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This study focuses on the effects of symmetry breaking to the localized sur-

face plasmon resonance (LSPR) energy of coupled nanospheres in the strongly

interacting regime. First, the fundamental roles of size asymmetry and mate-

rial type asymmetry are investigated separately. Then, the symmetry breaking in

both particle sizes and material types are studied. The LSPR energies are obtained

within the quasistatic approximation by solving the Laplace equation in bispher-

ical coordinate system. By applying the matrix calculation, the general condition

for surface mode resonance is derived in terms of nonlinear eigenvalue problem.

This allows us to interpret the LSPR coupling in the asymmetric nanosphere pair

as the coupling between two images of symmetric nanosphere pairs of the con-

stituent particles. The LSPR energies of the nanosphere pairs are calculated and

the excited mode order analysis for the excited mode identifying in optical mea-

surement is established. The results show that in the case of symmetry breaking

due to material type, the lowest LSPR energy has bonding mode character and is

bounded by the lowest LSPR energy of the bonding symmetric pair image states.

The second lowest LSPR energy has bonding (antibonding) mode character at

small (large) separation distance and changes its mode character at a particular

separation distance defined as mode switching point. In the case of symmetry

breaking due to particle sizes, the lowest LSPR energy has bonding mode char-

acter. The energy increases as the size ratio increases and has the lowest LSPR

energy of the single sphere as the upper bound. The curvature of the second lowest

LSPR energy curve decreases as the size ratio increases and has the lowest LSPR

energy of the single sphere as the lower bound. In the case asymmetry in both of

material type and particle sizes, the lowest LSPR energy is unbounded and the

value of mode switching points decrease with increasing size ratio.
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Chapter I

Introduction

The novel optical properties of the small metallic particle have been recog-

nized since the age of Roman. The Lycurgus cup (4th century A.D.) is the most

famous example and is an evidence of the use of metallic nanoparticles in the early

age. This cup appears in different colours under different conditions. It appears

green when the light source is in front of it (reflected light) but appears red when

the light source is inside (transmitted light) as shown in Fiq. 1.1.

Figure 1.1: The Lycurgus cup when the light source is (a) in front of and (b)

inside the cup [1].

The optical properties of the metallic nanoparticles are dominated by the

collective oscillations of the conduction electron at the particle surface called sur-

face plasmons (SPs). There are two categories of SPs. The first once exists on

the large surface (or interface). This mode can couple to the radiation field and

propagate along the surface called surface plasmon polaritons (SPPs). The other

mode is the localized mode which is a nonpropagating mode. The subwavelength

particle cannot support the propagating mode due to its size. The great interest

in the localized mode excitation is the field enhancement confined in a small re-

gion close to the particle surface. The key feature of this localized surface mode
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is that it can be excited by light. Thus, it can easily be detected. This has at-

tracted the great interest over the last decade since it provides a wide range of

promising applications. For example, bioimaging and photothermal therapy [2, 3],

biomedical [4], surface-enhanced Raman spectroscopy (SERS) [5], solar cell [6, 7],

nanoantenna [8], biosensor [9, 10, 11, 12, 13] and plasmon ruler [14].

The extensive studies have been paid for the isolated nanoparticles, espe-

cially gold nanoparticle [15, 16, 17]. More interesting is that when the particles

are placed at small separation to one another. They are electromagnetically cou-

pled to each other. The field enhancement produced by the coupled particles is

much stronger than that produced by the isolated single particle due to the inter-

action between the plasmon modes of each particle. Moreover, the enhanced field

is confined in a gap between the particles. The field enhancement and confine-

ment are strongly dependent on shape, size, material type, dielectric environment

and interparticle distance. This enables a way to trap or to manipulate light at

subwavelength scales [18, 19, 20, 21]. The coupling of localized surface plasmons

(LSPs) have been discussed since 1982 by Batson [22] and Ruppin [23]. Recently, a

number of publications have been devoted to the topic of surface plasmon coupling,

for example, field enhancement and laser-induced force [24, 25], surface plasmon

enhanced optical force [26] and plasmonic bonding and antibonding forces [27].

Most of previous works are numerical studies. However, Klimov and Guzatov [28]

have recently derived the analytical expressions for the resonant permittivity of

the nearly touching identical spheres. Furthermore, the most interesting coupled

nanostructures are an asymmetric NP pair. There have recently been intensive

study both theoretically [27, 29, 30] and experimentally on this asymmetric struc-

tures [31, 32, 33, 34]. These studies have reported a dramatic change in plasmonic

features of the structures such as optical active of dark plasmon modes and Fano

resonance [35, 36]. As far as we know from literature review, the most intuitive

description for plasmon coupling is that of plasmon hybridization model. This

model describes that the plasmon coupling between two NPs can be interpreted

as the hybridization of the single NPs analogous to the molecular hybridization

of single atoms. That is when the single NP is placed close enough to the other

they will interact to each other and form two possible hybridization states. One

is the bonding mode which is the in-phase hybridization with lower energy, and

another one is antibonding mode which is the out-of-phase hybridization with

higher energy. This model can easily be applied to describe the LSP coupling of

complex structures [37, 38, 39, 40, 41]. Recently, Sheikholeslami et al [34] have

reported the experimental scattering spectra of light from the metallic nanosphere
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pairs. They have found that, in case of the pair loss symmetry in both material

type and particle size, the observed scattering spectra were in contrast to what

would be expected from the hybridization model. Thus, it is important to inves-

tigate the effect of the symmetry breaking to the localized surface plasmon in the

coupled nanostructures. This could improve our understanding and technological

applications of coupled-localized surface plasmons.

In this dissertation, the introduction is given here in chapter I. The re-

views of electrodynamics of solid and models of dielectric function are provided in

chapter II. In chapter III, the validity of the method is discussed. The terms sur-

face plasmon, surface plasmon polariton and localized surface plasmon resonance

(LSPR) are also introduced in this chapter. In addition, the LSPR on single

metallic sphere surface within the framework of Mie theory and quasistatic ap-

proximation is briefly reviewed. In chapter IV, the hybridization model of LSPR

coupling is briefly introduced and discussed in detail for the quasistatic approx-

imation method. The effects of symmetry breaking due to the internal property

and geometrical property, and the excited mode order analysis are discussed in

chapter V. Finally, the conclusion is given in chapter VI.



Chapter II

Optical properties of solids

Optical properties of solids are the macroscopic phenomena that result from

the interaction of solids with light at the microscopic level. For instance, reflection,

absorption, and scattering of light by solids. These reveal how the constituent par-

ticles of the material response to the incident electromagnetic radiation. Maxwells

theory completely governs the macroscopic electromagnetic phenomena that we

can observe, while details of the interactions in material are governed by quantum

mechanics. However, which theory should be applied belongs to the situation we

are concerning with. Hence, it is worthwhile to start with the macroscopic optical

properties of solids and follows by the quantum description at the microscopic

level

2.1 Electrodynamics of solids

Interaction of electromagnetic fields with matter macroscopically be described

by Maxwells equations. In this theory, the material property which describes

how the material responds to the perturbing field electromagnetically enters to

the Maxwells equation as phenomenological parameters (ε, µ). These parameters

describe the change of electric and magnetic fields in material respectively. The

macroscopic Maxwells equations are given in SI units as follows:

∇ ·D = ρ, (2.1a)

∇ ·B = 0, (2.1b)

∇× E = −∂B
∂t
, (2.1c)

∇×H = J+
∂D

∂t
, (2.1d)

where D, E, H, B, ρ and J are the dielectric displacement, the electric field, the

magnetic field, magnetic induction, external charge density, and external current
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density respectively. Furthermore, these four macroscopic fields are linked through

polarization P and magnetization M by

D = ε0E+P, (2.2)

H =
1

µ0

B−M, (2.3)

where ε0 and µ0 are electric permittivity and magnetic permeability of vacuum

respectively. The polarization P is related to E by

P = ε0χeE (2.4)

where χe is the macroscopic susceptibility of the material. In general, χe is a

function of E (optical nonlinearily). However, if the exciting field strength is

small (E . 100 V/m) [42] the relation between P and E is linear. This is the

linear respond regime. In an isotropic and homogeneous material, χe is scalar that

depends on the perturbing field frequency. In this regime the relation between M

and H is also linear. In this dissertation, we focus on the nonmagnetic materials.

Thus, we will only consider the electric response by assuming the relative magnetic

permeability of the material is unity. From Eq. 2.3 and Eq. 2.4, we can write

D = ε0(1 + χe)E = ε0εE, (2.5)

where ε = 1 + χe is the dielectric constant which in general is a function of

frequency and wave vector (sometimes referred to as permittivity). Within the

linear response regime, we also assume that the material obeys Ohms law J = σE.

Collecting all these relations along with Eq. 2.1, it is easy to show that

∇(∇ · E)−∇2E = −µ0σ
∂E

∂t
− µ0

∂2

∂t2
(εE). (2.6)

Now, we look for the ansatz solution of Eq. 2.6 in form of time-harmonic plane

wave such as

E(r, t) = E0e
i(k·r−ωt). (2.7)

Substituting Eq. 2.7 into Eq. 2.6, we obtain two dispersion relations. First for

transverse wave, that is

k2 = µ0(εω
2 + iσω) =

ω2

c2
N2, (2.8)

where N = n+ iκ =
√
ε̃, and ε̃ = ε

ε0
+ i σ

ε0ω
= ε1+ iε2 are complex refractive index

and complex dielectric function respectively. The second for the longitudinal wave,

that is

ε(k, ω) = 0. (2.9)
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Let us assume that the wave propagates in the z direction. Substituting the

complex wave vector yields

E(r, t) = E0e
i(ω

c
nz−ωt) · e−(ω

c
κz). (2.10)

One can see that the imaginary part of the complex refraction index plays the role

in absorption and it is linked to the absorption coefficient of Beers law (I(x) =

I0e
−αBx) by

αB(ω) =
2ωK(ω)

c
=

2

δ
(2.11)

where δ = c
ωκ

is the skin depth defined as the characteristic distance that the elec-

tromagnetic fields can penetrate into metals. Another measurable optical quantity

is the reflection coefficient of reflectivity which is given in the case of normal inci-

dent by [43]

R =
(n− 1)2 + κ2

(n+ 1)2 + κ2
(2.12)

Since ε2 = N , keeping this in mind, the optical properties of solids can be extracted

from the study of dielectric function. Thus it is termed as the optical constant

of solids. This macroscopic viewpoint of the optical properties of solids can be

linked to the microscopic viewpoint by the model of dielectric function as will be

discussed in the following sections.

2.2 Models of dielectric function

2.2.1 Lorentz oscillator

Before the discovery of quantum theory, Hendrik Antoon Lorentz, the late 19th

century physicist, attempted to describe the interaction between atoms and electric

fields using the classical mechanics and electromagnetic theory. He modeled the

atom as a massive particle (Nucleus) connected to the a very small mass particle

(electron) by a spring as schematically shown in Fig 2.1

The spring represents the binding force which bounds the electron in an

atom. He postulated that this force obeys Hook’s law. Consequently, when the

electron is displaced from its equilibrium position by the perturbing external field,

this system forms a harmonic oscillator as is called Lorentz oscillator. Assume that

the Lorentz oscillator is exposed in the time harmonic electric field E = E0e
−iωt.

