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Solving a general linear programming problem using the simplex algorithm
relies on introducing artificial variables that deals with a large search space. This
dissertation presents the non-acute constraint relaxation technique that not only
eliminates the need for artificial variables but also reduces the start-up time to
solve the initial relaxation problem. To guarantee the optimal solution or infeasi-
bility or unboundedness of a linear programming problem, the algorithm reinserts
the non-acute constraints back to the relaxation problem. The results of this al-
gorithm are superior than the original simplex algorithm with artificial variables
for a linear programming problem which the relaxed problem obtains the optimal

solution before the the reinsertion of non-acute constraints.
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CHAPTER I
INTRODUCTION

1.1 Introduction to Linear Programming

Linear programming (LP) describes the mathematical programming type dealing
with the optimal value of a linear objective function which is defined as minimizing
or maximizing under linear equality or inequality constraints. Some real world
problems such as an industrial production, a transportation problem, a production
scheduling problem, an assignment problem, etc., can be constructed as a linear
programming model searching for the optimal solution. Consider a general linear

programming model:

Maximize c¢1z1 + x99 + -+ cpx,
subject to  apxy 4+ apre +-o-+ apr, < by
1T+ ATy +---+ apr, < b (11)
Ap1T1 + Aoy + -+ QpnTn < by
T1, To, ce Tn > 0.

Denote the following column vectors ¢ and x of size n, b of size m, and the

m X n matrix A:

C1 X1 by 11 Q12 - Qin
C2 X2 by Q21 Q22 - Q2p
C = s X = s b = s A =
Cn Tn bm Am1 Am2 - Qmp
A, = [an,ai, - . ., 4] is a coefficient vector or a gradient vector of the constraint

1. The problem can be written in the matrix form:



T

Maximize ¢ x
subject to Ax <b (1.2)
x >0

In Problem 1.2, the function being maximized is called the objective function
and c is a vector of coefficients of the objective function or, in other word, c
is a gradient vector of the objective function. x is a vector of variables called
the decision variables, A is a coefficient matrix of constraints, b is a vector of
parameters called the right-hand side vector, n is the number of decision variables
and m is the number of constraints.

A vector x is said to be a feasible point or a feasible solution if it satisfies
all constraints, and a set of all feasible points is called the feasible region. The
solution of a linear programming problem depends on the problem structure which

can be summarized (for a maximization problem) below:

(i) Optimal solution. An optimal solution to a linear programming problem

exists which provides the greatest objective value.

(ii) Unbounded optimal solution. A linear programming problem is unbounded
when the optimal objective value is unbounded (with value oc) and no op-

timal solution exists.

(iii) Empty feasible region. A linear programming problem is infeasible or has
an empty feasible region when the system of constraints defining the feasible

region is inconsistent.

Standard and Canonical Formats

There are two important representations of a linear programming problem for dif-
ferent uses: the standard form and the canonical form. The standard form of a
linear programming will be useful for the simplex algorithm which is designed to
work on the standard form while the canonical form is useful for duality relation-

ship. These forms (in matrix form) are summarized in Table 1.1



Table 1.1: Standard and Canonical Forms

Maximization Problem

Minimization Problem

Maximize c*x
Standard Form  subject to Ax

X

Minimize c¢Tx
subject to Ax =Db

X

Maximize c¢Tx

Canonical Form  subject to Ax

X

Minimize c¢Tx

subject to  Ax

X

Either all constraints of the maximization or minimization problem in the stan-

dard form are of “equal to” types while all constraints of the maximization problem

in the canonical form are of “less than or equal to” types, and all constraints of

the minimization problem in the canonical form are of “greater than or equal to”

types. The decision variables of all forms are nonnegative.

Problem Manipulation

Many linear programming problems in term of maximization or minimization and

variables may be nonnegative, unrestricted in sign or bounded which may not

match the standard or the canonical form. Since some algorithms deal with a

specific form of a linear programming problem, a problem must be manipulated

from one form to fit the required form.

- Maximization and Minimization problems: Converting a maximiza-

tion problem to a minimization problem and conversely as:

maximize ¢Tx = —minimize —cTx.

n

- Inequality Constraints: Consider a constraint given by Zaijxj < b;.

j=1

This constraint can be transformed to an equality constraint as follow:

n
E aij:cj + 5, = bi,
j=1



where s; > 0 is called a slack variable.
While a constraint given by Z a;;x; > b; can be converted to an equality
j=1

constraint as follows:

n

g aijrj — si = by,

Jj=1

where s; > 0 is called a surplus variable.

n

- Equality Constraints: If a constraint has an equation form, i.e., Z a;jT; =
j=1
b;, it can be transformed into two inequality constraints as follows:

n n
E Qi T j S bl and E Qi T j 2 bl
=1 =1

- Nonnegativity of the Variables: If the variable x; can be positive, zero
or negative, called unrestricted in sign, it can be converted to two new

nonnegative variables as follows:
- (L N ’ "
Tj =85 =15 where z; > 0,25 > 0.

Next, if the variable x; > [;, the new variable x; = x; — l; is mathematically
nonnegative. Similarly, if x; < w;, the new variable x; = u; — x; is also

nonnegative.

The problem manipulation of all cases are summarized in Table 1.2.
Methods for Solving LP

There are many methods to solve a linear programming problem such as the
graphical method, the simplex method, the interior point method, etc.

The graphical method is a method to solve an LP problem by drawing a feasible
region corresponding to all constraints. Then the hyperplane of the objective
function is moved parallel in the direction that the objective value increases for the
maximization problem (or toward the direction that the objective value decreases

for the minimization problem) maintaining within the feasible region. The last



Table 1.2: Problem manipulations

Original form Equivalent form
. . £ . .. T e . T
objective function maximize c¢*x —minimize —C- X
n n
E a,-jxj S bz E aijxj + S; — bi,SZ’ Z 0
. Jj=1 j=1
constraints n n
E aijacj Z bz E aijxj — S§; = bl‘, S; Z 0
Jj=1 j=1
n n n
E aijxj = b; E aijrj > by, E aijr; < b;
j=1 7=1 7j=1
x; unrestricted z;, =2 —27, 2" > 0,27 >0
J / J Jrg = g =
. / —_— e — .
variables x; > T; = T l;
/ f— Ppp— .
r; < uy ;= Uj — T

feasible point that the plane touches is the optimal solution. Since the graphical
method requires the sketch of the feasible region be, it is suitable for two or three
dimensional problems.

The simplex method published by George B. Dantzig [1] in 1947 is quite ef-
ficient in practice and has been popularly used for solving a linear programming
problem. The simplex algorithm starts from the origin point if it is a feasible point.
Otherwise, artificial variables will be added to obtain the initial feasible solution
on a larger search space with x = 0. Then, it moves from one corner point to an
adjacent corner point along the boundary of the feasible region until the optimal
solution is reached. However, in 1972, Klee and Minty [2] constructed a collec-
tion of linear programming problems which the simplex algorithm using Dantzig’s
rule took an exponential number of iterations with respect to the problem size.
Karmarkar [3] responded to this in 1984 by proposing a new polynomial-time
algorithm called the interior point method for a linear programming problem.

The interior point method creates the sequence of interior points which con-
verges to the optimal solution along the improving direction. The number of
iterations of the interior point method requires less than 100 iterations which does
not increase with the the problem size [4, 5|. However, one iteration with the inte-

rior point method is much more complicated than one iteration with the simplex



method. In order to compute a direction at each iteration, AD?AT matrix must
be formed where D? is a diagonal matrix which changes at each iteration and
the system is solved to find the direction. Computing AD?AT for dense columns
causes it to converge slowly. So the density of this matrix is the main weakness

point of the interior point method [4, 6, 7).

1.2 Motivation

“Is there a polynomial time algorithm over the real numbers which decides the
feasibility of the linear system of inequalities Ax > b7 [8, 9] is still an open prob-
lem. This is one version of finding a feasible solution of an optimization problem
of a linear programming problem. Moreover, improving the simplex method is
still important and suitable for solving integer programming problems [21, 23].
Many researchers proposed the improved simplex algorithm by suggesting a new
pivot rule [18, 23|, a new initial solution [21, 22], a new method without artificial
variables [10, 14, 11, 12, 15, 16, 17], etc. Some proposed their common technique
to improve the simplex method, that is, constraints making small angles between
iti

cl

Figure 1.1: Common technique



In 2005, Junior and Lins [21] suggested the new initial basis formed by m
variables associated with m constraints making the smallest angles between its
gradient vector to the gradient vector of the objective function in the dual prob-
lem, respectively. The computational results of their algorithm were shown to be
superior for small problems. However, in 2007, Hu [22] showed that Junior and
Lins’ algorithm could not start if this new initial basis is singular.

Then, in 2009, Yeh and Corley [23] proposed the new pivot rule. The variable
which associated with the constraint making the smallest angle between its gra-
dient vector to the gradient vector of the objective function in the dual problem
was chosen to be an entering variable. However, computational results showed
that their algorithm could improve the average number of iterations only 2.6597%
with respect to the simplex algorithm.

Recently, in 2011, Wei Li and Haohao Li [24] proved that the optimal solution of
2-dimensional linear programming problem with no redundant constraint belongs
to the constraint making the acute angle between its gradient vector to the gradient
vector of the objective function.

Although a constraint making the acute angle technique is used to improve the
simplex algorithm, one technique that researchers interested is eliminating the use
of artificial variables. From Figure 1.1, artificial variables are needed to start the
simplex algorithm at x = 0. There are two well-known methods to deal with the
artificial variable technique, i.e., the Big-M method and the Two-Phase method.
If artificial variables are introduced, the primal space expands. Solving the LP
problem without using artificial variable may reduce iterations and time.

The algorithm without artificial variables was first proposed by Zionts [10], in
1969, called the criss-cross algorithm. The criss-cross algorithm needed not main-
tain feasibility and no artificial variable required. But the criss-cross algorithm did
not have the polynomial time-complexity and it slowly converges to the optimal
solution.

In 1997, Arsham [11, 12] proposed the algorithm without using artificial vari-

ables. However, in 1998, Enge and Huhn [13] presented a counterexample, in



which Arsham’s algorithm declared the infeasibility of a feasible linear program-
ming problem.

In 2000, Pan [14] proposed another algorithm for solving a linear programming
problem without introducing artificial variables. If the initial basis was neither
primal nor dual feasible, then coefficients of objective function in primal will be
perturbed for the dual feasibility and the dual simplex method will be used. The
computational results were shown to be superior for small problems.

Then, in 2006, Arsham [15, 16] presented the improved algorithm by relaxing
some constraints which the origin point does not satisfy. Therefore, the algorithm
can start at the origin point without using artificial variables. After the solu-
tion is found, relaxed constraints are added for checking with the optimal point.
The performance of his algorithm is shown by some examples. In that year, Cor-
ley, Rosenberge, Yeh and Sung [17] proposed the similar algorithm with Arsham.
They solved a sequence of relaxed linear programming problems until the optimal
solution of the original problem was found. The relaxed problem consisted of an
original objective function subject to a single constraint which makes a largest co-
sine angle with the gradient vector of the objective function. At each subsequent
iteration of the algorithm, the constraint which had the new maximum cosine
angle with the gradient vector to the objective function among those constraints
would be added and the dual simplex method were applied. But their research
lacked a computational result and all linear programming problems were feasible
and bounded.

Note that some constraints making acute angles may form an extreme point

close to the optimal solution. In this dissertation, we classify constraints to two

types.

- The acute constraint is the constraint which makes an acute angle be-

tween its gradient vector to the gradient vector of the objective function.

- The non-acute constraint is the constraint which makes an obtuse or
orthogonal angle between its gradient vector to the gradient vector of the

objective function.



We propose to remove non-acute constraints temporary and solve the problem
called the relazed problem. After the relaxed problem is solved, the algorithm
reinserts all non-acute constraints for an optimal case and it reinserts one non-
acute constraints at a time for an unbounded case. If the optimal solution of the
original LP problem is achieved from the relaxed problem, we may reduce the

Solution tlmﬂ tn anlvra tho whala nrahlam cince nan_acnite canctraintc xxrﬂl Satisfy

this optim

Figure 1.2: A feasible region of the relaxed problem in R?

In Figure 1.2, non-acute constraints which were not related to the optimal
solution were relaxed. The simplex method can start at the origin point and find
the optimal solution easily without using artificial variable. However, if the origin
point of the relaxed problem is infeasible as in Figure 1.3b, the simplex method
still needed to introduce artificial variables to start the algorithm. We can prove
that the relaxed problem has a feasible solution, and then an artificial variable is
not needed to start the simplex method.

Our algorithm starts by separating constraints into two collections: the collec-
tion of acute constraints and the collection of non-acute constraints. The original
objective function with the collection of acute constraints, called the non-acute
constraint relaxation problem, will be solved first. We can prove that the feasible
region of this collection is nonempty and the feasible point can be identified by the

mathematical formula. So the algorithm starts with an interior feasible solution
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A,

optimal point =

> X

(a) The original problem. (b) The relaxed problem.

Figure 1.3: Example of the two-phase method

without artificial variables. Then, it transforms the interior feasible solution to
the basic feasible solution of the equivalent linear programming problem and is
solved using the simplex algorithm. In case that the relaxed problem reaches the
optimal solution, the algorithm reinserts non-acute constraints back to the relaxed
problem and uses the dual simplex method to identify the optimal solution or the
infeasibility or the unbounded optimal solution. For the case of unbounded opti-
mal solution of the relaxed problem, a single non-acute constraint is inserted one
constraint at a time. Our algorithm is named the Simplex method based on the
Non-Acute constraint Relaxation or SNAR.

The aim of this dissertation is to reduce the number of iterations or time to
solve the LP problem with respect to the simplex method using Dantzig’s rule.
The performance of our algorithms are shown by computational results which test

with randomly generated linear programming problems.

1.3 Overview of the Dissertation

In chapter 2, we describe definitions and theorems used in our algorithm such
as a direction, an extreme point, duality, sensitivity analysis, etc. Moreover, the
simplex algorithm including the artificial variables techniques, two-phase method

and big-M method, are in chapter 2. Additionally, related works which consist
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of artificial variable techniques, the artificial-variable-free techniques will be de-
scribed in detail. Some artificial-free variable techniques will be compared with
our algorithm. In chapter 3, the main concept of our algorithm and theorems will
be described. Next, the experimental design and computational results are shown
and discussed in chapter 4. Finally, in the last chapter, our research and results

are analysed and concluded.



CHAPTER II
LITERATURE REVIEWS

Some definitions and theorems of a linear programming problem that will be used
for our dissertation are described, and related works are summarized and discussed

in this chapter.

2.1 Definitions and Theorems of Linear Programming

The following definitions are useful for the simplex method, our algorithm and

sensitivity analysis.

Definition 2.1. (Hyperplane): A hyperplane H in R" is a set of the form {x :

p - x = k} where p is a nonzero vector in R" and k is a scalar.
Here, p is called the normal or the gradient to the hyperplane.

Definition 2.2. (Half-Spaces): A half-space is a collection of points of the form
{x:p-x<k}or{x:p x>k}

Definition 2.3. (Polyhedral Sets): A polyhedral set is the intersection of a

finite number of half-spaces.

Definition 2.4. (Convex Sets): A set X in R” is called a convez set if given

any two points x; and x5 in X, then Ax; + (1 — A\)x, € X for each A € [0, 1].

Any point of the form Ax; + (1 — A)x2 € X where A € [0,1] is called a convez
combination of x; and x3. If A € (0,1), then the convex combination is called

strict.

Definition 2.5. (Rays and Directions): A ray is a collection of points of the
form {xo+ Ad : A > 0} where d is a nonzero vector. X, is called the vertez of the

ray, and d is the direction of the ray.
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Definition 2.6. (Directions of a Convex Set): Given a convex set, a nonzero
vector d is called a recession direction of the set if for each xq in the set, the ray

{xo + Ad : A > 0} also belongs to the set.

Definition 2.7. (Extreme Directions of A Convex Set): An extreme di-
rection of a convex set is a direction of the set that cannot be represented as a

positive combination of two distinct directions of the set.

Let the polyhedral set is in the following form:
X ={x| Ax <b, x> 0}, (2.1)

where A is an m X n matrix and b is an m-dimensional vector. We will use

this form to explain some definitions below.

Theorem 2.8. If the polyhedral set X is nonempty. Then a nonzero d is a

recession direction of X if and only if

A(z+Xd) <b
x+d >0

(2.2)

for each X\ > 0 and each x € X.

Theorem 2.8 will be used to prove our theorem in chapter 3.
The following definitions will lead to an extreme point associated to the optimal

solution.

Definition 2.9. (Defining Hyperplanes): Let the hyperplanes associated with
the (m + n) defining half-spaces of X be referred to as defining hyperplanes of X.

Note that the (m + n) defining half-spaces of X consist of m constraints and

n nonnegativity constraints.

Definition 2.10. (Extreme Points): A point X € X is said to be an extreme

point of set X if X lies on some n linearly independent defining hyperplanes of X.

The following theorem is one of the most important theorems of the linear

programming problem.
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Theorem 2.11. (Representation Theorem for the General case): Let
X={x| Az < b,x > 0} be a nonempty polyhedral set. Then the set of extreme
points is not empty and has a finite number of points, say xi, xo,...,x;, the set
of extreme directions is empty if and only if X is bounded. If X is not bounded,
then the set of extreme directions is nonempty and has a finite number of vectors,
say dy, dy,...,d;. Moreover, ® € X if and only if it can be represented as a convex
combination of &, ®s,..., T plus a nonnegative linear combination of dy, ds,...,dy,

that is,
k l
2= Nz, + ) wd;
j=1 j=1
k
o7/ R\ (2.3)
j=1

Aj
o> 0,j=1,2..,1

V
o
<.

I
\t—‘
™

o

2.2 The Simplex Method

Consider the following standard linear programming problem :

LP: Maximize cTx
subject to Ax =b (2.4)
x > 0.
where A is an m xn matrix with rank m. Since the simplex algorithm was designed

to deal with the standard form, we will use this form in this section.

Definition 2.12. (Basic Feasible Solutions): Consider the system Ax = b
and x > 0, where A is an m xn matrix and b is an m-dimensional vector. Suppose
that rank(A, b) = rank(A) = m. After possibly rearranging the columns of A,

let A = [B, N] where B is an m x m invertible matrix and N is an m x (n —m)

XB
matrix. The solution x = to the equation Ax = b, where
XN

xg =B 'b and xx=0
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is called a basic solution of the system.

If xg > 0, then x is called a basic feasible solution of the system.

Here B is called the basic matriz and N is called the nonbasic matriz.

The components of xg are called basic variables and the components of xx are
called nonbasic variables.

If xg > 0, then x is called a nondegenerate basic feasible solution, and if at
least one component of xg is zero, then x is called a degenerate basic feasible

solution.

The following theorems show a relation between an extreme point and a basic
feasible solution, and some properties of extreme directions lead to the existence

of the optimal solution.

Theorem 2.13. The collection of extreme points corresponds to the collection of
basic feasible solutions, and both are nonempty, provided that the feasible region is

nonempty.

The following theorem will be used to prove the unbounded optimal solution

in our theorem.

Theorem 2.14. Assume that a feasible region is nonempty. Then a finite optimal
solution exists if and only if ed; < 0 for j =1,2,...,1, where dy, dy, ..., d; are the
extreme directions of the feasible region. Otherwise, the optimal solution value is

unbounded.
Theorem 2.15. If an optimal solution exists, then an optimal extreme point exists.

Theorem 2.16. For every extreme point (basic feasible solution), there is a cor-
responding basis (not necessarily unique), and, conversely, for every basis there is
a corresponding (unique) extreme point. Moreover, if an extreme point has more
than one basis representing it, then it is degenerate. Conversely, a degenerate
extreme point has more than one basis representing it if and only if the system Ax
= b itself does not imply that the degenerate basic variables corresponding to an

associated basis are identically zero.
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2.2.1 Key to the Simplex Method

Consider a matrix A in the equation Ax = b being partitioned as A = [B, N],
and let x* = [xg, X5 and ¢ = [cp, cn] with Xj and cg are associated columns
of B and x5 and cy are associated with columns of N. Then, the problem (2.4)

can be written as follow:

Maximize cpXp + CNXN

subject to Bxg + Nxy =Db (2.5)
XB xNn >0

XB Bi1
Suppose that we have a basic feasible solution = > 0. Consider

XN 0

the equation

Bxp + Nxny =b (2.6)
xg = B7'b — B"'Nxy. (2.7)

By substituting xg into the objective function in the problem (2.4) and letting
z denote the objective function value, Jg and Jy are the the current set of the

indices of the basic and nonbasic variables respectively, we get

2 = CHXB + CNXN (2.8)
=cp (B7'b — B"'Nxn) + cyxn (2.9)
=cgB'b — cg B 'Nxy + cayXn (2.10)
=cgB'b — (cgB7'N —cy) xn (2.11)
= CEB_lb — Z (CEB_lA;j — Cj) Zj (212)

JEIN
=2y — Z (25 — ¢;) xj, (2.13)
Jj€IN

where z; = CEB_IA:]' for each nonbasic variable, zy = CEB_lb and A; is the jth
column of A.
Since the problem (2.4) is the maximization problem and zj is a constant, the

objective value will increase when there exists z; — ¢; < 0. Therefore, the optimal
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solution is reached when the index set
J:{Zj—0j<0|jEJN}:@. (214)

For the current basic feasible solution, since ; = 0 for all j € Jn, 2 = 2.
When z; —¢; > 0 for all j € Jn, 2z < % for any feasible solution. Therefore, the
current basic feasible solution is the optimal solution.

