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CHAPTER I 

INTRODUCTION 
 

The titanium-based implant materials have been generally used in 
orthopedic and dental for endosseous implants due to the excellent biocompatibility and 
corrosion resistance.  The success of implant depends on the intimate contact between 
the bone structure and biomaterial surface without fibrous tissue growing at the interface 
so called osseointegration, the condition that indicate the long term stability of implant 
and optimal bone regeneration[1]. 

One of the factors, influencing the success of osseointegration, is the 
surface characteristics, such as surface topography, surface chemistry, wettability and 
surface roughness[2]. When an implant is surgically placed, the initial interaction 
between host and implant surfaces is conditioned by tissue fluids. These interactions 
affect the amount and quality of cell adhered on the implant’s surface[3, 4]. 

For these reasons, numerous surface modifications have been 
suggested to enhance the cellular response in achieving a stable mechanical bone-
implant contact. The current methods include turning, blasting, acid-etching, porous 
sintering, anodic oxidation, hydroxyapatite-coating surfaces, ion implantation and 
biomolecule-based engineering[5-7]. 

In biomedical materials, the sand-blasting technique is commonly used 
to clean surface and to produce micro-retentive topography that can be sensed by 
individual cell.  Generally, micro-roughness varied by size, shape and type of abrasive 
materials. In addition, roughness contains specific topographical features across a 
range from the nanometer to the millimeter scale[8]. Previous reports demonstrated that 
bone anchorage on titanium implants is markedly improved by surface roughness with 
Ra ranging from 0.5-1.5 μm[9-12]. 

Several abrasive materials such as Al2O3, SiC, glass beads, iron, 
corumdum, rutitle and hydroxyapatite (HA) have been used to improve the surface 
topography and chemical composition of biomaterials[13]. Among these materials, Al2O3 
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is the most widely applied abrasive material, which was shown to produce an 
appropriate topography and roughness of the implant surface by its ultra-hard and 
sharp angular characteristic[4]. The major component of abrasive is 99% Al2O3. There 
are many dental implant manufacturers which treat titanium surfaces with Al2O3 such as 
EVL (SERF, Decine, France), STI (The Allfit, Switzerland) and Ankylos (Densply-Friadent, 
Germany)[14]. Apart from Al2O3, glass bead is another choice of abrasive material, 
which has approximate properties, price and supply. It is spherical shape abrasive and 
used for blasting to create a rough surface of titanium implants in hip arthroplasty[15]. 
The major component of glass bead is ~70% SiO2 along with Na2O and CaO as the 
remaining component[16]. However, the effects of different types of abrasive materials 
on osteoblast behavior are still largely unknown.  

The objectives of this study were to compare the effect of using 
variables, such as abrasive materials (Al2O3 and glass beads) and abrasive particle size 
(50,100,250 μm) on titanium surface characterization and MC3T3-E1 cell response. This 
in vitro study determined osteoblastic cell attachment, morphology, proliferation, 
mineralization and gene expression. 
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RESEARCH QUESTIONS 
1. Whether the blasting titanium surface with different types or size of abrasive 

materials affect the surface characteristics of titanium. 
2. Whether the surface prepared by different types or size of abrasive materials 

affect the behavior of osteoblast-like cells in vitro. 
 
RESEARCH OBJECTIVES 

1. To examine the surface roughness, topography, chemistry, hydrophilicity 
and fibrin clot formation on titanium surface blasted with Al2O3 and glass 
beads. 

2. To examine the surface roughness, morphology, topography ,hydrophilicity 
and fibrin clot formation on titanium surface blasted with different abrasive 
particle size (50,100,250 μm). 

3. To compare behavior of osteoblast-like cells on titanium surface blasted with 
Al2O3 and glass beads. 

4. To compare behavior of osteoblast-like cells on titanium surface blasted with 
different abrasive particle size (50,100,250 μm). 

 
RESEARCH HYPOTHESIS 

1. Blasting with different types or size of abrasive materials can affect the 
surface characteristics of titanium. 

2. Surface prepared by different types or size of abrasive materials can affect 
the behavior of osteoblast-like cells in vitro 

 

RESEARCH DESIGN 
  Laboratory experimental research 
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CONCEPTUAL FRAMEWORK 
 

 
 

KEYWORDS 
Behavior of osteoblast-like cells 
Blasting 
Surface topography 
Surface roughness 
Al2O3 
Glass beads 

 
RESEARCH EXPECTATION 

1. To understand the effect of using different abrasive materials and particle 
size on titanium surfaces characterization. 

2. To understand the effect of using different abrasive materials and particle 
size on the in vitro osteoblast-like cells response. 

3. To establish basic knowledge for formulate a guideline to select the proper 
abrasive materials for blasting and manufacturing the dental implant. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 
 
Titanium and titanium alloys as an Implant materials  

Titanium and titanium alloys are also used in biomedical implantation due 
to excellent biocompatibility, elegant mechanical properties, low level of electronic 
conductivity, high corrosion resistance, thermodynamic state at physiological pH values 
and low ion-formation in aqueous environments[17]. The biocompatibility and corrosion 
resistance of titanium and titanium alloys are associated with its thin (approximately 4 
mm) surface oxide layer. The thin film occurs on implant surfaces and forms naturally in 
the presence of trace amounts of oxygen. The thin film is insoluble, resistant to body 
environments and strong adhered to titanium surface. This reaction leads to the 
prevention of fibrous tissue formation around implant[18, 19].  
  Commercially pure titanium (Cp) is used for endosseous dental implant 
applications. There are currently four Cp Ti grades (ASTM F 67) and one titanium alloy 
specially made for dental implant applications (Ti-6Al-4V, ASTM F 1472). Titanium grade 
2 is used for industrial dental implant applications because its biocompatibility and 
lower modulus of elasticity (Young ‘s modulus) are more closely match of the bone 
which lead to a lower incidence of bone degradation[19]. Titanium alloy (Ti-6Al-4V) is 
the most widely used in medical implants because its high strength. Moreover, this alloy 
is used in dental implants for any patients who have parafunctional habits or history of 
implant fracture[20]. However, titanium alloy (Ti-6Al-4V) has a possible toxic effect 
resulting from released of vanadium and aluminum. For this reason, vanadium-and 
aluminum-free alloys have been introduced for implant applications. These new alloys 
include Ti-13Nb-13Zr (ASTM F1713), and Ti-12Mo-6Zr (ASTM F1813)[19].  
 
Osseointegration 

Osseointegration was first termed by Brånemark and later defined in a 
paper by Albrektssonet al. in 1981. This term was defined as the condition and the 
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process for having a loaded implant in direct contact with bone[21]. Mechanisms of the 
osseointegration process are similar to those occurring during bone fracture repair and 
involve a cascade of various cellular and extracellular events[3, 22]. 

When an implant is surgically placed, the initial interaction between host 
and implant surfaces is conditioned by tissue fluids elicited by the inflammatory 
response associated with wound healing. Studies reported that the implant surface was 
covered with the layer macromolecules of plasma (biofilm) and extracellular matrix 
component, such as immunoglobulins, vitronectin, fibrinogen, and fibronectin[23, 24]. 
This biofilm formed within a short time of contact. The fibrin network and the migrating 
effects of growth factors expressed as the important role in the establishment of 
osteoprogenitor reservoir at interface[24]. Then, during the first 3 days the mesenchymal 
cell recruitment occurs and ends with cell attachment to the implant surface. Osteoblast 
differentiation and proliferation occur after 3-6 days. The matrix calcification 
subsequently occurs after the first up to the third week. After 3 weeks, the formation and 
remodeling of new bone around implant occur in the regions[25]. All these processes 
illustrate in figure 2.1. 

 

 
 

Figure 2.1 Illustration showing the cellular phenomena at the implant bone interface 
during healing of implant[26]. 
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Influence of implant surface characteristics on osseointegration 
  Albrektsson et al., presented six factors for obtaining osseointegration, 
such as biocompatibility, design, surface properties, status of host tissue, surgical 
technique and loading condition[27]. The first three factors are related to all implant 
properties and many researchers attempt to develop the implant devices by focusing 
the surface properties. 
  The titanium surface, including topography, chemistry, wettability and 
surface roughness, has been described as the important factor to influence 
osseointegration. Amount of bone-to-implant contact (BIC) is an important determinant 
in long-term success of dental implants. Consequently, maximizing the BIC and 
osseointegration has become a goal of surface modification[26, 28].  
 

 
 
Figure 2.2 This schematic shows the implant success depends on the composition and 
structural features[8].  

Dental implants have been designed to provide textures and shapes that 
may enhance cellular activity and direct bone apposition (Figure 2.2). For many years, 
the machined surface of the Brånemark implant was the gold standard for implant 
surfaces. The macrotopography such as screw like contours of implant can promote a 
mechanical interlock with surrounding bone. However, the actual surface of machined 
implant is smooth, which leads to fibrous formation at the interface of implant. These 
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cells also adhered more strongly to smooth surfaces[8, 34, 35]. The mineralized nodule 
production is increased on titanium surfaces with deep grooves[36]. 

The chemical composition of implant surface often differs from the bulk 
composition and surface treatments. The surface layer may contain reactive bonds and 
various ions influences the binding of proteins to the surface and the subsequent cell 
reactions[37]. Buser et al., found the chemical enhanced SLA surface (Sand-blasted, 
Large grit, Acid-etched) was significantly enhanced BIC during the first 4 weeks of bone 
healing than the standard SLA surface. This study has supported the use of alterations 
in surface chemistry to modify osseointegration events[38]. 
  Wettability and surface energy influence the adsorption of proteins, and 
increase adhesion of osteoblasts on the implant surface. The cell behavior on a 
hydrophilic surface is different from that on a hydrophobic surface[26]. There are usually 
reported that biomaterial surfaces with moderate hydrophilicity promoted the highest 
level of cell attachment and cell growth[39, 40]. 

 However the responses of cells to surface characteristics are not 
specific. Many diverse responses and interactions are involved so that the response on 
any single test may not predict overall performance. 
 
Implant surface topography 
  The topography of a surface is defined in terms of form, waviness and 
roughness (figure 2.3). Waviness and roughness are often presented together under the 
term texture. In the analysis, data describing form and waviness are first determined 
and then the roughness is assessed. The roughness describes the smallest irregularities 
in the surface, while form relates to the largest structure (profile)[41, 42]. 

 
Figure 2.3 Illustration of surface topography [42] 
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For a proper topographical characterization of a surface, instruments 
and methods must be used to provide both numerical and visual data. There are three 
groups of instruments that may provide such information; 
1. Mechanical contact stylus instruments. 
2. Optical instruments. 
3. Scanning probe microscope (SPM). 
  The surface characteristics of screw-type oral implants, only optical 
instruments may provide proper information. However, three-dimensional (3D) 
measurements are more reliable than two-dimensional (2D) determinations due to the 
increased amount of data obtained in the 3D assessment[43]. 
 
Surface roughness 

Surface roughness can be divided into three levels depending on the 
scale of the features: macro-, micro- and nano-sized topography[44]. 
    The macro level is defined for topographical features as being in the 
range of 10 µm-1 mm. This scale is directly related to implant geometry, with threaded 
screw and macroporous surface treatments. The primary implant fixation and long-term 
mechanical stability can be improved by an appropriate macro roughness[8, 26]. 
  The micro-topographic profile of dental implants is defined for surface 
roughness as being in the range of 1–10 µm. This range of roughness increases the 
interlocking between mineralized bone and implant surface. Studies supported by some 
clinical evidence suggested that the micron-level surface topography resulted in greater 
accrual of bone at the implant surface[37, 45]. 