The equation of motion of an electron is given by

m
∂2r

∂t2
+mγ

∂r

∂t
+mω2

0r = −eE, (2.13)



7

Figure 2.1: An electron attached to the Nucleus by spring force.

where r, γ and mω0 are their electron displacement, damping constant, and restor-

ing (binding) force respectively. The solution of Eq. 2.13 is r(t) = −(e/m)E

ω2
0−ω2−iωγ

. The

macroscopic polarization is given by P = n(−er) =
(ne2/m)E
ω2
0−ω2−iωγ

. From Eq. 2.3,

Eq. 2.4, and Eq. 2.5, we obtain

ϵ(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωγ

(2.14)

where ωp = ne2

ε0m
is plasma frequency. This model can be extended to the system

that is a collection of different oscillators by summing over all contributions from

each oscillator.

2.2.2 Drude free electron

In 1900, just three years after Thomsons discovery of electrons, Paul Karl Ludwig

Drude established the microscopic theory of thermal and electrical conduction

[44, 45]. In this model, the metal composes of nearly free valence electron gases

immersed by the stationary ion core which is the combination of the tightly bound

inner core electron and nucleus. The model is shown schematically in Fig 2.2

Figure 2.2: Model of the electrons in metal. (figure adapted from Ref.[46]).
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With this simple model, he applied the classical kinetic theory of the dilute

gases to the highly dense conduction electron gas in metal with a few assumptions

as follows [46]:

1. The interaction of a given electron both with the others and with ions are

neglected. The electrons move under the influence of the external field only

and they obey Newton’s laws of motion.

2. The electron-electron collision is neglected. Only the electron-ion core colli-

sion is taken into account as shown in Fig 2.3.

3. The probability of an electron undergoing a collision in the infinitesimal time

interval dt is dt
τ
. The time τ is referred to as the relaxation time which is the

average time interval that an electron moves freely before its next collision

since its last collision.

4. Electrons equilibrate by means of collision.

Figure 2.3: Electron motion in Drude metal. (the figure modified from Ref.[46]).

With these assumptions the equation of motion of an electron under the influ-

ence of the external force can be obtained by considering the average momentum

change per electron. Suppose p(t) is an average momentum per electron at time

t and p(t + dt) is an average momentum per electron at time t + dt. The major

contribution to p(t+ dt) comes from the electrons that do not experience the col-

lision in the time interval dt. The probability that the electrons do not undergo

the collision is
(
1− dt

τ

)
. If these electrons are moving under the influence of the
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external force f(t) their momentum at time t+ dt is

P(t+ dt) =

(
1− dt

τ

)
[p(t) + f(t)dt+O(dt)2]

= p(t)− dt

τ
p(t) + f(t)dt+O(dt)2. (2.15)

By neglecting terms of orders higher than dt and taking the limit as dt → 0, we

obtain
dp

dt
= −p

τ
+ f(t). (2.16)

This is the Drude equation of motion which introduce the effect of individual elec-

tron scattering by the ion cores into the equation through the damping constant(
1
τ

)
. Next, consider the response of the conduction electron to a monochromatic

electric field E = E0e
−iωt. From Eq. 2.16, the equation of motion becomes

dp

dt
+

p

τ
= −eE0e

−iωt. (2.17)

or

m
d2r

dt2
+
m

τ

r

dt
= −eE. (2.18)

Similarly to the Lorentz model, the solution is

r(t) =
(e/m)E

ω2 + iω
τ

, (2.19)

which yields the complex dielectric function as

ε(ω) = ε1 + iε2 = 1−
ω2
p

ω2 + iω
τ

(2.20)

As one can see from Eq. 2.14 and Eq. 2.20, in the case ω0 = 0, the Lorentz

dielectric function equivalent to Drude dielectric function. The Drude dielectric

function can be obtained by neglecting the effect of bound electron. On the other

hand, Drude model describes physics at the Lorentz damping constant which, at

that time, is added into the equation of motion as a phenomenological parameter.

The Lorentz damping constant is related to the Drude relaxation time by γLorentz ≡
1

τDrude
. Hence, sometime, the free electron dielectric function is referred to as

Drude-Lorentz dielectric function.

2.2.3 Hubbard model

This model is the quantum mechanical description of the linear response of the

electronic system by considering the electron density fluctuation due to a small
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perturbation. The behavior of the electronic system under the small perturbation

can be investigated by considering the average density fluctuation ⟨δn(r, t)⟩ is

related to the perturbing external potential, Φext, by [47]

< δn(r, t) >= −e
∫
dr′

∫
dt′ η(r, r′, t− t′)Φext(r

′, t). (2.21)

where

η(r, r′, t− t′) = − i

~
Θ(t− t′) < [n(r), n(r′)] > (2.22)

is the autocorrelation function, and Θ(t− t′) is the Heaviside step function. The

fluctuation density induces the additional potential Φind. Hence, the electrons are

moving under the total potential

Φt(r, t) = Φext(r, t) + Φind(r, t) (2.23)

The fields D and E can be written as the negative gradient of Φext and Φt respec-

tively. These relations in Fourier space read

D(k, ω) = ε0kΦext(k, ω), (2.24)

E(k, ω) = kΦt(k, ω), (2.25)

and

D(k, ω) = ε0ε(k, ω)E(k, ω), (2.26)

Substituting Eq.(2.23), Eq.(2.24), and Eq.(2.25) into Eq.(2.26) yields

1

ε(k, ω)
= 1 +

Φind

Φext

(2.27)

From Poissons equation and Eq.(2.21) in the Fourier space, Eq.(2.27) becomes

1

ε(k, ω)
= 1 +

e2

ε0k2
η(k, ω). (2.28)

Therefore, the problem of dielectric function calculation becomes the autocorre-

lation function calculation. For the simple homogeneous electron gas, it is given

by

η0(k, ω) =
2

V

∑
k′

f(Ek)− f(Ek+k′)

~ω + i∆+ Ek − Ek+k′
(2.29)

with

Ek =
~2k2

2m
(2.30)

where f(Ek) is the Fermi distribution function, V is the volume of the electron

gas, and ∆ is an infinitesimal positive real number. However, using this simple

autocorrelation function for the dielectric function, Eq. 2.28, of the interacting
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electron gas is not a good approximation. The modification is performed by using

Φt instead of Φext in Eq. 2.21 since the electron located in the total field and by

adding the exchange and correlation terms. The resulting dielectric function is

given by (for the detail of calculation, see Ref.[47])

ε(k, ω) = 1− e2

ε0k2
η0

1 + e2

ε0k2
G0(k)η0

(2.31)

where G0(k) is the exchange and correlation terms and is proposional to k2 for

small k and converges to constant for large k. This dielectric function is known as

Hubbard dielectric function. By neglecting the exchange and correlation effects,

which is the case in random phase approximation (RPA), the dielectric function

reduces to the simple form

εRPA = 1− e2

ε0k2
η0(k, ω). (2.32)

This is also known as Lindhard dielectric function. In limit k → 0, it can be

showed that [48]

lim
k→0

εRPA(k, ω) = 1−
ω2
p

ω2
= ϵDrude (2.33)

And for k ̸= 0 the long wave length regime is given by [49]

εRPA(k, ω) = 1−
ω2
p

ω2

(
1 +

6

5

EFk
2

mω2

)
(2.34)

where EF is Fermi energy. In this model, even in the simple approximation, the

dielectric function is the consequence of the excitation of the electronic system as

one can see from Eq.(2.31) and Eq.(2.29). Now, let us discuss the optical response

of metals using the simple free electron model. According to Drude dielectric

function, we can divide the frequency domain into three regimes corresponding to

their physically distinct, as shown in Fiq. 2.4. The first frequency regime is the

absorbing regime, 0 < ωτ . 1, In this frequency range, the metal absorbs the

incident electromagnetic field, because

n ≈ κ ≈
√
τω2

p

2ω
(2.35)

The second frequency regime is the reflecting regime, 1 < ωτ < ωpτ . In this

regime,

n ≈
ω2
p

2τω2
√
ω2
p − ω2

, κ ≈
√
ω2
p

ω2
− 1. (2.36)

Furthermore, n ≪ k. Thus, from Eq. 2.12, almost all incident electromagnetic

wave will be reflected. The last regime lies in the frequency range ω ≥ ωp. This is
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Figure 2.4: Real and imaginary parts of the complex index of refraction for Drude

metal with ωpτ = 100.[49]

the transparent regime, because n is positive and much larger than κ as given by

n ≈
√
1−

ω2
p

ω2
, κ ≈

ω2
p

2τω2
√
ω2
p − ω2

. (2.37)

2.2.4 Volume plasmons

In this section, we will discuss the dispersion relation of the electromagnetic wave

traveling through the metal. By using the free electron model. The dispersion

relation for transverse wave can be obtained from Eq.(2.8) and Eq.(2.20) as

ω2 = ω2
p + k2c2 (2.38)

A plot of this dispersion relation is shown in Fiq. 2.5. The shaded region is the

forbidden region (forbidden frequency gab) for electromagnetic wave propagation

in metal. Hence, only the transverse electromagnetic wave with ω > ωp can

propagate through the metal. Furthermore, there is another excitation satisfying

Eq. 2.9 which is the longitudinal excitation of the electron gas. For k = 0, this

excitation condition is satisfied at ω = ωp. The intuitive physical interpretation

of ωp can be found in Ref.[49] by considering the motion of a slab of the free

electron gas immersed in the fixed position ion core (Jellium model) as schemati-

cally illustrated in Fig. 2.6 Suppose that the whole slab of electrons are displaced
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Figure 2.5: The dispersion relation for the transverse electromagnetic wave in free

electron gas. The shaded region is the forbidden frequency gap.

t = T/4

t = T/2

t = 3T/4

Figure 2.6: Schematically illustration of the collective motion of the free (con-

duction) elections in a metal at time t = T
4
, T

2
, 3T

4
respectively where T is an

oscillation period.
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Material ωp (eV)

Li 7.121

Na 5.711

K 3.721

Mg 10.61

Al 12.72

Ag 9.22

Au 8.92

Cu 8.72

Table 2.1: Plasmon energy of typical metals. 1Ref.[50], 2Ref.[51]

from its equilibriums with the collective displacement x as indicated in the figure.

This develops the surface charge density ±nex at each slab boundaries. Thus,

the uniform electric field E = nex
ε0

is developed between such slab boundaries and

the collective electrons experience a restoring force density f = −neE. In this

situation, Newtons second law yields the following equation of motion

nmẍ = −n
2e2µ

ε0
(2.39)

or

ẍ+ ω2
px = 0 (2.40)

which describes the collective oscillations of the electrons with natural frequency

ωp. Therefore, this longitudinal excitation at k = 0 is the (longitudinal) collective

oscillations and their quanta are called bulk plasmons or volume plasmons or

Plasmon resonance. Furthermore, the bulk plasmons can not only exist at k = 0

but also at finite k. For examples in the long wave length limits the dielectric

function is given in Eq. 2.34 which leads to the Plasmon dispersion relation as

ω2 = ω2
p +

6

5

EFk
2

mω2
. (2.41)

The experimental observation of the Plasmon excitations can be performed by the

electron energy loss spectroscopy (EELS) whereby the energy losses of the electrons

passed though the thin metallic foils corresponding to the Plasmon excitations are

measured. The Plasmon energy of typical metals are given in Table. 2.1



Chapter III

Surface plasmon resonance

In chapter II, we discussed the interaction between light and metal which in-

augurates the bulk plasma oscillation. The quantization of this excitation is called

plasmon, more specifically volume/bulk plasmon, which was described quantum

mechanically by Pines and Bohm [52] in 1952 when they analyzed the energy loss

spectrum of fast electrons passing through the thin metal foils. They showed that

this excitation is an elementary excitation of solids using the quasiparticle concept.