The simplex algorithm is an iterative method that moves from one basis to
an adjacent basis by entering one variable from the nonbasic variable set into the
basis, and remove one variable from the basic variable set from the basis. The
variable which will be introduced to the basis is called the entering variable and the
variable which will be removed from the basis is called the leaving variable. Each
step is known as iteration or pivot. So the simplex algorithm can be summarized

below:

The Simplex Algorithm (Maximization Problem)
INITTALIZATION STEP: Choose a starting basis B.
MAIN STEP:

(i) Solve the system Bxg = b. Then, we have xg = B"'b = b.

(ii) Solve the system w'B = cg, w is called the vector of simplex multipliers.
(iii) Calculate z; = w' A for all j € Jx.
(iv) Determine the entering variable k such that

2, — ¢, =min{z; —¢; | j € I} (2.15)

(v) If 2z, — ¢x > 0, then stop. The optimal solution is the current basic feasible

solution.

Otherwise, solve the system By, = A.

(vi) If y, <0, then stop. The optimal solution is unbounded.
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Otherwise, determine the index 7 of the leaving variable xg, by minimum

ratio test such that

b, bi
— = min {— | yir > O}. (2.16)

Yrk  1sism | Yik
(vii) Update the basis B where A.; replaces A g,

(viii) Update the index set Jn, and repeat the MAIN STEP (step (i) - step (viii)).

2.2.2 The Simplex Algorithm in Tableau Format

From the previous algorithm, the linear system of equations: Bxg = b, w'B =
cg, and By, = A}, need to be solved. Solving and updating these systems can be
handled easily if we use the tableau format to describe the simplex method.
X
Suppose that we have a starting basic feasible solution x = B | with basis

XN
B. We can represent the problem (2.4) as follows:

Maximize 2
subject to 2z — cyXB — CrXn= 0 (2.17)
BXB -+ NXN =b (218)

xg, Xn = 0.

From the equation (2.18), we have

xg + B"'Nxx = B~ 'b. (2.19)

Multiplying (2.19) by cg and adding to the equation (2.17), we get

z+0xp + (cgB7'N — cy) xn = cgB™'b. (2.20)
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Therefore, the equivalent system is as follows:

Maximize z

subject to 2+ 0xp + (cgB7'N —cy) xn=cgB~'b (2.21)
xg + B 'Nxn =B~ 'b (2.22)
XB, XN > 0.

Since xx = 0, we get xg = B 'b and z = cgB'b. For convenience, we can

represent the current basic feasible solution with basis B in the following tableau.

Z XB XN RHS
z |10 |cgB'N—ck | cgB™'b | Row 0
xg | 0] I B~ 'N B 'b | Row 1 through m

The objective row is referred to as row 0 and the remaining rows are rows 1
through m. The right-hand-side column (RHS) contains the value of the basic
variables including the objective value.

Consider row 0, cgB™'N — ¢\ consists of z; — ¢; and B™'N consists of
y; = B_lA:j for all nonbasic variables. Therefore, we can determine the en-
tering variable by considering row 0. If each z; — ¢; > 0, the current basic feasible
solution is the optimal solution. Otherwise, nonbasic variables can be increased.
If x;. is selected as an entering variable, then we can determine how much x; can
be increased by evaluating the minimum ratio between vector y, which is stored
in the tableau in rows 1 through m under the variable z;, and B™'b. If v <0,
then the optimal objective value is unbounded. Otherwise, x; will be blocked by
the minimum ratio test. One of the current basic variables which blocks z; will
be the leaving variable and will be droped to zero. If z; enters the basis and xp,
leaves the basis, then the tableau will be updated by pivoting on y,; that can be

stated as follows:

(i) Divide row r by 4.

h

(ii) Update the i™ row by adding to it —y; times the new r'™ row for i =

1,2,...,mand i # r.
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h

(iii) Update the row zero by adding to it ¢ — 25, times the new ™ row.

So the simplex method in tableau format can be summarized below.

The Simplex Method (Maximization Problem)
INITIALIZATION STEP: Find an initial basic feasible solution with basis B.

Form the following initial tableau:

z Xp XN RHS
z |11 0 |cgB™N—cy|cgB™'b
xg | 0] I BN B~ 'b

MAIN STEP:

(i)

(i)

Determine the entering variable k& such that
2k — cp =min{z; —¢; | j € In}- (2.23)

If zi — ¢ > 0, then stop. The optimal solution is the current basic feasible

solution. Otherwise, examine y, = B'A,.

If y, < 0, then stop. The optimal solution is unbounded. Otherwise, de-
termine the index 7 of the leaving variable xg by minimum ratio test such
that - .

% =, in- {i | yir > 0} : (2.24)
Update the tableau by pivoting at y,,. Update the basic and nonbasic

variables where x; enters the basis and xp, leaves the basis, and repeat

the MAIN STEP.

2.2.3 The Initial Basic Feasible Solution

Since the simplex method starts at a basic feasible solution with a basis B which

B~!'b > 0, the question arises how can we find the initial basis.

Consider an easy case where b > 0, suppose that the constraints are of the

following form:

Ax
(2.25)

X
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where A is an m X n matrix, b is a nonnegative m- dimensional vector. Recall
that the simplex method is designed to deal with the standard form, so the slack

vector s is added as follows:

Ax + s =b,
(2.26)
X, s

where s is a nonnegative m- dimensional vector. So the new constraint matrix is
[A, I] having rank m. Let I be the basis and A be the nonbasic matrix, then s is the
basic vector. Therefore, the initial basic feasible solution is (x,s)" = (0,b)T >0,

that is x = 0 is a feasible point, and the simplex method can be performed.

Example 2.17. Consider the following problem:

Maximize r1 — 3r9 + 213
subject to brx1 — 3w9 — 223 < 1
) - 3 = (2.27)
- 2z + 4wy + w3 <2
o x2, 3 > 0

Solution. Before starting the simplex algorithm, the problem must be in the

standard form. By adding slack variables, we get

Maximize Ty — 3x9 + 2x3
subject to Sr1 — 39 — 2x3 + S =
J 1 2 3 1 (2.28)
— 21’1 + 41’2 + T3 + So = 2
Ty, X, xs3, S1, S2 Z 0

Let the identity matrix be an initial basis. Then, s1, s, are basic variables with
the identity basis, x1,7s, 23 are nonbasic variables, and (1,72, 3, 51,52)7 =
(0,0,0,1,2)" > 0 is the initial basic feasible solution. The simplex method can

start. Put it in the initial tableau,

zZ X1 Ty X3 S S2 RHS

2|1/-1 3 2 0 0| 0
s11005 -3 -2 1 0] 1
s5(0(-2 4 (1) 0o 1] 2
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Determine the pivot column & by Dantzigs’ pivot rule, z; —cx = —2 = min{z; —

¢; | j € IJn} which k£ = 3. Determine the pivot row r by the minimum ratio test,
b b

= — min{— | 353 > 0} = min{2} which r = 2. Then, we pivot at y3, 3 enters
Y23 Ya3

the basis and s, leaves the basis. After pivoting, we get

z x1 T2 X3 S1 sy RHS

1] -5 11 0 0 2| 4
si]0/(1) 1 0 1 2] 5
3|02 4 1 0 1| 2

Similarly, we get the pivot element at y;5, that is, xo enters the basis and s;

leaves the basis. After pivoting, we get

Z X1 Ty T3z 81 S9 RHS

z(1]0 16 0 5 12| 29
T | OV |/ IREEEN8 1, 2 D
z3 |00 6 1 2 5 12

Since z; —c; > 0 for all j, the optimal solution is found at (z7, 23, 73, 57, s5)T =

(5,0,12,0,0)T with the objective value z* = 29.

However, in many problems, the initial basis can not easily be obtained from

the identity matrix such as when the constraints are in the following form:

(2.29)

where the vector b is negative. By adding the slack vector s, we have the standard
form as Ax+s = b, x, s > 0, that is, the new constraint matrix is [A, I]. If let
I be the basis and A be the nonbasic matrix, then (x,s)" = (0,b)T ¥ 0 violates
the nonnegativity constraints.

Another problems occur when the constraints are of the following form:

(2.30)
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where b £ 0. To get the standard form, the surplus vector s is subtracted and we

get as follows:

Ax — s =b,
(2.31)
x, s >0.
The new constraints matrix is [A, — I] which is difficult to pick a basis B with

B~'b > 0. We can handle this problem by introducing artificial variables to be an

initial basis. We describe the artificial variable techniques in the following section.

2.3 Artificial Variable Techniques

For some cases that we can not pick a basis B from the standard form Ax = b,
x> 0, where A is an m x n matrix and b > 0, we will introduce artificial variables
to the system to get a starting basic feasible solution as follows:

Ax + x, =b,
(2.32)

» Xa ZO,

where x, is a vector of artificial variables. The new constraint matrix is [A, I,
then this gives a basic feasible solution with x, = b > 0 and x = 0 and the

simplex method can be applied.

Example 2.18. Consider the following constrains:

1 + X9 < 3
T, + 4dxy > 4
' ? (2.33)
55(71 + X9 2 5
Iy, T2, 2 0
Manipulating the problem to the standard form, we get
1 + T2 + S = 3
T + 4z - 5 = 4
' ? ? (2.34)
5$1 + X9 —S83 = 5
xy, T, 515 S2, s3 =2 0
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This constraint matrix has no identity matrix. We can introduce three arti-
ficial variables to get an initial basic feasible solution. However, since s; has the
coefficient of 1, we need to add only two artificial variables z,, and z,,, then we

get the following system.

Ty + X9 + 81 = 3
r1 + 4z — s + x4 = 4
' ’ ’ : (2.35)
dSry + @9 — 83 + Tg, = 5
xy, T2, 51, 82, 53, Zay, Tey = 0

Here, we have the identity matrix with the initial basic feasible solution, s; =
3, %4, = 4,14, = 5. Remaining variables are nonbasic variables having values equal

to zeroes.

Although we have the basic feasible solution, the problem have been changed
from adding artificial variables. To get back to the original problem, we need to
force these artificial variables to zero, because Ax = b if and only if Ax+x, =
b with x, = 0. In other words, adding artificial variables is only a tool to get
a basic feasible solution for starting the simplex method. The two well-known

techniques for eliminating artificial variables are the two-phase method and the

big-M method.

2.3.1 Two-Phase Method

Two-Phase method is a method to find an initial basic feasible solution of the
linear programming problem. The algorithm is separated into two phases. Phase
I: finds a basic feasible solution and phase II starts the simplex method from the
current basic feasible solution from phase I.

Phase I obtains a basic feasible solution of the original problem. The new linear
programming problem which is minimized the sum of artificial variables subject to
Ax+x, = b, x, > 0 is solved. If an original problem has a feasible solution, then
the objective value of this problem is zero, that is, values of all variables drop to

zero. Then, they leave the basis, and the basis consists of legitimate variables (if
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all artificial variables are out of the basis). So we get a basic feasible solution for
the original problem Ax = b, x > 0, and the simplex method can start with the
original objective function. If the objective value of phase I is not zero, then the

original problem is infeasible. The two-phase method is summarized as follows:

Phase I:

Solve the following linear programming problem with the starting basic feasible

solution x = 0 and x, = b:

Minimize zy = 1'%,
subject to Ax + x, =Db (2.36)
X, x, =>0.

At optimality, if x, # 0, then stop; the original problem is infeasible. Other-
wise, let basic and nonbasic legitimate variables be xg and xn. (We are assuming

that all artificial variables left the basis.) Proceed to Phase II.

Phase II:

Solve the following linear programming problem with the starting basic feasible

solution xg = B™'b and xx = 0.

Maximize 2z =cCpXp +  CnXN
subject to xg + B !Nxy =B7'b (2.37)
XB, XN > 0.
This problem is equivalent to the original problem and it can be solved by the

simplex method.
Example 2.19. Consider the following linear programming problem:

Maximize 2z, + o

Subject to x1 + x5 < 3
Ty + 219 > 4 (2.38)
3x1 + 9 > 5

X1, X2, Z 0
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Manipulating the problem to the standard form, we get

Maximize 2z, + o

Subject to x1 + xo + s1 =3
r1 + 2x9 — S9 =4 (2.39)
3r1 + 9 —S3 =25
Ty, T2, S, S2, $3=>0

This constraint matrix has no identity submatrix. We need to add two artificial

variables z,, and z,,, then we get the following system.

Minimize 2x; +

Subject to 7 + x9 + s —

xr, + 21’2 — So + Lay = (240)
31 + 9 — 83 + Zgy, =D
T, X2, 51, 52, 53, Lays Lay Z 0

Therefore, phase I is written as follows:

Phase I:

Minimize x4, + Zg,

Subject to 17 + z9 + s1 =3
r1 + 219 — 89 + Za, =4 (2.41)
3r1 + T2 — 53 + gy = O
r1, T2, S1, S2, 83, Tgy, Tgy, >0

Here, we have sy, z,, and z,, being the basic variables, so the tableau can be

written below:

Tog T1 To S1 Sz S3 Te Te, RHS

|10 0 0 0 0 -1 -1 0
s; 1 0}1 1 1 0 0 O 0 3
T, | O 1T 2 0 -1 0 1 0 4
Tay | O] 3 1 0 0 -1 0 1 5
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Since the reduced cost of basic variables will be zero, add row 2 and row 3 to

row 0, we have

Tog T1 To S1 Sz S3 Te Te, RHS
xw|1/4 3 0 -1 -1 0 0 9
ss|Of1 1 1 0 0 0 O 3

To, | O 1T 2 0 -1 O 1 0 4
T | 013 1 0 0 -1 O 1 5

For the minimization problem, the entering variable k can be chosen by z; —

k= malgi{zj — ¢;}. All iterations in phase I are shown below.
je

To  T1 To S1 Sz S3 Te Te, RHS
x |1 4 3 0 -1 -1 0 0 9
st ]0f 1 1 1 0 0 0 O 3
e, | O 1 2 0 -1 0 1 0 4
T [01(B) 1 0 0 -1 0 1| 5
To T T S1  S9 S3 Xgq  Te, RHS
x| 1|0 5/3 0 -1 1/3 0 -4/3 | 7/3
ss 010 2/3 1 0 1/3 0 -1/3| 4/3
ZTa, | 010 @ o -1 1/3 1 -1/3| 7/3
xz |01 1/3 0 0 -1/3 0 1/3 | 5/3
To T1 Xo Sp S S3  Tq — Xaq, RHS
x| 1,10 0 0 O 0 -1 -1 0
ss|010 0 1 2/5 1/5 -2/5 -1/5| 2/5
x| 00 1 0 -3/5 1/5 3/5 -1/5| 7/5
|01 0 0 1/5 -2/5 -1/5 2/5| 6/5

The last iteration of phase I has no artificial variables in the basis the starting

basic feasible solution (1, ,51)" = (6/5,7/5,2/5)". Phase II can be started at
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this basic feasible solution which the original objective function is maximized and

all artificial variables are removed.

Phase II:
zZ X1 Ty 81 So s3 RHS
z|1]-2 -1 0 0 0 0
s /00 0 1 2/5 1/5 | 2/5
2|00 1 0 -3/5 1/5 | 7/5
r |01 0 0 1/5 -2/5| 6/5

Multiply row 2 and row 3 by 1 and 2, respectively, and add to row 0, producing
21 — €1 = 29 — ¢ = 0. For the maximization problem, the entering variable k is

chosen by 2z, — ¢, = migll{zj — ¢;}. So each iteration in phase II can be performed
VIS

below.

zZ X1 Ty S S s3 RHS

|10 0 0 -1/5 -3/5|19/5

s110] 0 0 1 2/5 (:::) 2/5

25 | 0 0 -3/5 1/5 | 7/5
z |01 0 0 1/5 -2/5| 6/5

S
—

zZ X1 Ty S; Sy s3 RHS

z|(1{10 0 3 1 O d
s3/00 0 5 2 1 2
|00 1 -1 -1 0 1
zn |01 0 2 1 O 2

Since z; — ¢; > 0 for all nonbasic variables, the optimal solution is found at

(z1,22)" = (2,1)" with the objective value 5.

Note that Phase I moved from the infeasible point (0,0) to the point (0, 5/3),
and finally to the feasible point (6/5, 7/5). From this feasible point, Phase II
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moved to the feasible point (2, 1) and stopped at this point since it is the optimal

(0,0
0

Figure 2.1: Example of Two-Phase method

2.3.2 The Big-M Method

Another technique for eliminating artificial variables is to assign very big coeffi-
cients for these variables in the original objective function. To illustrate, suppose

that we want to solve the following linear programming problem, where b > 0:

P: Maximize c¢Tx
subject to Ax =Db (2.42)
x >0.
If no convenient basis is known, we can introduce the artificial vector x,, which

leads to the following system:

Ax + x, =b
(2.43)
X, x, >0.
The starting basic feasible solution is given by x, = b. In order to reflect the

undesirability of a nonzero artificial vector, the objective function is modified such
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that a large penalty is assigned for any such solution. More specifically consider

the following problem.

P(M): Maximize 2em= c'x — M1'x,
subject to Ax + X, =b (2.44)
X7 Xa - 9

where M is a very large positive number. The term —M17x, can be interpreted
as a penalty to be assigned to a solution with x, # 0. Alternatively, the foregoing
strategy can be interpreted as one that minimizes 17x, with priority one, and
among all alternative optimal solutions for this objective, maximizes the secondary
objective cTx. Hence, even though the starting solution x = 0,x, = b is feasible
to the new constraints, it has a very unattractive objective value, namely M1Tb.
Therefore, the simplex method itself will try to drop artificial variables out of the
basis, and then continue to find the optimal solution to the original problem.
Since we are interested in the solution of the original problem, after solving it

by the simplex method, one of the following two cases may occur:
(i) We found the optimal solution of P(M).

o The artificial variables are all equal to zero. In this case, the original
problem is feasible and the optimal solution is found.
o Some artificial variables are positive. In this case, the original problem

is infeasible.

(ii) We found that the problem P(M) has an unbounded solution. Then, the

original problem has an unbounded solution.

The big-M method is illustrated by the following numerical example.
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Example 2.20. Consider the following linear programming problem:

Maximize 2x; + X9

Subject to z; 4+ 1z < 3
T + 2z > 4 (2.45)
3r17 + Ty > 5
x1, Ty, > 0

This example is the same linear programming problem in example 2.19. The
slack variable s; and the surplus variables s, s3 are introduced and the artificial
variables z,, and z,, are incorporated in the last two constraints. The modified
objective function is zpig-m = c'x — M1Tx,, where M is a large positive number.

This leads to the following sequences of tableau:

ZbigeM L1 Tz S Sz 83 Xg Te, RHS

Zign| 1|2 -1 0 0 0 M M| 0
51 o |1 1 1 0 0 0 0] 3
Ta, 0 |1 2 0 <1 0 1 0] 4
Tay B3 170 020 1| 5

Since the reduced cost of basic variables will be zero, multiply row 2 and row

3 by —M and add to row 0, we have

Zbig-M T T9 S1 S92 S3 Ta T, RHS

Zbig-M 1 —2—-4M —-1-3M 0 M M 0 0 |-9M
S1 0 1 1 1 0 0 0 0 3
Ta, 0 1 2 0 -1 0 1 0| 4
Tay | O (3) 1 0 0 -1 0 1| 5
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Zbig-M L1 T ST S S3  Tgy Ty RHS
1 SM 2 M 2 4dM 110 TM
o 1 o ———— 0 M ———— 0 —-—4+—|—=-—
“bigM 33 33 3 3 13 "3
$1 0 0 2/3 1 0 1/3 0 -1/3 4/3
Tay 0 0 @ 0 -1 1/3 1 -1/3 7/3
T 0 1 1/3 0 O -1/3 0 1/3 5/3
ZbigM L1 T2 51 So S3 La,y Lay RHS
1 3
Zbig-M 1 0 0 0 —1/5 —3/5 3+M 5+M 19/5

s1 0 |0 0 1 2/5 @ 2/5  -1/5 | 2/5

2 o |0 1 0 -35 1/5 3/5 -1/5 | 7/5
1 o |1 0 0 1/5 -2/5 ~-1/5 2/5 | 6/5

ZbigM L1 Tz S1 Sz S3 Tay T, RHS
Zbig-M 1 o 0 3 1 0 —-1+M M 5
S3 0 O 0 5 2 1 -2 -1 2
Ty 0 0O 1 -1 -1 0 1 0 1
1 0 ~0_2 _1-—0 -1 0 2

Since z; — ¢; > 0 for each nonbasic variable, the last tableau gives the optimal

solution with the same sequences of points as in Figure 2.1.
Summary of the Initial Basic Feasible Solution

Before picking a basis B, a general linear programming problem needs to be trans-

formed into the following standard form:

T

Maximize c'x
subject to Ax =Db (2.46)
X

where b > 0 (if b; < 0, we can multiply the i** row by -1). An initial basis can be

picked as follows:
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o if A contains an identity matrix, then an initial basis B=1 and since b > 0,

B~ 'b > 0, then the simplex method can start.

o Otherwise, artificial variables are introduced with the associated identity
matrix and letting B=I, then we need to force these artificial variables to

zero by Two-Phase method or Big-M method.

