.e., 1  ) for 

0s    whereas the its value can be significant lower than that of the classical case when 

positive s  is present. In addition, the parameter   depends on both the aspect ratio of 

the cross section and the slenderness ratio of the beam for non-zero s  but is 

independent of the slenderness ratio for 0s  . In summary, increase of the surface 
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modulus of elasticity tends to stiffen the nano-beam and this influence is more 

significant when the slenderness ratio of the beam becomes smaller whereas the aspect 

ratio of the cross section becomes larger.  
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Figure 6.1 Relationship between   and (a) surface modulus of elasticity for 0s   and 

(b) surface modulus of elasticity for 0.89s  N/m 



50 

 

 The relationship between   and the residual surface tension 
s  for 1.22sE   

is shown in Figure 6.2. Unlike the surface modulus of elasticity, the increment of the 

residual surface tension tends to soften the nano-beam and, clearly, this influence is 

more significant when the slenderness ratio of the beam becomes smaller whereas the 

aspect ratio of the cross section becomes larger. In addition, the relationship between 

the nonlocal parameter   and the length of a nano-element is also shown in Figure 6.3 

for different values of 2 2

0 0( ) ( )refe a e a  where 2 14

0( ) 10refe a  m2 and {1,0.1,0.01} . 

As become clear from this set of results, the nonlocal parameter   decreases as the 

length of the beam increases and, as a result, the nonlocal effect can be neglected for 

sufficiently large element length. 
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Figure 6.2 Relationship between residual surface tension and   of nano-beam with 

different slenderness ratio and different aspect ratio of cross section 
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Figure 6.3 Relationship between nonlocal parameter and length of nano-beam  

 

6.1 Bending of Nano-beams 

A selected set of numerical results obtained from the proposed model are presented in 

various forms. To demonstrate the accuracy and efficiency of the current technique, 

results generated by a classical model (i.e., model without the influence of surface 

stresses and local effects, i.e. 1   and 0  ) are obtained and compared with 

existing benchmark cases. Once the formulation and implementation are fully checked, 

the technique is then applied to explore the effect of the surface stresses and nonlocal 

elasticity on the bending behaviors of both fixed-free and fixed-rollered nano-beams. 

6.1.1 Verification 

Consider the bending of fixed-free nano-beam without the the surface stresses and 

nonlocal linear elasticity (i.e., 1   and 0  ). Results of the bending shape of the 

fixed-free nano-beam subjected to a normalized transverse load 2k   is reported and 

compared with those presented by Liu et al. (2012) in Figure 6.4. It is apparent that the 

developed numerical procedure yield very accurate numerical results for the classical 

case. In particular, the computed shape of the deflection tends to align with the 

analytical solution. 
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Next, the bending shape of fixed-rollered nano-beam without the surface 

stresses and nonlocal linear elasticity (i.e., 1   and 0  ) and subjected to the 

normalized end moment 0 1/ 3m   is reported and compared with finite element 

model from ABAQUS as shown in Figure 6.5. Similar to the previous case, numerical 

results generated by the proposed technique and the reference solutions are almost 

indistinguishable for the entire beam. 

6.1.2 Size Dependence Behavior 

In order to explore the effect of surface stresses and nonlocality on the bending behavior 

of both fixed-free and fixed-rollered nano-beams, results are obtained for four different 

models, Model-1 without the surface and nonlocal effects (i.e., 1, 0   ), Model-2 

considering only the surface effect (i.e., 0  ), Model-3 considering only the 

nonlocal effect (i.e., 1  ), and Model-4 considering both the surface and nonlocal 

effects. To show the size-dependent characteristic of the numerical solutions, results 

are obtained for various values of the normalized length  /ll  while maintaining the 

slenderness ratio / 10l h   and the aspect ratio of the cross section / 1b h  . 

The tip rotation ( 2 ), the normalized longitudinal tip displacement ( 2u ), and the 

normalized transverse tip displacement ( 2v ) for the fixed-free nano-beam are reported 

in Figures 6.6-6.8, for all four model and two values of the normalized end load

{2,4}k . The deflected shapes of the fixed-free nano-beam for l = 50 nm and l = 200 

nm are also shown in Figures 6.9 and 6.10 for 2k   and 4k  , respectively. It can be 

deduced from those results that presence of the surface stresses with or without nonlocal 

effects (i.e., Model-2 and Model-4) tends to soften the nano-beam (i.e., reduce the 

apparent bending stiffness) and the predicted solutions are considerably different from 

results generated by the classical case (i.e., Model-1). It should be also evident by 

comparing results obtained from the Model-2 and the Model-3 that the surface stress 

effect is more prominent than the local effect. This, as a consequence, renders the 

solutions generated by the Model-2 and Model-4 only slightly different. Another crucial 

finding is that the bending response of the nano-beam is obviously size-dependent when 

the surface stresses and nonlocal effects are added into the mathematical model. This 
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observed behavior is in contrast to that of the classical solution which is size-

independent upon the proper normalization. 
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Figure 6.4 Deflected shape of fixed-free nano-beam subjected to normalized tip load

