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Curry-Howard terms are typed-lambda terms, which are a way of representing
formal proofs in a natural deduction system. The standard approach to extracting
programs from proofs is by constructing Curry-Howard terms.

In carrying out mathematical proofs, the same patterns frequently recur.
Therefore in extracting programs from proofs it would be helpful to formally define what
a pattern, or template, is and then add it into the system so that we do not have to repeat
what is essentially the same argument. Moreover, this mirrors ordinary mathematical
practice.

In this research, we create a new system for extracting programs from proofs by
extending Crossley and Shepherdson’s system (in [3]) in the language of first-order
predicate calculus to second-order logic and adding templates into the extended system as
new rules.

We introduce two Kinds of templates: induction templates and abbreviation
templates. The former templates allow us to use various kinds of induction in the formal
system without going through the natural numbers. The latter templates enable us to
abbreviate formulae by new predicates in formal proofs.

The Curry-Howard terms produced in the new system still satisfy all the basic
properties including the strong normalization theorem so we can extend the extraction of
programs to the greatly expanded logical system.
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CHAPTER 1

INTRODUCTION

There is a close correspondence between intuitionistic logic and typed-lambda
calculi. Curry (see [4]) and subsequently Howard (see [8]) noticed the correspon-
dence between term formation rules in lambda calculus and the rules of inference
in intuitionistic propositional calculus. Such a correspondence leads to the idea
of extracting programs from proofs to which a brief introduction is as follows.

The standard approach to extracting programs from proofs is by constructing
Curry-Howard terms.

Curry-Howard terms are typed-lambda terms which are defined to correspond
to formal proofs in the natural deduction system. Such a correspondence is called
Curry-Howard isomorphism (see [7] for more details). As in [3], the natural de-
duction system used here is the version of Gentzen’s intuitionistic system given
by Prawitz (see [12]) and types of Curry-Howard terms-are first-order formulae.
By defining a Curry-Howard term formation rule corresponding to each rule in
the natural deduction system we will get the correspondence between proofs and
Curry-Howard terms. In order to give some ideas about the correspondence, we
will give some examples by using rules for the connective A. The full version

which deals with every connective and quantifier in first-order logic is in [3].
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a premise, we can deduce « from the premise «, so the above proof is redundant
and can be reduced to the uppermost o of which the corresponding Curry-Howard

term is X¢.
We use the notation = for reduces and write the above reduction for the

Curry-Howard term as follows.
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A Curry-Howard term is said to be normal if it cannot be reduced.

In order to see the connexion between programs and proofs, let us consider
the following example.

Suppose we have a proof of Vxdya. As explained above, we can construct a
corresponding Curry-Howard term F'*%%%  When a closed individual term ¢ is
given, by applying the (¥ Elim) rule (see [3]) to the last line of the proof, we
obtain a proof of Jya(x/t), where o(x/t) denotes the result of substituting ¢ for
all free occurrences of z in a subject to avoiding clashes of variables, and the
corresponding Curry-Howard term is (FY4(¢))72@/Y) " As shown in the proof of
Theorem 6.6 in [3], (FV*3(¢))?*@/Y) can be reduced to a normal term which is
of the form (I(u, G¥@/NW/W))Zve@/t) for some closed individual term w.

From the above process we can see that F7*7 is a program extracted from the
proof of Vxdya and when a value ¢ of x is given, we can extract the corresponding
value u of y by reducing (F¥3(¢))?*/) to normal form. We can think of
the process of computing the value of y from a given value of = as reducing
(F7*3ve ())3ve@/t) to normal form and then extracting the y from the final term.

For computational purposes every term must eventually reduce in a finite num-
ber of steps to a normal form. A Curry-Howard term F is strongly normalizable if
all reduction sequences beginning with F' are finite. A calculus satisfies the strong
normalization theorem if every term-is strongly normalizable.

Takeuti (see [17]) first formulated a conjecture in 1954 that it would be possible
to prove strong normalization (otherwise known as cut-elimination) for simple type
theory and in 1966 Tait (see [14]) proved cut-elimination for second-order logic.
The theorem for higher order logic/simple type theory was published by Prawitz
[13] and Takahashi [15] and the full theorem was subsequently proved by Girard

in his thesis [6] and published in [5].



In [3] Crossley and Shepherdson gave a proof of strong normalization for first-
order logic that provides a more user-friendly calculus from which to derive com-

puter programs. They use Girard’s candidates for reducibility (see [7]).

In carrying out mathematical proofs the same patterns frequently recur. There-
fore in extracting programs from proofs it would be helpful to characterize what
a pattern or template is. We will integrate templates into the system so that we
do not have to repeat what are essentially the same arguments. Moreover, this
mirrors ordinary mathematical practice.

In this thesis, we introduce two kinds of templates namely induction templates
and abbreviation templates.

The idea of induction templates comes from the induction used in ordinary
mathematical proofs. Adding induction on natural numbers or lists can be found
in [1], [3], [9], and [11]. The new induction templates are more general than
those inductions because they can be used on natural numbers, lists, and other
inductively defined predicates.

In ordinary mathematical proofs, we often abbreviate formulae by predicates.
We will introduce abbreviation templates for this purpose. Analogous templates
can be found as meta-rules in [9] and [11]. Now we will add them as formal rules.
It is essential that the systems to which the templates are-added must be higher
order. Therefore, in this thesis, we do program extraction from proofs for higher
order systems of logic, specifically systems of full second-order predicate logic.

The new Curry-Howard terms produced in the systems to which templates are
added will still satisfy all the basic properties including the strong normalization
theorem.

The thesis is arranged as follows.



In Chapter II we introduce our second-order language and define substitution
for second-order formulae. We prove some lemmas concerning substitutions that
establish basic properties and will be used in the following chapters.

Chapter III is separated into three sections. In the first section, we start with
the second-order natural deduction system, N.s, extended from the first-order
natural deduction system, N.J. In the second section, we define associated Curry-
Howard terms. We then give definitions of substitutions, legitimate changes of
bound variables, and equivalence of the Curry-Howard terms together with some
lemmas concerning them. We give reduction rules for the new Curry-Howard
terms as well as some basic lemmas in the last section.

Chapter IV discusses strong normalization. It has two sections. We give
some basic definitions in the first section and a proof of the strong normalization
theorem in the second section.

Chapter V is about templates. We introduce two kinds of templates namely
induction templates and abbreviation templates as mentioned above.

Chapter VI summarizes the results of our work, and suggests possibilities for

further research.



CHAPTER II

SECOND-ORDER LANGUAGE AND SUBSTITUTIONS

In this chapter we set up the language and establish basic lemmas for substitutions.
We follow the approach of [3].

We define Ly to be a second-order language extended from a first order lan-
guage L as follows.

We take the basic symbols of L as A,V,D, 1,V,9,= (,), and an infinite se-
quence of variables x,y, 2z, x1, .. ., called individual variables. We also call terms
of L individual terms.

We define a new class of predicate variables of all arities. For each arity n,
we use P, Q", R", Pl', ... to denote n-ary predicate variables. The superscript n
may be omitted if we do not want to state the arity or it is clear in the context

of which arity it is. We also add two new quantifier symbols V5 and 5.

Definition 2.1. An atomic formula of Lo is either an atomic formula of L or
an expression of the form P(ty, ..., t;) where P is-an n-ary predicate variable and

t1,...,t, are individual terms.

Definition 2.2. The formulae of Lo form the smallest set of expressions con-
taining the atomic formulae and 1, closed under the following formation rules.
i. If o and B are formulae so are the expressions (a A ), (aV ), and (o D f3).
ii. If ais a formula and x is an individual variable, then (Yra) and (3za) are
formulae.

iti. If a is a formula and P is a predicate variable, then (VoPa) and (JoPa)



are formulae.

Notes.

a. Parentheses will be omitted when there is no ambiguity.

b. An occurrence of an individual variable = (respectively a predicate variable
P) in a formula « is bound if it occurs in a subformula of « of the form Va3 or
Jz 3 (respectively Vo P53 or 35 P3), otherwise it is free. We call 3 the scope of the
quantifier.

c. From now on when we say “a is a formula”or “a is a second-order for-

mula’we mean “o is a formula of L, for some extension Lo”unless otherwise

stated.
d. When we say “x is the first individual variable ... ”we mean “x is the first
individual variable in some fixed ordering of individual variables ... ”. Similarly

for predicate variables of each arity.

e. When we give a definition or a proof that proceeds by induction on the
construction of a formula «, we will omit the case o is I whenever it is similar to
the case where « is an atomic formula.

f. When we say “induction on a formula o”we mean “induction on the con-
struction of a formula a”.

g. Sometimes we use ', y', 2., x”, .. or ¥, y*, ¥, &, ... to denote individual
variables. Similarly for predicate variables and any variables in this thesis.
Notation. We use

a. fu(a) (respectively F'V(a)) to denote the set of free individual variables
(respectively the set of free predicate variables) of a formula «; similarly for fuv(t)
where ¢ is an individual term;

b. {z} to denote the set {xi,...,x,}, where z = z,..., 2, are individual

variables; similarly for {P}, where P is a list of predicate variables;



c. fo(t) to denote |J fu(t;), where t = ti,...,t, are individual terms;
i=1

d. «alz/.t] (respectively u[z/t]) to denote the simple simultaneous replace-

ments of all free occurrences of (distinct) individual variables z = z4,..., 2, in a
formula « (respectively an individual term «) by individual terms t = ¢y, ..., t,,
respectively;

e. «a[P/,R] to denote the simple simultaneous replacements of all free oc-

currences of (distinct) predicate variables P = P/ ... P in a formula a by
predicate variables R = Ry, ..., R"", respectively.
Note. When we write “a” is the sublist of @ ... 7, a* could be empty and every

definition and notation used for a can also be used with a¢* in a natural way e.g.

fo(t*) = @ if t* is the empty sublist of a list of individual terms ¢.

Definition 2.3. Let a be a formula, x = xy,...,x, be distinct individual vari-
ables, and t = tq,...,t, be indwidual terms. The result of simultaneously substi-
tuting ti,...,t, for all free occurrences of x1,...,x,, respectively, in o, denoted

by alzy/ty, ...,z /t) or alz/t], is defined inductively as follows.

i. If a is an atomic formula, then ofz/t] = az/,t].

ii. (BAY)a/t] = Blz/t] A ylz/L].

Similarly for (3V v)[z/t] and (8 5 7)[z/1].

it (VyB)[z/t] = vy (Bly/v]lz"/t]),
where x* is the sublist of x consisting of those x;’s which are in fo(VyB3), t* is
the corresponding sublist of t, and y' isy if y & fo(t*), otherwise y' is the first
individual variable which is not in fu(5) U fo(t*).

Similarly for (JyB)[z/t].

. (V2Pf)[z/t] = V2P (B[z/t]).

Similarly for (I,P05)[z/t].

Note. From the above definition, it can be easily proved by induction on « that



a. afz/t] is a formula and is of the same form as «;

b. alz/t] = alz*/t*], where z* is the sublist of x consisting of those z;’s which
are in fv(a) and t* is the corresponding sublist of ¢;

c. alz/z] = a;

d. if z* is the sublist of & consisting of those variables which are in fv(«) and
t* is the corresponding sublist of ¢, then fo(afz/t]) = (fv(a) — {z*}) U fo(t");

e. FV(alz/t]) = FV(a),
Notation. afz/t,y/u] will abbreviate afzy/t1, ..., 2, /tn, y1/u1, .. ., Ym/Unm], Wwhere

T=T1, Ty E=115 sty Y= Yls oy Ym, AN U = Uy, .., Upy.

Following Takeuti [17], we extend our language and define abstraction terms.

Definition 2.4. If « is a formula with fo(a) = {z1,...,z,}, then \xy, ... v«

1s called an abstraction term.

Note. All occurrences of x;,1 < i < n, in Axy,...,z,« are bound, so every
abstraction term contains no free individual variable.
Notation.

a. The set of free predicate variables of an abstraction term 7' = A\zq, ..., x,q,
denoted by FV(T), is the set F'V («).

b. We use FV(T) to denote -61 FV(T;), where T =T, ..., T, are abstraction
terms. )

c. We may write an abstraction term of the form Azy, ..., z,R"(z1,...,z,) as

R™ when there is no ambiguity.

Definition 2.5. Let « be a formula, P = P"',..., P be distinct predicate vari-
ables, and T = Ty, ..., Ty, where T; = \zt, ... ,x;iéi, 1 <@ < m, be abstraction
terms. We define o[P, /T4, ..., Pyn/T,], which can be written as a|P/T], induc-

tively as follows.
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. If a is an atomic formula, then

(

Oglai/tr, .. ad [t if = Py(ts,... ts,) for some 1 < qg<m
alP/T] = and some individual terms ty,. .. 1y,

«Q otherwise.

ii. (BA)[P/T) = plP/T|Av|P/T).

Similarly for (8 VY)|E2/ZL] and (8 > v)[2/L].

ii. (VoB)[P/T] = Va(B[2/T)).

Similarly for (3x3)[P/T).

. (V2QB)[P/T] = YaQ'(BlQ/Q[2*/T),
where P* is the sublist of P consisting of those P;’s which are in FV (¥,QB), T*
is the corresponding sublist of T and Q" is Q if Q & FV(T), otherwise Q' is the
first predicate variable with the same arity as Q which is not in FV (3)UFV (T*).

Similarly for (3,Q83)[P/T].

Notation.

a. If U = Ayp,...,yxy is an abstraction term, we use U[P/T] to denote
Moo (Y[ BAT))-

b. VypB[z/t] will abbreviate Vy(3[x/t]). Similarly for Vyg[P/T].

Vy in the above statement can also be replaced by Jy, V2@, or J0).
Note. From the above definition, it can be easily proved by induction on « that

a. a[P/T] is a formula,

b. a[P/T] = «[P*/T*], where P* is the sublist of P consisting of those P;’s
which are in F'V(«) and T is the corresponding sublist of T;

c. a|[P/P| =«

d. if P* is the sublist of P consisting of those variables which are in F'V («)

and T is the corresponding sublist of T', then FV (a[P/T]) = (FV(a) — {P*})U
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FV(L);

e. fu(a[P/T]) = fu(a).

Definition 2.6. Let a be a formula.

If v = 2, ..., x, are distinct individual variables, and t = tq,...,t, are indi-
vidual terms, we say t is free for x in o if no free occurrence of any x;, 1 < i <mn,
in « is within the scope of a quantifier Yy or 3y where y occurs in t;.

If P = P, ..., Pl are distinct predicate variables, and T = Ty,..., T,
where Ty, = Azt ... ./xfuéi, 1 < i < m, are abstraction terms, we say T is free
for P in « if no free occurrence of P;, 1 <1 < n, in « is within the scope of a

quantifier V5@ or 320Q) where @ occurs free in 1.

Definition 2.7. Suppose Vx5 or Jz5 (respectively YoPB or 3,P3) is a sub-
formula of a formula a. A change of an occurrence of Yxf3 to Va'fBlx/,x'] or
dxf to o' Bz /2] (respectively Vo P[ to Yo P'BIP/, P’ or 32Pf to I, P' B[P/, P'],
where P and P’ are of the same arity) in o is called legitimate if ' (respectively
P’) does not occur free in B and ' is free for x (respectively P’ is free for P) in

G.

Definition 2.8. If a formula o' ‘can be obtained from a formula o by a finite
sequence of legitimate changes of bound individual variables-or-bound predicate

variables, we say « is equivalent to o, and write o = /.

Note. It can be proved by induction on « that
a. if a =/, then fo(a) = fv(d/) and FV(a) = FV(d/);
b. if ¢ is free for x (respectively R is free for P) in «, then afz/t] = a[z/,t]

(vespectively a[P/E] = a[P/,E)).

Lemma 2.9. = is an equivalence relation.
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Proof. 1t is clear that = is reflexive and transitive. To prove that = is symmetric,
it is enough to show this for a single change of bound variable. Suppose an
occurrence of Va3 in a formula « is replaced by Va/G[z/,2'], where 2’ is free for x
and does not occur free in 3, and the result is . Since z & fv(B[z/,2']) and x is
free for 2’ in [[z/,2'], the change from Va'p[z/, 2] to VzfB[x/,2'][x'/,x] which is
Va3 is also legitimate. Thus ev can be obtained from o' by a legitimate change of
bound variable. Similarly, if the replaced subformula is of the form Jz3, Vo P,

or 4, PS. Il

Notation. We use [a] to denote the equivalence class of a formula a.
Note. When we prove by induction on « and the proofs for the cases a = Vyf3

and a = Jyf are similar, we will prove only the case o = Vy( and omit the case

a = dyl. Similarly for the cases o = VoQF and o = 3,Q[.

Lemma 2.10. For any formula c,

a. if v = x1,...,x, are distinct individual variables and t = t{,...,t, are
individual terms, then alz/t] = o[z /t] for some formula o such that o/ = o and
t is free for x in o/;

b. if P = P" ... Pl are distinct predicate variables-and T = Ti,...,T,,,
where T; = A, ..., xh 6, 1 < i < m, are abstraction terms, then o[P/T] =

o/[P/T] for some formula " such that o =« and T is free for P in o/

Proof. Let a be a formula. We will prove this by induction on a.

a: Let x = x1,...,x, be distinct individual variables and ¢t = t1,...,t, be
individual terms.

If v is an atomic formula, then ¢t is free for  in a. The cases where « is G A7,
BV, B D, Va3, or 32Q 0 follow straightforwardly by the induction hypothesis.