2.4 Duality

Each linear programming problem called the primal has the associated problem
called the dual which maintains all coefficients of the primal problem with dif-
ferent objective function. The number of variables in the primal is equal to the
number of constraints in the dual and the number of variables in the dual is equal
to the number of constraints in the primal. Moreover, coefficients of objective
function in the primal will be on the right-hand side values of the dual and the
constraints matrix A of the primal will be transposed for the dual. The dual linear
programming problem possesses many important properties related to the original
primal linear programming problem. There are two important forms of duality:

the canonical form and the standard form.

Canonical Form of Duality
Suppose that the primal linear programming problem is given in the canonical

form:
Maximize c¢tx

subject to Ax <b (2.47)
x >0.
Then the dual linear programming problem is defined by:
Minimize bTw
subject to ATw >c (2.48)

w > 0.

Standard Form of Duality
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The primal linear programming problem in the standard form is given below:

Minimize c¢Tx
subject to Ax =Db (2.49)
X

Then the dual linear programming problem is defined by:

Maximize bTw
subject to ATw <c (2.50)
w unrestricted.
In practice, many linear programming problems contain some constraints of
the “<” type, “>” type or “=" type. Additionally, variables may be “< 0,” “> 0,”
or “unrestricted.” From table 1.2, we can convert the primal problem to the dual

problem or use the transformation between primal and dual problem as below:

Table 2.1: Relationships Between Primal and Dual Problems

Maximization Problem Minimization Problem
>0 = >
Variables <0 <— < Constraints
Unrestricted = =
x — <0
Constraints < — >0 Variables
= == Unrestricted

Note that there is exactly one dual variable for each primal constraint and

exactly one dual constraint for each primary variable.

Example 2.21. Consider the following linear programming problem:

Maximize 201 — 319 + 13
subject to — 2xy + a2 + bHxz3 <3
3ry + 619 — w3 > 7 (2.51)
— x1 4+ 29 + 4dx3 = -—10
ry > 0, a3 < 0, x3 unrestricted.
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Then, the dual problem can be written as below:

Minimize 3w, + Twy — 10ws

subject to — 2w; 4+ 3wy — w3 > 2
wy + 6wy + 2wy < -3 (2.52)
Sw; — wy 4+ 4wy = 1
wy > 0, wy < 0, ws unrestricted.

Karush-Kuhn-Tucker (KKT) Optimality Conditions

The primal linear programming problem in the standard form is given below:

(P): Maximize c™x
subject to Ax =Db (2.53)
b

Then the dual linear programming problem can be written by:

(D): Minimize b*w
(2.54)
subject to ATw >¢

The decision variables w of the dual problem (2.54) are unrestricted in sign. The
optimality conditions for a linear programming problem state that a necessary and
sufficient condition for x* to be the optimal solution is that there exists a vector

w”* such that

1. Ax*=b,x* >0,
2. ATw*>c,
3. wT(Ax* —b) =0,

xT(ATw* —¢) = 0.

(2.55)

Condition 1 requires that the optimal solution x* must be feasible to the primal
problem while condition 2 requires that the optimal solution w* must be feasible
to the dual problem. From condition 3 called complimentary slackness, we find
that wTAx* = w*Tb and x*TATw* = x*T¢c, that is ¢'x* = bTw*, the optimal
objective values of the primal problem is equal to the optimal objective value of

the dual problem.
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The Fundamental Theorem of Duality

Theorem 2.22. With regard to the primal and dual linear programming problems,

exactly one of the following statements is true:
(i) Both possess optimal solutions x* and w* with c*x* = bTw*.

(ii) One problem has an unbounded optimal objective value, in which case another

problem must be infeasible.
(iii) Both problems are infeasible.

From (ii) and (iii) of this theorem, if one problem is unbounded then another
problem must be infeasible. While one problem is infeasible, another problem can

be unbounded or infeasible.

2.5 The Dual Simplex Method

The dual simplex method is a method which solves a dual linear programming
problem by using the primal simplex tableau directly. Consider a primal problem

(2.53) at any basic feasible solution, it can be written in the following tableau:

Z XB XN RHS
z |10 [egB'N—cx | cgB™'b
xg | 0] I BN B 'b

The tableau shows the primal feasible solution if B™'b > 0 for i = 1,2, ..., m.
If zj —c; > 0 forall 5 =1,2,...,n, then the tableau is optimal. Consider the row
Zero, z; — ¢j = cEBflA:j —¢; for all j =1,2,...,n. Define w! = cgB™!. Then,
we have

Zj — € = C%B_lA:j — ¢ = WTA;j — Cj. (256)

At the optimal tableau, we have z; —¢; > 0 for all j = 1,2,...,n that is
WTA:]- —¢; > 0forall 7 =1,2,...,n which implies that wlA >cTor ATw > c.

Therefore, w" = cgB™" is a dual feasible point.
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Lemma 2.23. At optimality of the primal mazimization problem in the canonical
form(that is, zj —c; > 0 for all j), w" = ci B~" is an optimal solution to the dual

problem. Furthermore, w; = —(Zp4i — Cnai) = —2nyi for i =1,2,...,m.

Consider the objective value, z = CEB_lb = w'b, that is, the primal objective
value and the dual objective value are equal. By KKT conditions, this primal basic
feasible solution and this dual basic feasible solution are optimal to the primal and
dual problem, respectively.

Similarly, if there is z; —¢; < 0 for some j which implies that there is WTA:j —
c; < 0, this dual point is infeasible. The primal simplex method then performs
until z; —¢; > 0 or WTA:j —¢; > 0forall j =1,2,...,n, that is, it will perform
until the dual solution is feasible.

For the dual simplex method, it starts when the dual is feasible that is z; —¢; >
0 for all j = 1,2, ...,n while there exists B™'b; < 0 for some i € 1,2, ...,m, that is
the primal is infeasible. The dual simplex method is useful when the dual feasible
point is found easier than the primal feasible point. On the other hand, some new
constraints are added to the optimal tableau. These constraints may be violated
by the current optimal solution which cause the infeasibility of primal then the
dual simplex can handle this problem. So the dual simplex method is summarized

as follows:

Summary of the Dual Simplex Method (Maximization Problem)

INITIALIZATION STEP: Find a basis B of the primal such that z; —¢; =
CEB_lA;j —¢; > 0 for all j.
MAIN STEP:

(i) If b = B~'b > 0, then stop; the current solution is optimal. Otherwise,

select a pivot row r with b, < 0;

b, = min {b;}. (2.57)

1<i<m

(ii) If y., > 0 for all j, then stop; the dual is unbounded and the primal is

infeasible. The optimal solution is the current basic feasible solution.
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Otherwise, select the pivot column k by the following minimum ratio test:

k% in {Zj — |y < 0} . (2.58)

(iii) Pivot at y, and repeat the MAIN STEP.

Example 2.24. Consider the following problem:

Maximize — x1 — 3x9 — 2x3
subject to ley — 229 + 23 < =2
J ! 2 3 (2.59)
— 3x1 + 319 — 223 < =3
Z1, X2, €3 Z O

Solution. Before starting the simplex algorithm, the problem must be in the

standard form. By adding slack variables, we get

Maximize — T —Z 31’2 = 21’5
subject to ley — 229 + 3 + s = =2
J 1 2 3 1 (2.60)
— 3ZL‘1 + 3%2 =7 2ZL‘3 + S = -3
X1, Ta, x3, S1, 59 Z 0

Put it in the initial tableau, then

Z . x X3 w3 s1 Sp RHS
z|1, 1 3 2 0 0 0
1 -2 1 1 0 -2
-3

S1

o O
(&)
w
o
=)
—

52

With this basis, the primal is infeasible while the dual is feasible. Applying the
dual simplex method, select a pivot row 7 with b, < 0, we get by = min{by, by} =
min{—2, —3}, and the minimum ratio test is computed with yo; < 0 for all j €

1 12
{1,2,...,n} and we get 3= min{g, 5} Then, we pivot at ys;

z x Ty T3 S Sy RHS

2| 1[0 4 43 0 1/3] -1
sofolo (D 13 1 13| 3
n |01 -1 23 0 -1/3] 1
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In a similar fashion, we pivot at ;o then we get,

ZT1 X2 x3 s1 sz RHS
=110 0 83 4 5/3| -13
|00 1 -1/3 -1 -1/3| 3
|01 0 1/3 -1 -2/3| 4

Since b > 0 and zj —c¢; > 0 for all j, the optimal solution is found with
(a7, x5, 25, s7,55) = (4,3,0,0,0). Moreover, the optimal solution of the dual is

found with (w],w;) = (—4,—5/3) .

2.6 Sensitivity Analysis

Suppose a linear programming problem is solved with the optimal tableau. If
some coefficients are changed, we can determine the effect on the new change with
respect to the current optimal solution without resolving the problem from the
beginning. In this dissertation, the following variations in the problem will be

applied in our algorithm.
o Change in the cost vector c.

o Addition of a new constraint.

Change in the Cost Vector

Given the optimal basic feasible solution, if some objective coefficients are
changed, the effect of this change will occur in the cost row on the final tableau,
that is, the dual problem may be infeasible.

In our algorithm, the objective cost will be changed from ¢ to ¢, for some k
which zj, is a nonbasic variable. So cg is not affected, and z; = ch_lA:j is not
changed for all j € N. Since the current basic feasible solution is the optimal
solution of the original problem, z; — ¢ > 0. We would like to know the sign of

2k — . We can calculate z; — ¢}, by

2k — =z —cktcp— = (2 —cx) + (cx — ) (2.61)
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That is, it can compute easily by adding ¢, — ¢, to the known value z;, — ¢. If
2k — ¢, > 0, then the old solution is still optimal for the new problem. Otherwise,
the primal simplex method will be continued by introducing x; into the basis and

performed the standard simplex method.

Adding a New Constraint

Consider the following optimal tableau with a basis B.

Z XB XN RHS
z |11 0 |cgB '"N—cy|cgB™'b
xg | 0] I BN B~ 'b

Suppose a new constraint a,,.1xX > b1, is added to the problem. Before
adding the new constraint to the tableau, a,, 1 is decomposed into [a,,+15, Amt1)

and it is rewritten as
Am+15XB g A+ 1 XN + Spnt1 = berl (262)

where s,,11 is a nonnegative slack variable. Then, add it into the optimal tableau,

we get
z XB XN sne1 RHS
z |1 0 cgB'N—-cy| 0 |cgB™'b
xg | 0] 1 B 'N 0 | B'b
Sn+1 0 Am4lg Am41y 1 bm—l—l

We can eliminate a,,+1, by multiplying row 1 by a,,+1, and subtracting from

row 2 gives the following tableau:

z XB XN Sn+1 RHS
z | 110 cgB7'N — ¢y 0 cgB7'b
xg (0] I B™'N 0 B~ 'b
Sny1 | 0| 0 | amyry — am+1BB_1N 1 byt — am+1BB_1b

We can obtain the optimal solution by considering the sign of the right hand
side in the s,,1. If b4 1 — am+1BB_1b > 0, then the current solution is optimal.

Otherwise, the dual simplex method is needed to find the optimal solution.
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2.7 The Artificial-Variable-Free Techniques

2.7.1 The Criss-Cross Method

To solve a linear programming problem using the standard simplex method, it
requires a primal feasible solution to start the algorithm. Similarly, the dual sim-
plex method requires a dual feasible solution to start the algorithm. However, for
a linear programming problem, neither a primal nor a dual feasible basic solution
could be found easily. So the modified problem with artificial variables is set up
to start the algorithm. In 1969, Zionts [10] proposed an algorithm which needed
not maintain feasibility and no artificial variables required called the criss-cross

algorithm. The algorithm starts by partitioning the problem as follows:

The Partitioned Problem*:

Maximize —c'fxl + ngz

subject to A11X1 7 A12X2 S —b1 (263)
Azixy + Agexs < by
X1, Xo Z 0,
The Primal Portion of the Problem:
Maximize —cix; + c€3Xz
subject to A21X1 + A22X2 S bg (264)
X1, x2 > 0,
The Dual Portion of the Problem:
Maximize —c]xy
subject to Aj1x; < —b
J 11X1 = 1 (2.65)
Ayix; < by
X1 2> 0,

where ¢, and x; are n;-dimensional column vectors, ¢, and X5 are ny-dimensional
column vectors, by and by are mjand mo-dimensional column vectors, respectively,

Aq1, Ais, Ay and Ay are my X ny,mq X ng,mo X nq and mse X ny matrix; mq
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is the number of primal infeasibilities, ny is the number of dual infeasibilities;
m = my1 + ma,n = ny + n9; by and ¢y are non-positive; b; and ¢; are strictly
positive.

The original problem is partitioned to a primal feasible problem as the problem
(2.64) and a dual feasible problem as (2.65). Then, the dual portion of problem
is considered, for pivoting selection, dual infeasible constraints are ignored for a
dual iteration, but the entire problem is performed for each pivoting. Then, it
alternates to consider the primal portion of problem and ignores primal infeasible
constraints, then performs the pivoting on the entire problem. The algorithm
performs alternating during primal and dual iterations until a primal or dual
feasible solution is obtained. Only primal or dual iterations are performed to

reach an optimal solution.

Example 2.25. Consider the following problem:

Maximize 3r1 — 4
subject to — 3 — 2z < =2
— 31 — =x < —4
- 2) = (2.66)
I — Hip) S 1
Ty . T3 < 3
T, g = 0
The primal portion of the problem can be expressed as follows:
Maximize 3z; — 4,
subject to ;1 — 1z, < 1
! ' 2= (2.67)
1y + X2 S 3
X1, 2 > 0

Then, the dual portion of the problem can be written as follows:
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Maximize — 4o
subject to — 21y < =2
— ) S —4
(2.68)
— X2 S 1
) S 3
i) Z 0

However, since the entire problem will be performed for each pivoting, it will be

put to the following tableau.

{113 4 0 0 0 0| 0
s |01 22 1 0 0 0] -2
s210(-3/C1) 001 0 0] 4
ss|0{1 1 0.0 1 0| 1
se{0f1 1 0 0 0 1| 3

Start with a dual iteration by ignoring the column x;. So sy leaves the basis

and x4 enters the basis. Then, we get

zZ 1 T2 ST Sy S3 sS4 RHS

HULAILONGKORN UMIVERSITY -16
si|0/(5) 01 2 0 0] 6
2|03 1 0 -1 0 0] 4
s3[0[ 4 0 0 -1 1 0] 5
s [0]-2 0 0 1 0 1] -

Then, the primal iteration is alternated by ignoring row 4 which z; enters the

basis and s; leaves the basis. After pivoting, we get
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Z Xy T2 $1 S9 s3 s4 RHS
z|1]0 O 3 -2 0 0 2
x |01 0 1/5 -2/5 0 0] 6/5
|00 1 -3/5 1/5 0 0] 2/5
s3| 0] 0 0 -4/5 3/5 1 0] 1/5
s4 /0] 0 0O 2/5 1/5 0 1] 7/5

Here, the primal is feasible, so we can perform the standard simplex method.

s3 leaves the basis and s, enters the basis. Then, we get

zZ X1 To S$1 So S3 sy RHS
z 110 0 /3 0 10/3 0 | 8/3
z |01 0 -1/3 0 2/3 0| 4/3
|00 1 -1/3 0 -1/3 0| 1/3
ss OO0 O -11/3 1 5/3 0] 1/3
s3 |00 0 2/3 0 -1/3 1| 4/3

The optimal solution is found, and the algorithm stops at the point (x7,z3) =

(4/3,1/3) with the optimal value z = 8/3.

Advantage of this method is no initial requirements as to whether a primal or
dual feasible solution is available. No artificial variables are required. Moreover,
the convergence of this method is proved. However, the criss-cross algorithm does

not have the polynomial time complexity and it is not efficient in practice.

2.7.2 Primal Perturbation Simplex Algorithm

In 2000, Pan [14] proposed the algorithm for solving a linear programming problem
without introducing artificial variables. If the initial basis was neither primal nor
dual feasible, then the cost of the objective function in primal will be perturbed
for the dual feasibility and the dual simplex method will be performed until the
dual solution is found. Then, the original cost of the objective function in primal

will be restored and the primal simplex will be performed.
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Consider the following linear programming problem in the standard form:

Maximize cTx
subject to Ax =Db (2.69)
X

where A € R™" with rank(A) =k <m < n,b € R™, ¢ and x are n-dimensional
column vectors.
Let an initial basis
B=(A

A Ay, (2.70)

HIREE PR RERE
where A, is the column of A corresponding to the basic variable z; (i = 1,2, ..., k).

Let Jg be the set of indices of basic variables and Jg be the remaining set by
Jg ={1,2,...,n} — Jgp. (2.71)

Let B* be the Moore - Penrose pseudoinverse [26, 27] of B and let cg be the
cost of the objective function corresponding to basic variables. Then, the following

partially revised simplex tableau will be used:

(2.72)
where 2, b and ¢ are determined by
z =cgB'b
¢ =cgBTA —c (2.73)
b =B"b.

In the tableau (2.72), if both primal and dual are feasible, the following two

sets

IT={i|b<0,i=1,..k}, (2.74)
J={j1¢ <0,j€ g}, (2.75)

are empty, and the optimal solution is found.
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Suppose that the tableau (2.72) is neither primal nor dual feasible. ¢;, for all
j € J, will be perturbed to some predetermined number §; > 0, then the tableau

(2.72) is turned into the following:

(2.76)

where

0:, V5 €J,
¢ =4 (2.77)
G, Vi e {12 n}—J

The following perturbation of the problem (2.69) can be written as follows:

Maximize &%x
subject to Ax =Db (2.78)
x =20,
where
o - cgBTA, —0;, Vje (2.79)
¢, Vie{l,2,..,n}—J.

Since ¢; > 0 for all j € {1,2,....,n}, the tableau (2.76) is dual feasible. So the
dual simplex method can start to solve the problem (2.78).
Suppose the following tableau is the optimal tableau of the problem (2.78):

(2.80)

It means that ¢’ > O,B > 0. Then, a feasible tableau for the original problem

(2.69) can be restored from (2.80) by replacing Z and ¢ with

s=ciB'b (2.81)
& =ciB'A —c. (2.82)

If ¢ > 0, the restored tableau is already optimal to the original problem (2.69).
Otherwise, it can be performed by the standard simplex method.
The following theorems and lemmas can guarantee that the solution from the

restored tableau (2.80) is an optimal or a feasible point of the original problem.
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Lemma 2.26. Suppose that the problem (2.69) has an optimal solution which
is also optimal to (2.78). If any optimal tableau (2.80) of (2.78) is dually non-
degenerate, the tableau restored from (2.80) gives the optimal solution to the prob-
lem (2.69).

Lemma 2.27. Suppose that the problem (2.69) has an optimal basis which is also
optimal to (2.78). If any optimal tableau (2.80) of (2.78) is primally and dually
non-degenerate, the tableau restored from the (2.80) is optimal to (2.69).

Lemma 2.28. Let B, be an optimal basis of the original problem (2.69) and let
J N Jp be empty. Then, B, is also and optimal basis for the problem (2.78).

Theorem 2.29. Under the same assumption of Lemma 2.28, the tableau restored
from (2.80) gives the optimal solution to the original problem if (2.80) is dually
non-degenerate, and even the optimal tableau of it if, in addition, (2.80) is also

primally non-degenerate.

Theorem 2.30. Under the same assumption of Lemma 2.28, the tableau restored
from (2.80) gives an optimal solution to the original program (2.69) if only those
components of the relative cost row of (2.72) are changed which correspond to

non-basic variables of (2.80), i.e., J N Jg is empty.

Primal Perturbation Simplex Algorithm

The algorithm is separated into two Phases: the dual Phase-1 consists of Steps 2
through 8, the primal Phase-2 consist of Steps 8 through 14. Symbols ia and ic
are defined as follows:

ta = 1 or 2: proceeding with Phase-1 or Phase-2;

tc = 0 or 1: proceeding with relative price row unchanged or changed.

Algorithm A. Let BT € R¥™ be the Moore-Penrose pseudoinverse of an initial

basis. Given constants ¢; = 107% 7 =1,...,n, and a tolerance ¢ = 107°.

Step 1. Set ia =1 and ic = 0.