In their analysis, volume of the electron gas is assumed to be very large. Thus,

there is no boundary effect included in their description of the bulk plasmon exci-

tation. In 1957, Ritchie extended the work of Pines and Bohm by introducing the

effect of the foils boundary surfaces [53]. He found that the presence of boundary

surfaces induces the new excitation modes due to the surface collective oscilla-

tions. He termed this new excitations as surface plasmon (SP). The existence of

SPs was demonstrated experimentally in 1960 by Stern and Ferrell [54].

In addition, there are a variety of names used to refer to the SPs such as

[55] surface plasmon polariton (SPP) which emphasizes the coupling of electronic

excitation in the metals with the exciting electromagnetic fields, surface plasma

waves (SPWs), surface plasma oscillations (SPOs), surface electromagnetic wave

(SEWs). The other names of SPs which emphasize the non-propagating and field

enhancement natures of SPs are localized surface plasmons (LSPs) and localized

surface plasmon resonance (LSPR). In this dissertation, we will focus on the non-

propagating LSPR and the others will be discussed as the introduction survey.

3.1 Validity of the classical description

Plasmons and/or SPs are the quantum (quasi) particles with definite energies

and momenta (for propagating plasmons). One might argue that their properties

should be described in the context of quantum mechanics rather than the classical

electrodynamics. This argument is discussed by Bohren and Huffman [56], and
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Sarid and Challener [55] in their text books. It is worth showing here a Bohren

and Huffman paragraph, that is:

The choice of quantum-mechanical or classical language to describe

modes in small particles is dictated more by taste than by necessity.

However, there is an unfortunate tendency among physicists to con-

sider that “Quantum mechanics is intrinsically better than classical

mechanics, and that classical mechanics is something real physicists

ought to grow out of”; we agree with Pipard (1987, p.3) that this is a

“disputable proposition”. Indeed, much mischief has been done—and

still being done—by incorrectly applying quantum theory to “explain”

the strange optical behavior of small particles. Surface modes in small

particles are adequately and economically described in their essentials

by simple classical theories. Even, however, in the classical descrip-

tion, quantum mechanics is larking unobtrusively in the background;

but it has all been rolled up into a handy, ready-to-use form: the di-

electric function, which contains all the required information about the

collective as well as the individual particle excitations. The effect of a

boundary, which is, after all, a macroscopic concept, is taken care of

by classical electromagnetic theory.

Sarid and Challener add to this argument that this statement is not valid

only for small particles but also all the plasmonic system. They state that the

classical description is generally adequate as long as the particles supporting SPs

are large enough that they can be described by the macroscopic a dielectric func-

tions. In practice, the bulk dielectric function can be accurately used to describe

the particle with size down to . 10 nm. Below this the dielectric function has

to be modified as a size-dependent dielectric function and it is acceptable for the

particle size down to . 1-2 nm. In this dissertation, we strictly concern with the

particles with sizes larger than 10 nm and much smaller than the visible optical

wave length. Therefore, the classical electrodynamics description is adequate in

our case.

3.2 Surface plasmon polaritons

Surface plasmon polaritons (SPPs) are the propagating SP modes sustaining at

the dielectric/metal interface. For simplicity, let us consider the time-harmonic
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electromagnetic wave propagating along the planar interface (at z = 0). In the

absence of the external sources, ρ = 0 and J = 0, the Maxwells equations (2.1)

yield

∇2E− ε

c2
∂2E

∂t2
= 0 (3.1)

Where c2 = 1
µ0ε0

. We assume that E is a time-harmonic function,

E(r, t) = E(r)e−iωt. (3.2)

Substituting Eq. 3.2 into Eq. 3.1 yields

∇2E+ k20εE = 0, (3.3)

where k20 = ω2

c2
. In the case that wave propagating along the x-axis, it time-

independent part can be described by

E(r) = E(z)eiβx, (3.4)

where β is the complex wave vector in the propagating direction. By substituting

Eq. 3.4 into Eq. 3.3, we obtain

∂2E(z)

∂z2
+ (k20ε− β2)E = 0. (3.5)

This is the Helmholtz equation for determining the z-dependence of the field am-

plitude. Similarly, One can obtain the same expression for H field by applying the

same manner as the preceding procedures. Now, let we turn to the curl equations,

Eq. 2.1c and Eq. 2.1d. For the time-harmonic fields, these two equations yield
∂Ez

∂y
− ∂Ey

∂z

∂Ex

∂z
− ∂Ez

∂x
∂Ey

∂x
− ∂Ex

∂y

 = iωµ0


Hx

Hy

Hz

 (3.6)

and 
∂Hz

∂y
− ∂Hy

∂z

∂Hx

∂z
− ∂Hz

∂x
∂Hy

∂x
− ∂Hx

∂y

 = −iωε0ε


Ex

Ey

Ez

 (3.7)

From Eq. 3.4, Eq. 3.6 and Eq. 3.7 reduce to
∂Ey

∂z
∂Ex

∂z
iβEz

iβEy

 = iωµ0


Hx

Hy

Hz

 (3.8)
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and 
∂Hy

∂z
∂Hx

∂z
iβHz

iβHy

 = −iωε0ε


Ex

Ey

Ez

 (3.9)

There are two sets of solutions of the system of coupled equations, Eq. 3.8 and

Eq. 3.9, depending on the polarization of the traveling waves. For simplicity let

us consider the case of single planar interface which the upper half infinite space

(z > 0) is filled by the dielectric medium with real dielectric constant ε2 and the

lower half infinite space (z < 0) is filled by the conducting medium (metal) with

the dielectric function ε1 as illustrated in Fig. 3.1. First we look for the solutions

Figure 3.1: The single dielectric/metal interface. The upper half space is filled by

dielectric ε2 and the lower half space is filled by metal ε1.

in case of the traveling waves are the transverse magnetic (TM) modes. For this

polarization, the solutions are given by

H(r) = (0, Aj, 0)e
iβx · ekj |z|, (3.10a)

E(r) =
(
(−1)jiAjkj, 0,−Ajβ

) eiβx · e−kj |z|

ωε0εj
, (3.10b)

where j = 1, 2 for lower half and upper half spaces respectively, kj
√
β2k20εj is the

component of wave vector in z-direction in the region j, and Aj are arbitrary con-

stants will be determined by the boundary conditions. By applying the boundary

conditions, Hy and εjEz are continuous across the interface, it is required that

A1 = A2, (3.11)

and
k2
k1

= −ε2
ε1
. (3.12)
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From Eq. 3.12, the propagating wave vector can be derived as

β = k0

√
ε1ε2
ε1 + ε2

, (3.13)

and, furthermore, kj can be rewritten in the following form

kj = k0

√
−ε2j

ε1 + ε2
. (3.14)

Next, let us consider the transverse electric (TE) modes. The solutions of these

modes are given by

E(r) = (0, Aj, 0)e
iβx · ekj |z|, (3.15a)

H(r) =
(
(−1)j−1iAjkj, 0, Ajβ

) eiβx · e−kj |z|

ωµ0

. (3.15b)

By applying the boundary conditions which are the continuity of Ey and Hx at

the interface,

A1 = A2, (3.16)

and

A1(k1 + k2) = 0. (3.17)

Finally, we discuss the properties of the main results. It is obvious from Eq. 3.10,

and Eq. 3.15 that β describes wave propagating along the interface while kj de-

scribes the field confinement in each side of the interface. The electromagnetic

fields will be confined in the vicinity of the interface if and only if Re[k1] > 0 and

Re[k2] > 0. Furthermore, we can define the characteristic attenuation length as

the distance from the interface in the perpendicular direction that the field am-

plitude fall off by the factor e−1 by li =
1

Re[ki]
for i = 1, 2. It is clear that, for TM

modes, the dielectric/metal interface fulfill the confinement condition (Eq. 3.12).

In contrast, for TE modes. Eq. 3.16 and Eq. 3.17 imply that the confinement

condition can be satisfied only if A1 = A2 = 0. Therefore, only the TM polariza-

tion electromagnetic waves can couple to the collective surface mode excitations.

Strictly speaking, surface plasmon polariton can only be excited by the TM wave.

The electric field associated with the SPPs excitation is schematically illustrated

in Fig. 3.2 and the plots of lis in each side of the Drude metal/vacuum interface

as a function of SPPs wave vector are shown in Fig. 3.3.

At small wave number, the field on the vacuum side extend over the wave-

length whereas the attenuation length on the metal side approaches a constant

known as the skin depth. Interestingly, in the large wave number region, the field
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Figure 3.2: The schematically illustration of the electric field associated with the

SPPs [57].

Figure 3.3: The attenuation length of the electric fields in vacuum and in Drude

metal with ωp = 15 eV compared with SPPs wave length 1
β
(dotted line) [58].
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has a strong concentration in the vicinity of the surface, li ∼ 1
β
, and the condition

ε1 + ε2 = 0 is fullfilled as one can see in Eq. 3.13. To investigate more properties

of this surface mode excitation, we look for the dispersion relations of SPPs on

the interface of lossless Drude metal and air which can be derived from Eq. 3.13

as

ω2(β) =
ω2

2
+ c2β2 ±

√
ω4
p

4
+ c4β4, (3.18)

Eq. 3.18 with minus sign on the right hand side corresponding to the surface mode

whereas the plus sign corresponding to the volume mode. Fig. 3.4 shows the plots

of these dispersion relations.

Figure 3.4: The dispersion relation of plasmon excitations in the lossless Drude

metal-air system (solid line) and of light in air (dashed line).

Here, we focus on the surface mode dispersion relation since the upper branch

is in the transparency regime discussed in chapter II. The SPPs line is on the

right of the light line. Thus, the additional momentum is acquired to excite the

SPPs. This can be done by the phase-matching techniques described in Ref.[59].

However, Elson and Ritchie found that photon can coupling to surface plasmon

by introducing the surface roughness[60]. For the large wave number regime, The

SPPs frequency approaches a specific value which is termed as surface plasmon

frequency (ωsp). For the Drude metal-air (or vacuum) system, ωp is given by

ωsp =
ωp√
2
. (3.19)
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In this asymptotic limit of β, the SPPs group velocity vSPPg → 0 as ω → ωSP. Thus

the SPPs acquire the localized (electrostatic) character whose properties can be

described by the Laplace equation. SPP at ωSP is also known as surface plasmon.

This surface mode has a strong field concentration near the surface, as one can

see in Fig. 3.3, since β → ∞ as ω → ωSP. Additionally, l1 ≈ l2 ≈ 1
β
which implies

that k1 ≈ k2. This results can also be obtained by solving the Laplace equation

and, then, applying the boundary conditions at the inter face. This is the case

that in some limit the simpler method can yield approximately the same results as

the more complicated method depending on the problem we are concerning with.