The nano- topographic profile is composed of nano-sized materials with 
a size range between 1-100 nm. Nanotopography modifications are commonly 
described in the literature both as nano-roughness and nano-features. Topographical 
features in the nanometer ranges play an important role in the adsorption of proteins, 
adhesion of osteoblastic cells and thus the rate of osseointegration[46]. However, 
reproducible surface roughness in the nanometer range is difficult to produce with 
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chemical treatments. In addition, the optimal surface nano-topography for selective 
adsorption of proteins leading to the adhesion of osteoblastic cells and rapid bone 
apposition is unknown. Thus, there is a need for more in vitro, in vivo and the long-
termed study on the potential importance of nanostructure[27, 44]. 
 
Methods of surface modifications of implants 

Surface modifications of implants can be divided into three main 
categories: physical, chemical, and biochemical[4]. 

Physical treatments: To modify surface characteristics by the application 
of external actions, shaping or removal of the material surface by another solid material. 
The physical methods of implant surface include cutting and turning, smoothing and 
blasting[4]. 

Chemical treatments: To produce modifications in the chemical 
composition of native materials, with specific regards to the surface layer. The chemical 
methods of implant surface modifications include chemical treatment with acidic or 
alkaline, hydrogen peroxide treatment, sol-gel, chemical vapor deposition, and 
anodization. Chemical surface modification of titanium has been widely applied to alter 
surface roughness and composition and enhance wettability/surface energy[38]. There 
are dental implant manufacturers which have produced surfaces in the chemical 
treatment such as Tiunite implants (Noble Biocare; anodized technique), Osseotite 
implants (Biomet; dual acid etching by hydrochloric and sulphuric acids)[47]. 

Biochemical treatment: To guide the enrichment of a biocompatible and 
bioresorbable carrier with the active molecule as coating material on implant surface. 
These biochemical methods include the covalent attachment, the peptide inclusion into 
carrier materials treatment and the adsorption treatment[48]. 

 
Blasting 
  In biomedical application, blasting techniques are mainly used for 
cleaning and improving the surface roughness. Blasting process requires abrasive 
particles to be forced against the surface by using compressed air, flowing through an 
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ejector and sucks particles up. Due to the dynamic of the contact between forced 
particles and surface, blasting treatment can produce higher roughness values with 
specific topography and the blasted particles are used to modify the surface chemical 
composition[4]. 

In dental implants manufacturing, such as SLA (Straumann, Switzerland) 
and Frialit-2 implants (Densply-Friadent, Germany), these surfaces are produced by a 
large grit 250-500 μm blasting process and followed by etching with 
hydrochloric/sulfuric acid[47]. Sandblasting results in surface roughness and acid 
etching leads to microtexture and cleaning[49]. The method is suggested for better 
osseointegration. 
  Bowers et al., reported that the irregular rough surface produced by 
sandblasting appears to be more conductive to osteoblast attachment than other 
surfaces roughened   by polishing or acid etching[50]. Similarly, the study of Deligianni 
et al., focused on the short- and long-term response of human bone marrow cells in vitro 
and protein adsorption on titanium alloy Ti-6Al-4V with three values of surface 
roughness. The results showed the cell attachment and proliferation were increased as 
the roughness of Ti alloy increased[11]. On the other hand, several reports indicate that 
increased surface roughness cannot enhance cell function and bone formation[51-53].  
 
Abrasive materials and biological response 
  Grit blasting (also called abrasive blasting) is based on bombardment of 
the surface by hard particles of high velocity. The particles lead to local plastic 
deformation and removal of the material surface[13]. Al2O3 is the most common abrasive 
suggested in preparation because of so easily acquired, affordable price and easily 
removed in acidic solution[4]. 

Al2O3 is used due to its hardness, strength and sharp angular 
characteristic. It is widely used as a coarse or fine abrasive. In addition, its low heat 
retention and low specific heat have made it widely used in grinding operations. The 
major component of abrasive is 99% Al2O3, along with fine particle of less than 1% 
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crystallized silica[54]. There are many dental implant manufactures which treat surfaces 
with Al2O3 grit blasting such as EVL (SERF, Decine, France), STI (The Allfit, Switzerland) 
and Ankylos (Densply-Friadent, Germany)[14]. 

 

 
 

Figure 2.4 Images of implants blasted by Al2O3. The EVL implant, one-step, cylindro-
conical, self-tapping endosseous screw-shaped implant made of grade 2 titanium(A), 
The STI implant produced from grade 4 titanium (B), The Ankylos implant (C)[55-57]. 
  Mueller et al., compared implant blasted with Al2O3 and bioceramic 
particle. Average surface roughness (Ra) was estimated to be around 0.5 μm for both 
modifications. No significant difference was found in the bone response[58].Similarly the 
study of Wennerberge et al., who reported TiO2 and Al2O3 blasting particles resulting in 
Sa values of about 1 μm. The biological results were not significantly different. It is 
interesting to note that in the study, they did not find any negative bone tissue effect of 
the Al ions which probably were present on the Al2O3-blasted titanium surfaces[59].  
This is in contrast to the case of Ti-6Al-4V alloy, there is a potential for continuous 
release of Al (and V) ions into the tissue, while the Al2O3-blasted surface presents a 
transient and limited releasing of Al ions[60]. 
  Contrarily, Esposito et al., found the releasing of remnants from blasting 
materials has been suggested to impair bone mineralization and repair through a 
competition between Al and Ca ions[52]. 
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Glass bead is a unique air blasting abrasive for cleaning and 
conditioning surfaces. It is manufactured from high - grade glass, annealed in its 
spherical shape to equalize internal stresses and resist fracture. The inherent strength of 
glass bead is such that it can survive against multiple impacts, allowing for continuous 
recycling and reducing cost[16]. 

In biomedical applications, glass bead is used for providing a level of 
roughness as well as a suitable surface topography such as Wong et al., who modified 
the surface treatment by blasting glass bead and hydroxyapatite (HA) coated on 
Ti6Al7Nb[61]. Schuh et al., used glass bead blasting to create a rougher surface of 
Titanium implants in hip arthroplasty[15]. The major component of commercial abrasive 
is SiO2 ~70% along with Na2O and CaO[16]. These compositions are bioactive 
materials. Chang et al., found that the Ti disc blasted with commercial spherical-shaped 
glass (glass bead-Ti) can enhance cell growth with culturing up to 7 days. There was no 
significant difference with respect to the bioactive glass particles with a composition of 
70SiO2.25CaO.5P2O5 ,which were prepared by a sol gel method[7]. The summarized 
studies which used the Al2O3 or glass bead particle for creating the roughed surfaces as 
showed in Table 2.2.  
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Table 2.2 Studies of blasting by variable abrasive materials on bone to implant contact 
or the cellular response. 
 

Material/surface Ref Model Bone to implant contact 

Ti blasted with 25 μm TiO
2
 VS 25 μm Al

2
O

3
 Rabbit 25 μm TiO

2
 = 25 μm Al2O3 [59] 

Ti blasted with 25 μm Al
2
O

3 
VS 75 μm Al

2
O

3 
Rabbit 75 μm Al

2
O

3 
>25 μm Al

2
O

3
 [62] 

Ti blasted with 25 μm Al
2
O

3 
VS 250 μm 

Al
2
O

3 
 

Rabbit 
25 μm Al

2
O

3 
=250 μm 

Al
2
O

3
 

[63] 

Ti blasted with 110 μm Al
2
O

3 
VS 50 μm 

bioceramic 
Rabbit 

110 μm  Al
2
O

3 
= 50 μm 

bioceramic 
[58] 

Ti,Ti alloy blasted with 150-250 μm glass 
beads VS 300-400 μm corundum 

Dog 
150-250 μm glass beads 
=300-400 μm corundum 

[61] 

Ti blasted with 50 μm glass beads VS 
bioactive glass  

In vitro 
Cell growth 7 days 

50 μm glass beads=  
bioactive glass  

[7] 
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Properties and required information to describe blasted surfaces[64] 
  When using the blasting techniques to produce the specific topography 
and various chemical compositions of titanium surface, the optimal surface properties 
were required such as. 

- Morphology, Texture, Roughness and Form property  
The typical information needed: Type and distribution of morphological 

features, size and distribution of open or close porosity, 2D and 3D parameters were 
describing the surface roughness. Waviness and form are ranging from the atomic or 
nanometer (nm) to the micrometer (μm) to the mm or cm scale[64]. 
  Several roughness parameters exist to describe surface topography. The 
2D parameters Ra, Rq, Rz and Rt are the most commonly used parameters and 3D 
parameters Sa, Sq, Sz and Stare used to provide better characterization for all modern 
implant surface, a description is as follow[43]. 
 
Ra (Sa for 3D) is the arithmetic average of the absolute height values of all points of the 
profile (Ra) or a surface (Sa). This is a stable height-descriptive parameter. 
 
 
 
 

 
Figure2.5 Show the calculation of Ra. Ra measurement for sample length “ L ” is the 
mean height of the surface profile (Peaks and inverted valleys). 
 
Rq (Sq for 3D) is the root mean of the values of all points of the profile (Rq) or surface 
(Sq). Rq gives almost the same information as Ra but is slightly more sensitive to high 
peaks and low valleys. 
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Rz (Sz for 3D) is the 10-points average roughness i.e. the average of the five lowest 
valleys and the five highest peaks within the profile (Rz) or the surface (Sz). 
 
Rt (St for 3D) is the maximum peak to valley of the profile (Rt) or the surface (St). 

 
The roughness parameters were estimated from the topography data 

using the software of its own instrument. They depend on the length scale selected. The 
average length of an osteoblast is about 10 μm. Thus, the proper scan sizes should be 
larger than the cell size length[34, 65]. 

In an early study published in 1972, Predecki et al., found a certain 
degree of surface roughness (Ra=0.508 μm) to be necessary for fixation and growth of 
bone toward the implant surface[66]. The previous reports have demonstrated that 
primary bone anchorage of titanium implants was markedly improved by surface 
roughness with Ra ranging from 0.5-1.5 μm[9-12]. 

Albrektsson & Wennerberg reviewed the topographic and classified 
surface roughness. They suggested smooth surfaces to have an Sa value of <0.5 μm, 
minimally rough surfaces were identified with an Sa of 0.5–1 μm, moderately rough 
surfaces with Sa 1–2 μm and rough surfaces with an Sa of >2 μm[37]. 

The surface roughness can be varied by the process parameters and 
particle size. For example, alumina particles in the size 25-75 μm result in Ra range 0.5-
1.5 μm[62, 67], while Ra in the range 2-6 μm are reported for surfaces blasted with 
particle size of 200-600 μm[68, 69]. 