The remaining cases are o = Vy/3 and a« = Jy3 for which the proofs are similar.

a = Yypj:
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Then o[z /t] = Yy Bly/y'|[x*/t*], where z* is the sublist of x consisting of those
x;’s which are in fv(«), t* is the corresponding sublist of ¢, and v/ is y if y & fo(t*),
otherwise v’ is the first individual variable which is not in fv(5) U fo(t*).

By the induction hypothesis, [y/y'| = 3'[y/y'] and B'[y/y'][z*/t"] = B*[z*/t"]
for some formulae 5’ and §* such that g’ = 3, 5* = §'[y/y], v is free for y
in 3, and t* is free for * in 3*. Hence alz/t] = Vy'3*[z*/t'] = (Vy'5*)[z/1]
and Yy'f* = Yy B [y/y] = Yyp' = YypB = a. Since t* is free for z* in * and
y' & fo(t*), tis free for z in Vy/B*.

b: The proof is similar to (a). O

Corollary 2.11. For any formula [3,

a. if y and vy are individual variables such that y & fu(f3), then Yyp3
Vy'Bly/y'] and 3yB = 3y'Bly/y'):

b. if P and P' are predicate variables with the same arity and P & FV([),
then Yo P = Yo P'BIP/P'| and 3PP = 3. P'B[P/P'].
Proof. Let (8 be a formula.

a: Let y and y' be individual variables such that 3/ ¢ fv(3). By the above
lemma, Sly/y'] = '[y/y'] for some formula " such that 8’ = 3 (so ¢ & fv(3))
and y' is free for y 'in " Hence Vyp = VYyfs' = Yy'0'ly/.v] = Y/ B [y/y] =

vy Bly/y'). Similarly, 3y6 = 3y Bly/v/].

b: The proof is similar to (a). O
Lemma 2.12. Let « be a formula, x = x4, ..., x, be distinct individual variables,
t=t,...,t, be individual terms, P = P{*,..., P'™ be distinct predicate variables,
and R = RY',..., R™ be predicate variables.

Then a[P/R][z/t] = o[z /t][P/R)].

Proof. We will prove this by induction on «. The cases where o is S Ay, BV 7,

or 3 D ~ follow straightforwardly by the induction hypothesis.
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(i) a is an atomic formula.
If « = P,(uy,..., u,,) for some 1 < ¢ < m and some individual terms

Uy, ..., Uy, then

alP/R)[z/t] = Py(u,... uz,)[P/B][z/1]
= Ry(u, ..., u)w/t]
— Rz /t], .-t /1))
=" P(wlz/t], ... u,|z/t])[P/R)]

g(uis - ug,)[z/t][P/R] = alz/t][P/R],

otherwise o[P/R|[z/t] = alz/t] = olz/t][P/R].
(ii) a = Vyp.

By the induction hypothesis, we have

alP/R][z/t] = (VyB[E/E])[z/1]
= Vy'BIP/Rlly/y]lz" /']
= Vy'Bly/y][E/R]z"/E]
= /' Bly/ylz"/tHL/R]
= (WBly/y Nz /tDIE/B]

= (Vyp)lz/t)[P/R] = alz/t][E/E];

where z* is the sublist of z consisting of those x;’s which are in fv(a) (=
fv(a[P/R])), t* is the corresponding sublist of ¢, and ¢/ is y if y & fo(t*), otherwise
y' is the first individual variable which is not in fv(8) U fo(t*) (= fv(B[P/R]) U
Folt)).

(iii) o = V2QB.
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By the induction hypothesis, we have

a[P/Rl[z/t] = (V2Q'BQ/Q[L"/R])[z/1]
= %QBQ/QE/E[z/t]
= %QBQ/Q /L /]
= V20 5[z/H[Q/QP"/R]
= (V2QP[z/t])[P/E]
= (2QB)[z/H[P/R| = a[z/{][P/E],

where P* is the sublist of P consisting of those P;’s which are in FV(a) (=
FV(alz/t])), R" is the corresponding sublist of R, and Q' is Q if Q@ &€ {R"},

otherwise @)’ is the first predicate variable with the same arity as ) which is not

in FV(8) U{R"} (= FV(Blz/t) U {R"}). O
Lemma 2.13. Let a be a formula, x = x1,..., Ty and y = y1, . .., yn be sequences
of distinct individual variables, and t =t1, ...ty and w = uq,...,u, be individual
terms.

Then ofz/ty/u] = alz /tly/ul, ... 2w /tuly/ul yi w5 Y /],

where iy, ..., Ui, s the sublist of y consisting of those y;’s which are in fv(a) —

{z}.

Lemma 2.14. Let a and o be formulae, x = x1,...,x, be distinct individual
variables, and t = tq,...,t, be individual terms.

If a = d/, then alz/t] = [z /t].

Proof. We will prove these two lemmas simultaneously by induction on a.
Proof of Lemma 2.13. The cases where o is B A7y, BV v, 8D v, VoQF, or 3.Q0
follow straightforwardly by the induction hypothesis. The remaining cases are as

follows.
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(i) a is an atomic formula.

This is clear from the definition since all substitutions are simple. For this
case we obtain the lemma with = replaced by =.

(ii) o = Vzp.

Suppose z* = zj,...,7; and y* are the sublists of x and y, respectively,
consisting of those variables which are in fo(e) and fo(alz/t]), respectively, and
t* and u* are the corresponding sublists of £ and u, respectively.

We have (Vz0)[z/t][y/u] = V2"B[z/|[z" /t*][z'/2"][y* /u*], where 2’ is z (re-
spectively 2" is 2’) if z & fu(t*) (respectively 2’ & fv(u*)), otherwise 2’ (respec-
tively 2”) is the first individual variable which is not in fo(5)U fo(t*) (respectively
fo(Blz/2][z"/t]) U fo(u?)).

We have (Vz0)[x1/tiy/ul, . ..oxn/talyful, yi, [, - - s, /ui] =
V2" Bz 2" [z, [t [g/g], . ,le/tjl[g/g],yil/uil, ooy Y Jui, |, where 2" is z if 2z &

l k
U fo(t;.ly/u]) U U fo(u,,), otherwise 2 is the first individual variable which is
r=1 - s=1
! k
not in fo(B) U L_Jl fo(ty,[y/u]) U L_Jl fo(u,).
Let 2* be an individual variable which does not oceur in z*, y*,

B[z/zm] [‘le/tjl [Q/Q]a s >sz/tjz [Q/H], y’il/uil? s 7yik/uik]? or
Blz/2 [z /t*][2 [2"][y* /w*]. Then, by the induction hypothesis, we have

alg/tly/ul = VB2 2 Y /]
V2 B/ Nz /N [y w1 2]

V2 B2/ [ /][22 2" )2y ]
V2 Blz/ 2t 12 )2y )
V2 B2/ 7 ) 22 [ty ]

V2" Blz/2" 2" /1] [y" /'], and
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a[xl/tl[y/ﬂL s 7xm/tm[y/ﬂ]7yi1/ui17 ce 7ylk/ulk]

= \V/Z///ﬁ[z/zm] [le/tji [Q/QL R sz/tjz [Q/Q]v yi1/ui17 BRI y’tk/ulk]
= VZ*ﬁ[Z/ZW] [J;Ji/tjd [Q/H]v R le/tjl [g/u]a Yiy /uiu BRI yik/uik][z////Z*]
VZ*ﬁ[Z/zm] [ZIII/Z*][le /tjl [g/ﬂL ' F 7‘le/tjl [Q/Q]a Yiy /ui17 SRR ylk/ulk]

VZ*ﬁ[Z/Z*][xh/tjl [Q/ML - . 7le/tjl [y/@]7 yi1/ui1v < 7yik/uik]'

Since z* & {y*}, (fo(Blz/2"]) = {z'}) n{y"} = (fo(VzB) —{z}) n{y} =
{Yir»---,yi, }- Hence, by the induction hypothesis,

Blz/z*][z* /t*][y* [u']

= 5[Z/Z*]['rj1/tj1 [_y_*/—@*]a Py 7le/tjz [Q*/Q*]a yil/uil’ s 7ylk/ulk]

= B[Z/Z*]['rjl/tjl [Q/QL = 7le/tjl[g/g]vyi1/ui17 s >yik/uik]'

Proof of Lemma 2.14. Suppose e« = «'. The cases where o is B Ay, V7, or
8 D ~ follow straightforwardly by the induction hypothesis.

By Lemma 2.10, we may assume that ¢ is free for z-in both « and «'.

The lemma is trivial if there is no change of bound variable. We can assume
there exists a sequence of formulae o = ag, aq,...,q,, = o', m > 1, such that «;
is obtained from «;_; by a single legitimate change of bound variable.

For the remaining cases, we proceed by induction on m. We will prove only
the case m = 1 since the case m > 1 follows straightforwardly by the subsidiary
induction hypothesis and the case m = 1.

(i) oo = Vyp.

Then afz/t] = VypB[z*/t*], where z* is the sublist of x consisting of those x;’s
which are in fv(«) and t* is the corresponding sublist of ¢.

Case 1. o = Vypf' where 3 = 3.

By the main induction hypothesis, Slz*/t*] = f'[z*/t*]. Hence alz/t] =

VyBla*/t*] = Vyf'la* /1] = o/ [z/t].
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Case 2. o = Vzf[y/z] where z is free for y and does not occur free in .
Then o'[z/t] = Vzf[y/2][z"/t"].
Let z* be an individual variable which does not occur in z*, f[z*/t*], or

Bly/z]lz"/t7].
By the main induction hypothesis, we have
ofz/t] = VzBly/z][z*/t"]
vz Bly/ [z /t]z/ 2]
Va2 Bly/ A=/ [z"/t]
V2" Bly /=[x /]
vz Bz [t ly/="]

VyBle®/t"] = alz/t].

(il) a = ¥2Qp.

Case 1. o/ =VY,Q0" where ' = .

This case follows straightforwardly by the main induction hypothesis.

Case 2. o =V2Q'8]Q/Q'] where ' is a predicate variable with the same arity

as () which is free for () and does not occur free in 5 (similarly for Sz /t]).

Then afz/t] = V2Qf[z/t]

V2Q'8la/[Q/Q]

= Q'BQ/Q][z/1] (by Lemma 2.12)
= (V2Q'B[Q/QT)[z/t] = /[z/1].

m
Lemma 2.15. Let « be a formula, x = x4, ..., x, be distinct individual variables,
t=ty,...,t, be individual terms, P = P{*,..., P'™ be distinct predicate variables,

and T =Ty,..., Ty, where T; = \yi, . .. ,y};i&;, 1 <i <m, be abstraction terms.
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Then o[P/T)[z/t] = alz/t][P/T].

Proof. We proceed by induction on «. The cases where o is A, BV, or Dy
follow straightforwardly by the induction hypothesis.
(i) v is an atomic formula.
If « = Py(u,...,u,,) for some 1 < ¢ < m and some individual terms
Uy, ..., U, then
alP/T[z/t] = By, ,)[P/T][z/]
= 5(1[yi1/u17 | 7ygq/u7‘q][£/ﬂ
= Oyl ulz/t], .. g, /ur,[2/1]] (by Lemma 2.13)
= Pyluslz/t], . .- un, [2/1])[P/T]
= Pylus,.. . un)z/H][P/T] = alz/t][P/T],
otherwise a[P/T[z/] = alz/t] = alz/t][E/T].
(ii) o = Vyp.
By the induction hypothesis, we have
alP/T][z/t] = (VyB[2/T])[z/t]

= vy BP/T[y/y]z /]

Vy' Bly/y [P/ T][z" /t] (by Lemma 2.14)

vy Bly/y [z /][ B/T]

= (WBly/ylz"/t)E/T]

= (Vyb)lz/U[L/T] = afz/t][P/T],
where z* is the sublist of z consisting of those x;’s which are in fo(a) (=
fo(alP/T))), t* is the corresponding sublist of t, and ' is y if y & fu(¢*), otherwise
y' is the first individual variable which is not in fv(5) U fo(t*) (= fu(B[P/T]) U

fo(t)).
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(iii) o = V,Qp.
By the induction hypothesis,
alP/T)[z/t] = (VQ'8(Q/Q[E"/T])[z/t]
= Y.Q'8Q/QNE/T"][z/Y]
v2Q'BlQ/Q [z /Y [E/L7]
= Vo@Blz/Y[Q/Q L /L] (by Lemma 2.12)
=" (v2QBlz/t))[2/T]
= (V2QP)[z/t][P/T] = alz/{][P/T],

where P* is the sublist of P consisting of those F;’s which are in F'V(«) (=
FV(alz/t])), T* is the corresponding sublist of 7', and Q' is Q if Q ¢ FV(T7),
otherwise ()’ is the first predicate variable with the same arity as () which is not

in FV(8) U FV(I") (= FV(Ble/l) U FV(TY)). =

Lemma 2.16. Let a be a formula, P = P;*, ..., Pim and R = R, ... Rl be se-
quences of distinct predicate variables, T =Ty, ..., T,,, where T, = Xz}, ..., 2% d;,
1 <i<m, and U= Uy,...,U,, where U; = )\y{',...,yljjoj, 1 <j <mn, be
abstraction terms.

Then o|P/TYR/U) = 'l Py/T[R/U, -, P/ Tl R/U, Rey /U . .., Riy Uy,
where Ry, ;... R, s the sublist of R consisting of those Rj’s which are in F'V (a)—
{L£}.

Lemma 2.17. Let o and o be formulae, P = Pi*,..., PI™ be distinct predi-
cate variables, and T = Th,...,T,,, where T; = )\x{,...,xiﬁj, 1 <5< m, be
abstraction terms.

If a =, then o|P/T)| = «'|P/T].

Proof. We will prove these two lemmas simultaneously by induction on «.

Proof of Lemma 2.16. The proof is similar to the proof of Lemma 2.13 except for
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the following case.
« is an atomic formula:
If a = Py(ty,...,t,,) for some 1 < ¢ < m and some individual terms ¢, ..., .,

then

a[P/T][R/U] = Fylty,.. s tw,)[P/T][R/U]

= Og[ad/try ., 22 /. ) [R/U]

6, B/U [T [t . - 3] [t,] (by Lemma 2.15)
= Pq(tl, ... 7t7~q)[P1/T1[E/Q]7 g Pm/Tm[E/QH

= o|P/T1|R/U]|,..., Pyn/Tn[R/U]], otherwise
alP/T][R/U]

= oR/U]

/

a[Rs /Ul if FV(a) = {Rs} for some 1 < s <mn,

Q@ otherwise,
\

;

alP/TV[R/U], ..., Pn/Tw|R/U], Rs /Uy if FV(a) = {Rs} for some

- 1 <s<n,
\a[Pl/Tl[E/QL DN Pm/Tm[E/QH Otherwise.
Lemma 2.17 can be proved in the same way as Lemma 2.14. O]

Note. By using Lemmas 2.13, 2.14, 2.16, and 2.17, it can be proved by induction
on « that

a. if B = Vxa, then § = Vya' for some formula o’ and some individual variable
y such that o/ = af[z/y| and y € fo(Vra); similarly if 8 = Jza;

b. if 8 = VoPa, then f = V2Qa’ for some formula o' and some predi-

cate variable ), which is of the same arity as P, such that o/ = «o[P/Q)] and
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Q ¢ FV(VYyPa); similarly if 8 = 35 Pa.

Next, we will give some definitions of substitutions which allow a wider range
of changed bound variables. In order to define these substitutions we proceed in
two stages. The first is a simultaneous definition and is only for replacing predicate
variables by predicate variables. In the second we extend this to substitutions by

abstraction terms.

Definition 2.18. Let e be a formula, x = xy, ..., x, be distinct individual vari-
ables, t = ty,...,t, be individual terms, P = P[' ..., P'™ be distinct predicate
variables, and R = RY',..., R be predicate variables.
Part A. We define a(xy/ty, ... &, /t,), which can be written as a(z/t), induc-
tively as follows.

i. If a is an atomic formula, then o(z/t) = az/,t].

ii. (8 A7) (/) = (Blaft) A~(/L).

Similarly for (B3\.y)(z/t) and (8 D 7)(z/1).

iii. (YyB)(z/t) =¥y (By/y 2 /1)),
where z* is the sublist of x. consisting of those x;’s which are in fo(Vy3), t* is
the corresponding sublist of t, and vy’ is any individual variable which is not in
(fo(vyB) = {z"H) U folt?).

Similarly for (JypB)(z/t).

. (V2QP)(z/t) = V2Q'(3(Q/Q")(z/1)),
where @' is any predicate variable with the same arity as QQ which is not in
FV(¥,Q0).

Similarly for (32Q06)(z/t).
Part B. We define a(Py/Ry,. .., Pn/Ry), which can be written as o(P/R), in-

ductively as follows.
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. If a is an atomic formula, then

(

Ry(ty, ... tr,) ifa=Pytr,....t,,) for somel < q<m and
a(P/R) = < some individual terms ty,... .,

Qo otherwise.

3
ii. (BAY)(E/R) = (B(B/R)A~(B/R)).
Simalarly for (6 vV )(£/R) and (0 > 7)(E/R).
iii. (VyPB)(P/R) = Vy'(bly/y')(P/R)),
where y' is any individual variable which is not in fu(Yys3).
Similarly for (3yB)(P/R).
w. (V2QB)(B/R) = VaQ' (B(Q/Q L7/E")),
where P* is the sublist of P consisting of those P;’s which are in FV (V,Q3), R*
is the corresponding sublist of R, and Q" is any predicate variable with the same
arity as Q which is not in (FV (¥oQp) — {P*}) U{R"}.

Similarly for (3,Q5)(P/R).

Definition 2.19. Let a be a formula, P = P/, ..., P be distinct predicate
variables, and. T =Tis..., Ty, where T, = \x'; . ,:thdi, 1.<4 < m, be abstrac-
tion terms. We define a(Py/T1, ..., Py/Ty), which can be written as a(P/T),
inductiwely as follows.

