
หลักเกณฑการหมุนของวิธีซิมเพล็กซที่เนนการเพิ่มคาของตัวแปรไมพื้นฐาน

นายกิตติพงษ จันทรคง

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

สาขาวิชาคณิตศาสตรประยุกตและวิทยาการคณนา

ภาควิชาคณิตศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2556

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัยบทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

SIMPLEX PIVOT RULE EMPHASIZING INCREMENT OF NONBASIC

VARIABLES

Mr. Kittiphong Chankong

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2013

Copyright of Chulalongkorn University

Thesis Title SIMPLEX PIVOT RULE EMPHASIZING INCREMENT

OF NONBASIC VARIABLES

By Mr. Kittiphong Chankong

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Boonyarit Intiyot, Ph.D.

Thesis Co-advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master’s Degree

. Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

. Chairman

(Associate Professor Pornchai Satravaha, Ph.D.)

. Thesis Advisor

(Boonyarit Intiyot, Ph.D.)

. Thesis Co-advisor

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

. Examiner

(Phantipa Thipwiwatpotjana, Ph.D.)

. External Examiner

(Associate Professor Peerayuth Charnsethikul, Ph.D.)

iv

กิตติพงษ จันทรคง : หลักเกณฑการหมุนของวิธีซิมเพล็กซที่เนนการเพิ่มคาของตัวแปรไมพื้นฐาน.
(SIMPLEX PIVOT RULE EMPHASIZING INCREMENT OF NONBASIC VARIABLES)

อ.ที่ปรึกษาวิทยานิพนธหลัก: อ.ดร. บุญฤทธิ์ อินทิยศ, อ.ที่ปรึกษาวิทยานิพนธรวม : ผศ.ดร.กรุง
สินอภิรมยสราญ, 64 หนา.

ขั้นตอนวิธีซิมเพล็กซเปนระเบียบวิธีที่ถูกใชอยางแพรหลายในการแกปญหาการกำหนดการเชิงเสน
ซึ่งนำเสนอครั้งแรกโดย จอรจ แดนทซิก ขั้นตอนสำคัญในขั้นตอนวิธีซิมเพล็กซคือการประยุกตหลัก
เกณฑการหมุนที่เหมาะสมเพื่อที่จะใชเลือกตัวแปรเขา หลักเกณฑการหมุนที่มีประสิทธิภาพสามารถที่
จะนำไปสูผลลัพธเหมาะสุดของปญหาการกำหนดการเชิงเสนดวยจำนวนการทำซ้ำที่นอยแตไมจำเปน
ที่จะทำให เวลาในการคำนวณนอยถาแตละการทำซ้ำใช เวลามาก ในปญหาการหาคานอยสุด หลัก
เกณฑการหมุนแบบแดนทซิกเลือกตัวแปรเขาที่สอดคลองกับ reduced cost ที่เปนลบมากที่สุด โดย
แนวคิดคือตองการที่จะปรับปรุงคาจุดประสงคตอหนวยของตัวแปรเขาใหไดมากที่สุด อยางไรก็ตาม
หลักเกณฑการหมุนแบบแดนทซิกอาจจะเคลื่อนไปสูจุดมุมของบริเวณผลลัพธที่ เปนไปไดหลายครั้ง
กอนที่จะไปถึงผลลัพธเหมาะสุด ในวิทยานิพนธนี้ นำเสนอหลักเกณฑการหมุนของวิธีซิมเพล็กซที่เรียก
วาหลักเกณฑการหมุนแบบการเปลี่ยนสัมบูรณ ซึ่งสามารถที่จะลดจำนวนการทำซ้ำใหนอยกวาหลัก
เกณฑการหมุนแบบแดนทซิก แนวคิดคือตองการปรับปรุงคาของฟงกชันจุดประสงคใหมากที่สุดโดย
การกันตัวแปรออกที่ทำใหคาของฟงกชันจุดประสงคเปลี่ยนไปไดนอยใหมากสุดเทาที่เปนไปได วิธีการ
หมุนแบบเปลี่ยนสัมบูรณนำมาทดสอบและเปรียบเทียบประสิทธิภาพกับหลักเกณฑการหมุนแบบแด
นทซิกและหลักเกณฑการหมุนแบบอื่นๆ

ภาควิชา คณิตศาสตร และ.......................... ลายมือชื่อนิสิต

วิทยาการคอมพิวเตอร.......................... ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธหลัก

สาขาวิชา คณิตศาสตรประยุกต และ.......................... ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธรวม

วิทยาการคณนา..........................

ปการศึกษา 2556..........................

v

5571920923 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL

SCIENCE KEYWORDS : LINEAR PROGRAMMING / SIMPLEX ALGORITHM

/ PIVOT RULE / ABSOLUTE CHANGE PIVOT RULE

KITTIPHONG CHANKONG : SIMPLEX PIVOT RULE EMPHASIZING

INCREMENT OF NONBASIC VARIABLES. ADVISOR : BOONYARIT

INTIYOT, Ph.D., CO-ADVISOR : ASST. PROF. KRUNG SINAPIROM-

SARAN, Ph.D., 64pp.

The simplex algorithm, first presented by George B. Dantzig, is a widely

used method for solving a linear programming (LP) problem. One of the important

steps of the simplex algorithm is applying a pivot rule, the rule to select an entering

variable. An effective pivot rule can lead to an optimal solution of an LP problem

with a small number of iterations but not necessarily small computational time if

each iteration spends a lot of time. In a minimization problem, Dantzig’s pivot

rule selects an entering variable corresponding to the most negative reduced cost.

The concept is to have the maximum improvement in the objective value per unit

change of an entering variable. However, in some problems, Dantzig’s rule may

visit a large number of extreme points before reaching the optimal solution. In

this thesis, we propose a pivot rule, called the absolute change pivot rule, that

could reduce the number of such iterations over the Dantzig’s pivot rule. The idea

is to have the maximum improvement in the value of an objective function by

trying to block a leaving variable that makes a little change in the objective value

as much as possible. This absolute change pivot rule is tested and compared the

efficacy with Dantzig’s original pivot rule and other pivot rules.

Department : Mathematics and... Student’s Signature

Computer Science.. Advisor’s Signature

Field of Study : Applied Mathematics and.. Co-advisor’s Signature

Computational Science..

Academic Year : 2013..

vi

ACKNOWLEDGEMENTS

I would like to express my thanks to my advisor and co-advisor, Dr. Boonyarit

Intiyot and Assistant Professor Dr. Krung Sinapiromsaran, for their invaluable

help and encouragement throughout the course of this thesis. I am most grateful

for their suggestions and teaching, not only research methodologies but also many

methodologies in life. Without their support, this thesis could not have been

completed.

I also would like to give thanks to my thesis committees, Associate Profes-

sor Dr. Pornchai Satravaha and Dr. Phantipa Thipwiwatpotjana, and my thesis

external examiner, Associate Professor Dr. Peerayuth Charnsethikul who is the

lecturer at Department of Industrial Engineering, Faculty of Engineering, Kaset-

sart University. Moreover, I would like to thank all lecturers who instructed and

taught me for valuable knowledge.

Additionally, I would like to thank those whose names are not mentioned here

but greatly inspired and encouraged us until this thesis comes to the end.

Finally, I most gratefully acknowledge my parents and my friends for all their

support throughout the period of this thesis. I also most gratefully thank to the

Applied Mathematics and Computational Science, Faculty of Science and Grad-

uate school, Chulalongkorn University for financial support to the international

conference.

CONTENTS

ABSTRACT IN THAI iv

ABSTRACT IN ENGLISH v

ACKNOWLEDGEMENTS vi

CONTENTS viii

LIST OF TABLES ix

LIST OF FIGURES xi

1 INTRODUCTION 1

1.1 The Linear Programming Problem 1

1.1.1 Definition . 1

1.1.2 Maximization and Minimization Problems 2

1.1.3 Standard and Canonical Formats 2

1.1.4 The Matrix Notation of a Linear Programming Problem . 5

1.2 Linear Programming Modelling 6

1.3 Solution to Linear Programming Problem 7

1.4 Motivation and Problem Description 11

1.5 The Objective of the Thesis . 12

1.6 The Scope of the Thesis . 12

1.7 Thesis Overview . 12

2 PRELIMINARIES 13

2.1 Basic Feasible Solution . 13

2.2 The Simplex Method . 14

2.2.1 Algebra of the Simplex Method 15

2.2.2 The Simplex Algorithm 17

2.3 The Simplex Method in Tableau Format 18

viii

2.4 Pivot Rule . 19

2.4.1 Pivot Operation . 20

2.4.2 Entering Variable . 21

2.4.3 Leaving Variable . 21

2.5 Literature Review on Pivot Rules 22

3 ABSOLUTE CHANGE PIVOT RULE FOR THE SIMPLEX AL-

GORITHM 25

3.1 The Concept of Absolute Change Pivot Rule 25

3.1.1 Geometric Motivation of the Simplex Method with Absolute

Change Pivot Rule . 26

3.1.2 The Simplex Algorithm with the Absolute Change Pivot Rule 27

3.2 Illustration of the Method . 29

4 EXPERIMENTS AND ANALYSIS 39

4.1 Problem Generation . 39

4.2 Comparison . 40

4.3 Analysis . 49

4.3.1 Analysis of Numerical Results 50

4.3.2 Domain of Problems . 56

4.3.3 Comparison of the Number of Operations 56

5 SUMMARY OF RESULTS 60

REFERENCES 62

BIOGRAPHY 64

LIST OF TABLES

LIST OF TABLES ix

1.1 The details about the delicatessen. 6

2.1 The initial simplex tableau before pivoting. 20

2.2 The simplex tableau after pivoting. 22

4.1 The average number of iterations ± standard deviation (µ ± σ)

from solving LP problems by the simplex method with DZP, LDP,

SEP, DVP and ACP with problem sizes from 10× 10 to 120× 120. 41

4.2 The average time ± standard deviation (µ ± σ) from solving LP

problems by the simplex method with DZP, LDP, SEP, DVP and

ACP with problem sizes from 10× 10 to 120× 120. 42

4.3 The average number of iterations ± standard deviation (µ ± σ)

from solving LP problems by the simplex method with DZP, LDP

and ACP with problem sizes from 150× 150 to 650× 650. 43

4.4 The average time ± standard deviation (µ ± σ) from solving LP

problems by the simplex method with DZP, LDP and ACP with

problem sizes from 150× 150 to 650× 650. 44

4.5 The average number of iterations ± standard deviation (µ ± σ)

from solving LP problems by the simplex method with DZP, LDP

and ACP with problem sizes from 150× 200 to 300× 400. 45

4.6 The average time ± standard deviation (µ ± σ) from solving LP

problems by the simplex method with DZP, LDP and ACP with

problem sizes from 150× 200 to 300× 400. 46

4.7 The average number of iterations ± standard deviation (µ ± σ)

from solving LP problems by the simplex method with DZP, LDP

and ACP with problem sizes from 200× 150 to 400× 300. 47

x

4.8 The average time ± standard deviation (µ ± σ) from solving LP

problems by the simplex method with DZP, LDP and ACP with

problem sizes from 200× 150 to 400× 300. 48

4.9 The number of iterations and time from solving Klee and Minty

problem by the simplex method with DZP, LDP and ACP with

n = 2, 3, . . . , 20. 49

4.10 The average time ratio between ACP and DZP from Table 4.4 . . 55

4.11 Pricing operations from steepest-edge pivot rule 57

4.12 Pricing operations from Devex rule 58

4.13 Pricing operations from the largest-distance pivot rule 58

4.14 Comparison of the number of operations. 59

4.15 Total comparison of the number of operations. 59

LIST OF FIGURES

LIST OF FIGURES xi

1.1 Solving LP problem by graphical method. 10

3.1 The feasible region of Example 3.1. 27

3.2 The feasible region of Example 3.1. 28

3.3 Flowchart of the step 2 for identifying an entering variable. . . . 29

3.4 The feasible region of Klee and Minty problem with n = 3. . . . 30

3.5 The feasible region of Klee and Minty problem with n = 3. . . . 31

4.1 Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP

when A is a square matrix. 50

4.2 Comparison between the average time from solving LP problems

by the simplex algorithm with DZP, LDP and ACP when A is a

square matrix. 51

4.3 Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP

when m < n. 52

4.4 Comparison between the average time from solving LP problems

by the simplex algorithm with DZP, LDP and ACP when m < n. 53

4.5 Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP

when m > n. 54

4.6 Comparison between the average time from solving LP problems

by the simplex algorithm with DZP, LDP and ACP when m > n. 54

4.7 Average time ratio between ACP and DZP from Table 4.4. 56

CHAPTER I

INTRODUCTION

Mathematical programming is one of mathematical tools used to optimally allocate

limited resources such as money, materials, labor and machines to meet certain

constraints. The goal of mathematical programming is to obtain the optimal re-

sult, such as maximum profit or minimum cost, under those conditions effectively.