2k  . Results are reported for the present solutions and compared with those reported 

by Liu et al. (2012) 
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Figure 6.5 Deflected shape of fixed-rollered nano-beam subjected to normalized end 

moment 0 0.67m  . Results are reported for the classical case and compared with those 

generated by ABAQUS 
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It is obviously seen from Figures 6.6-6.8 that, when the length of the nano-beam 

becomes smaller, results obtained from the Model-2 and Model-4 are distinctly 

different from the classical solutions and, as the length is relatively large in comparison 

with the intrinsic length , the solutions tend to converge to results for the classical 

case. It is important to point out that the observed discrepancy for a particular length l  

is more noticeable for results generated by the models incorporating the surface stresses 

(i.e., Model-2 and Model-4). Based on the characteristic of the displacements and 

deflected shapes observed in the numerical study, the reduction of the apparent bending 

stiffness can become substantial when the dimension of the beam decreases to a nano 

level (i.e., comparable to the material intrinsic length scale  ), and this implies the 

necessity to properly incorporate the surface stresses and the nonlocal effects in the 

theoretical model to physically capture the nano-scale influence. 
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Figure 6.6 Relationship between normalized length and tip rotation of fixed-free nano-

beam subjected to normalized tip load {2,4}k  
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Figure 6.7 Relationship between normalized length and normalized longitudinal tip 

displacement of fixed-free nano-beam subjected to normalized tip load {2,4}k  
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Figure 6.8 Relationship between normalized length and normalized transverse tip 

displacement of fixed-free nano-beam subjected to normalized tip load {2,4}k  
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Figure 6.9 Deflected shape of fixed-free nano-beam under normalized transverse force 

2k   for l = 50, 200 nm 
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Figure 6.10 Deflected shape of fixed-free nano-beam under normalized transverse 

force 4k   for l = 50, 200 nm 
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A similar set of numerical experiments has also been conducted to examine the 

influence of surface stresses and nonlocal effect on the bending behavior of the fixed-

rollered nano-beam. Results are obtained for many values of the normalized length  

 /ll  while maintaining the slenderness ratio / 10l h   and the cross-section aspect 

ratio / 1b h   to shown the size-dependent behavior of the solution. The tip rotation 

( 2 ), the rotation at the interior inflection point ( z ), the normalized maximum 

longitudinal displacement ( max max /u u l ), and the normalized maximum transverse 

displacement ( max max /v v l ) as a function of the normalized length /l   are reported 

in Figures 6.8-6.14 for all four models and two values of the normalized moment 

0 {5.5,6}m  . 

The deflected shape of the beam for 75l   nm and 450l   nm are also shown 

in Figure 6.15 and Figure 6.16 for 0 5.5m   and 0 6m  , respectively. Similar to the 

fixed-free case, results predicted by the model including the surface stresses 

significantly deviate from those of the classical case and presence of the surface effect 

considerably lower the apparent bending stiffness of the beam if its length l  is close to 

the material intrinsic length scale  .Likewise, the role of the nonlocal elasticity effect 

depends mainly on the characteristic length scale of the problem relative to the 

parameter ; in particular, if the length of the beam decreases to a nano-scale, the effect 

in reducing the member stiffness is prominent. It is also apparent from these results that 

the discrepancy between responses obtained by the model incorporating only the 

surface stresses (Model-2) and the classical solution is much larger than that predicted 

by the model considering only the nonlocal effect (Model-3). In addition, the Model-4 

(incorporating both the surface stresses and nonlocal effects) yields results nearly 

identical to those obtained from the Model-2. Similar to the fixed-free case, all models 

incorporating the nano-scale influence (i.e., Model-2, Model-3 and Model-4) exhibit 

strong size-dependent behavior. Specifically, as the element size reduces to that 

comparable to the intrinsic length of the material surface, the influence of both nonlocal 

elasticity and surface stresses are substantial and they must be properly considered in a 

mathematical model to reasonably capture the nano-scale phenomena. 
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6.1.3 Influence of Material Parameters 

In order to investigate the contribution of material properties on the bending behavior 

of the fixed-free nano-beam, its responses for various values of the surface modulus of 

elasticity 
sE  and residual surface tension 

s  are obtained and compared. In the 

simulation, the beam length 500 nm, the slenderness ratios / {10,15,20}l h , the cross 

sectional aspect ratio / 1b h  , the nonlocal parameter 2 16

0( ) 10e a  m2, and the 

normalized tip load k = 2.5 are chosen. The relationship between the tip rotation ( 2 ), 

the normalized longitudinal tip displacement ( 2u ), and the normalized transverse tip 

displacement ( 2v ) of the fixed-free nano-beam and the surface modulus of elasticity 

(
sE ) is presented in Figures 6.17-6.19. It is deduced from obtained results that the 

increase of the surface modulus tends to stiffen the nano-beam. In addition, results 

obtained as a function of the residual surface tension (
s ) are reported in Figures 6.20-

