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Let R be a ring. An additive subgroup Q of a ring R is said to be a quasi-
ideal of R if RONQRcC Q. For ae R, let (a); denote the quasi-ideal of R generated by
a. A quasi-ideal Q of R is said to be mzm‘mal if O+ {0} and Q does not properly contain
any nonzero quasi-ideal of R. Therefore if Q is a minimal quasi-ideal of R, then Q = (a),
for every a € Q\{0}. ‘

Let F be a field, n a positive integer, k €{1,2,...,n} and

Mu(F) = the full » x n matrix ring over F,
SU(F) = the ring of all strictly upper triangular n x n matrices over F
Cona(F) = the ring of all (2n+1) x (2n+1) matrices 4 over F with 4;=0

for all (5 )) € {1,2,...,2n+1}x{1,2, ..., 2nt1}\{(1, 1), (1, 2n+1),
(n+1, n+1), 2n+1, 1), (2n+1 2n+1)} and ‘

the ring of all n x n matrices 4 over F with 4;=0 for all

T,7 efindy.. n}andz;ék

R, (F, &)

The main results of this research are as follows:

Theorem 1. For 4 € My(F), (4),is 2 minimal quasi-ideal of M,(F) if and only if
rank(4) =1.

‘Theorem 2. If char(F) =0, then SU,(F) has no minimal quasi-ideal.

Theorem 3. Let char(F)=p>0.
1) For A € SUL(F), if rank(4)=1, then (4), is a minimal quasi-ideal of
2) The converse of 1) holds if and only if n<3.

Theorem 4. For 4 € Cy+/(F), (4)g is a minimal quasi-ideal of C,..(F)
if and only if rank(4)=1.

Theorem 5. Let char(F)=0 and 4 € R,.(F k). Then (A)q is a minimal quasi-ideal of R,(F, k)
if and only if A #0.

Theorem 6. If char(F)=p>0, then for any 4 € Ry(F, k), (4), is a minimal quasi-ideal of
Ru(F, k).
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INTRODUCTION

Quasi-ideals of rings were first introduced by O. Steinfeid in [3]. They
are generizations of left ideals and right ideals. The intersection of a left ideal
and a right ideal of a ring is a quasi-ideal. It is well-known that not every
quasi-ideal of a ring can be obtained in this way. Up to now, many researches
on quasi-ideals in rings have been published. The quasi-ideal of a ring R
generated by X R in an explicit form was given by H. J. Weinert in [5]. This
work is useful for our research. A minimal quasi-ideal of a ring R is defined
to be a nonzero quasi-ideal of R not properly containing any nonzero
quasi-ideal of R. It follows that a minimal quasi-ideal of a ring R is the
quasi-ideal of R generated by any element of its nonzero elements. It is given
in [3] that a minimal quasi-ideal of a ring R is either a zero subring or a
division subring of R and a quasi-ideal of R which is a division subring of R
1s a minimal quasi-ideal of R. P. N. Stewart has characterized a minimal
quasi-ideal of a ring in terms of left ideals and right ideals in [4] as follows:
A quasi-ideal of R is minimal if and only if any two of its nonzero elements
generate the same left ideal and the same right ideal of R.

In ring theory, matrix rings are considered to be standard and important
rings. We know that any matrix ring over a field F can be considered as a
ring of linear transformations of a finite-dimensional vector space over F. Then
the knowledge of vector spaces over fields and their linear transformations is
sometimes useful to study matrix rings over fields. Characterizations of
minimal quasi-ideals of some matrix rings over fields are given in this
research in terms of ranks of matrices. Howcver, it is shown that some matrix
rings have no minimal quasi-ideal and every nonzero principal quasi-ideal of
some matrix rings is minimal.

Preliminaries for this research is given in Chapter I. In Chapter II,
minimal quasi-ideals of any full matrix ring over a field are characterized. It

is shown that its quasi-ideal generated by A is minimal if and only if



rank(4)=1. We show in Chapter Il that for any positive integer n, the ring
of all strictly upper triangular n x n matrices over a field of characteristic 0
has no minimal quasi-ideal. We also study minimal quasi-ideals of this ring
where the characterisﬁc of its field is prime. We show that for any element A4
of this ring, if rank(4) =1, then the quasi-ideal generated by A is minimal,
and the converse is true if and only if n<3. In the last chapter , minimal

quasi-ideals in some other matrix rings are studied.



CHAPTER 1
PRELIMINARIES

Throughout this research, let N and Z denote the set of all positive
integers and the set of all integers, respectively.

Let R =(R, +, .) be a ring.

For subsets X and Y of R, let

XY = { ‘Z’,xiy,- ‘ neN, x;eX and y,eY for all ief1, 2, n}}
i=1

and
ZX = { ikixi | neN, x;€X and k;eZ for all ie{1, Zn}}
i=1

For x € R, let Rx, xR and Zx denote R{x}, {x}R and Z{x} , respectively. Then
for xe R,

Rx= {rm|reR},

xR = { xr|reR}
and

Z= {hke|keZ}.
We have that for any nonempty subset X of R, RX and XR are a left ideal
and a right ideal of R, respectively.

An additive subgroup Q of R is said to be a quasi-ideal of R if

RO N QR < Q. Then every left ideal and every right ideal of R is a quasi-ideal
of R. Moreover, the intersection of a left ideal and a right ideal of R is
a quasi-ideal of R. However, not every quasi-ideal of R can be obtained in
this way. An example was given by M. Sadiq Zia in [2] and an other example

was given in [1]. In fact, if R is a commutative ring, then every quasi-ideal of

R is an ideal.



If R has an identity and Q is a quasi-ideal of R containing a unit a
of R, then for every x € R,x=(xa")a =a(a'x) e RON QR c QO and hence Q=R.