1. If « is an atomic formula, then

;

og(2i/t1, .2l [t,) if a=Pyts,... ty,) for some 1 < qg<m

a(P/T) = and some individual terms ty,. .., t,,,

Qo otherwise.
\

ii. (BAYNL/T) = (B(2/T) Ay(B/T)).

Similarly for (8 7)(P/T) and (8 > 7)(P/T).
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iii. (VyB) (/L) =Yy (B(y/y')(2/T)),
where y' is any individual variable which is not in fu(Vys3).

Similarly for (3yB)(P/T).

w. (V2QB)(2/T) = ¥2Q'(B(Q/Q, BT /T7)),
where P* is the sublist of P consisting of those P;’s which are in FV (¥2Q3), T*
is the corresponding sublist of T, and Q' is any predicate variable with the same
arity as Q which is not in (EV(¥2Qp) — {P*}) U FV(T™).

Similarly for (3:Q5)(2/T).

Note. From the above definitions, it is easy to see that

a. a(z/t) is not unique if @ contains bound variables;

b. a(P/T) is not unique if a contains bound variables or J; contains bound
variables for some 1 < i < m where P; € FV(«).

Notation.

a. The notations and abbreviations used for the substitutions defined prviously
will also be used for the substitutions in the above definitions. Also, we may write
u(z/t) instead of ulz/t] where u is an individual term.

b. When we write “o(z/t)” we mean “some formula which can be denoted by
a(z/t)”. Similarly for a(P/T).

c. We'use {a(z/t)} to denote the set of all formulae which can be denoted by
a(z/t). Similarly for {a(P/T)}.

Note. From the above definitions, it can be proved by induction on « that

a. a(z/t) and o(P/T) are formulae;

b. if ¢ is free for z in «, then ofz/,t] € {a(z/t)};

similarly if R is free for P in «, then o[P/,R] € {a(P/R)};

c. FV(a(z/t)) = FV(a)and fu(a(B/T)) = fu(e);

d. if z* is the sublist of x consisting of those x;’s which are in fv(a) and t* is
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the corresponding sublist of ¢, then fv(a(z/t)) = (fv(a) — {z*}) U fo(t*);
similarly for FV (a(P/T));
e. alz/t] is unique and it is one of the formulae in {«a(z/t)}; similarly for

alP/T].

The aim of the rest of this chapter is to show that [alz/t]] = [a(z/t)] =
{a(z/t)} and, similarly, [o[P/T]] = [a(P/T)] = {a(P/T)}. First we need the

following lemmas.

Lemma 2.20. Let « be a formula, x = x1,. .., 2y andy = y1, ..., y, be sequences
of distinct individual variables, andt =ty,...,t, andu = uq, ..., u, be individual
terms.

Then {a(z/t)(y/w)} ={alzr/ti(y/w), - swm/tm(y/w), yir [Wirs - - i /1) }
where Ys,, . ..,y 18 the sublist of y consisting of those y;’s which are in fv(a) —

{z}.

Lemma 2.21. Let « be a formula, x = x4, ..., %, be distinct individual variables,
t=t1,...,t, be individual terms, P = Py, ..., P, be distinct predicate variables,
and R = Ry,..., R, be predicate variables such that P; and R; are of the same

arity for all 1 < i < n.

Then {a(P/R)(z/t)} = {alz/t)(L/R)}.

Lemma 2.22. Let o be a formula, P = Py,..., P, and R = R{*,...,R™ be
sequences of distinct predicate variables, P' = P|,..., P' be predicate variables
such that P; and P} are of the same arity for all1 < j <m, and T =Ty,...,T,,
where T = Am{, e ,xijdj, 1 <5 <n, be abstraction terms.

Then {O‘(B/BI)(E/I)} = {a(Pl/U17 R Pm/UWURil/T%u s 7le/le)}7

where R;,, ..., R;, is the sublist of R consisting of those R;’s which are in F'V (a)—
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T, z'fP]{:quorsomelgqgn,
{P} and for all1 < j <m, U; =

P;  otherwise.
Proof. We will prove these three lemmas simultaneously by induction on «. The
cases where o is B Ay, BV, or # D 7 follow straightforwardly by the induction
hypothesis.

Proof of Lemma 2.20. This is clear from the definition if « is an atomic formula,

since all substitutions are simple. The remaining cases are as follows.

(i) o = V2.

*

Suppose z* = zj,...,1; and y* are the sublists of x and y, respectively,
consisting of all those variables which are in fv(a) and fo(a(z/t)), respectively,
and t* and u* are the corresponding sublists of £ and u, respectively.

Note that {y*} 2 (fv(e) ={z}) N {yt = {Wi- - Y }-

Let o* € {a(z/t)(y/u)} Then o =Waf(z/2, 2" /t*)( [#",y" Ju"), where
z" and 2" are individual variables such that 2" € (fv(Vzg) — {z*}) U fo(¢*) and
2 (ol 3/, 2 N~ (g DUFolw):s0 2 ¢ U fotts (/)0 U folus)
and 2" € fo(VzB) — ({2"} U{wi, - - 4 })-

By the induetion hypothesis, we have

o = VB ) s )
= V2B 2" my, [ty ) g [t (U5 /0), Yig iy 0 i i)
= (VeB)(zi/ti(y /u"), - xS 0"), Y i - - iy )
= a@/ti(y/u), .. xn/tu(y/w), i /iy, - Yiy /Ui,)-

Now, let a* € {a(z1/ti(y/w), -, T /tm(y/w), i, /iy, - - - Y, /0i,,) }- Then

o = vzlﬁ(z/zl7 le/tjl (g/u)a T 7le/tjz (g/@)’ yi1/ui1> T 7yik/uik)? where 2’ is
an individual variable such that 2’ ¢ (fo(Vz5) — ({z*} U{vi,, .-, ¥i })) U

U folty (/) U U fotu)
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Let z* be an individual variable such that z* & (fv(Vzp8) — {z*}) U fo(t*).

I
Since 2 ¢ (fo(¥20) ~ {2 U U S, (/)
2 g (fo(Ve*B(z/2", 2" /t")) — {y*}) U fo(u*). By the induction hypothesis,

o = VEB(2)2 g [ (g ), 2 (Y ) Yi [ s )
= VZB(z/2 [ty (Y ), - w0 i [y Yy )
= VIB(z/2,a )2 Y [u)
= (V2"B(=/=" 2"/E))(y/v)
= (V20)(z/t)(@/w) = alz/t)(y/uw).

We will prove that {a(z/t)(y/u)} € {a(xi/ti(y/u), ... m/tm(y/u))} and

omit the proof of the converse which easily follows by the induction hypothesis.

Let o* € {a(z/t)(y/w)}. Then a* =¥Q"6(Q/Q")(z/t)(Q'/Q")(y/u), where

Q' and Q" are predicate variables with the same arity as () such that Q' ¢

FV(v,QpF) and Q" E FV(V.Q'5(Q/Q)(z/1)), so Q" & FV (V2Q).

By the induction hypothesis,

o = VQ"B(Q/QN)(z/)(QYQ")(y/w)
= V2Q"B(Q/Q)(Q'/Q")(z/1)(y/u)
= %Q"B(Q/Q")(z/)(y/u)
= NQ"A(Q/Q") (w1 /ti(y/w), - T/t Y/ 1), yir iy - - Yir [ 1a,)
= (VoQB)(w1/ta(y/u), . T/t (Y /W), Yiy [ Wiy - Yir [0,

- O‘(xl/tl(g/ﬂ)7 ce 7xm/tm(g/@)ayi1/ui1’ s 7yzk/ulk)

Proof of Lemma 2.21.

(i) v is an atomic formula.



If @ = Py(uq, ..., u,) for some 1 < h < n and some individual terms uy, . .., ug,

where ¢ is the arity of P, then

a(B/B)(z/t) = Rn(wi, ... ug)(z/t)
= Ba(w(z/l), . ug(z/1))
= Pulua(z/t), .- uy(z/1))(B/R)

= Pulu, .. ug)(@/t)(B/R) = o(z/t)(L/R),

otherwise a(P/R)(z/t) = alz/t) = a(z/t)(P/R).

For the remaining cases, we will show that {a(P/R)(z/t)} C {a(z/t)(P/R)}
and omit the proof of the converse which can be proved similarly.

Let o” € {a(P/R)(z/t)}.

(ii) a = Vyp.

Then o = Vy"B(y/y)(P/R)(y /y",x*/t"), where z* is the sublist of z con-
sisting of those z;’s which are in fu(a(P/R)), t* is the corresponding sublist of ¢,

and y’ and y” are individual variables such that ¥’ € fo(Yy(3) and
y' & (fo(Vy'Bly/y ) (B/R)) —{z*}) U fo(t"), so y" & (fo(VyB) — {z"}) U fo(t).

By the induction hypothesis, we have

o = VY B/ 2/R)(Y [y, " /)
= VY8 Y Y 2T TN/ R)
= Vy'B(y/y" 2" /t")(P/R)
= (V'By/y",z"/t"))(P/R)
= (VyB)(z/t)(P/R) = a(z/t)(P/R).
(iii) o = ¥2Qp.
We have o = ¥,Q"B(Q/Q', P*/R*)(Q'/Q")(z/t), where P* is the sublist of

P consisting of those P;’s which are in fv(a), R* is the corresponding sublist of
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R, and @' and Q" are predicate variables with the same arity as ) such that
Q' ¢ (FV(V.QB) —{£"}) U{R"}, and Q" & FV(V.Q'3(Q/Q', P*/R")), so Q" ¢
(FV(V2QB(z/t)) —{£7}) U{R"}.

By the induction hypothesis, we have

o = VQ'8(Q/Q", PY/R)NQ'/Q")(z/t)
= VQ"8(Q/Q", P*/R")(z/t)
= VaQ"Ba/t)(Q/Q", PF/E")
= (V2QB(z/D))(2/R)
= (V2Q0)(z/t)(P/R) = o(z/t)(P/R).

Proof of Lemma 2.22.

1, it Pi= R, for some 1 < g <n,
Forall 1 <j<m,letU; =

P]f otherwise.

(i) v is an atomic formula.
Let o” € {a(2/P)(R/T)}.
If « = Py(ty,...,t,;) for some 1 < h < m and some individual terms ty,. .., 1%,

where g is the arity of P,, then

0" = Plltie o ty) (R/T)
Og (2 ft1;. . wl/ty) if Py = Ry for some 1 <q <,

Pi(ty,...,ty) otherwise,
< {Oé(Pl/Ul,...,Pm/Um)},
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otherwise o = a(R/T)

(

a(R,/T,) it FV(a) ={R,} for some 1 < g <mn,

Q otherwise,
\

;

{a(P /Uy, ..., Py /Up, Ry/Ty)} it FV () = {R,} for some 1 < g <mn,

\{oz(Pl/Ul, . - otherwise.

The converse can be proved similarly.

For the remaining cases, we will show that
{a(P/P)(R/T)} C {a(P/Uh,... ., Py]Uny R, /T;,, ..., R, /T;)} and omit the
proof of the converse which can be proved similarly.

Let a* € {a(P/P)(B/T)}.

(i) a = Vz0.

Then o* = V2"B(z/2")(P/PYZ" /") R/L), where 2’ and 2" are individual
variables such that 2’ & fu(Vz03) and 2" & fo(V2'8(z/2")(P/P")).

By the induction hypothesis,

of = V"B(z/)(B/P) (< [2")(R/T)
= V2"0(z/2)(2 /") (BB )R/T)
= V2"B(2/2")(P/P)(R/T)
= W' B(z/ 2" P UL Y, P U, R T . . R T
= (VzB)(P/Uy, ..., Pn/Upn, Ri,/Tys -, Ri, /Ty
= o(P/Uy,...,Pyn/Up, R,/ Ty, ..., R, /T},).
(i) a = V2Qp.
Then o = V,Q"8(Q/Q', P*/P")(Q'/Q", R /T"), where P* = P;,,..., Pj and

R* are the sublists of P and R, respectively, consisting of those variables which

are in FV(«) and FV(a(P/P')), respectively, P” and T* are the corresponding
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sublists of P' and T, respectively, and Q" and )" are predicate variables with the
same arity as @ such that Q' & (FV (V.QB3) — {P*}) U{P"} and
Q" ¢ (FV(Y.Q'8(Q/Q', P*/P")) —{R"}) U FV(TL).
By the induction hypothesis,
a” = Q"8(Q/Q, PT/P"NQ/Q" . B/T7)
= V2Q"BQ[Q" P; /Uy, . By JUs, Ri /Ty, .. Ri /Ty,
= (M2QB)(PfUys ..., Py /U, Riy /T3y, Ry, /T5)

= a(PJUy". 4 Po)Uns Ris/Tirs . . RiJT5,).

m
Lemma 2.23. Let « be a formula, x = x4, ..., %, be distinct individual variables,
t=ty,...,tn be individual terms, P = P;*, ..., P be distinct predicate variables,

and T =Ty,..., T, where T; = Mk, . .. ,yf,icsi, 1 <i <n, be abstraction terms.
Then {a(2/T)(z/t)} = {a(z/t)(2/T)}.

Proof. The proof is similar to the proof of Lemma 2.21 except for the following
case.

a = Py(uy,...5u, ) forsome 1 <. < nand some individual terms wuy, ..., u,,.

We will show that {«(P/T)(z/t)} C {a(z/t)(P/T)} and omit the proof of the

converse which can be proved similarly. Let o* € {«(P/T)(x/t)}-
Then a* = Pyluy,...,u,)(L2/T)(z/t)
= 511(y(11/u1’ s >ygq/u7’q)(£/t)
= Oq(yi/w(z/t), ... y5 [ur,(z/1)) (by Lemma 2.20)
= P(wi(z/t),. .. u,(z/t)(P/T)

= Bylur, - un,)(2/t)(P/T) = a(z/t)(P/T).



Lemma 2.24. Let o be a formula, P = P{*,...,P'™ and R = Rlll,...
be sequences of distinct predicate variables, and T = Ti,...,T,,, where T; =
ety o2l b, 1 < i < m, and U = Uy,...,U,, where U; = )\y{,...,yljjaj,
1 <7 <m, be abstraction terms. Then

{AB/T)(B/U)} = {d P/ TBJU). - Paf T BU), By [Usys o, By /Uy )}
where R;,, ..., R

{£}.

i 05 the sublist of R consisting of those R;’s which are in F'V (o) —

Proof. The proof is similar to the proof of Lemma 2.22 except for the following

case.

a = Py(ty,...,t,,) for some 1 < ¢ < m and some individual terms ¢y,... %, :
As usual we will show that

{a(P/T)(R/U)} C {a(P )T (RIU), ..., Pyn/Tn(R/U))} and omit the proof of

the converse.

Let o* € {a(R/T)(R/U)}.
Then o = Py(t1, ...t )(P/T)(R/U)
= Sy(al/ty, ..., 20 /t, )(R/U)
= G (BIU) (i /t,) L wk J) (by Lemma 2.23)
= Py(ts,...,t,)(Py/T,(R/U))

=" o(P/TI(B/U), ", P/ Tr(R/T)).

m
Lemma 2.25. Let o and o be formulae, x = x1,...,x,, be distinct individual
variables, t = ty,...,ty, be individual terms, P = P{*,... P'™ be distinct predicate
variables, and T =T, ..., Ty, where T, = \zi, ..., zﬁiéi, 1 <i <n, be abstraction

terms.

Ifa=d, then {a(z/t)} = {/(z/D)} and {«(E/T)} = {/(B/T)}.
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Lemma 2.26. Let o, (3, and v be formulae.

a. If B and v are in {a(z/t)}, where x = 1,...,x, are distinct individual
variables and t = tq, ..., t, are individual terms, then 3 = 7.

b. If B and ~y are in {a(P/R)}, where P = P, ..., P'™ are distinct predicate

variables and R = Ry, ..., R'™ are predicate variables, then [ = .

Proof. We will prove both lemmas simultaneously by induction on a. The cases
where « is ag A an, a; V.as, or oy D ap follow straightforwardly by the induction
hypothesis.

Proof of Lemma 2.25. Suppose a = .

This is trivial if o = /. Suppose there exists a sequence of formulae o =
g, aq, ..., = ', k > 1, such that o is obtained from «;_; by a single legitimate
change of bound variable for all 1 <7 < k.

For the remaining cases, we proceed by induction on k. We will prove only
the case k = 1 since the case k& > 1 follows easily by the subsidiary induction
hypothesis and the case k = 1.

(i) oo = Vyp.

Suppose z* is the sublist of & consisting of those x;’s which are in fo(a)
(= fo(e)).

Case 1. o/ = Vy3' where B = (3.

{alz/t)} C {a/(z/t)}:

Let o* € {a(z/t)}. Then o* = Vy'B(y/y,xz*/t*) for some individual variable
y' such that y' & (fo(Vys) —{z"}) U fo(t").

By the main induction hypothesis, we have
o =Yy By/y z7 /L) =y B (y/y, a/t) = (Vyb')(z/t) = o/ (z/1).

Similarly, we can prove that {o/(z/t)} C {a(z/1)}.

{a(P/T)} C{e/(P/T)}:
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Let o* € {a(P/T)}. Then o* =Vy'5(y/y')(P/T) for some individual variable

y' such that y' & fo(Yys).

By the main induction hypothesis, we have

o = Vy'Blyly)(P/T)
= V'3 (y/y')(B/T)

= (WA )(B2/T) =/ (2/T).

Similarly, we can prove that {o/(2/T)} C {a(P/T)}.
Case 2. o = Vzf[y/,z], where z is an individual variable which is free for y

and does not occur free in (3.