Step 2. Compute Z,¢ and b by (2.73).
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Step 3. If the index set, define by (2.75), is nonempty, set ¢; = 6;,j € J,

and ic = 1.

Step 4. Determine the row index 7 such that
by =min{b; |i=1,...,k} <0. (2.83)

Step 5. If b, > —e¢, then:
(a) stop if ic = 0;
(b) restore zZ and ¢ by (2.73);

(c) set ia =2, and then go to Step 10.

Step 6. Stop if index set .J', defined by
= (] B (Ay), < 0.5 € Jg} (2.849)
is empty.
Step 7. Determine the column index s by
,/(BTAy), = max{c¢;/(B*A;),,j € J'}. (2.85)
Step 8. Update entire tableau.

Step 9. Go to Step 4 if ia = 1.

Step 10. Determine s such that
¢, =min{¢; | j € Jp} (2.86)
where Jp defined as (2.71).

Step 11. Stop if ¢; > —e.

Step 12. Stop if the row index set
I'={i| (BTA,); >0,i=1,..k} (2.87)

is empty.

Step 13. Determine r such that

b./(BYA), = max{b,/(B*A,), i€ I'}. (2.88)
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Step 14. Go to Step 8.

Based on properties of the dual and primal pivoting rules, the following theorem

can be stated as:

Theorem 2.31. Assuming dual non-degeneracy for Phase-1 and primal non-

degeneracy for Phase-2, Algorithm A terminates at either
(i) Step 5(a) or 11, with the optimal solution of (2.69) reached; or
(ii) Step 6, indicating infeasibility of the problem; or

(iii) Step 12, indicating upper unboundedness of the problem.

The author showed the efficiency of the algorithm by computational results of
small problems.

Advantages of this method is that no artificial variables are required. Moreover,
if we can choose the initial basis which closes to the optimal basis, we may reduce
the computational time to solve the problem. However, in this research, the
appropriate initial basis was not suggested and computational results were shown

to be superior for small problems.

2.7.3 Big-M Free Solution Algorithm

In 2006, Arsham [15, 16] presented the new solution algorithm for solving a gen-
eral linear programming problem without using artificial variables by relaxing

constraints. The algorithm starts with the following linear programming problem:

Maximize c¢Tx

subject to Ax <a
Bx >b

(2.89)

x >0,
where b > 0 and a > 0, A and B are the respective matrices of constraint
coefficients, a and b are the corresponding RHS vectors (all with appropriate

dimensions). If any linear programming problem is not in this form, we can convert
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it according to the problem manipulation in Chapter I. Then, the algorithm can

be summarized as follows:

Big-M Free Solution Algorithm

Phase I Relax the greater-than (>) constraints and solve the relaxed prob-

lem by the standard simplex at the origin point.

Phase II If the solution satisfies all relaxed constraints. Then stop. Oth-
erwise, if the relaxed problem is unbounded, then the optimal solution
is modified for dual feasibility and the most “violated” constraint is
appended into the tableau and the dual simplex is used to restore fea-
sibility.

Phase III Restore the original objective function (if needed). Then, the

standard simplex is used until the solution is found.

Some numerical examples illustrate the efficiency of the big-M free solution

algorithm for small problems.

Example 2.32. Consider the following problem:

Maximize 333'1 + o — 433'3
subject to z1 4+ 19 — x3 = 1
J 1 2 3 (2.90)
) Z 2
1, T > 0

Since the problem (2.90) is not in form of the system (2.89), we need to convert

it as follows:

Maximize 3x7 + xo — 4dxg
subject to x; 4+ 12 — w3 < 1
T + 2 — w3 = 1 (2.91)
T > 2
Ty T2 > 0.

Phase I, two of > constraints are relaxed as follows:
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Maximize 3xr; + x5 — 4xs
subject to x; + @y — x3 < 1 (2.92)
1 T2 > 0.

The simplex algorithm can start by adding a slack variable as the following

tableau:

z x1 X9 x3 S RHS

si [0 11 1] 1

Z- L] X9 Xz ~S1 RHS

"2 VAT e 0 R SN A B |

The optimal solution is (z1,xs,23) = (1,0,0). This solution is violated the

constraint x5 > 2, so this constraint is appended to the tableau as follows:

z X1 Ty T3 S Sy RHS

z11]0 2 1 3 0l 3
o lol1 1 11 ol 1
ULAG NS @ gNIYERDIIY 5

Perform the dual simplex by entering x5 into the basis and s, leaves the basis.

After pivoting, we have

1110 o 1 3 2] 4
ool 1 0 @ 1 1] -1
mlolo 1 0 o0 -1] 2

Enter x5 into the basis and z; leaves the basis as follows:
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z2 x1 T2 w3 s sy RHS
z|1]1 0 0 4 3| -2
zs|0|-1 0 1 -1 -1 1
|00 1 0 0 -1| 2

The solution (x1, 2, x3) = (0, 2, 1) satisfies all constraints, so this solution is

the optimal solution of the original problem.

The strength of this algorithm is that no artificial variables are required and
it deals with a small fraction of the original constraints.

However, Arsham’s paper showed only small examples and lacked a compu-
tational result. Moreover, if all constraints which form the optimal solution are
“>7 constraints, they will be relaxed. So it will converge very slowly since the
algorithm wastes time to solve the relaxed problem which far from the solution.
This is the obvious weakness of that algorithm. Moreover, if there are no “<”
constraints, the original positive costs are changed to zero for the dual feasibility

and performed the dual simplex which converges slowly.

2.7.4 The Cosine Simplex Method

The simplex algorithm without using artificial variables which is called the Cosine
Simplex Method was repeatedly proposed in the same year by Corley et. al. [17].
It is similar to Big-M free solution algorithm by Arsham which solved a sequence
of relaxed linear programming problems until the optimal solution of the original
problem was found. They used the cosine criterion to select the constraint. The

algorithm starts by considering the following linear programming problem:

Maximize cTx
subject to Ax <b (2.93)
x > 0.

where x and c are n-dimensional vectors, A is an m X n matrix and b is

an m-dimensional vector. The problem (2.93) is assumed that it has an optimal
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solution.
Denote a; the row i of the matrix A of the problem (2.93), so constraint i is
written as follows:

ax < bz,l = 1, e, M. (294)

To guarantee that the problem (2.93) has the optimal solution, a constraint
r in (2.94) is assumed for which a,; > 0,7 = {,...,n and b, > 0. Therefore, the

problem is bounded. Then, the initial relaxed problem can be written as below:

Maximize cTx
subject to a,x <b, (2.95)
x >0.

Obviously, this problem has the optimal solution. Then, define

a,l-c

cosl = ——— (2.96)
2|l

as the cosine of the angle 6; between the normal vectors a; for constraint i and
c for the objective function. If this constraint is a part of the current relaxed
problem, then it is called a constraint operative. Otherwise, it is called a constraint

inoperative. The algorithm can be stated as follows:

The Cosine Simplex Algorithm

I3

&,i = 1,...,m,i # r and order the con-
[lai|[[<]]

straints according to decrease cos 6;, where ties are broken arbitrarily.

Step 0 Compute cosf; =

Step 1 Solve the problem (2.95) to obtain x*. Set k = 1.

Step 2 Check the inoperative constraints in decreasing order of cos#;. If
the first one is violated by xj, then go to Step 3. Otherwise, x; is the
optimal solution of the problem (2.93). Then, stop.

step 3 Set k = k + 1. Append the violated constraint to the final tableau
of relaxed problem £ to obtain relaxed problem k + 1. Apply the dual

simplex algorithm to obtain a solution x;. Go to Step 2.



o4

Small problems were shown the efficiency of the cosine simplex algorithm as

the following example.

Example 2.33. Consider the problem

Maximize 4x; + 5x9 + 9x3 + 1llay

subject to 3xy 4+ bzy + 10x3 + 1d5xy < 100
v, 4+ 1 + 13 + x4 < 15 (2.97)
Tx1 + 5x9 + 3xs + 2z4 < 120
1, T2, T3, gy > 0.

The following table shows the values of cos; up to two decimal digits in Step 0.

Constraint 7 | cos 6;

1 0.99
2 0.93
3 0.70

Each of these constraints bounds the problem. Since cos#; which associated with

constraint 1 is the maximum, the first relaxed problem to be solved is

Maximize 4z, + 5x9 + 923 + 1lay
subject to 3x; + 5xp + 1023 + 15x4 < 100 (2.98)
0.

v

xy, T2, T3, Xy
Solving this relaxed problem gives the following sequences of tableaus.
Z X1 T2 X3 gy s1 RHS

z |14 -5 -9 -11 0| O
s11003 5 10 1| 100

z 1 T rs x4 s  RHS

| 1|-9/5 -4/3 -5/3 0 3/4]220/3

24 | 0 @ 1/3 2/3 1 0 | 20/3
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2 I ) T3 T4 S1 RHS
21110 5/3 13/3 9 4/3|400/3
1 |0 1 5/3 10/3 5 1/3 100/3

The solution of the relaxed problem is obtained at the second iteration with
x' = [100/3,0,0,0]. Check this point with the inoperative constraint 2 and 3.
The constraint 2 is violated by x!, then it is appended to the last tableau and is

solved by the dual simplex method. So we get the following sequences of tableaus:

z T Ty T3 Ty S1 s, RHS
z |10 5/3 13/3 9 4/3 0 |400/3
xz |01 5/3 10/3 5 1/3 0 |100/3

s5 0] 0 -2/3 @ 4 -1/3 1 |-55/3

Z X1 Xy X3 Ty S1 S9 RHS

z |10 3/7 0 11/7 5/7 13/7 | 695/7
21| 0| 1-5/7 0 -5/7 -1/7 13/7| 50/7
z3 | 0| 0 2/7 1 12/7 1/7 -3/7| 55/7

The optimal solution is found with x* = [50/7,0,55/7,0]. Check this point
with the inoperative constraint 3. The constraint 3 is not violated by x*. So this

solution is optimal to the original problem.

The standard simplex algorithm solves this problem with four tableaus includ-
ing the initial one.

The computational efficiency of their algorithm was compared with the stan-
dard simplex method by counting the constraints which is operated from the first
relaxed problem until the optimal solution is found. Therefore, the computation

of the cosine simplex is

hS]

C =) (# of tableaus with k constraints) * k (2.99)
k=1
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where p is the number of constraints in the optimal tableau. For the standard

simplex, they computed
S = (# of tableaus required by the standard simplex for a solution)m. (2.100)

Therefore, in the example 2.33, C' = 6, while S = 12.

The strength of this algorithm is, at each iteration, the cosine algorithm deal
with a small fraction of the original constraints in the simplex computation. In
addition, relatively few constraints by the cosine criterion may active at optimality.
Moreover, artificial variables are not needed to start the algorithm.

However, the efficiency of this research were shown by small examples and
lacked a computational result. In addition, this algorithm could deal with only a
feasible and bounded linear programming problem.

According to literature reviews, some theorems are used in our proof of our
theorem. Moreover, the simplex method, the dual simplex method and sensitivity
analysis will be applied in our algorithms. Efficiency of our algorithms is shown

by comparing with Two-Phase method and Arsham’s method.



CHAPTER III
ARTIFICIAL-VARIABLE-FREE SIMPLEX METHOD

In this chapter, the algorithm for solving a linear programming problem by the
simplex method without using artificial variables is proposed. Our algorithm
consists of four important parts, i.e., the classification of constraints, the non-acute
constraint relaxation problem (NAR), the transformed NAR problem and the
reinsertion of relaxed constraints. These four parts are composed to one algorithm
called Simplex method based on Non-Acute constraint Relazation (SNAR) which

is proposed to solve either a primal or a dual linear programming problem.

3.1 Preliminaries

Consider a linear programming problem in the following form:

Maximize c¢Tx
(3.1)
subject to Ax <b

where c is a nonzero vector and x is an n-dimensional column vector, A is an mxn
matrix, b is an m-dimensional column vector. Recall the problem manipulation,
since any linear programming problem can be converted from one form to another

form, all linear programming problems can be converted to this form.

3.1.1 The Classification of Constraints

Since we know that a constraint making the acute angle between its gradient vector
to the gradient vector of the objective function may form the extreme point close to
the optimal solution, we will separate constraints by their angles between gradient
vectors and the gradient vector of the objective function into two collections, i.e.,

the collection of acute constraints and the collection of non-acute constraints.
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Let A;. be the gradient vector of the constraint ¢ and ¢ be the gradient vector
of the objective function. Let #; be the angle between A;. and ¢ which can be
computed by

A -c
0; = arccos —————. (3.2)
[Az (<l

Since all constraints of the problem (3.1) are in the form “<” the feasible

region is on opposite side of the direction of gradient vectors of constraints, see

fig

> X,

Figure 3.1: Angle between gradient vectors of constraints and the gradient vector

of the objective function in R?

The computation of arccosines appearing in the computation of angles can be
avoided by using their cosine values instead. For positive cosine, the constraint
will be put in the collection of acute constraints and for negative or zero cosine, the
constraint will be put in the collection of non-acute constraints. Since ||A;.||||c|| >

0, we can use the sign of A;. - c value to separate the constraint 7. Let

P={i|Ai-c>0} and N={j|A; -c<0} (3.3)

where |P| = mq,|N| = mg and my + mg = m, so P is the collection of index of
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acute constraints and N is the collection of index of non-acute constraints.

3.1.2 The Non-Acute Constraint Relaxation Problem

After we separate two collections of constraints, we will relax the original problem
by removing constraints from N and it is called the non-acute constraint relazation

problem (NAR). So NAR can be written as follows:

Maximize c¢Tx

(3.4)
subject to Apx < bp
where Ap is an m; X n submatrix of constraints corresponding to the collection
P, bp is mi-dimensional column vector and A pc > 0. The number of constraints
of the problem (3.4) is less than or equal to the original problem (3.1) and we can
show that the problem (3.4) is always feasible.

(a) The original problem. (b) NAR.

Figure 3.2: Example of the original problem and NAR

Theorem 3.1. Let P~ ={i € P | b; <0} and P* ={i € P | b; > 0}. If P~ # &

b,
and A = mgx{ - C}. Then @y = —Ac is a feasible point of the problem (3.4).
P Ay

Proof. Suppose P~ # &. Then there is b; < 0 where ¢ € P. Consider

b;
A = max{

icP~ —A;. - cC

1. (3.5)
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Since b; < 0 and A;.-c >0 foralli e P~, —A;.-c <0, then A > 0. For all
b
ke P ,A> — % Therefore —AA - c < .
—Ak: - C
Choose xg = —\c, we get Ay.xg < by, forallk € P~. Foralll € P, —A;.-.c <0
and b; > 0. So A;pxg= —MA,L-c<0<p foralll e Pt

Then Ap.xg < bp, i.e., Xg is a feasible point.

Corollary 3.2. If P # @ then the problem (3.4) is always feasible.

Proof. If bp > 0 then xq = 0 is a feasible point. Otherwise, by theorem 3.1,

Xo = —Ac is always a feasible point.
]
If P = @, the original problem (3.1) can be rewritten as
Maximize cTx
(3.6)

subject to Axx < by

where A y is an mo X n submatrix of the constraints corresponding to the collection
N, by is my-dimensional column vector and Ayc < 0. If Ayc < 0, then we can

show that the original problem has an unbounded optimal solution.

Theorem 3.3. Letc # 0, No={ie N|A,.c=0}and Ny={i € N| A;.-c < 0}.
If P=@ and N, = & then the problem (3.1) is unbounded.

Proof. Assume P = @ and N, = &, we get N = N; and Ac = Ayc < 0. Let
X ={x| Axx < by}. Show that X is not empty.

Case 1: If by > 0. Then xy = 0 is a feasible point.

Case 2: If there is b; < O wherei € N. Let N~ ={i e N | b; <0} #2, N* =
{ie N |b >0} and

bi
A = max{

ieN- A, - cC

1. (3.7)

b,

Since b; < 0and A;.-c <0, A>0. Forallke N7, A > A
J— k:-c
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By choosing xy = Ac, we get Ap.xg = My.c < b,. Foralll € NT, Apxg =
A -¢c <0 <. Then Ayn.xg < by, i.e., X is a feasible point. So X is not empty.

We will show that c is a recession direction [25]. For all @ > 0 and xp+ac € X,
An(xo+ac) = Ayxo+aAyc < Ayxg < by. Therefore c is a recession direction
of X.

For a nonzero vector ¢, c*(xq + ac) = ¢Txq + actc. Since cTec > 0, cTxo +
ac®c — 0o as a — oo. Therefore the problem (3.1) is unbounded.

]

Consequently, if all constraints make obtuse angles between its gradient vector

to the gradient vector of the objective function, then the problem is unbounded.

Figure 3.3: Example of the unbounded problem

It should be noted that, Pan proposed the similar theorem [14] to theorem 3.3

where ¢ > 0.

3.1.3 The Transformed NAR Problem

After non-acute constraints are relaxed, we will use the simplex algorithm to solve
NAR (3.4). From corollary 3.2, NAR is always feasible. If bp > 0 then x¢ = 0 is
a feasible point and we can start the simplex algorithm by adding slack variables.
Otherwise, xg = —Ac is a feasible point. We will relocate the problem so that 0

is the initial basic feasible solution using X = x — Xo.
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. . !
Maximize c¢Tx + ¢Txq

subject to Apx < bp — Apxg
Constraints of the problem (3.6) will be transformed also to
A Nx/ < by — AnXg. So the transformed problem can be written as
Maximize cTx + cTxo
(3.9)

subject to Ax <b - Ax

This problem is called “the transformed NAR problem”. If the transformed
NAR problem is infeasible or unbounded then the original problem will be in-
feasible or unbounded, respectively. If the optimal solution of the transformed

problem (x) is found then the optimal solution (x*) of the original problem will

be found by computing x* = x"* + xq.

A,

»

\1_ o

optimal point optimal point =
; X1 —

/O

N

o

(a) Original problem. (b) NAR.

AL mmm e e - >X
optimal point =

Cc

(c) Transformed NAR problem.

Figure 3.4: Example of the original, NAR and transformed NAR problems
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3.1.4 The Reinsertion of Relaxed Constraints

After transformed NAR problem was solved, relaxed constraints will be reinserted
to transformed NAR. Recall the sensitivity analysis, we can add a new constraint
to the optimal tableau and can analyse the effect on the problem case by case,
without having to resolve the problem from the beginning.

Consider the problem (3.8), xq is a feasible point. So Apxy < bp and bp —
Apxy > 0. Then slack variables are added to transform inequality constraints to

equality constraints. So we have

Maximize ¢Tx + cTxg
subject to Apx + s =bp— Apxg (3.10)
S >0

Then the simplex algorithm can start to solve the problem without using artificial

variables. However, if unrestricted variables exist, they will be transformed by

+

letting x =x"—x to get

Maximize c¢Tx™ —cTx™ +cTxq
subject to ApxT — Apx +s=bp — Apx (3.11)

s, xT,x~ >0

Let z = ¢™xt — cTx™ +¢Txp. So the initial tableau of the problem (3.11) can
be shown as follow:
S s RHS
T

z|1]| —c c 0 C Xg

s |0 AP —AP Im1 Bp:bP—ApXO

where I,,,, is an m; X m; identity matrix. Since the problem (3.10) is always

feasible, the solution can be one of two cases: optimal or unbounded solution.
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The Optimal Solution Case

After we found the optimal solution of the problem (3.11), then we will add con-
straints from N into the problem (3.11). For the transformed problem, the right
hand side of N will be changed as BN = by — AnXg. Then we add the slack sy
to the transformed problem as Ayxt — Ayx~ +sy = BN.

Let Bp+ and Np« are the optimal basis and the associated nonbasic matrix of
NAR (3.11), respectively. The corresponding tableau of the non-acute constraint

relaxation is as follows:

Z  XBp. XNp- RHS
T -1 1 T p-lf T
z 1 0 |cg,.BpNp:—cy,. | cg,.Bp.bp+c %o
= —17,
XBp« 0 Im1 BP*NP* Bp*bp

Let Ay = [Ay, —Ap]. The constraint Ayx" — Ayx~ +sy = by is rewritten

by:

ANB,.XB,. + AN, XN, + Sy = by (3.12)

where Ay = [AnB,., AyN,.| are rearranged by basic and nonbasic columns.

After adding constraints (3.12) into tableau, we get

z XBp« XN px SN RHS
z |1 0 g, BpiNp. —ck,. | 0 |cp, . Bplbp+cTxg
XBp« 0 Im1 B;iNP* 0 Bp*illg)p
sy | 0| AnB,. ANN,. L, by

where I,,,, is an mg X my identity matrix. We can eliminate A yg,. by multiplying

row 1 by Ang,. and subtracting from the row 2 gives the following tableau:

Z  XBp« XN p SN RHS
z 1 0 CEP*BI_D}NP* — CEIP* 0 CEP*B;BP +cTxg
xg,, | 0| In, B! Np. 0 Bylbp
sy |0 0 | Ayn,. —Ang,.Bp!Np. | I, | by — Ayg,.Bpibp
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Since the optimal solution is found, the dual problem is feasible. We can obtain
the optimal solution by considering the feasibility of primal feasible after the non-
acute constraints are reinserted. That is considering the sign of the right hand

side in the sy. If BN — A NBP*B;)lf)P > 0, then the current solution is optimal.

optimal solution

(a) NAR is optimal. (b) Non-acute constraints are added.