3.3 Localized surface plasmon resonance

In the preceding section, we have discussed the surface plasmon on the planar

surface (interface). This structure support both propagating surface mode (SPP)

and non-propagating surface mode which is known as localized surface plasmon

(LSP). These excitations are due to the collective oscillations of the quasi-two di-

mensional conductive electrons at the metal surface, or metal-dielectric interface.

Moreover, the quasi-one dimensional nanostructures such as metallic nanowires

and nanotubes with small diameter can also support these two surface modes. In

contrast, for more dimensional confinement structures, the quasi-zero dimensional

structures which are called nanoparticles (NPs) or nanoclusters (NCs) support

only the localized mode. Note that NPs that support SPs are also called plasmonic

particles. This is due to the surface confinement of an electron gas. The collective

displaced electrons experience the effective restoring force leading to the localized

collective oscillations. Thus, the resonance can arise at the natural frequencies of

the plasmonic particle. This resonance in called localized surface plasmon reso-

nance (LSPR). For simplicity, we use the spherical particle to demonstrate this as

in Fig. 3.5.

In contrast to the propagating surface mode, the localized mode can be

excited directly by electromagnetic wave. Additionally, the resonance frequencies

of Ag and Au nanoparticles are in the visible range of the electromagnetic wave.

This resonance causes the enhancement of the light scattering and absorption

resulting in the bright image of the nanoparticles. Fig. 3.6 shows the microscopic

image of silver nanoparticles, for example. Moreover, the fields associated with

LSPR are amplified, both inside and outside the particle, and highly concentrated

near the particle surface. Generally, the LSPR frequencies are size, shape and
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Figure 3.5: The localized collective oscillation at the spherical surface versus the

external electromagnetic field.

Figure 3.6: Dark-field optical image of light scatted from Ag nanoparticles [61].
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dielectric environment dependent [62, 63, 64, 65, 66] as shown for examples in

Fig. 3.7 and Fig. 3.8.

Figure 3.7: Dark-field scattering spectra of silver nanoparticles of different shapes

[67].

The most interesting feature of LSPR is the coupling of plasmonic parti-

cles. The coupled LSPR can produce much more field enhancement than that

of the isolated particle. These coupling effects will be discussed in detail in the

next chapter. There are a number of different analytical and numerical methods

for investigating the LSPR properties. For examples, Mie theory, quasistatic ap-

proximation, finite element, finite difference time-domain (FDTD), and discrete

dipole approximation (DDA). In the following sections, we will investigate the

LSPR properties using the first two methods since they can provide us with the

underlying physical concepts at the analytical level.
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Figure 3.8: Dark-field image of different shapes and scattering spectra for different

size of nanorods [68].
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3.4 LSPR on a single sphere surface

3.4.1 Mie theory

In 1908, Gustav Mie developed the theory to explain the size dependent of the

color of small colloidal gold particles suspended in water [69]. He obtained the

general solutions for a plane electromagnetic wave scattering from and absorption

by spherical particles. However, it was Ludvig Valentin Lorenz who was the first

to analyze the problem of light scattered by a spherical particle in 1890 [70].

Therefore, the theory is also called Lorenz-Mie theory. However, the most common

term is Mie theory and we will use this term to refer to it.

The theory is developed for the plane electromagnetic wave scattered by

a homogeneous, isotropic sphere. Let us, now, consider the incident plane wave

propagating in z direction scattered by a sphere of radius R and with (complex)

refractive index ns embedded in a nonabsorbing medium with refractive index n0.

According to Mie theory, the incident wave, scattered wave, and wave inside the

particle can be expanded in vector spherical harmonics Nomn,, Nemn, Momn and

Memn as the following expressions

incident wave:

Einc = E0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
M

(1)
on1(k0)− iN

(1)
en1(k0)

]
, (3.20a)

Hinc = −k0E0

ωµ0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
M

(1)
en1(k0) + iN

(1)
on1(k0)

]
, (3.20b)

scattered wave:

Esca = −E0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
bnM

(1)
on1(k0)− ianN

(1)
en1(k0)

]
, (3.21a)

Hsca =
k0E0

ωµ0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
anM

(1)
en1(k0) + ibnN

(1)
on1(k0)

]
, (3.21b)

wave inside the particle:

E = E0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
βnM

(1)
on1(k0)− iαnN

(1)
en1(k0)

]
, (3.22a)

H = −k0E0

ωµ0

∞∑
n=1

in(2n+ 1)

n(n+ 1)

[
αnM

(1)
en1(k0) + iβnN

(1)
on1(k0)

]
, (3.22b)

where an, bn, αn, and βn are the expansion coefficients that are determined by

the boundary conditions. k0 and k are the wave numbers outside and inside the
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sphere respectively. The details of the definition of the vector spherical harmonics

are given in Ref. [56]. By applying the boundary conditions, i.e. the continuity of

parallel components of E and H, the scattering coefficients are given by

an =
ψn(x)ψ

′
n(mx)−mψ′

n(x)ψn(mx)

ξn(x)ψ′
n(mx)−mξ′n(x)ψ(mx)

, (3.23)

bn =
mψn(x)ψ

′
n(mx)− ψ′

n(x)ψn(mx)

mξn(x)ψ′
n(mx)− ξ′n(x)ψ(mx)

, (3.24)

where ψn(x), ξn(x), ψ
′
n, and ξ

′
n(x) are Riccati-Bessel functions and their derivatives

with respect to the argument respectively. m = ns

n0
is the relative refractive index,

and x = k0R. Note that the rigorous derivation of expansion coefficients can be

found in Bohren and Huffman [56] text book. Even αn and βn are not expressed

here. They have already been found simultaneously with an and bn. Thus, the

fields have completely been determined. One, then, can derive the expression for

the extinction and scattering cross section as

σext =
2π

k20

∞∑
n=1

(2n+ 1)Re(an + bn), (3.25)

σsca =
2π

k20

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2), (3.26)

respectively. From Eq. 3.23 - Eq. 3.26, we obtain the resonance conditions for TM

mode,
mξ′n(x)

ξn(x)
=
ψ′
n(mx)

ψn(mx)
, (3.27)

and for TE mode,
1

m

ξ′n(x)

ξn(x)
=
ψ′
n(mx)

ψn(mx)
. (3.28)

Eq. 3.27 and Eq. 3.28 valid for the sphere with any size and refractive index. But

they are too complicated. We cannot analyze the resonant frequency from these

equations analytically. Fortunately, in the limit R ≪ λ the Raccati-Bessel func-

tions can be approximated by keeping only the first term of their series expansion.

Consequently, the resonant conditions reduce to simple size-independent form as

Re[ε] = −n+ 1

n
ε0, (3.29)

for TM mode, and

Re[ε] = ε0, (3.30)

for TE mode, where ε, ε0 and n are dielectric function of the sphere, dielectric

function of medium, and the multi pole under respectively, Obviously, Eq. 3.30

cannot be fullfilled. Hence, TE wave cannot couple to the LSPR in this limit.
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Eq. 3.29 can also be derived by solving the Laplace equation (quasistatic approx-

imation). Thus, the condition for the validity of the quasistatic approximation

which will be discussed in the next section is provided by R ≪ λ.

3.4.2 Quasistatic approximation

Mie theory is an exact electrodynamic solution for the absorption and scattering

of light by a sphere. Nevertheless, in the limit R ≪ λ where R is the particle

radius, the resonant conditions (Eq. 3.29 and Eq. 3.30) become particle size inde-

pendent. This implies that the effect of field retardation over the particle can be

neglected. More strictly speaking, the fields uniformly distribute over the particle

and the distance not so far from the particle at an instance of time. This is the

situation that can be described by the so called quasistatic approximation. There

is an additional condition has to be fullfilled for the applicable of the quasistatic

approximation. That is, the applying field frequency has to be much smaller than

the conduction electron relaxation rate (ω ≪ 1
τ
). The quasistatic approximation

yields acceptable results in the range of frequencies from infrared to ultraviolet for

typical metals with particle size approximately less than 100 nm. Additionally,

more physical insight of the quasistatic approximation can be found in Landau and

Lifshitz textbook [71]. The common way to achieve the quasistatic equations is by

taking the limit c→ ∞ or equivalently ∂B
∂t

→ 0 in the Maxwells equations. Hence,

in quasistatic approximation, the problem reduces to solving Laplace equation. In

addition, the alternative way for achieving the quasistatic equations by introduc-

ing electroquasistatic (EQS), magnetoquasstatic (MQS), and Darwin models have

recent been discussed by Larsson [72]

Now, let us first investigate properties of quasistatic solution for a sphere

with diectric function ε(ω) embedded in a nonabsorbing continuous medium with

positive real dielectric constant εm. The system is placed in the uniform electric

field E0 = E0ẑ as shown in Fig. 3.9.

In quasistatic approximation, we set ∂B
∂t

= 0. Consequently, ∇×E = 0. We

can define the scalar potential such that E = −∇Φ and look for the solution of

Laplace equation, ∇2Φ = 0. The general solution of this problem is well-known

and given in coordinates (r, θ), for azimuthal symmetry, by [73]

Φ(r, θ) =
∞∑
l=0

[Alr
l +Blr

−(l+1)]Pl(cos θ), (3.31)
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0

Figure 3.9: A system of the sphere with radius R and dielectric function ε embed-

ded in the medium with dielectric constant εm, and the applied field E0.

where Pl(x) is Legrendre polynomial of integer order l. Note that Φ is ϕ-independent

due to the azimuthal symmetry of the system. The solution is divided into two

regions, i.e. inside and outside the sphere. Due to the finiteness of potential at

the origin the potential inside the sphere is given by

Φin(r, θ) =
∞∑
l=0

Alr
lPl(cos θ), (3.32)

whereas the potential outside the sphere is given by

Φout(r, θ) =
∞∑
l=0

[Blr
l + Clr

−(l+1)]Pl(cos θ). (3.33)

By applying the following boundary conditions

(i) Φout(r, θ) = −E0z, as r → ∞,

(ii)
∂Φin

∂θ

∣∣∣∣
r=R

=
∂Φout

∂θ

∣∣∣∣
r=R

, (3.34)

(iii) ε
∂Φin

∂θ

∣∣∣∣
r=R

= εm
∂Φout

∂θ

∣∣∣∣
r=R

, (3.35)

all arbitrary constants are fixed and the specific solutions are given by

Φin(r, θ) = − 3εm
ε+ 2εm

E0r cos θ, (3.36)

Φout(r, θ) = −E0r cos θ +
ε− εm
ε+ 2εm

E0R
3 cos θ

r2
. (3.37)

Furthermore, Eq. 3.37 can be rewritten in the following form

Φout(r, θ) = −E0r cos θ +
p · r

4πε0εmr3
. (3.38)
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Where p = 4πε0εmR
3 ε−εm
ε+2εm

E0 is the electric dipole moment. Hence, we can define

the polarizability, αe, such that

p = 4πε0εmαeE0, (3.39)

and

αe = 4πR3 ε− εm
ε+ 2εm

. (3.40)

Now, we arrive at the resonant condition. That is,

Re[ε] = −2εm, (3.41)

which is the Mie dipole (n = 1) resonance. From Eq. 3.36, Eq. 3.37, andE = −∇Φ,

we can, now, evaluate the field enhancement factor at the particle surface as [55]∣∣∣∣ EE0

∣∣∣∣
r=R

≈ 3
Re[ε]

Im[ε]
. (3.42)

By using the pointing-vector formulation, the scattering and absorption cross sec-

tions can be obtained as follows [59]

σsca =
8π

3
k4R6

∣∣∣∣ ε− εm
ε+ 2εm

∣∣∣∣2 , (3.43)

σabs = 4πkR3

∣∣∣∣ ε− εm
ε+ 2εm

∣∣∣∣ , (3.44)

where k = εmω
c
. As we have seen, the LSPR of the small metallic sphere is

well described in a simple way. However, this treatment, uniform electronic field

boundary condition, can only describe the dipole Mie LSPR. To investigate the

resonance for all multipole order within quasistatic approximation, the uniform

field boundary condition has to be replaced by the finiteness of field at infinity.