An arbitrary intersection of quasi-ideals of R is a quasi-ideal of R.
For Xc R, let (X), be the intersection of all quasi-ideals of R containing X and
it is called the quasi-ideal of R generated by X. For x € R, let (x), denote
({x})y, and it is called the principal quasi-ideal of R generated by x. The

following theorem has been known.

Theorem 1.1 ([S]). For a nonempty subset X of R,
(X)g=ZX+ (RXNXR).

From Theorem 1.1, we have directly that for x eR,
(x)g =Zx + (Rx N xR ).

Corollary 1.2. If R has an identity, then for a nonempty subset X of R,
(X)g=RXNXR,
and in particular, for x R,

(x)g=Rx NxR.

Proof. Let X be a nonempty subset of R. Then RX and XR are subrings of R
which imply that RX N XR is a subring of R. Since R has an identity,
XcRXNXR. But RXNnXR is an additive subgroup of (R,+), so

ZXc RXNXR. Consequently, ZX+(RXNXR)=RXN XR . Hence
X)g=RXNXR. O

A nonzero quasi-ideal Q of R is said to be minimal if Q does not

properly contain any nonzero quasi-ideal of R. The following statements hold

clearly.
1) If Q is a minimal quasi-ideal of R, then O =(x), for every

x € O\{0}. Then every minimal quasi-ideal of R is a principal quasi-ideal of R.
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2) If x € R{0} is such that (x), =(y), for all y € (x),\{0} , then (x), is
a minimal quasi-ideal of R.

The necessary conditions of minimal quasi-ideals of R given in [3] are as

follows:

Theorem 1.3 ([3]). If Q is a minimal quasi-ideal of R, then Q is either a zero
subring or a division subring of R. In the second case, (Q has the form

Q = eRe =eR N Re where e is the identity of Q.
Theorem 1.3 has a partial converse as follows:

Theorem 1.4 ([3]). If a quasi-ideal Q of R is a division subring of R, then Q

is a minimal quasi-ideal of R .

For the case that a quasi-ideal Q of R is a zero subring of R, Q need
not be minimal . This can be seen from a zero ring of which its additive
structure contains a nonzero proper subgroup .

For x € R, let (x); and (x), be the left ideal and the right ideal of R
generated by x, respectively. Then for every x € R, (x); = Zx + Rx and
(x)r = Zx + xR . The necessary and sufficient conditions for a quasi-ideal of R to

be minimal given by P.N. Stewart in [4] are as follows:

Theorem 1.5 ( [4] ). A quasi-ideal Q of R is minimal if and only if for all
x,y € MO}, )= and (x)r=0) .

For a field F and n € N, the full n x n matrix ring is denoted by M,(F).
By a matrix ring over a field F, we mean a subring of M,(F) for somen € N.

It is clear from Theorem 1.1 that if R is a matrix ring over a field F
with the property that a4 € R for all a € F and 4 € R, then (ad), = a(4), in
R for all ae F and 4 € R



Let F be a field and n e N.
For Ae My(F) and i, je {1, 2,.., n}, let 4; denote the entry of 4
in the i% row and the j% column.

Let SU,(F) be the ring of all strictly upper triangular n x n matrices over -
F, that is, SU,(F) is the ring of all matrices in My(F) of the form

0 a, a, Q) p ay,

O O a23 aZ n-1 a2n

0 0 O 0 Ayyp
0 0 0 0 |

Next , let

Conn(F)= {4 €M, (F)| 4, =0 for all (i,j) € {1, 2,..,2n41} x {1, 2., 2n41 ]\
{1,1),(1,2n+1),(n+1,n+1),(2n+1,1),2n +1,2n+1)} },

that is, Cyu41(F) is the set of all matrices in My,+1(F) of the form

th

n+1—
(¢ 0 .. 0 0 0 .. 0 b
0 0 .. 00 O 0 0

ni2|0 0 .. 0 ¢ 0 2 0 0O

00 ..000 . 00
d 0 .0 0 0 .. 0 e

For ke {1,2,..,n}, let

R,(F,k)={4eM,(F)| 4, =0 for all i,j e {1, 2,...n} and i=k },



that is, R,(F, k) is the set of all matrices in M,(F) of the form

[0 0 0]
0 0 0

Ay Qpy Ay k*
0 0 0

| 0 0 0 |

It is clear that R,(F, k) is a subring of M,(F) for all ke{1,2,..., n} and
Con+1(F) is a subgroup of Mj,+;(F) under matrix addition.

To show that Cy,+1(F) is a subring of Mau+1(F), let 4, B € Cops1(F)
and (i, j)e {1, 2,..., 2n+1} x {1, 2, ..., 2n+1}\{(1, 1), (1,2n+1), (n+1, n+1),
(2n+1,1), (2n+1,2n+1)}. Then

2n+1

Z Aim ij
m=1

AyB; + 4B + A

*
i,n+17 n+l, j i,2n+lB2n+l,j """""" ( )

(4B);

i

Casel: i¢ {1, n+1, 2n+1}. Then 4;,=0 for all me {1, 2,..., 2n+1}, so

(A4B);=0. _

Case2: i=1. Then j¢ {1, 2nt+1}. Thus B;j=0,4;s+1=0 and B,,+,;=0, so
by (*), (AB);=0.

Case3: i =n+1. Then j #n+1. Then 4;=0, Bp+;;=0 and A4;2,+,=0, so

by (*), (4B);=0.

Case4: i =2n+1. Then j ¢ {1, 2nt1}. Thus B;j=0, 4;p+1=0 and By,+,;=0.
By (*), we have that (4B);=0.



In fact, the ring C,«(F) is clearly isomorphic to the ring C;(F) by the
mapping

th

n+1—

a0 0 0 O 0 b]

0 0 0 0 0 0

0 0 .. 00 0 .. 00 a 0 b

120 0 .. 00 ¢ 0 ... 0 0|l =10

0 0 G I 0 0 d 0 e
0 0 0 O 0 0

d 0 0 0 0 0 e

and it also preserves the ranks of matrices.