{alz/t)}y € {(z/D)}:
Let a* € {a(z/t)}. Then o = Yy'((y/y’, x*/t*) for some individual variable

y' such that y' & (fo(VyB) — {z"}) U fo(t?).

Since fBly/rz] € {B(y/2)}, by the main induction hypothesis, for any formula
B in {B(y/2)}, B"=Ply/r2] and so {F'(z/y', z/t)} = {Bly/+2|(2/y', z/t)}. Hence

o = Vy'By/y,z"/t")
= W'y )=y /L) (by Lemma 2.20)
= Vy'Bly/rz](z/y, z" /)
= (VzBly/r2])(2/t) = o (z/1).
{o/(z/t)} € {alz/t)}:
Let a* € {o/(z/t)}. Then o* = Vy'Bly/,2)(z/y,z"/t*) for some individual

variable ¢’ such that v' & (fv(Vz0ly/rz]) —{z*}) U fu(t*). Then
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o = VyBly/ A=)y 2/t
= VY'By/2)(z/y 2" /L")
= Y BW/y,z"/t) (by Lemma 2.20)
= (Vyp)(z/t) = a(z/1):
{a(P/T)} C{/(P/T)}:
Let a* € {a(P/T)}. Thena* = vy 3(y/y)(P/T) for some individual variable

y' such that ¢ & fo(Vyf3).

Similar to the above proof, by the main induction hypothesis,

{Bly/r2](z/y (2/T)} = {F'(2/y')(L/L)} for any formula 5" in {5(y/z)}. Hence
o = Vy'By/y)(B/T)
= V'B(y/2) (/¥ ) (2/T) (by Lemma 2.20)
= Vy'Bly/rz](2/y')(2/T)
= (V2Bly/»2])(2/T) = o/ (B/T).
{/(P/T)} € {a(P/T)}:
Let o* € {a/(B/T)}/ Then a* = ¥/ Blyl,2)C/¢ )(PJT) for some individual
variable 3 such that y' & fv(Vz8[y/yz]). Then
o = Vy'Bly/ 2=y (2/T)
= Vy'By/2)(z/y)(L/T)
= Vy'B8y/y)(L2/T) (by Lemma 2.20)
= (VyB)(2/T) = a(P/T).
(i) @ = v2Qp.
This case can be proved in the same way as the above case.

Proof of Lemma 2.26. We will prove (a) and (b) simultaneously.
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a: Suppose  and v are in {«(z/t)}, where z = xq,...,x, are distinct indi-
vidual variables and t = t4,...,t, are individual terms.

(i) v is an atomic formula.

Then § = alz/t] = 7.

(i) a = Vyo.

Suppose z* is the sublist of & consisting of those x;’s which are in fv(«) and
t* is the corresponding sublist of ¢.

Then 6 = Vy'o’ and v = Vy"¢” for some individual variables 3’ and y” which
are not in (fv(Vyo)—{z*})Ufo(t") and some formulae ¢’ and o” in {o(y/y/, 2*/t*)}
and {o(y/y",x*/t*)}, respectively.

Let y* be an individual variable which does not oceur in ¢’ or ¢”, so y* is free
for 3/ and y” in ¢’ and ¢”, respectively.

Then 8 = Vy'o' = Vy*o'[y' /.y and v = Vy"o" = Vy*o"[y" /,y*]. By Note on

page 24 and Lemma 2.20,

o)yl € {o'(y'/y")}
C {oly/y,z*/t) Y [y}
= Holy/y 2t 1)}

Similarly, o”[v"/.y*] € {o(y/y*sa*/t*)}.- Hence, by the induction. hypothesis,
o'ly'/wyt] = d"[y"/+y*]. Thus B = 7.

(ili) o = VaQo.

Then 8 = VoQ'0’ and v = VoQ"0” for some predicate variables @)’ and Q"
which are of the same arity as () and are not in F'V(V,Qo) and some formulae o’
and " in {o(Q/Q")(z/t)} and {0(Q/Q")(z/t)}, respectively.

Let Q* be a predicate variable with the same arity as () which does not occur

in ¢’ or ¢’. Then
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o'lQ'/:Q7] € {(Q/Q")}
C {o(Q/Q)(z/)(Q'/Q")}
= {0(Q/Q)Q/Q")(z/t)} (by Lemma 2.21)
= {o(Q/Q")(z/t)}. (by Lemma 2.22)

Similarly, o"[Q"/, Q" € {o(Q /@) (/1))

Then ¢'|Q)'/,Q*] € {o1(x/t)} and ¢”"[Q"/,.Q*] € {o2(z/t)} for some formulae
o1 and oy in {0(Q/Q*)}. By the induction hypothesis, we have o1 = 0, so
{o1(z/t)} = {o2(z/t)}, and hence ¢'|Q/, Q] = ¢”[Q"/,Q*]. Thus f = V@0’ =
Qo' 1Q Q'] = V@ 0 1Q1 Q7 = Va@lo! = o

b: The proof is similar to (a) except for the following case.
a is an atomic formula:

If o = Py(ty,. .., t,,) for some 1 < g < m and some individual terms 1, ..., ¢, ,

then 3 = Ry(t1,...ty,) = v, otherwise § = a = 7. ]

Lemma 2.27. Let § and v be formulae, P = P",..., P'™ be distinct predicate
variables and T =Ty, .. Ty, where Ty = A\t . . . ,m;i@, 1 <4 < m, be abstraction
terms

If Band v are in {a(P/T)}, then 5 = ~.

Proof. Suppose 8 and v are in {a(P/T)}.

The proof is similar to the proof of Lemma 2.26 except the following case.
« is an atomic formula:

If o = Py(ty,. .., t,,) for some 1 < ¢ < m and some individual terms 1, ..., t,,,
then 3 and v are in {d,(x{/t1,..., 2% /t,,)} and hence 3 = v by Lemma 2.26,

otherwise § = a = 7. O
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Lemma 2.28. For any formulae o and (3,

a. if B = a* for some o in {a(z/t)}, where x = xq,...,2, are distinct
individual variables and t = t, ..., t, are individual terms, then § € {a(z/t)};

b. if B = a* for some o* in {a(P/T)}, where P = P, ..., P are distinct
predicate variables and T =Ty, ..., Ty,, where T, = \z', . .. ,333“51‘; 1<i<m, are

abstraction terms, then 3 € {a(P/T)}.

Proof. Let o and 3 be formulae. We proceed by induction on «a.

a: Suppose = o for some o in {a(z/t)}, where & = x4, ..., z, are distinct
individual variables and t = %1, ..., t, are individual terms.

It is trivial if there is no change of bound variable. Suppose there exists a
sequence of formulae o* = agp,aq,...,ap = B, kK > 1, such that for all 1 <i < k
«; is obtained from «;_; by a single legitimate change of bound variable.

By our assumption, « is not atomic. The cases where « is oy A g, a1 V aig, o1
a1 D as follow straightforwardly by the induction hypothesis.

For the remaining cases, we proceed by induction on k. As usual, we will prove
only the case k = 1 since the other case follows easily by the subsidiary induction
hypothesis.

(i) oo =Vy7.

Suppose z* is the sublist of z consisting of those z;’s which are in fv(«) and
t* is the corresponding sublist of t.

We have a* = Vy'v* for some individual variable 3’ and some formula ~* such
that y' & (fv(Vyy) —{z*}) U fo(t’) and v* € {y(y/y', 2" /t")}.

Case 1. § = Vy'y where ' = v*.

By the main induction hypothesis, v € {y(y/y,2*/t*)}. Hence § = Vy'y =
Vy'y(y/y, 2t t7) = (Vyv)(z/t) = alz/t).

Case 2. § = Vzv*[y//,z] where z is an individual variable which is free for 3/
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and does not occur free in y*.
Since v* € {y(y/y',z"/t")} and = & fo(y"), 2 & (fu(Vyy) —{z"}) U fo(t").
Hence 8 =Vzv"[y'/r2] = Vay"(y'/2)
= Vey(y/y.z/t)(y /)
= Vzv(y/z2/t) (by Lemma 2.20)
= (Vyy)(z/t) = a(z/t).

(ii) a = V2Q7.

We have o = VoQ'v* for some predicate variable Q" which is of the same arity
as @ and is not in FV (VQ~) and some formula v* in {7y(Q/Q")(z/t)}.

Case 1. § = V,Q'y where v/ =~*.

By the main induction hypothesis, 7' € {y(Q/Q")(z/t)}. Hence f = VoQ'y =
V2Q(Q/Q') (z/t) = (V2Q7)(@/t) = alz/1).

Case 2. = VYoRy*[Q'/, R] where R is a predicate variable with the same arity

as Q" which is free for )" and does not occur free in .

Then 8 = VoRY*[Q'/+R] = Y2Ry*(Q'/R)

= V2Ry(Q/Q")(z/)(Q/R)
= WaRy(Q/Q)NQ/R)(z/1) (by Lemma 2.21)
= Valty(Q/ R)(x/t) (by, Lemma 2.22)

= (V2Q7)(z/t) = a(z/1).

b: Suppose 5 = a* for some o* in {a(P/T)}, where P = P, ..., P are
distinct predicate variables and T = Ty,...,T,,, where T; = Az},... 2} 6;, 1 <
1 < m, are abstraction terms.

By using Lemmas 2.20 and 2.23, (b) can be proved in the same way as (a)
except for the following case.

a = Py(ty,...,ty,,) for some 1 < ¢ < m and some individual terms ty,...,%,,:
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Then 8 = o where o € {d,(z{/t1,..., 2% _/ta,)}. By (a),

B e {04(al/tr, . sl [tn,)} = {a(B/T)}. =

Corollary 2.29. For any formula o,

a. if x = x1,...,x, are distinct individual variables and t = t{,...,t, are
individual terms, then [a[z/t]] = [a(z/t)] = {a(x/t)};

b. if P = P, ..., P are distinct predicate variables and T = Ti,...,T,,,
where T; = Axi, ..., xl.0;, L< i < m, are abstraction terms, then [a[P/T]] =

[(2/T)] = {a(L/T) )

Proof. 1t can be easily proved by induction on « that afz/t] € {a(z/t)} and
a[P/T) € {a(P/T)}. Then (a) follows by Lemmas 2.26 and 2.28 and (b) follows

by Lemmas 2.27 and 2.28. [

By extending the work in [3]; we have introduced our second-order language.
We have defined substitutions for second-order formulae and have proved some

lemmas that establish basic properties and will be used in the following chapters.



CHAPTER III

CURRY-HOWARD TERMS

We have dealt with the technicalities of substitutions in the previous chapter, now

we can define Curry-Howard terms.

3.1 The formal calculus

We take NJ to be Gentzen’s intuitionistic natural deduction system given by
Prawitz (see [12]). We will extend NJ to a second-order system, denoted by N.J,.

The rules of N.J; include the rules of NJ, extended to second-order formulae,
which are as follows.

e Atomic deductions

For every formula «, « is a deduction (with uncancelled premise «).

e Introduction and elimination rules for the various connectives

(A Intro)

S
>
=@

(A Elim)

al alp
(/\1 Ehm)

(/\2 Ehm)
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(D Intro)

(D Elim)

(V Intro)

(V Elim)

afz/t)

R ﬁﬁ“‘iﬂu'awﬂmﬂﬁ
ammnmum’mmaﬂ

=Y 5(\/1 Elim) .Y, B(VQ Elim)
(v Elim)
o] 1A]
avpg v v
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(3 Intro)
a(x/t)
Jra
(3 Elim)
o]
dxa . v
v

provided z is not free in 4 nor in any uncancelled premise of the given deduction
of .

(L Elim)
e
a

Notation. [o] in a proof means that none or some or all occurrences of premise
« may be cancelled. We also use [a] for the equivalence class of « but the context

makes clear the intention.

We now add rules for second-order quantifiers Vo and dy as follows.

(Vo Intro)

(67

VQPCK

provided P is not free in any uncancelled premise.

VQPTLO[
a(P/T)
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where T' = A\zq,...,x,[ is an abstraction term.
(d2 Intro)
a(P/T)
HQPO{
[a]
JPa v
v

provided P is not free in 7 nor in any uncancelled premise of the given deduction

of v.

3.2 Basic properties of Curry-Howard terms

First we will give rules (taken from [3]) for the formation of the original Curry-
Howard terms which correspond to the rules of the natural deduction system in
first-order logic.
Note. Sometimes we write “C-H term”or just “term”instead of “Curry-Howard
term”.
Rules for the formation of the original Curry-Howard terms:

(Atomic) For each formula «, the term variables X*, Y, Z%, ... are terms of
type [a].

(A Intro) If F™ and GP are terms of types [a] and [3], respectively, then
(F*,GP) is a term of type [a A 3].

(A Elim) If Fo is a term of type [a A ], then 7 F* and 1 F* are terms

of types [a] and [3], respectively.
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(D Intro) If X¢ is a term variable of type [a] and F? is a term of type [(],
then AX® F”? is a term of type [a D 3].

Note. All occurrences of X', where [o/] = [a], in this term are bound.

(D Elim) If F*2% and G are terms of types [« D 3] and [o/], respectively,
where [o/] = [a], then F*2#(G) is a term of type [3].

(V Intro) If F'* is a term of type [a] and z is an individual variable which
does not occur free in the type superscript of any free term variable of F'“, then
Az.F* is a term of type [Vzal.

Note. All occurrences of z in this term are bound.

(V Elim) If F¥* is a term of type [Vaza] and ¢ is an individual term, then
FY2(t) is a term of type [a(z/t)].

(V Intro) If F° is a term of type [a] and (3 is a formula, then (u; F*)*V is a
term of type [V 3]; if F” is a term of type [3] and « is a formula, then (g F'?)*V?
is a term of type [V [].

(v Elim) If E7, G7, and H*'? are terms of types [y], [1/], and [a V f],
respectively, where [y] = [7/], and X and Y? are term variables of types [a/] and
[3'], respectively, where [a/] = [a] and [3'] = [], then &(X¥ .F7, Y .GV, HoVP)
is a term of type [7].

Note. All occurrences of X', where [o] = [@/], in X®.F" and all occurrences
of Y#' where [3"]'= [#], in Y#".G” are bound.

(3 Intro) If /Y is a term of type [a(x/t)], then I(t, F*@/1)37e ig a term
of type [Fza].

(3 Elim) If F7 is a term of type [y], X is a term variable of type [a], z is
an individual variable which does not occur free in v or in the type superscript
of any free term variable of F7 except X%, and G is a term of type [a*], where

[*] = [Fza], then ST(x.X*.F7,G*") is a term of type [7].
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Note. All occurrences of z in #.X* F" and all occurrences of X®', where [o/] =
[a], in X*.F7 are bound.

(L Elim) If F* is a term of type [ 1] and « is a formula, then F*(a) is a term

of type [a].

The new Curry-Howard terms include the terms of the above forms with the
extension of first-order formulae to second-order formulae. We also add term
formation rules for second-order quantifiers as follows.

(V2 Intro) If F'* is a term of type [a] and P is a predicate variable which does
not occur free in the type superscript of any free term variable of F'*, then AP.F'*
is a term of type [VoPa].

Note. All occurrences of P in this term are bound.

(Vo Elim) If F"2P is a term of type [VoPa] and T = Azy,...,2,0 is an
abstraction term, where n is the arity of P, then F"27%(T) is a term of type
[a(P/T).

(3, Intro) If FU/T) is a term of type [a(P/T)], then I(T, FF/T))F2Pa ig 5
term of type [JoPa].

(32 Elim) If F7 is a term of type [y], X“ is.a term variable of type [a], P
is a predicate variable which does not occur free in v or in the type superscript
of any free term variable of F7 except X¢, and G is a term of type [a*], where
[a*] = [FoPa], then ST(P.X*.F7,G*) is a term of type [v].

Note. All occurrences of P in P.X*F7 and all occurrences of X, where

[&/] = [a], in X*.F7 are bound.

Notes.

a. We may omit the type superscript of a Curry-Howard term when we do not
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want to state the type or it it is clear in the context of which type it is. When we
write “F*”we mean “[«] is the type of F*”.

b. When we say “X“ is the first term variable of type [¢]... "we mean “X*
is the first term variable of type [a] in some fixed ordering ... ".

c. We may write each type superscript as any formula in the same equivalence
class since the type of every Curry-Howard term depends on the types (not on the
formulae which are the type superscripts) of terms from which it is constructed.

We will prove the following cases and omit the others which can be proved easily.

Proof.

(V Elim) Suppose Ff" and F{* are terms where [3;] = [Vza] = [3.]. By Note
on page 21, 3; = Vy;a; for some formula a; and some individual variable y; such
that oy = afz/y;], and y; € fo(Vra) for all ¢ = 1,2. Let t be an individual
term. Thus, for all i = 1,2, F7(t) is a term of type [a;(y:/t)] = [ou[yi/t] =
lafx/yillyi/t]] = [a]x/t]] = [a(x/t)] by Lemmas 2.13 and 2.14.

By using Lemmas 2.16 and 2.17, the case (V5 Elim) can be proved similarly.

(3 Intro) Suppose FI* and FJ? are terms where [81] = [a(z/t)] = [3.]. By
Lemma 2.28, G, € {a(x/t)} for all i = 1,2. Hence I(t, F*)3 and I(t, FJ?)3
are terms of type [Jzal.

Similarly for (35 Intro). O

Definition 3.2.1. A context is an expression which is of one of the following

forms: x.F®, P.F*, X8 F* 2. XP.F®, and P.X° F.