Figure 3.5: Example of the optimal solution found from NAR

From figure 3.5b, after the non-acute constraints are reinserted, the optimal
solution from NAR satisfies all constraint, that is, primal is feasible. Therefore,
this optimal solution is the optimal solution of the original problem.

Otherwise, if by — ANBP*BI_DllA)p Z# 0, that is, primal is infeasible, then the
dual simplex method is needed to find the optimal solution. Then we can conclude
that if we find the optimal solution by the dual simplex method using Dantzig’s
rule, the value of the right hand side in the optimal tableau is the optimal solution
of the transformed NAR problem. Otherwise, if the dual is unbounded, we can

conclude that the original problem is infeasible.
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optimal solutio
A 3

- > X

(a) NAR is optimal. (b) Non-acute constraints are added.

Figure 3.6: Example of the optimal solution from NAR is infeasible

From figure 3.6b, after non-acute constraints are reinserted, the optimal solu-
tion from NAR does not satisfy the sixth constraint, that is, primal is infeasible at
the sixth constraint. We will use the dual simplex method to move to the optimal

solution.

optimal solution of NAR

XZ
_ optimal solution of NAR
Az /VA : " A:1
'
g > X
(a) NAR is optimal. (b) Non-acute constraints are added.

Figure 3.7: Example of the original problem is infeasible

From figure 3.7b, after non-acute constraints are reinserted, the optimal so-
lution from NAR does not satisfy the fourth constraint. We will use the dual
simplex method which can detect the primal infeasibility by the dual unbounded.

The Unbounded Case

Let Bp be the basis and Np be the associated nonbasic matrix of NAR. The

corresponding tableau is as follows:



Z XB, XNp RHS
z |11 0 cBPB 'Np — CNP c%PBJ_le)p +cTxg
xg, | 0| I, B>'Np B:'bp
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The unbounded solution will occur when some components of CEPBEIN P —CEIP

are negative.

means that there is z; — ¢; < 0 and y; < 0 where y; = [a};, a);, ...

) mlj

If the non-acute constraint relaxation problem is unbounded, it

}T

B;le:j. We will find the solution of the transformed problem by adding each

constraint from N into the current relaxed tableau.

Let A} = (a1, alNP]T be the coefficient of the constraint [ which is rearranged

by basic and nonbasic columns where I € N. We will add the constraint a;, X, +

Uiy, XNp + St = by

— A,.xq into the tableau as follows:

Z  XBp XNp S RHS
z 1 0 CBPB LN Sea CNP 0 CEPBIZIBP +cTxg
xgp | 0| L, B5'Np 0 B:'bp
S 0 apr CLlNP 1 bl — AZ:XO

We can eliminate ag,

from the third row gives the following tableau:

by multiplying the second row by a

and subtracting

Z XBp XNp Sy RHS
z |1 0 | cg,Bp'Np—cy, |0 cg,Bp'bp +cTxo
xg, | 0| I, B:'Np 0 B,'bp
st 0] 0 |an, —ag,Bp'Np | 1|V =(b— Auxo) — a, Bp'bp

Let a;; be the coefficient of the constraint [ in column j after the elimination.

Then the solution can be in one of these two cases.

(i) If b, > 0, that is, the primal is still feasible, then we will consider the value

/
of ay;.

o If aj; > 0, we apply the primal simplex pivoting at aj;.

o If aj; <0, the transformed problem is unbounded.
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- — optimal solution

As

(a) NAR is unbounded. (b) Non-acute constraint is added.

Figure 3.8: Example of the original problem is optimal

From the figure 3.8b, the third constraint is valid and then we can pivot at

a3;.

(a) NAR is unbounded. (b) Non-acute constraints are added.

Figure 3.9: Example of the original problem is unbounded

From the figure 3.9b, after non-acute constraints were added, the primal is
still feasible and can not pivot at az; and asj. So the original problem is

unbounded.

(ii) If b, < 0, then both primal and dual solutions are infeasible at the current

iteration because of z; — ¢; < 0. We use the technique from Pan [14]. Pan’s
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method perturbs z; — ¢; < 0 to a positive value to obtain the dual feasible
and then perform the dual simplex. After the optimal solution is found, the

original z; — ¢; will be restored and the primal simplex is used. However, if

the dual problem is unbounded, then the original problem is infeasible.

> X

(a) NAR is unbounded. (b) The reinserted problem is infeasible.

q > X

(¢) The reinserted problem is o (d) The reinserted problem is un-

bounded.

Figure 3.10: Some cases of the unbounded of NAR after adding

The Empty Set of P

If P # @, then NAR will be solved and the solution can be as the above explana-
tion. On the other hands, if P = @ and N, = &, then the problem is unbounded
as theorem (3.3).
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In other cases, such as, if P = @, N; # @ and N, # @, then some possible

cases can occur as figure 3.11.

1"/ A, - . )Xl

O]

(a) The problem is unboun (b) The problem is unbounded.

q.‘, A4: - 0 ‘, A4: < )X:L

O

(¢) The problem is unbow (d) The problem is infeasible.

Figure 3.11: Some cases of P = @, N; # @ and N, # @ in R?

The solution can be either infeasible or unbounded. Therefore, we will relax
constraints from N, and then the relaxed problem can be rewritten as follows:

Maximize c¢Tx

(3.13)
subject to  Apn,x < by,
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Figure 3.12: Example of the N, constraint relaxation for P = @ and N, # &

We can choose

b,
= h A= :
Xg = Ac_ where irél%zc{Ai: -

1. (3.14)

Then, the relaxed problem will be transformed as follows:

Maximize c¢Tx' + cTx,
(3.15)
subject to  An,x" < by, — Apn,x;
The simplex can start by adding slack variables without using artificial variables

and this problem is unbounded by theorem 3.3. Then, the unbounded case will

be applied and constraints from N, will be reinserted one by one.

In the last case, if P = @ and N; = &, then some possible cases can occur as

in figure 3.13.
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(a) The problem is infeasible. (b) The problem is unbounded.

(¢) The problem is unbounded. (d) The problem is unbounded.

Figure 3.13: Some possible cases of P =@, Ny = & and N, # &

Then, we will relax all constraints except the first constraint. We can pick
a feasible point by choosing one variable with its coefficient is nonzero and set
other variables equal to zero. Then the value of the selected variable is the right
hand side value divided by its coefficient. The relaxed problem will has a single

constraint as

Maximize c¢Tx

(3.16)
subject to A;.x < by
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We can choose

b
ng =(0,...,0,2;,0, ...,O)T where z; = c%’ali £ 0. (3.17)

13

Therefore, the relaxed problem can be transformed as follows:

Maximize c¢Tx'+ cTxg
(3.18)
subject to  A1.x' < b — A1.x

The simplex can start by adding slack variables without using an artificial variable

and our algorithm can proceed.

Figure 3.14: Example of the N, constraint relaxation for P = & and N; = @

Summary of Our Algorithm

Accordingly, our algorithm starts from the classification of constraints then
non-acute constraints are relaxed. If the origin point of NAR is feasible, then the
simplex method will be applied. Otherwise, NAR will be transformed to the new
origin point which is identified by theorem 3.1. After that, non-acute constraints
will be reinserted to obtain the optimal solution of the original problem.

Since our algorithm solves the non-acute constraint relaxation problem with
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the simplex algorithm, we will call our algorithm as “Simplez method based on

Non-Acute constraint Relazation (SNAR)”.

3.2 SNAR

A general linear programming problem may not be in the form of the problem (3.1).
Then we will manipulate the problem to this form as the problem manipulation

table in Chapter I. SNAR can be summarized as the following flow chart:

Start
| InputA,b,c |
v
| Classification |
F
P+O L Unbounded |—
T
P=N,N=N,
Solve the Transformed NAR
— P={3.N=N—{3
Reinsert all T =
non-acute
constraints - -
Reinsert constraint
from N one by one
I

Q

Figure 3.15: Flow chart of SNAR

Each partial algorithm can be stated in detail below. Then, some examples

show the algorithm solving step by step.



Algorithm 1 Classification

. P=9g,P =0,N.=9,N,=0,N, =2,6§=10"°
2: for i =1 — m do compute 5; = A;. - ¢

3: if 3; > 0 then

4: Put i in P

5: if b; < 0 then

6: Put 7 in P~

7 end if

8: else

9: Put ¢ in N
10: if 3 =0 then

11: Put 7 in NV,
12: else
13: Put 7 in NNV,
14: if b; < 0 then
15: Put 7 in N
16: end if
17: end if
18: end if

19: end for




Algorithm 2 Transform NAR

20: if P # @ then
21:
22: if P~ = @ then

23: Xp = 0
24 else
b;
25: Xg = —Ac, where A = max{ }
P~ —A,;. - C
26: end if
27: else

28: if P=@ and N, = @ then

29: The problem is unbounded. Stop

30: else

31:

32: if N; # @ then

33:

34: if N, = @ then

35: Xo=0

36: else

37: Xo = Ac, where \ = 11213;—{{ sz C}, P=N;,,N=N,.
38: end if

39: else

40: P:{l},N:N—{l}andxi:ab—;,ali#(),:cjzo,
41: j=1,...,n and j # 1.

42: end if

43: end if

44: end if

45: Compute b=b— Axg
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Algorithm 3 Solve Transformed NAR

46:

Solve the following problem:

Maximize c¢Tx

subject to Apx < Bp

Algorithm 4 Check Optimality

AT:
48:
49:
50:
ol:

if z; —c; > 0 for all j € R then
go to Algorithm 5.
else

go to Algorithm 6.
end if

Algorithm 5 Optimal Case

52:
53:

54:
55:

56:
57:

o8:
59:
60:
61:

if by — Ayg,.Bpibp > 0 then
The current solution (x"*) is the optimal solution and x* = x"* + x; is the
optimal solution of the original problem.
else
Add [0, Ayn,. —ANB,. Bp:Np-, L, BN—ANBP*B;,HSP] into the current
tableau. Then perform the dual simplex algorithm.
if the dual optimal solution is found then
The current solution (x'*) is the optimal solution and x* = x'* + xq is
the optimal solution of the original problem.
else
The original problem is infeasible. Stop
end if
end if
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Algorithm 6 Unbounded Case

62:
63:

64:
65:
66:
67:

68:
69:
70:
71:
72:
73:
74:

75:
76:
7T
78:
79:
80:
81:

82:
83:
84:

for [ € N do

compute V') = (b — A;xg) — alBPngpr and add [0, A, — alBPBISle,
1, )] into the current tableau.

if o', > 0 then

if a;; > 0 then
Apply the primal simplex pivoting at aj;, N = N — I, P = P U{l}
and perform primal simplex algorithm. Go to Algorithm 3.
else
The problem is unbounded.
end if
else
Replace all z;—¢; < 0 where j € Jx by 0 and perform the dual simplex.
if The optimal dual solution is found then
Restore the original z; — ¢; < 0 where j € Jn and perform the
primal simplex algorithm.
else
The original problem is infeasible. Then stop.
end if
end if
end for
if the optimal solution is found then
The current solution (x”*) is the optimal solution and x* = x"* + xq is the
optimal solution of the original problem. Then stop.
else
The original problem is unbounded. Then stop.
end if




Example 3.4. Consider the linear programming problem:

Maximize Ty
subject to 21
3z

T

—3x

x1

221

3[151

)

4[12'1

Solution. Since some constraints are >, we

Then all constraints are < as follows:

e
T —
e
—3r1 +
T, —
2x1 —

31‘1 +

Then we compute A;. - c

+
+

+
_I_
+

L2
35[}2
2$2

X2

3I2
55(]2
T2
4]

X2

2.’13'2
X2
3.172
21’2
X2
31’2
3372
5.’13'2
T
)

Z2

AV VAN AN VAN VAN VAN AV AV AV

v

S = T =T

12
30

79

(3.19)

multiply the > constraints by -1.

AN VAN VAN VAN VAN VAN VAN VAN VAN

IA

(3.20)
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Constraint No. (7) A, A -c
1 [—2,—1]" | -4
2 [-3,-3]" | -9
3 [—1,-2]T | -5
4 -3, 1" -1
5 [1,-3]* -5
6 2, —3]" -4
7 3,5]" 13
8 [0,1]* 2
9 [-1,-1)7 | -3
10 [-4,-1]" | -6

So P = {7,8} and N = {1,2,3,4,5,6,9,10}, then the non-acute constraint

relaxation is written as:

Maximize xz; + 2o

IN

30 (3.21)
5

subject to 3xy + 5x9

IA

X2

Since bp = [30,5]" > 0, xo = 0 is a feasible point. Slack variables will be

added into the problem (3.21) to get

Maximize x; + 29

subject to 3x; 4+ bSzy + s = 30

(3.22)
) + S = 5
S1, s > 0.
The relaxed problem is now written in the following standard form.
Maximize x;7 — x1 + 225" — 229~
subject to 3217 — 3z, + baeT — bxyT + sy =30 (3.23)
ToT — X9 + 58, =5
[E1+, $1_7 ZE2+, ZL'Q_, S1, S92 Z 0

and we get the following initial tableau
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z x1" m1 x2" x9  S1 S9 RHS

11 1 2 2 0 0] 0
ss|0 3 -3 5 5 1 0| 30
50000 0 (O -1 0 1] 5

By Dantzig’s pivot rule, 25" enters the basis and s, leaves the basis in the first

iteration. After pivoting, we get

z .fIIl+ T LE‘2+ X9 81 8o RHS

1|1 1 0 0 0 2] 10
s |03 3 0 0 1 5|5
P00 0 1T -1 0 1] 5

Then 2,7 enters the basis and s; leaves the basis in the second iteration. After

pivoting, we get

z ozt JET UxsT oz 8 s,  RHS

z |1] O 0 0 0 1/3 1/3 |35/3

0] 1 -1 0 0 1/3 -5/3| 5/3
" | 0] 0 0 1 -1 0 1 5

The optimal solution of the problem (3.21) is found at the second iteration.

Compute by — Ayp,.Bpibp = [13/3,11,23/3,6,58/3,71/3,14/3, 23/3]T > 0.

Then the optimal solution is vy =5/3, 217 = 0,257 = 5,25~ = 0. So the optimal
solution of the original problem is 71 = 21" — 2, = 5/3, xo = 2ot — 297 =5 and
the optimal value is 35/3. O

The simplex algorithm solves this problem by adding 5 artificial variables using
5 iterations in Phase-I and 5 iterations in Phase-II, while SNAR uses 2 iterations
without artificial variables.

For the next example, it has a nonempty collection of acute constraints and
SNAR algorithm finds the optimal solution from the relaxed problem but it is not

the optimal solution from the original problem.
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Example 3.5. Consider the following problem:

Maximize To

subject to  x1 — 21y < 4

31’1 — QIQ S 6
(3.24)

r1tary < —4

—2LU1 + o < 4

T S -3

Solution. All constraints are < and ¢* = [0, 1]*. We compute A;, - c.

Constraint No. (4) A, A -c
1 [1,-2]7 | -2
2 3, =27 | -2
3 (1,1t 1
4 [-2,1]F | 1
5 [1,0]* 0

So P = {3,4} and N = {1,2,5}, then the non-acute constraint relaxation is

written as:
Maximize To
Subjec to r1tre < —4 (3.25)
—2I1+ZL’2 S 4
: —4
Since b3 = —4 < 0, choose x9 = —Ac where A = max{—l} = 4. So
T T T T 0 N —4
Xg = [0,—4] , C" Xy = [0,1] = —4 and bp = bp — APXO = —
—4 4
1 1 0 0
= . Then the transformed problem is rewritten as:
-2 1| |4 8
Maximize 'y —4
Subjec to i +2y <0 (3.26)

—2$/1+l’/2 < 8
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where x' = x — xy. The transformed problem is written in the following standard

form.

Maximize o' T — 1T —4
Subjec to T =T T = 45, = 0
—2$1I+ + 2$1/_ + .CEQH_ — $2/_ + Sy = 8
0

j — I+
Ty ,T1 ,T2

9 lei, S1, 52 Z
Start with the simplex algorithm, and the initial tableau is

z ozt oxT x’T oz sy sy RHS

2|1l 0 0 -1 1 0 0] -4
ss[0]-1 <1 (1O 11 0] 0
;00 -2 2 1 -1 0 1] 8

By Dantzig’s pivot rule, 25" enters the basis and s; leaves the basis in the first

iteration. After pivoting, we get

z x/T x x'™ oz sy s, RHS
z 1 ] -1 0 0 1 0 -4
2t | 0 1 -1 1 -1 1 0 0
s |00 -3 (3) 0 0 -1 1] 8

In the second iteration, x;'~ enters the basis and sy leaves the basis. After

pivoting, we get

z oo/t T xT oxT s ss  RHS
{10 0 0 0 23 1/3|-4/3
ol o 0 1 -1 23 1/3]8/3
»~lol c1 1 0o 0o -1/3 13| 83

The optimal solution of the relaxed problem is found at the second itera-
tion. Compute by — ANBP*B;BP = [4,34/3,—-1/3]T # 0. Add [0, AnN,. —
ANBP*B;lNP*, L., f)N - ANBP*B;BP] into the current tableau. We get
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L LA T P S1 sy s3 sS4 S5 RHS
110 0 0 0 23 1/3 0 0 0]-4/3
1ol 0 0o 1 -1 23 1/3 0 0 083
w10l c1 1 0 0 -1/3 1/3 0 0 083
s3 | 0 0 0 0 0 1 1 1 0 0 4
s [0 0 0 0 0 13 53 0 1 0]|34/3
ss |0l 0 0o 0o o @ 13 0 0 1/-1/3

The dual simplex method can be applied by choosing s; to enter the basis and

s5 to leave the basis. The result can be shown in the following tableau.

z oz x T T xT sy sy s3 s4 s RHS
z 1 0 0 0 0 0O 1 0 0 2 -2
"0 0 0 1 -1 0 1 0 0 2| 2
/70| -1 1 0 0 0O 0 0 0 -1 3
s3 | 0 0 0 0 0 o 2 1 0 3 3
sS4 |0 0 0 0 0 0O 2 0 1 1 11
s1 |0 0 0 0 0 1 -1 0 0 -3 1
The optimal solution is found and z;'~ = 3,2,"" = 0,27 = 2,2, = 0,5, =

1,89 =0,83 =3,s4 =11 and s5 = 0. So the optimal solution for the transformed

problem is 2} = 21" —2,"” = =3, 2}, = 25'" —25'~ = 2. Then the optimal solution
- . , —3 0 —3 .
of the original problem is x = x' +x¢ = + = and the optimal
2 —4 -2

value is -2.

For this problem, the simplex algorithm solves by adding 2 artificial variables
in Phase-I and uses 3 iterations to obtain the optimal solution while SNAR uses

3 iterations without artificial variables.
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Example 3.6. Consider the following problem:

Maximize —z
subject to —3z + 4y < 12
! = (3.28)
20 — y < =2
r + y < 1
-y < 2
Solution. All constraints are < and ¢ = [~1,0]T. We compute A, - c.
Constraint No. (i) A, A -c
1 [-3,4]F | 3
2 [1,0]" -1
3 2,-1]% | -2
4 [1,1]* -1
5 0,-1J%| o

So P = {1} and N = {2,3,4,5}, then the non-acute constraint relaxation is

written as:

Maximize —z
(3.29)
Subjec to —3z+4y < 12

Since by = 12 > 0, xq = 0 is a feasible point. Let x = 21 — x5 and y = x3 — x4.

The transformed problem is written in the following standard form.

Maximize —T1 + 2o
Subjec to  —3xy + 3wy +4x3 —4rs+ 5 = 12 (3.30)
T1,T2,X3, T4, S1 Z 0

Start with the simplex algorithm, and the initial tableau is in the following:

£ I To X3 x4 S RHS
z|1]1 -1 0 0 O 0
si|0[-3 3 4 4 1] 12
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By Dantzig’s pivot rule, x5 enters the basis and s; leaves the basis in the first

iteration. After pivoting, we get
Z T X2 T3 r4s s1 RHS
z |10 0 4/3 -4/3 1/3| 4
zo |0 -1 1 4/3 -4/3 1/3| 4

and find that problem (3.30) is unbounded. So add a constraint from N into
the current tableau one by one. The first constraint from N is added and we get

the following tableau

Z X1 Xy X3 z4s S1 Sy RHS

21|10 0 4/3 -4/3 1/3 0| 4
2o |01 1 4/3 -4/3 1/3 0| 4
s | 010 0 4/3 -4/3 1/3 1| 3

The problem is still unbounded. The second constraint from N is added, we

get the following tableau.

zZ T Ty I3 r4 S1 Sy s3 RHS
z |10 0 4/3 -4/3 1/3°0 0 4
ze |01 1 4/3 -4/3 1/3 0 0 4
s |00 0 4/3 -4/3 1/3 1 0 3
s3 |00 O 5/3 -5/3 2/3 0 1 6

The problem is still unbounded. The third constraint from N is added, we get
the following tableau.