We know that M,(F) is a vector space over F under the usual addition
and scalar multiplication of matrices.

Let V be a vector space over F' and let Hom«V, V) denote the set of
all linear transformations of V into itself. Then Hom«V, V) is a ring under the
usual addition and composition of functions and it is also a vector space over
F under the usual addition and scalar multiplication of functions.

Let dimgV = n. For any ordered basis B of V and for T € Hom«(V, V),
let [T]z denote the matrix of T relative to the ordered basis B, that is, if

B={v,,v,, ..., v, and

T(vl) = ayvytas- vt tag v,
T(v)) = apvitanv,t...ta,v,
T(v,) = avitazv,t...+a,v,

forgje Fand i,je{l,2,..., n}, then



It is well-known that for any ordered basis B of V, the mapping T [T]z is
both a ring isomorphism and a vector space isomorphism of Homg(V, V) onto

M,(F) and for each T € HomgV , V), rank(7) = rank([7]5).



CHAPTER 11
FULL MATRIX RINGS

The main purpose of this chapter is to show that for a field F,
ne N and 4 € My(F), the quasi-ideal of M,(F) generated by 4, (4),, is
minimal if and only if rank(4)=1.

We know that if V is a vector space over a field F of dimension #,
then Hom«V, V') = M,(F) as rings and vector spaces by T+ [T]p for any
given ordered basis B of V. To obtain the main result above, we prove that
for a finite—dimensional vector space ¥ over a field F and 7 € Hom«V, V),
(T), 1s a minimal quasi-ideal of HomgV, V) if and only if rank(7)=1.

Throughout, let ¥ be a vector space over a field F.
If R is a subring of the ring Hom«V, V) containing {a/ | a € F}
where [ is the identity map on ¥V, it is clear that R is a subspace of the

vector space Hom«(V, V).

Lemma 2.1. Let R be a subring of HomyV, V) containing the set
{al [a eF} and T, U eR.

1) If Ue((D),, then InU cImT and KerU > KerT.

2) If (D=),, then ImT=ImU and KerU = KerT.

Proof. 1) Let U € (T),. By Corollary 1.2, (T), =RTNIR. Since U TR,
U=TT, for some T, € R. Hence ImU =Im (77T,) cImT. Since U € RT,
U=T,T for some T, € R. Then KerU =Ker (7,7) o KerT.

2) follows directly from 1). O
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Lemma 2.2. Let R be a subring of Hom(V, V) containing the set {al [ a € F).
Then for every T € R, FT < (1), in R where FT = {aT /a € F}.

Proof. Let Te€ R and a € F. Then aT'=(al)T=T(al) since T is linear.
Because al e R, aT € RTnTR=(T),. This proves that FTc(T), in R. J

Lemma 2.3. Let V be finite-dimensional and R a subring of Homi(V, V)
containing {al [ a e F). Then for every T €R, if rank(I) =1, then (1),=FT
in R.

Proof. Assume that dimzV/'=n. Let T € R be such that rank(T;) = 1.
By Lemma2.2, FT < (7), in R. Since rank(7)=1, dim Im7)=1. But
rank(7) + nullity(7) =dimgzV =n, so nullity(7) =n-1, that is, dimg KerT)
=n-1. To show that (7),c FT, let U e (T), and U #0. By Lemma 2.1,
ImU ¢ ImT and KerU o KerT. Then dimA ImU) £ dimd Im7) =1. Since U =0
and dim{ImU) <1, it follows that dim{ImU) =1. Hence dimd KerU) =n-1
since rank(U) + nullity(U) =n. Now we have ImU c ImT, dim« ImU)
=dim« ImT) =1, KerU o> KerT and dim KerU) = dimA KerT) = n-1.
Consequently , ImU =ImT and KerU =KerT. Let v € Im71{0}. Since
dim{ Im7T)=1, ImT = Fv where Fv={av|a € F}. Then ImU=ImT = Fv.
Next, let { v, v,, ..., v,u} be a basis of KerT (= KerU) and
{vi, V2, ..., Vua, Vu} a basis of V. Then T(v) = U(v) =0 for all
ie{l,2,...,n1}, T(v,) #0 and U(v,) #0. Since Im7 =ImU = Fv, I(v,) = bv
and U(v,) = cv for some b, ¢ € F\{0}. Then U() = ((b"c)T)(v;) =0 for all
ie{l1,2,...,n-1} and U, =cv=(b'c)(bv) = (b'c)I(v,) = (b'c)T)(v,). This
follows that U= (b"c)T € FT.
Hence we have that FT =(T),, as required. [J

Lemma 2.4. Let R be a subring of Homg(V, V) containing the set
{al [ a € F). Then every quasi-ideal of R is a subspace of R.
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Proof. Let O be a quasi-ideal of R. Then Q is an additive subgroup of R
and RONQRc Q. Next, let Te Q and a€ F. Then aT'=(al)T=T(al)
RONQRc Q. Hence Q is a subspace of R. [J

From Lemma 2.3 and Lemma 2.4, we have

Corollary 2.5. Let V be finite-dimensional, R a subring of HomgV,V )
containing the set {al [a € F} and T e R. If rank(T) =1, then (T), is a

subspace of R of dimension 1.

Lemma 2.6. Let V be finite-dimensional, R a subring of HomV, V)
containing the set {al /a €F} and TeR. If rank(T) =1, then (1), is a

minimal quasi-ideal of R .

Proof. Assume that rank(7) = 1. By Corollary 2.5, dimg(7),=1. To show that
(T),1s a minimal quasi-ideal of R, let U € (T), and U= 0. Then (U), < (7),
From Lemma 2.4, (U), is a subspace of R. Thus dims (U), < dim«(7), But
dims (1),=1 and U =0, so dims (U), =dimT), Consequently, (U), = (1),.