6.22. Unlike the surface modulus of elasticity, the increment of 
s  tends to soften the 

nano-beam. 
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Figure 6.11 Relationship between normalized length and tip rotation of fixed-rollered 

nano-beam under normalized end moment 0 {5.5,6}m   
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Figure 6.12 Relationship between normalized length and rotation at interior inflection 

point of fixed-rollered nano-beam under normalized end moment 0 {5.5,6}m   
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Figure 6.13 Relationship between normalized length and normalized maximum 

longitudinal displacement of fixed-rollered nano-beam under normalized end moment

0 {5.5,6}m   
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Figure 6.14 Relationship between normalized length and normalized maximum 

transverse displacement of fixed-rollered nano-beam under normalized end moment

0 {5.5,6}m   
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Figure 6.15 Deflected shape of fixed-rollered nano-beam under normalized end 

moment 0 5.5m   for l = 75 nm, 450 nm 
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Figure 6.16 Deflected shape of fixed-rollered nano-beam under normalized end 

moment 0 6m   for l = 75 nm, 450 nm 

 

For the fixed-rollered nano-beam, the influence of the surface modulus of 

elasticity and the residual surface tension are also investigated. In numerical 

experiments, the length of the beam l = 500 nm, the cross sectional aspect ratio / 1b h  , 

three slenderness ratios / {5,10,15}l h , the nonlocal parameter 2 16

0( ) 10e a  m2, and 

the normalized end moment 0 6m   are chosen. The tip rotation ( 2 ), the normalized 

maximum longitudinal displacement ( max max /u u l ), and the normalized maximum 

transverse displacement ( max max /v v l ) versus 
sE  and 

s  are reported in Figures 6.23-

6.25 and Figures 6.26-6.28, respectively. Similar to the fixed-free case, the surface 

stresses inclines to enhance the bending stiffness whereas the reverse effect can be 

observed when the positive 
s  is present. It is also apparent from results for both fixed-

rollered and fixed-free elements that when the slenderness ratio of the member becomes 

larger, the effect of the surface stresses is clearly more prominent. 

 



62 

 

Surface modulus of elasticity (
s
), N/m

0 1 2 3 4 5
.8

.9

1.0

1.1

1.2

1.3

1.4

l/h = 10

l/h = 15

l/h = 20

Classical

2

 

Figure 6.17 Relationship between surface modulus of elasticity and tip rotation of 

fixed-free nano-beam for three values of slenderness ratio 
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Figure 6.18 Relationship between surface modulus of elasticity and normalized 

longitudinal tip displacement of fixed-free nano-beam for three values of slenderness 

ratio 
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Figure 6.19 Relationship between surface modulus of elasticity and normalized 

transverse tip displacement of fixed-free nano-beam for three values of slenderness 

ratio 
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Figure 6.20 Relationship between residual surface tension and tip rotation of fixed-free 

nano-beam for three values of slenderness ratio 
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Figure 6.21 Relationship between residual surface tension and normalized longitudinal 

tip displacement of fixed-free nano-beam for three values of slenderness ratio 
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Figure 6.22 Relationship between residual surface tension and normalized transverse 

tip displacement of fixed-free nano-beam for three values of slenderness ratio 
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Figure 6.23 Relationship between surface modulus of elasticity and tip rotation of 

fixed-rollered nano-beam for three values of slenderness ratio 
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Figure 6.24 Relationship between surface modulus of elasticity and normalized 

maximum longitudinal displacement of fixed-rollered nano-beam for three values of 

slenderness ratio 
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Figure 6.25 Relationship between surface modulus of elasticity and normalized 

maximum transverse displacement of fixed-rollered nano-beam for three values of 

slenderness ratio 
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Figure 6.26 Relationship between residual surface tension and tip rotation of fixed-

rollered nano-beam for three values of slenderness ratio 
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Figure 6.27 Relationship between residual surface tension and normalized maximum 

longitudinal displacement of fixed-rollered nano-beam for three values of slenderness 

ratio 
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Figure 6.28 Relationship between residual surface tension and normalized maximum 

transverse displacement of fixed-rollered nano-beam for three values of slenderness 

ratio 
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To further investigate the influence of the nonlocal parameter (  ) on the 

bending responses of nano-elements, results are obtained for various values of   while 

sE  and 
s  remain fixed (i.e., 

sE  = 1.22 N/m and 
s  = 0.89 N/m). In the numerical 

study, the cross-section aspect ratio, the length, and the slenderness ratio of the fixed-

free and fixed-rollered beams are taken as / 1b h  , 500l  , / {10,15,20}l h  and 

/ 1b h  , 1500l  , / {5,10,15}l h , respectively. Results for the tip rotation, the 

normalized longitudinal tip displacement, and the normalized transverse tip 

displacement of the fixed-free case and those for the tip rotation, the normalized 

maximum longitudinal and transverse displacements of the fixed-rollered case are 

reported as a function of the nonlocal parameter in Figures 6.29-6.31 and Figures 6.32-