 
- Chemical composition property 

  The typical information needed: type of inorganic compounds, oxidation 
states of elements, molecular structure of organic compound, distribution parallel of 
chemical composition to surface, distribution perpendicular of chemical composition to 
surface. 
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CHAPTER III 

RESEARCH METHODOLOGY 
 
1. Titanium samples preparation and blasting method  
  Titanium (Ti) discs, 15 mm in diameter and 3 mm in thickness, were 
prepared from commercially available pure titanium grade-2 (KVM Heating Element 
Co.,Ltd. Thailand).  All Ti discs were machine-polished (DPS 3200, IMPTECH, South 
Africa) with silicon carbide paper on a rotative polisher at 150 rounds per minute (rpm) 
for 30 seconds and randomly divided into six groups; 
1) Control (no blasting, Ti polish) 
2) Blasting with 50 μm particles of glass beads (50SiO2-Ti,Shofuinc, Accord) 
3) Blasting with 50 μm particles of Al2O3 (50Al2O3-Ti, Tec line, Dental vision) 
4) Blasting with 100 μm particles of glass beads (100SiO2-Ti, Tec line, Dental vision) 
5) Blasting with 100 μm particles of Al2O3 (100Al2O3-Ti, Kepler) 
6) Blasting with 250 μm particles of Al2O3 (250Al2O3-Ti, Tec line, Dental vision) 
 

 
Figure 3.1 Picture from SEM showed the abrasive particles that used in this study 
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All Ti discs were blasted under pressure blasting (Druckminderer, 
typ5417, Germany) at a constant distance of 2.5 inch at air pressure of 3-4 bars for 30 
seconds and blasting angle of 90º (Figure 3.2). Subsequently, discs were ultrasonically 
cleaned with deionized water for 10 minutes then consequently rinsed with 70 % ethanol 
and sterile by autoclave. 

 

 
 
Figure3.2 Illustration of blasting method 
 
2. Surface characterization analysis 
 
2.1 Surface roughness and topography 

The surface roughness parameters were measured using a surface 
profilometer (Talyscan 150, Taylor Hobson, UK, n=10).  Five different locations (2x2 mm) 
on each sample (ASTM D7127-05) were scanned with filter/cut-off = 0.08 mm (0.08 mm 
ignored at the beginning and the end of the profile), 2000 μm/s speed and one way 
direction measurement.  Results were express as Ra (arithmetic mean of the height 
variation on the roughness profile), Rt (maximum peak to valley of the profile) and RSm 
(mean spacing of surface peaks), The value of Sa (arithmetic mean deviation of a 
surface), St (maximum peak to valley of the surface), and Sds (peak number per area 
(mm2), were also calculated. 

Surface topography of the Ti discs was also described by roughness 
parameters. Moreover, the qualitative profiles of the textured titanium surfaces were 
made with the software of profilometer program.  
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Figure 3.3 Picture showed the profilometer (Talyscan 150, Taylor Hobson) (A), The 
diamond inductive stylus gauge showed the location for scanning on each sample (B, 
C). 

 
2.2 Surface morphology 

Surface morphology of the Ti discs was also examined using a scanning 
electron microscope (JSM 5410LV, JEOL, Japan), in order to qualitatively evaluate the 
different blasted surface. 
 
2.3 Surface chemical analysis 
  The composition of the Ti discs was confirmed using Energy Dispersive 
X-ray Spectroscopy (EDS) analysis (Link ISIS 300, Oxford, England).  After ultrasonically 
cleaned, the chemical elements were randomly measured at three different locations on 
each sample.  
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2.4 Hydrophilicity 
Static contact angle measurement was performed using a contact angle 

meter (DSA 10, Krüss, Hamburg, Germany) at ambient temperature.  The 10 μl sessile 
droplet of deionized water was drop vertically on the specimen surface without physical 
contact using micro-syringe onto the surface. The contact angles were measured ten 
times and reported as mean + standard deviation. 
 
2.5 Fibrin clot formation 
  The 150 μl of fresh blood was dropped on the Ti surface and covered 
with glass cover slip immediately.  After 5 minutes, the specimens were rinsed three 
times in 0.1M PBS. They were dehydrated in a graded series of alcohol and then critical 
point dried with 100% hexamethyldisilazane (HMDS, Fluka, Steinheim, Germany) for 5 
min. The fibrin structure can be determined using scanning electron microscope (JSM 
5410LV, JEOL, Japan).  

This procedure used non anti-coagulated whole blood.  The protocol was 
approved by the ethical committee, Faculty of Dentistry, Chulalongkorn University.  
 
3. Analysis of function and behavior of osteoblast-like cells on titanium surfaces 

3.1 Cell culture 

  MC3T3-E1 cells (ATCC CRL-2593) is a non-transformed cell line 
established from newborn mouse calvaria. Cells were grown in alpha minimum essential 
medium (HyQ® MEM/EBSS, Hycone, Logan, Ultah, USA) supplemented with 10% fetal 
bovine serum (FBS, ICP biologicals, Henderson, Auckland, New Zeland), 2 mM L-
glutamine, 100 unit ml-1 penicillin, 100 μg ml-1 streptomycin and 0.25 μg ml-1 
amphotericin B (Gibco,Grand Island, New York, USA). Cells were subcultured once a 
week. 
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3.2 Cell morphology in scanning electron microscopy (SEM) 
  Cells were seeded on the Ti-polish discs and Ti-blasted discs for 30 min, 
4 and 16 hours.  Cells were fixed with 3% glutaraldehyde solution (Fluka, Steinheim, 
Germany) for 30 min, rinsed with 0.1M PBS, dehydrated in a graded series of alcohol 
(30%, 50%, 70%, 90% & 100% ethanol), critical point dried using 100% 
hexamethyldisilazane (HMDS, Fluka, Steinheim, Germany), coated with a thin layer of 
gold and examined under scanning electron microscope (JSM 5410LV, JEOL, Japan). 
 
3.3 Cell attachment and proliferation 
  Cells were cultured on Ti discs in 24 well culture plates at ~30,000 
cells/well. The attachments were determined by scanning electron microscopy (SEM) 
and MTT assay after for 30 min, 4 and 16 hours in culture. The proliferation rate was 
studied using MTT assay cells after 16 hours, 2 and 3 days culture. The MTT assay is 
based on the reduction of tetrazolium salt to formazan crystals by dehydrogenase 
enzymes secreted from the mitochondria of active cells. The amount of purple formazan 
crystals relates to the number of viable cells.  In brief, cells were incubated with 250 
μL/well of MTT solution (0.5 mg/ml in DMEM without phenol red) at 37 °C. After 30 min, 
the formazan crystal was dissolved in dimethylsulfoxide (DMSO, Sigma-Aldrich, 
Seelze,Germany) (900 μL/well) and glycine buffer (pH = 10) (125 μL/well). The 
absorbance was read with Thermospectronic Genesis10 UV-vis spectrophotometer at a 
wavelength of 570 nm. The data represented the number of viable cells. 
 
3.4 Gene Expression 

Cells were seeded on materials for 7 days and 14 days. Expressions of 
type I collagen (Col I) and osteocalcin (OC) messenger RNA (mRNA) were assessed 
using qRT-PCR. Total RNA was extracted with TriPure Isolation Reagent according to 
manufacturer’s instruction. One μg of each RNA sample was converted to cDNA by 
avian myeloblastosis virus (AMV) reverse transcriptase (Promega, Fitchburg, WI, USA) 
for 1.5 h at 42°C followed by performing polymerase chain reaction (PCR) using primers, 
prepared from the following reported sequences from GenBank (NM_007742.3, 
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NM_001032298.2 and XM_001476723.1 for Col I, OC and GAPDH, respectively). The 
oligonucleotide sequences of the primers were as follows: 
 

Col I           sense 5´GGTGCCCCCGGTCTTCAG3´ 
antisense 5´AGGGCCAGGGGGTCCAGCATTTC3´ 

OC            sense 5´CTTGGGTTCTGACTGGGTGT3´ 
antisense 5´AGGGAGGATCAAGTCCCG3´  

GAPDH      sense 5´ACTTTGTCAAGCTCATTTCC3´   
antisense 5´TGCAGCGAACTTTATTGATG3´   

 
 The PCR products were electrophoresed on 1.8 % agarose gel (Usb, 

Cleveland, OH, USA) and visualized by ethidium bromide fluorostaining (EtBr; Bio-Rad, 
Hercules, CA, USA). The density of band was determined using Scion Image Software 
(Scion Corporation, USA). 
 
3.5 Mineralization 

In vitro mineralization was quantified by Alizarin red-S staining (Alizarin 
Red S –certified, Sigma, St.Louis, MO, USA) after 14 days of cells culture.  Cells were 
fixed with cold methanol for 20 min and stained with 1% Alizarin red in 1:100 (v/v) 
ammonium hydroxide/water (pH 4.2) for 3 min. The amount of calcium deposition was 
quantified by destained with 10% cetylpyridinium chloride monohydrate (Sigma, St. 
Louis, MO, USA) in 10mM sodium phosphate at room temperature for 15 min.  The 
absorbance was measured at 570 nm using the UV-vis spectrophotometer 
(Thermospectronic Genesis10 UV-vis, Madison, WI, USA).  
 
4. Statistical analysis 
  Data were expressed as mean+ standard deviation. Statistical analysis 
was carried out by the one-way analysis of variance (one-way ANOVA), follow by 
Scheffe test or Dunnett test (SPSS®17.0 for Windows, SPSS, Chicago, IL, USA). A 
probability of < 0.05 was considered significant. 
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CHAPTER IV 

RESULTS 
 
1. Surface characterization analysis 
 
1.1 Surface roughness and topography 

The roughness parameters of the polished Ti and blasted Ti surfaces 
were shown in Table 4.1. No statistically difference (p>0.05) was from in both Ra and Sa 
values of SiO2 and Al2O3 blasted surfaces prepared from the same particle size.  
However, the statistically difference (p<0.05) were observed among the groups of 
surfaces prepared from different particle size. Data from Table 4.1 revealed that both Ra 
and Sa values increased according to the increased particles sized used. The other 
parameters such as Rt, Rsm, St, and Sds, were used to present the surface topography 
on each sample. These values appeared to be similar to the topography profiles by 
profilometry analysis (see figure 4.1). 
 
Table4.1 Surface roughness parameters of titanium samples 
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Figure 4.2 SEM surface morphology of Ti-polish (A), 50SiO2-Ti (B), 50Al2O3-Ti (C), 
100SiO2 -Ti (D), 100 Al2O3-Ti (E), 250Al2O3-Ti (F): 500X magnification. 
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1.2 Surface chemical analysis 
The chemical compositions of the material surface obtained from EDS 

analysis was shown in Table 4.2. Both the polished and blasted surfaces contained Ti, N 
and C, however, the SiO2 blasted surface also contained O and trace amount of 
abrasive materials such as Si, Na and Ca. Interestingly, the Al2O3 blasted surface 
showed the higher ratio of O compared to the SiO2 blasted surface. Moreover, the 
presence of Al was around 10% in the 50Al2O3 and 100Al2O3 blasted surfaces while the 
titanium surface blasted with 250Al2O3 contained Al around 5%. 
 
Table 4.2 Quantitative Energy Dispersive X-ray Spectroscopy (EDS) analysis of the 
different titanium surface 
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1.3 Hydrophilicity 
The surface hydrophilicity was determined by measuring the contact 

angle of a water-drop on the surfaces. The results were shown as shown as graph in 
Figure 4.3A and Figure 4.3(B-G). The polished titanium surface showed the highest 
angle degree (82.37°) compared to other blasted surfaces, indicating that blasted 
surfaces possessed a greater hydrophilicity than the polished surfaces. In addition, the 
contact angle of water decreased on SiO2 blasted surfaces compared to the Al2O3 
blasted surface (p<0.05) suggesting the better hydrophilicity of SiO2 blasted surfaces. 
Among the blasted surfaces, the 250Al2O3 blasted surfaces showed the highest contact 
angle (75.09°) indicated the least hydrophilicity compared to other surfaces. 