Therefore (7), is a minimal quasi-ideal of R. [

Lemma 2.7. Let V be finite-dimensional, T € HomgV,V) and T #0. Then
there exists U € (T), such that rank(U) = 1.

Proof. Let dimzV =n. Since T#0, ImT = {0}.

Case1: ImT =V. Since V is finite-dimensional, 7 is an isomorphism on V.
Then T is a unit of HomgV ', V). This implies that (7),= Hom«V, V). Hence
(7), contains an element U of Homg(V, V') such that rank(U)=1.

Case2: ImT = V. Then {0} cImT'¢ V. Let {vi, v2, ..., v} be a basis of ImT
and {v\, v,, ..., V,.., Vo) & basis of V. Since rank(7) + nullity(7) = dim,V
=n, nullity(7) =n-k. Let {Wik+1, Wisa, ... , Wa} be a basis of KerT.

Since v,, v, ..., v € ImT, there exist wy, w,, ..., wi € ¥V such that T(w))=v;
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for all i e€{1, 2,...,k}. To show that {w,, wy,.. , w,} is a basis of V,

let a,, a,,..., a, € F be such that

aw, + aaw, + .+ aaw, = 0. e *)
Then

T(apw, + aaw, + ... + aywy) = 0,
SO

arl(w) + a;I(wy) + ... + a, T(w,) = 0.

Since Wg+1, Witz,... , Wy, € KerT and T(w;) =v; for all i €{1, 2, ..., k}, we
have that
av, +ay, + ... + apvx = 0.

Because of linearly independence of v;, v,,..., v, we have that a;=0 for all
ie{l, 2,..,k}. From (*), we have

' Ape Wiy + QpeaWisa + oo Fagw, = 0.
Since Wg+y, Wks2,... , W, are linearly independent, ax+i, ax+z,... , an are all
zero. This proves that w;, w,,... , w, are linearly independent which implies
that {w,, w,,.. , w,} is a basis of ¥ because dim;V =n.

Next, let 7\, T, e Hom«(V, V) be defined by
T\(vi)=v1, T(v)=0 for all ie{2, 3,...,n}

and
Ti(w)=wy, To(w)=0 for all i {2, 3, ..., n}.
Then
(LT )Y(wy) = T(T(w))) = Ti(v)) = v,
(I\T)Yw) =T(T(wy))=T(v))=0 for all i {2, 3,...,k}
and

(I\THY(w) =T (Tw))=T(0)=0 for all i e{k+1, k+2,...,n}.
We also have that
(TT)(w,) = T(Ty(w1)) = T(w)) =W

and

(TT)(w)) = T(Ty(w;))=T(0)=0 for all i e{2, 3, ..., n}.
These imply that T7\7 =TT, and Im(7,7) =Im(TT;)=(v,). Let U=T,T. Then
rank(U)=1 and U= T\T=TT, € Hom«V, V)T "THom(V, V') = (1),
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Hence the lemma is completely proved. [

Lemma 2.8. Let V be finite-dimensional and T € HomAV, V)\{0}. If (1), is a
minimal quasi-ideal of HomdV, V), then rank(T) = I.

Proof. Assume that (7), is a minimal quasi-ideal of HomV, V). By
Lemma 2.7, there exists U e (7), such that rank(U)=1. Then U=0, so
(U), = {0}. Since U e (1), , (U), < (T),. Then {0} = (U), < (I), which implies
that (U), = (7), since (7), is a minimal quasi-ideal of Homg(V, V). By
Lemma 2.1 (2), ImT =ImU. Then rank(7)=rank(U)=1. [

From Lemma2.6 and Lemma 2.8, we have the following theorem.

Lemma 2.9. Let V be finite-dimensional and T € HomAV, V). Then
(1), is a minimal quasi-ideal of HomgV, V) if and only if rank(T) = 1.

Let V be finite-dimensional, dimzV =n and B= {v. s Vases v,,} an
ordered basis of V. As we have mentioned in Chapter I on page 9, the map
T [T]p is an isomorphism of HomgV, V') onto M,(F) as both rings and
vector spaces. Let & denote the map T [7]s.

Let 4 € My(F). Then 8(T) =A for some T € Hom«V, V). By
Corollary 1.2, (4),=Mx(F)A N AM(F) in My(F) and (T),=
HomgV, V)TN THom«( ¥, V) in Homg«V, V). Since & is an isomorphism of
Homg(V, V) onto M,(F), we have that

O(D,) = 6(HomyV, V)T THomu(V,V))
= G(HomdV, V)T) 0 0( THomuV , V))

= @(HomgV, ¥))O(D) N 0(T) 6( Hom(V, V))
= Mu(F)4d N AM(F)
= (A,
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Therefore (4), is a minimal quasi-ideal of M,(F) if and only if (7), is a
minimal quasi-ideal of Hom«(V , V). Because 4 =[T]; and rank([T]s) = rank(7)
( see ChapterI, page9), by Theorem 2.9, the following theorem is obtained.

Theorem 2.10. Let F be a field and n € N. Then for A € M,(F), (4), is a
minimal quasi-ideal of M,(F) if and only if rank(4) = 1.

We shall give a proof of “if” part of Theorem 2.10 by using the
addition , scalar multiplication and multiplication of matrices directly. First,
we shall prove that for any 4 € M,(F), if rank(4)=1, then (4),=FA where
FA=1{ad | a eF}, that is,

(), ={ad | a e F}.
Let 4 € M,(F) be such that rank(4) =1. Then 4 has a nonzero row.