Typical example would be solving optimization problems of the limited money,

supplies, materials, labor and machines in various industries.

Linear programming (LP) is a special case of mathematical programming. This

field of study involves techniques for optimizing a linear objective function subject

to finite number of linear equality and inequality constraints. To solve an LP

problem, we need to consider the computational complexity that depends on the

number of constraints and variables.

In this chapter, we will give some general background of linear programming

problems. The topics presented in this chapter are: definition of linear program-

ming, linear programming modeling, solution to linear programming, motivation

and problem description of our propose technique, objective of this thesis and the

scope of the thesis.

1.1 The Linear Programming Problem

The discussion begins by introducing basic definitions of a linear programming

problem.

1.1.1 Definition

The mathematical model of a linear programming problem is to find the value of

decision variables x1, x2, . . . , xn that achieve the minimum of the objective value

2

under a set of constraints. This model is defined as

Minimize c1x1 + c2 x2 + · · ·+ cnxn

subject to a11x1 + a12 x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22 x2 + · · ·+ a2nxn ≥ b2
... +

... + · · ·+ ... ≥ ...

am1x1 + am2 x2 + · · ·+ amnxn ≥ bm

x1, x2, . . . , xn ≥ 0.

(1.1)

The ith constraint can be written in the form
n∑

j=1

aijxj ≥ bi. The coefficients aij

for i = 1, 2, ...,m, j = 1, 2, ..., n are called the technological coefficients. These

technological coefficients form the constraint matrix A. The decision variables

x1, x2, . . . , xn must be greater than or equal to zero, which are called nonneg-

ative constraints. If the decision variable xj can be negative, xj is said to be

unrestricted in sign.

1.1.2 Maximization and Minimization Problems

The maximization of the objective function can be converted into the minimization

of the objective function as follows:

Maximize
n∑

j=1

cjxj = −Minimize
n∑

j=1

−cjxj.

It is easy to change a maximization problem into a minimization problem by

multiplying the coefficients of the objective function by −1. After the solution

of the minimum linear programming problem is achieved, the optimal objective

function is its negative value.

1.1.3 Standard and Canonical Formats

The linear programming problem can be written in two formats. These formats

are standard form and canonical form.

3

Standard Form

A linear programming problem in the standard form is a linear program that

all restrictions are equalities and all variables are nonnegative. The objective

function may be in a minimization form or a maximization form. The values of

the right-hand-side vector (bi) of all constraints are greater than or equal to zero

(bi ≥ 0).

The standard form of a linear programming problem with n variables and m

constraints is defined by:

Minimize (or Maximize) c1x1 + c2x2 + · · ·+ cnxn

subject to a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
... +

... + · · ·+ ... =
...

am1x1 +am2x2 + · · ·+ amnxn = bm

x1, x2, . . . , xn ≥ 0.

(1.2)

Canonical Form

In this form, if a linear program is a minimization problem then all variables are

nonnegative and all the constraints are of the type ≥. On the other hand, if a

linear program is a maximization problem then all variables are nonnegative and

all the constraints are of the type ≤.

The canonical form of a linear programming problem with n variables and m

constrants is defined by:

Minimize c1x1 + c2 x2 + · · ·+ cnxn

subject to a11x1 + a12 x2 + · · ·+ a1nxn ≥ b1

a21x1 + a22 x2 + · · ·+ a2nxn ≥ b2
... +

... + · · ·+ ... ≥ ...

am1x1 + am2 x2 + · · ·+ amnxn ≥ bm

x1, x2, . . . , xn ≥ 0

(1.3)

4

or
Maximize c1x1 + c2 x2 + · · ·+ cnxn

subject to a11x1 + a12 x2 + · · ·+ a1nxn ≤ b1

a21x1 + a22 x2 + · · ·+ a2nxn ≤ b2
... +

... + · · ·+ ... ≤ ...

am1x1 + am2 x2 + · · ·+ amnxn ≤ bm

x1, x2, . . . , xn ≥ 0.

(1.4)

Any linear programming problem can be converted to the standard form and

canonical form by the following transformations [1]:

1. The maximization problem can be converted to the minimization problem

as follows:

Maximize c1x1 +c2x2 + · · ·+ cnxn

Minimize −c1x1 −c2x2 − · · ·− cnxn.

2. The inequality sign (≤ or ≥) can be changed to the opposite inequality sign

(≥ or ≤) by multiplying each inequality by −1 such as

a1x1 + a2x2 ≥ b is equivalent to −a1x1 − a2x2 ≤ −b

or

a1x1 + a2x2 ≤ b is equivalent to −a1x1 − a2x2 ≥ −b.

3. Each equation can be changed to two inequlities as follows:

a1x1 + a2x2 = b is equivalent to

a1x1 + a2x2 ≤ b and a1x1 + a2x2 ≥ b.

4. If the variable xi can be positive or negative (unrestricted in sign), we define

xi = x′
i − x′′

i where x′
i, x

′′
i ≥ 0. If x′′

i ≥ x′
i, xi is negative. If x′

i ≥ x′′
i , xi is

positive.

5. The inequality constraints can be changed into equality constraints by

5

• If a constraint is in the form ≤, it can be changed to an equation by

adding a variable which is greater than or equal to zero on the left-hand-

side in order to increase the value on the left-hand-side to be equal to

the value on the right-hand-side. For example

a1x1 + a2x2 ≤ b is changed to a1x1 + a2x2 + x3 = b,

where x3 ≥ 0. x3 is called a slack variable.

• If a constraint is in the form ≥, it can be changed to an equation by

subtracting the value on the left-hand-side by a variable which is greater

than or equal to zero in order to decrease the value on the left-hand-side

to be equal to the value on the right-hand-side. For example

a1x1 + a2x2 ≥ b is changed to a1x1 + a2x2 − x3 = b,

where x3 ≥ 0. x3 is called a surplus variable.

1.1.4 The Matrix Notation of a Linear Programming Prob-

lem

A linear programming problem can be written in the matrix notation.

Consider
Minimize

n∑
j=1

cjxj

subject to
n∑

j=1

aijxj = bi, i = 1, 2, . . . ,m

xj ≥ 0, j = 1, 2, . . . , n.

(1.5)

Letting

A =

a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

 , x =

x1

x2

...

xn

 , b =

b1

b2
...

bn

 , c =

c1

c2
...

cn

 .

6

The given linear programming problem can be written as follows:

Minimize cTx

subject to Ax = b

x ≥ 0.

(1.6)

Moreover, the jth column of A is denoted by Aj, so A = [A1,A2, . . . ,An].

1.2 Linear Programming Modelling

A real-world problem can be formulated or translated into a set of mathematical

function, inequalities and equations that represent the objective function and the

set of constraints, respectively. Often, data gathering, problem definition, and

problem formulation are the most important information.

Example 1.1. A delicatessen company tries to produce two types of products

which are types A and B. The details are shown in the Table 1.1. The company

makes a contract with a supplier that in each week the supplier will send 15,000

kg of Type 1 material and 20,000 kg of Type 2 material. Any material left by

the end of each week must be discarded. The marketing gurantees that they can

sell both types of goods at once but the boxing capacity for the type B product

is 2,500 boxes/week. What is the maximum profit that the company could profit

from both types of product in each week.

Table 1.1: The details about the delicatessen.

Types of products

Type A Type B

Materials needed to Type 1 5 3

produce one box. (kg.) Type 2 4 5

Profit ($)/box 4 4

A thorough understanding of the real-world problem is necessary in order to

formulate it correctly. During the formulation stage, an LP problem specialist may

7

discover new insights into the problem that may change the scope of the original

problem.

From Example 1.1, let x1, x2 be the decision variables which represents the

amount of type A and the amount of type B to be produced, respectively.

The linear programming model is defined by:

Maximize 4x1 + 4x2

subject to 5x1 + 3x2 ≤ 15000

4x1 + 5x2 ≤ 20000

x2 ≤ 2500

x1, x2 ≥ 0.

(1.7)

The graphical method can be used to solve an LP problem which is introduced

briefly below.

1.3 Solution to Linear Programming Problem

The standard definitions involving solution to an LP problem are stated as follows

[3]:

Definition 1.2. (Feasible Region).

A feasible region is the set of all nonnegative solutions that satisfy all constraints

of an LP problem. Given an LP problem in its canonical form (1.3). The feasible

region is given by

F = {x ∈ Rn|Ax ≤ b,x ≥ 0}

We called x ∈ F , a feasible solution.

Definition 1.3. (Optimal Solution).

Consider an LP problem in the canonical form (1.3). If the feasible region is

nonempty, an optimal solution is a feasible solution that has the smallest value

of the objective function for the minimization problem.

Let x∗ be an optimal solution to the LP problem. Then

cTx∗ ≤ cTx, ∀x ∈ F.

8

The value of the objective function corresponding to an optimal solution is

called the optimal value.

Definition 1.4. (Extreme Point).

A point x in a convex set X is called an extreme point of X, if x cannot be

represented as a strict convex combination of two distinct points in X. In other

words, if x = λ x1 + (1− λ)x2 with λ ∈ (0, 1) and x1,x2 ∈ X, then x = x1 = x2.

Definition 1.5. (Infeasible).

A linear program is infeasible if it has no feasible solution, i.e. the feasible region

is empty.

Definition 1.6. (Unbounded optimal value).

A linear program has an unbounded optimal value if the optimal solution is

unbounded, i.e. it is either ∞ or −∞. Note that an unbounded feasible region

may not yield an unbounded optimal value.

Theorem 1.7. Every linear programming problem must be in one of the following

four cases:

1. LP problem has the unique optimal solution.

This unique optimal solution must be an extreme point.

2. LP problem has alternative optimal solutions.

If there are two extreme points x∗
1 and x∗

2 being optimal, then any convex

combination of x∗
1 and x∗

2 is also optimal.

3. LP problem has an unbounded optimal value.

For a maximization problem, the feasible region is unbounded and the plane

cTx = z can be increased along the unbounded direction of the feasible

region. In this case, the objective value is unbounded and no optimal solution

exists.

4. LP problem has an empty feasible region.

9

In this case, the system of equations and/or inequalities defining the feasi-

ble region is inconsistent. This means that there is no point satisfying all

constraints of the LP problem. Therefore, no optimal solution exists.

Because the linear programming model for Example 1.1 containing only two

decision variables (n = 2), the graphical method can be used to find the optimal

solution.

To solve an LP problem by the graphical method, the polyhedron of the feasible

solution has to be constructed by all constraints. The optimal solution is the point

in the feasible region that achieve the maximum or minimum value of the objective

function.

From Example 1.1

Maximize 4x1 + 4x2

subject to 5x1 + 3x2 ≤ 15000

4x1 + 5x2 ≤ 20000

x2 ≤ 2500

x1, x2 ≥ 0.

(1.8)

The two dimensional polyhedron are constructed on x1x2-plane. The non-

negative constraints indicate that the values of x1 and x2 are lying in the 1st

quadrant of the plane. Consider the constraint 5x1 + 3x2 ≤ 15000, to create the

feasible region we have to draw the line 5x1 + 3x2 = 15000. All points lying

on the straight line of the equation 5x1 + 3x2 = 15000 and below this line are

coresponded to the constraint 5x1 + 3x2 ≤ 15000 (see Figure 1.1(a)). Graph of

constraints 4x1 + 5x2 ≤ 20000 and x2 ≤ 2500 can be drawn in the same manner

(see Figure 1.1(b)&(c)). From the Figure 1.1(d), the shaded area indicates the

feasible region and all points in the feasible region are the feasible solutions.

Let z be the profit value of the objective function in Example 1.1 i.e. z =

4x1+4x2. Consider any point in the feasible region that achieves a certain objective

value, for example z = 4000. In Figure 1.1(d), there are so many points (x1, x2)

in the feasible region having values greater than 4000 i.e., all the points above

10

(a)

1000 2000 3000 4000 5000 6000
x1

x2

1000

2000

3000

4000

5000 5x1+3x2=15000

(b)

1000 2000 3000 4000 5000 6000
x1

x2

1000

2000

3000

4000

5000 5x1+3x2=15000

4x1+5x2=20000

(c)

1000 2000 3000 4000 5000 6000
x1

x2

1000

2000

3000

4000

5000 5x1+3x2=15000

4x1+5x2=20000

x2=2500

(d)

1000 2000 3000 4000 5000 6000
x1

x2

1000

2000

3000

4000

5000 5x1+3x2=15000
4x1+5x2=20000

x2=2500
4x1+4x2=4000

4x1+4x2=8000

4x1+4x2=12000

4x1+4x2=16000

(1,500,2500)

Figure 1.1: Solving LP problem by graphical method.

the line 4x1 + 4x2 = 4000. If the value of z is increased to, for example, z =

8000, the graph of equation 4x1 + 4x2 = 8000 will be moved up from and parallel

with the line 4x1 + 4x2 = 4000. Thus, the value of z increases. In the figure

1.1(d), the dashed lines are defined as the lines parallel to the objective function.