 

 

 
 
Figure 4.3 The water contact angle of titanium surface (A).  Data were shown as the 
mean + standard deviation (n=10). * designated statistically significant, p<0.05. The 
images of water dropped on different titanium surfaces (B-G). 
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1.4 Fibrin clot formation 
  The ability of Ti surface to support fibrin formation was determined.  
Fresh blood was dropped on the titanium surfaces for 5 minute and then washed 
thoroughly. The fibrin formation on the surface was examined by SEM as shown in 
Figure 4.4 (A- F). The amount of fibrin formation on Al2O3 blasted surfaces (Figure 4.4 
(C, E, F)) was obviously higher than that on SiO2blasted and polished surfaces (Figure 
4.4 (A, B, D)). However, the amount of fibrin formation was comparable among the 
Al2O3blasted surfaces.   

 
 
Figure 4.4 SEM, shows the fibrin clot formation at 5 min on different titanium surfaces: Ti-
polish (A), 50SiO2-Ti (B), 50Al2O3-Ti (C), 100SiO2 -Ti (D), 100Al2O3-Ti (E), 250Al2O3-Ti (F): 
3500X magnification.  
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2. Cell morphology and cell attachment 
  Cell morphology and cell attachment were analyzed after seeding for 
30min, 4 and 16 hours. The result was assessed by SEM and shown in Figure 4.5(A-R).  
After 30 min and 4 hours, cells on Ti-polish, 50SiO2 and 100SiO2 blasted surfaces 
appeared round and exhibit few cytoplasmic protrusions (Figure 4.5 A, B, D, G, H, J). 
Cells cultured on 50Al2O3, 100Al2O3 and 250Al2O3 blasted surfaces were well spreaded 
and possessed long fine cytoplasmic extensions forming intercellular connections 
(Figure 4.5 C, E, F, I, K, L). At 16 hours, cells on all samples appeared flattened and 
started to form cell-cell contact (Figure 4.5 (M-R)). 
 

 
 
Figure 4.5 SEM, morphology and attachment of MC3T3-E1 cells on different titanium 
surfaces. At 30min (A-F) at 4 hours (G-L) and 16 hours (M-R): 3500X magnification. 
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3. Cell viability 
  The viability of cells was assessed using MTT assay, as presented in 
Figure 4.6.  At 30 min, and 4 hours, the cell numbers and cell attachment appeared to 
be significant higher on Al2O3 blasted surfaces compared the polish surfaces and SiO2 
blasted surfaces. At 16 hours, the 250Al2O3 blasted surfaces shown higher cell number 
than the other surfaces and significant difference from the polish surface. However, no 
statistical difference in cell number was observed among the groups blasted by different 
Al2O3 particle size (50 μm, 100 μm and 250 μm). 
 

 
 
Figure 4.6 The cell numbers were estimated by the MTT assay after 30 min, 4 and 16 
hours incubation. Data were shown as the mean ± SD. * Statistically significant (p<0.05) 
(n=3). 
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Cell proliferation, as determined by MTT assay, was shown in Figure 4.7. 
The proliferation rate of cells on the surfaces blasted with particle size 50 μm appeared 
to be similar to the rate found on the surfaces blasted with particle size 100 μm (Data of 
100SiO2-Ti and 100Al2O3-Ti were not shown in Figure 4.7). Cells grew on Al2O3 and SiO2 
blasted surfaces proliferated faster than cells on Ti-polish on the first two days after 
seeding. However, at day 3 no different in cell number was observed between cells 
seeded on Al2O3 and SiO2 blasted surfaces.   

 

 
 

Figure 4.7 Shows cell proliferation on different titanium surfaces after 16 hr, 2 and 3 day 
incubation. Data were shown as the mean ± standard deviation. 
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4. Osteoblastic gene expression 
  The expression of Col I and OC was determined by RT-PCR at day-7 and 
day-14. After 7days of culture, the expression of both genes in the groups blasted with 
50 μm or 100 μm particle size showed a similar pattern. The results indicated that cells 
cultured on Al2O3 blasted surfaces expressed higher level of Col I and OC compared to 
those expressed by cells on SiO2 blasted surfaces (Figure 4.8). The density of bands 
was quantitated and normalized to GAPDH mRNA level (Figure 4.9).This result revealed 
that 250Al2O3 blasted surfaces displayed higher gene expression than the other 
surfaces and significant different from the polish surface and the SiO2 blasted surface. 
 

 
Figure 4.8 Show osteoblastic gene expression of the MC3T3-E1 cells on different 
surfaces quantitated by RT-PCR analysis at day 7. 

 
Figure 4.9 Graph shows the relative density of PCR products at day 7 which were 
quantitated and normalized to GAPDH expression. The expression level of tissue culture 
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plate was mark as 1 fold (line). Data were shown as the mean ± SD. * Statistically 
significant (p<0.05) (n=3). 
 
  The expression of OC in cell cultured on the Al2O3 blasted surfaces 
(50Al2O3-Ti, 100Al2O3-Ti and 250Al2O3-Ti) was examined after 14 days in culture (Figure 
4.10). The results were shown in graph as the relative band intensity normalized to 
GAPDH. No significant difference was observed among the cells on Al2O3 blasted 
surfaces. 

 
Figure 4.10 Graph shows the relative density of PCR products at day 14 which were 
quantitated and normalized to GAPDH expression. The expression level of tissue culture 
plate was mark as 1 fold (line). Data were shown as the mean ± SD. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

DISCUSSION 
Sandblasting is one of the preferable methods used to modulate the 

surface topography of dental implant in order to improve osseointegration.  Generally 
sandblasting can generate the surface roughness in the level of micrometers.  There 
were numerous in vitro and in vivo studies demonstrated the influence of the roughened 
surface on cell attachment, proliferation and differentiation[7, 11, 53, 59]. In this study, 
two types of abrasive materials (Al2O3 and glass beads) were used for sandblasting.  
For each type of materials, different particle sizes from 50,100 and 250 μm were used 
depending on the availability. Surface characteristics and the response of MC3T3-E1 in 
culture had been examined. 

The results from this study demonstrated that Al2O3 blasted surface could 
support osteoblast adhesion, differentiation and mineralization better than glass bead 
(SiO2) blasted surfaces. This study also provided the evidence that Al2O3 blasted surface 
has the ability to support fibrin formation, which implies the ability of Al2O3 blasted 
surface for protein adsorption.  

For determining the effect of abrasive type on cell response, we used the 
same particles size (50,100 μm) of both Al2O3 and glass beads (SiO2) to prepare Ti 
surface. The result showed that the comparable roughness value (Ra and Sa) on both 
blasted surface. This method was selected to minimize the influence of roughness 
values.  

However, the pattern of roughness from both blasted surface was 
different.  The difference was possible due to the shape and hardness of the particles 
used. Surface topography showed that blasting with Al2O3 generated many sharp peaks 
with deep valleys than that generated by SiO2. This resulted from the shape of 
Al2O3particle, which was irregular in shape and sharp angle. It was appeared that the 
pattern generated by Al2O3 could support better adhesion of cells as evidence from SEM 

 



39 
 

results showing the faster attachment and better spreading. Moreover, the Al2O3 blasted 
surface showed higher Sds values than the SiO2 blast surface. Sds is roughness 
parameter and is defined in the peak number per area (mm2). The high Sds values of 
Al2O3 blasted surfaces are expressed as the frequency of peak and tend to present 
more micro-texture appearance. Our result supported the work of Wennerberg & 
Albrektsson, who suggested that the three-dimensional roughness parameters such as 
Sdr and Sds could provide a proper data of implant surface characterization on cell 
response[41]. 

In the present study, we demonstrated that fibrin formation could be 
formed on Al2O3 blasted surface better than SiO2 blasted surfaces. Fibrin is generally 
formed after bleeding and the clot provide the suitable environment for cells adhesion 
leading to tissue healing[2, 24, 33]. Therefore, it is tempting to speculate that Al2O3 blast 
surface provide a better environment for the protein adsorption that is suitable for cell 
adhesion leading to a faster activity and healing process.  

Our result is also in agreement with Mohammadi et al. In their study, they 
determined the effect of two grit materials (Al2O3 and SiO2) on adhesion strength of 
plasma–sprayed hydroxyapatite coating. Their results indicated the Al2O3 blasted 
surfaces could support a better adhesion of HA than the SiO2 blasted surfaces[13]. 
These data supported the surface topography affected the adhesion and adsorption 
property on the material.  
  The surface wettability is another parameter that affects the cell-surface 
interaction, which is directly related to the adhesion and adsorption processes[74, 75]. 
In this study, the contact angle of Al2O3 and SiO2blasted groups were 54.62°-75.09° and 
42.98°-49.25°, respectively. These results indicated the good hydrophilicity of both 
types of blasted surfaces. However, Al2O3 blasted surfaces gave a better cell 
attachment property. Although many studies indicated that hydrophilic surfaces could 
support cell attachment, cell spreading, and cytoskeletal organization[26, 39, 76], it is 
obvious that hydrophilicity alone is not the role factor to support the cell-implant 
interaction. In addition, effects of surface wettability on cellular response were still 
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controversy. There were studies, which found insignificant difference of cell attachment, 
area and shape between the hydrophilic and hydrophobic surfaces, when cultured the 
cells in the presence of 15 % serum[77, 78]. These finding supported the surface 
wettability may not play the important role on cellular response. 
  It is possible that parts of abrasive particles are remained on the blast 
surfaces, therefore, the response of cells observed might not due to the surface 
topography but due to the particles remained on the surface. In this study, we found the 
presence Al and Si on each of the grit-blasted surfaces. The influence of Al on the 
surfaces on osteoblast response is still controversy. It has been shown that Al ions may 
inhibit normal bone mineralization[52]. On the contrary, Piattelli et al. did not find 
significant differences in bone-implant contact for alumina blasted and decontaminated 
implants[79]. Our result showed the Al2O3 blasted surface could support osteoblast 
mineralization. However, it is difficult to correlate the cellular result with the chemical 
nature of the residual particles. Therefore, the effect of chemical ions on cellular 
response needs further investigation. 
  Our results showed the up-regulation of collagen type I (Col-I) and 
osteocalcin (OC) when cells were cultured on the blasted surfaces. Col-I is the early 
marker in bone formation and is synthesized by pre-osteoblast during the initial period of 
proliferation and matrix production[75]. In this study, cells on Al2O3 blasted surfaces 
showed the higher level of Col I than the SiO2 blasted surfaces at day 7. This result 
indicated that Al2O3 blasted surfaces could promote the differentiation rate toward the 
matrix formation stage. Moreover, OC is considered as the late stage marker of 
osteoblast differentiation[80]. Therefore, the expression of OC at day 14 indicated that 
Al2O3 blasted surfaces possess the ability to support osteoblast differentiation. The 
osteoblast differentiation was supported by cells seeded on Al2O3 blasted surfaces 
showed faster rate of in vitro mineralization compared to the other surfaces. 
  Our result showed that using the different sizes of the grit-blasting 
particles could generate different surface roughness. However, in case of SiO2, no 
significant was found between cell response and surface roughness.  It is possible that 
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both Sa values of SiO2 were identified as minimally rough surfaces (Sa 0.5-1μm), which 
was reported as insufficient roughness value for stronger bone response. Many 
commercial dental implants have minimal rough surfaces such as Brånemark (Noble 
Biocare, Sweden), and 3I Osseotite implants (Biomet, USA)[37]. However, the cellular 
response when cultured on surfaces prepared from different size of Al2O3 revealed that 
surface prepared from 250 μm Al2O3 blasted surfaces showed greater cell attachment, 
cell proliferation, higher Col-I and OC expression at day 7 compared to other surfaces. 
The Sa value of the 250 Al2O3 blasted surfaces was 1.5168 μm and was identified as 
moderately rough surfaces(Sa 1–2 μm)[37]. Moreover, we found the Ra value was 
0.5882 μm and there were studies supported the range roughness for enhancing 
adhesion and differentiation properties of the implants[9-12, 66]. The example of implant 
manufacturers which have moderately roughened surfaces such as TiOblastTMand 
OsseoSpeedTM surfaces (Astratech, Sweden), TiUnite (NobelBiocare, Sweden), SLA 
(Straumann, Switzerland) and Cellplus designs (Densply-Friadent, Germany)[37, 47]. 
Although the results from this study showed relation of the increase surface roughness 
on early cell response but we did not find the relation of the increase roughness on OC 
expression at day 14 and cell mineralization. Therefore, the increase surface roughness 
in this study may not directly correlate to osteoblast differentiation and study in animal 
model is needed to confirm.  
  In the present study, evidence suggests that the surface topography 
plays major role on cellular behaviors. However, it is possible that, during the blasting 
process, the surface modification process by itself could alter other surface properties 
such as surface topography, chemistry, roughness and wettability. Thus, it is difficult to 
identify the genuine effect of just one factor. It is interesting to further explore the 
methods of surface modification that will affect just one parameter. Among the 
techniques, for example, the Laser assisted direct imprint (LADI) is suggested to be 
able to determine the effect of just topography on cellular response. It is a technique for 
patterning nanostructure in solid substrates that does not require etching. A single or 
multiple laser pulses melt a thin surface layer of substrate material and a mold is 
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embossed into the resulting liquid layer[81, 82].  The use of such technique might be 
required to provide more precise results of surface properties on the cellular responses. 
 