Without loss of generality, assume that the first row of 4 is nonzero. Since

rank(4) =1, there exist a,, @y, ..., @Gn, X2, X3,..., Xp € F such that
a, a, a,
- X,a, x,a, x,a,
xnal xnaZ xnan

Let B € (4), . Since (4), =M, (F)4 " AMy(F), B=CA = AD for some C, D
€ M,(F). Let x,=1. Then

I n n n
YCxa  2CGxe - Y.Cxa,
j=1 j=1 j=
n n n 4

CA = 2Cxm 2Gxa . YGxa,
j=1 j=t J=1

n n n
2.Coxja 2l o Y Cyxa,
L J=1 j=1 j=1




q(iqj%) az(iqjxj)
_|a0kn  aan) -

aQGm  aQln) -

and

rxa;D,  Yxa;D,

Jj=1 Jj=1
>xaD, YxaD
X,a, - xX.d. 5
= 2 1 2 2
AD = 7 i
xx,aD,  %xaD;

- TS Jj=

which imply that

(va  ya, .. ya,

B » y2al yzaz ves yza"
Hallio Feliin i AT

Z Z, z,
xZZl x222 cee x2Z

L xnzl X Z2 “ee x"Z
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for some y,, ¥2,...5 Yn» 215 Z2y..., 2n € F. It follows that
Iy »a, na,
B = X014 X i@y e X Na,
X, P SUSTE X, a,
al a2 an
X,ay X,a, x,a,
=y
xnal xnaZ xnan
~— ylA

Hence (4),C FA. For ae F, aA=(a)A=A(al), so ad € My(F)A N AM,(F)
= (A),. This proves that (4), = FA, as required.

Next, let 4 € M,(F) be such that rank(4) =1. Then (4), = FA. To show
that (4), is a minimal quasi-ideal of M,(F), let B € (4), and B #0. Since (4),
=FA and B € (4),, B=cA for some c € F.Since B#0, ¢c#0, so rank(B) =
rank(4) = 1. Then (B), =FB, so (B), = F(cA) = (Fc)A = FA. Hence
By, =A),. O

We know from Theorem 1.3 that a minimal quasi-ideal of a ring R is
either a zero subring or a division subring of R. We give a remark here that
some minimal quasi-ideals of M,(F) are zero subrings and some are division

subrings of M,(F) for the case that n>1.
Let n>1 and 4, B € M,(F) defined by
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and

Then rank(4) =1 =rank(B), 4>=0 and B*=B. Then (4),=FA, (B);=FB and
the quasi-ideals (4), and (B), are minimal. For ¢, d € F, (cA)(dA) = (cd) 4’ =
0. Hence (4); is a zero subring. Since (B); =FB,

- R
0 0 .. O

(B), = | xeF
0 0 0 O

which is isomorphic to F, so (B), is a division subring of M,(F).



CHAPTER III
RINGS OF ALL STRICTLY UPPER TRIANGULAR MATRICES

Throughout this chapter, let F be a field, n € N and SU,(F) the ring
of all strictly upper triangular » x » matrices.

The main purpose of this chapter is to prove the following results.

1) If char(F)=0, then SU,(F) has no minimal quasi-ideal.

2) Let char(F)=p>0. Then

2.1) for A € SU,F), if rank(4)=1, then (4), is a minimal
quasi-ideal of SU,(F) and
2.2) the converse of 2.1) holds if and only if n<3.

We note that if char(F)=0, then mlr 20 for all m € Z\{0} where 15
is the identity of F which implies that for m € Z\{1, -1} and k € Z considered
as elements of F, mk #1. Also, if char(F)=p >0, then

Z17={0, 1z, 2(15), .. (p-1)(15) } ,

and so for x e F,

Zx={0, x, 2x,...,(p-1 )x}
and |Zx| = p if x=0.

Theorem 3.1. If char(F) =0, then SU,(F) has no minimal quasi-ideal.

Proof. Let char(F)=0. To prove that SU,(F) has no minimal quasi-ideal,
it suffices to prove that for every 4 € SU,(F)\{0}, there exists B € SU,(F)\{0}
such that (B), & (4)..

Let 4 € SU,(F) and 4#0. Then 24 € SU,(F). Since char(¥) =0 and
A#0, 24#0. Since (4), is an additive subgroup of SU.(F), 24 € (4),
which implies that (24),c (4),. Suppose that (24),=(4),- By Theorem 1.1,

(A), = Z4 + (SULF)4 N ASUL(F)).

Since 4 € (4),=(24),=2(A),, there exist m € Z and C € SU,(F) such that
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A =2(mA+ CA)
which implies that
(1 -2m)4 = 2CA.

Since A is strictly upper triangular , 4; =0 forall i, je {1, 2,..., n} and i2j
Since 4 =0, 4;#0 for some ie {1, 2,.., n-1} and je {i+l, i+2,.., n}.
Let |

k = max { ie{l, 25 s ”‘1}|A,-j¢0 for some je{i+1, i+2, n} }

and let / € {k+1, k+2,..., n} be such that 4y #0.
From (*), we have

(A-2mAu = 2CA)y,

SO
k n
(1-2m)4, = 20, Cyd,; + Y. Cud,).
Jj=1 J=k+1
Since C is strictly upper triangular, Cy =Cjpp =...= Cu =0. Then

(1-2m)4, = 2 Cy4,.

J=k+1

By the property of k£, we have that 4; =0 for all j>£.
Thus
(1-2m)4, = 0.

But Ay#0, so 1-2m =0. Thus 2m =1 which is a contradiction since
char(¥) = 0. Hence (24), < ),
This proves that SU,(F) has no minimal quasi-ideal, as required. [J

Lemma 3.2. For A € SUL(F), if rank(4) =1, then SU,(F)A n ASUL(F) = {0}.
Proof. Let 4 € SU,(F) be such that rank(4) =1. Then 4#0 and 4; =0 for all

i,je{1l,2,...,n} with i>j, so 4;#0 for some i€ {1, 2,.., n-1} and

je{i+l, i+2,.., n}. Let



T 21

noaANA1 amum NEUS NI
ummmmummman !

k=max {ie{1,2,., n1}|A4;#0 for some je{i+l,i+2,.., n}}

and
I =min {je {k+1,k+2,.., n}|Ay=0}.