Note. An occurrence of a term variable X in a Curry-Howard term is bound if
it occurs in a context of the form X* F? . X* F8 or P.X“ FP where a = o/,

otherwise it is free, and we say the binding of X® has scope F”°.
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Definition 3.2.2. The set of free individual variables of a Curry-Howard
term F*, denoted by fo(F®), is defined inductively as follows.

i. fo(X9) = fo(a).

ii. fo(GP,HY) = fu(GP)U fu(HY).

Similarly for fu(m,GPN), i = 1,2, and fo(GP>*(HP)).

iii. fo((mG”)PV7) = fo(GP)U fu(e).

Similarly for fu((puaGP)1Y7).

w. fu(G7P(t)) = fu(@¥*8) U fu(t).

Similarly for fu(I(t,GP#/M)).

v. fo(GPU(T)) = fu(G™P).

Similarly for fu(I(T, GPF/T)).

vi. fu(GE(@)) = fo(GH) U fula).

vii. fo(AXP.G7) = fu(XP.G7), where fu(X°.G7) = fu(B) U fo(GY).

viii. fo(®(XP.GY Y. H® KPY)) = fo(XP.G*) U fu(Y7.H*) U fo(K°7).

iz. fu(\z.G%) = fo(z.GP), where fo(z.GP) = fo(G?) — {z}.

2. fo(AP.GP) = fo(P.GP), where fo(P.GP) = fv(GP).

zi. fo(ST(z.XP.G* H¥P)) = fu(x. XP.G*) U fu(H¥™?), where
fo(z.XP.G%) = fu(XP.G%) — {x}.

zii. fo(ST(P.XP.G, H2P8)) =fu(P.XP.GYU fo(H=P?), where

fo(P.XP.GY) = fu(XP.Gv).

Definition 3.2.3. The set of free predicate variables of a Curry-Howard term
Fe, denoted by FV(F®), is defined inductively as follows.

i. FV(X®) = FV(a).

ii. FV(GP, H") = FV(G®) U FV(H").

Similarly for FV (m;GPNY), i = 1,2, and FV(G#2(HP)).

iii. FV((1G?)PV7) = FV(G%) U FV (7).
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Similarly for FV ((usGP)7VP).

w. FV(G"A(t)) = FV(G"P).

Similarly for FV (I1(t, GP@/M)).

v. FV(G™P5(T)) = FV(G™PP) U FV(T).

Similarly for FV (I(T, GFFIT)Y).

vi. FV(G*()) = FV(G*) U FV(a).

vii. FV(AXP.G")y = FV(XP.G"), where FV(X?.G") = FV(3) U FV(G).

viii. FV(®(XP.GY Y HY KPY7))

= FV(X2%.GY) U EV(Y7.H*) U EV(K).

iv. FV(\2.GP) = FV(x.G"), where FV(2.GP) = FV(GP).

z. FV(AP.G?) = FV(P.G®), where FV (P.G?) = FV(G®) — {P}.

zi. FV(ST(2.X%.G* H*P)) = FV(2.X’.G*) U FV(H>*P), where
FV(2.X%.G*) = FV(X?.G*).

zii. FV(ST(P.X%.Ge, H?2%)) = FV(P.X5.G*) U EV (H?"?), where

FV(P.X?.G*) = FV(XP.G%) — {P}.

Notation. We use fv(K) to denote O fu(K;), where K = K;,...,K, is a
sequence of C-H terms; similarly for F Vlzlg ).
Notes.

a.  All occurrences of @ (respectively P) in . F? and 2. X~ ¥ (respectively
P.FP and P.X® F®) are bound and we say the binding of x (respectively P) has
scope F? and X .FP, respectively.

b. It can be proved by induction on F'® that

(b1) fu(a) C fo(F%) and FV(a) C FV(F%),
(b2) if X” is a free term variable of F* and = € fv(3) (respectively P €

FV(f3)), then each free occurrence of = (respectively P) in the free occurrences of

X7 is also free in F©.
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Definition 3.2.4. Term variables X® and X' are equivalent, denoted by X® =
X ifa=d.
Notation. Let

a. F*[xz/,t] (respectively F*[P/,R]) denote the simple simultaneous replace-
ments of all free occurrences of (distinct) individual variables z = z1,...,x, (re-
spectively (distinct) predicate variables P = P/ ..., P"*) in a C-H term F* by
individual terms t = ¢y, . ..,t, (respectively predicate variables R = R{"™, ... R™)
respectively;

b. F*[X/.K] denote the simple simultaneous replacements of all free oc-
currences of term variables which are equivalent to (inequivalent) term variables
X = Xfl,...,XfL" in a C-H term F* by C-H terms K = Kfi,...,Kga, respec-

tively, where §; = 0} for all 1 < i < n.

Definition 3.2.5. If x = xy,...,a, are distinct individual variables (respectively
P =P ..., P'™ are distinct predicate variables) and t = t1, ..., t, are individual
terms (respectively T.= T4, ..., T,,, where T; = Ay{,...,yzjéj, 1 <5< m, are
abstraction terms), we say t is free for x (respectively T is free for P) in an
expression E of the form F% or XP.E*, if no free occurrence of any z;, 1 <i < n,
(respectively P;, 1 < j < m) in E is within the scope of a bound variable y
(respectively Q)) of E where y-oceurs in t;(respectively @ occurs free in T} ).

Let F* be a C-H term, X = Xfl,...,Xfi" be inequivalent term wvariables,
K = Kfi,...,Kffl be C-H terms, where 6; = 6. for all 1 < i < n. We say K
1s free for X in F® if no free occurrence of any term variable equivalent to Xfi,

1 <i<mn, in F* is within the scope of a bound term variable Y® of F*, where

Y? is equivalent to some free term variable of Kfi.

For substitution purposes, we want to treat equivalent term variables as the

same. Moreover, substitutions for Curry-Howard terms must satisfy all the basic



o1

properties of substitutions including the property that every free variable should
not become bound after each substitution.

Since it could happen that « and § are inequivalent formulae but afz/t] =
Bz /t] for some individual variable z and individual term ¢ (e.g. o = P(z) and
B = P(t) where z & fu(t)), so X* # X7 but X/t = XPl/1l Consider the term
AX® XP?. In this term X# is free. If we simply substitute ¢ for free occurrences of
z in AX® X7, this term becomes X *=/4 X8/ ~Since X/l = XA/t X Ble/t
in the new term is bound. We do not want this to happen. In order to overcome
this problem, we need to change the bound term variable X to some other term
variable which will not cause the problem before substituting ¢ for x.

We first define replaceability which is needed in defining legitimate changes of

bound wvariables later.

Definition 3.2.6. Replaceabzlity of distinct individual variables x = x4, ...,
T, by individual terms t = t1,....t, in a C-H term F% is defined inductively as
follows.

1. If F* 1s a term variable, then x is replaceable by t in F'*.

i. z is replaceable by t in (GP, HY) if z is replaceable byt in G° and H".

Similarly for 7;G°Y, 1;GP, 1 =1,2, and G*>*(HP).

i, x is replaceable byt in- G¥YP (u) if @ is replaceable by t in G7YE.

Similarly for I(u, GPW/W), G¥Q8(U), I(U, GPR/Y), and G*(a).

. x is replaceable by t in NXP.GY if x is replaceable by t in XP.G7 i.e.
x is replaceable by t in GY and XP.G7 has no free term wvariable X° such that
olz/t] = Blz/t].

v. x is replaceable by t in ©(XP.G*, Y. H* KPV) if z is replaceable by t in
XB.Ge, Y. H®, and K5,

vi. x is replaceable by t in A\Q.GP if x is replaceable by t in G°.
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vii. x is replaceable by t in ST(Q.XP.GY H?29P) if z is replaceable by t in
XP.G* and H?9°,

vidi. x is replaceable by t in \y.G” if z* is replaceable by t* in GP, where z*
is the sublist of x consisting of those x;’s which are in fv(\y.G®) and t* is the
corresponding sublist of t.

iz. x is replaceable by t in ST (y. XP.G*, H¥P) if x is replaceable by t in HYP
and x* is replaceable by t* in XP .G, where x* is the sublist of x consisting of
those x;’s which are in fo(y. X”.GY) and t* is the corresponding sublist of t.

Replaceability of distinct predicate variables P = P/, ..., P'™ by abstrac-
tion terms T =Ty, ..., T;,, where T = )\y{, A% ,yﬁjéj, 1<j7<m, ina C-H term

F< is defined similarly.

Definition 3.2.7. A replacement of an occurrence of a context x.F® (respectively
r. X8 F®) in a C-H term by o' . F*[x/.2] (respectively ' X @/l Fe(z/ x']) is
called a legitimate change of bound individual variable if x' is an individual
variable such that x is replaceable by ', x' is free for x, and =’ does not occur free
in F (respectively X° . F<).

A replacement of an occurrence of .a context P.F (respectively P.XP.F®) in
a C-H term by P'.F*[P/,.P'] (respectively P'.XPPI-PI Fo[P/ P']), where P’ is a
predicate ‘wariable with- the same arity as P, 'is called a legitimate change of
bound predicate variable if P is replaceable by P', P’ is free for P, and P’
does not occur free in F® (respectively XP.F%).

A replacement of a context XP.F (respectively . X°.F* and P.XP.F®) in a
C-H term by Y F[XP/,,.Y®] (respectively 2.Y? . F*[X?/,,.Y?| and
PYP Fe[XP/,YP)), where Y? is a term variable such that 3 = [, is called a
legitimate change of bound term variable if Y is free for X? in F* and

s not equivalent to any free term variable of F'*.
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Definition 3.2.8. If there exists a sequence of C-H terms F = Fy, Fy,..., F, =
F', n > 1, such that for each 1 < i < n, F; is obtained from F;_, either by
replacing some occurrences of term variables by equivalent term variables or by a
legitimate change of bound individual variable, bound predicate variable, or bound
term variable, we say F is equivalent to F', denoted by F' = F".

This relation is defined simalarly for contexts.

Note. It can be proved by induction on F' that if F' = F”, then
a. fu(F) = fu(F"), FV(F) = FV(F"), and every free term variable of F' is
equivalent to some free term variable of F’ and vice versa;

b. F and F’ are of the same type.
Lemma 3.2.9. = is an equivalence relation.

Proof. 1t is easy to see that = is reflexive and transitive. It remains to show that
= is symmetric.

First we need the following claim.
Claim. For any individual variables x and 2/, if = is replaceable by z’ in a term
F% then ' is replaceable by x in F'*[z/,2'].
Proof of the claim. We will prove by induction on F¢.

()£ is‘a term-variable.

Then F*[z/,2] is also a term variable and hence 2’ is replaceable by x in
Fez/.2'].

(ii) F* = (GP, H").

This case follows by the induction hypothesis.

Similarly for mGNY, 1,G?, i = 1,2, GP2*(HP), G (u) |, I(u, GPW/W),
G"Q8(U), I(U,GPRUN AQ.G?, and G* ().

(iii) F* = A\XP.G.
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Then F°[z/,2'] = AXP2/+'] GV[x/,2]. We have to show that 2’ is replaceable
by x in XA/l Gz /2]

By the induction hypothesis, 2’ is replaceable by = in G7[z/,2']. Suppose for
a contradiction that X?#/+*'1 G7[z/,.a/] has a free occurrence of a term variable
X7 such that o[2'/x] = Bla/,a|[z"/z]. Since X occurs free in G7[z/,2'] and
x ¢ fv(G7[x/.2]), by Note (b2) on page 49, * ¢ fv(c). Hence, by Lemmas
2.13 and 2.14, 0 = ol2'/z]jx/a'] = pla/.2'|[«'/x][x/x'] = Blz/.2']. This is a
contradiction. Thus 2’ is replaceable by = in F*[x/,2'].

(iv) F* = (XP.G*, Y7 HY KP').

Then F®[z/,2'] = @(XO# 2. .Gz /'), Y2 g2 /,2'], KPVV[2/,2']). Sim-
ilar to the above case, we can prove that " is replaceable by z in X2/ Go[z /']
and Y /-1 o[z /,2']. By the induction hypothesis, 2’ is replaceable by z in
KPPz /,a']. Hence 2’ is replaceable by x in F[z/,.2'].

Similarly for ST(Q.X?.G*, H329°).

(v) F* = \y.GP.

If © =y, then F%x/,2'| = F¥ so 2" & fo(F*z/.2']) since 2’ ¢ fu(F*) and
hence 2’ is replaceable by x in F*[z/.z']. Suppose z # y. Then F°[z/.2'] =
\y.GPlx/,2']. By the induction hypothesis, 2’ is replaceable by x in G*[z/,2'] and
hence in F*[z/,'].

(vi) F = ST(y.XP.Go H¥5).

By the induction hypothesis, z’ is replaceable by x in H*/[z/,2'].

If z =y, then Fo[z/,2'] = ST(y.XP.G* H¥P[x/,2']) and 2’ & fo(y.XP.G%)
since 2’ € fu(F%), hence 2’ is replaceable by z in y.X?.G* and so in F®[z/,2'].

Suppose x # y. Then F[z/.2'] = ST (y.(X?.G*)[x/.2'], H¥P|x/,2']). We can
show that 2’ is replaceable by x in (X?.G)[x/,2'] as in (iii). Thus 2’ is replaceable

by x in F[x/.2'].
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Hence we have the claim.

To show that = is symmetric, it is enough to show this for a single change of
bound variable. First, suppose an occurrence of a context z.F'* in a C-H term is
replaced by /. F*[x /2], where x is replaceable by z’, 2’ is free for x, and 2’ does
not occur free in F*. It is clear that « is free for 2’ and does not occur free in
F*[z/,2']. By the claim, 2’ is replaceable by x in F*[x/,2]. Hence the change
from 2’ F*[x/,2'] to x.F%[x/.2'|[z'/, 2] which is x.F* is legitimate. Similarly, if
the replaced context is of the form P.F“.

Now, suppose a context .X?.F% in a C-H term is replaced by
o' XPe/r@] Fely/ o] where 2’ is an individual variable such that x is replaceable
by 2/, 2’ is free for z, and 2/ does not occur free in X?.F<. It is casy to see that x
is free for 2’ and 2 does not occur free in XA#/+*'1 e[/ 2']. It remains to show
that 2’ is replaceable by z in XA/ Fey/ '],

Since z is replaceable by #’ in X?.F®, z is replaceable by 2’ in F*. Hence,
by the above claim, 2’ is replaceable by = in F®[z/,2’]. We can show that
XPle/#'] Fefy/,2'] has no free occurrence of a term variable X7 such that o[z’ /z] =
Blx/.2|[z'/x] in the same way as in (iii) of the above claim. Hence 2’ is replace-
able by x in XA#/+*'l Fe[z/ a/]. Thus the change from z’. XA/ Felz/ 2] to
x. X0/ el pafy ) o'|[x! /2] which is x. X? F* s also legitimate. Similarly, if
the replaced context is of the form P.X7% F«.

The proof for a change of bound term variable is similar to the proof of Lemma

2.9. [l

The following three definitions interact and their terms are therefore defined

simultaneously.

Definition 3.2.10. Let F'* be a Curry-Howard term, x = x1,...,x, be distinct
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individual variables, and t = tq, ..., t, be individual terms. The result of simulta-
neously substituting t1, ... ,t, for all free occurrences of x1, ..., x,, respectively, in
Fo, denoted by F*[x1/t,...,x,/t,] or F*[x/t], is defined inductively as follows.

i X[z/t] = X/,

ii. (G°, H")[z/t] = (G°lz/t], H'[z/t]).

Similarly for (mG™M)[x/t], @ = 1,2, (G(H"))z/Y], (G™(s))[z/1], and
(G*H(e))[z/1]-

i, (1nG”)? 2/t = (G z/t]) P A,

Similarly for (4GP Y] aiid T(s/GAWID) B[ /1]

iv. (GPH(T))[ft] =GP 3w/i)(T).

v. I(T, GOPID3PBly ff] = [(T. GIPIT) (3 /4)) CaPAle/d

vi. (AXP.G")[z/t] = N(XP.GY)[z/t], where

(XP.GM)[z/t] = YO/ (GA[XP)YP[z/t]), where YP is XP if XP.G7 has no
free term variable X° such that oz/t] = Blz/t], otherwise Y7 is the first term
variable of type [B] such that XP.G7 has no free term variable Y° where o[z /t] =
Blz/1].

vii. ®(XP.GY Y. H* KPPV [z /]

~ a((XAGe) e, VYD ), K9 /).

viti, (.G /1] = My.G?)la/t] where

(y.GO)z/t] = 4" (Clyly'Nlz* /L)), where z* is the ‘sublist of & ‘consisting of
those x;’s which are in fv(y.GP), t* is the corresponding sublist of t, and y' isy
ify & fo(t*), otherwise y' is the first individual variable which is not in fv(G®)U
folt).

iz ST(y.XP.G* H?)[/t] = ST((y.X".G")[z/t], H¥P[a/1]), where

(v XP.G)a/t] = v .(X.G)y/yz*/t]), where a* is the sublist of x con-

sisting of those x;’s which are in fv(y.XP.G%), t* is the corresponding sublist of
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t,andy isy if y & fo(t*), otherwise y is the first individual variable which is
not in fo(XP.GY) U fu(t").
z. (A\Q.G7)[z/t] = MQ.G")[z/], where (Q.G")[z/t] = Q.(G"[z/1)).
zi. ST(Q.XP.G* H»>)[z/t] = ST((Q.X".G*)[z/t], H=[z/t]), where
(PX.G)a/t] = P.((X".GY)[z/t])-

Definition 3.2.11. Let F* be a Curry-Howard term, P = P{",... P’ be dis-
tinct predicate variables, and T =T, ..., T,,, where T; = A\xi,. .. ,xﬁlidi, 1< <
m, be abstraction terms. We define F[Py /Ty, ..., Pyn/T,], which can be written
as F*[P/T), inductively as follows.

i. X®[P/T] = X/,

ii. (G°, H")[P/T] = (G°[P/T], HO[P/TY).