CONCLUSION 
  The Al2O3 blasted surfaces provided the suitable environment for cell 
spreading, attachment, proliferation and osteoblastic gene expression than the SiO2 

blasted surfaces. Our result demonstrated the surface roughness affected early cell 
response, but not cell expression in late stage and mineralization. These findings 
indicated the importance of materials to be used in sandblast process of dental implant 
and should be concerned as an information for implant selection in clinic.   
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Figure A2 SEM, morphology and attachment of MC3T3-E1 cells on polished titanium 
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Figure A3 SEM, morphology and attachment of MC3T3-E1 cells on 50SiO2 blasted surface 
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Figure A4 SEM, morphology and attachment of MC3T3-E1 cells on 50Al2O3 blasted surface 
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Figure A5 SEM, morphology and attachment of MC3T3-E1 cells on 100SiO2 blasted surface 
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Figure A6 SEM, morphology and attachment of MC3T3-E1 cells on 100Al2O3 blasted 
surface 
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Figure A7 SEM, morphology and attachment of MC3T3-E1 cells on 250Al2O3 blasted 
surface 
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Figure A8 SEM, morphology of fibrin formation on different titanium surfaces 
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Figure A9 SEM, morphology of fibrin formation on different titanium surfaces 
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APPENDIC B: Data and statistical analysis of roughness parameters 

type sample  Sa  Ra(1) St Sds Rt  RSm 
Ti-polish 1 0.1261 0.06 2.639 1716 0.4143 0.03886 
  2 0.1335 0.06009 1.711 1526 0.5018 0.03879
  3 0.1168 0.05239 1.1695 1411 0.4746 0.0394 
  4 0.1422 0.0674 1.894 1588 0.4858 0.03881 
  5 0.168 0.08164 1.687 1319 0.5264 0.03959 
  6 0.1206 0.04439 0.9084 1533 0.2743 0.04243 
  7 0.1262 0.06231 1.238 1584 0.5097 0.03589 
  8 0.1345 0.0723 1.345 1672 0.5321 0.03698 
  9 0.1254 0.0632 2.061 1753 0.4698 0.03888 
  10 0.1477 0.0666 1.732 1532 0.4212 0.03913 
  mean 0.1341 0.063032 1.63849 1563.4 0.461 0.038876 
  SD 0.015217 0.010237 0.501186 132.6333 0.076643 0.0017 
50SiO2 1 0.5393 0.2242 6.8684 920.86 1.6682 0.045504
  2 0.5353 0.2106 6.4958 926.76 1.6498 0.042208
  3 0.5587 0.2206 6.9612 895.56 1.5876 0.044258
  4 0.5093 0.2182 7.3992 951.68 1.4274 0.040644
  5 0.5524 0.2392 7.2462 932.34 1.7732 0.043628
  6 0.5222 0.2213 6.5914 1003.86 1.6656 0.041812
  7 0.5495 0.2371 6.8246 939.28 1.6968 0.04343 
  8 0.5185 0.2375 7.5062 940.48 1.6798 0.044326
  9 0.5575 0.2389 7.1374 920.76 1.6456 0.043098
  10 0.4978 0.2176 5.859 960.22 1.5256 0.044526
  mean 0.5340 0.2265 6.8889 939.1800 1.6320 0.0433
  SD 0.0213 0.0106 0.4881 28.9881 0.0969 0.0015 
50Al2O3 1 0.5133 0.2115 8.3352 1209.8 1.8168 0.039244
  2 0.5443 0.2344 13.566 1244.6 2.2126 0.040628
  3 0.5218 0.2327 10.8778 1215.8 1.8528 0.039608
  4 0.5229 0.2333 13.23 1216.8 1.8954 0.038946
  5 0.5221 0.2223 10.304 1199 1.9946 0.03893
  6 0.5504 0.2452 11.664 1246.2 2.0918 0.038818
  7 0.5544 0.2506 12.289 1188.8 2.1372 0.041558 
  8 0.5329 0.2407 10.2514 1225.8 1.955 0.040434
  9 0.5149 0.2327 10.3832 1220.4 2.434 0.039358
  10 0.5109 0.2359 9.265 1220 2.2652 0.032812
  mean 0.5288 0.2339 11.0166 1218.720 2.0655 0.0390
  SD 0.0159 0.0110 1.6736 17.8119 0.1990 0.0024
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Data and statistical analysis of roughness parameters 

type sample  Sa  Ra(1) St Sds Rt  RSm 
100SiO2 1 0.60702 0.23356 10.3634 808.4 1.7862 0.047656 
  2 0.60326 0.2413 10.4786 781.22 2.2612 0.047054
  3 0.6787 0.277 12.162 738.68 2.163 0.046178 
  4 0.62792 0.24872 9.5314 751.08 1.951 0.045818 
  5 0.62546 0.24816 10.903 750.68 1.7654 0.045694 
  6 0.62876 0.25228 9.6918 736.14 1.7876 0.047122 
  7 0.6392 0.25208 10.2592 771.12 1.7286 0.04632 
  8 0.63832 0.2517 11.9986 770.72 2.2446 0.047856 
  9 0.61062 0.2457 9.6266 755.44 1.8874 0.047376 
  10 0.66414 0.26294 11.1308 741.56 2.1244 0.046594 
  mean 0.63234 0.251344 10.61454 760.504 1.96994 0.046767 
  SD 0.024225 0.011833 0.935027 22.55851 0.209672 0.000759 
100Al2O3 1 0.65062 0.26982 12.886 1121.8 2.5892 0.040124
  2 0.65414 0.2677 12.522 1094.6 2.49 0.042114
  3 0.62278 0.26348 15.892 1080.4 2.474 0.041418
  4 0.6308 0.25578 13.744 1074.8 2.0856 0.041226
  5 0.6462 0.26666 18.312 1063.2 2.0416 0.042732
  6 0.62984 0.2449 16.508 1081.6 2.2112 0.039348
  7 0.6299 0.25136 13.88 1082.2 2.2748 0.04101 
  8 0.6143 0.24006 12.414 1105.8 2.1916 0.040842
  9 0.64748 0.26992 13.776 1102.6 2.6154 0.041118
  10 0.61752 0.24366 14.354 1083 2.0154 0.038866
  mean 0.634358 0.259333 14.4288 1089 2.29888 0.04088
  SD 0.014302 0.011712 1.909645 17.16793 0.226932 0.001174 
250Al2O3 1 1.5442 0.59786 38.338 783.32 4.9578 0.047686
  2 1.5428 0.6424 28.26 777.94 4.8312 0.049512
  3 1.5578 0.56874 36.24 789.04 4.9512 0.04771
  4 1.5448 0.58066 32.28 776.92 4.658 0.0474
  5 1.431 0.59222 32.37 795.92 5.1844 0.047598
  6 1.4596 0.53538 41.486 788.76 4.6658 0.046672
  7 1.5768 0.58936 26.396 784.66 4.4836 0.048286 
  8 1.5582 0.59786 38.338 784.32 4.9628 0.047686
  9 1.5134 0.60994 39.372 805.54 5.0618 0.04722
  10 1.44 0.56758 36.4 792.42 4.992 0.045416
  mean 1.51686 0.5882 34.948 787.884 4.87486 0.047519
  SD 0.053488 0.028412 4.952097 8.576515 0.213606 0.001049



64 
 

 

One-Sample Kolmogorov-Smirnov Test 

titanium sa ra 
Ti-polish N 10 10 

Normal 
Parametersa,,b 

Mean .134100 .063032 
Std. 
Deviation

.0152167 .0102368 

Most Extreme 
Differences 

Absolute .198 .184 
Positive .198 .135 
Negative -.128 -.184 

Kolmogorov-Smirnov Z .627 .580 
Asymp. Sig. (2-tailed) .827 .889 

50SiO2-ti N 10 10 
Normal 
Parametersa,,b 

Mean .534050 .226520 
Std. 
Deviation

.0212679 .0106273 

Most Extreme 
Differences 

Absolute .166 .240 
Positive .123 .188 
Negative -.166 -.240 

Kolmogorov-Smirnov Z .526 .760 
Asymp. Sig. (2-tailed) .945 .611 

50Al2O3-ti N 10 10 
Normal 
Parametersa,,b 

Mean .528790 .233930 
Std. 
Deviation

.0158519 .0110384 

Most Extreme 
Differences 

Absolute .245 .256 
Positive .245 .129 
Negative -.136 -.256 

Kolmogorov-Smirnov Z .774 .808 
Asymp. Sig. (2-tailed) .586 .531 
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One-Sample Kolmogorov-Smirnov Test 

titanium sa ra 
100SiO2-ti N 10 10 

Normal 
Parametersa,,b 

Mean .632340 .251344 
Std. 
Deviation

.0242247 .0118334 

Most Extreme 
Differences 

Absolute .189 .268 
Positive .189 .268 
Negative -.115 -.117 

Kolmogorov-Smirnov Z .596 .849 
Asymp. Sig. (2-tailed) .869 .467 

100Al2O3-ti N 10 10 
Normal 
Parametersa,,b 

Mean .634358 .257334 
Std. 
Deviation

.0143024 .0116647 

Most Extreme 
Differences 

Absolute .198 .201 
Positive .198 .157 
Negative -.196 -.201 

Kolmogorov-Smirnov Z .627 .635 
Asymp. Sig. (2-tailed) .827 .815 

250Al2O3-ti N 10 10 
Normal 
Parametersa,,b 

Mean 1.516860 .588200 
Std. 
Deviation

.0534883 .0284118 

Most Extreme 
Differences 

Absolute .286 .167 
Positive .158 .167 
Negative -.286 -.134 

Kolmogorov-Smirnov Z .905 .528 
Asymp. Sig. (2-tailed) .386 .943 

 