It follows from the properties of &, [ and rank(4) =1 that

[0 .. 0 x Ay X Ay xlAkJ
0 .. 0 Ky Ly B4, . x,4,,
4= 0 .. 0 %, Ay B ik s X A,
0 .. @ Ay S A,
U, omrel) 0 0 0
[0 .. 0 0 0 0

for some xi, x3,..., xx1 € F. Let B € SU(F)A N ASU,(F). Then B=CA =AD
for some C, D € SU,(F). Let x,=1. Then

k k k W
0 .. 0 (z 1% )Au (Zcux,)Aun (ZCUXJ)A
j=2 j=2
k k
0 .. 0 Zczj X; Q.Cox A - O.Cyx A,
Jj=3

Q\

1 ~{
~1,k Ak!

J 1
k-1.k Ak,l+l Ck—l,k Alm
0

(e

— 2o _—
CA=1o .. 0 (ZC“J X)) Ay (ZC“, Mg~ (€, x4, |
J=k- '

Cy
0

0w 00 0 a1y

Since 4 = Ap = ... = A,“ = for all i e o Z,0na n}, Dy =Dpyy = ..=
D, =0 and (4D), = ZAUDJ,+ZA,]D for all ie {1, 2,.., n}, we have

that (4D); =0 for every ie {1, »ees B}. But CA=A4D, so (CA)y = (AD)y
=0 forallie {1, 2,.., n}. It follows from (*) that
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j=k-1
Crrx4u =0
k
Since 4, #0, ZCU X; ZCZJxJ" ZCk 2% = Cp = 0.
j=3 J=k-1

By (*), we have CA =0, so B=0.
Hence SU(F)ANASU(F)={0}. O

Corollary 3.3. For A € SUF), if rank(4) =1, then (4),=

-

Proof. Let 4 € SU,(F) be such that rank(4)=1. By Lemma 3.2,
SU(F)A N ASU,(F) = {0}. By Theorem 1.1,

(4), = ZA + ( SUL(F)4 N ASUL(F) ).
Consequently , (4), = ZA. a

Lemma 3.4. Let R be a subring of My(F), AeR, A=0 and (4),=ZA in R.
1) If char(F) =0, then (A), is not a minimal quasi-ideal of R.
2) If char(F)=p >0, then (A),={0, A, 24, .., (p-1)A}, | (A),|=p

and (A), is a minimal quasi-ideal of R.

Proof. Since 4 #0, there exist i, je{1, 2,..., n} such that 4; =0.

1) Assume that char(F) =0. Then 24 #0. Since (4),is an additive
subgroup of R, 24 € (4), which implies that {0} (24), c (A4), . Since char(F) =0
and A; =0, A, #2md; forall m € Z which implies that 4 ¢ 2Z4. Since (24), =
2(4),=2ZA4, A ¢ (24), .Hence {0}_cr (24)q4 < (4),. Thus the quasi-ideal (4), is

not minimal.
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2) Assume that char(¥)=p >0. Then

Z1={0,17, 2(15), ... (p-1 )15 },
and so

ZA=(Z1)A = {0,4, 24, .., (p-1)4}
where 15 is the identity of F. Then (4), ={0,4, 24, ...,(p-1)4}.
Since char(F) =p and 4; #0, we have that 0,4;, 24;, ..., (p-1)4; are all
distinct in F. Then the matrices 0,4, 24,...,(p—-1)4 are all distinct. Hence
| (4),|=p. Let B € (4), and B#0. Then (B), is an additive subgroup of (4),

and (B), # {0}. Thus |(B),|| p which implies that [(B),|= p. Hence (B),= (),

Therefore (4), is a minimal quasi-ideal of R. [

Theorem 3.5. Let char(F) =p >0 and A € SUL(F). If rank(4) =1, then (4), is
a minimal quasi-ideal of SU(F).

Proof. Assume that rank(4) =1. By Corollary 3.3, (4), = ZA. Then by
Lemma 3.4(2), (4), is a minimal quasi-ideal of SU.(F). [

Theorem 3.6. Let char(F) =p >0. Then the following statements are
equivalent.

1) For A € SUL(F), if (4), is a minimal quasi-ideal of SU,(F), then
rank(A) =1 .

2) nx<3.

Proof. To prove (1) implies (2) by contrapositive, assume that zn > 3.
Let '
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Then A4 € SU,(F) and rank(4) =2. To show that SU,(F)4 N ASU,(F) = {0}, let
B e SU(F)4 N ASU,(F). Then B=CA=AD for some C, D € SU,(F). But

0 G, G, .. C,,

CA=|... .. .« . . 0 .. 000

o
o

ke

N
o

and

oL gofo LI D AL D, D
0..010[|l0 0 D, .. D,,, D,
AD=|0 .. 0 0 0

n-1,n
0 0 0 0f{f0 0 O 0 0 |
0 .. 0 0 ]
Bl 00D
=0 .. 00 ,
0 .. 0 0

so B=0. Thus SU,(F)4 N ASU,(F) = {0}. It follows from Theorem 1.1 that

(4);=ZA4. By Lemma 3.4(2), (4), is a minimal quasi-ideal of SU,(F).
Conversely , to prove (2) implies (1), assume that n <3 and let

A € SUL(F) be such that (4), is a minimal quasi-ideal of SU(F). Since 4 =0

and SU(F)={0}, n>1. If n=2, then every nonzero matrix in SU,(f) has

rank 1 and so rank(4)=1.
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Next, assume that n=3. To prove that rank(4) =1, suppose not.