In case of maximization problem, the dashed line will be moved up and parallel

in the direction that the objective function value increases (or decreases in case

of minimization problem) until the dashed line of the objective function intersect

with an endpoint of the feasible region. Hence, this endpoint which is always the

corner point of the feasible region is the optimal solution.

In Example 1.1, the optimal solution is the corner point (x1, x2) = (1500, 2500)

of the feasible region. This point gives the maximum objective value of 16,000. So

the delicatessen company should produce 1,500 boxes of Type A and 2,500 boxes

of Type B with the maximum profit of $16,000.

In fact, an optimal solution always occurs at a corner point (or an extreme

point) of the feasible region. A corner point of the feasible region is the intersection

of two linearly independent contraints. It is easy to find an optimal solution by

identifying all corner points of the feasible region for small LP problems and then

comparing all the objective values at those points.

11

Generally, an LP problem contains more than two decision variables and a

large number of constraints. So the graphical method is not practical. George

B. Dantzig (1947) introduced the simplex method [2, 3], a popular method for

solving a linear program. The simplex method is an iterative method to obtain

the optimal solution. The details are explained in Chapter 2.

1.4 Motivation and Problem Description

Although the simplex method is a popular method to solve LP problems, in some

problems this may not be the best approach to find an optimal solution since

there are too many extreme points involved. In 1972, Klee and Minty[4] created

collection of LP problems with the worst case running time, i.e., exponential run-

ning time, of the simplex method. Nowadays, there are many studies trying to

improve the simplex method by reducing the number of the iterations and the

solution time. Those techniques include detecting the redundant constraints [5],

improving the initial basis [6] and improving a pivot rule [7, 8, 9, 10]. In this

thesis, we focus on improving a pivot rule. Pivot rule is an important step of the

simplex method for selecting an entering variable. An effective rule can lead to

the solution of an LP problem with small number of iterations. Dantzig’s original

rule is the standard pivot rule, but this rule is efficient only for LP problem with

small number of constraints. Moreover Dantzig’s rule may take a lot of iterations

in some cases. The details of the simplex method and pivot rule are described in

Chapter 2 and 3. In this thesis, a new pivot rule is proposed and is called absolute

change pivot rule. The concept is to have maximum improvement in objective

value by trying to block a leaving variable that make little change in the objective

value as much as possible. If such variables can be prevented from leaving the

basis, it could make the objective value improved further than using a regular

Dantzig’s pivot rule and therefore lead to fewer number of iterations.

12

1.5 The Objective of the Thesis

The objective of this thesis is to design a pivot rule based on the absolute change

for the simplex method. The simplex method with this pivot rule is tested with

several simulated LP problems and the number of iterations, time, the number

of operation, i.e., multiplications and additions are compared with the simplex

method using Dantzig’s original pivot rule and other rules. Finally, the domain of

LP problems that are suitable for this pivot rule is suggested.

1.6 The Scope of the Thesis

In this thesis, if the tableau does not contain zero entries or entries with negative

value in the coefficient matrix, this rule is the same as the Dantzig’s rule. There-

fore, to take advantage of the proposed pivot rule, LP problems with some zero

or negative entries that correspond to entering columns in the coefficient matrix

will be considered.

1.7 Thesis Overview

This thesis is divided into five chapters. Chapter 1 gives a brief introduction to

a linear programming problem, linear programming modelling, solution to linear

programming problem, motivation and problem description, the objective of the

thesis, the scope of the thesis and thesis overview. Chapter 2 describes the pre-

liminaries of linear programming problem, the simplex method and a pivot rule.

Chapter 3 explains the main idea of our pivot rule and applies to the Klee and

Minty problem [4]. Chapter 4 deals with computational results by testing and

comparing the number of iterations, time, the number of multiplications and ad-

ditions from this new pivot rule with other pivot rules and the domain of LP

problems that are suitable for this pivot rule. The conclusion has been drawn at

the end.

CHAPTER II

PRELIMINARIES

In this chapter, the definitions and theorems related to linear programming prob-

lems, the simplex method and pivot rules are introduced [1, 2, 3, 11, 12].

In Chapter 1, the graphical method for solving two dimensional LP problems

is introduced. George B. Dantzig (1947) [13] presented a method to solve n di-

mensional LP problems called the simplex method, which is described in this

chapter.

The discussion of the simplex method is started by introducing the basic fea-

sible solution. Then the simplex method, the simplex method in tableau format,

pivot rules and literature reviews about pivot rules are described.

2.1 Basic Feasible Solution

Consider a linear programming (LP) problem in the standard form (4.1), where

A ∈ Rm×n(m < n),b ∈ Rm, c ∈ Rn and rank(A) = m:

Minimize cTx

subject to Ax = b

x ≥ 0.

After possibly rearranging the column of A, let A = [B N] where B is an

m × m invertible matrix and N is m × (n − m) matrix. Here B is called the

basic matrix and N is called the associated nonbasic matrix. Let IB and IN

be the indices of the variables associated with the columns of matrix B and N,

respectively. Variables associated with the index set IB are called basic variables,

denoted by xB. Variables associated with the index set IN are called nonbasic

variables, denoted by xN. Therefore coefficients in objective function associated

14

with xB and xN will be denoted by cB and cN, respectively.

Let x = [xT
B xT

N]
T, c = [cTB cTN]

T, and A = [B N]. Then the LP problem can

be rewritten as follows:

Minimize cTBxB + cTNxN

subject to BxB + N xN = b

xB, xN ≥ 0

(2.1)

The solution x of the equation Ax = b, where xB = B−1b and xN = 0 is called a

basic solution of the system. If xB ≥ 0, x is called a basic feasible solution

of the system.

Theorem 2.1. If a linear programming problem has a feasible solution, then it

has a basic feasible solution.

Theorem 2.2. The set of extreme points of the feasible region corresponds to the

set of basic feasible solutions. In other words, extreme points are basic feasible

solutions, and vice versa.

Theorem 2.3. If the optimal solution exists (is finite), then the optimal extreme-

point solution exists.

2.2 The Simplex Method

The simplex method is an iterative algorithm used to solve LP problems. This

method starts with a corner point of the feasible region and moves to the next

adjacent corner point that improves the objective value. The simplex method will

continue moving in this fashion and stop when the corner point of the feasible

region is the optimal solution if one exists.

15

2.2.1 Algebra of the Simplex Method

Suppose that a basic feasible solution of the system (2.1) is

xB

xN

 =

B−1b

0

.

Let z0 be the objective value of the system (2.1), so z0 is given by

z0 = cTx (2.2)

=
[
cTB cTN

]xB

xN

 (2.3)

=
[
cTB cTN

]B−1b

0

 (2.4)

= cTBB
−1b. (2.5)

Now let x =

xB

xN

 without setting xN = 0 denote the set of basic and nonbasic

variables for a given basis. Then the feasibility requires that xB ≥ 0 and xN ≥ 0.

We denote the jth column of A by Aj. Then the system Ax = b can be rewritten

as follows:

BxB +NxN = b (2.6)

xB +B−1NxN = B−1b (2.7)

xB = B−1b−B−1NxN (2.8)

= B−1b −
∑
j∈IN

B-1Ajxj. (2.9)

Then

xB = b̄ −
∑
j∈IN

(yjxj) (2.10)

where b̄ = B−1b and yj = B-1Aj.

16

Let z be the objective value, we get

z = cTx (2.11)

=
[
cTB cTN

]xB

xN

 (2.12)

= cTBxB + cTNxN (2.13)

= cT
B

(
B-1b −

∑
j∈IN

B-1Ajxj

)
+
∑
j∈IN

cjxj (2.14)

= cT
BB-1b − cT

B
∑
j∈IN

B-1Ajxj +
∑
j∈IN

cjxj (2.15)

= cT
BB-1b −

∑
j∈IN

(
cT

BB-1Ajxj − cjxj

)
(2.16)

= cT
BB-1b −

∑
j∈IN

(
cT

BB-1Aj − cj
)
xj (2.17)

= z0 −
∑
j∈IN

(zj − cj)xj (2.18)

where zj = cT
BB-1Aj for each nonbasic variable. The negative reduced cost is

obtained by zj − cj. The key result exhibits that the optimal solution is achieved

if the index set

J = {j|zj − cj > 0, j ∈ IN} (2.19)

is empty. The key result now simply says that if (zj − cj) ≤ 0 for all j ∈ IN , then

the current basic feasible solution is optimal. From the definition we can write

c̄j = zj − cj for all j.

Definition 2.4. The subspace that contains only the nonbasic variables is referred

to as a reduced space. The components of the objective row in a reduced space

are called reduced costs, donoted be c̄:

c̄T = (c̄TB, c̄
T
N) = (0T, cTBB

−1N− cTN) (2.20)

Note that the cost vector associated with the set of basic variables is a null

vector 0.

17

The simplex method consists of the following three crucial steps:

1. Initialization step: Find an initial basic feasible solution. Consider a

linear program in the following standard form:

Minimize c1x1 + c2 x2 + · · ·+ cnxn

subject to a11x1 + a12 x2 + · · ·+ a1nxn + xn+1 = b1

a21x1 + a22 x2 + · · ·+ a2nxn + xn+2 = b2

...
...

...
...

am1x1 + am2 x2 + · · ·+ amnxn + xn+m = bm

x1, x2, . . . , xn, xn+1, . . . , xn+m ≥ 0.

(2.21)

The simplex method starts with a corner point of the feasible region. From the

LP problem (2.21), the point (x1, x2, . . . , xn) = (0, 0, . . . , 0) are the starting ba-

sic feasible solution so x1, x2, . . . , xn is the nonbasic variables and the auxiliary

variables xn+1, xn+2, . . . , xn+m are the basic variables. Since the values 0 are as-

signed to all nonbasic variables, thus the result can be immediately obtained as

xn+1 = b1, xn+2 = b2, . . . , xn+m = bm and hence the basic feasible solution is

(x1, x2, . . . , xn, xn+1, xn+2, . . . , xn+m) = (0, 0, . . . , 0, b1, b2, . . . , bm).

2. Iterative step: Find an adjacent basic feasible solution that improves

the objective value. The iterative step contains 3 steps that are determining an

entering variable (a nonbasic variable to enter the basis), determining the leaving

variable (a basic variable to leave the basis) and pivoting on the pivot element.

The details will be described in the next section.

3. Optimality test: In this step, the optimality of the current basic feasible

solution is tested. In a minimization problem, the optimality condition is satisfied

if all reduced costs are nonnegative.

2.2.2 The Simplex Algorithm

Consider the algorithm of the simplex method for solving the linear programming

problem of the system (2.21).

Initialization Step : Choose the starting basic feasible solution with the basis

B and the associated nonbasic N.

18

Main Step :

1. Determine the entering variable from the nonbasic variables: By Dantzig’s

rule, choose xk where zk − ck = max{zj − cj | j ∈ IN}.

2. If zk − ck ≤ 0, then

xB

xN

 is an optimal solution. Stop the algorithm.

3. Determine the leaving variable from the basic variables by the minimum

ratio test.

4. Perform the pivot operation using the entering and the leaving variable, and

go to Step 1.

2.3 The Simplex Method in Tableau Format

To make the simplex method easier to handle, the algebra of the simplex method

can be transformed into row operations in the tableau format. Suppose that the

starting basic feasible solution x with basis B is given. The linear programming

problem can be represented as follows:

Minimize z

subject to z − cTBxB − cTNxN= 0 (2.22)

BxB +NxN = b (2.23)

xB,xN ≥ 0.

From (2.23), we have

xB +B−1NxN = B−1b. (2.24)

Multiplying (2.24) by cTB, we get

cTBxB + cTBB
−1NxN = cTBB

−1b. (2.25)

Adding (2.25) to (2.22), we get

z + (cTBB
−1N− cTN)xN = cTBB

−1b. (2.26)

19

Curently, xN = 0, and from equation (2.24) and (2.26) we get xB = B−1b and

z = cTBB
−1b. The current basic feasible solution with basis B can be comveniently

represented in the following tableau.

z xB xN RHS

z 1 0 cTBB
−1N− cTN cTBB

−1b Row 0

xB 0 I B−1N B−1b Rows 1 through m

From the above tableau format, it can be expanded into the simplex tableau

in Table 2.1. The simplex tableau gives the value of the objective function z =

cTBB
−1b, the basic variables xB = B−1b and the objective row cTBB

−1N − cTN,

which consists of the c̄j = zj − cj value for nonbasic variable xj. Thus, row zero

tells us if zj − cj ≤ 0, ∀j, the current basis yields an optimal solution. Otherwise,

the objective can be improved by increasing the value of a nonbasic variable with

zj − cj > 0. If xk for some k ∈ IN increases, then the vector yk = B-1Ak, which is

stored in the xk column from rows 1 through m, will determine how much xk can

be increased. If yk ≤ 0, then the problem is unbounded since xk can be increased

indefinitely without being blocked. Conversely, if yk � 0, that is, if the vector

yk has at least one positive component, then there exists one of the current basic

variables that blocks the increase in xk by dropping to zero first. The minimum

ratio test determines the blocking variable.