66 
 

Test of Homogeneity of Variances

  
Levene 
Statistic df1 df2 Sig. 

sa 8.340 5 54 .000 
ra 2.516 5 54 .041 

 

ANOVA 

    
Sum of 

Squares df 
Mean 

Square F Sig. 
sa Between Groups 10.452 5 2.090 2734.042 .000

Within Groups .041 54 .001     
Total 10.493 59       

ra Between Groups 1.478 5 .296 1246.353 .000

Within Groups .013 54 .000     
Total 1.491 59       
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Multiple Comparisons
Dunnett T3 

Dependent 
Variable (I) titanium (J) titanium 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

sa Ti-polish 50SiO2-ti -.3999500* .0082697 .000 -.427801 -.372099 
  50Al2O3-ti -.3946900* .0069486 .000 -.417791 -.371589 

  100SiO2-ti -.4982400* .0090465 .000 -.529034 -.467446 

  100Al2O3-ti -.5002580* .0066039 .000 -.522219 -.478297 

  250Al2O3-ti -1.3827600* .0175856 .000 -1.446793 -1.318727 

  50SiO2-ti Ti-polish .3999500* .0082697 .000 .372099 .427801 
  50Al2O3-ti .0052600 .0083881 1.000 -.022910 .033430 

  100SiO2-ti -.0982900* .0101939 .000 -.132245 -.064335 

  100Al2O3-ti -.1003080* .0081048 .000 -.127736 -.072880 

  250Al2O3-ti -.9828100* .0182025 .000 -1.047486 -.918134 

  50Al2O3-ti Ti-polish .3946900* .0069486 .000 .371589 .417791 
  50SiO2-ti -.0052600 .0083881 1.000 -.033430 .022910 

  100SiO2-ti -.1035500* .0091549 .000 -.134602 -.072498 

  100Al2O3-ti -.1055680* .0067516 .000 -.128039 -.083097 

  250Al2O3-ti -.9880700* .0176417 .000 -1.052147 -.923993 

 

 

 

 

 

 



68 
 

Multiple Comparisons

Dunnett T3 

Dependent 
Variable (I) titanium (J) titanium 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

sa 100SiO2-ti Ti-polish .4982400* .0090465 .000 .467446 .529034 
  50SiO2-ti .0982900* .0101939 .000 .064335 .132245 

  50Al2O3-ti .1035500* .0091549 .000 .072498 .134602 

  100Al2O3-ti -.0020180 .0088960 1.000 -.032472 .028436 

  250Al2O3-ti -.8845200* .0185683 .000 -.949724 -.819316 

  100Al2O3-ti Ti-polish .5002580* .0066039 .000 .478297 .522219 
  50SiO2-ti .1003080* .0081048 .000 .072880 .127736 

  50Al2O3-ti .1055680* .0067516 .000 .083097 .128039 

  100SiO2-ti .0020180 .0088960 1.000 -.028436 .032472 

  250Al2O3-ti -.8825020* .0175087 .000 -.946480 -.818524 

  250Al2O3-ti Ti-polish 1.3827600* .0175856 .000 1.318727 1.446793 

  50SiO2-ti .9828100* .0182025 .000 .918134 1.047486 

  50Al2O3-ti .9880700* .0176417 .000 .923993 1.052147 

  100SiO2-ti .8845200* .0185683 .000 .819316 .949724 

  100Al2O3-ti .8825020* .0175087 .000 .818524 .946480 
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Multiple Comparisons
Dunnett T3 

Dependent 
Variable (I) titanium (J) titanium 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

ra Ti-polish 50SiO2-ti -.1634880* .0046662 .000 -.179000 -.147976
  50Al2O3-ti -.1708980* .0047607 .000 -.186733 -.155063

  100SiO2-ti -.1883120* .0049480 .000 -.204801 -.171823

  100Al2O3-ti -.1943020* .0049077 .000 -.210649 -.177955

  250Al2O3-ti -.5251680* .0095500 .000 -.559378 -.490958

  50SiO2-ti Ti-polish .1634880* .0046662 .000 .147976 .179000
  50Al2O3-ti -.0074100 .0048455 .843 -.023518 .008698 

  100SiO2-ti -.0248240* .0050296 .002 -.041566 -.008082

  100Al2O3-ti -.0308140* .0049900 .000 -.047418 -.014210

  250Al2O3-ti -.3616800* .0095926 .000 -.395940 -.327420

  50Al2O3-ti Ti-polish .1708980* .0047607 .000 .155063 .186733
  50SiO2-ti .0074100 .0048455 .843 -.008698 .023518

  100SiO2-ti -.0174140* .0051174 .043 -.034434 -.000394

  100Al2O3-ti -.0234040* .0050785 .003 -.040290 -.006518

  250Al2O3-ti -.3542700* .0096389 .000 -.388586 -.319954
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Multiple Comparisons

Dunnett T3 

Dependent 
Variable (I) titanium (J) titanium 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

ra 100SiO2-ti Ti-polish .1883120* .0049480 .000 .171823 .204801
  50SiO2-ti .0248240* .0050296 .002 .008082 .041566 

  50Al2O3-ti .0174140* .0051174 .043 .000394 .034434

  100Al2O3-ti -.0059900 .0052545 .977 -.023455 .011475

  250Al2O3-ti -.3368560* .0097327 .000 -.371297 -.302415

  100Al2O3-ti Ti-polish .1943020* .0049077 .000 .177955 .210649
  50SiO2-ti .0308140* .0049900 .000 .014210 .047418

  50Al2O3-ti .0234040* .0050785 .003 .006518 .040290

  100SiO2-ti .0059900 .0052545 .977 -.011475 .023455

  250Al2O3-ti -.3308660* .0097123 .000 -.365279 -.296453

  250Al2O3-ti Ti-polish .5251680* .0095500 .000 .490958 .559378 

  50SiO2-ti .3616800* .0095926 .000 .327420 .395940

  50Al2O3-ti .3542700* .0096389 .000 .319954 .388586

  100SiO2-ti .3368560* .0097327 .000 .302415 .371297

  100Al2O3-ti .3308660* .0097123 .000 .296453 .365279
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Statistical analysis of cell number on titanium samples 

One-Sample Kolmogorov-Smirnov Test 

type mtt30min mtt4hr mtt16hr 
Ti-polish N 3 3 3 

Normal 
Parametersa,,b 

Mean .15933 .18500 .2030 
Std. 
Deviation 

.009609 .014107 .01082 

Most Extreme 
Differences 

Absolute .236 .223 .276 
Positive .192 .223 .203 
Negative -.236 -.190 -.276 

Kolmogorov-Smirnov Z .408 .386 .478 
Asymp. Sig. (2-tailed) .996 .998 .976 

50SiO2-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean .17367 .19167 .1923 
Std. 
Deviation 

.009815 .007024 .00802 

Most Extreme 
Differences 

Absolute .385 .204 .200 
Positive .385 .204 .184 
Negative -.282 -.185 -.200 

Kolmogorov-Smirnov Z .667 .354 .346 
Asymp. Sig. (2-tailed) .766 1.000 1.000 

50Al2O3-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean .21600 .21800 .2300 
Std. 
Deviation 

.012490 .013077 .01082 

Most Extreme 
Differences 

Absolute .292 .343 .276 
Positive .212 .343 .276 
Negative -.292 -.246 -.203 

Kolmogorov-Smirnov Z .506 .595 .478 
Asymp. Sig. (2-tailed) .960 .871 .976 
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Statistical analysis of cell number on titanium samples 

Test of Homogeneity of Variances 
mtt30min 

Levene 
Statistic df1 df2 Sig. 

1.147 6 14 .387 
 

ANOVA
mtt30min 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups .017 6 .003 29.447 .000 
Within Groups .001 14 .000     
Total .018 20       
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt30min    
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti -.014333 .007990 .772 -.04736 .01869
  50Al2O3-ti -.056667* .007990 .001 -.08969 -.02364
  100SiO2-ti -.018333 .007990 .536 -.05136 .01469
  100Al2O3-ti -.055000* .007990 .001 -.08803 -.02197
  250Al2O3-ti -.060667* .007990 .000 -.09369 -.02764
50SiO2-ti Ti-polish .014333 .007990 .772 -.01869 .04736
  50Al2O3-ti -.042333* .007990 .008 -.07536 -.00931
  100SiO2-ti -.004000 .007990 1.000 -.03703 .02903
  100Al2O3-ti -.040667* .007990 .011 -.07369 -.00764
  250Al2O3-ti -.046333* .007990 .004 -.07936 -.01331
50Al2O3-ti Ti-polish .056667* .007990 .001 .02364 .08969
  50SiO2-ti .042333* .007990 .008 .00931 .07536
  100SiO2-ti .038333* .007990 .018 .00531 .07136
  100Al2O3-ti .001667 .007990 1.000 -.03136 .03469
  250Al2O3-ti -.004000 .007990 1.000 -.03703 .02903
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt30min  
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish .018333 .007990 .536 -.01469 .05136
  50SiO2-ti .004000 .007990 1.000 -.02903 .03703
  50Al2O3-ti -.038333* .007990 .018 -.07136 -.00531
  100Al2O3-ti -.036667* .007990 .025 -.06969 -.00364
  250Al2O3-ti -.042333* .007990 .008 -.07536 -.00931
100Al2O3-ti Ti-polish .055000* .007990 .001 .02197 .08803
  50SiO2-ti .040667* .007990 .011 .00764 .07369
  50Al2O3-ti -.001667 .007990 1.000 -.03469 .03136
  100SiO2-ti .036667* .007990 .025 .00364 .06969
  250Al2O3-ti -.005667 .007990 .997 -.03869 .02736
250Al2O3-ti Ti-polish .060667* .007990 .000 .02764 .09369
  50SiO2-ti .046333* .007990 .004 .01331 .07936
  50Al2O3-ti .004000 .007990 1.000 -.02903 .03703
  100SiO2-ti .042333* .007990 .008 .00931 .07536
  100Al2O3-ti .005667 .007990 .997 -.02736 .03869
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Statistical analysis of cell number on titanium samples 

Test of Homogeneity of Variances 
mtt4hr 

Levene 
Statistic df1 df2 Sig. 