Since

0 A12 A13
A=|0 0 A,|,
0 0 0

Because

00 1] [0 4 o]fo 4, 4,7 [0 4, 4,7[0 0 o
00 0j={0 0 ofl0 0 4,|=[0 0 4,[l0 0 47|,
0oo0o0llo o ollo o ol o o olloo o

we have that B € SUs(F)4 N ASUs(F) . But (4),=ZA4 + (SU,(F)4 N ASULF)) ,

so B €(4); and hence (B), c (4), Since rank(B)=1, by Corollary 3.3,
(B);=ZB, so

(Bl =

o O O
o O O

m
0|| meZs.
0

Then 4 ¢(B), since A4, # 0. Therefore {0}; (B)qg’= (4), It is a contradiction
since (4), is a minimal quasi-ideal of SU3(F). This proves that rank(4)=1, as
required. [ .

We shall give a remark that if char(¥)=p >0, then every minimal
quasi-ideal in SU,(F) is always a zero subring of SU,(F) because every
nonzero subring of SU,(F) has no identity.

T1%619514



CHAPTER 1V
SOME OTHER MATRIX RINGS

Let F be a field and » € N. We first recall the following notations.
Cont1(F) = the ring of all (2n+1) x (2n+1) matrices over F of the form

th
n+1=

a g L O L 0 b
0 00 .. 00

o
o
o
o
o
o
o

1L, 6 T 0. sl 0.

For ke {1,2,..,n}, let

Ru(F, k) = the ring of all n x n matrices over F of the form

[0 0 0]
0 O 0
k% a, a, a,
0 O 0
(0 0 0 |

In this chapter we shall give a necessary and sufficient condition for a
matrix 4 of each of these matrix rings such that the quasi-ideal (4), is minimal.
We know that if V is a finite-dimensional vector space over F of

dimension » , then for any given ordered basis B of V', the map T > [T]p is

an isomorphism of Hom«V, V) onto M,(F) as both rings and vector spaces and
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for any T € HomgV, V), rank(7T) =rank([7]z). Thus from these facts the
following two lemmas are obtained from Lemma 2.3 and Lemma 2.6,

respectively.

Lemma 4.1 Let R be a subring of My(F) containing {al/a € F} where I is the
n x n identity matrix over F. If A € R is such that rank(4) =1, then (4), =FA
where FA = {ad/a € F}.

Lemma 4.2 Let R be a subring of Mn(F) containing {al/a € F} where I is the
n x n identity matrix over F. If A € R is such that rank(A) =1, then (4); is a

minimal quasi-ideal of R.

Lemma 4.3 For A€ Cy+i(F) ,(A), is a minimal quasi-ideal of Can+i(F) if and
only if rank(A4) = 1.

Proof. We have that the map

All 0 A1,2n+1
A g 0 An+1,n+l 0
A2n+l,l 0 A2n+l.2n+1

is an isomorphism of C,,+1(F) onto Cs3(F) which preserves the ranks of matrices.
Then to prove this theorem, it suffices to prove that it is true for C3(F). Note
that {al|a € F} ¢ C3(F) where I is the 3x3 identity matrix over F. It follows
from Lemma 4.2 that if 4 € C3(F) is such that rank(4) =1, then (4), is a
minimal quasi-ideal of Cj;(F).

For the converse, let 4 € C3(¥) be such that (4), is a minimal

quasi-ideal of Cj;(F). Let
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To show that rank(4) =3 or 2 is impossible, first assume that rank(4) =3. Then

A1 exists in M3(F) and

Al = L adj4
det 4
. ce 0 -be
=—| 0 ae-bd 0 |,
ace —bed

—dc 0 ac

so A'e C3(F). Therefore 4 is a unit in C3(F). Consequently, (4), = C3(F). By

Lemma 4.1,

1 00 a 0 0
({0 0 0[),=41{0 0 O||aeF
0 00 0 0 0

which is properly contained in (4),. This contradicts the fact that (4), is a
minimal quasi-ideal of C3(F), so rank(4) # 3.

Next, assume that rank(4) = 2.
Casel:c#0. Then a#0 or b#0 and there exists g € F such that

a 0 b
A=10 ¢ O
ga 0 gb
Claim that the set
xa 0 xb

hadm VO Ix,yeF
xga 0 xgb

is a subset of (4), Let this set be denoted by O and let x',y'e F. Then
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Xa 0 x'b ¥ 0 O0l[a 0 b a 0 b||x 0 O
0 y 0 |=10 ¢y 0]]0 ¢ O0|=|0 ¢ 0|0 "y
x'ga 0 x'gb 0 0 x'||ga O gb| [ga O gb||O O X

xXa 0 x'b

so| 0 » 0 | is an element of C3;(F)4 N AC;(F). This proves that
x'ga 0 x'gh

0 < C3(F)4 \ ACs(F). Hence Q < (d),. Let

a 0 b
B=|0 0 0]
ga 0 gb

Since a#0 or b#0, rank(B)=1. By Lemma 4.1,

xa 0 xb
B)g= 0O 0 O [ xeF
xga 0 xgb

which is properly contained in Q. But Q < (4),, so {0} #(B), < (4), which is
a contradiction.

Case2 :¢=0. Then

N
Il
Qo R
o o @
O O

If ae=bd, then e(a,0,b)—b(d,0,e)=(0,0,0) which is a contradiction
since rank(4)=2. Then ae—bd+0. Let

0=

\ X, y,z,we F &.