Thus, the potentials inside and outside the sphere are given by

Φin(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Al,mr
lY m

l (θ, ϕ), (3.45)

Φout(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

Bl,mr
−(l+1)Y m

l (θ, ϕ), (3.46)

where Y m
l (θ, ϕ) is the spherical harmonic function. By applying the boundary

conditions,

(i) Φin|r=R = Φout|r=R , (3.47a)

(ii) ε
∂Φin

∂r

∣∣∣∣
r=R

= εm
∂Φout

∂r

∣∣∣∣
r=R

, (3.47b)



31

we obtain

ε = −
(
l + 1

l

)
εm (3.48)

which is exactly the same as Mie result in the limit R
λ
≪ 1 . Hence, the LSPR

dispersion relation for losses Drude Metal can be obtained by substituting Eq. 2.20

in to Eq. 3.48. That is,

ωl = ωp

√
l

l + (l + 1)εm
,

ω∞ = ωp√
2
= ωsp which is the surface frequency of the planar surface.

3.5 LSPR damping

There are two main processes that cause LSPRs decay in a definite life time. One

is radiative damping. That releases the energy of coherent-collective electron os-

cillation into radiation. This process is dominant for large particle and causes the

red shift of LSPR energy as the particle size increases. The another process is the

non-radiative damping due to the electron-hole pair creations. The electron-hole

pairs can be created from either the intraband transition within the conduction

band or the interband transition from the d-bands (for nobel metal). This is re-

sponsible for the absorption and dominates for smaller particle size. The schematic

interpretation of these two processes is shown in Fig. 3.10. For more details of

Figure 3.10: Schematic representation of decay processes. Left is the radiative

decay and right is the non-radiative decay.

damping processes one can consult Ref.[74].



Chapter IV

Localized Surface Plasmon Resonance in

Coupled Nanoparticles

In this chapter, we discuss the electromagnetic coupling between two Plas-

mon particles when they are in close proximity. If the interparticle distance is small

enough, the individual plasmon particles start to interact with each other electro-

magnetically. This coupling can produce very large fields enhancement confined

at the interparticle gap. Moreover, the coupling courses the shift of resonance fre-

quency. The change in the resonance frequency, or in other word the LSPR energy,

is a function of the particle separation distance and shape, size and material type

of the constituent particles dependent. Fig.4.1 shows, for instance, the extinction

spectra of dual gold nanodisks placed at various interparticle distances measured

by Rechberger and co-workers [75]. Fig. 4.1(a) and Fig. 4.1(b) show extinction

spectra when the polarization of the exciting field is parallel and perpendicular to

the interparticles axis, respectively.

For the parallel polarization the resonant peaks shift to longer wavelength

(red shift). For the parallel polarization, the peaks shift to shorter wavelength

(blue shift). They described the shifts by the simple dipole model as shown in

Fig.4.2. For the exciting field parallel to the interparticle axis, the opposite surface

charges on the north pole of the bottom particle and on the south pole of the

top particle experience the attractive interparticle force (Fig.4.2(a)). Thus, the

internal restoring force of each particle is weakened resulting in the energy red

shift. In contrast, for the perpendicular polarization, the surface charges on each

particle act cooperative (Fig.4.2(b)) resulting in the enhancement of restoring force

and energy blue shift.

This is a simple qualitative description of the interaction between the par-

ticles supporting LSPR.
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Figure 4.1: Experimental extinction (log( 1
T
)) spectra of gold nanodisk pair as

a function of interparticle distance for the polarization of the exciting field (a)

parallel, and (b) perpendicular to the interparticle axis [75].
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(a) (b)

Figure 4.2: Simple dipole-dipole interaction model for exciting field polarization

(a) parallel, and (b) perpendicular to interparticle axis.

4.1 LSPR hybridization

The quantitative model for description of the LSPR is hybridization model [37].

In this model, the LSPR frequencies of complex structure are the consequences

of the hybridization of LSPR modes of each individual particle analogous to the

hybridization of the molecular orbital. The hybridization results in two hybridiza-

tion modes. One is the lower energy mode called bonding mode. The other is the

higher energy mode called antibonding mode. The schematic representation of the

hybridization of the single shell nanostructure is shown in Fig. 4.3. The LSPR

modes of the nanoshell are resulting from the hybridization of the sphere surface

plasmons and cavity surface plasmons. Similar, the hybridization of a more com-

plex nanoshell structure associated with its hybridization modes is schematically

shown in Fig. 4.4. Here, we briefly discuss this model. The detail of calculation

can be found elsewhere [37, 38, 39].

4.2 Coupled LSPR in a nanosphere pair : qua-

sistatic approximation

In this dissertation we focus on the effects of symmetry breaking to LSPR energy

within the quasistatic regime. That is, the particle size is approximately be-
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Figure 4.3: The hybridization of sphere surface plasmons and cavity surface

plasmons results in the LSPR modes of the shell [37].



36

Figure 4.4: The hybridization modes of two concentric shell nanostructure [37].
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Figure 4.5: The sphere with radius R1 and dielectric function ε1 placed at the

center-to-center distance h from there with R2 and dielectric function ε2. The pair

of spheres is immersed in the continuous medium with positive dielectric constant

ε0.

tween 10 nm to 100 nm. To investigate the resonant frequency at a given system

configuration, we start with the description of the system configuration, system

parameters and the coordinate system used in the calculation. Then, we look for

the solution of Laplace equation in this coordinate system and apply the boundary

conditions at the sphere surfaces. Next, by introducing the matrix formulation,

we derive the general resonant condition. Finally we calculate the resonant fre-

quencies for two identical lossless Drude spheres. The effect of symmetry breaking

will be discussed in the next chapter.

4.2.1 System parameters

The system under consideration composes of a pair of spheres with radius R1, R2

and dielectric function ε1, ε2, respectively. The pair is immersed in a nonabsorbing

continuous medium with dielectric function ε0 at a center-to-center distance h. We

assume that ε0 is a positive constant.The illustration of the system is shown in

Fig. 4.5. There are the additional conditions on the separation distance for validity

of quasistatic theory in our case. The separation distance must be (i) substantially

larger than interatomic distance, and (ii) smaller than optical wavelength. In the



38

case that the separation distance is comparable to the interatomic distance the

effect of quantum nonlocality has to be taken into account [76, 77]. In the case

that the separation distance is comparable to or larger than the optical wavelength

the retardation effect becomes important. Next, let us introduce the coordinate

system used for solving the Laplace equation. From the geometry of the system,

it is convenient to use the bispherical coordinates (γ, η, ϕ) defined by following

expressions:

x =
a sin(η) cos(ϕ)

cosh(γ)− cos(η)
, (4.1a)

y =
a sin(η) sin(ϕ)

cosh(γ)− cos(η)
, (4.1b)

z =
a sinh(γ)

cosh(γ)− cos(η)
, (4.1c)

(see appendix A for more details). In this coordinate system a sphere surface is the

surface of constant γ, i.e. γ = constant. The surface of sphere i can be expressed

in terms of the system parameters as follows:

γi = ln(ãi +
√
ã2i + 1), (4.2)

and

ãi =
1 + α3−2i

2ξ

√√√√(ξ2 − 1)

[
ξ2 −

(
α− 1

α+ 1

)2
]
, (4.3)

for i = 1, 2, where dimensionless parameters α = R2

R1
, and ξ = h

R1+R2
are a particle

size ratio and a scaled separation distance respectively. Note that γi > 0.

4.2.2 Surface mode resonance

As mentioned that in quasistatic regime the surface mode resonant condition can

be obtained by solving the Laplace equation, ∇2Φ = 0, for scalar potential and

then applying the appropriate boundary conditions. By using the separation of

variable technique, the general solution of Laplace equation in bispherical coordi-

nates is given by [78, 79]

Φ(r) ∝
√
cosh γ − cos ηe±(n+ 1

2
)γPm

n (cos η)e±imϕ, (4.4)

where Pm
n (x) is the associated Legrendre polynomial. Since there are two bound-

ary surfaces, then the whole space can be divided into three regions as shown in

Fig. 4.6. The potential in each region is given by the following expressions:



39

Figure 4.6: Three regions of space, boundary surfaces and potential associated

with each region.

(i) In sphere 1 (γ > γ1),

Φ(1)(r) =
√
cosh γ − cos η

∑
n,m

Anme
−(n+ 1

2)γPm
n (cos(η)) eimϕ, (4.5)

(ii) In the medium (−γ2 < γ < γ1)

Φ(0)(r) =
√

cosh γ − cos η
∑
n,m

[
Cnme

(n+ 1
2)γ +Dnme

−(n+ 1
2)γ

]
Pm
n (cos(η)) eimϕ,

(4.6)

(iii) In sphere 2 (γ < −γ2)

Φ(2)(r) =
√

cosh γ − cos η
∑
n,m

Bnme
(n+ 1

2)γPm
n (cos(η)) eimϕ. (4.7)

The mode ±m are degenerate due to the azimuthal symmetry of the system.

We need not concern with the negativem mode since the negative order associated

Legendre polynomial can be related to the positive one by the relation [80]

P−m
n (x) = (−1)m

(n+m)!

(n−m)!
Pm
n (x). (4.8)

We then apply the following boundary conditions

Φ(1)(r)
∣∣
γ=γ1

= Φ(0)(r)
∣∣
γ=γ1

, Φ(2)(r)
∣∣
γ=−γ2

= Φ(0)(r)
∣∣
γ=−γ2

, (4.9)
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and

ε1
∂Φ(1)(r)

∂γ

∣∣∣∣
γ=γ1

= ε0
∂Φ(0)(r)

∂γ

∣∣∣∣
γ=γ1

, ε2
∂Φ(2)(r)

∂γ

∣∣∣∣
γ=−γ2

= ε0
∂Φ(0)(r)

∂γ

∣∣∣∣
γ=−γ2

.