Similarly for (G )P/} & = 1,2, (GPH(HA)[P/T], (G“9(U))[P/T),
and (G*())[P/T].

i, (1 G (BYT] = (uGP[R/T)PIEM,

Similarly for (uzGP)YP[P /L] and I(U, GARQ/V)F=CE[P/T).

w. (G (u))[P/T] = G™P|P/T)(u).

v. I(u, GPY/NWEP/T] = I(u, GPW/W[P/T))G¥AIL/T],

vi. (\YP.GN)P/T] = XY CY[P/T] where

(YP.GN)[P/T) = ZPEIT(Gr[T? /ZP|[P)T)), “where Z° s YP if YP.GY has
no free term variable Y° such that o[P/T| = B[P/T), otherwise Z° is the first
term wariable of type B8] such that YP.G7 has no free term variable Z° where
o[P/T) = B[P/T].

vii. ®(YP.GY, Z7.H*, K°PV7)[P/T]

— o((Y?.G)[P/T), (27.H)[P/T], K*[P/T}).
viii. (\g.GP)[PJT] = My.G?)[P/T], where (y.G*)[P/T] = y.(G[P/T)).

ia. ST(y.Y?.G*, HW)[P/T] = ST((y.Y".G*)[P/T), H¥[P/T)), where
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(5.Y7.G)[P/T] = y.(Y*.G*)[P/T)).

5. (\Q.G)[P/T] = \(Q.G%)P/T), where

(Q.GO[P/T) = Q' .(G°|Q/Q'|[P*/T"]), where P* is the sublist of P consisting
of those P;’s which are in FV(Q.GP), T* is the corresponding sublist of T, and
Q is Q if Q & FV(I™), otherwise Q" is the first predicate variable with the same
arity as Q which is not in FV(GP) U FV (T").

wi. ST(Q.YP.G*, H#)[P/T] = ST((QXYP.C)P/T), H*(P/T)), where

(QYP.G)[P/T] = QU(YP.G)QUQIIE /T™), where P* is the sublist of P
consisting of those P;’s which are in FV(Q.YP.G), T* is the corresponding sublist
of T, and Q" is Q if Q & FV/(T™), otherwise Q' is the first predicate variable with

the same arity as Q which is not in FV(YP.G%) U FV(T").

Definition 3.2.12. Let F'“ be a Curry-Howard term, X = Xfl, o, X0 be in-
equivalent term variables, and K = Kfi, i Ko be Curry-Howard terms, where
0; =6, for all 1 < i < n. The result of simultaneously substituting Kfi, ey ng
for all free occurrences of term variables which are equivalent to Xfl, o, X0 re-
spectively, in F'“, denoted by Fa[Xfl/Kfll, . ,Xg“/Kfﬁ] or F*[X /K], is defined
inductively as follows.

i.

K%" if Y& =X0m for-some I <m <,
Yo X/K]=

Y« otherwise.
i. (G°,H)[X/K] = (G°[X/K], I [X/K]).
Similarly for (mG*")[X /K], (uG*)[X/K], i = 1,2, and (G**(H?))[X/K].
ii. (G"9(u))[X/K] = G[X/K](u).
Similarly for I(u, GW/)[X /K], (G"9P(U))|X /K], [(U,G*?/V)[X /K], and
(GH(a)[X/K].

w. (M\y.G°)[X/K] = My.G")[X /K], where
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(y.GP)[X /K] = ' .(G°ly/y'|[X*/K*]), where X* is the sublist of X consisting
of those Xfi ’s which are equivalent to some free term variables of G®, K* is the
corresponding sublist of K, and y' isy if y & fu(K™), otherwise y' is the first
individual variable which is not in fv(GP) U fu(K*).

v (AQ.GP)[X/K] = NQG¥)[X/K], where

(Q.GOX/K] = Q' .(G°|Q/Q')[X*/K*]), where X* is the sublist of X consist-
ing of those Xfi ’s which are equivalent to some free term variables of G®, K* is the
corresponding sublist of K, and Q" is @ if Q & FV(K™), otherwise Q' is the first
predicate variable with the same arity as @ which is not in FV(GP) U FV (K*).

vi. \Y.GP)[X/K] = \Y1.GP)[X /K], where

(Y17.GA X /K] = 27.(G°[Y" /27| X*)K*]), where X* is the sublist of X con-
sisting of those Xfi ’s which are_equivalent to some free term variables of Y7.G5,
K™ is the corresponding sublist of K, and Z7 1s Y7 if Y7 is not equivalent to any
free term variable in K*, otherwise Z7 is the first term wvariable of type [y] which
is not equivalent to any free term variable in K* or GP.

vii. ®(YP.G*, Z7.H*, JPN[X/K] =

S((V2.G) X /K], (271X /K], J*V[X/K])).

viii. ST (y.YP.G%, H°)[ X /K] = ST((y.Y’.GY) X /K], H¥ X /K]), where

(y.YP.GYX/K] =y .(Y°.G*)y/y' [ X"/ K"), where X* is the sublist of X
consisting of those Xfi s which-are equivalent to some free term variables of Y°.G*,
K™ is the corresponding sublist of K, and y' isy if y & fuv(K™), otherwise y' is
the first individual variable which is not in fo(Y?.G%) U fo(K*).

iz, ST(QY?.G*, H%9)[X /K] = ST((Q.Y".G*)[X/K], H*%[X/K]), where

(QY?.G)X/K] = Q(Y7.G)Q/QIIX"/K"]), X" is the sublist of X con-
sisting of those Xfi ’s which are equivalent to some free term variables of Y°.G?,

K™ is the corresponding sublist of K, and Q' is Q if Q ¢ FV(K*), otherwise Q' is
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the first predicate variable with the same arity as Q which is not in FV (Y?.G*)U

FV(K7).

Notation. Y”.F®[z/t] will abbreviate Y?.(F%[z/t]). Similarly for Y?.F*[P/T]
and YA FY[X/K].

Y# in the above statement can also be replaced by y, @, y.Y? or Q.Y?,
Note. From the above definitions, it can be proved by induction on F'¢ that

a. Flz/t] = F*[z*/t*], where z* is the sublist of z consisting of those x;’s
which are in fo(F®) and t* is the corresponding sublist of ¢;

similarly for F*[P/T7;

b. FYX/K] = F*[X"/K"|, where X" is the sublist of X consisting of those
X?’s which are equivalent to some free term variables of F* and K* is the corre-
sponding sublist of K;

. Folz/a] = F®, Fo[P/P] = F* and F[X/X] = F*

d. FV(Fele/)= FV(F®) and fo(F*[P/T]) = fo(F*);

e. if z* is the sublist of z consisting of those variables which are in fv(F®) and
t* is the corresponding sublist of ¢, then fo(F[z/t]) = (fv(F*) —{z*}) U fo(t");

similarly for FV (F*[P/T]);

£ fo(F*) € fo(F°[X /K])and FV(E=) € FV(F[X/K])

g it Y =¥", .. Y areterm variables such that V" = Xfi foralll <i<mn,
then F[Y /K] = FIX/K].

Lemma 3.2.13. Let F'“ be a C-H term, x = xq,...,x, be distinct individual

variables, and t = t1,...,t, be individual terms.

Then F[z/t] is a C-H term of type [a|x/t]].

Lemma 3.2.14. Let F* be a C-H term, P = P[",..., P be distinct predi-
cate variables, and T = Ty,...,T,,, where T, = Az, ..., 2% 0;, 1 < i < m, be

abstraction terms.
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Then F*[P/T] is a C-H term of type [a[P/T]].

Lemma 3.2.15. Let F'* be a C-H term, X = Xfl, .., X% be inequivalent term
variables, and K = Kfi, e ,Kfi% be C-H terms, where §; = 6. for all 1 <i < n.

Then F*[X /K] is a C-H term of type [a].

Proof. We will prove these three lemmas simultaneously by induction on F*©.
Proof of Lemma 3.2.13.

(i) F = X°.

Then F*[z/t] = X®&/Uvhich is a term variable of type [a]z/t]].

(ii) F* = (GP, H).

Then F*[z/t] = (GP[z/t], H"|z/t]). By the induction hypothesis, G®[x/t] and
H7[z/t] are C-H terms of types [3|z/t]] and [vy[z/t]], respectively. Hence F*[z/t]
is & C-H term of type |5/t Avle/d] = [(8 K/t = [ofz/1].

Similarly for m;GPN, 1;GP i = 1,2, GF2%(HP), and G+ ().

(iii) F* = G (u).

Then [a] = [Bly/ul] and F*u/t] = GP[w/t)(ulzt]). By the induction hy-
pothesis, G"7[x/t] is a C-H term of type [(Vyf3)[z/t]].

We have (VyB)[z/t] = Yy'Gly/y')la* /7], where z* is the sublist of z consist-

*

ing of those x;’s which are in fv(Vy(), t* is the corresponding. sublist of ¢, v/

is y if'y & fu(t), otherwise 3/ is the first individual variable which is not in
fo(B) U fu(t). Hence F[z/t] is a C-H term of type [Bly/y]lz"/t"]ly'/ulz /L] =
Bly/y1ly /ullz/t] = [Bly/ullz/t] = [alz/t] by Lemmas 2.13 and 2.14.

(iv) Fo = I(u, GBW/W)38,

Then Fz/t] = I(u[z/t], GPW/W[z/t]) ¥/l By the induction hypothesis,
GPWz /1] is a C-H term of type [B(y/u)[z/t]] = [Bly/ul[z/]].

We have (Jyf)[z/t] = 3y'Bly/yllz"/t*], where z* is the sublist of x con-

sisting of those z;’s which are in fv(3yf), t* is the corresponding sublist of ¢,
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y' is y if y ¢ fo(t*), otherwise 3/ is the first individual variable which is not
in fo(8) U fo(t"). Similar to (iii), [Bly/ullz/t]] = [Bly/y]lz"/t]ly /ulz/t], so
GoW /1] is of type [Bly/y'l[x*/t*]ly'/ulz/t]]]. Hence F°[z/t] is a C-H term of
type [Jy'Bly/y][z*/t]] = [efz/]].

(v) F* = \y.GP.

We have F[x/t] = \y'.GPy/y/][x*/t*], where 2* is the sublist of x consisting
of those x;’s which are in fu(y.G?), t* is the corresponding sublist of ¢, ¢/ is y if y &
fu(t*), otherwise 3/ is the first individual variable which is not in fo(G?)U fu(t*).
By the induction hypothesis, G®[y/y/][x* /t*] is a C-H term of type [B[y/y'][z* /t*]).
Thus F*[z/t] is a C-H term of type Vy'Bly/y]lz"/t"]] = [(Vy'Bly/y)z/t] =
[(VyPB)[z/t]] = [a[z/t]] by Corollary 2.11 and Lemma 2.14.

(vi) F* = \Q.G”.

Then F[z/t] = AQ.G"[x/t]. By the induction hypothesis, G®[z/t] is a C-
H term of type [Blz/i]]. Thus F[z/t] is a C-H term of type [V2QB[z/t]] =
[(V2Q0)[z/t]] = [alz/t]]-

(vii) F* = G295(U).

Then [a] = [B[Q/U]] and F°[z/t] = G"%F[z/t](U). By the induction hypoth-
esis, G"297[z/t] is a C-H term of type [(Vo@QB)[2/t]] = [V2QB[x/t]]. Hence F*[z/1]
is a C-H term of type [B[z/{][Q/U]l = [8]Q/U][z/H]] = [a[z/i]] by Lemmas 2.14
and 2.15.

(viii) F@ = [(U, GAR/V))32Q5,

Then F*[z/t] = (U, G*@/Y[z/t]). By the induction hypothesis, G#@Q/V)[x /1]
is a C-H term of type [8(Q/U)[z/t]] = [B[Q/U][z/t]] = [8]z/¢][Q/U]] by Lemmas
2.14 and 2.15. Hence F[z/t] is a C-H term of type [32QB[z/¢] = [(3.Q8)[z/t] =
[z /t]].

(ix) F* = AXP.G7.
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We have F[z/t] = \(X”.G")[z/t]. By the following claim, F*[z/t] is a C-H
term of type [B[z/] D v[z/t]] = [afz/t]].

Claim 1. (XP.G")[z/t] = YP .H”" for some term variable Y7 and some C-H
term HY" such that (3] = [8[z/]] and [v*] = rlz/t].

Proof of Claim 1. We have (X?.G7)[z/t] = Y5/ .GV[XP/YP)[z/t], where Y7 is
XP if XP.G7 has no free term variable X° where o[z /t] = 3[x/t], otherwise Y7 is
the first term variable of type [3] such that X”.G7 has no free term variable Y
where olz/1] = Blz/f]

By the induction hypothesis, G7[X? /Y P][x/t] is a C-H term of type [y[z/t]].

Thus we have the claim.

(x) F* = &(X5.Ge, Y. He, KA,

Then F*[z/t] = &((X.G*)[w/d], Y .H)[z/t], K7 [z/1]).

By the induction hypothesis, K°V7[z/#] is a C-H term of type [(8 V 7)[z/t]]
= [Blz/t] V v[z/t]]. Hence, by the above claim, F*[z/t] is a C-H term of type
/1]

(xi) F* = ST (y.XP.G>, HP).

We have (y.X°2.G)[z/t) = y.(XP.G)[y/y])lz*/t*]), where x* is the sublist
of z consisting of those z;’s which are in fu(y.XP.G?), t* is the corresponding
sublist of ¢, ¥/ is y if y & fo(t*), otherwise ¢ is the first individual variable which
is not in fo(XP.G2)U fo(t).

By the claim, (X?.G%)[y/y'][z*/t*] = VP .K* for some term variable Y?" and
some C-H term K" such that [3*] = [B[y/y/][z"/t"]] and [o*] = [aly/y'][z"/t'] =
of*/2"] since y & fo(a).

Since ¢ is y or ¥ & fu(XP.GY) (so y & fv(B3)), by Corollary 2.11, Jy3 =
Jy'Bly/y']. By the induction hypothesis, H?¥?[x/t] is a C-H term of type

[(3yB)[z/t]] = [By'Bly/y'])z/t]] = [3y'Bly/yllz*/t*]] by Lemma 2.14. Hence
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ST(yf.(X2.G*)y/y 2" /), H?P[w/4]) is a C-H term of type [alz*/£"] Le. F°fz/1
is a C-H term of type [a[z/t]].

(xii) F* = ST(Q.XP.G~, H3299).

Then F[z/t] = ST(Q.(X?.G*)[z/t], H29P[z/t]). By the induction hypothe-
sis, H29P[z /1] is a C-H term of type [(3.Q8)[z/t] = [3.QB[z/t]]. Hence, by the
claim, F*[z/t] is a C-H term of type [a[z/t]].

Lemma 3.2.14 can be proved in the same way as Lemma 3.2.13 by using
Lemmas 2.16 and 2.17 instead of Lemmas 2.13 and 2.14, respectively.

Proof of Lemma 3.2.15.

(i) F'* is a term variable.

If F* = X for some 1 < m < n, then FYX /K] = KJr which is a C-H term
of type [0],] = [0m] = [a], otherwise F*[X /K] = F* which is a C-H term of type
[a].

(ii) F* = (GP, HY).

This case follows by the induction hypothesis.

Similarly for G, 1;GP i = 1,2, GP2%(HP), and G+ ().

(iii) F* = \y.G".

Then FY[X /K] = Ny .G[y/y/][X*/K*]|, where X* is the sublist of X consisting
of those Xf“s which are equivalent to some free term variables of G?, K* is the
corresponding sublist of K, and 'y is y if y & fu(K"), etherwise ¢y’ is the first
individual variable which is not in fv(G?) U fu(K*), so y' & fv(3).

By the induction hypothesis, G°[y/y/][X*/K*] is a C-H term of type [B[y/y']].
Hence F*[X /K] is a C-H term of type [Vy'B[y/vy']] = [VyB] = [a] by Corollary
2.11.

Similarly for AQ.GP.

(iv) F* = G5 (u).
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Then F°[X /K] = G™P[X/K](u). By the induction hypothesis, G"’[X /K] is
a C-H term of type [Vy3]. Hence F*[X /K] is a C-H term of type [B(y/u)] = [«].

Similarly for G"298(U), I(u, GPW/")3E and [(U, GPQ/U))F208,

(vi) AYP.G.

This case follows straightforwardly by the following claim.

Claim 2. (YA.G")[X/K] = Z% .H" for some term variable Z% and some C-H
term H' such that [3'] = [3] and [/] = [9].

Proof of Claim 2. We have (Y?.G")[X /K] = ZP.GV[Y?/ZP|[X*/K*], where X*
is the sublist of X consisting of those X;’s which are equivalent to some free term
variables of Y?.G7, K* is the corresponding sublist of K, Z% is Y? if Y* is not
equivalent to any free term variable in K*, otherwise Z9 is the first term variable
of type [(] which is not equivalent to any free term variable in K™ or G7. By the
induction hypothesis, G7[Y?/ZF[X*/K*] is a C-H term of type [y]. Hence we
have the claim.

(vii) ®(Y?.Go, Z1.H*, KPV)

This case follows straightforwardly by the above claim and the induction hy-
pothesis.

(viii) Fo = ST(y.Y?.G~, H¥5).

We have F°[X /K] = ST(y (VPG [y/y/) X FK], H[X K]}, where X" is
the sublist of X consisting of those X;’s which are equivalent to some free term
variables of Y?.G* K* is the corresponding sublist of K, ' is y if y & fv(K"),
otherwise ¢/ is the first individual variable which is not in fo(Y?.G%) U fo(K*).