2.4 Pivot Rule

The important step for solving a linear programming problem with the simplex

method is to select an entering variable for each pivot operation. This method of

making such a selection is known as a pivot rule. Pivot rule aims to improve the

objective value. The best pivot rule would move along the path with the smallest

number of visited corner points from the starting solution to the optimal solution.

20

Table 2.1: The initial simplex tableau before pivoting.

Basic xB xN
RHS

Variable z xB1 … xBr … xBm … xj … xk …

z 1 0 … 0 … 0 … c̄j … c̄k … cTBB
−1b

xB1 0 1 … 0 … 0 … y1j … y1k … b̄1
...

xBr 0 0 … 1 … 0 … yrj … yrk … b̄r
...

xBm 0 0 … 0 … 1 … ymj … ymk … b̄m

If an entering variable and a leaving variable are chosen, a new basic solution can

be obtained by performing the pivot operation.

2.4.1 Pivot Operation

In terms of the geometric motivation of the simplex method, the pivot operation

is equivalent to moving from a basic feasible solution to an adjacent basic feasible

solution. The pivot operation takes place after a pivot element is selected. The

column and the row containing the pivot element are called the pivot column and

the pivot row, respectively. A pivot element must be positive. If a nonbasis vari-

able xk is selected in the column k as a pivot column, the variable corresponding

to the pivot column enters the set of basic variable is called the entering vari-

able. If a basic variable xBr in the row r is selected as the pivot row, it is called

the leaving variable. The steps of the pivot operation are described as follows.

First, multiply all elements in the row r by the reciprocal of the pivot element in

order to change this element to 1. Then, all entries in the pivot column k except

the pivot element have to change to 0 by some row operations. Then the pivot

column k becomes one of the columns of the identity matrix. So the entering

variable is now a basic variable and the leaving variable now becomes a nonbasic

variable.

21

2.4.2 Entering Variable

An entering variable xk selected from a nonbasic variable is a variable that corre-

sponds to the pivot column k to enter the set of basic variables since the entering

variable will be, in general, increased from 0 to a positive value without exceeding

the resource availability on the right-hand-side of the equation. If xk is increased

by one unit, then xB1 , xB2 , . . . , xBm will be decreased by y1k, y2k, . . . , ymk units

respectively. (If yik < 0, then xBi
will be increased.)

It is well known that Dantzig’s pivot rule [13] is originally the first rule for

selecting the entering variable. Dantzig’s pivot rule picks a nonbasic variable

which provides the most improvement in the objective function to be an entering

variable. Thus if J ̸= ∅, the entering variable xk based on the Dantzig’s pivot

rule is selected by the most per-unit negative reduced cost as follows:

k = argmax{zj − cj | j ∈ J}. (2.27)

Remark 2.5. For python programming, argmax stands for argument of the max-

imum, which returns the index of the first maximum element in the set. In a

similar fashion, argmin stands for argument of the minimum, which returns the

index of the first minimum element in the set.

2.4.3 Leaving Variable

After the pivot column has been chosen, the pivot row will be determined as the

result of the feasibility requirement of the solution. Since the entering variable

(xk) will be increased from 0 to a positive value without exceeding the resource

availability on the right-hand-side of the equation, the nonbasic variable xk cannot

be indefinitely increased (unless we have an unbounded problem). A basic variable

xBr that first drops to 0 becomes a leaving variable and blocks the further increase

of xk.

A leaving variable corresponds to only one of positive entries in the pivot

column k. If all entries in pivot column k is not positive then the problem is

22

unbounded. Otherwise, given a pivot column xk, the pivot row r is determined by

r = argmin
{

b̄j
yjk

∣∣∣∣ yjk > 0, j ∈ {1, ...,m}
}

This is called the minimum ratio test.

To update the simplex tableau 2.1, the pivot operation is performed as follows

[2, 11]:

1. Divide row r by yrk. (yrk > 0.)

2. For i = 1, 2, . . . ,m and i ̸= r, update the ith row by adding to it −yik times

the new rth row.

3. Update row zero by adding to its c̄k times the new rth row.

After the pivot operation is performed, the simplex tableau after pivoting is ob-

tained by following tableau.

Table 2.2: The simplex tableau after pivoting.

Basic xB xN
RHS

Variable z xB1… xBr …xBm … xj … xk …

z 1 0 …− c̄k
yrk

… 0 … c̄j − yrj
yrk

c̄k … 0 … b̄0 − b̄r
yrk

c̄k

xB1 0 1 …−y1k
yrk

… 0 … y1j − yrj
yrk

y1k … 0 … b̄1 − b̄r
yrk

y1k
...

xk 0 0 … 1
yrk

… 0 … yrj
yrk

… 1 … b̄r
yrk...

xBm 0 0 …−ymk

yrk
… 1 …ymj − yrj

yrk
ymk… 0 … b̄m − b̄r

yrk
ymk

2.5 Literature Review on Pivot Rules

An effective pivot rule can lead to the solution of LP with small number of iter-

ations. Dantzig’s original rule is the standard pivot rule but this rule is efficient

only for LP with a small number of constraints. Moreover Dantzig’s rule may

23

take a lot of iterations in some case. Klee and Minty [4] exhibited the worst case

running time of the simplex algorithm using Dantzig’s pivot rule. To avoid this

weakness, there are many studies trying to improve the simplex algorithm via the

pivot rule by reducing the number of iterations and the solution time. In 1977,

Forrest and Goldfarb [7] presented a pivot rule that reduces the number of iter-

ations which was called “steepest-edge rule”. Later, other rules followed such as

Devex rule by Harris [8] and the largest-distance pivot rule by Pan [9].

The following are pivot rules used to select an entering index in the simplex

algorithm for solving LP problems.

1. Steepest-edge rule [7]

The set of edge directions can be written as:

dj =

−B−1N

I

 ej−m, j ∈ IN , (2.28)

where I ∈ R(n−m)×(n−m) and ei is the unit (n −m) vector. Note that c̄j =

cTdj. When J is nonempty, the steepest-edge rule chooses an entering index

q such that :
c̄q

∥dq∥2
= min

{
c̄j

∥dj∥2

∣∣∣∣ j ∈ J

}
< 0. (2.29)

If xq replaces xp in the basis, then recurrence formulas of the edge direc-

tions are easily derived:

d̄p = −
(

1

αq

)
dq, (2.30)

d̄j = dj −
(
αj

αq

)
dq, j ∈ IN , j ̸= p, (2.31)

where αq = wTAq,wB = cTB.

2. Devex rule [8]

This rule uses an approximate steepest-edge rule, in which the norms ∥dj∥2
of the edge directions are replaced by approximated weights wj. Initially,

a so called “reference framework” is set to the current set of nonbasic

indices, and all weights wj are set to one for all j in the set. In other

24

iterations, it uses weights wj to approximate the norms of the subvectors d̂j

consisting of only those components of the edge direction dj associated with

the reference framework.

The weights wj are updated as follows:

w̄p = max

{
1,

∥d̂q∥2
αq

}
, (2.32)

w̄j = max

{
wj,

∣∣∣∣αj

αq

∣∣∣∣ ∥d̂q∥2
}
, j ∈ IN , j ̸= p, (2.33)

where αj = eT
p B-1Aj.

3. Largest-distance pivot rule [9]

If J is nonempty, select nonbasic index q to become basic such that:

ĉq :=
c̄q

∥Aq∥
= max

{
c̄j

∥Aj∥

∣∣∣∣ j ∈ J

}
, (2.34)

where ∥Aj∥ denotes some norm of Aj.

CHAPTER III

ABSOLUTE CHANGE PIVOT RULE FOR THE

SIMPLEX ALGORITHM

Although the simplex algorithm with Dantzig’s pivot rule is popular for solving

LP problems, in some problems it may not take the best path to the optimal

solution. In this chapter the pivot rule that could reduce the number of iterations

of LP problem is proposed. The idea is to have the maximum improvement in the

objective value by trying to block a leaving variable that makes a little change in

the objective value as much as possible. If such variables can be prevented to leave

the basis, it could make the objective function value improved further than using

a regular Dantzig’s pivot rule and therefore lead to fewer number of iterations.

3.1 The Concept of Absolute Change Pivot Rule

To select the entering variable, Dantzig’s pivot rule considers only the most nega-

tive reduced cost. In some problems, it may not be an effective rule to choose the

entering variable. Thus there is a need to develop an efficient pivot rule to identify

an entering variable. It is possible that we can select an entering variable that

can improve the objective function value as much as possible. Hence we propose

a pivot rule to improve the objective value by trying to avoid all leaving variables

that cause small change in the objective function. We call it absolute change

pivot rule.

First, the row with the minimum right-hand-side value will be considered.

The motivation behind this is that, given an entering variable, the basic variable

associated with this row will have a tendency to become zero first and, as the

result, tends to block the increase of the objective value. By preventing this

variable from leaving the basis, the value of the entering variable can be increased

26

further. To prevent that, we look for an entering variable that has zero or negative

value in that row so that the minimum ratio is not applicable for that row. If there

is more than one candidate for such entering variable, we look for the row with

the next minimum right-hand-side and repeat the process until we have only one

candidate or until we cannot find a row with zero or negative value anymore. If

we still end up with more than one entering candidate, we select the one with

the most negative reduced cost. In summary, this rule heuristically selects the

entering variable that can move the farthest.

3.1.1 Geometric Motivation of the Simplex Method with

Absolute Change Pivot Rule

To make it easier to understand the step of an algorithm for linear programming

problem, the concept of absolute change pivot rule is introduced in terms of ge-

ometry through the following example.

Example 3.1. Consider the following problem:

Minimize −10x1 − x2,

subject to x1 ≤ 1,

20x1 + x2 ≤ 100,

x1, x2, ≥ 0.

Figure 3.1 shows a feasible region in 2 dimensions of Example 3.1. The simplex

method starts at the origin and moves in a feasible direction to an adjacent extreme

point along the x1 axis or x2 axis. The objective function changes either at the

rate of change ∂z
∂x1

= −(z1 − c1) = c̄1 < 0 when holding x2 = 0 and increasing x1

along the x1 axis or at the rate of change ∂z
∂x2

= −(z2 − c2) = c̄2 < 0 when holding

x1 = 0 and increasing x2 along the x2 axis.

Herein c̄1 = −10 and c̄2 = −1. Since the most negative reduce cost is c̄1,

Dantzig’s rule select x1 as the entering variable, which corresponds to moving

along the x1 axis to visit the position number 1 in Figure 3.1. The pivot rule is

27

100

1 5

Optimal
Solution

0

x1=1 20x1+ x2=100

x1

x2

1

2

3

Figure 3.1: The feasible region of Example 3.1.

then repeated, which results in the basic feasible solution moving from the position

number 1 to the position number 2 and finally achieving the optimal solution at

the position number 3.

As mentioned before, in some problem the simplex method with Dantzig’s pivot

rule may not give the best path to achieve the optimal solution since this rule may

visit a large number of extreme points before reaching the optimal solution. The

simplex method with the absolute change pivot rule does not consider moving

along the direction with the most rate of change. This rule tries to prevent basic

variable with small value from leaving the basis. For Example 3.1, this corresponds

to the slack variable in the first constraint. Hence, the slack variable for the second

constraint leaves the basis in stead. Thus this rule causes the algorithm to move

from the origin to the position number 1 as depicted in Figure 3.2 along x2 axis

and achieve the optimal solution in one step.

3.1.2 The Simplex Algorithm with the Absolute Change

Pivot Rule

The simplex algorithm with the absolute change pivot rule starts from a basic

feasible solution with the basis [B N].

28

100

1 5

Optimal
Solution

0

x1=1 20x1+ x2=100

x1

x2

1

Figure 3.2: The feasible region of Example 3.1.

1. If zj − cj ≤ 0 for all j ∈ IN , then

xB

xN

 is the optimal solution. Stop the

algorithm.

2. Determine the entering variable by using absolute change pivot rule:

i. Set CI = {1, . . . ,m}. Let J = {j | zj − cj > 0, j ∈ IN}

ii. Select index r such that r = argmin{b̄i | i ∈ CI}

iii. Let Ĵ = {j ∈ J | yrj ≤ 0}.