Z Ty To T3 T4 S S s3 ss RHS
z |10 0 4/3 -4/3 1/3 0 0 O 4
o |0-1 1 4/3 -4/3 1/3 0 0 0 4
s |00 0 4/3 -4/3 1/3 1 0 0 3
s3 |00 O 5/3 -5/3 2/3 0 1 0 6
s4 /00 0 7/3 -7/3 1/3 0 0 1 5

The problem is still unbounded. The last constraint from N is added, we get
the following tableau.
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Z Ty Ty T3 Ta ST S22 S3 Sa S; RHS
z |10 0 4/3 -4/3 1/3 0 0 0 O 4
2 |0 ]-1 1 4/3 4/3 1/3 0 0 0 0 4
s 0|0 O 4/3 4/3 1/3 1 0 0 0 3
s3 0] 0 0 5/3 -5/3 2/3 0 1 0 O 6
s4 /00 O 7/3 -7/3 1/3 0 0 1 0 5
s5 100 0 -1 1 0O 0 0 0 1| -2

Since V'5 < 0, we perturb z, — ¢4 to 6 = 107% and add the Zperterb TOW to the

tableau as follows:

z
Zperterb
X2
$2
53
S4

S5

Z Ty Ty T3 Ti S S S3 Sia S; RHS
10 0 4/3 -4/3 1/3 0 0 0 0| 4
110 0 4/3 10° 1/3 0 0 0 0| 4
0[-1 1 4/3 -4/3 1/3 0 0 0 0| 4
00 0 4/3 -4/3 1/3 1 0 0 0] 3
0|0 0 5/3 5/3 2/3 0 1 0 0] 6
o0 o0 7/3 -7/3 1/3 0 0 1 0] 5
0jo 0o () T 0 0 0 0 1| -2

Perform the dual simplex, z3 enters the basis and sj5 leaves the basis. We get

z
Zperterb
)
52
S3
S4

€3

Z Ty Ty X3 Ty Si Sy Sz S4 S5 RHS
110 0 0O 0 1/3 0 0 0 4/3]| 4/3
110 0 0 4/3 1/3 0 0 0 4/3]| 4/3
o|j-1 1.0 0 1/3 0 0 0 4/3| 4/3
oo o o o0 1/3 1 0 0 4/3| 1/3
ojo o o0 0 2/3 0 1 0 5/3|38/3
oo o o o0 1/3 0 0 1 7/3|1/3
o,0 0 1 -1 o 0 0 0 -1 2

The right hand side is positive. So a primal solution is feasible. Consider the

original row 0, the optimal solution is found at this iteration. The optimal solution

isx=a1—29=0-4/3=—-4/3, y = x3—x4 = 2 and the optimal value is 4/3. O
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For this problem, the simplex algorithm needs by adding 3 artificial variables
and used 4 iterations to find a feasible solution in Phase-1. Phase-II uses 1 iteration
to obtain the optimal solution while SNAR uses 2 iterations without artificial

variables.
Example 3.7. Consider the following problem:

Maximize —x; + 9

subject to br; — x9 < =5
200 — 19 < —4

200+ 19y < —3 (3.31)
T — 2x9 < —4
T — dry < =5
T < 0
—  zy < 0

Solution. All constraints are < and ¢* = [~1,1]*. We compute A, - c.
Constraint No. (1) A, A -c

1 [5,—1)" | -6
2 negHRe -3
3 [2,1]" -1
4 1, -2* | -3
5 [1,-57 | -6
6 [1,0]" -1
7 0, 1" | -1

SoP=@, N.=@and N ={1,2,3,4,5,6,7}. From theorem 3.3, this problem

is unbounded. O

For this problem, the simplex algorithm solves by adding 5 artificial variables
and uses 7 iterations to obtain the unbounded solution while SNAR can conclude

the unbounded optimal solution by our theorem.
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Example 3.8. Consider the following problem:

Maximize —b5xr; — 4x9 — 3x3
subject to 1 — ry3 = —1
Ty + x5 — 23 = -1
—x1 + Ty — x3 = -—1
— 29 + 3x3 = 2 (3.32)
3z = 3
— 29 + x3 = =2
3ry — 2x9 + 213 = 3
3T + 3x3 = 9
x1, T2, 3 =2 0

Solution. Since this problem is in standard form which is not in form as the

problem (3.1), it is transformed into:

Maximize —b5x; — 4wy — 3x3
subject to 1 - x3 = —1
T+ Ty — 2x3 < -—1
—Xr1 —T9 + 2x3 < 1
T Ty — r3 < —1
ry - Ty + T3 < 1
— 2z 4+ 3x3 < (3.33)
4+ 22y — 3x3 < =2
3z < 3
—3x < -3
- 2xy + r3 < =2
29 — T3 < 2
3r1 — 2x9 4+ 223 < 3
=31 + 2z — 2w3 < =3
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321 + 3z3 < 9
—3x — 3z3 < -9
-7 < 0
— T9 < 0

— x3 < 0

Before SNAR starts, the number of constraints is double. Moreover, the number
of variables will increase twice for the standard form while the simplex method
solves this problem by adding eight artificial variables. Therefore, the number of
dimensions of parameter by SNAR solved is larger than the number of dimensions
of parameter by the simplex method solved. So we will consider the dual of the

standard form. O

3.3 Dual SNAR

Consider the primal linear programming problem in the standard form which is

given below:

Maximize c¢Tx
subject to Ax =Db (3.34)
x >0,

where A is an m xn matrix, c is an n-dimensional vector and b is an m-dimensional
vector.

Solving this by SNAR, the dimension of parameter will be expanded as follows:

Maximize c¢Tx
subject to Ax <b
—-Ax < -b

—x <0.

(3.35)

Consequently, we will consider the dual of this standard form which is defined

by:
Minimize bTw
(3.36)
subject to ATw > c.
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After the problem is transformed, it can be rewritten as follows:

—Maximize —bTw
(3.37)
subject to —ATw < —c.
This form is the same as the problem (3.1) which have the objective vector
—b, the coefficient matrix —A”™, and the right-hand side vector is c. We can use
the objective vector —b to separate the collections of constraints similar to SNAR.

Since (—A}) - (=b) = A} - b, we can separate the collections of acute constraints

and non-acute constraints as follows:

\ Al
—b optimal solution

g > W

Figure 3.16: Example of the feasible region of the dual problem

Therefore, we can use SNAR by using the matrix —A”T instead of A, using
the vector —b instead of ¢, the vector -c is the right-hand side of this algorithm
and the objective value is —z. Since we use SNAR in the dual form, we call this
algorithm the Dual SNAR. From lemma 2.23, the optimal solution is x} = —z,,4;

forall : = 1,...,n. If SNAR reports unbounded optimal solution, then the original
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problem is infeasible. If SNAR reports the infeasiblity, the original problem is
unbounded.

The Dual SNAR can be summarized as the following flow chart.

Ilnput -AT —¢, h]

| Classification |

' Unbounded —

—P={},N=N-{1

Reinsert all

non-acule
constraints

N3

Reinsert constraint
from N ome by one

The problem is
infeasible.

The problem is
unbounded.

Figure 3.17: Flow chart of Dual SNAR
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Example 3.9. Consider the following problem:
Maximize —5551 — 4[[’2 — 3%’3
subject to —x1 + X9 — x3 = —1

—2{L‘2+3l’3: 2

— 229 + 3 = -2 (3.39)
3r1 — 229 + 223 = 3
3z +3r3= 9
1,  Ta, r3 > 0

Solution. The dual form of this problem can be written as follows:

—Maximize wq; — 2ws + 2ws — 3wy — Yws

subject to w1 — 3wy — 3wy < b5
(3.40)

—wy + 2wy + 2wz + 2wy <4

wp — 3wy — w3 — 2ws — 3ws < 3

Then we compute A} - b as the following tableau:

Constraint No. (i) | A} -b

1 10
2 -7
3 38

So P ={1,3} and N = {2}, then the non-acute constraint relaxation is written
as:
—Maximize w; — 2we + 2w3 — 3wy — Yws
subject to  w; — 3wy — 3ws <5 (3.41)
w; — 3wy — w3 — 2wy — 3wy < 3
Since xy = 0 is a feasible point, slack variables will be added into the problem

(3.41).

—Maximize w; — 2ws + 2wz — 3wy — Ywy
subject to  w — 3wy — 3ws +51 =5 (3.42)

w1—3w2— ’LU3—2U]4—3’(U5—|—82:3
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Before we put these to the tableau, it will be converted to the standard form.

Then, we get the following initial tableau:

zZ Wy w1 Wsy wy ws w3~ Wy Wy~ wWs ws~  S; S» RHS
—z | 1] -1 1 2 2 2 2 3 -3 9 9 0 0 0
s1 0] 1 -1 0 0 0 0 -3 3 -3 3 1 0 5
|0/ 1 -1 -3 3 a1 1 -2 2 3 () o0 1| 3

By Dantzig’s pivot rule, w;~ enters the basis and s, leaves the basis in the first

iteration. After pivoting, we get

z wt owT weT weT wst owsT wyt owsT wsT o wsT sy sy RHS
—z | 1] 2 -2 -7 7 -5 5 -3 3 0 0 0 3 9
ss 0o o & -3 1 -1 -1 1 0 0 1 -1 2
wsm |0 1/3 -1/3 -1 1 -1/3 1/3 -2/3 2/3 -1 1 0 1/3| 1

wy ' enters the basis and s; leaves the basis in the second iteration. After
pivoting, we get

z  wq Wy We Woy w3 w3~ Wy wy~ Wk ws~ 81 So RHS

—z |12 =2 0o 0 -83 83 -16/3 16/3 0 0 7/3 2/3 |41/3

wrlol o o 1 1 1/3 -1/3 -1/3 1/3 0 0 1/3 -1/3| 2/3

wsm |0 1/3 -1/3 0o 0o 0 0 -1 1 -1 1 1/3 0 |5/3

NAR is unbounded. The second constraint will be added to the tableau as

follows:
z o wT wiT wet wyT wst o wsT wst ows wst o wsT sy s s3 RHS
21| 2 -2 0o 0 -83 83 -16/3 16/3 0 0 7/3 2/3 0 |41/3
w0 0 0o 1 -1 1/3 -1/3 -1/3 1/3 0 0 1/3 -1/3 0| 2/3
ws~ | 0] 1/3 -1/3 0 0 0 0 -1 1 -1 1 1/3 0 01| 5/3
s3 |0 -1 1 2 -2 2 -2 2 -2 0 0 0 0 1 4
Apply with this basis, then we get
z o wT wT wyT wyT  wst wsT wyet owT wsT wsT st So s3  RHS
21l 2 2 0 0 -83 83 -16/3 16/3 0 0 7/3 2/3 0| 41/3
w0l 0o 0o 1 1 1/3 -1/3 -1/3 1/3 0 0 1/3 -1/3 0| 2/3
w013 <13 0 0o o 0 -1 1 -1 1 1/3 0 0] 53
ss 00 -1 1 0 0 4/3 -4/3 8/3 0 0 -2/3 2/3 1|22/3
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w;T enters the basis and s3 leaves the basis in the second iteration. After

pivoting, we get

2 owT owT weT weT wst wsT wsT wa wst owsT s S9 s3  RHS
—z |1 0 0 0 0 0 0 0 0 0 0 1 2 2 19
w0 -1/8 1/8 1 -1 1/2 -1/2 0 0 0 0 1/4 -1/4 1/8 1
we |0l 0 0 0 0 1/2 -1/2 0 0 -1 1 0 1/4 3/8|8/3
w T 0]-3/8 3/8 0 0 1/2 -1/2 1 -1 0 0 -1/4 1/4 3/8| 1

The optimal solution of this problem is found at the third iteration. Since the
dual of this problem is the original problem, the optimal solution of this tableau
will be the optimal solution of the original problem. From lemma (2.23), we obtain

the optimal solution (z7, x5, x3) = (1,2,2) and the optimal value is —19. O

3.4 Comparison of the Problem Dimensions

3.4.1 SNAR vs Two-Phase Method

Recall the simplex algorithm, it performs on a linear programming problem in the

standard form. So the original problem (3.1) is transformed to

Maximize c¢'xt — c'x™ + 0s
subject to Ax" — Ax™ + s=Db (3.43)

x, WiV s> 0.

The number of dimensions of the problem (3.43) is as follows:

A b I c Total

mx2n|{m|mxm|2n+m | (mx (2n+m))+2m+2n

If there exist b; < 0,7 € {1,...,m}, we can not choose identity matrix as the
basis. Suppose b is split into bt > 0 and b~ < 0. Therefore, it will be multiplied

by —1. Then, we can rewrite the system (3.43) as follows:
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Maximize ct'xt — Tx~
subject to Atxt — ATx™ 4+ st = bt
(3.44)
—Ax"T + ATx" —s = -b~
x, x, st, s > 0,
AT bt
where A = , b= . b" is an m™ dimensional vector and b~ is an m™
A~ b~
dimensional vector, b" >0, b~ <0 and m™ +m™ = m.

Since the identity matrix is not the initial basis, the Two-Phase method need

to add m™ artificial variables. Then, Phase-I can be written as the following.

Minimize 1Tx,
subject to Atx" — Afx™ 4 st = bt
(3.45)
—AxT+ A x — s +x,=-b"
X+7 == S+7 s, Xq = 07

Consider SNAR, we can choose x3 which is a feasible point. So Apxg < bp
and bp — Apxg > 0. Then slack variables are added to transform inequality

constraints to equality constraints.

Maximize c¢'x" — ¢Tx™ + ¢Txq
subject to Apxt — Apx~ + s =bp — Apx (3.46)
x+ X~ s >0

Y Y

Therefore, we can compare the number of dimensions of the problem between

SNAR and Two-Phase method as the following table.
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Table 3.1: Comparison the number of dimensions of parameters between SNAR

and Two-Phase Method

Method Dimension of parameters
NAR (m1 X (2n+my)) + 2n + 2my
SNAR
AN (m x (2n+m)) + 2n +2m

PhaseI | (mx 2n+m+m™)) +2n+2m +m~
Two-Phase Method
Phase IT | (m x 2n+m+m™)) +2n+2m +m~

where m; is the number of the acute constraints, m~ is the number of artificial
variables, NAR is the non-acute constraint relaxation and AN is the non-acute
constraint reinsertion.

Here, we found that the number of dimensions of parameters solving by SNAR
solved is less than or equal to the number of dimensions of the original problem
while the number of dimensions of the problem solving by Two-Phase method is

greater than the original problem.

3.4.2 Dual SNAR vs Two-Phase Method

Recall the standard form of Dual SNAR.

Maximize cTx
subject to Ax =Db (3.47)
x >0,
where A is an m X n matrix, c¢ is an n-dimensional vector and b is an m-

dimensional vector. For the two-phase method, by adding m artificial variables,

the simplex method can start. Therefore, phase-I can be written as follows:

Minimize 17x,
subject to Ax+x, =Db (3.48)
X, X, >0,

Consider the number of dimensions of the problem solved by SNAR, it will be

expanded as follows:
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Maximize c¢Tx
subject to Ax <b
(3.49)
—-Ax < -b
—-x <0

The number of constraints increases to 2m + n constraints and the number of

variables is n while the dual of this standard form which is defined by:

-Maximize —bTw
(3.50)
subject to ~ATw < —c,

the number of constraints is n and the number of variables is m. Therefore,
from the subsection 2.4.1, the number of dimensions of SNAR, Dual SNAR and

two-phase method will be summarized in Table 3.2.

Table 3.2: Comparison the number of dimensions between SNAR, Dual SNAR
and Two-Phase Method

Method The number of dimensions
NAR (my X (2n +mq)) + 2n + 2my
SNAR
AN ((2m +n) x (3n+2m)) +4m +4n
NARp (n1 X (2m +nq)) + 2m + 2ny
Dual SNAR
ANp (nx (2m+n))+2m +2n
Phase I (mx(n4+m))+2m+n
Two-Phase Method
Phase 1T (mx (n+m))+2m+n

where n; is the number of the acute constraints in the dual problem, NARp is
the non-acute constraint relaxation and ANp is the non-acute constraint reinser-
tion of the dual problem.

Here, we found that the number of dimensions of the problem by SNAR solved
is greater than the dimension of the original problem solving by Dual SNAR and
Two-Phase method while the number of dimensions of the problem solving by
Dual SNAR is likely as the number of dimensions of of the problem solving by the

Two-Phase method depend on n;.



CHAPTER IV
EXPERIMENTAL RESULTS

In this Chapter, we will describe problems designed to test our algorithms. The
computational results are proposed and summarized. Finally, we will analyze our

results and findings.

4.1 Experimental Designs

Since our algorithms: SNAR and Dual SNAR, were designed to suit for solving
different problem structures, test problems were differently designed. Randomly
generated linear programming test problems for comparing between SNAR, Two-
Phase method and Arsham’s method were called Problem P, and randomly
generated linear programming test problems for comparing between SNAR, Dual

SNAR, Two-Phase method and Arsham’s method were called Problem D.

4.1.1 Problem P

We tested SNAR based on simulated linear programming problems. Randomly

generated linear programming test problems
- are maximization problems;
- have a vector ¢ with ¢; € [-9,9],i = 1,2,...,n;
- have a matrix A with a;; € [-9,9],i=1,2,...,m,j =1,2,....,n;
- have a vector x with x; € [-9,9],i =1,2,...,n;

Then we derive a vector b with b, = A;x where ¢ € {1,2,...,n} and b; =
A;x + 1 to guarantee feasibility where j € {n + 1,n + 2,...,m}. Junior and

Lins [21] used these interval to generate parameters for testing their algorithm.
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We found that approximately 50% of the number of constraints are negative and
approximately 50% constraints are non-acute.

The different sizes of the number of variables (n) and the number of constraints
(m) were tested with SNAR, Two-Phase method and Arsham’s method[15, 16]
where m > n, n € {5, 10, 20, 50, 100} and m depended on sizes of variables as
m €{1n, 2n, 5n, 10n, 20n, 30n, 40n, 50n}.

Problems are in form of the problem (3.1) having n variables, m constraints,
about 50% of “<” constraints (=~ %) or O(m) space and RHS are negative. So
Two-Phase method required approximately to add % artificial variables. By
comparing the number of dimension of problem as the table 3.1, the number
of dimension of problem for Two-Phase method has (=~(m x (2n + m + %))—i—
2n+2m+ m) O(mn+m?) . While the number of dimension of problem for NAR
will be (%(5 X (2n+ %))4— 2n+m) O(mn+m?) and the dimension of parameters
of the last tableau will be (m x (2n +m))+ 2n + 2m.

Arsham’s method deals with the linear programming problems of the same
dimension as SNAR.

For a small number of constraints with respect to n (m € {n,2n}) depended on
n, relaxed problems solved by SNAR had unbounded optimal solutions while, for a
large number of constraints with respect to n(m € {5n, 10n, 20n, 30n, 40n, 50n}),
relaxed problems solved by SNAR had optimal solutions. So we separate com-
putational results into two sections: a small number of constraints and a large

number of constraints.

4.1.2 Problem D

Dual SNAR were tested by simulated linear programming problems in the standard

form. The randomly generated linear programming test problems
- are maximization problems;
- have a vector ¢ with ¢; € [-9,9],i = 1,2,...,n;

- have a matrix A with a;; € [-9,9],i=1,2,...,m,j =1,2,....n;
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- have a vector x with x; € [0,9],i = 1,2, ..., n;

Then we derive a vector b with b = Ax for guarantee the feasibility.

The different sizes of the number of variables (n) and the number of con-
straints (m) were tested with SNAR, Dual SNAR, Two-Phase method and Ar-
sham’s method where m > n, n € {5, 10, 20} and m depended on sizes of variables
as m €{1n,2n, 5n, 10n, 20n, 30n, 40n, 50n}. We did not test algorithms with sizes
n € {50, 100} since we could see the trend of the average number of iterations

and the average running time from solving the smaller sizes.

4.2 Computational Results

According to a designed problem, the average number of iterations and the aver-
age running time were kept to compare efficiency. Since we had two collections of
problems, the computational results were divided into two subsections: computa-

tional results on problems P and computational results on problems D.

4.2.1 Computational Results on Problems P

A Small Number of Constraints

Firstly, we report the comparison of the average number of iterations between
SNAR, Two-Phase method and Arsham’s method for a small number of constraints
as in Table 4.1. Description of this table were shown in Table 4.2. Then, we report
the average running time in the table 4.3, and ratios of the average number of
iterations and the average running time by Two-Phase method to SNAR and by
Arsham’s method to SNAR were shown in Table 4.4. Then, the average number

of iterations and the average running time were plotted.