(4.10)

By performing a lengthy algebraic manipulation, we obtain two recurrence equa-

tions for the expansion coefficients as

ε1

(
(n−m)c

(1)
n−1,m + [sinh(γ1)− (2n+ 1) cosh(γ1)]c

(1)
n,m + (n+m+ 1)c

(1)
n+1,m

+(n−m)d
(1)
n−1,m + [sinh(γ1)− (2n+ 1) cosh(γ1)]d

(1)
n,m + (n+m+ 1)d

(1)
n+1,m

)
= ε0

(
−(n−m)c

(1)
n−1,m + [sinh(γ1) + (2n+ 1) cosh(γ1)]c

(1)
n,m − (n+m+ 1)c

(1)
n+1,m

+(n−m)d
(1)
n−1,m + [sinh(γ1)− (2n+ 1) cosh(γ1)]d

(1)
n,m + (n+m+ 1)d

(1)
n+1,m

)
,

(4.11)

and

ε2

(
(n−m)c

(2)
n−1,m + [sinh(γ2)− (2n+ 1) cosh(γ2)]c

(2)
n,m + (n+m+ 1)c

(2)
n+1,m

+(n−m)d
(2)
n−1,m + [sinh(γ2)− (2n+ 1) cosh(γ2)]d

(2)
n,m + (n+m+ 1)d

(2)
n+1,m

)
= ε0

(
(n−m)c

(2)
n−1,m + [sinh(γ2)− (2n+ 1) cosh(γ2)]c

(2)
n,m + (n+m+ 1)c

(2)
n+1,m

−(n−m)d
(2)
n−1,m + [sinh(γ2) + (2n+ 1) cosh(γ2)]d

(2)
n,m − (n+m+ 1)d

(2)
n+1,m

)
,

(4.12)

where

c(i)n,m = Cn,me
(−1)i+1(n+ 1

2
)γi , (4.13)

and

d(i)n,m = Dn,me
(−1)i(n+ 1

2
)γi , (4.14)

for i = 1, 2. The coefficient c
(i)
n,m and d

(i)
n,m are related to the coefficients of the

potential inside the spheres by

An,me
−(n+ 1

2)γ1 = c(1)n,m + d(1)n,m, (4.15)

and

Bn,me
−(n+ 1

2)γ2 = c(2)n,m + d(2)n,m. (4.16)

It is important to note that in the algebraic calculation step we employ the recur-

rence relation for derivative of the associated Legendre polynomials (see appendix

B). One can see that Eq. 4.11 and Eq. 4.12 form a system of infinite coupled

linear equations. However, in practice, the number of equations is truncated at a

specific value, N , depending on the convergence of the solution. It is appropriate

to deal with the system of linear equation by using the matrix formulation as will

be discussed in the next section.
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4.2.3 Matrix calculation

We introduce, here, the vector and matrix notations. We define the vector nota-

tions as

ci =


c
(i)
1

c
(i)
2

c
(i)
3
...

 and di =


d
(i)
1

d
(i)
2

d
(i)
3
...

 for i = 1, 2. (4.17)

and the relevant matrices are defined by their elements as follows:

[Λ]ij = e−(m+i− 1
2
)(γ1+γ2)δi,j, (4.18)[

Λ−1
]
ij
= e(m+i− 1

2
)(γ1+γ2)δi,j, (4.19)

(Σk)ij = (i− 1)δi,j+1 − [2(m+ i)− 1] cosh(γk)δi,j + (2m+ i)δi,j−1, (4.20)

and

Γi = sinh(γi)1 +Σi for i = 1, 2, (4.21)

By using these matrices and vectors, Eq. 4.11 and Eq. 4.12 can be rewritten in

the matrix form as

(λ1Γ1 + 2Σ1) · c1 + λ1Γ1 · d1 = 0, (4.22a)

λ2Γ2 · c2 + (λ2Γ2 + 2Σ2) · d2 = 0, (4.22b)

where

λi =
εi
ε0

− 1. (4.23)

One can see from Eq. 4.13 and Eq. 4.14 that the coefficient c
(1)
n,m(d

(1)
n,m) and c

(2)
n,m(d

(2)
n,m)

are not linearly independent. They are related to each other by

c(2)n,m = e−(n+ 1
2
)(γ1+γ2)c(1)n,m and d(2)n,m =(n+ 1

2
)(γ1+γ2) d(1)n,m, (4.24)

or in vector forms as

c2 = Λ · c1 and d2 = Λ−1 · d1. (4.25)

Substituting Eq. 4.25 into Eq. 4.22b yields

(λ1Γ1 + 2Σ1) · c1 + λ1Γ1 · d1 = 0, (4.26a)

λ2Γ2Λ · c1 + (λ2Γ2 + 2Σ2)Λ
−1 · d1 = 0, (4.26b)

By multiplying Eq. 4.26b by λ1 and substituting d1 from Eq. 4.26a into Eq. 4.26b,

we obtain

[(λ2Γ2 + 2Σ2)Λ
−1(λ1Γ1 + 2Σ1)− λ1λ2Γ2ΛΓ1] · c̃1 = 0, (4.27)
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where c̃ = Γ−1
1 · c1. Eq. 4.27 is the nonlinear eigenvalue problem (NLEVP) (see

appendix C for definition). The nontrivial solutions exist for only a set of dis-

crete frequencies, i.e. resonant frequencies, which are eigenvalues of Eq. 4.27. By

performing some algebra, the condition for resonant frequency is given by∣∣∣H(ω) + δH(ω),
∣∣∣ = 0, (4.28)

where

H = [λ2(ω)Γ2(1 ±Λ) + 2Σ2][λ1(ω)(1 ∓Λ)Γ̃1 + 2Σ̃1], (4.29a)

δH = ±2[λ1(ω)Σ2ΛΓ̃1 − λ2(ω)Γ2ΛΣ̃1]. (4.29b)

Note that the commutation relation [Γi,Σj] = 0 if γi = γj, and Ã = Λ−1AΛ.

Alternatively, Eq. 4.28 can be obtained by writing Eq. 4.26 in the block form as

[81] [
λ1Γ1 + 2Σ1 λ1Γ1

λ2Γ2λ λ2Γ2 + 2Σ2

][
c1

d1

]
= 0, (4.30)

which exactly yields Eq. 4.28.

The main result is Eq. 4.28 which is the general condition for the surface

mode resonant of two spheres system. The class of matrix polynomial in Eq. 4.27

depends on the form of dielectric function. Therefore, this condition can be applied

for any material with spherical shape that the dielectric function is known. For

simplicity, we used the Drude model with the assumption that ωτ ≪ 1 to calculate

the LSPR energy. For Drude metallic spheres in vacuum, λi = −ω2
pi

ω2 when ωpi is

plasma frequency of sphere i.

4.2.4 LSPR coupling in a symmetric pair

In this chapter we discuss the LSPR coupling in symmetric sphere pair only. The

effects of symmetry breaking will be discussed in chapter V. In case of a symmetric

pair, δH(ω) = 0. Thus, the NLEVP reduces to the generalized eigenvalue problem

(GEP) with the resonant condition given by

|λΓ(1 ±Λ) + 2Σ| = 0. (4.31)

Obviously, from Eq. 4.31, there are two families of solutions. One is a set

of the solutions of |λΓ(1 − Λ) + 2Σ| = 0. The LSPR energies of this mode
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Figure 4.7: Normalized LSPR energies as a function of scaled separation distance.

These are all eigenvalues of |λΓ(1−Λ) + 2Σ| = 0 which decrease with decreasing

ξ (bonding mode).
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Figure 4.8: Normalized LSPR energies as a function of scaled separation distance.

These are all eigenvalues of |λΓ(1+Λ) + 2Σ| = 0 which increase with decreasing

ξ (antibonding mode).
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Figure 4.9: Combined bonding and antibonding modes.

decrease as the separation distance decrease as shown in Fig. 4.7. The other set of

solutions corresponds to the condition |λΓ(1+Λ) + 2Σ| = 0. The LSPR energies

of this mode increase as the separation distance decreases as shown in Fig. 4.8. To

characterize these two modes, we follow the physical meaning of the mode given

by Ng et al [27] that mode with positive(negative) slope is a bonding (antibonding)

mode since it induces the attractive (repulsive) optical force. By this meaning the

first solutions are the bonding modes and the latter are the antibonding modes.

This mode characterization is consistent with the plasmon hybridization model

[38]. To compare the energies of these two modes, Fig. 4.7 and 4.8 are combined.

The combined figure is shown in Fig. 4.9. In this figure, one can see that at

large separation distance both bonding and antibonding converge to particular

constants. These values are the single sphere LSPR energies, ωl = ωp

√
l

2l+1
. To

make this clearer, we extract the lowest and highest energies of both bonding

and antibonding modes as shown in Fig. 4.10. Obviously, when the particles get

close enough the interaction is turned on resulting in the energy splitting into two

branches, i.e. bonding and antibonding. As we can see in Fig. 4.10, the low energy

bonding and high energy antibonding modes have stronger interaction and more
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Figure 4.10: Lowest and highest LSPR energy of bonding (black) and antibonding

(blue) modes. The red dots indicate the lowest (l = 1) and higest (l = ∞) LSPR

energies of the single sphere. The green diamonds indicate the LSPR energies

obtained from QEP method.

sensitive to the change of separation distance than the high energy bonding and

low energy antibonding modes. Additionally, we also solve this problem by means

of the NLEVP. In this sample case, the NLEVP reduces to the so called quadratic

eigenvalue problem (QEP)(see appendix C) in the form Q(ω)c̃ = 0 where

Q(ω) = (2ω2)2Σ2Σ̃1 − 2ω2)(ω2
p1
Σ2Γ̃1 + ω2

p2
Γ2Γ̃1) + Γ2(1−Λ2)Γ̃1. (4.32)

The QEP is solved by the linearization method [85] and the results are indicated

by the green diamonds in Fig. 4.10. From the figure, the results of QEP which

is used for the case of an asymmetric pair, completely agree with those of GEP

method.



Chapter V

Symmetry breaking in coupled-localized surface

plasmon resonance

In the preceding chapter, we have discussed the LSPR energy of the sym-

metric sphere pair. In such system the coupling causes the energy splitting into

two branches, the bonding and antibonding mode. In this chapter, we discuss

the effects of symmetry breaking to these two energy modes. These effects can

be analysed from Eq. 4.28 and Eq. 4.29. We can see that when symmetry of

the system is broken either by material type (ωp for Drude metal) or size (γ),

δH ̸= 0. This causes the additional coupling between bonding/antibonding mode

of the symmetric pair of its constituents as schematically shown, for instance, in

Fig. 5.1. In the figure, the LSPR coupling of an asymmetric Au-Ag pair can be

Au Ag

Au Au

AgAg

ª

Figure 5.1: The schematically representation of the LSPR coupling in the asym-

metric Au-Ag pair as coupling between symmetric Ag-Ag and Au-Au pairs image

states.

interpreted as a result of the coupling between the individual symmetric Ag-Ag

and Au-Au pairs. This two image states are implied by Eq. 4.29a. This coupling

results in the change of mode characters as will be seen in the calculation results.
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Before looking at the results, let us now introduce the notations which will

be used in future discussion. We use the Greek alphabets σ (σ∗) and π (π∗) for

bonding (antibonding) m = 0 and m = 1, respectively. Furthermore, we define

the mode switching point as the point where the slope of the energy curve changes

sign, and denoted by κi where i = σ, π for m = 0, and m = 1, respectively. We

also define a mode crossing point as the point that the σ and π modes cross each

other, and denoted by χ. The results obtained in this chapter are calculated from

Eq. 4.28 using the QEP method.