6.34, respectively. As become evident from these results, the bending response of both 

nano beams exhibits strong dependence on the nonlocal parameter, and this influence 

is more significant when the slenderness ratio of an element increases. 
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Figure 6.29 Relationship between nonlocal parameter and tip rotation of fixed-free 

nano-beam for three values of slenderness ratio 
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Figure 6.30 Relationship between nonlocal parameter and normalized longitudinal tip 

displacement of fixed-free nano-beam for three values of slenderness ratio 
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Figure 6.31 Relationship between nonlocal parameter and normalized transverse tip 

displacement of fixed-free nano-beam for three values of slenderness ratio 
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Figure 6.32 Relationship between nonlocal parameter and tip rotation of fixed-rollered 

nano-beam for three values of slenderness ratio 

 

 

Nonlocal Parameter ( ) (x 10
-2

)

0 1 2 3 4
-.035

-.030

-.025

-.020

-.015

l/h = 5

l/h= 10

l/h = 15

1

 1  0

maxu

 

Figure 6.33 Relationship between nonlocal parameter and normalized maximum 

longitudinal displacement of fixed-rollered nano-beam for three values of slenderness 

ratio 
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Figure 6.34 Relationship between nonlocal parameter and normalized maximum 

transverse displacement of fixed-rollered nano-beam for three values of slenderness 

ratio 

6.2 Buckling Load of Nano-beam 

In this section, results for buckling loads of both fixed-free and fixed-rollered nano-

beams are presented. To verify the proposed technique, results for a classical case are 

obtained and compared with existing reference solutions. Once the formulation and 

implementation are extensively verified, the technique is then applied to investigate the 

effect of the surface stresses and nonlocal elasticity on values of buckling loads of both 

fixed-free and fixed-rollered nano-beams. 

6.2.1 Verification 

For nano-beams without the surface stresses and nonlocal linear elasticity (i.e., 1   

and 0  ), the buckling load obtained from the current technique is reported and 

compared with results generated by classical Euler-Bernoulli beam theory as a function 

of the beam length in Figure 6.35 for the fixed-free beam and in Figure 6.36 for the 

fixed-rollered beam. It is apparent that the proposed technique yields results identical 

to the existing reference solutions. This additionally ensures the validity of the derived 

buckling load formula.  
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Figure 6.35 Comparison of buckling load generated by present technique and Euler-

Bernoulli beam theory for fixed-free beam 
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Figure 6.36 Comparison of buckling load generated by present technique and Euler-

Bernoulli beam theory for fixed-rollered beam 
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6.2.2 Size Dependence Behavior 

To consider the size dependency of predicted solution, the width b , the depth h  and 

the length l  of the nano-element are scaled by a proportional ratio   such that 0l l , 

0b b  and 0h h  where 0 0 0, ,l b h  denote the reference dimensions. In addition, the 

aspect ratio 0 0/ 1h b   with 0 10h   nm and 0 100e a   nm are chosen in the numerical 

study. The normalized buckling loads for both fixed-free and fixed-rollered nano-

beams are reported in Figure 6.37 and Figure 6.38, respectively, for four slenderness 

ratios 0 0/ {10,20,30,40}l h   and for three models associated with the classical case, one 

with only the surface effect, and the other with both surface and nonlocal effects. It is 

seen from these results that the predicted normalized buckling loads with the integration 

of the surface stresses or both the surface and nonlocal effects exhibit strongly size 

dependent and, in particular, the discrepancy from the classical solution is very 

significant when the element size is within the range of nano-scale. In addition, the 

model with only the surface effect and that with both the surface and nonlocal effects 

predict lower buckling loads for both fixed-free and fixed-rollered nano-beams. Such 

finding is quite significant and different from the conclusion of the earlier work of 

Juntarasaid et al. (2012). This is owing mainly to that the presence of the positive 

residual surface tension generates the compressive residual stress in the bulk material 

and this, as a result, reduces the flexural rigidity of the beam. 

6.2.3 Influence of Material Parameters 

In this particular section, the effect of surface modulus of elasticity, the residual surface 

tension and the nonlocal parameter is investigated. In the numerical experiment, the 

length of the beam l, the slenderness ratio /l h , the cross-section aspect ratio /b h , and 

the nonlocal parameter 
2

0( )e a  are taken as l = 500 nm, / {10,15,20}l h , / 1b h  , and 

2 14

0( ) 10e a  m2. The normalized buckling load / c

cr crP P  of the fixed-free and fixed-

rollered nano-elements as a function of 
sE  is indicated in Figures 6.39 and 6.40, 

respectively, for 
s  = 0.89 N/m. 
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Figure 6.37 Normalized buckling load / c

cr crP P  of fixed-free nano-beam with a square 

cross section and different proportional ratio  . 
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Figure 6.38 Normalized buckling load / c

cr crP P  of fixed-free nano-beam with a square 

cross section and different proportional ratio   
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It can be deduced from these results that the enlargement of surface modulus of 

elasticity tends to stiffer the nano-beams. Additionally, the relation between the 

normalized buckling load / c

cr crP P  and the residual surface tension are presented in 

Figure 6.41 and Figure 6.42 for the fixed-free and fixed-rollered cases, respectively, 

and  
sE  = 1.22 N/m. Unlike the influence of 

sE , the increment of 
s  tends to soften 

the nano-beams. Finally, the normalized buckling load / c

cr crP P  of both fixed-rollered 

and fixed-free nano-elements as a function of the nonlocal parameter   is reported in 