Table 4.1: The average number of iterations between SNAR, Two-Phase method and Arsham’s method for a small number of

constraints
SNAR Two-Phase Method Arsham’s Method
m n NAR AN NAR+AN  SD; | Phasel Phasell Phasel+II SD, RP > RP+>  SDsy
5) 5) 1.91 2.45 4.36 2.52 5.20 2.42 7.62 3.35 1.20 3.78 4.98 2.95
10 5 4.14 3.60 7.74 3.82 | 10.39 3.51 13.90 4.50 | 2.18 8.53 10.71 5.63
10 10 | 3.98 5.55 9.53 4.20 | 12.62 4.78 17.40 6.33 | 2.86  10.52 13.38 6.43
20 10 9.04 17.21 26.25 11.61 26.21 6.70 32.91 9.77 | 4.98 31.41 36.39 16.46
20 20 8.71 14.10 22.81 10.48 | 28.11 8.11 36.22 10.67 | 5.58 28.30 33.88 11.81

40 20 | 20.68  66.94 87.62 34.69 | 61.93 18.48 80.41 18.80 | 10.91 110.34  121.25  46.07
50 50 | 2479  69.37 94.16 33.83 | 79.47 15.07 94.54 21.53 | 16.06 112.63 128.69  43.29
100 50 | 58.64  369.92 428.56 136.90 | 181.95  46.40 228.35  45.08 | 32.90 54948  582.38 163.68
100 100 | 50.66  222.17 272.83 70.61 | 177.05  29.16 206.21  42.48 | 37.57 318.88 356.45  94.60
200 100 | 127.69 1145.84 1273.53  306.97 | 411.36  101.59 512.95  80.72 | 77.22 1884.85 1962.07 448.18

In table 4.1, the boldface numbers identify the smallest average number of iterations and the italic numbers identify that the

smallest standard deviations of iterations for solving linear programming problems of the same size. The description of columns

in table 4.1 are shown in table 4.2.

¢0T



Table 4.2: Description of the columns in table 4.1

NAR

AN

NAR+AN

SD,

Phase I

Phase II

Phase I+11

SD,

RP

v

RP+>

SD3

The average number of iterations of the non-acute
constraint relaxation

The average number of iterations of the non-acute
constraint reinsertion

The summation of the average number of iterations
of the non-acute constraint relaxation and the
non-acute constraint reinsertion

The standard deviation of the number of iterations
of the SNAR algorithm

The average number of iterations of Phase |

The average number of iterations of Phase 11

The summation of the average number of iterations
of Phase I and Phase I1

The standard deviation of the number of iterations
of Two-Phase method

The average number of iterations of the relaxed
problem in Arsham’s method

The average number of iterations of > constraints
reinsertion

The summation of the average number of iterations
of the relaxed problem and the average number of
iterations of > constraints reinsertion in Arsham’s
method

The standard deviation of the number of iterations

of Arsham’s method
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Then, the average running time to solve unbounded problems including their

standard deviations are reported in the following table:
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Table 4.3: The average running time between SNAR, Two-Phase method and

Arsham’s method for a small number of constraints

SNAR Two-Phase Method Arsham’s Method

time (sec.) SD time (sec.) SD time (sec.) SD

) 5 0.00076  0.00044 | 0.00090  0.00033 | 0.00088 0.00039
10 5 0.00171  0.00072 | 0.00161  0.00076 0.00184 0.00082
10 10 0.00200  0.00080 | 0.00197  0.00073 | 0.00231 0.00096
20 10 0.00539  0.00174 | 0.00415 0.00148 | 0.00651 0.00216
20 20 0.00594  0.00276 | 0.00540 0.00257 | 0.00774 0.00269
40 20 0.02352  0.00675 | 0.01686  0.00428 | 0.02940 0.00879
50 50 0.05020  0.02045 | 0.03430 0.01273 | 0.06260 0.02334
100 50 0.26800  0.06709 | 0.16110 0.03423 | 0.34040 0.08055
100 100 | 0.30590  0.06721 | 0.22010 0.05241 | 0.37610  0.086338
200 100 | 2.49010  0.54057 | 1.33920 0.21153 | 3.58020 0.70940

In table 4.3, the boldface numbers identify the smallest average running time
and the italic numbers identify the smallest standard deviations of the running

time for solving linear programming problems of the same size.

Table 4.4: Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to SNAR

Ratio of iterations Ratio of running time
2-Phase/SNAR  Arsham/SNAR | 2-Phase/SNAR  Arsham/SNAR

5 5 1.75 1.14 1.19 1.15

10 5 1.80 1.38 0.94 1.08
10 10 1.83 1.40 0.99 1.16
20 10 1.25 1.39 0.77 1.21
20 20 1.59 1.49 0.91 1.30
40 20 0.92 1.38 0.72 1.25
50 50 1.00 1.37 0.68 1.25
100 50 0.53 1.36 0.60 1.27
100 100 0.76 1.31 0.72 1.23
200 100 0.40 1.54 0.54 1.44

The results in table 4.1 and 4.3 are plotted as the following figures.
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The average number of iterations

The number of constraints

Figure 4.1: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 5 variables
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Figure 4.2: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 5 variables
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Figure 4.3: The average number of iterations solved by SNAR, Two-Phase method
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Figure 4.4: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 10 variables
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Figure 4.5: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 20 variables
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Figure 4.6: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 20 variables
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Figure 4.7: The average number of iterations solved by SNAR, Two-Phase method
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Figure 4.8: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 50 variables
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Figure 4.9: The average number of iterations solved by SNAR, Two-Phase method

and Arsham’s method for 100 variables
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Figure 4.10: The average running time solved by SNAR, Two-Phase method and

Arsham’s method for 100 variables

A Large Number of Constraints

The average number of iterations and the average running time for solving prob-
lems with a large number of constraints are shown in Tables 4.5, 4.6 and 4.7.
Then, ratios of the average number of iterations and the average running time are

shown in Table 4.4.



Table 4.5: The average number of iterations solved by SNAR, Two-Phase method and Arsham’s method for 5, 10 and 20 variables

SNAR Two-Phase Method Arsham’s Method
m n | NAR AN NAR+AN SD; | Phasel Phasell Phasel+II SD, RP > RP+>  SDs
25 5 | 867 1.93 10.60 2.81 | 20.28 3.97 24.25 4.46 | 490 14.03 18.93 6.25
50 5 | 1099 1.43 12.42 2.59 | 36.13 4.46 40.59 724 | 6.20 19.78  25.98 8.86
100 5 | 14.33 1.37 15.70 3.833 | 63.51 5.52 69.03 959 | 790 1814 26.04 10.55
150 5 | 15.00 1.24 16.24 3.14 | 90.90 6.02 96.92 12.02 | 899 21.59 30.58 13.69
200 5 | 16.42 1.29 17.71 3.68 | 122.14 6.53 128.67 15.38 | 8.89 2484 33.73 13.43
250 5 | 17.76  1.38 19.14 3.94 | 149.18 6.17 155.35 14.31 | 9.40 2596 35.36  15.13

50 10| 20.79  7.07 27.86 6.85 | 48.20 10.15 58.35 8.26 | 10.19 59.10 69.29  18.06
100 10 | 2845 4.2 32.70 5.15 | 86.87 12.72 99.59 13.50 | 13.53 68.12  81.65  26.80
200 10| 34.69 3.51 38.20 5.66 | 150.81  14.31 165.12 18.73 | 17.55 7456  92.11  35.94
300 10| 38.63 5.25 43.88 7.58 | 212.81 1491 227.72 24.11 ] 20.52 76.24  96.76  41.83
400 10| 41.55 431 45.86 6.76 | 27293  16.31 289.24 28.08 | 18.80 9548 114.28 41.52
500 10| 44.03 4.75 48.78 7.46 | 328.08  17.22 345.30 27.72 1 23.24  81.08 104.32 41.55
100 20 | 51.23 20.27 71.50 24.97 | 120.54  27.07 147.61 17.72 | 22,72 228.51 251.23  55.30
200 20| 69.28 10.20 79.48 10.49 | 20547  35.58 241.05 26.91 | 31.14 254.76 285.90 81.51
400 20| 88.15 10.55 98.70 15.05 | 359.10  40.11 399.21 35.43 | 37,92 279.33 317.25 109.80
600 20| 98.66 10.77  109.43 12.19 | 500.45  42.69 043.14 49.14 | 42.46 298.23 340.69 117.65
800 20| 104.87 11.31 116.18  12.63 | 645.40  44.99 690.39 52.09 | 49.52 303.24 35276 125.74
1000 20| 112.34 11.12  123.46  12.97 | 772.61  44.10 816.71 67.38 | 49.96 300.93 350.89 126.99

OTT



Table 4.6: The average number of iterations solved by SNAR, Two-Phase method and Arsham’s method for 50 and 100 variables

SNAR Two-Phase Method Arsham’s Method
m n NAR AN  NAR+AN SD; | Phasel Phasell Phasel+II  SD, RP > RP+> SD3
250 50 172.5  51.19 223.69  2/.83 | 405.39 103.88 509.27 44.04 | 67.38 1510.42 1577.8  242.69
500 50 | 237.82  42.41 280.23  25.99 | 686.87  132.06 818.93 58.35 | 85.93 1724.21 1810.14 363.73
1000 50 | 305.74  41.25 346.99  28.18 | 1164.99 154.85 1319.84 90.34 | 112.26 1717.33 1829.59 456.07
1500 50 | 340.18 42.09 382.27  30.31 | 1614.14  162.56 1776.70  114.84 | 126.39 1680.94 1807.33 489.22
2000 50 | 366.02  40.90 406.92  35.55 | 2063.34  173.49 2236.83  168.68 | 142.71 1820.62 1963.33 996.88
2500 50 | 384.22  41.23 425.45  35.66 | 2502.03  179.56 2681.59  212.32 | 146.43 1795.97 1942.40 535.65
500 100 | 475.54 142.33 617.88  51.44 | 1077.71  293.92 1371.63 78.42 | 159.83 6640.71 6800.54 1215.04
1000 100 | 624.21 119.99  744.20 64.36 | 1755.44 = 355.94 2111.38  138.24 | 189.67 7340.59 7530.26 1067.89
2000 100 | 793.40 103.69 897.09 64.13 | 2927.42  430.28 3357.70  226.21 | 234.63 6815.52 7050.15 1272.25
3000 100 | 906.13 106.80 1012.93 75.03 | 4102.53 498.27 4600.80  230.59 | 287.33 6863.40 7150.73 1196.67
4000 100 | 950.33 96.17  1046.50 56.63 | 5458 474.67 5932.67  160.90 | 436.33 5674.67 6111  1764.78
5000 100 | 1000.56 126.56 1127.11 61.58 | 6109.11  504.44 6613.56  343.01 | 302.33 7105.11 7407.44 1712.84

In Table 4.5 and 4.6, the boldface numbers identify the smallest average number of iterations and the italic numbers identify

the smallest standard deviations of iterations for solving linear programming problems of the same sizes.

ITT
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Table 4.7: The average running time solved by SNAR, Two-Phase method and

Arsham’s method

SNAR Two-Phase Method Arsham’s Method
m n | time (sec.) SD time (sec.) SD time (sec.) SD
25 D 0.0017 0.0008 0.0040 0.0013 0.0046 0.0014
50 D 0.0035 0.0009 0.0093 0.0022 0.0135 0.0023
100 5 0.0119 0.0026 0.0375 0.0066 0.0494 0.0055
150 d 0.0286 0.0032 0.0989 0.0145 0.1261 0.0114
200 D 0.0616 0.0087 0.2442 0.0368 0.2681 0.0244
250 D 0.1212 0.0122 0.4474 0.0527 0.4955 0.0272
50 10 0.0058 0.0021 0.0142 0.0032 0.0209 0.0035
100 10 0.0164 0.0030 0.0554 0.0084 0.0674 0.0090
200 10 0.0785 0.0141 0.3197 0.0448 0.3194 0.0349
300 10 0.2403 0.0181 0.9308 0.1245 0.9039 0.0681
400 10 0.5037 0.0281 2.1378 0.2751 1.9202 0.1458
500 10 0.9640 0.0519 4.7602 0.4823 3.3199 0.2088
100 20 0.0350 0.0127 0.0925 0.0175 0.1463 0.0235
200 20 0.1148 0.0159 0.5004 0.0617 0.5075 0.0648
400 20 0.6218 0.0471 3.0493 0.3470 2.4188 0.2850
600 20 2.0391 0.1049 10.7710 1.1896 7.0536 0.6880
800 20 5.3593 0.2456 24.8665 2.5508 16.0027 1.3772
1000 20 10.5502 0.4020 45.9179 5.1068 29.6589 2.1707
250 50 0.4455 0.0481 1.7643 0.2022 2.7856 0.3727
500 50 1.9987 0.1856 12.2450 1.1287 10.9249 1.5327
1000 50 | 14.6223  0.9170 77.1635 7.0560 58.8373 7.7648
1500 50 46.0241 1.9569 257.0604 22.7486 163.2123 19.5543
2000 50 | 107.9391  4.5046 599.3633 60.0334 | 354.7317 40.1074
2500 50 | 218.2526  7.2408 | 1192.7648 126.0117 | 680.5636 66.4993
500 100 | 4.8388 0.4453 23.3188 1.9957 41.4612 7.1329
1000 100 | 24.5372 2.0704 131.4173 12.3284 179.1298 22.6895
2000 100 | 150.5739  8.9914 933.6161 81.9089 | 793.9966 96.3361
3000 100 | 485.3817 25.7367 | 3111.8113 213.7521 | 2216.7947 211.6782
4000 100 | 1108.7317 25.0011 | 7395.9633 323.9440 | 4258.3450  354.2545
5000 100 | 2128.4811 83.0332 | 12761.9222 957.3011 | 8470.2667 1126.8516
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Table 4.8: Ratios of the average number of iterations and the average running

time by Two-Phase method to SNAR and by Arsham’s method to SNAR

Ratio of iterations Ratio of running time

m n | 2-Phase/SNAR  Arsham/SNAR | 2-Phase/SNAR Arsham/SNAR
25 5 2.29 1.79 2.36 2.75
50 5 3.27 2.09 2.69 3.91
100 5 4.40 1.66 3.16 4.17
150 5 5.97 1.88 3.45 4.40
200 5 7.27 1.90 3.96 4.35
250 5 8.12 1.85 3.69 4.09
50 10 2.09 2.49 2.45 3.60
100 10 3.05 2.50 3.38 4.12
200 10 4.32 2.41 4.07 4.07
300 10 5.19 2.21 3.87 3.76
400 10 6.31 2.49 4.24 3.81
500 10 7.08 2.14 4.94 3.44
100 20 2.06 3.51 2.64 4.18
200 20 3.03 3.60 4.36 4.42
400 20 4.04 3.21 4.90 3.89
600 20 4.96 3.11 5.28 3.46
800 20 5.94 3.04 4.64 2.99
1000 20 6.62 2.84 4.35 2.81
250 50 2.28 7.05 3.96 6.25
500 50 2.92 6.46 6.13 5.47
1000 50 3.80 5.27 5.28 4.02
1500 50 4.65 4.73 5.59 3.55
2000 50 5.50 4.82 5.55 3.29
2500 50 6.30 4.57 5.47 3.12
500 100 2.22 11.01 4.82 8.57
1000 100 2.84 10.12 5.36 7.30
2000 100 3.74 7.86 6.20 5.27
3000 100 4.54 7.06 6.41 4.57
4000 100 5.67 5.84 6.67 3.84
5000 100 5.87 6.57 6.00 3.98

The results in Table 4.5, 4.6 and 4.7 are plotted as the following figures.
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Figure 4.17: The average number of iterations solved by SNAR, Two-Phase

method and Arsham’s method for 50 variables
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Figure 4.19: The average number of iterations solved by SNAR, Two-Phase
method and Arsham’s method for 100 variables
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4.2.2 Computational Results on Problem D

For comparison, we report only the average number of total iterations of four
algorithms and their standard deviations. The average number of iterations of the
relaxed problem for SNAR, Dual SNAR and Arsham’s method and the average
number of iterations of Phase-I for the simplex method were not reported. Then,
we report the average running time as the table 4.10, and ratios of the average
number of iterations and the average running time solved by SNAR to Dual SNAR,
by Two-Phase method to Dual SNAR and by Arsham’s method to Dual SNAR

are shown in Table 4.11.

Table 4.9: The average number of iterations solved by SNAR, Dual SNAR, Two-

Phase method and Arsham’s method.

SNAR Dual SNAR Two-Phase Method | Arsham’s Method
m n | iterations SD; | iterations SD, | iterations SDs3 iterations  SDy
5 5 9.16 2.93 7.79 2.22 5.08 0.27 7.80 1.98
10 5 8.79 2.92 6.81 1.97 7.14 1.19 8.07 2.66
25 5 9.44 2.61 5.95 1.53 8.41 1.48 7.18 1.91
50 5 9.55 2.58 5.74 1.28 8.73 1.80 7.60 2.31
100 5 9.95 2.62 5.59 1.20 9.10 2.04 7.54 2.43
150 5 10.38 2.92 5.46 1.08 8.62 1.90 7.71 2.78
200 5 10.45 3.26 5.30 0.72 8.93 1.83 7.56 2.24
250 5 10.03 3.05 5.46 0.98 8.87 2.03 7.66 2.24
10 10 26.93 7.84 21.44 5.63 10.43 0.70 24.05 6.38
20 10 23.08 8.41 17.51 4.74 15.69 1.98 23.03 5.85
50 10 24.99 6.82 16.73 4.90 20.11 3.17 21.29 7.07
100 10 26.00 8.34 13.97 4.06 19.82 3.49 21.87 12.27
200 10 28.17 8.86 13.16 3.85 20.08 3.06 20.34 7.72
300 10 26.79 6.98 12.02 2.96 19.87 3.80 24.46 14.93
400 10 25.33 6.74 11.95 2.41 19.86 3.21 20.59 8.80
500 10 26.75 7.68 11.50 1.80 19.93 3.59 22.61 9.31
20 20 97.61 32.65 56.38 13.01 22.24 1.83 76.32 14.84
40 20 69.25 18.03 44.70 9.71 36.55 4.25 80.40 16.63
100 20 82.40 26.97 | 40.30 10.59 47.64 5.80 75.69 28.78
200 20 91.08 44.27 |  34.67 9.81 48.52 5.97 84.46 67.17
400 20 88.75 32.44 29.63 8.12 47.78 6.79 94.31 85.48
600 20 92.66 36.12 28.04 6.39 48.46 6.90 98.12 83.41
800 20 92.59 38.30 25.85 4.9/ 47.10 6.00 88.02 82.25
1000 20 92.82 32.59 25.89 3.91 47.43 6.76 96.30 85.75
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Table 4.10: The average running time solved by SNAR, Dual SNAR, Two-Phase

method and Arsham’s method.

SNAR Dual SNAR Two-Phase Method | Arsham’s Method

m n | iterations  SD; | iterations  SDo iterations SDs iterations  SDy
5 5 0.0015  0.0005 | 0.0009 0.0003 | 0.0005 0.0001 0.0014  0.0002
10 5 0.0016  0.0004 | 0.0008 0.0004 | 0.0007  0.0002 0.0027  0.0003
25 5 0.0040  0.0005 | 0.0008  0.0004 0.0013 0.0003 0.0121  0.0006
50 5 0.0133  0.0006 | 0.0009 0.0004 0.0023 0.0004 0.0534  0.0009
100 5 0.0723  0.0020 | 0.0010 0.0006 | 0.0057 0.0013 0.3049  0.0030
150 5 0.2319  0.0040 | 0.0011 0.0006 | 0.0093 0.0016 1.0342  0.0106
200 5 0.4933  0.0098 | 0.0013 0.0006 | 0.0152 0.0024 2.3548  0.0173
250 5 0.9968  0.0812 | 0.0014 0.0006 | 0.0234 0.0040 3.8536  0.1502
10 10| 0.0047 0.0017 | 0.0025 0.0007 | 0.0009 0.0004 0.0043  0.0008
20 10| 0.0049 0.0013 | 0.0022 0.0009 | 0.0018  0.0005 0.0094  0.0009
50 10| 0.0172  0.0018 | 0.0027  0.0013 0.0043 0.0012 0.0507  0.0020
100 10| 0.0810 0.0043 | 0.0027 0.0014 | 0.0097 0.0016 0.2758  0.0059
200 10| 0.5653  0.0156 | 0.0038  0.0020 | 0.0293 0.0042 2.2965  0.0288
300 10 1.8107  0.0759 | 0.0046 0.0017 | 0.0694 0.0088 6.7843  0.2559
400 10| 5.0841  0.1028 | 0.0054  0.0018 | 0.1317 0.0193 14.8202  0.5061
500 10 | 9.9067  0.2008 | 0.0063 0.0022 | 0.1947 0.0323 | 27.4845 0.6710
20 20| 0.0259 0.0116 | 0.0089 0.0021 | 0.0026  0.0002 0.0199  0.0034
40 20| 0.0316  0.0064 | 0.0090 0.0032 | 0.0071 0.0020 0.0495  0.0052
100 20| 0.1513  0.0205 | 0.0102  0.0040 0.0214 0.0026 0.3529  0.0207
200 20| 0.7621  0.0740 | 0.0148 0.0061 0.0672 0.0075 2.4944  0.1102
400 20| 5.6864  0.1816 | 0.0200 0.0077 | 0.2816 0.0435 15.1222  0.4899
600 20 | 18.6959 0.5454 | 0.0249  0.0056 | 0.7159 0.1047 | 46.7817 1.3912
800 20 | 44.4151 0.9826 | 0.0315 0.0104 1.1433 0.1489 | 109.2029 2.2615
1000 20 | 92.0105 1.3487 | 0.0391 0.0106 | 1.8178 0.2583 | 215.7660 3.7612

In Table 4.9, the boldface numbers identify the smallest average number of
iterations and the italic numbers identify the smallest standard deviations while,
Table 4.10, the boldface numbers identify the smallest average running time and
the italic numbers identify the smallest standard deviations of the running time
for solving linear programming problems of the same size.