5.1 Internal property effects

Firstly, we study the effect of symmetry breaking due to the internal property

(material type). Fig. 5.2 shows two lowest LSPR energy curves of the same size

Ag-Au pair compared with the bonding (black) and antibonding (red) of the sym-

metric Ag-Ag (dashed) and Au-Au (dotted) pairs for m = 0, Fig. 5.2(a), and

m = 1, Fig. 5.2(b), modes. Fig. 5.3 shows the same quantities as Fig. 5.2 but,

instead, for the Ag-Cu pair. Now let us discuss the results shown in these figures,

the first lowest energy of those asymmetric pairs are shifted to higher (lower) en-

ergy compared with the lowest energy of the bonding mode of the lower (higher)

energy symmetric pair. In other words, they are shifted and bounded by the low-

est energy of the symmetric pairs bonding mode. In contrast, the second lowest

energy curve has different characters in two separation distance regimes separated

by κi. On the right of κi, the curve has bonding mode character and becomes

bounded by the second lowest energy of the symmetric pair bonding mode at the

separation distance slightly far from κi as one can see in the figure. The values

of mode switching points are κAg-Au
σ = 1.267, κAg-Au

π = 1.204, κAg-Cu
σ = 1.445,

and κAg-Cu
π = 1.478 as shown in the inset panels of the figures. Fig. 5.4 is the

comparison of two lowest energy of m = 0 and m = 1 modes for the Ag-Au pair

(Fig. 5.4(a)) and for Ag-Cu pair (Fig. 5.4(b)). The mode crossing points for these

pairs are χAg-Au = 1.127 and χAg-Cu = 1.149. From the results, one can observe

that κAg-Cu
i > κAg-Au

i which mean that the Ag-Cu second lowest energy curve is

modified more slowly than that of Ag-Au due to its larger antibonding gap.
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Figure 5.2: Two lowest LSPR energy of a pair of same Ag-Au for (a) m = 0, and

(b) m = 1 modes. The black (red) dashed lines are the bonding (antibonding)

LSPR energy of the symmetric Ag-Ag pair. Similarly, the dotted lines are for

symmetric Au-Au pair.
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Figure 5.3: Two lowest LSPR energy of a pair of same Ag-Cu for (a) m = 0, and

(b) m = 1 modes. The black (red) dashed lines are the bonding (antibonding)

LSPR energy of the symmetric Ag-Ag pair. Similarly, the dotted lines are for

symmetric Cu-Cu pair.
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Figure 5.4: The comparison of two lowest LSPR energy of m = 0 (solid) and

m = 1 (dashed) modes for (a) the Ag-Au pair, and (b) the Ag-Cu pair. The

values of mode crossing points are χAg-Au = 1.127, and χAg-Cu = 1.149.
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5.2 Geometrical property effects

Next, we investigate the effect of symmetry breaking due to the particle geometry

(size). The plots of normalized lowest energy as a function of scaled separation

distance for a number of size ratio are shown in Fig. 5.5 (a) for m = 0 mode and

(b) for m = 1 mode. By increasing the size ratio (α), the LSPR energy increases

be compared with the lowest energy of the symmetric pair bonding mode (dashed

line). Moreover, it never changes the mode character and is bounded by the lowest

energy of the single sphere LSPR (l = 1) marked by the red dot in the figures. The

plots of the second lowest energy as a function of scaled separation distance are

shown in Fig. 5.5 (a) for m = 0 mode and (b) for m = 1 mode. At large separation

distance, the energy is redshift compared with the lowest energy of the symmetric

pair antibonding mode (dashed line), with increasing α, and bounded by the

lowest energy (l = 1) of the single sphere LSPR. More precisely, the curvature of

the energy curve decreases with increasing α. This implies that the change of force

with respect to the separation distance decreases with increasing α. The values

of mode switching points are shown in the inset panels of the figure. The mode

switching point shifts to the right with increasing α. Finally, we investigate the

case that both effect of internal material property (ωp) and geometrical property

(size) play the role in LSPR coupling. Fig. 5.7 shows the plots of lowest LSPR

energy of Au-Ag pairs with α = 1, 3, and 5 as a function of scaled separation

distance (a) for m = 0 mode and (b) for m = 1 mode. As it would be expected

from the size effect, the lowest LSPR energy of the pair acquires the additional

blue shift as α increases. Fig. 5.8 shows the energy curves of the second lowest

energy (a) for m = 0 mode and (b) for m = 1 mode. The role of the symmetry

breaking due to particle size can be seen from the decrease of the energy curve

curvature as α increases. While the symmetry breaking due to material type

tends to bound the energy curve within the antibonding gap at large separation

distance. These effects surprisingly induce the shift of mode switching points to

the left compared with that of the pair with α = 1. This left shift is in contrast

to the case that only the sizes of particles are different.

5.3 Excited mode order

At this stage, we have discussed two fundamental effects of symmetry breaking in

LSPR coupling. We have defined the three fundamental points which are κσ, κπ
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Figure 5.5: The lowest LSPR energy of a pair of same material with different

sizes for (a) m = 0, and (b) m = 1 modes. The red dots indicate the lowest LSPR

energy (l = 1) of the isolated single sphere.
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Figure 5.6: The second lowest LSPR energy of a pair of same material with

different sizes for (a) m = 0, and (b) m = 1 modes. The red dots indicate the

lowest LSPR energy (l = 1) of the isolated single sphere. The inset figures show

plots in the area enclosed by the dashed oval. The arrows in the inset figures

indicate the positions of κσ (a), κπ) (b).
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Figure 5.8: The second lowest LSPR energy of a Ag-Au pair with different sizes

for (a) m = 0, and (b) m = 1 modes. The dashed ( dotted) line is the lowest

antibonding LSPR energy of a symmetric Ag-Ag (Au-Au) pair. The inset figures

show plots in the area enclosed by the dashed oval. The arrows in the inset figures

indicate the positions of κσ (a), κπ) (b).
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and χ. These points can be used to establish four physically distinct separation

distance domain depending on the permutation of them. In order to describe

which mode will be excited in the optical measurement (absorption or scattering

spectra) if the polarization axis is not exactly known. However the excited mode

could be the combination of two fundamental polarizations m = 0 and m = 1

modes. It is the reason for establishing a method for excited mode order for two

cases: (a) a pair of the same material spheres with α = 2 as shown in Fig. 5.9

and (b) a Au-Ag pair with α = 4/3 as shown in Fig. 5.10. In case (a), the four

regimes are separated by the ordered triplet (χ, κπ, κσ). The excited mode order

corresponding to their energy in the ascending order in each region is given by

(i) σ1 → π1 → σ2 → π2 for ξ1 ∈ (1, χ), (5.1)

(ii) σ1 → π1 → π2 → σ2 for ξ2 ∈ (χ, κπ), (5.2)

(iii) σ1 → π1 → π∗
1 → σ2 for ξ3 ∈ (κπ, κσ), (5.3)

(iv) σ1 → π1 → π∗
1 → σ∗

1 for ξ4 ∈ (κσ, 1.4), (5.4)

where χ = 1.101, κπ = 1.166 and κσ = 1.231. In case (b), the triplet is (κπ, χ,

κσ). The excited mode order in each region is given by

(i) σ1 → π1 → σ2 → π2 for ξ1 ∈ (1, κπ), (5.5)

(ii) σ1 → π1 → σ2 → π∗
1 for ξ2 ∈ (κπ, χ), (5.6)

(iii) σ1 → π1 → π∗
1 → σ2 for ξ3 ∈ (χ, κσ), (5.7)

(iv) σ1 → π1 → π∗
1 → σ∗

1 for ξ4 ∈ (κσ, 1.4), (5.8)

where χ = 1.129, κπ = 1.114 and κσ = 1.176.

We now compare these analyses with the experimental results of Sheik-

holeslami et al [34]. In their work, they measured the scattering spectra of the

individual pair of particles in three cases: (i) symmetric Ag-Ag, (ii) asymmetric

Ag-Ag with radii R1 = 40 nm and R2 = 20 nm and (iii) asymmetric Au-Ag with

Au radius = 40 nm and Ag radius = 30 nm. The TEM images of the particle

pairs are shown in Fig. 5.11 and the corresponding scattering spectra are shown

in Fig. 5.12 and Fig. 5.13. By comparing our analysis in case (a) with the ex-

perimental results case (ii), we found that the experimental result is in qualitative

agreement with our analysis in region ξ4. In case (b), interestingly, our analysis

in region ξ2 is in good agreement with the experimental result (case (iii)). Fur-

thermore, we argue that the mode σ∗ in Fig. 5.13(b) should be σ2, the quadrupole

bonding mode, instead of σ∗, dipole antibonding mode. This is reasonable for the

strong scattering mode due to the cancellation of dipole moment as mentioned by

the authors of Ref. [34].
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Figure 5.9: The comparison of two lowest LSPR energy of m = 0 (solid) and

m = 1 (dashed) modes for the Ag-Ag pair with α = 2. The arrows indicate the

positions of the triplet (χ, κπ, κσ), i.e. χ = 1.101, κπ = 1.166, and κσ = 1.231.
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Figure 5.11: The TEM images of (a) symmetric Ag-Ag with readii R1 = R2

= 40 nm, (b) asymmetric Ag-Ag with radii R1 = 40 nm, R2 = 20 nm and (c)

asymmetric Au-Ag with radii RAu = 40 nm, RAg = 30 nm [34].
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Figure 5.12: The scattering spectra of the asymmetric Ag-Ag pair with R1 = 40

nm, R2 = 20 nm. (a) The spectra at a number of polarize angles, (b) the spectra

at the polarize angle θ = 0◦ (red) and θ = 90◦ (black). The peak positions are

σ = 486 nm, π = 481 nm, π∗ = 422 nm, and σ∗ = 420 nm [34].
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Figure 5.13: The scattering spectra of the asymmetric Au-Ag pair with RAu = 40

nm, RAg = 30 nm. (a) The spectra at a number of polarize angles, (b) the spectra

at the polarize angle θ = 0◦ (red) and θ = 90◦ (black). The peak positions are

σ = 565 nm, π = 536 nm, σ∗ = 437 nm, and π∗ = 450 nm [34].



Chapter VI

Conclusion

In this dissertation, we investigate the effects of symmetry breaking to the

LSPR coupling. For simplicity, without losing any physical significant, we restrict

the derivation within the quasi static regime and considering the spherical particle

pair. Within this limit, we solve for the solution of Laplace equation and then

apply the boundary conditions at the sphere surfaces. These procedures allow

us to derive the recursion relations, Eq. 4.11 and Eq. 4.12, for the expansion

coefficient of the Laplace equation solutions. These recursion relations form a

system of infinite coupled linear equations. Hence, we introduce the vector and

matrix notations and solve the problem using the matrix formulation. This leads

to the nonlinear eigenvalue problem (NLEVP). The general expression for surface

mode resonant is derived as Eq. 4.28. The expression allows us to interpret the

LSPR energy of the asymmetric pair as a consequence of the coupling between two

image states of the symmetric pair of the constituent particles as schematically

shown in Fig.5.1

In order to investigate the effects of symmetry breaking, we apply the reso-

nant condition to calculate, for instance, the LSPR energy of the negligible damp-

ing Drude metallic sphere pairs. First, we study the effect of symmetry breaking

due to the matrial type. We found that the lowest LSPR energy shifts and is

bounded by the lowest energies of the bonding image states of its constituents.

For the second lowest energy, the energy curve is bounded by the second lowest en-

ergy of the bounding image states at small separation distance and is bounded by

the lowest energy of the antibonding symmetric pair at large separation distance.