Figures 6.43 and 6.44 for 
sE  = 1.22 N/m and 

s  = 0.89 N/m. It can be concluded that 

as   increases, the normalized buckling load clearly reduces. 
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Figure 6.39 Normalized buckling load versus surface modulus of elasticity for fixed-

free nano-beam  
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Figure 6.40 Normalized buckling load versus surface modulus of elasticity for fixed-

rollered nano-beam  
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Figure 6.41 Normalized buckling load versus residual surface tension for fixed-free 

nano-beam  
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Figure 6.42 Normalized buckling load versus residual surface tension for fixed-rollered 

nano-beam  
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Figure 6.43 Normalized buckling load versus nonlocal parameter for fixed-free nano-

beam  
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Figure 6.44 Normalized buckling load versus nonlocal parameter for fixed-rollered 

nano-beam 

6.3 Post-buckling Responses of Nano-beams 

In this section, results of post-buckling of nano-beams generated by the present 

technique are presented. To verify the current formulation and solution procedure and 

demonstrate the accuracy of the current technique, results from the classical model (i.e., 

model without surface stresses and nonlocal effect) are obtained first and compared 

with existing reference solutions. Then, the technique is employed to examine the effect 

of the surface stresses and nonlocal elasticity on the post-buckling response of both 

fixed-free and fixed-rollered nano-beams. Material parameters such as the modulus of 

elasticity and Poisson ratio of the bulk material, the residual surface tension, the surface 

modulus of elasticity, and nonlocal parameters employed by Juntarasaid et al. (2012) 

are chosen in the numerical study. 

6.3.1 Verification 

Let us consider first the post-buckling of a fixed-free nano-element without the 

consideration of the surface stresses and nonlocal linear elasticity (i.e., 1   and

0  ). Results of the normalized longitudinal and normalized transverse tip 

displacements (
2u  and

2v ) and the tip rotation (
2 ) for various normalized tip load k  
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are reported and compared with those presented by Timoshenko and Gere (1961) in 

Figures 6.45-6.47. It is apparent that the developed technique offers very accurate 

numerical solutions for the classical case. In particular, as the normalized tip load k  

increases, both the tip rotation and the longitudinal tip displacement monotonically 

increase throughout the load history whereas the transverse tip displacement initially 

increases, then reaches the maximum value, and finally decays. 

Next, the post-buckling of a fixed-rollered nano-beam is investigated using the 

classical model (i.e., 1  and 0  ). Results of the longitudinal tip displacement 

(
2u ), the tip rotation (

2 ), and the rotation at the interior inflection point (
z ) are 

computed and then compared with those obtained by the semi-analytical technique 

similar to that proposed by Rungamornrat and Tangnovarad (2011) as shown in Figures 

6.48-6.50. Similar to the previous case, numerical results generated by the present 

technique and the reference solutions are almost indistinguishable for all values of the 

normalized load k  treated. 
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Figure 6.45 Relationship between normalized tip load and tip rotation of fixed-free 

nano-beam. Results are compared with those from Timoshenko and Gere (1961) 
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Figure 6.46 Relationship between normalized tip load and normalized longitudinal tip 

displacement of fixed-free nano-beam. Results are compared with those from 

Timoshenko and Gere (1961) 
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Figure 6.47 Relationship between normalized tip load and normalized transverse tip 

displacements of fixed-free nano-beam. Results are compared with those from 

Timoshenko and Gere (1961) 
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Figure 6.48 Relationship between normalized tip load and normalized tip displacement 

of fixed-rollered nano-beam. Results are compared with a technique proposed by 

Rungamornrat and Tangnovarad (2011) 
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Figure 6.49 Relationship between normalized tip load and tip rotation of fixed-rollered 

nano-beam. Results are compared with a technique proposed by Rungamornrat and 

Tangnovarad (2011) 
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Figure 6.50 Relationship between normalized tip load and rotation at interior inflection 

point of fixed-rollered nano-beam. Results are compared with a technique proposed by 

Rungamornrat and Tangnovarad (2011) 

 

6.3.2 Size Dependence Behavior 

In order to explore the influence of both surface stresses and nonlocal elasticity on the 

post-buckling behavior of nano-beams, results are obtained by using four different 

models as follows: Model-1 for the classical case ( 1, 0   ), Model-2 with only 

the surface effect ( 0  ), Model-3 with only the nonlocal effect ( 1  ), and Model-

4 with both surface and nonlocal effects. To illustrate the size-dependent characteristic 

of numerical solutions, results are obtained as a function of the normalized length 

 /ll  while maintaining the slenderness ratio of the element / 10l h   and the 

cross-section aspect ratio / 1b h  . 