According to Table 4.10, since the average running time solved by SNAR and
Arsham’s method had very distinct time from the average running time solved by
Dual SNAR and Two-Phase method, we will report only the average running time
solved by Dual SNAR and Two-Phase method. Then, results in Tables 4.9 and
4.10 are plotted as follows.



121

Table 4.11: Ratios of the average number of iterations and the average running
time solved by SNAR to Dual SNAR, by Two-Phase method to Dual SNAR and
by Arsham’s method to Dual SNAR

Ratio of iterations Ratio of the running time
m  n | SNp/SNp 2P/SNp AM/SNp | SNp/SNp  2P/SNp  AM/SNp
5 5 1.1759 0.6521 1.0013 1.5945 0.5396 1.4868
10 5 1.2907 1.0485 1.1850 2.0172 0.8892 3.3128
25 5 1.5866 1.4134 1.2067 5.1163 1.6667 15.5736
50 5 1.6638 1.5209 1.3240 15.5093 2.6682 62.3692
100 5 1.7800 1.6279 1.3488 72.3050 5.6850  304.8650
150 5 1.9011 1.5788 1.4121 211.7763  8.5342  944.5068
200 5 1.9717 1.6849 1.4264 391.5159  12.0913 1868.9206
250 5 1.8370 1.6245 1.4029 701.9718  16.4507 2713.8028
10 10 1.2561 0.4865 1.1217 1.8827 0.3678 1.7137
20 10 1.3181 0.8961 1.3152 2.2140 0.8333 4.2140
50 10 1.4937 1.2020 1.2726 6.4906 1.6113 19.1434
100 10 1.8611 1.4188 1.5655 29.7721 3.5699  101.3860
200 10 2.1406 1.5258 1.5456 149.5608  7.7566  607.5397
300 10 2.2288 1.6531 2.0349 396.6484  15.2026  1486.1555
400 10 2.1197 1.6619 1.7230 946.7598  24.5279 2759.8138
500 10 2.3261 1.7330 1.9661 1583.8050  31.1327  4394.0048
20 20 1.7313 0.3945 1.3537 2.9207 0.2961 2.2498
40 20 1.5492 0.8177 1.7987 3.5246 0.7924 5.5246
100 20 2.0447 1.1821 1.8782 14.9064 2.1064 34.7685
200 20 2.6271 1.3995 2.4361 51.3544 4.5276  168.0863
400 20 2.9953 1.6126 3.1829 284.6046  14.0961  756.8669
600 20 3.3046 1.7282 3.4993 750.2368  28.7287  1877.2753
800 20 3.5818 1.8221 3.4050 | 1410.0032 36.2952 3466.7587
1000 20 3.5852 1.8320 3.7196 | 2353.2097 46.4910 5518.3120

Names of columns in this table are described in the following table:

Table 4.12: Description of columns in table 4.11

SNp The SNAR algorithm
SNp The Dual SNAR algorithm
2p The Two-Phase Method

AM The Arsham’s method
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Figure 4.23: The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 10 variables
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Figure 4.25: The average number of iterations solved by SNAR, Dual SNAR,

Two-Phase method and Arsham’s method for 20 variables
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4.3 Summary of Results

4.3.1 Problem P

For a small number of constraints, in Table 4.1, the majority of average number
of iterations of SNAR are less than the average number of iterations of Two-Phase
method. When the number of variables increases, the average number of iterations
of SNAR is larger than the average number of iterations of Two-Phase method
while the average number of iterations of Arsham’s method are larger than the
average number of iterations of SNAR for all sizes. Similarly, the majority of
standard deviations of SNAR are less than the standard deviations of Two-Phase
method while the standard deviations of Arsham’s method are larger than the
standard deviations of SNAR for all sizes.

Consider the average number of running time, in Table 4.3, there is only one
size that the average running time solved by SNAR is less than the average running
time solved by Two-Phase method, that is, 5 variables and 5 constraints. However,
the average running time solved by SNAR are less than the average running time
solved by Arsham’s method for all sizes.

For a large number of constraints, in tables 4.5 and 4.6, the average number of
iterations and the standard deviations of SNAR are less than the average number
of iterations of Two-Phase method and Arsham’s method for all sizes. Moreover,
in Table 4.7, the average running time of SNAR are less than both of Two-Phase
method and Arsham’s method.

From the table of ratios, in Table 4.7, all ratios, both of the average number of
iterations and the average running time, by Two-Phase method to SNAR and by
Arsham’s method to SNAR are greater than one. The greatest ratio of the average
number of iterations by Two-Phase method to SNAR is 7.27 solving 5 variables
and 200 constraints while the smallest ratio is 2.06 with 20 variables and 100
constraints. Additionally, the greatest ratio of the average number of iterations
by Arsham’s method to SNAR is 11.01 solving 100 variables and 500 constraints

size while the smallest ratio is 1.66 with 5 variables and 100 constraints size.
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For ratios of the average running time, the greatest ratio of it by the Two-Phase
method to SNAR is 6.67 solving 100 variables and 4000 constraints size while the
smallest ratio is 2.36 with 5 variables and 25 constraints size. Additionally, the
greatest ratio of the average running time by Arsham’s method to SNAR is 8.57
solving 100 variables and 500 constraints size while the smallest ratio is 2.75 with

5 variables and 25 constraints size.

4.3.2 Problem D

From figures 4.21, 4.23 and 4.25, the average number of iterations solved by SNAR
are greater than the average number of iterations solved by Dual SNAR and
Two-Phase method for all sizes while almost average number of iterations solved
by SNAR are greater than the average number of iterations solved by Arsham’s
method except four sizes: 20 variables with 40, 400, 600 and 1000 constraints.
While the average number of iterations solved by Dual SNAR are less than the
average number of iterations solved by Arsham’s method for all sizes, the major-
ity of the average number of iterations solved by Dual SNAR are less than the
average number of iterations solved by Two-Phase method except a small sizes
as 5 variables with 5 constraints, 10 variables with 10 and 20 constraints and 20
variables with 20 and 40 constraints.

For comparing the average running time as shown in Table 4.10, solved by
SNAR and Arsham’s method much larger average running time than Dual SNAR
and Two-Phase method. So we will consider only the average running time solved
by Dual SNAR and Two-Phase method as Figures 4.21, 4.23 and 4.25 reported
only the average running time solved by Dual SNAR and Two-Phase method. We
found that, only small sizes as 5 variables with 5 and 10 constraints, 10 variables
with 10 and 20 constraints and 20 variables with 20 and 40 constraints, the average
running time solved by Dual SNAR are greater than the average running time
solved by Two-Phase method.

From the table of ratios, in Table 4.11, all ratios, both of the average num-

ber of iterations and the average running time, by SNAR to Dual SNAR and by
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Arsham’s method to Dual SNAR are greater than one. The greatest ratio of the
average number of iterations by SNAR to Dual SNAR is 3.5852 solving 20 vari-
ables and 1000 constraints size while the smallest ratio is 1.1759 with 5 variables
and 5 constraints size. While the greatest ratio of the average number of itera-
tions by Arsham’s method to Dual SNAR is 3.7196 solving 20 variables and 1000
constraints size , and the smallest ratio is 1.0013 with 5 variables and 5 constraints
size. Additionally, the greatest ratio of the average number of iterations by Two-
Phase method to Dual SNAR is 1.8320 solving 20 variables and 1000 constraints
size while the smallest ratio is 0.3945 with a small size as 20 variables with 20
constraints.

For the average running time, the greatest ratio of the average running time
by SNAR to Dual SNAR is very high to 2353.2097 solving 20 variables and 1000
constraints size while the smallest ratio is 1.5945 with 5 variables and 5 constraints
size. While the greatest ratio of the average running time by Arsham’s method
to Dual SNAR is very high to 5518.3120 solving 20 variables and 1000 constraints
size , and the smallest ratio is 1.4868 with 5 variables and 5 constraints size.
Additionally, the greatest ratio of the average running time by Two-Phase method
to Dual SNAR is 46.4910 solving 20 variables and 1000 constraints size while the

smallest ratio is 0.2961 with a small size as 20 variables with 20 constraints.

4.4 Discussion

4.4.1 Problems P

From computational results, we found that SNAR outperforms Arsham’s method
for all problem sizes since SNAR initially solves only acute constraints which has
more chance to find the optimal solution than Arsham’s method. Moreover, we
found that a large proportion of the number of iterations of SNAR spent on solving
the relaxed problem. This implies that most constraints which form the optimal
solution are included in the relaxed problem while the number of iterations in

the relaxed problem of the Arsham’s method is small with respect to the whole
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process. In addition, all standard deviations of SNAR are lower than the standard
deviations of Arsham’s method. This means that the total iterations of SNAR
solving the linear programming problems of that size are approximately the same
while this could not be concluded for Arsham’s method.

For comparing between Two-Phase method and SNAR, we found that both of
the average number of iterations and the average running time solved by SNAR
outperforms Two-Phase method for the large problem sizes which the relaxed
problems have optimal solutions. Additionally, the smallest ratio of the average
number of iterations by Two-Phase method to SNAR is 2.06, the minimum iter-
ations that SNAR can reduce to 2.06 of iterations solved by Two-Phase method.
Moreover, the maximum iterations that SNAR can reduce to 7.27 of iterations
solved by Two-Phase method. Not only it can reduce iterations but also the run-
ning time can be reduced. The minimum running time that SNAR can reduce to
2.36 of the running time solved by Two-Phase method. Moreover, the maximum
running time that SNAR can reduce to 6.67 of the running time solved by the
Two-Phase method.

From the Table 4.6, the average number of iterations for each size solved by
SNAR is in the relaxed NAR problem. This implies that most constraints which
form the optimal solution are included in the relaxed problem. Moving only a few
steps, the optimal solution is found. While Two-Phase method wasted most of
time to find a feasible solution in Phase I, SNAR can generate a feasible solution
for our relaxed problem and solve the smaller problem size among constraints
which form the optimal solution. Therefore, SNAR can reduce the iterations and
the running time to solve a linear programming problem.

For a small number of constraints, although the majority of average number of
iterations of SNAR are less than the average number of iterations of Two-Phase
method, most of average running time of SNAR are greater than the average
running time of the Two-Phase method. SNAR wastes the time computing dot
product values while Two-Phase method can start immediately. So SNAR uses

more time than Two-Phase method which the average number of iterations is not
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different for small problem sizes.

For the problem size of 100 variables 200 constraints, the ratio of average num-
ber of iterations is 0.4 which is the smallest ratio of average running time for small
problem sizes. Although Two-Phase method needs to introduce artificial variables
to solve the linear programming problem, Two-Phase method outperforms SNAR
for the small problem size of constraints with respect to the number of variables
since SNAR spent more iterations after NAR is done. Two-Phase method deals
with all constraints at the same time while SNAR after NAR is completed with
unbounded optimal solution includes one constraint at a time. When it adds a
constraint from the collection of non-acute constraints, it will be used the dual
simplex to perturb the point from the relaxed problem for satisfying additional
constraints. So it takes more iterations than Two-Phase method. Consider the

following figure,

optimal solution

\

0 > X

Figure 4.27: The original problem has the optimal solution.

In Figures 4.27, P = {1,2} and N = {3,4,5,6}. Then, NAR is drawn as the

following figure.
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(a) Third constraint is added.

2

(c) Fifth constraint is added. (d) Sixth constraint is added.

Figure 4.29: Example of NAR is unbounded and non-acute constraits are added.

From Figure 4.29a, the third constraints is added which causes the current
solution P1 being primal and dual infeasible. So we will perturb original costs of
objective function for dual feasibility and the dual simplex is performed to move
the point from P1 for satisfying this additional constraint. Then, the solution
moves to P2 and some perturbed costs are restored, but the relaxed problem is
still unbounded. Then, the next non-acute constraint is added and the algorithm
repeats by perturbing and using the dual simplex to move from P2 to P3 and P3
to P4 as shown in Figures 4.29b and 4.29c. Until the last constraint is added, the
optimal solution is found at P5.

If we know that the sixth constraint will be used to form the optimal solution,
and add this constraint first then the optimal solution is found immediately. We

can only check feasibility with another non-acute constraints then it is done. So
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the order of reinsertion constraints is important.

4.4.2 Problem D

From computational results, we found that SNAR and Arsham’s method used
much more iterations and time to solve this problem than Dual SNAR and Two-
Phase method. Since the number of constraints of the standard double, the di-
mension of parameters solved by SNAR and Arsham’s method is very large. It
is different from Dual SNAR and Two-Phase method which do not increase the
number of constraints.

Consider Dual SNAR and Two-Phase method, the majority of the average
number of iterations and the average running time solved by Dual SNAR are
less than the average number of iterations solved by Two-Phase method except
the small problem sizes of constraints with respect to the number of variables.
The reason is similar to SNAR which wastes time computing dot product values
while Two-Phase method can start immediately. For the large problem size of
constraints with respect to the number of variables, computing dot product values
for classification constraints takes less time with respect to the total process. Dual
SNAR can generate a feasible solution for the relaxed problem and solve the
smaller problem size among constraints which form the optimal solution while
Two-Phase method wastes time in Phase I to find the feasible point. The increasing
number of constraints causes much more time to solve the problem by Two-Phase
method. Moreover, the standard deviations of iterations solved by Dual SNAR
are very low. This implied that the total iterations of Dual SNAR solving linear

programming problems of that size are approximately the same.



CHAPTER V
CONCLUSIONS

In this dissertation, we proposed the artificial-variable-free technique to improve
the simplex algorithm by relaxing the non-acute constraints. The relaxed problem
will be transformed for starting the simplex algorithm from the origin point with-
out using artificial variables. The collection of non-acute constraints are added to
determine the solution of the original linear programming problem.

From the computational results, SNAR outperforms Arsham’s method for all
sizes and all problem structures and Two-Phase method except the small size of
constraints which the relaxed problem has the unbounded optimal value. However,
SNAR is not efficient for the linear programming problem in the standard form
then we can use Dual SNAR, instead the SNAR.

Additionally, if P and N, are empty then we can conclude that the original
problem is unbounded.

However, for the small size problem, SNAR is not efficient with respect to Two-
Phase method since SNAR wasted the time in the non-acute constraint reinsertion.
If the non-acute constraint which forms the optimal solution is inserted early, the
optimal solution will be found rapidly.

In future work, we would like to choose the order of inserting. If the non-acute
constraint which forms the optimal solution is inserted early, the optimal solution

will be found quickly.



1]

[11]

[12]

[13]

[14]

[15]

REFERENCES

G.B. Dantzig.: Linear programming and extensions, Princeton Univ. Press,
Princeton, New Jersey, 1963.

V. Klee, G. J. Minty, How good is the simplex algorithm? in inequalities,
New York: Academic Press. (1972) 159-175.

N. Karmarkar, A new polynomial-time algorithm for linear programming,
Combinatorica. 4(1984) 373-395.

R. Marsten, R. Subramanian, M. Saltzman, I. Lustig,D. Shanno, Interior
point methods for linear programming: Just call Newton, Lagrange, and
Fiacco and McCormick!, Interfaces. 20(1990) 105-116.

H.A. Eiselt, C.L. Sandblom, Linear Programming and its Applica-
tions(online service), Berlin, Heidelberg : Springer Berlin Heidelberg, 2007.

D. Goldfarb, K. Scheinberg, A product-form Cholesky factorization method
for handling dense columns in interior point methods for linear programming,
Math. Prog. 99(2004), 1--34.

C. Mészaros, Detecting “dense” columns in interior point methods for linear
programs, Comput. Optim. Appl. 36(2007) 309-320.

L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation,
Springer-Verlag (1997).

S. Smale, Mathematical Problems for the Next Century, Math. Intell.
20(1998) 7-15.

S. Zionts, The criss-cross method for solving linear programming problems,
Manage. Sci. 15(1969) 426-445.

H. Arsham, An artificial-free simplex-type algorithm for general LP models,
Math. Comput. Modelling. 25(1997) 107-123.

H. Arsham, Initialization of the simplex algorithm: an artificial-free ap-
proach, STAM Rev. 39(1997) 736-744.

A. Enge, P. Huhn, A counterexample to H. Arsham’s “Initialization of the
simplex algorithm: an artificial-free approach”, SIAM Rev. 40(1998) online.

P.Q. Pan, Primal perturbation simplex algorithms for linear programming,
J. Comput. Math. 18(2000) 587-596.

H. Arsham, Big-M free solution algorithm for general linear programs, 1J-
PAM. 32(2006) 37-52.



135

[16] H. Arsham, A computationally stable solution algorithm for linear programs,
Appl. Math. Comput. 188(2007) 1549-1561.

[17] H.W. Corley, J. Rosenberger, W.C. Yeh, T.K. Sung, The cosine simplex
algorithm, IJAMT. 27(2006) 1047-1050.

[18] P.Q. Pan, Practical finite pivoting rules for the simplex method, OR Spek-
trum. 12(1990) 219-225.

[19] N.V. Stojkovic, P.S. Stanimirovic, Two direct methods in linear program-
ming, Eur. J. Oper. Res. 131(2001) 417-439.

[20] W. Li, A note on “two direct methods in linear programming”, Eur. J. Oper.
Res. 158(2004) 262-265.

[21] H.V. Junior, M.P.E. Lins, An improved initial basis for the simplex algo-
rithm, Comput. Oper. Res. 32(2005) 1983-1993.

[22] J.F. Hu, A note on “an improved initial basis for the simplex algorithm”,
Comput. Oper. Res. 34(2007) 3397-3401.

[23] W.C. Yeh, H-W. Corley, A simple direct cosine simplex algorithm, Appl.
Math. Comput. 214(2009) 178-186.

[24] W. Li, H. Li, On simplex method with most-obtuse-angle rule and cosine
rule, Appl. Math. Comput. 217(2011) 7867-7873.

[25] M. S. Bazaraa , J. J. Jarvis, H. D. Sherali, Linear programming and network
flows, New York : John Wiley & Sons, 1990.

[26] E. H. Moore, On the reciprocal of the general algebraic matrix, Bull. Amer.
Math. Soc. 26(1920) 394-395.

[27] R. Penrose, A generalized inverse for matrices, Proc. Camb. Philos. Soc.
51(1955) 406-413.



136

VITA

Name Miss Aua-aree Boonperm

Date of Birth 22 February 1981

Place of Birth Surin, Thailand

Education B.Sc.(Mathematics)(Second Class Honors), Khon
Kaen University, 2003
M.Sc.(Computational Science), Chulalongkorn
University, 2009

Scholarship Development and Promotion of Science and Technology
talents project (DPST)

Publications e A-A. Boonperm and K. Sinapiromsaran: Linear time

Algorithm in term of Number of the Constraints for

Linear Programming in 2D, Proceeding of OR-NET 2010,
pp. 48-53.
e A-A. Boonperm and K. Sinapiromsaran: The New Origin

Point for Starting Simplex Algorithm, Proceeding of
OR-NET 2012, pp. 148-152.
e A-A. Boonperm and K. Sinapiromsaran: The Artificial-

free Technique along the Objective Direction for the
Simplex Algorithm, On-line in Journal of Physics:
Conference Series 490(2014) 012193.

e A-A. Boonperm and K. Sinapiromsaran: Artificial-Free

Simplex Algorithm Based on the Non-acute Constraint
Relaxation, Applied Mathematics and Computation,
Vol. 234 (2014), pp. 385-401.



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Introductiontolinearprograming
	1.2 Motivation
	1.3 Overviewofthedissertation

	Chapter II Literaturereviews
	2.1 Definitions and Theorems of Linear Programming
	2.2 the Simplex Method
	2.3 Artificialvariabletechniques
	2.4 Duality
	2.5 Thedualsimplexmethod
	2.6 Sensitivityanslysis
	2.7 The Artificial-Variable-Free Techniques

	Chapter III Artificial-Variable-Free Simplex Method
	3.1 Preliminaries
	3.2 Snar
	3.3 Dualsnar
	3.4 Comparisonthedimensionofparameters

	Chapter IV Experimental Results
	4.1 Experimental Designs
	4.2 Computational Results
	4.3 Summaryofresults
	4.4 Discussion

	Chapter V Conclusions
	References
	Vita