N O N
O O O
T o«
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Claim that Q'c(4),. If X', y', z’, w'eF, then

x 0 yl _(ex' _ dy')(ae _ bd)—l 0 (ay! _bxr)(ae _ bd)—l a O bw
0 0 0= 0 0 0 000
zZ 0 w _(ez' —dw)(ae—-bd)" 0 (aw' —-bz')ae-bd)"'||d 0 e

0 b]|(ex'=bzYae—bd)" 0 (ey'—bw)(ae—>bd)™ 1
00 0 0 0
0 ell(az'—dx')ae—bd)" 0 (aw' —dy') ae-bd)™

»

I
Ao 8

L

and hence Q'c (4),.But

x 00
(000)q=000|xeF
0 00 0 00
160
which is properly contained in Q', so (|0 0 0]), c_,;(A)q which is a
0 00

contradiction.
This completes the proof that rank(4) =3 or 2 is impossible. Hence
rank(4)=1. O

Let ke {1,2,..., n}. We note that for all A, B € R(F, k),

0 0 olj[o o 01
0 0 0 0 0 0
AB=| 4, A4, A || By Bi, B,,
0 0 0 0 0 0

| O 0 0 1L 0 0 0 |




[0 0 0 1
0 0 0
= | 4y By AkkBkZ AkkBkn
0 0 0
i 0 0 0 ]

=A,B

Lemma 4.4. Let A € R, (F, k).
1) If Ay =0, then (A)y = ZA.
2) If Aw # 0, then (4); = FA.
3) If Ay # 0, then (A), is a minimal quasi-ideal of R.(F, k).

Proof. 1) Assume that Ay, =0. Then AB=AuB =0 for all B € R\ (F, k).
Therefore AR(F, k) = {0}. But (4);= ZA + (R,,(F , A N AR(F k)) ,

s0 (4),= ZA.
2) Assume that 4y #0. Claim that (4),= FA. For a € F, we have
[0 0 .. 0} [0 gt o 0 ]
0O 0 .. 0 0 0 0
ad=|a a .. al|A=A\ad A7 ad,A4A; .. ad, A}
0 0 .. 0 0 0 0
K 0] 0 0 0 |

which implies that a4 € R (F, k)A " AR, (F , k) = (4), . Hence FA c (4),.
Since (4);= Z4 + (Ru(F , )4 N ARL(F , k)
c ZA + R (F, k)A
={mA+BA|meZ and B e Ry(F,k)}
={mA+Bud|meZ and B e R(F,k)}
={mA+ad|meZ and ae F}



={(m+a)Ad|meZ and ae F }
={ad|aeF}
=FA,

we have (4),= FA.

32

3) Assume that Ay # 0. Then (4), = F4 # {0}. Let B € (4); and B #0.

Then B =bA for some b € F\{0}. Since Az #0 and b #0, By #0. From 2),
we get (B), = FB. Then (B),=F(bA) =(Fb)A =FA =(A4),, so
(4), is a minimal quasi-ideal of R,(F, k).

Hence the lemma is completely proof. [J

Theorem 4.5. Let char(F) =0, ke{1, 2,.., n} and A € Ry(F, k). Then (4),
is a minimal quasi-ideal of R,(F, k) if and only if A #0.

Proof. Assume that Ay =0. By Lemma 4.4(1), then (4), = ZA. Then by
Lemma 3.4, (4), is not a minimal quasi-ideal of R,(F, k). This proves that
if (4), is a minimal quasi-ideal of R,(F; k), then Ay #=0.

Conversely , assume that Ay =0. By Lemma 4.4(3), (4), is a minimal

quasi-ideal of R (F,k). [

Theorem 4.6. Let char(F) =p >0 and k{1, 2, .., n}. Then for every
A € R, (F, {0}, (A), is a minimal quasi-ideal of R.(F, k).

Proof. Let 4 € Ry(F, k) and 4 #0. If Ay =0, then by Lemma 4.4(3),
(4), is a minimal quasi-ideal of R,(F, k). If A =0, then by Lemma 4.4(1),
(4); = ZA and hence by Lemma 3.4(2), the quasi-ideal (A4), is minimal. J

We end this chapter by giving the following remarks.

1) Some minimal quasi-ideals of Cy,+1(F) are zero subrings and some
are division subrings of Cy,+1(F).

2) If char(F) =0, then every minimal quasi-ideal of R.(F ,k) 1s a
division subring of R,(F, k).
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3) If char(F)=p>0 and n>1, then R,(F, k) has both minimal
quasi-ideals which are zero subrings of R,(F,k) and minimal quasi-ideals
which are division subrings of R,(F, k).

To show that (1) holds, let A, B € Cami(F) be defined by

0O .. 01

0 ... 00
A=

A o 00

0 .. 00

and

1 0 0

0 0 0
B =

0 0 0

Then rank(4) =rank(B)=1, so (4), and (B), are minimal quasi-ideal of
Cani(F) , (4), =FA and (B), = FB. Then

el T
0 .. 00

(4), = | xeF
0 0 0

which is a zero subring of Cy.+1(F) and

-0
0 0 .. O

(B), = | xeF
0 0 0

which is a division subring of Cy,i(F).
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To show that (2) holds, let char(F)=0 and let 4 € R,(F, k) be such that the

quasi-ideal (4), is minimal. Then 4y # 0 and (4), = FA4, that is,

k*
0 .. 0 .. 0] )
o . 0 .. o0
(), =1 kx4 .. x4, .. x4, |xeFL.
0 0 0
| Lo 0 0 ]
Then the matrix
k@
[ 0 0 0 0 0
0 0 0 0 0
kﬁ AklAk_lcl AIc,Ic—lAI:Icl 1 Ak,k+1AI:k1 AlmAl:k1
0 0 0 0 0
| 0 0 0 0 0 |

kt_iz
i 0 0 0 0 0
0 0 0 0 0
k% x™ (Ak_k1 )2 45 X (Ak_kl )2 Alc,k—l & Ak—kl 4 (A/:/c1 )2 Ak,k+1
0 0 0 0 0
i 0 0 0 0 0

X7 (4g) 4,




is the inverse of

Thus (4), is a division subring of R,(F, k).

A, Be Ry(F, k) be defined by

and

Finally , to show that (3) holds, let char(F)=p>0, n>1 and

let
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Then (4), and (B), are both minimal quasi-ideals of R,(F, k), (4), =FA and
(B), =ZB. As shown in (2),(4), is a division subring of R,(F, k). Since
B*=0, it follows that (B), is a zero subring of R.(F, k).
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