The tip rotation ( 2 ), the normalized longitudinal tip displacement ( 2u ), and the 

normalized transverse tip displacement ( 2v ) for the fixed-free nano-beam are reported 

in Figures 6.51-6.53, respectively, for all four models and two values of the normalized 

load }5,5.2{k . The post-buckling shapes of the fixed-free nano-beam for l = 50 nm 
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and l = 1000 nm are also shown in Figures 6.54 and 6.55 for 2.5k   and 5k  , 

respectively. It is deduced from those results that presence of the surface stresses with 

and without nonlocal effects (Model-2 and Model-4) tends to soften the nano-element 

(i.e., reduce the apparent bending stiffness) and the obtained solutions significantly 

deviate from results of the classical case (i.e., Model-1). It should also be evident by 

comparing results generated by the Model-2 and the Model-3 that the effect of surface 

stresses is more substantial than the local effect. This, as a direct consequence, renders 

the solutions obtained by the Model-2 and Model-4 only slightly different.  

 

 

 

 

 

 

 

 

0 1 2 3 4 5 6
0.0

.5

1.0

1.5

2.0

2.5

3.0

Model 1

Model 2

Model 3

Model 4

k =2.5

k = 5

2

4
( 10 )/l 

 

Figure 6.51 Relationship between normalized length and tip rotation of fixed-free 

nano-beam under normalized compression force }5,5.2{k  
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Figure 6.52 Relationship between normalized length and normalized longitudinal tip 

displacement of fixed-free nano-beam under normalized compression force }5,5.2{k  
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Figure 6.53 Relationship between normalized length and normalized transverse tip 

displacement of fixed-free nano-beam under normalized compression force }5,5.2{k  
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Figure 6.54 Post-buckling shape of fixed-free nano-beam under normalized 

compression force 2.5k   for l = 50 nm and 1000 nm 
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Figure 6.55 Post-buckling shape of fixed-free nano-beam under normalized 

compression force 5k   for l = 50 nm and 1000 nm 
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A similar set of numerical experiments has also been conducted to examine the 

effect of the surface stresses and nonlocal effects on the post-buckling responses of a 

nano-beam with the fixed-rollered boundary condition. Results are obtained as a 

function of the normalized length   /ll  while maintaining the slenderness ratio 

/ 10l h   and the cross-section aspect ratio / 1b h   similar to the previous case to 

illustrate the size-dependent behavior of the numerical solutions. The tip rotation ( 2 ), 

the rotation at the interior inflection point ( z ), and the normalized maximum 

longitudinal and transverse displacements as a function of the normalized length /l   

are reported in Figures 6.56-6.59 for all four models and two values of the normalized 

end load {20.5,21.5}k . The corresponding post-buckling shapes for 500l  nm and 

1500l   nm are also presented in Figures 6.60 and 6.61 for 20.5k   and 21.5k  , 

respectively. Similar to the fixed-free case, results obtained by the model considering 

the surface stresses significantly deviate from those of the classical case and presence 

of surface stress effect considerably reduces the apparent bending stiffness of the beam 

if its length l  is close to the intrinsic length scale of the surface /sE E  . Likewise, 

the role of the nonlocal elasticity depends mainly on the characteristic length scale of 

the problem relative to the parameter  ; in particular, if the element length decreases 

to a nano level, the effect in reducing the member stiffness is prominent. It is also 

apparent from those results that the discrepancy between responses generated by the 

model incorporating only surface stresses (Model-2) and the classical solution is much 

larger than that obtained by the model including only the nonlocal effect (Model-3). In 

addition, the Model-4 (incorporating both the surface stresses and nonlocal effects) 

yields results nearly identical to those obtained from the Model-2. Similar to the fixed-

free case, all models incorporating the nano-scale influence (i.e., Model-2, Model-3 and 

Model-4) exhibit strong size-dependent behavior. In particular, as the element size 

reduces to that comparable to the intrinsic length scale of material surface, the influence 

of both surface stresses and nonlocal elasticity are substantial and they must be properly 

taken into account in the modeling to reasonably capture the nano-scale phenomena. 
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Figure 6.56 Relationship between normalized length and tip rotation of fixed-rollered 

nano-beam under normalized compression force {20.5,21.5}k  
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Figure 6.57 Relationship between normalized length and the rotation at interior 

inflection point of fixed-rollered nano-beam under normalized compression force 

{20.5,21.5}k  
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Figure 6.58 Relationship between normalized length and normalized maximum 

longitudinal displacement of fixed-rollered nano-beam under normalized compression 

force {20.5,21.5}k  
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Figure 6.59 Relationship between normalized length and normalized maximum 

transverse displacement of fixed-rollered nano-beam under normalized compression 

force {20.5,21.5}k  
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Figure 6.60 Post-buckling shape of fixed-rollered nano-beam under normalized 

compression force 20.5k   for l = 500 nm and 1500 nm 
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Figure 6.61 Post-buckling shape of fixed-rollered nano-beam under normalized 

compression force 21.5k   for l = 500 nm and 1500 nm 
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6.3.3 Influence of Material Parameters 

Every type of material has its own surface properties indicated by two surface material 

parameters which are the surface modulus of elasticity ( sE ) and the residual surface 

tension (
s ). Value of the effective flexural rigidity normalized by the classical flexural 

rigidity EI (i.e., ) which directly affects the mechanical behaviors of nano-beams 

depends mainly on those two surface material parameters as shown in equation (2.14). 