By the claims, (Y?.G)[y/y/][X*/K*] = ZP".K*" for some term variable Z°"
and some C-H term K¢ such that [3*] = [B[y/y/]] and [o*] = [aly/y]] = [a]
since y € fv(a). By the induction hypothesis, H*¥’[X /K] is a C-H term of type

[Fys] = [3Y'Bly/y']]. Hence F*[X /K] is a C-H term of type [a].
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Similarly for ST(Q.Y?.G*, H?299). O

Lemma 3.2.16. For any C-H term F,

a. if x = x1,...,x, are distinct individual variables and t = ti,...,t, are
individual terms, then Flz/t]) = F'[x/t] for some C-H term F' such that F' = F,
x is replaceable by t, and t is free for x in F';

b. if P = P[*,..., P! are distinct predicate variables and T = Ti,...,T,,
where T; = Azi,..., 2105 1 < i < n, are abstraction terms, then F[P/T] =
F'[P/T] for some C-H term ' such that F' = F', P is replaceable by T, and T
is free for P in F';

c. if X = Xfl, ..., X% are inequivalent term variables and K = Kfi, e Kgg
are C-H terms, where 6; = 0. for all 1 < i < n, then F|X/K] = F'[X/K] for

some C-H term F’ such that F"= F and K s free for X in F’.

Proof. Let F* be a C-H term. We will prove a, b, and ¢ simultaneously by
induction on F'“.

a: Let x = x1,...,x, be distinct individual variables and ¢t = ¢1,...,t, be
individual terms.

(i) F* = X,

By Lemma 2.10, afz/t] = o/[z/t] for some formula o’ such that o/ = « and
t is free for z in a'. So we have X®[z/t] = X2/t = X'/ = X %[z /t] where
X = X% zis replaceable by t, and ¢ is free for z in X

(i) F = A\ X" .G.

This case follows by the following claim.
Claim 1. (X°.G)[z/t] = C[z/t] for some context C' such that C = X°.G and z
is replaceable by t and t is free for z in C.
Proof of Claim 1. We have (X?.G)[z/t] = YP2/U.G[XP /Y P][z/t], where Y7 is X7

if XA.G has no free term variable X7 such that o[z/t] = B[z /t], otherwise Y* is
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the first term variable of type [3] such that X?.G has no free term variable Y
where oz /t] = B[z /t].

By the induction hypothesis, G[X?/Y?] = G'[X?/Y?] and G'[X?/YP][z/t] =
G*[z/t] for some terms G’ and G* such that G' = G, G* = G'[X°/YF], YF
is free for X? in G’, and z is replaceable by t and ¢ is free for z in G*. By
Lemma 2.10, f[z/t] = ('[z/t] for some formula " such that ' = 8 and ¢ is free
for z in #. So we have (X2.G)[z/t] = YA .G¥z/t] = (Y*.G*)[z/t] where
YP.G* = YP.G'[XP)YP] = XP.G" = XP.G and t is free for z in Y .G*. Since
G' = G and XP.G has no free term variable Y7 where o[z/t] = Blz/t], XP.G’
also has no such Y?. Sinee G* = G'[X7?/Y ], Y .G* has no free term variable Y
such that ofz/t] = Blz/t]. Hence z is replaceable by £ in Y7 .G*.

The case &(X.G,Y.H, K) also follows by the above claim and the induction
hypothesis.

(iii) F = Ay.G.

This case follows by the following claim.

Claim 2. (y.G)[z/t] = C[z/t] for some context C' such that C' = y.G and z is
replaceable by t and ¢ is free for 2 in C.

Proof of Claim 2. We have (y.G)[z/t] = v .(Gly/v'][z* /t*]), where z* is the sublist
of z consisting of those x;’s which are in fv(y.G), t* is the corresponding sublist
of t, vy isyif y & fo(t"), otherwise 3/ is the first individual variable which is not
in fo(G)U fo(t").

By the induction hypothesis, Gly/y'| = G'[y/y'] and G'ly/y][z"/t"] = G*[z"/t"]
for some terms G' and G* such that G' = G, G* = G'[y/V'], y is replaceable by ¢’
and 1/ is free for y in G’, and z* is replaceable by t* and t* is free for 2* in G*. Hence
(v.G)z/t] = y.G*[z"/t"] = (y.G")[z/t], where y".G" = y".G'[y/y] = y.G' = y.G

and z is replaceable by ¢ and ¢ is free for z in y'.G*.
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(iv) F = ST(y.X.G, K).

This case follows by the following claim and the induction hypothesis.

Claim 3. (y.X.G)[z/t] = C[z/t] for some context C such that C'=y.X.G and =
is replaceable by ¢ and t is free for z in C.

Proof of Claim 3. We have (y.X.G)[z/t] = ¥'(X.G)[y/y'][z*/t*], where x* is the
sublist of x consisting of those #;’s which are in fo(y.X.G), t* is the corresponding
sublist of ¢, ¥ is y if y & fo(¢"), otherwise ¢ is the first individual variable which
is not in fo(X.G) U fo(t).

By Claim 1, (X.G)[y/y'] = Cly/y] and Cly/y]lz"/t"] = C*[z"/t"] for some
contexts C' and C* such that C'= X.G, C* = Cly/y/], y is replaceable by y' and
y' is free for y in C and z* is replaceable by t* and t* is free for z* in C*. So
we have (y.X.G)[z/t] =y .C*[z"/t"] = (y'.C")[z/t], where y'.C* = y'.Cly/y] =
y.C' = y.X.G, and z is replaceable by ¢ and ¢ is free for z in 3'.C*.

Similarly for the case ST(Q.X.G, K).

The remaining cases follow straightforwardly by the induction hypothesis.

b: The proof is similar to that for a.

c: Let X = Xfl, ..., X%~ be inequivalent term variables and K = Kfll, e
Kffl be C-H terms, where §; = ¢; for all 1 < i < n.

If F'is a term variable, then K is free for X in F.

(i) F=)\Z°.G.

This case follows by the following claim which can be proved in the same way
as Claim 2 in the proof of a.

Claim 1. (Z°.G)[X /K] = C[X /K] for some context C' such that C = Z8.G and
K is free for X in C.
The case ®(Y.G, Z.H, K) also follows by the above claim and the induction

hypothesis.
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(i) F = \y.G.

This case follows by the following claim.

Claim 2. (y.G)[X/K]| = C[X /K] for some context C' such that C = y.G and K
is free for X in C.

Proof of Claim 2. We have (y.G)[X/K| = vy.G[y/y']| X*/K*]|, where X* is the
sublist of X consisting of those Xf“s which are equivalent to some free term
variable of F'; K* is the corresponding sublist of &, v/ is y if y & fv(K™), otherwise
y' is the first individual variable which is not in fo(G) U fo(K™).

By the induction hypothesis, Gly/y/| = G'|y/y'] and G'[y/y][ X7/ K*| =
G*[ X" /K] for some terms G’ and G* such that G' = G, G* = G'ly/y], y is
replaceable by 3" and 3/ is free for y in G’, and K~ is free for X* in G*.

Hence (y.G)[X/K] = G [X*/K*] = (yf.G*)X /K], where y/.G* = .G'ly/y/
=y.G' = y.G and K is free for X in y/'.G*.

Similarly for the case AQ.G.

(ii) FF = ST (y.Z.G, H).

This case follows by the induction hypothesis and the following claim.

Claim 3. (y.Z.G)[X/K) = C[X/K] for some context C' such that C' = y.Z.G
and K is free for X in C.
Proof of Claim 3. We have (y.Z.G)[X/K] = ¢ (Z.G)[y/y'|[X*/K"], where X*
is the sublist of X consisting of these X?’s which are equivalent to some free
term variable of Z.G, K™ is the corresponding sublist of K, v/ is y if y & fo(K"),
otherwise ¢’ is the first individual variable which is not in fo(Z.G) U fu(K™").

By Claim 1 of (a), (Z.G)[y/y] = Cly/y'] for some context C' such that
C = Z.G, y is replaceable by ' and 3/ is free for y in C. By Claim 1 of (c),
Cly/y|[X*/K*] = C*[X* /K] for some context C* such that C* = Cly/y] and

K™ is free for X* in C*.
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Hence (y.2.G)[ X /K] =y .C*[ X" /K] = (v.C*)[X /K], where y/.C* =

y'.Cly/y] =y.C =y.Z.G and K is free for X in y.C*.

Similarly for the case ST(Q.Z.G, H).

The remaining cases follow straightforwardly by the induction hypothesis. [J
Corollary 3.2.17. Lemma 3.2.16 also holds for contexts.

Proof. By using Lemma 3.2.16, this corollary can be proved in the same way as

the claims in the lemma. O

Corollary 3.2.18.

a. For any context x.F (respectively x. X.F), if y & fu(F) (respectively y &
fo(X.F)), then x.F = y.Flz/y| (respectively . X.F = y.(X.F)[z/y]).

b. For any context P".F (respectively P*.X.F), if Q™ & FV(F) (respectively
Q" ¢ FV(X.F)), then P.F = Q.F[P/Q)] (respectively PX.F = Q.(X.F)[P/Q)]).

c. For any context X*.F, if Y, where o/ = a, is a term variable which is
not equivalent to any free term variable of F', then X*.F = Y . F[X/Y*], and so
for any individual variable ¥, ©. X* F = x.Yo‘/.F[XO‘/YO"] and for any predicate

variable P, P.X® F = PYY F[X*/Y*].

Proof: By using Lemma 3.2.16, the proof is similar to the proof of Corollary

2.11. [l

Lemma 3.2.19. Let F* be a C-H term, x = x1,...,Tp and y = y1,..., Y, be
sequences of distinct individual variables, and t = t1,...,t, and u = uy,...,u, be

individual terms. Then

Fa[g/ﬂ[y/g] = Fa['rl/tl[y/@]?"'7mm/tm[y/ﬂ]7yi1/ui17'"7yik/uik]7

where yi, , ..., ys, s the sublist of y consisting of those y;’s which are in fv(F®) —

{z}.
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Lemma 3.2.20. Let F* be a C-H term, P = P",... P'™ and R=R!',... R
be sequences of distinct predicate variables, T =Ty, ..., T,,, where T; =
Aty 2l b, 1 <0 <m, and U = Uy,...,Uy,, where U; = Ay{,...,yf;aj, 1<
7 < n, be abstraction terms. Then

Fe[P/T][R/U] = Fo[P/Th[R/U], ..., P/ Tn[R/U], Ry, /Usy, - .., Ry /Uy ],
where Ry, , ..., R;, is the sublist of R consisting of those R;’s which are in FV (F*)—

{£}.

Lemma 3.2.21. Let F* be.a C-H term, X = X', ..., X0 andY =Y, ..., Y™

be sequences of inequivalent term variables, and H = Hfll, e ,an;" and K =
KIT{,...,KTZ’,L be C-H terms, where 6; = 6; for all 1 < i < m and 7; = 7] for all
1 <j5<n. Then

Fe[X/H])Y /K] = Fo[X0 [N YK, - X HonlY [K] Y [ K, Vi K],

where Y;,, ..., Y, is the sublist of ¥ consisting of those Y;’s which are equivalent

to some free term variables of F'“ but are not equivalent to any X; in X.

Lemma 3.2.22. Let F“ be a C-H term, x = x1,...,x, be distinct individual

variables, t = ty,...,t, be individual terms, P = P}*,...  P'™ be distinct predicate
variables, and T =Ty, ..., Ty, where T; = \z4, ... ,ziiéi, 1 < < 'm, be abstraction
terms.

Then F[L/Tx/t) = F°[z/t[2/T].

Lemma 3.2.23. Let F'“ be a C-H term, X = Xfl, .., X2 be inequivalent term
variables, and K = Kfi, e ,Kgi” be C-H terms such that §; = 0} for all1 < i < m.

a. For any distinct individual variables x = x1,...,x, and any individual
termst =t1,...,ty, if for all 1 <i < m, F* has no free term variable X7 such
that o # 6; but o[z /t] = ;[z/t], then

FoIX/Kla/t] = Fele/O[X BN K0 [ /t), . Xor B0 K [ /1)
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b. For any distinct predicate variables P = Plll, ..., P and any abstraction
terms T =1T4,...,T,, where T; = )\zi,...,zl"ﬁi, 1<e<mn,if foralll <1< m,
F% has no free term variable X{ such that o # 0; but o[P/T)| = §;[P/T], then

FolX/K|[P/T) = Fo[P/TI[X] M KA P/, .. Xoe 0 Ke [P T

Lemma 3.2.24. Let F and F" be C-H terms, x. = 1, ..., x, be distinct individual
variables, and t = t1,...,t, be individual terms.

If F = F', then Flz/t] = F'z/t].

Lemma 3.2.25. Let I’ and F' be C-H terms, P = P/*,... P'™ be distinct pred-
icate variables, and T = 1Ty,...,T,,, where T; = )\x{,...,xijéj, 1 <75 <m, be
abstraction terms.

If F = F', then F|P/T| = F'[P/T].

Lemma 3.2.26. Let F' and F" be C-H terms, X = Xfl, .., X% be inequivalent
term variables, and H = Hfi,...,Hg; and K = Kfy,...,Kg% be C-H terms,
where 6; = 0, = 6. and Hfg = ngl forall1 <i<n.

If F = F', then FIX/H] = F'[X/K].

Proof. We will prove all the above lemmas simultaneously by induction on F'.
Proof of Lemma 3.2.19.

It follows by Lemma 2.13 if F'* is a term variable.

(i) F'* = X".G.

This case follows by the following claim.
Claim 1. The context X”.G satisfies the lemma.

Proof of Claim 1. We have

(XP.@)a/tly/u] = (WGP Y e /t)ly/u)

Blz/t]y/u] z z
— vy G Y e YR v [y
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where Y/ is X7 (vespectively Y=/ is y12/8) if X8.G (respectively

Y/ EM GIXP ) YP][2/1]) has no free term variable X< such that ofz/t] = B[z /t] (re-
spectively Y)” such that ofy/u] = Blz/t][y/u]), otherwise Y (respectively Yy’ 2/ ﬂ)
is the first term variable of type [f] (respectively [G[z/t]]) such that there is
no free term variable Y of XP.G' where ola/t] = B[z/t] (respectively Yy of

Y. GIXP Yz /1] where oly/u] = 5[z/Hly/d]).

Let 8* denote Blx1/ti[y/u), .« T/t y /2], yiy /Wiy, - - - Yy [0s,].

By Lemma 2.13, B[z /t][y/u] = 5".

We have (X2.G)[xy/t[yfuls - s oftmly/ul, yis [t - - -5 iy Jwi,] =
Y})’g*.G[XB/}gﬁ][arl/tl[g/g], i T [ty Sl iy [y s - Uiy /U], Where vy is X7 if
X?.@ has no free term variable X7 such that ofz/t] = B[z/t], otherwise Y{ is the
first term variable of type [] such that there is no free term variable Yy of X°.G
where olz/t] = Glz/1].

Let Y bo o term variable of type [Blz/t][y/u]] which is not equiv-
alent to any term variable occurring in G[X8 /Y [/t =1 /v 2Ny /u] or

GIXP )Y [ty /- -, @[ty d]].

By the induction hypothesis, we have

(X5.G)[z/t][y/u]

Bla/tly/u] x T
=) Yy Y G Y A Y 2 v [y fd

Blz/t][y/u] z x Blz/t][y/u] Blz/t][y/u]
YR QX Py Py v [y ful [y Ry R

Bla/t[y/u] z x x x
VR G Yl D Y Py

Blz/t)y/u] z x
Y G v PP Y P [y )

v R Gixo iy Py YO e/t ul

Y QX8 v e/t ly/u), and
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(XB'GM:Cl/tl[y/Q]a cee 7xm/tm[g/g]7yi1/ui1> T 7yik/uik]

= Y .GIXP /Y o tly/d, - T [ty Yin [ - Y i)

YIGIXP /Y ety ;- ftly /] g Sy s 1YY

Y2 GIXP /YN Y e falyfud. sty i S i i)

Y;ﬂ*'G[XB/Yf] [$1/t1[y/@], - - 7xm/tm[y/g}v yi1/ui17 s 7?/%/“%]

Y .GIXP Y ) w/t)ly/u)

YA i ) vl [y ).

The cases ®(X.G,Y.H, K) and ST(P.X.G, H) also follow by the above claim
and the induction hypothesis.

(i) F* = \z.G.

This case follows by the following claim which can be proved in the same way
as the case Vz( in the proof of Lemma 2.13.
Claim 2. The context z.G satisfies the lemma.

Similarly, for the case ST(z.X.G, H) we prove the lemma for the context z. X.G
(by using Claim 1) and apply the induction hypothesis to H.

The remaining cases follow straightforwardly by the induction hypothesis.

Lemma 3.2.20 can be proved similarly (using Lemma 2.16 for the atomic case).
Proof-of Lemma 3.2.21.

(i) £ is a term variable.

If F* =Y for some 1 < r < n where Y7 # X, for all 1 < ¢ < m, then
FOX/H|)Y/K] = K, = FO[Xi/H\[Y/K),..., X/ HulY /K], Y,/ K], otherwise

FelX/H][Y /K]
HYY /K] if F* = X2 for some 1 < ¢ < m,

e otherwise,

= FXi/H[Y/K], ..., Xn/HyY/K]].
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(i) F* = \YP.G.

This case follows by the following claim which can be proved in the same way
as the case Vzf in the proof of Lemma 2.13.
Claim 1. The context Y”.G satisfies the lemma.