If Ĵ ̸= ∅, let J = Ĵ .

• If |J | = 1, go to (iv). Else, remove r from CI and go to (ii).

iv. Else, choose xk by zk − ck = max{zj − cj | j ∈ J}

3. Determine the leaving variable from the basic variables by the minimum

ratio test.

4. Perform the pivot operation using the entering and the leaving variables,

and go to Step 1.

This algorithm is different from the simplex algorithm with Dantzig’s pivot

rule at step 2, which is the step where an entering variable is determined. This

step can also be described in the following flowchart.

29

Choosing Entering Variable�ܫ = ͳ,ʹ, … , ܬ� = ݖ|݆} − ܿ > Ͳ, ݆ ∈ �{�ܫ = argmin{ ܾ|݅ ∈ ܬ {ܫ� = {݆ ∈ �ݕ|ܬ ≤ Ͳ}
ܬ = ∅?

ݖ − ܿ = argmax{ݖ − ܿ|݆ ∈ {ܬ
Choose ݔ as Entering Variable

Set ܬ = Noܬ

Yes

ܫ� = {�}\ܫ�
No

ܬ = ͳ?
Yes

Figure 3.3: Flowchart of the step 2 for identifying an entering variable.

3.2 Illustration of the Method

The proposed pivot rule is demonstrated with two examples: Klee and Minty [4]

problem and a randomly generated linear programming problem.

In 1972, Klee and Minty showed a collection of LP problems that cause the

worst-case running time for the simplex method using Dantzig’s pivot rule. The

collection of LP problems is given by

Minimize −
n∑

j=1

10n−jxi,

subject to 2
i−1∑
j=1

10i−jxj + xi ≤ 100i−1, i = 1, . . . , n,

xi ≥ 0, i = 1, . . . , n.

(3.1)

The simplex method with the Dantzig’s pivot rule requires 2n− 1 iterations to

solve Klee and Minty problem. For example, if we let n = 4, the simplex method

using Dantzig’s pivot rule visits 15 corner points before reaching the optimal so-

lution.

The following examples (3.2 and 3.4) are presented to show the efficiency of

the proposed pivot rule. To illustrate the proposed pivot rule geometrically, Klee

and Minty problem with n = 3 is used.

30

Example 3.2. Consider the following problem:

Minimize −100x1− 10x2−x3,

subject to x1 ≤ 1,

20x1+ x2 ≤ 100,

200x1+ 20x2+x3 ≤ 10000,

x1, x2, x3 ≥ 0.

Figure 3.4 shows the feasible region of Klee and Minty problem with n = 3.

If we follow the simplex method with Dantzig’s pivot rule, this rule moves from

the origin to the position numbers 1,2,...,6, consecutively and achieves the optimal

solution at the position number 7, with the total of seven iterations. We can see

in Figure 3.5 that the simplex method with absolute change pivot rule moves from

the origin to the position number 1, with only one iteration.

x1

x2

x3

01

2

3

4

5

6

7

Figure 3.4: The feasible region of Klee and Minty problem with n = 3.

31

x1

x2

x3

0

1

Figure 3.5: The feasible region of Klee and Minty problem with n = 3.

Example 3.2 can be written in the tableau format, where x4, x5, x6 are the slack

variables, as follows:

z x1 x2 x3 x4 x5 x6 RHS

z 1 100 10 1 0 0 0 0

x4 0 1 0 0 1 0 0 1

x5 0 20 1 0 0 1 0 100

x6 0 200 20 1 0 0 1 10000

Since Example 3.2 is the minimization problem, we can see from the above

tableau that x1, x2 and x3 can be a candidate for the entering variable since the

negative reduce cost is greater than zero. If we follow the simplex algorithm with

absolute change pivot rule we can see that right-hand-side entries are already

sorted from the smallest to the largest values. Consider the first row (x4), since

the element in the third and fourth column are zero then x2 and x3 can be entering

variables. x1 is not a candidate because the element in the column of x1 is positive.

Since we still have two candidates, the second row has to be considered. The

second row has zero value at the third column so x3 is a candidate while x2 is

no longer a candidate since its entry is positive. As the result of this pivot rule,

the entring variable is x3. From the minimum ratio test we get x6 is the leaving

32

variable. After pivot operation, the optimal solution is obtained which is shown

in the tableau below.

z x1 x2 x3 x4 x5 x6 RHS

z 1 -100 -10 0 0 0 -1 -10000

x4 0 1 0 0 1 0 0 1

x5 0 20 1 0 0 1 0 100

x3 0 200 20 1 0 0 1 10000

For this example the optimal solution is x1 = 0, x2 = 0 and x3 = 10000. The

optimal value is −10000 within one iteration.

Theorem 3.3. The simplex method using absolute change pivot rule achieves the

optimal solution within one iteration for any Klee and Minty problem.

Proof. Consider a Klee and Minty problem in the following standard form:

Minimize −10n−1x1 − 10n−2 x2 − · · ·− xn,

subject to x1 + xn+1 = 1,

20x1 + x2 + xn+2 = 100,

...
...

...

2× 10n−1x1 + 2× 10n−2 x2 + · · ·+ xn + x2n = 10n−1,

x1, x2, . . . , xn, xn+1, . . . , x2n ≥ 0,

(3.2)

where xn+1, xn+2, . . . , x2n are the slack variables associated with the nth con-

straints. The initial simplex tableau of problem (3.2) is:

33

z x1 x2 · · · xn xn+1 · · · x2n RHS

z 1 10n−1 10n−2 · · · 1 0 · · · 0 0

xn+1 0 1 0 · · · 0 1 · · · 0 1

xn+2 0 20 1 · · · 0 0 · · · 0 100
...

x2n 0 2× 10n−1 2× 10n−2 · · · 1 0 · · · 1 10n−1

The right-hand-side entries are sorted from the smallest to the largest values.

By the simplex method using the absolute change pivot rule, xn is chosen to be an

entering variable and x2n is a leaving variable by the minimum ratio test. After

the first iteration, the optimal solution is obtained which is shown in the tableau

below.

z x1 x2 · · · xn xn+1 · · · x2n RHS

z 1 −10n−1 −10n−2 · · · 0 0 · · · -1 −10n−1

xn+1 0 1 0 · · · 0 1 · · · 0 1

xn+2 0 20 1 · · · 0 0 · · · 0 100
...

xn 0 2× 10n−1 2× 10n−2 · · · 1 0 · · · 1 10n−1

Tableau above is the optimal tableau for Klee and Minty problem with any

size n. The optimal solution is x1 = 0, x2 = 0, . . . , xn−1 = 0 and xn = 10n−1. The

optimal objective value is −10n−1 and is achieved within one iteration.

34

Example 3.4. Consider the following generated linear programming problem :

Minimize −50x1− 2x2−46x3−40x4−15x5,

subject to 15x1− 3x2+22x3+ 3x4− 4x5 ≤ 1467,

17x1+11x2+23x3+19x4−28x5 ≤ 1733,

10x1−18x2+21x3+28x4+ 6x5 ≤ 1758,

−49x1+ 6x2+36x3+34x4− 2x5 ≤ 606,

−33x1+25x2+48x3−14x4+12x5 ≤ 1365,

x1, x2, x3, x4, x5 ≥ 0.

Let x6, x7, x8, x9, x10 be slack variables associated with constraints. The initial

simplex tableau is :

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 50 2 46 40 15 0 0 0 0 0 0

x6 0 15 -3 22 3 -4 1 0 0 0 0 1467

x7 0 17 11 23 19 -28 0 1 0 0 0 1733

x8 0 10 -18 21 28 6 0 0 1 0 0 1758

x9 0 -49 6 36 34 -2 0 0 0 1 0 606

x10 0 -33 25 48 -14 12 0 0 0 0 1 1365

From the above initial simplex tableau, we can see that x1, x2, x3, x4 and x5 can

be a candidate for the entering variable since the negative reduce cost is greater

than zero. If we follow the simplex algorithm with the absolute change pivot rule,

it looks for the row with the minimum right-hand-side first. Since row x9 has the

minimum right-hand-side, we look for zero or negative value in that row, which

are the entries in the column x1 and x5. So x1 and x5 are the candidates for the

entering variable. Because there is more than one candidate to be an entering

variable, we have to look for the row with the next minimum right-hand-side,

which is row x10. Since the zero or negative entries in this row are in the columns

of x1 and x4, the only candidate left is x1. Hence, after the first iteration we get x1

35

is the entering variable and, with minimum ratio test, x6 is the leaving variable.

After pivoting, the simplex tableau becomes

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 12 −271
3

30 281
3

−31
3

0 0 0 0 -4890

x1 0 1 −1
5

1 7
15

1
5

− 4
15

1
15

0 0 0 0 974
5

x7 0 0 142
5

−114
15

153
5

−23 7
15

−1 2
15

1 0 0 0 702
5

x8 0 0 -16 61
3

26 82
3

−2
3

0 1 0 0 780

x9 0 0 −34
5

10713
15

454
5

−15 1
15

3 4
15

0 0 1 0 53981
5

x10 0 0 182
5

962
5

−72
5

31
5

21
5

0 0 0 1 45892
5

In a similar fashion, after the second iteration, x5 is the entering variable and

x8 is the leaving variable. The result simplex tableau becomes

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 64 4
13

−48 1
26

-55 0 −1 2
13

0 −3 7
26

0 0 -7440

x1 0 1 − 9
13

143
65

1 0 3
65

0 2
65

0 0 1214
5

x7 0 0 −2812
13

1514
65

86 0 −261
65

1 246
65

0 0 21822
5

x5 0 0 −111
13

19
26

3 1 − 1
13

0 3
26

0 0 90

x9 0 0 −31 8
13

11857
65

89 0 2 7
65

0 148
65

1 0 67541
5

x10 0 0 24 4
13

94 4
65

-17 0 229
65

0 24
65

0 1 43012
5

In the last iteration of this example, x2 is the entering variable and x10 is the

leaving variable. The last simplex tableau is

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 0 −29623
26
−10 2

79
0 −75

8
0 −219

65
0 −251

79
−1881932

49

x1 0 1 0 416
47

49
95

0 11
95

0 2
99

0 1
35

244 4
13

x7 0 0 0 127 3
22

−6561
79

0 − 1
36

1 211
41

0 115
79

730012
23

x5 0 0 0 77
8

156
79

1 5
46

0 2
23

0 6
79

41642
61

x9 0 0 0 24121
97

668
9

0 524
83

0 1 8
31

1 1 3
10

1234849
66

x2 0 0 1 320
23

− 7
10

0 1
10

0 − 1
66

0 3
73

17622
23

36

This simplex tableau is the optimal tableau with the optimal solution x1 =

244 4
13

, x2 = 730012
23

, x3 = 0, x4 = 0 and x5 = 41642
61

. The optimal value is

−1881932
49

and the number of iterations is three while the simplex method with

Dantzig’s pivot rule uses five iterations to achieve the optimal solution as follows:

Consider the initial simplex tableau of the Example 3.4:

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 50 2 46 40 15 0 0 0 0 0 0

x6 0 15 -3 22 3 -4 1 0 0 0 0 1467

x7 0 17 11 23 19 -28 0 1 0 0 0 1733

x8 0 10 -18 21 28 6 0 0 1 0 0 1758

x9 0 -49 6 36 34 -2 0 0 0 1 0 606

x10 0 -33 25 48 -14 12 0 0 0 0 1 1365

From the initial simplex tableau above if we follow the simplex algorithm with

Dantzig’s pivot rule, after the first iteration we get x1 as the entering variable and

x6 as the leaving variable. After pivoting, the simplex tableau becomes

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 12 −271
3

30 281
3

−31
3

0 0 0 0 -4890

x1 0 1 −1
5

1 7
15

1
5

− 4
15

1
15

0 0 0 0 974
5

x7 0 0 142
5

−114
15

153
5

−23 7
15

−1 2
15

1 0 0 0 702
5

x8 0 0 -16 61
3

26 82
3

−2
3

0 1 0 0 780

x9 0 0 −34
5

10713
15

454
5

−15 1
15

3 4
15

0 0 1 0 53981
5

x10 0 0 182
5

962
5

−72
5

31
5

21
5

0 0 0 1 45892
5

After the second iteration, x4 is the entering variable and x7 is the leaving

variable. The result simplex tableau becomes

37

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 −15 9
13
−23 8

13
0 73 6

13
−1 2

13
−112

13
0 0 0 −5025 5

13

x1 0 1 − 5
13

129
59

0 1
29

3
37

− 1
78

0 0 0 9635
39

x4 0 0 12
13

−1
8

1 −11
2
− 4

55
5
78

0 0 0 420
39

x8 0 0 -40 95
9

0 477
9

12
9

−12
3

1 0 0 6622
3

x9 0 0 −44 3
13
11323

78
0 5032

39
635
78

−221
26

0 1 0 5200 7
13

x10 0 0 25 3
13

9514
29

0 −741
44

151
77

37
78

0 0 1 462231
39

In the third iteration, x5 is the entering variable and x8 is the leaving variable.