In order to demonstrate the effect of those surface parameters on the post-buckling 

behavior of fixed-free nano-element, the tip rotation 2 , the normalized tip 

displacements  2u  and 2v  of the beam are obtained for various values of the surface 

modulus of elasticity parameter and the residual surface tension parameter while 

maintaining the nonlocal parameters. 
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Figure 6.62 Relationship between surface modulus of elasticity and tip rotation of 

fixed-free nano-beam with three different values of slenderness ratio 
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In this numerical experiment, the beam length l = 500 nm, three slenderness 

ratios / {10,15,20}l h , the aspect ratio of the cross section / 1b h  , the normalized end 

load k = 5, and 2 16

0( ) 10e a  m2 are employed. The tip rotation and the normalized tip 

displacements of the element as a function of 
sE  and 

s  are reported in Figures 6.62-

6.64 for 
s  = 0.89 N/m and in Figures 6.65-6.67 for 

sE  = 1.22 N/m, respectively. It 

can be deduced from these results that the increase of the surface modulus of elasticity 

tends to stiffen the nano-beams whereas increase of the residual surface tension tends 

to reverse such effect. 
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Figure 6.63 Relationship between surface modulus of elasticity and normalized 

longitudinal tip displacement of fixed-free nano-beam with three different values of 

slenderness ratio 
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Figure 6.64 Relationship between surface modulus of elasticity and normalized 

transverse tip displacement of fixed-free nano-beam with three different values of 

slenderness ratio 
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Figure 6.65 Relationship between residual surface tension and tip rotation of fixed-free 

nano-beam with three different values of slenderness ratio 
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Figure 6.66 Relationship between residual surface tension and normalized longitudinal 

tip displacement of fixed-free nano-beam with three different values of slenderness 

ratio 
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Figure 6.67 Relationship between residual surface tension and normalized transverse 

tip displacement of fixed-free nano-beam with three different values of slenderness 

ratio 
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For the case of a fixed-rollered nano-beam, the beam length l = 1500 nm, three 

slenderness ratios / {5,10,15}l h , the cross sectional aspect ratio / 1b h  , the 

normalized end load k = 20.5, and the nonlocal parameter 2 16

0( ) 10e a  m2 are chosen 

in the simulation. The tip rotation and the normalized maximum longitudinal and 

transverse displacements of the beam versus the surface modulus of elasticity parameter 

are reported in Figures 6.68-6.70 for 
s = 0.89 N/m. Similarly, results as a function of 

s  are also depicted in Figures 6.71-6.73 for 
sE = 1.22 N/m. Like the fixed-free case, 

the surface modulus of elasticity tends to enhance the member stiffness whereas 

presence of the residual surface tension clearly lowers the apparent bending stiffness. 

It is also apparent from results of both fixed-rollered and fixed-free nano-elements that 

the contribution of surface stresses is prominent when the slenderness ratio is relatively 

small and close to the intrinsic length scale of the material surface. 
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Figure 6.68 Relationship between surface modulus of elasticity and tip rotation of 

fixed-rollered nano-beam with three values of slenderness ratio 
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Figure 6.69 Relationship between surface modulus of elasticity and normalized 

maximum longitudinal displacement of fixed-rollered nano-beam with three values of 

slenderness ratio 
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Figure 6.70 Relationship between surface modulus of elasticity and normalized 

maximum transverse displacement of fixed-rollered nano-beam with three values of 

slenderness ratio 
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Figure 6.71 Relationship between residual surface tension and tip rotation of fixed-

rollered nano-beam with three values of slenderness ratio 
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Figure 6.72 Relationship between residual surface tension and normalized maximum 

longitudinal displacement of fixed-rollered nano-beam with three values of slenderness 

ratio 
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Figure 6.73 Relationship between residual surface tension and normalized maximum 

transverse displacement of fixed-rollered nano-beam with three values of slenderness 

ratio 

 

To further explore the effect of the nonlocal parameter ( ) on the post-buckling 

of nano-beams, result are generated for various values of   while maintaining the 

value of 
sE  = 1.22 N/m and 

s  = 0.89 N/m. In addition, the aspect ratio of the cross 

section, the beam length, the slenderness ratio, and the normalized end load are taken, 

in the numerical study, as / 1b h  , 500l  , / {10,15,20}l h , k  = 5 for the fixed-free 

case and / 1b h  , 500l  , / {10,15,20}l h , k  = 20.5 for the fixed-rollered case. 