2.167 6 14 .109 
 

ANOVA

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups .010 6 .002 19.871 .000
Within Groups .001 14 .000     
Total .011 20       
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt 4 hr  
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti -.006667 .007372 .989 -.03714 .02381
  50Al2O3-ti -.033000* .007372 .030 -.06347 -.00253
  100SiO2-ti .000667 .007372 1.000 -.02981 .03114
  100Al2O3-ti -.032333* .007372 .034 -.06281 -.00186
  250Al2O3-ti -.041667* .007372 .005 -.07214 -.01119
50SiO2-ti Ti-polish .006667 .007372 .989 -.02381 .03714
  50Al2O3-ti -.026333 .007372 .115 -.05681 .00414
  100SiO2-ti .007333 .007372 .982 -.02314 .03781
  100Al2O3-ti -.025667 .007372 .131 -.05614 .00481
  250Al2O3-ti -.035000* .007372 .019 -.06547 -.00453
50Al2O3-ti Ti-polish .033000* .007372 .030 .00253 .06347
  50SiO2-ti .026333 .007372 .115 -.00414 .05681
  100SiO2-ti .033667* .007372 .026 .00319 .06414
  100Al2O3-ti .000667 .007372 1.000 -.02981 .03114
  250Al2O3-ti -.008667 .007372 .960 -.03914 .02181
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt 4 hr  
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish -.000667 .007372 1.000 -.03114 .02981
  50SiO2-ti -.007333 .007372 .982 -.03781 .02314
  50Al2O3-ti -.033667* .007372 .026 -.06414 -.00319
  100Al2O3-ti -.033000* .007372 .030 -.06347 -.00253
  250Al2O3-ti -.042333* .007372 .004 -.07281 -.01186
100Al2O3-ti Ti-polish .032333* .007372 .034 .00186 .06281
  50SiO2-ti .025667 .007372 .131 -.00481 .05614
  50Al2O3-ti -.000667 .007372 1.000 -.03114 .02981
  100SiO2-ti .033000* .007372 .030 .00253 .06347
  250Al2O3-ti -.009333 .007372 .943 -.03981 .02114
250Al2O3-ti Ti-polish .041667* .007372 .005 .01119 .07214
  50SiO2-ti .035000* .007372 .019 .00453 .06547
  50Al2O3-ti .008667 .007372 .960 -.02181 .03914
  100SiO2-ti .042333* .007372 .004 .01186 .07281
  100Al2O3-ti .009333 .007372 .943 -.02114 .03981
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Statistical analysis of cell number on titanium samples 

Test of Homogeneity of Variances 
mtt16hr 

Levene 
Statistic df1 df2 Sig. 

1.070 6 14 .425 
 

ANOVA 
mtt16hr 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups .009 6 .002 10.651 .000
Within Groups .002 14 .000     
Total .011 20       
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt 16 hr  
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti .01067 .00982 .972 -.0299 .0512
  50Al2O3-ti -.02700 .00982 .335 -.0676 .0136
  100SiO2-ti -.00500 .00982 1.000 -.0456 .0356
  100Al2O3-ti -.02300 .00982 .512 -.0636 .0176
  250Al2O3-ti -.04300* .00982 .034 -.0836 -.0024
50SiO2-ti Ti-polish -.01067 .00982 .972 -.0512 .0299
  50Al2O3-ti -.03767 .00982 .078 -.0782 .0029
  100SiO2-ti -.01567 .00982 .851 -.0562 .0249
  100Al2O3-ti -.03367 .00982 .140 -.0742 .0069
  250Al2O3-ti -.05367* .00982 .006 -.0942 -.0131
50Al2O3-ti Ti-polish .02700 .00982 .335 -.0136 .0676
  50SiO2-ti .03767 .00982 .078 -.0029 .0782
  100SiO2-ti .02200 .00982 .561 -.0186 .0626
  100Al2O3-ti .00400 .00982 1.000 -.0366 .0446
  250Al2O3-ti -.01600 .00982 .838 -.0566 .0246
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Statistical analysis of cell number on titanium samples 

Multiple Comparisons 
Dependent Variable:mtt 16 hr  
Scheffe 

(I) type (J) type 

Mean 
Difference 

(I-J) Std. Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish .00500 .00982 1.000 -.0356 .0456
  50SiO2-ti .01567 .00982 .851 -.0249 .0562
  50Al2O3-ti -.02200 .00982 .561 -.0626 .0186
  100Al2O3-ti -.01800 .00982 .755 -.0586 .0226
  250Al2O3-ti -.03800 .00982 .074 -.0786 .0026
100Al2O3-ti Ti-polish .02300 .00982 .512 -.0176 .0636
  50SiO2-ti .03367 .00982 .140 -.0069 .0742
  50Al2O3-ti -.00400 .00982 1.000 -.0446 .0366
  100SiO2-ti .01800 .00982 .755 -.0226 .0586
  250Al2O3-ti -.02000 .00982 .660 -.0606 .0206
250Al2O3-ti Ti-polish .04300* .00982 .034 .0024 .0836
  50SiO2-ti .05367* .00982 .006 .0131 .0942
  50Al2O3-ti .01600 .00982 .838 -.0246 .0566
  100SiO2-ti .03800 .00982 .074 -.0026 .0786
  100Al2O3-ti .02000 .00982 .660 -.0206 .0606
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Statistical analysis of gene expression  

One-Sample Kolmogorov-Smirnov Test 

Gene-titanium col7 oc7 oc14 
Ti-polish N 3 3 3 

Normal 
Parametersa,,b 

Mean .65033 .98633 1.31833 
Std. 
Deviation

.224099 .122839 .045490 

Most Extreme 
Differences 

Absolute .276 .315 .282 
Positive .276 .225 .282 
Negative -.203 -.315 -.206 

Kolmogorov-Smirnov Z .478 .545 .488 
Asymp. Sig. (2-tailed) .976 .928 .971 

50SiO2-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean .66067 .42800 .87600 
Std. 
Deviation

.165558 .285154 .269735 

Most Extreme 
Differences 

Absolute .359 .245 .186 
Positive .258 .194 .186 
Negative -.359 -.245 -.180 

Kolmogorov-Smirnov Z .622 .424 .322 
Asymp. Sig. (2-tailed) .833 .994 1.000 

50Al2O3-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean .96333 1.15433 1.45167 
Std. 
Deviation

.133422 .181009 .058398 

Most Extreme 
Differences 

Absolute .315 .344 .318 
Positive .225 .344 .318 
Negative -.315 -.246 -.227 

Kolmogorov-Smirnov Z .545 .596 .550 
Asymp. Sig. (2-tailed) .928 .870 .923 
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Statistical analysis of gene expression  

One-Sample Kolmogorov-Smirnov Test 

Gene-titanium col7 oc7 oc14 
100SiO2-ti N 3 3 3 

Normal 
Parametersa,,b 

Mean .75867 .20267 .88667 
Std. 
Deviation

.081794 .054308 .166061 

Most Extreme 
Differences 

Absolute .338 .372 .288 
Positive .242 .270 .209 
Negative -.338 -.372 -.288 

Kolmogorov-Smirnov Z .586 .645 .499 
Asymp. Sig. (2-tailed) .882 .800 .965 

100Al2O3-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean 1.32133 1.41867 1.13300 
Std. 
Deviation

.309975 .498177 .204421 

Most Extreme 
Differences 

Absolute .269 .343 .378 
Positive .199 .343 .378 
Negative -.269 -.245 -.275 

Kolmogorov-Smirnov Z .466 .594 .655 
Asymp. Sig. (2-tailed) .981 .872 .784 

250Al2O3-ti N 3 3 3 
Normal 
Parametersa,,b 

Mean 1.66533 1.78967 1.25567 
Std. 
Deviation

.303869 .086408 .052013 

Most Extreme 
Differences 

Absolute .270 .301 .178 
Positive .270 .301 .178 
Negative -.199 -.217 -.177 

Kolmogorov-Smirnov Z .467 .521 .308 
Asymp. Sig. (2-tailed) .981 .949 1.000 
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Statistical analysis of gene expression  

Test of Homogeneity of Variances 
col7 
Levene 
Statistic df1 df2 Sig. 

1.590 5 12 .236
 

ANOVA 
col7 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups 2.529 5 .506 10.444 .000 
Within Groups .581 12 .048     
Total 3.110 17       
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Statistical analysis of gene expression  

Multiple Comparisons 
col7 
Scheffe 

(I) gene-7day (J) gene-7day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti -.010333 .179673 1.000 -.71838 .69771
50Al2O3-ti -.313000 .179673 .696 -1.02104 .39504
100SiO2-ti -.108333 .179673 .995 -.81638 .59971

100Al2O3-ti -.671000 .179673 .068 -1.37904 .03704

250Al2O3-ti -1.015000* .179673 .004 -1.72304 -.30696

50SiO2-ti Ti-polish .010333 .179673 1.000 -.69771 .71838
50Al2O3-ti -.302667 .179673 .724 -1.01071 .40538
100SiO2-ti -.098000 .179673 .997 -.80604 .61004

100Al2O3-ti -.660667 .179673 .073 -1.36871 .04738

250Al2O3-ti -1.004667* .179673 .004 -1.71271 -.29662

50Al2O3-ti Ti-polish .313000 .179673 .696 -.39504 1.02104
50SiO2-ti .302667 .179673 .724 -.40538 1.01071
100SiO2-ti .204667 .179673 .927 -.50338 .91271

100Al2O3-ti -.358000 .179673 .574 -1.06604 .35004

250Al2O3-ti -.702000 .179673 .053 -1.41004 .00604
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Statistical analysis of gene expression  

Multiple Comparisons 
col7 
Scheffe 

(I) gene-7day (J) gene-7day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish .108333 .179673 .995 -.59971 .81638
50SiO2-ti .098000 .179673 .997 -.61004 .80604
50Al2O3-ti -.204667 .179673 .927 -.91271 .50338

100Al2O3-ti -.562667 .179673 .157 -1.27071 .14538

250Al2O3-ti -.906667* .179673 .010 -1.61471 -.19862

100Al2O3-ti Ti-polish .671000 .179673 .068 -.03704 1.37904
50SiO2-ti .660667 .179673 .073 -.04738 1.36871
50Al2O3-ti .358000 .179673 .574 -.35004 1.06604

100SiO2-ti .562667 .179673 .157 -.14538 1.27071

250Al2O3-ti -.344000 .179673 .612 -1.05204 .36404

250Al2O3-ti Ti-polish 1.015000* .179673 .004 .30696 1.72304
50SiO2-ti 1.004667* .179673 .004 .29662 1.71271
50Al2O3-ti .702000 .179673 .053 -.00604 1.41004

100SiO2-ti .906667* .179673 .010 .19862 1.61471

100Al2O3-ti .344000 .179673 .612 -.36404 1.05204
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Statistical analysis of gene expression  

Test of Homogeneity of Variances 
oc7 
Levene 
Statistic df1 df2 Sig. 