The simplex tableau becomes

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 4547
58
−38 4

13
0 0 −3 1

30
55
86

−143
80

0 0 −604411
26

x1 0 1 −21
59

147
97

0 0 2
25

− 1
86

0 0 0 9611
26

x4 0 0 −1
3

3
17

1 0 − 3
88

1
86

1
32

0 0 2526
69

x5 0 0 −36
43

1
5

0 1 1
39

− 3
86

1
48

0 0 1320
23

x9 0 0 −141
60
103 3

23
0 0 511

74
−1 3

86
−1 3

47
1 0 44952

3

x10 0 0 1849
83

97 2
29

0 0 145
52

17
86

1
6

0 1 473270
87

Next iteration, x7 is the entering variable and x4 is the leaving variable. The

simplex tableau is

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 64 4
13

−48 1
26

-55 0 −1 2
13

0 −3 7
26

0 0 -7440

x1 0 1 − 9
13

143
65

1 0 3
65

0 2
65

0 0 1214
5

x7 0 0 −2812
13

1514
65

86 0 −261
65

1 246
65

0 0 21822
5

x5 0 0 −111
13

19
26

3 1 − 1
13

0 3
26

0 0 90

x9 0 0 −31 8
13
11857

65
89 0 2 7

65
0 148

65
1 0 67541

5

x10 0 0 24 4
13

94 4
65

-17 0 229
65

0 −24
65

0 1 43012
5

38

In the last iteration, x2 is the entering variable and x10 is the leaving variable.

The simplex tableau is

z x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS

z 1 0 0 −29623
26

−10 2
79

0 −75
8

0 −219
65

0 −251
79

−1881932
49

x1 0 1 0 416
47

49
95

0 11
95

0 2
99

0 1
35

244 4
13

x7 0 0 0 127 3
22

6561
79

0 − 1
36

1 211
41

0 115
79

730012
23

x5 0 0 0 77
8

156
79

1 5
46

0 2
23

0 6
79

41642
61

x9 0 0 0 24121
97

668
9

0 524
83

0 1 8
31

1 1 3
10

1234849
66

x2 0 0 1 320
23

− 7
10

0 1
10

0 − 1
66

0 3
73

17622
23

This simplex tableau is the optimal tableau with optimal solution x1 = 244 4
13

,

x2 = 17622
23

, x3 = 0, x4 = 0 and x5 = 41642
61

. The optimal value is −1881932
49

and

the number of iterations is five.

In this chapter the concept of the absolute change pivot rule is proposed. Then

we describe geometric motivation of the simplex method with absolute change

pivot rule, the simplex algorithm with the absolute change pivot rule and illustrate

the performance of the simplex method with this pivot rule by using Klee and

Minty problem with n = 3 and a randomly generated linear programming problem.

In the next chapter the effectiveness of the simplex method with this pivot rule

is tested by solving the randomly generated LP problems and is compared the

number of iterations and time with other pivot rules.

CHAPTER IV

EXPERIMENTS AND ANALYSIS

In this chapter, the absolute change pivot rule (ACP) was tested with randomly

generated linear programming problems of various sizes. the number of iterations,

time, the number of operations, i.e., multiplications and additions of this pivot

rule are compared with Dantzig’s pivot rule (DZP), steepest-edge pivot rule (SEP),

Devex rules (DVP) and the largest-distance pivot rule (LDP).

The programming language used was Python. All codes were run under an

Oracle VM VirtualBox version 4.3.4r91027 by software Sage [14] version 5.7 with

base memory 512 MB. The computer system processor is Intel(R) Core(TM)i7-

3770K CPU @3.50GHz, 8.00 GB of memory, and 64-bit Window 7 Operating

System. The time used in the experiments is measured in seconds.

4.1 Problem Generation

All randomly generated linear programming problems are minimization problems

and are generated according to the following specifications: The cost vector c is

generated with ci ∈ [−10, 10]. The matrix A is generated with aij ∈ [−10, 10]. To

guarantee a feasible problem, a feasible solution x is generated with xi ∈ [0, 10]

and then the right-hand-side b is calculated by b = Ax. All constraints are in

the form ≤.

In this chapter, m and n represent the number of constraints and the number

of decision variables, respectively. The LP problems are in the following form:

Minimize cTx

subject to Ax ≤ b

x ≥ 0.

(4.1)

40

The size of matrix A, m× n, is used to indicate the size of the problem. Note

that these m and n are defined differently from m and n in the Section 2.1 since

the problems are in different forms.

The sizes of problems are varied from 10 × 10 through 650 × 650. For each

size, we generate 50 problems and find the mean results for each method.

4.2 Comparison

The absolute change pivot rule is compared with Dantzig’s original pivot rule and

other pivot rules. The performance measures used for comparison is the number

of iterations (pivot) and time. Moreover, the comparison of the operations, i.e.,

multiplications and additions, are shown in the next section.

Table 4.1 and 4.2 show the comparison of the average number of iterations and

average time from solving LP problems by the simplex algorithm with DZP, LDP,

SEP, DVP and ACP with problem sizes from 10 × 10 to 120 × 120. Moreover,

these tables also show standard deviation for average number of iterations and

average time for each problem size.

41

Table 4.1: The average number of iterations ± standard deviation (µ± σ) from solving LP problems by the simplex method with

DZP, LDP, SEP, DVP and ACP with problem sizes from 10× 10 to 120× 120.

No.
Problem size Average no. of iterations ± Standard deviation (µ± σ)

m n DZP LDP SEP DVP ACP

1 10 10 7.33±3.42 6.23±2.47 10.86±4.83 10.16±4.19 7.58±3.58

2 20 20 17.94±5.45 16.60±4.68 31.58±8.63 32.48±8.16 20.06±6.38

3 30 30 37.74±9.09 30.79±6.80 73.11±18.80 65.49±13.98 38.57±9.68

4 40 40 51.90±15.61 44.51±11.31 117.69±29.45 103.37±24.67 53.96±12.89

5 50 50 79.98±22.02 65.60±13.73 167.88±28.83 153.20±29.15 78.38±12.29

6 60 60 113.14±24.12 86.52±15.11 225.04±40.07 206.76±29.89 102.50±16.96

7 70 70 141.46±35.94 109.30±14.54 298.68±44.95 267.64±45.44 131.38±21.48

8 80 80 184.66±40.82 136.82±16.74 385.82±56.01 337.94±49.91 161.02±18.32

9 90 90 232.72±41.30 167.56±21.60 477.92±58.55 413.12±62.61 196.20±25.17

10 100 100 280.30±51.98 199.28±25.46 539.82±81.95 483.64±60.95 223.84±31.31

11 110 110 331.56±63.00 231.78±34.65 641.80±83.49 565.68±62.07 258.96±34.50

12 120 120 409.94±75.21 277.44±34.13 739.56±74.55 662.24±67.32 292.58±35.45

Remark 4.1. No unbounded problem in Table 4.1.

42

Table 4.2: The average time ± standard deviation (µ±σ) from solving LP problems by the simplex method with DZP, LDP, SEP,

DVP and ACP with problem sizes from 10× 10 to 120× 120.

No.
Problem size Average time (sec) ± Standard deviation

m n DZP LDP SEP DVP ACP

1 10 10 0.00±0.01 0.01±0.01 0.06±0.06 0.03±0.02 0.01±0.01

2 20 20 0.01±0.01 0.03±0.01 0.41±0.11 0.29±0.08 0.04±0.01

3 30 30 0.04±0.01 0.09±0.03 1.90±0.47 1.16±0.24 0.12±0.04

4 40 40 0.08±0.02 0.16±0.04 5.32±1.16 3.18±0.63 0.24±0.06

5 50 50 0.14±0.04 0.29±0.06 11.14±1.93 7.07±1.52 0.43±0.07

6 60 60 0.23±0.06 0.46±0.10 21.11±3.82 13.38±1.99 0.69±0.12

7 70 70 0.34±0.10 0.67±0.10 37.92±5.88 23.33±3.98 1.05±0.17

8 80 80 0.48±0.14 0.90±0.13 59.97±9.70 35.91±6.00 1.40±0.19

9 90 90 0.62±0.12 1.15±0.15 85.97±10.61 50.61±7.70 1.81±0.24

10 100 100 0.86±0.18 1.58±0.21 123.62±18.98 75.78± 9.79 2.43±0.36

11 110 110 1.09±0.21 2.02±0.31 174.50±23.55 105.59±12.04 3.14±0.46

12 120 120 1.44±0.26 2.55±0.30 231.61±23.34 142.64±14.62 3.81±0.47

43

Since DVP and SEP give a large number of iterations (see Table 4.1), they take

a lot of solution time (see Table 4.2) for solving LP problems for each problem

sizes. Hence, we reduce our comparison to only DZP, LDP and ACP for larger

LP problems.

Table 4.3 and 4.4 show the comparison of the average number of iterations

and average time with their standard deviations from solving LP problems by the

simplex algorithm with DZP, LDP and ACP with problem size from 150 × 150

to 650 × 650. While generating the problems (where A is a square matrix), we

encountered a few unbounded problems, which are discarded when found and

then replaced by a new randomly generated bounded LP problem . So there is no

unbounded problem in both tables.

Table 4.3: The average number of iterations ± standard deviation (µ ± σ) from

solving LP problems by the simplex method with DZP, LDP and ACP with prob-

lem sizes from 150× 150 to 650× 650.

No.
Problem size Average no. of iterations ± Standard deviation (µ± σ)

m n DZP LDP ACP

1 150 150 607.96±104.86 400.34±55.82 405.20±45.64

2 200 200 1089.32±146.76 663.48±63.89 638.00±55.47

3 250 250 1581.46±217.37 1008.28±82.21 873.46±65.77

4 300 300 2383.50±297.00 1374.60±102.76 1120.60±74.05

5 350 350 3216.44±365.56 1810.70±138.23 1431.16±112.21

6 400 400 4218.00±517.35 2336.02±128.25 1782.74±137.22

7 450 450 5349.88±610.45 2930.36±164.92 2067.66±146.08

8 500 500 6774.70±673.83 3581.94±233.35 2457.86±168.58

9 550 550 7976.80±748.22 4260.74±188.36 2792.06±170.39

10 600 600 9378.76±932.69 5004.62±222.11 3213.22±141.35

11 650 650 11280.76±1021.6 5906.76±287.62 3644.34±215.71

Remark 4.2. No unbounded problem in Table 4.3.

44

Table 4.4: The average time ± standard deviation (µ± σ) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from

150× 150 to 650× 650.

No.
Problem size Average time (sec) ± Standard deviation

m n DZP LDP ACP

1 150 150 2.63±0.47 4.51±0.65 6.69±0.84

2 200 200 6.46±0.89 10.29±0.97 15.49±1.38

3 250 250 11.90±1.62 19.86±1.63 28.84±2.27

4 300 300 25.87±2.97 37.25±3.66 58.13±4.29

5 350 350 42.67±5.23 60.06±5.12 97.12±7.65

6 400 400 74.03±10.14 97.90±8.02 184.39±15.20

7 450 450 107.50±12.35 143.83±10.48 263.51±19.93

8 500 500 112.91±13.36 158.04±15.39 258.98±26.01

9 550 550 139.71±13.78 196.67±10.20 321.17±20.18

10 600 600 338.74±43.94 492.25±389.95 698.14±73.73

11 650 650 483.35±582.66 511.74±40.56 859.09±67.48

Tables 4.5 and 4.6 show the similar results to the previous tables but the

matrix A is not square. In particular, m < n. The problem sizes are varied

from 150× 200 to 300× 400 in these tables. Unfortunately, once the matrix A is

no longer a square matrix, the randomly generated problems become unbounded

more frequently, especially when the number of constraints is much less than the

number of the decision variables. In many cases, unbounded problems occurs

100% as seen Table 4.5. Hence the average number of iterations in this case are

the average number of iterations from solving an LP problem until unboundedness

is determined or an optimal solution is found.

45

Table 4.5: The average number of iterations ± standard deviation (µ± σ) from solving LP problems by the simplex method with

DZP, LDP and ACP with problem sizes from 150× 200 to 300× 400.