The antibonding gap is the gap between the lowest energy of the antibonding

image states. The antibonding gap influences to the position of the mode switch-

ing point (κi). The larger gap leads to the larger κi so that κAg-Cu
i > κAg-Au

i

for i = σ, π. Second, the effects of symmetry breaking due to the particle size

are investigated. We found that for the lowest LSPR energy, the energy is blue

shifted as the particle size ratio (α) increases and has the lowest LSPR energy of

the single particle (l = 1) as the upper bound. For the second lowest energy, the
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energy curve’s curvature decreases as α increases which leads to the shift of κi to

the right as α increases. Finally, the effects of symmetry breaking due to both of

internal property (material type) and geometrical property (size) are investigated

by calculating the LSPR energy of the asymmetric Au-Ag pair. We found that

for the lowest LSPR energy, the energy curve is not bounded by the lowest energy

curve of the bonding image states of Au-Au and Ag-Ag pairs since it acquires

the additional blueshift from the effect of size difference. For the second lowest

energy, there are two effects cooperate in the change of LSPR energy. The first

one is decreases of energy curve’s curvature due to the asymmetry in size and the

second one is the presence of antibonding gap bounding due to the asymmetry of

material type. These lead to the shift of κi to the left as α increases. Furthermore,

we establish the methods for excited mode order analysis. This analysis provide

the way for identifying the mode character, for example bonding dipole mode,

antibonding dipole mode, bonding quadrupole mode, etc., at the peak position of

the scattering (or absorption) spectra. Our analysis is in qualitatively agreement

with the recent experimental results [34].

Briefly, the derived surface mode resonant condition is general for a pair

of spherical particles of which the dielectric functions are known. Using a more

realistic dielectric function could improve the calculation accuracy but can lead to

complex form of NLEVP. Advances in NLEVP could improve the applicability of

the theory. We shall expect the extension for more complicated structure such as

the asymmetric core-shell as well.
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Appendix A

Bispherical coordinate system

Bispherical coordinates (γ, η, φ) are defined as (see Fig.A.1)

x =
a sin η cosφ

cosh γ − cos η
, (A.1)

y =
a sin η sinφ

cosh γ − cos η
, (A.2)

z =
a sinh γ

cosh γ − cos η
, (A.3)

where γ goes from −∞ to ∞, η goes from 0 to π, and φ goes from 0 to 2π, h is

Figure A.1: The bispherical coordinate system.

center-to-center interparticle distance, and a is a coordinate parameter defined as
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half distance between two poles of spheres as shown in Fig. A.1. x, y and z are

cartesian coordinates (See Ref. [82, 83] for more informations). Consider

x2 + y2 + z2 =

(
a sin η cosφ

cosh γ − cos η

)2

+

(
a sin η sinφ

cosh γ − cos η

)2

+

(
a sinh γ

cosh γ − cos η

)2

a2 cosh2 γ = x2 + y2 + (z − a coth γ)2. (A.4)

Eq. A.4 is an equation of spherical surface with radius a cosh γ centered at (0, 0, a coth γ).

Thus, γ = constant is the spherical surface.

A.1 Scale factors and unit vectors

The scale factors are given by

hγ = hη =
a

cosh(γ)− cos(η)
, hφ =

a sin(η)

cosh(γ)− cos(η)
, (A.5)

and the unit vectors of each component in terms of unit vectors of Cartesian

coordinates are given by

êγ =
1

cosh γ − cos η
[− sinh γ sin η(cosφî+ sinφĵ) + (1− cosh γ cos η)k̂], (A.6)

êη =
1

cosh γ − cos η
[(cosh γ cos η − 1)(cosφî+ sinφĵ) + sinh γ sin ηk̂], (A.7)

êφ = − sinφî+ cosφĵ. (A.8)

A.2 Laplacian and separation of variables

The Laplacian in general curvilinear coordinate system is defined by

∇2 =
1

h1h2h3

{
∂

∂q1

h2h3
h1

∂

∂q1
+

∂

∂q2

h3h1
h2

∂

∂q2
+

∂

∂q3

h1h2
h3

∂

∂q3

}
. (A.9)

Thus, by substituting the expressions A.5, the Laplacian becomes

∇2 =
(cosh γ − cos η)3

a2 sin η

{
sin η

(
∂

∂γ

1

cosh γ − cos η

∂

∂γ

)
+

(
∂

∂η

sin η

cosh γ − cos η

∂

∂η

)}
+

(cosh γ − cos η)2

a2 sin2 η

∂2

∂φ2
. (A.10)

The solution of Laplace equation ∇2Ψ(γ, η, φ) = 0 can be achieved by separation

of variables technique by setting

Ψ(γ, η, φ) =
√

cosh(γ)− cos(η)Γ(γ)Π(η)Φ(φ) (A.11)
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A.3 System parameter

Two spherical surfaces can be specified by two surfaces of constant γ1 and −γ2
such that

a

sinh γ1
= R1, (A.12)

a

sinh γ2
= R2, (A.13)

a coth γ1 + a coth γ2 = h. (A.14)

We need to solve A.12-A.14 to get γ1 and γ2. From A.12 and A.13, we have

sinh γ1 =
a

R1

⇒ cosh γ1 =

√
1 +

a2

R2
1

, (A.15)

sinh γ2 =
a

R2

⇒ cosh γ2 =

√
1 +

a2

R2
2

. (A.16)

Substituting A.15 and A.16 we obtain

a =

{
[h2 − (R1 +R2)

2][h2 − (R1 −R2)
2]

4h2

}1/2

. (A.17)



Appendix B

Useful recursion relation of Legendre

polynomials

From the boundary condition Eq. 4.9, we read

anm = c(1)nm + d(1)nm, (B.1)

and bnm = c(2)nm + d(2)nm, (B.2)

where anm = Anme
−(n+ 1

2
)γ1 and bnm = Bnme

−(n+ 1
2
)γ2 . c

(1)
nm, d

(1)
nm, c

(2)
nm, d

(2)
nm are

defined in Eq. 4.13 - Eq. 4.16. The boundary conditions Eq. 4.10 yield

ε1ΣP
m
n (cos η)eimϕ [sinh γ1(2n+ 1)(cosh γ1 − cos η)] anm

= ε0ΣP
m
n (cos η)eimϕ

[
(sinh γ1 + (2n+ 1)(cosh γ1 − cos η)) c(1)nm

+(sinh γ1(2n+ 1)(cosh γ1 − cos η)) d(1)nm

]
, (B.3)

and

ε2ΣP
m
n (cos η)eimϕ [sinh γ2(2n+ 1)(cosh γ2 − cos η)] anm

= ε0ΣP
m
n (cos η)eimϕ

[
(sinh γ2 − (2n+ 1)(cosh γ2 − cos η)) c(2)nm

+(sinh γ1 + (2n+ 1)(cosh γ1 − cos η)) d(2)nm

]
, (B.4)

The terms on the left hand side of Eq. B.3 and Eq. B.4 are in the form (for

a given m) ∑
n

Pm
n (x) [f(n,m) + (2n+ 1)xg(n,m)]αnm. (B.5)

By applying the recursion relation of associated Legendre polynomial [80],

(2n+ 1)xPm
n (x) = (n−m+ 1)Pm

n+1(x) + (n+m)Pm
n−1(x). (B.6)

to the expression B.5, it can be proven that∑
n

Pm
n (x) [f(n,m) + (2n+ 1)xg(n,m)]αnm

=
∑
n

Pm
n (x) [f(n,m)αnm + (n−m)g(n− 1,m)αn−1m + (n+m+ 1)g(n+ 1,m)αn+1m] .

(B.7)

Applying B.7 to B.3 and B.4 results in Eq. 4.11 and 4.12.



Appendix C

Nonlinear eigenvalue problem: a brief

introduction

The nonlinear eigenvalue problem (NLEVP) is the problem of solving for a

pair of scalars λ and nonzero vectors u and v satisfying

F (λ)u = 0, (C.1a)

v†F (λ) = 0, (C.1b)

where F : C → Cm×n defined by

F (λ) =
k∑

i=0

fi(λ)Ai, (C.2)

where f : C → C andAi ∈ Cm×n. λ, u and v obeying Eq. C.1 are called eigenvalue,

right eigenvector and left eigenvector, respectively. Eq. C.1a can be rewritten in

the form

P (λ)u = 0, (C.3)

where

P (λ) =
k∑

i=0

λiAi, (C.4)

which is called polynomial eigenvalue problem (PEP). Note that this also hold for

Eq. C.1b. In the special cases such as

(i) k = 1, A0 = A and A1 = −I, the PEP reduces to, the most familiar problem

in physics, the standard eigenvalue problem is given by

A · u = λu, (C.5)

(ii) k = 1, A0 = A and A1 = B ̸= I, Eq. C.3 reduces to

A · u = λB · u, (C.6)

which is termed generalized eigenvalue problem (GEP),
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(iii) k = 2, all A0, A1, and A2 are nonzero matrices, Eq. C.3 is in the quadratic

form

Q(λ)u = (λ2A2 + λA1 +A0) · u = 0, (C.7)

which is called quadratic eigenvalue problem (QEP). Here, we only give a brief

introduction to the NELPV. The details of classification of NELVP, the collection

of the problems, and the numerical techniques are provided in Ref.[84, 85, 86, 87,

88, 89, 90, 91, 92, 93, 94].



80

VITAE

Mr. Rakchat Klinkla was born on 9 March 1980. He received his Bach-

elor’s degree (with second class honours) in physics (B.Sc. physics) from Ubon

Ratchathani Rajabhat University in 2003. His senior project in B.Sc. is on the

Aharonov Bohm effect on interference pattern of double slit electron diffraction

experiment using the Feynman path integral approach. Afterwards, he worked

as a physics teacher at Phuhungphatthanawit High school in Kalasin province,

thailand. Then he continued his study for his Degree of Doctor at Chulalongkorn

University in 2006.

Journal Publication:

1. R. Klinkla, Sutee Boonchui and U. Pinsook. Role of symmetry in coupled

localized surface plasmon resonance of a nanosphere pair. Submitted.

Conference Presentations:

1. R. Klinkla, and U. Pinsook. (13-15 December 2010).Surface plasmon oscilla-

tions in a cluster of two different metallic nanospheres. The 6th Siam Physics

Congress 2011. Chonburi, Thailand (21-23 Oct 2013)

2. R. Klinkla, and U. Pinsook. (23-26 March 2011). Van der Waals Interaction

between Two Spherical Nanoclusters. The 6th Mathematics and Physical

Sciences Grauate Congress 2010. University of Malaya, Malasia.


	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Abbreviations
	Chapter I Introduction
	Chapter II Optical Properties of Solids
	2.1 Electrodynamicsofsolids
	2.2 Modelsofdielectricfunction

	Chapter III Surface Plasmon Resonance
	3.1 Validityoftheclassicaldescription
	3.2 Surfaceplasmonpolaritons
	3.3 Localizedsurfaceplasmonresonance
	3.4 Lspronasinglespheresurface
	3.5 Lsprdamping

	Chapter IV Localized Surface Plasmon Resonance in Coupled Nanoparticles
	4.1 Lsprhybridization
	4.2 Coupled Lspr in A Nanosphere Pair : Quasistatic Approximation

	Chapter V Symmetry Breaking in Coupled-Localized Surface Plasmon Resonance
	5.1 Internalpropertyeffects
	5.2 Geometricalpropertyeffects
	5.3 Excitedmodeorder

	Chapter VI Conclusion
	References
	Appendix
	Vita