5.071 5 12 .010
 

ANOVA 
oc7 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups 5.357 5 1.071 16.579 .000 
Within Groups .776 12 .065     
Total 6.133 17       
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Statistical analysis of gene expression  

Multiple Comparisons 
oc7  
 Dunnett T3 

(I) gene-7day (J) gene-7day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti .558333 .179260 .298 -.65787 1.77454
50Al2O3-ti -.168000 .126298 .884 -.87351 .53751
100SiO2-ti .783667* .077543 .017 .26337 1.30396

100Al2O3-ti -.432333 .296237 .823 -2.84803 1.98337

250Al2O3-ti -.803333* .086710 .009 -1.28156 -.32510

50SiO2-ti Ti-polish -.558333 .179260 .298 -1.77454 .65787
50Al2O3-ti -.726333 .195002 .168 -1.84399 .39133
100SiO2-ti .225333 .167593 .863 -1.20893 1.65960

100Al2O3-ti -.990667 .331408 .296 -2.97453 .99320

250Al2O3-ti -1.361667* .172026 .047 -2.68998 -.03335

50Al2O3-ti Ti-polish .168000 .126298 .884 -.53751 .87351
50SiO2-ti .726333 .195002 .168 -.39133 1.84399
100SiO2-ti .951667* .109108 .038 .10665 1.79668

100Al2O3-ti -.264333 .306020 .985 -2.48670 1.95804

250Al2O3-ti -.635333 .115803 .077 -1.38672 .11606
 

 

  



88 
 

Statistical analysis of gene expression  

Multiple Comparisons 
oc 7 
Dunnett T3 

(I) gene-7day (J) gene-7day 

Mean 
Difference (I-

J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish -.783667* .077543 .017 -1.30396 -.26337
50SiO2-ti -.225333 .167593 .863 -1.65960 1.20893
50Al2O3-ti -.951667* .109108 .038 -1.79668 -.10665

100Al2O3-ti -1.216000 .289327 .212 -3.82709 1.39509

250Al2O3-ti -1.587000* .058923 .000 -1.92607 -1.24793

100Al2O3-ti Ti-polish .432333 .296237 .823 -1.98337 2.84803
50SiO2-ti .990667 .331408 .296 -.99320 2.97453
50Al2O3-ti .264333 .306020 .985 -1.95804 2.48670

100SiO2-ti 1.216000 .289327 .212 -1.39509 3.82709

250Al2O3-ti -.371000 .291917 .887 -2.90184 2.15984

250Al2O3-ti Ti-polish .803333* .086710 .009 .32510 1.28156
50SiO2-ti 1.361667* .172026 .047 .03335 2.68998
50Al2O3-ti .635333 .115803 .077 -.11606 1.38672

100SiO2-ti 1.587000* .058923 .000 1.24793 1.92607

100Al2O3-ti .371000 .291917 .887 -2.15984 2.90184
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Statistical analysis of gene expression  

Test of Homogeneity of Variances 
oc14
Levene 
Statistic df1 df2 Sig. 

2.465 5 12 .093
 

ANOVA 
oc14 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups .825 5 .165 6.590 .004 
Within Groups .301 12 .025     
Total 1.126 17       
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Statistical analysis of gene expression  

Multiple Comparisons 
oc14 
Scheffe 

(I) gene-14day (J) gene-14day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti .442333 .129231 .105 -.06693 .95160
50Al2O3-ti -.133333 .129231 .950 -.64260 .37593
100SiO2-ti .431667 .129231 .118 -.07760 .94093

100Al2O3-ti .185333 .129231 .832 -.32393 .69460

250Al2O3-ti .062667 .129231 .998 -.44660 .57193

50SiO2-ti Ti-polish -.442333 .129231 .105 -.95160 .06693
50Al2O3-ti -.575667* .129231 .023 -1.08493 -.06640
100SiO2-ti -.010667 .129231 1.000 -.51993 .49860

100Al2O3-ti -.257000 .129231 .576 -.76627 .25227

250Al2O3-ti -.379667 .129231 .203 -.88893 .12960

50Al2O3-ti Ti-polish 
50SiO2-ti 

.133333 .129231 .950 -.37593 .64260
.575667* .129231 .023 .06640 1.08493

100SiO2-ti .565000* .129231 .026 .05573 1.07427

100Al2O3-ti .318667 .129231 .359 -.19060 .82793

250Al2O3-ti .196000 .129231 .799 -.31327 .70527
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Statistical analysis of gene expression  

Multiple Comparisons 
oc14 
Scheffe 

(I) gene-14day (J) gene-14day 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish -.431667 .129231 .118 -.94093 .07760
50SiO2-ti .010667 .129231 1.000 -.49860 .51993
50Al2O3-ti -.565000* .129231 .026 -1.07427 -.05573

100Al2O3-ti -.246333 .129231 .617 -.75560 .26293

250Al2O3-ti -.369000 .129231 .226 -.87827 .14027

100Al2O3-ti Ti-polish -.185333 .129231 .832 -.69460 .32393
50SiO2-ti .257000 .129231 .576 -.25227 .76627
50Al2O3-ti -.318667 .129231 .359 -.82793 .19060

100SiO2-ti .246333 .129231 .617 -.26293 .75560

250Al2O3-ti -.122667 .129231 .965 -.63193 .38660

250Al2O3-ti Ti-polish -.062667 .129231 .998 -.57193 .44660
50SiO2-ti .379667 .129231 .203 -.12960 .88893
50Al2O3-ti -.196000 .129231 .799 -.70527 .31327

100SiO2-ti .369000 .129231 .226 -.14027 .87827

100Al2O3-ti .122667 .129231 .965 -.38660 .63193
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Data and statistical analysis of in vitro mineralization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alizarin Ti-polish 50SiO2-Ti 50Al2O3-Ti 100SiO2-Ti 100Al2O3-Ti 250Al2O3-Ti 
test1 0.676879 0.774566 1.034682 0.453757 0.904046 1.132948 
test2 0.7407 0.58361 0.981952 0.486004 1.128361 0.927993 
test3 0.553125 0.597917 0.723958 0.466667 0.740625 0.638542 
test4 0.553261 0.46413 0.728261 0.368478 0.748913 0.78913 
test5 0.653493 0.432904 0.674632 0.416912 0.855699 0.648162
mean 0.635491 0.570626 0.828697 0.438364 0.875529 0.827355 
sd 0.081627 0.13492 0.166366 0.046507 0.157608 0.207808 
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Data and statistical analysis of in vitro mineralization 

One-Sample Kolmogorov-Smirnov Test 

Alizarin test alizarin 
Ti-polish N 5 

Normal 
Parametersa,,b 

Mean .635491 
Std. 
Deviation

.0816270 

Most Extreme 
Differences 

Absolute .243 
Positive .243 
Negative -.187 

Kolmogorov-Smirnov Z .544 
Asymp. Sig. (2-tailed) .929 

50SiO2-ti N 5 
Normal 
Parametersa,,b 

Mean .570626 
Std. 
Deviation

.1349200 

Most Extreme 
Differences 

Absolute .220 
Positive .220 
Negative -.154 

Kolmogorov-Smirnov Z .492 
Asymp. Sig. (2-tailed) .969 

50Al2O3-ti N 5 
Normal 
Parametersa,,b 

Mean .828697 
Std. 
Deviation

.1663659 

Most Extreme 
Differences 

Absolute .327 
Positive .327 
Negative -.222 

Kolmogorov-Smirnov Z .731 
Asymp. Sig. (2-tailed) .659 
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Data and statistical analysis of in vitro mineralization 

One-Sample Kolmogorov-Smirnov Test 

Alizarin test alizarin 
100SiO2-ti N 5 

Normal 
Parametersa,,b 

Mean .438364 
Std. 
Deviation

.0465074 

Most Extreme 
Differences 

Absolute .230 
Positive .153 
Negative -.230 

Kolmogorov-Smirnov Z .514 
Asymp. Sig. (2-tailed) .955 

100Al2O3-ti N 5 
Normal 
Parametersa,,b 

Mean .875529 
Std. 
Deviation

.1576080 

Most Extreme 
Differences 

Absolute .228 
Positive .228 
Negative -.196 

Kolmogorov-Smirnov Z .510 
Asymp. Sig. (2-tailed) .957 

250Al2O3-ti N 5 
Normal 
Parametersa,,b 

Mean .827355 
Std. 
Deviation

.2078081 

Most Extreme 
Differences 

Absolute .206 
Positive .206 
Negative -.182 

Kolmogorov-Smirnov Z .460 
Asymp. Sig. (2-tailed) .984 
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Data and statistical analysis of in vitro mineralization 

Test of Homogeneity of Variances 
alizarin

Levene 
Statistic df1 df2 Sig. 
2.294 5 24 .077 

 

ANOVA
alizarin 

  
Sum of 

Squares df 
Mean 

Square F Sig. 
Between Groups .764 5 .153 7.472 .000 
Within Groups .491 24 .020     
Total 1.255 29       
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Data and statistical analysis of in vitro mineralization 

Multiple Comparisons 
alizarin 
Scheffe 

(I) ali (J) ali 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

Ti-polish 50SiO2-ti .0648659 .0904549 .991 -.262567 .392299 
50Al2O3-ti -.1932058 .0904549 .490 -.520639 .134227 
100SiO2-ti .1971279 .0904549 .467 -.130305 .524561 

100Al2O3-ti -.2400374 .0904549 .257 -.567470 .087395 

250Al2O3-ti -.1918635 .0904549 .497 -.519296 .135569 

50SiO2-ti Ti-polish -.0648659 .0904549 .991 -.392299 .262567 
50Al2O3-ti -.2580716 .0904549 .191 -.585504 .069361 
100SiO2-ti .1322620 .0904549 .825 -.195171 .459695 

100Al2O3-ti -.3049032 .0904549 .080 -.632336 .022530 

250Al2O3-ti -.2567294 .0904549 .195 -.584162 .070703 

50Al2O3-ti Ti-polish .1932058 .0904549 .490 -.134227 .520639 
50SiO2-ti .2580716 .0904549 .191 -.069361 .585504 
100SiO2-ti .3903336* .0904549 .012 .062901 .717766 

100Al2O3-ti -.0468316 .0904549 .998 -.374264 .280601 

250Al2O3-ti .0013423 .0904549 1.000 -.326090 .328775 
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Data and statistical analysis of in vitro mineralization 

Multiple Comparisons 
alizarin 
Scheffe 

(I) ali (J) ali 

Mean 
Difference 

(I-J) 
Std. 
Error Sig. 

95% Confidence 
Interval 

Lower 
Bound 

Upper 
Bound 

100SiO2-ti Ti-polish -.1971279 .0904549 .467 -.524561 .130305
50SiO2-ti -.1322620 .0904549 .825 -.459695 .195171
50Al2O3-ti -.3903336* .0904549 .012 -.717766 -.062901

100Al2O3-ti -.4371652* .0904549 .004 -.764598 -.109732

250Al2O3-ti -.3889914* .0904549 .013 -.716424 -.061559

100Al2O3-ti Ti-polish .2400374 .0904549 .257 -.087395 .567470
50SiO2-ti .3049032 .0904549 .080 -.022530 .632336
50Al2O3-ti .0468316 .0904549 .998 -.280601 .374264

100SiO2-ti .4371652* .0904549 .004 .109732 .764598

250Al2O3-ti .0481739 .0904549 .998 -.279259 .375607

250Al2O3-ti Ti-polish .1918635 .0904549 .497 -.135569 .519296
50SiO2-ti .2567294 .0904549 .195 -.070703 .584162
50Al2O3-ti -.0013423 .0904549 1.000 -.328775 .326090

100SiO2-ti .3889914* .0904549 .013 .061559 .716424

100Al2O3-ti -.0481739 .0904549 .998 -.375607 .279259
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