No.
Problem size Average no. of iterations (sec) ± Standard deviation

%Unbounded
m n DZP LDP ACP

1 150 200 911.84 ± 119.80 523.66 ± 44.46 543.30 ± 61.13 0

2 150 250 775.16 ± 294.49 562.48 ± 96.58 530.94 ± 120.56 62

3 150 300 354.66 ± 78.87 451.30 ± 66.76 394.88 ± 69.06 100

4 150 350 280.68 ± 41.47 405.98 ± 52.57 324.84 ± 47.11 100

5 150 400 256.98 ± 31.06 386.10 ± 39.23 305.18 ± 38.64 100

6 150 450 250.76 ± 29.52 367.54 ± 46.82 285.50 ± 37.20 100

7 150 500 230.58 ± 28.78 343.12 ± 28.71 264.92 ± 39.72 100

8 200 250 1395.42 ± 185.27 818.52 ± 52.43 770.96 ± 51.82 0

9 200 300 1489.28 ± 371.00 939.08 ± 109.11 871.96 ± 126.44 38

10 200 350 880.88 ± 408.19 855.30 ± 127.48 700.38 ± 158.06 94

11 200 400 506.58 ± 133.01 723.06 ± 89.37 556.18 ± 86.76 100

12 200 450 429.64 ± 52.35 681.08 ± 68.85 502.46 ± 61.03 100

13 200 500 395.89 ± 42.40 656.60 ± 67.27 476.40 ± 60.68 100

14 300 350 2742.15 ± 337.57 1560.00 ± 93.30 1312.47 ± 94.28 0

15 300 400 3315.11 ± 462.93 1790.65 ± 136.09 1528.36 ± 118.60 0

46

Table 4.6: The average time ± standard deviation (µ± σ) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from

150× 200 to 300× 400.

No.
Problem size Average time (sec) ± Standard deviation

m n DZP LDP ACP

1 150 200 4.69 ± 1.26 7.62 ± 1.29 12.71 ± 2.05

2 150 250 3.62 ± 1.36 8.37 ± 1.30 13.77 ± 2.36

3 150 300 1.56 ± 0.35 7.07 ± 1.05 12.10 ± 1.91

4 150 350 6.17 ± 9.60 15.63 ± 3.49 34.71 ± 14.31

5 150 400 5.76 ± 2.27 17.78 ± 4.09 42.01 ± 8.47

6 150 450 4.61 ± 0.57 15.16 ± 2.42 34.55 ± 5.77

7 150 500 4.80 ± 0.87 16.77 ± 3.41 40.55 ± 7.68

8 200 250 23.39 ± 3.31 26.63 ± 3.16 78.82 ± 5.56

9 200 300 10.22 ± 2.59 19.82 ± 2.50 33.54 ± 3.93

10 200 350 5.95 ± 2.69 19.48 ± 2.86 32.45 ± 5.89

11 200 400 4.21 ± 1.17 21.17 ± 8.79 32.93 ± 4.49

12 200 450 4.17 ± 0.91 22.09 ± 3.47 38.40 ± 7.35

13 200 500 4.00 ± 0.76 21.79 ± 2.68 36.78 ± 4.53

14 300 350 26.07 ± 3.45 40.67 ± 3.22 65.62 ± 5.66

15 300 400 30.56 ± 4.27 47.75 ± 3.63 81.89 ± 6.46

Tables 4.7 and 4.8 show the similar results to the previous tables but the

matrix A is not square with m > n. The problem sizes are varied from 200× 150

to 400 × 300. As before, any problem found to be unbounded will be discarded

and a new ramdomly generated problem will replace it. Therefore, Tables 4.7 and

4.8 contains no unbounded problem.

47

Table 4.7: The average number of iterations ± standard deviation (µ ± σ) from

solving LP problems by the simplex method with DZP, LDP and ACP with prob-

lem sizes from 200× 150 to 400× 300.

No.
Problem size Average no. of iterations (sec) ± Standard deviation

m n DZP LDP ACP

1 200 150 727.84 ± 115.35 500.66 ± 70.07 476.68 ± 50.92

2 250 150 780.70 ± 118.77 600.88 ± 74.47 519.16 ± 49.45

3 300 150 834.78 ± 155.51 691.96 ± 76.73 561.60 ± 71.71

4 350 150 842.68 ± 117.47 752.26 ± 82.70 578.38 ± 65.61

5 400 150 884.36 ± 137.96 808.40 ± 114.91 610.02 ± 73.38

6 450 150 912.96 ± 141.60 889.30 ± 111.90 633.00 ± 76.79

7 500 150 946.14 ± 122.25 956.60 ± 129.73 637.44 ± 81.98

8 250 200 1275.00 ± 177.22 790.26 ± 87.73 724.06 ± 71.17

9 300 200 1340.72 ± 190.75 931.28 ± 94.99 757.96 ± 71.51

10 350 200 1385.08 ± 181.39 1033.18 ± 104.27 797.86 ± 76.44

11 400 200 1496.00 ± 208.32 1156.80 ± 107.87 860.18 ± 76.66

12 450 200 1505.20 ± 226.51 1217.14 ± 136.42 863.06 ± 75.94

13 500 200 1617.66 ± 229.22 1357.00 ± 128.52 910.92 ± 92.23

14 350 300 2889.70 ± 345.09 1809.00 ± 149.56 1312.36 ± 86.49

15 400 300 3033.82 ± 402.34 1945.10 ± 164.92 1391.50 ± 108.36

Remark 4.3. No unbounded problem in Table 4.7.

48

Table 4.8: The average time ± standard deviation (µ± σ) from solving LP prob-

lems by the simplex method with DZP, LDP and ACP with problem sizes from

200× 150 to 400× 300.

No.
Problem size Average time (sec) ± Standard deviation

m n DZP LDP ACP

1 200 150 4.30 ± 0.66 7.00 ± 0.98 9.74 ± 1.09

2 250 150 5.89 ± 0.96 10.14 ± 1.24 12.90 ± 1.27

3 300 150 7.82 ± 1.48 14.10 ± 1.69 16.62 ± 2.16

4 350 150 10.68 ± 1.79 19.48 ± 2.30 22.69 ± 2.91

5 400 150 12.74 ± 1.99 23.49 ± 3.38 26.97 ± 3.30

6 450 150 16.17 ± 3.05 30.70 ± 4.83 34.02 ± 6.04

7 500 150 16.58 ± 2.25 33.27 ± 4.62 33.34 ± 4.68

8 250 200 19.10 ± 9.92 44.41 ± 158.49 78.15 ± 44.19

9 300 200 19.78 ± 2.81 27.29 ± 3.29 94.37 ± 14.29

10 350 200 25.68 ± 3.70 35.28 ± 3.82 143.99 ± 18.24

11 400 200 34.53 ± 5.31 47.63 ± 4.81 230.20 ± 31.49

12 450 200 36.81 ± 6.29 54.39 ± 7.11 258.49 ± 34.66

13 500 200 62.08 ± 27.86 86.34 ± 28.42 514.53 ± 234.80

14 350 300 74.91 ± 10.45 85.30 ± 11.57 589.00 ± 64.59

15 400 300 90.44 ± 11.14 97.63 ± 10.52 766.30 ± 76.19

Table 4.9 shows the number of iterations and time from solving Klee and Minty

problem with n varied from n = 2, . . . , 20.

49

Table 4.9: The number of iterations and time from solving Klee and Minty problem

by the simplex method with DZP, LDP and ACP with n = 2, 3, . . . , 20.

No. Problem size (n)
Iterations Time (Sec)

DZP LDP ACP DZP LDP ACP

1 2 3 1 1 0.0009 0.0005 0.0004

2 3 7 1 1 0.0011 0.0005 0.0001

3 4 15 1 1 0.0028 0.0006 0.0007

4 5 31 1 1 0.0124 0.0087 0.0013

5 6 63 1 1 0.0228 0.0054 0.0009

6 7 127 1 1 0.0515 0.0013 0.0013

7 8 255 1 1 0.0781 0.0011 0.0020

8 9 511 1 1 0.1990 0.0015 0.0019

9 10 1023 1 1 0.4440 0.0020 0.0025

10 11 2047 1 1 0.9280 0.0014 0.0030

11 12 4095 1 1 1.9967 0.0018 0.0030

12 13 8191 1 1 3.8323 0.0020 0.0036

13 14 16383 1 1 8.7590 0.0019 0.0036

14 15 32767 1 1 17.6465 0.0020 0.0046

15 16 65535 1 1 34.2084 0.0021 0.0048

16 17 131071 1 1 71.9518 0.0026 0.0051

17 18 262143 1 1 153.9014 0.0022 0.0063

18 19 524287 1 1 337.4665 0.0034 0.0069

19 20 1048575 1 1 724.2283 0.0054 0.0075

4.3 Analysis

In this section we discuss the performance analysis of ACP comparing to other

pivot rules. Then we introduce the domain of problems that are suitable for

applying the simplex method with ACP. Lastly, we analyze the operations involved

for each pivot rule.

50

0

2000

4000

6000

8000

10000

12000

N
O

. O
F

IT
E

R
A

T
IO

N
S

PROBLEM SIZE (mn)

DZP LDP ACP

Figure 4.1: Comparison between the average number of iterations from solving LP

problems by the simplex algorithm with DZP, LDP and ACP when A is a square

matrix.

4.3.1 Analysis of Numerical Results

We analyze the numerical results by comparing the number of iterations from

solving LP problems by the simplex method with ACP and the simplex method

with DZP, LDP, SEP and DVP. Table 4.1 shows the average number of iterations

of these pivot rule for small problems. The details in this table indicates the

number of iterations from solving LP problems using DVP and SEP are much

greater than DZP, LDP and ACP in most cases and on average. The average

number of iterations from LDP is minimum comparing with other pivot rules.

Table 4.2 shows the average time for solving LP problem from these pivot rules.

In this table, SEP and DVP spend a long of time to solve LP problem while DZP

uses minimum average time for solving LP problems. The next minimum average

time pivot rules are LDP and ACP, in that order.

Table 4.3 shows the average number of iterations from DZP, LDP and ACP

for larger problems. From this table ACP pivot rule uses less average number of

51

0
100
200
300
400
500
600
700
800
900

1000

A
V

E
R

A
G

E
 T

IM
E

 (
Se

c)

PROBLEM SIZE (mn)

DZP LDP ACP

Figure 4.2: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when A is a square matrix.

iterations than DZP in every case and less than the one from LDP in every case

except the first one. Moreover, Figure 4.1 shows the details of Table 4.3. In this

figure, the number of iterations between ACP, DZP and LDP is not significantly

different in small problems while in larger-scale problems ACP achieves a better

performance.

Table 4.4 indicates the average time from DZP, LDP and ACP. We found that

DZP uses the minimum time for solving LP problem with several sizes since DZP

only chooses the maximum negative reduced cost to be an entering variable while

LDP has to compute the norm of the column vector and finds the minimum ratio

between the current negative reduced cost and the norm of the column vector.

ACP spent largest time for solving LP when compared with DZP and LDP since

there are many steps involved in each iteration. First, ACP looks for the row with

the minimum right-hand-side. Then ACP looks for an entering variable that has

zero or negative value in its columns so that the minimum ratio is not applicable

for those rows. If there is more than one candidate for such entering variable,

ACP looks for the row with the next minimum right-hand-side and repeat the

52

process until we have only one candidate or until we cannot find a row with zero

or negative value.

In Table 4.5, problem sizes of LP problems are varied by m < n from 150×200

to 300 × 400. The average number of iterations in Table 4.5 are the average

number of iterations from solving LP problem until we found unbounded problem

or optimal solution. The average number of iterations from ACP is less than one

from DZP and LDP in some problem size. Figure 4.3 shows the details of Table 4.5

in terms of barchart. The details about average time used to solve LP problems in

Table 4.5 is indicated in Table 4.6 and is indicated in terms of barchart in Figure

4.4.

0

500

1000

1500

2000

2500

3000

3500

4000

N
O

. O
F

IT
E

R
A

T
IO

N
S

PROBLEM SIZE (mn)

DZP LDP ACP

Figure 4.3: Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP when m < n.

53

0

20

40

60

80

100

120

140

160

A
V

E
R

A
G

E
 T

IM
E

 (
Se

c)

PROBLLEM SIZE (mn)

DZP LDP ACP

Figure 4.4: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when m < n.

Table 4.7 and 4.8 also show average number of iterations and time similar

to previous tables. In these tables, problem sizes of LP problems are varied by

m > n from 200× 150 to 400× 300. In every problem size in Table 4.7, ACP uses

minimum average number of iterations for solving LP problems. In contrast, ACP

took the maximum average time in every problem size (see Table 4.8). Figure 4.5

and 4.6 show the details of Table 4.7 and Table 4.8, respectively.

54

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

N
O

. O
F

IT
E

R
A

T
IO

N
S

PROBLEM SIZE (m×n)

DZP LDP ACP

Figure 4.5: Comparison between the average number of iterations from solving

LP problems by the simplex algorithm with DZP, LDP and ACP when m > n.