Result for the tip rotation and the normalized longitudinal and transverse tip 

displacements for the fixed-free beam and the tip rotation and the normalized maximum 

longitudinal and transverse displacements for the fixed-rollered beam are reported in 

Figures 6.74-6.76 and Figures 6.77-6.79, respectively, as a function of  . As apparent 

from this set of results, the post-buckling response of the nano beams are strongly 

dependent on the nonlocal parameter and such depedence becomes more prominent 

when the slenderness ratio of the element increases. 
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Figure 6.74 Relationship between the nonlocal parameter ( ) and tip rotation of fixed-

free nano-beam with three values of slenderness ratio 
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Figure 6.75 Relationship between the nonlocal parameter (  ) and normalized 

longitudinal tip displacement of fixed-free nano-beam with three values of slenderness 

ratio 
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Figure 6.76 Relationship between the nonlocal parameter (  ) and normalized 

transverse tip displacement of fixed-free nano-beam with three values of slenderness 

ratio 
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Figure 6.77 Relationship between the nonlocal parameter ( ) and tip rotation of fixed-

rollered nano-beam with three values of slenderness ratio 
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Figure 6.78 Relationship between the nonlocal parameter (  ) and normalized 

maximum longitudinal displacement of fixed-rollered nano-beam with three values of 

slenderness ratio 
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Figure 6.79 Relationship between the nonlocal parameter (  ) and normalized 

maximum transverse displacement of fixed-rollered nano-beam with three values of 

slenderness ratio.  
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CONCLUSIONS 

The theoretical model and efficient and accurate solution procedure for performing the 

analysis of bending, buckling, and post-buckling of nano-beams influenced by surface 

stresses and nonlocal elasticity have been established. The prismatic nano-beam with 

the fixed-free and fixed-rollered end conditions has been treated in the current 

investigation. Basic governing differential equations for a nano-beam undergoing large 

displacements and rotations have been formulated based on the nonlinear kinematics, 

equilibrium in the deformed state, and the enhanced moment-curvature relationship 

integrating both surface stresses and nonlocal effects. Gurtin-Murdoch surface 

elasticity theory has been used along with the presence of residual stress within the bulk 

to describe the influence of the surface stresses and finally derive the apparent flexural 

rigidity of the nano-beam. The nonlocal effect perceived in the nano-scale has been 

treated by utilizing the nonlocal theory of linear elasticity and this leads to the different 

form of moment-curvature relationship from the classical beam theory. A set of basic 

nonlinear differential equations has been employed along with the elliptic integral 

technique to derive a general set of nonlinear algebraic equations in terms of end 

displacements and end rotations for a nano-element under general boundary conditions. 

A particular set of nonlinear algebraic equations governing the bending, 

buckling, and post-buckling responses of fixed-free and fixed-rollered nano-beams has 

been established by properly enforcing the natural and essential boundary conditions. 

This set of equations has been solved numerically using Newton-Raphson iteration to 

obtain the unknown rotations and displacements at the ends of the nano-element and 

rotation at the interior inflection point. In numerical implementations, a technique of 

variable transformation has been utilized to regularize all involved weakly singular 

integrals to ensure that the final integrals can be integrated in an efficient manner by 

standard low-order Gaussian quadrature.  Once the end quantities and those associated 

with the interior inflection point have been determined, the displacement and rotation 

at interior points, the internal forces, and support reactions can be readily computed 

using post-processing equations.       
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To validate the problem formulation and numerical implementation, numerical 

experiments have been conducted for a classical model (neglecting the influence of both 

surface stresses and nonlocal linear elasticity) and the obtained solutions are compared 

with existing benchmark cases. It has been pointed out from an extensive numerical 

study that the proposed technique is robust and offers very accurate numerical solutions. 

Once the developed numerical technique has been fully verified, extensive numerical 

experiments have been carried out to explore the contribution of surface stresses and 

nonlocal linear elasticity. From obtained results, it has been pointed out that the 

mathematical model incorporating the surface stresses and nonlocal constitutive 

relation tends to lower the bending stiffness of the member. In the current study, the 

influence of surface stresses has been found in contrast with those presented by various 

investigators due to the integration of the residual compressive stress introduced within 

the bulk to maintain equilibrium at the initial state. The decrease in bending stiffness 

due to the the residual compressive stress in the bulk material is more significant than 

the enhancement of the stiffness due to in-plane stiffness of the surface and the residual 

surface tension. It can be also remarked that as the element size is close to the length 

scale of the material surface, solutions predicted by the current model are significantly 

different from those predicted by a classical model. This implies the necessity to 

properly incorporate both the surface stresses and nonlocal effect in the modeling of 

nano-scale problems. In addition, the predicted post-buckling responses of nano-beams 

also exhibit highly size-dependent. From the investigation of the influence of material 

parameters on the response of nano-beams, it has been deduced that the enlargement of 

surface modulus of elasticity tends to stiffen the nano-beams while the increment of the 

residual surface tension tends to soften the nano-beams. In addition, the response of 

nano beams is strongly dependent on the nonlocal parameter and such dependence 

becomes more prominent when the slenderness ratio increases. As a final remark, 

certain assumptions pertained in the present study are still impractical and can be 

potentially generalized to treat more realistic cases, e.g., nano-beams with initial 

imperfections and non-prismatic section, treatment of more realistic boundary 

conditions and applied loads, etc. 
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