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

A
V

E
R

A
G

E
 T

IM
E

 (
Se

c)

PROBLEM SIZE (m×n)

DZP LDP ACP

Figure 4.6: Comparison between the average time from solving LP problems by

the simplex algorithm with DZP, LDP and ACP when m > n.

55

Even if ACP took the maximum average time in every problem (see Table 4.2,

4.4, 4.6 and 4.8), the average time in Table 4.4 tends to get closed to the average

time from DZP as the problem gets bigger (see Table 4.10).

Table 4.10: The average time ratio between ACP and DZP from Table 4.4

No.
Problem size Average time ratio

m n ACP:DZP

1 150 150 2.54

2 200 200 2.40

3 250 250 2.42

4 300 300 2.25

5 350 350 2.28

6 400 400 2.49

7 450 450 2.45

8 500 500 2.29

9 550 550 2.30

10 600 600 2.06

11 650 650 1.78

Table 4.10 shows average time ratio between ACP and DZP from Table 4.4.

In this table, the average time ratio tends to decrease (obviously seen Figure 4.7)

when the problem size is increased. This show a promise that, when the problem

size gets bigger the average time ratio will decrease until the average times from

ACP and DZP are not significantly different.

We can see from the Figure 4.3 and Figure 4.5 that, when the matrix A is

not square, the number of variables (columns) has more effect on the number of

iterations than the number of constraints (rows).

Table 4.9 indicates results from solving Klee and Minty problem with several

sizes of n. For all n, ACP and LDP achieve the optimal solution only one iteration

while DZP used 2n − 1 iterations. The results are consistent with Theorem 3.3.

56

0.00

0.50

1.00

1.50

2.00

2.50

3.00

A
V

E
R

A
G

E
 T

IM
E

 R
A

T
IO

PROBLEM SIZE (m×n)

ACP:DZP

Figure 4.7: Average time ratio between ACP and DZP from Table 4.4.

4.3.2 Domain of Problems

The domain of problems that is suitable for applying the simplex algorithm with

absolute change pivot rule are the problems which contain zero entries or entries

with negative values that correspond to nonbasic columns in the coefficient matrix.

This is because we want to prevent a leaving variable that causes small change in

the objective function. If the coefficient matrix does not contain zero or negative

entries, this rule is simply the Dantzig’s rule.

4.3.3 Comparison of the Number of Operations

Suppose there are m constraints and n decision variables in a standard form of

LP problem (4.1). If we transform the algebra of the simplex method into row

operations in the tableau format, the number of rows are m + 1 (the number

of constraints plus one row of objective function). The number of columns are

the number of decision variables plus one, which is the column of right-hand-side

57

(b). The total is n + 1 columns. The number of multiplications elements to

update per iteration are (m + 1)(n − m + 1). This is because the basic variable

column are identity matrix and each nonbasic variable column is updated at each

pivot operation, even if this variable never enters the basis, to make the computer

implementations effectively we operate the pivot operation only on the column

of nonbasic variables that are n − m + 1 column. The number of additions/

subtractions per iteration are m(n −m + 1). We can say that the total number

of operations per iteration is of order O(mn). The number of operations from

this simplex method with the absolute change pivot rule is not different from the

number of operations from Dantzig’s pivot rules.

For the simplex method with the steepest-edge pivot rule, Devex rule and the

largest-distance pivot rule, before pivoting these rules calculate several terms such

as norm of directions, norm of column vectors and the quotient between cost vector

and norm of directions or norm of column vectors. These step is call pricing step.

The details of the number of operations of the simplex method with steepest-edge

pivot rule, Devex rule and the largest-distance pivot rule are shown in the Table

4.11, 4.12 and 4.13.

Table 4.11: Pricing operations from steepest-edge pivot rule

TERM
OPERATION

Multiplication Addition

1. c̄j = cTdj, j ∈ IN n(n−m) n(n−m)

2. ∥dj∥2, j ∈ IN n(n−m) n(n−m)

3. c̄q
∥dq∥2 = min

{
c̄j

∥dj∥2

∣∣∣∣ j ∈ J

}
n−m -

Total (n−m)(2n+ 1) 2n(n−m)

After the pricing step, these pivot rules give the entering variable and operates

the pivot operation. In the pivot step the number of multiplications and additions

are the same as the pivot operation from the simplex method with Dantzig’s pivot

rule, which are (m+ 1)(n−m+ 1) and m(n−m+ 1), respectively.

58

Table 4.12: Pricing operations from Devex rule

TERM
OPERATION

Multiplication Addition

1. c̄j = cTdj, j ∈ IN n(n−m) n(n−m)

2. ∥d̂j∥2, j ∈ IN n(n−m) n(n−m)

3. w̄p = max
{
1, 1

αq
∥d̂q∥2

}
1 -

4. w̄j = max
{
wj,
∣∣∣αj

αq

∣∣∣ ∥d̂q∥2, j ∈ IN , j ̸= p
}

n -

5. c̄q
wq

= min

{
c̄j
wj

∣∣∣∣ j ∈ IN

}
n−m -

Total (n−m)(2n+ 1) + n+ 12n(n−m)

Table 4.13: Pricing operations from the largest-distance pivot rule

TERM
OPERATION

Multiplication Addition

1. ∥Aj∥ mn mn

2. c̄q
∥Aq∥ = max

{
c̄j

∥Aj∥

∣∣∣∣ j ∈ J

}
n−m -

Total mn+ n−m mn

Table 4.15 shows the comparison the total number of multiplications and addi-

tions from the simplex method with Dantzig’s pivot rule, the steepest-edge pivot

rule, Devex rule, the largest-distance pivot rule and absolute change pivot rule.

From this table, we can see that the number of operations from Dantzig’s pivot

rule and the absolute change pivot rule are the same and not different from the

steepest-edge pivot rule, Devex rule and the largest-distance pivot rule in terms

of time complexity.

59

Table 4.14: Comparison of the number of operations.

METHOD
OPERATION

PIVOTING PRICING

DZP
Multiplication (m+ 1)(n−m+ 1)

Addition m(n−m+ 1)

SEP
Multiplication (m+ 1)(n−m+ 1) (n−m)(2n+ 1)

Addition m(n−m+ 1) 2n(n−m)

DVP
Multiplication (m+ 1)(n−m+ 1) (n−m)(2n+ 1) + n+ 1

Addition m(n−m+ 1) 2n(n−m)

LDP
Multiplication (m+ 1)(n−m+ 1) mn+ n−m

Addition m(n−m+ 1) mn

ACP
Multiplication (m+ 1)(n−m+ 1)

Addition m(n−m+ 1)

Table 4.15: Total comparison of the number of operations.

METHOD OPERATION TOTAL

DZP
Multiplication m(n−m) + n+ 1

Addition m(n−m+ 1)

SEP
Multiplication (n−m)(m+ 2n+ 1) + n+ 1

Addition m(n−m+ 1) + 2n(n−m)

DVP
Multiplication (n−m)(m+ 2n+ 1) + 2n+ 2

Addition m(n−m+ 1) + 2n(n−m)

LDP
Multiplication m(2n−m− 1) + 2n+ 1

Addition m(2n−m+ 1)

ACP
Multiplication m(n−m) + n+ 1

Addition m(n−m+ 1)

CHAPTER V

SUMMARY OF RESULTS

In this thesis, we proposed a pivot rule called the absolute change pivot rule. The

idea of this rule is to have the maximum improvement in the objective value in

each iteration. The simplex method with ACP is tested with several simulated LP

problems and the number of iterations, time, the number of multiplications and

additions from the simplex method with this pivot rule are compared with the

simplex method using Dantzig’s original pivot rule and other rules. The results

show that the proposed algorithm can reduce the number of iterations over the

Dantzig’s pivot rule and other rules, especially for large problems.

Table 4.3, 4.7 and 4.9 offer a summary of the average number of iterations of

each method. We conclude that the simplex algorithm using the absolute change

pivot rule is very fast for solving linear programming problems in terms of the

number of iterations. But this pivot rule takes more time than other rules, i.e.,

DZP and LDP, as shown in Table 4.4, 4.6, 4.8 and 4.9. In addition, Figure 4.2,

4.4 and 4.6 show that the average time for solving LP problems by the simplex

method with ACP is much worse as the problem get larger comparing with DZP

and LDP. The reason of this is described in Chapter 4. Although, the average

time from ACP is much worse than DZP and LDP, Table 4.10 indicates that the

average time ratio between ACP and DZP tends to decrease (obviously seen Figure

4.7) when the problem size is increased.

The domain of problems that are suitable for applying the simplex algorithm

with the absolute change pivot rule are problems which contain zero entries or

entries with negative value that correspond to nonbasic columns in the coefficient

matrix. Moreover, the number of operations from this simplex method with the

absolute change pivot rule is of order O(mn). It is not different from the number

of operations from Dantzig’s pivot rule, SEP, DVP and LDP in term of time

61

complexity.

Finally, absolute change pivot rule performs very well on Klee and Minty prob-

lems.

REFERENCES

[1] Trakantalerngsak S.:Operations Research 1, Silpakorn University printing

house, 2nd ed, Nakorn Pathom, 2550.

[2] Bazara M., Jarvis J., Sherali H.: Linear programming and network flows,

John Whiley & Sons, 2nd ed, New York, 1990.

[3] Gass S.I.:Linear programming, McGraw-Hill, 5th ed, New York, 1994.

[4] Klee V. and Minty G.J.: How good is the simplex algorithm? in inequalities,

Academic Press, New York, (1972), 159-175.

[5] Paulraj S., Chellappan C. and Natesan T.R. A heuristic approach for

identification of redundant constraints in linear programming model.

International Journal of Computer Mathematics Vol.83, Nos.8-9 (September

2006):675-683.

[6] Junior H.V. and Lins M.P.E. An improved initial basis for the simplex algo-

rithm. Computer & Operations Research 32(2005):1983-1993.

[7] Forrest J., Goldfarb D.: A practical steepest-edge simplex algorithm for linear

programming, Mathematical Programming 57, (1992), 341-374.

[8] Harris P.M.J.: Pivot selection methods of the Devex LP code, Mathematical

Programming 5, (1973), 1-28.

[9] Pan P.-Q., A largest-distance pivot rule for the simplex algorithm, European

Journal of Operational research 187, (2008), 393-402.

[10] Tipawanna M. and Sinapiromsaran K.: Max-out-in pivot rule with cycling

prevention for the simplex method, 2nd International Conference on Mathe-

matical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013), 1-5 Sept.

2013, Prague, Czech Republic, On-line in Journal of Physics:Conference Se-

ries 490, (2014), pp 1-4.

63

[11] Chen D.-S., Batson R. G., Dang Y.:Applied lnteger Programming : Modeling

and Solution, John Wiley & Sons,INC., New Jersey, 2010.

[12] Wu N., Coppins R.:Linear Programming and Extensions, McGraw-Hill, USA,

1981.

[13] George G.B.:Linear Programming and Extensions, Princeton University

Press, Princetion, 1963.

[14] Stein W. and Joyner D.: SAGE: System for Algebra and Geometry Experi-

mentation, ACM SIGSAM Bulletin, 2, 39th ed, (2005), 61-64.

64

BIOGRAPHY

Name Kittiphong Chankong

Date of Birth 9 June 1989

Place of Birth Samut Songkhram, Thailand

Education B.Sc.(Applied Mathematics), (First Class Honors)

Silpakorn University, 2011

Publication K. Chankong, B. Intiyot, K. Sinapiromsaran, Absolute Change

Pivot Rule for the Simplex Algorithm, Lecture Notes in

Engineering and Computer Science: Proceedings of The

International MultiConference of Engineers and Computer

Scientists 2014, IMECS 2014, 12-14 March, 2014, Hong Kong,

pp1209-1213.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter 1 Introduction
	1.1 Thelinearprogrammingproblem
	1.2 Linearprogrammingmodelling
	1.3 Solution to Linear Programming Problem
	1.4 Motivationandproblemdescription
	1.5 Theobjectiveofthethesis
	1.6 Thescopeofthethesis
	1.7 Thesisoverview

	Chapter 2 Preliminaries
	2.1 Basicfeasiblesolution
	2.2 Thesimplexmethod
	2.3 Thesimplexmethodintableauformat
	2.4 Pivotrule
	2.5 Literaturereviewonpivotrules

	Chapter 3 Absolute Change Pivot Rule for the Simplex Al-Gorithm
	3.1 the Concept of Absolute Change Pivot Rule
	3.2 Illustrationofthemethod

	Chapter 4 Experiments and Analysis
	4.1 Problemgeneration
	4.2 Comparison
	4.3 Analysis

	Chapter 5 Summary of Results
	References
	Vita