The case ©(Z;.F1, Zy. Fy, G) also follows by the above claim and the induction
hypothesis.

(iii) F* = \z.G.

This case follows by the following claim.
Claim 2. The context z.G satisfies the lemma.
Proof of Claim 2. We have (¢.G)[ X /H|Y /K| = «".G[x/'|[ X" /H"][2'/2"][Y" /K",

where X* = X

Jioc

X, (respectively Y*) is the sublist of X (respectively Y') con-
sisting of those term variables which are equivalent to some free term variable of
x.G (respectively (x.G)[X/H]), H" (respectively K™) is the corresponding sublist
of H (respectively K), ' and z” are individual term variables such that z’ is
x (respectively " is a’) if x & fo(H") (respectively 2" ¢ fv(K")), otherwise 2’
(respectively ) is the first individual variable which is not in fv(G) U fo(H")
(respectively fo(Glz/a'[[X"/H"])U fo(K")), and
(2.G)X, /LY, o X Hnl Y K Y [ K Yo /K]

= 2" .Glz/2"|[X;,/H, Y /K], ..., X,,/H;[Y /K] Y,, /K, ....Y, /K], where
" is x if 'z does not occur free in H; [Y/K],.. ., H;|Y/K], K;,, .-, K;,, oth-
erwise 2" is the first individual variable which does not occur free in G or
H;Y/K],...,H;[Y/K], K;,..., K.

Let x* be an individual variable which does not occur in
Gla /2| X7/ H ][« [2"][Y" /K] or
Gla/a" [ X5 [ Hy, Y/ K], X5 Hy YKL Y [ Ky Y G

Suppose for a contradiction that there is some term variable Y,”, where Y,
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is in Y, such that o # 7, but o[z”/z*| = 7.[2"/2*] (= 7, since 2" ¢& fv(KZ’/")
and so 2" ¢ fu(r.)). Then z* must occur free in 7. This is a contradiction by
the choice of x*. Hence there is no such term variable. Similarly, there is no
term variable X7, 1 < ¢ < [, such that o # §;, but ofz’/z*] = §; [2'/2"] or

ola" /z*] = §;, (2" /2*]. Thus, by the induction hypothesis, we have

(¢ G)X/HIY/E] = " Gle/«'[[X°/H]l’ /") / K]

Gla/[ X5/ H o' fa"][Y | K] [2" /2]

If

Gla/2 ][ X7/ H7][" fa"][a" [ 2" ][V K]

Gla/ X/ HT]ja far) (Y / K]

o*.Glo /2| Ja [ X/ HY|[Y* /K]

Gl /o |[X"/H|[Y" /K], and

I

(@ G)X0/H[Y /K], X H o [Y K Y Iy Y 1G]

_ x/’/.G[l’/l'mHle/Hﬁ [X/K], e ,le/Hjl[X/K]7}/;1/Ki17 cee aYZk/KZk]

= x///'G[x/x///] [le/Hjl [X*/K*]’ s 7ij/Hjl [X*/K*L Yi1/Ki17 R lk/Kl ]

o Gla/a"[X;, [Hu Y7 K, X [H Y K] Y K Y G
2"

=G I ]

X, /H, [V K™, X JH YK, Y [ Ko Yi [ K]

o Glo /o)X, [Hy, (Y7 K7 X [ H YO KLY G Y G

o Gl /2" [ X7/ HT][Y /K]

Similarly for AP.G.
(IV) Fe = ST(.CUZGl, GQ)

Similar to the above case, by using the previous results for the context Z.Gy,
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we first show that the context x.Z.G; satisfies the lemma in the same way as in
the above claim, and then apply the induction hypothesis to Gb.

Similarly for ST(P.Z.G4,Gs).

The remaining cases follow straightforwardly by the induction hypothesis.
Proof of Lemma 3.2.22. 1t follows by Lemma 2.15 if F'® is a term variable. The
cases \y.G and A\Q).G can be proved in the same way as the cases Yy and VoQ 3,
respectively, in Lemma 2.15.

The following cases, each of which contains a context of the form X?.G, need
the claim below.

Claim 1. XP.G satisfies the lemma.

Proof of Claim 1. We have

(X°.G)[P/Tz/t] = (VEE.GIX2/¥|[P/L)) 2/t

YRR qrxeB ) p TRy PRI g 4],

where Y/ is X? (respectively Yy BT g 28 LB/ I]) if XP.G' (respectively

vy [E/T] .G[X?/Y][P/T]) has no free term variable X° (respectively Y7) such that
o[P/T] = B[P/T] (respectively olz/t] = B[P/T][z/t]), otherwise Y} (respectively
vy £/ Z]) is the first term variable of type [3] (respectively [3[P/T]]) such that
there is no free term variable Yy of X°.G where ¢[P/T]| = 3[P/T] (respectively

Yy of YWHA.GIXOYY][P/T] where olz/t] = A[P/T1[2/8), and
(X°G)e/p/T] = (. GIXP Y]]/ )P/ T]
Yf[m] [P/T] G[X? )Y [z/Y) [Ygﬁ[z/ﬂ /Yf@/ﬁ] [P/T),
where Y{ is X (vespectively Y2 is Y2 if X8 G (respectively
vy SENe! [XP/Y{)[x/t]) has no free term variable X (respectively Yy) such that

olz/t] = Blz/t] (vespectively o[P/T] = Blz/t][P/T]), otherwise Y{ (respectively

vy 2/ ﬂ) is the first term variable of type [3] (respectively [3[z/t]]) such that there
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is no free term variable Yy of X%.G where o[z/t] = B[z/t] (respectively Y/ of
Y GIXP Y[ ft] where o[ P/T] = flu/t][P/T)).
Let ZPE/TI/d e a term variable of type [8[P/T][z/t]] (= [lz/H[P/T]) by
Lemma 2.15) which is not equivalent to any term variable occurring in
GIX? Y|P/ 1 ] ox GIX2) Y [ ft)[v5 /Y (/7).
By the induction hypothesis, we have
(X7.G)[P/T][z/1]

_ Yzmg/ﬂ@/ﬂ.G[Xﬁ/Yf] [B/I] [Ylﬁ[ﬁ/ﬂ/nﬁ[ﬂ/ﬂ”&/ﬂ

ZB[B/IMQ/E].G[Xﬁ/Y{g] [B/I] [Kﬁm/ﬂ/}@mﬂﬂ][g/ﬂ D@ﬁ[ﬂ/ﬂ[&/t]/Zﬁ[B/I][E/t]]

Zﬂ[g/ﬂ@/ﬂG[Xﬁ/}/lﬁ] [B/I} D/lﬂ[ﬂ/ﬂ/yéﬁ[ﬂ/ﬂ][}éﬁ[ﬁ/ﬂ/zﬁ[ﬂ/ﬂ][l/ﬂ

ZPRITe/d G x 81y P Ty ) 7RI [ /4]

7P/l G x8 VP Ve /2% [P/ D)/t

ZPe/T/ G XA ) Z8|[P) Tz /Y]

78lz/t][P/T] .G[Xﬁ/Zﬁ] [z/t][P/T], and
(X2.G)[z/t][P/T]

_ }Qﬁ@/ﬂ[g/ﬂ.G[Xﬁ/Yf] [l/ﬂ D/f[&/ﬂ/nﬁ[z/ﬂ][ﬁ/z]

Zﬂ[&/ﬂ[ﬂ/l]'G[Xﬂ/ygﬂ] [z/1] D/gﬁ[g/z]/nﬁ[g/ﬂ][ﬂ/z] [Yf[z/ﬂ [B/T] /Zﬁ[z/ﬂ [B/ﬂ]

Zﬂ[i/ﬂ[B/Z].G[Xﬂ/Yf] [z/1] Dgﬁ[&/é]/zﬁ[z/ﬂ] [P/T]

ZPRMEIT GIXP )Y vy ) 2P [z /1) P/T]

ZP/AE/T) G XP ) 78] [z/t)[P)T).

Hence we have the claim.
The case AX.G follows by the claim. The case &(X.G,Y.H, K) follows by the

claim and the induction hypothesis. By applying the induction hypothesis to H,
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the cases ST(y.X.G,H) and ST(Q.X.G, H) can be proved in the same way as
the cases A\y.GG and \Q).G, respectively, by using the above claim.

The remaining cases follow straightforwardly by the induction hypothesis.
Proof of Lemma 3.2.23.

a: Let x = x1,...,x, be distinct individual variables and ¢t = t1,...,t, be
individual terms. Suppose for all 1 < ¢ < m. F“ has no free term variable X/
such that o # 0; but oz /t] = 6;[z/t].

(i) F* is a term variable.

By the assumption of F'¢ we have

K%[z/t] if F* = X% for some 1 < ¢ < m,

FOX/K][z/l] =
F*lz/t]  otherwise,
= Fla/iXT YRR /), X K e ).
For the following cases, suppose X* = X ,..., X, (respectively z*) is the

sublist of X (respectively z) consisting of those variables which are equivalent
to some free term variables of F® (respectively are in fo(F*[X/K])) and K*
(respectively t*) is the corresponding sublist of K (respectively ).

(i) F* = Xy.G.

This case follows by the following claim.
Claim 1. The context y.G satisfies the lemma.
Proof of Claim 1. We have (y.G)[X/K][z/t] = y".Gly/y][X"/K"]ly' /y"][z"/t"],
where ' is y (respectively y” is ¢/) if y & fu(K™) (respectively vy & fu(t")),
otherwise y' (respectively y”) is the first individual variable which is not in fv(G)U
Ful*) (respectively fo(Gly/y)[X* /K] U fo(t).

Suppose z** is the sublist of z consisting of those z;’s which are in fo(F®)
and t** is the corresponding sublist of £. Note that x**is also a sublist of z* since

fo(F*) € fo(F*[X/K]) (Note (f) on page 60).
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We have (y.G)[z/t)[XE ) K 2/, Xor ™/ Ko /4] =

¥ /¢ 5 T /
" Gl Y A e X e ),

1

where y”" is y (respectively vy is y"') if y & fu(t™) (respectively y"”" &

’
6ij

U fo(K;’[z7/t])), otherwise y (respectively y™) is the first individual variable
j=1

which is not in fv(G) U fo(£*) (respectively fo(Gly/y"][x™ /t*]) U
U foli) la/£1)
’ Let z be an individual variable which does not occur in z*,
Gly/y 11X/ K7y [y"|las/t] or
Gly/y" e /£y Ty S e [ X L)

By the induction hypothesis, we have

(y.G)X/K][z/t]

y" . Gly/y X/ Ky [yl /t]

2.Gly/y XKy [y ™ /1t ][y /2]

2. Gly/y [ Xy Hy Al /L]

2. Gly/y [ X/ Ky /)" /]

2Gly/y Ny /2] K 2/

2.Gly /X | K"/ t]

- Clyflz /)] Xifl[g* Jt*] y Kil 2] o X5 [a* /t*] / K5 (/7]

Nl 5! R P / * %
2 Gly/) ™ e X K e, X R [t /), and
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(9. Q) / XN K [ /t), . X B e [ /1]

— " Gly/y" e N X R ) X )
= =Gly/y" " /ey X /t]/Kffl[z*/z*L-..,Xf:*[f/ﬂ/Kf:’"[z*/z*]]
[y/”//Z]

ZG[y/y”/] [g**/é**] [y////yl///] [y””/Z]
P ) R e X G L)

" kk [ gkk / 11 L 521 * [ gk (2 T /t* ‘%r * [k
2.Gly/y" | [ty X K e e, X0 R ()

*k [ kK 62'1 z* /t* 521 * /% iz /t" ‘Zr * [k
2. Gly/y" " /A e X K e, X R )

n 511[3c /£ 521 - W iy [ /" Ol [k /g%
2.Gly/=)[™ /£ [X, TR a1, X R [ /7).

Thus we have the claim.

(iii) F* = AP.G.

This case follows by the following claim.
Claim 2. The context P.G satisfies the lemma.
Proof of Claim 2. We have (P.G)[X/K][z/t] = P'.G[P/P'|[X*/K"][z/t] and
(PG /(X7 K ) X K ]

= PG/ PR S K/, 0. ) K (),

/

where P is P if P ¢ FV(K") (so P ¢ U FV(K, [a:/t])), otherwise P’ is the

j=1
first predicate variable with the same arity as P which is not in FV(G)UFV (K*)

(= FV(G [x/t])UUFV( [fv/t]))

By the 1nduct10n hypothesis, we have
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(PG /X K /8], ., X K (a1

= PGl P/P X K ], X R )

PGP/ P /X Ky, X K )

P'.G|P/P[X*/K*[z/1]

= (PG)X/K]xz/t].

(iv) F* = AYP.G.
This case follows by the following claim.
Claim 3. The context Y2.G satisfies the lemma.

Proof of Claim 3. We have

(YP.OX/Klle/t) = (2 GYP/Z)) X" /K )x/1]

= 2y QYR 20X | K (27 ) 23) [ /4),

where Zlﬂ is Y if Y8 is not equivalent to any free term variable in K*, otherwise
77 is the first term variable of type [] which is not equivalent to any free term
variable in K* or G, and Z is Z if ZP .G[Y?/ZP|[X*/K*] has no free term
variable Z9 such that o[z /t] = Blz/t], otherwise Z2 is the first term variable of
type [§] such that there is 1o free term variable Zg of 27 G[Y*? /Z7][X* /K*] where
olz/t] = Blz/t], and

(V2.0)a/ X7 K ], X i )

= (ZN.GlY? )2/ )X K ), X ) KO 1))

Zf@/ﬂ.G[Yﬁ/Zg] [&/ﬂ [Z?»’B[g/ﬂ /Zf[g/ﬂ]

Siylz/t] | 4%, Siplz/t] ) -9,
(X K ], X R 1)),

21

where Z§ is Y7 if YP.G has no free term variable Y7 such that olz/t] = S[z/t],

otherwise Z is the first term variable of type [3] such that there is no free term
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variable Zg of V.G such that o[z/t] = Blz/t], and Z0%/1 is Z0E/M i 702 55 not
equivalent to any free term variable in Kifl [z/t],... ,Ki:’ [z/t], otherwise Zf [2/1

is the first term variable of type [3[z/t]] which is not equivalent to any free term

U

variable in K, [z/t], ..., K [z/t] or GIY?/ 28]z /1).

Let ZP/1 be a term variable which is not equivalent to any term variable
oceurring in X*, X a/H o x0w M qy8 ) z0 X K28 ) 28) (/1) or
GIY?/Z])[w/t)[25=" j 2= o M/Kifl [/t X K ()

By the induction hypothesis, we have

(YE.Q) /(XD K /1), X K [ /)]

_ Zf@/ﬂ.G[Yﬁ/ZgB] @/ﬂ [Zf[z/ﬂ/Zf@/ﬂ}
[Xil /Kil [E/ﬂ’ v 7Xir /Kir [Z/ﬂ]

Zﬁ@/ﬂ.G[Yﬁ/Zg] [E/ﬂ [Zg[z/ﬂ/zf[ﬁ/ﬂ]

8iy lz/t] | 1.9 Siplz/t] / 7-9%, z/t z
(X G ], X K (/1)) 2/ ) 7Pk

Zﬁ[z/t]_G[yﬁ/Zgﬁ] [z/1] [Zg[z/i]/zf[z/t]][Zf[&/ﬂ /Zﬁ[z/ﬂ]

X e ), X )

Zﬂ@/ﬂ.e[yﬁ/zﬂ /82" ) 21

Dl g g, L e g )

iz 'G[yﬁ 12825 12°) 1 0/t]

X R ), X R [ ]

27 GIY P 2w X R ), X R )

270Gy /27 X" | K*[z/1], and
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YO.GX/Klz/t] = 2Z3*Y.GIYP/Z])|X* /K2 ) 23) [z /1]

20 GIY P 201X (K20 2l )12, 27

200 GIY P ) 20X | K27 ) 23125 | 2°) [ /8]

2. GIY P (211X /K27 ) 2°) [ /]

Z8e/ QIy P 1 7828 j2°) X * | K*][z /4]

ZPeB Gy e ) 20X K [z /1)

Thus we have the claim.

The case ©(Y1.G1, Y2.Go, H) also follows by the above claim and the induction
hypothesis. By applying the induction hypothesis to H, the cases ST (y.Y.G, H)
and ST(P.Y.G, H) can be proved in the same way as the cases \y.G and \P.G,

respectively, by using the previous claims for the context Y.G.

For the proofs of Lemmas 3.2.24, 3.2.25, and 3.2.26, suppose F' = F’. Then
there exists a sequence of C-H terms F' = Fy,..., F, = F', k > 1 such that for
each 1 <1 < k, F; is obtained from F;_; either by replacing some occurrences of
term variables by equivalent term variables or by a legitimate change of bound
variable.

Proof of Lemma 3.2.24.

(i) FF'= 2~

Then F' = Z¢ for some formula o/ where o/ = a. By Lemma 2.14, o/[z/t] =
alz/t]. Hence Flz/t] = Z°W/M = 7o'/ = F'lz /1],

For the following cases, we will prove by induction on k. We will prove only
the case k = 1 since the case k > 1 easily follows by the subsidiary induction
hypothesis and the case k = 1.

(i) F = \y.G.
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Then Flz/t] = A2.G[y/z|[z*/t*], where z* is the sublist of x consisting of those
variables which are in fu(F), t* is the corresponding sublist of ¢, zisy if y & fu(t*),
otherwise z is the first individual variable which is not in fv(G) U fo(t*).

Case 1. F' = \y.G' where G' = G.

Since fu(G) = fu(G), F'lz/t] = \z2.G'[y/z][z*/t*]. By the main induction
hypothesis, Gly/2][z* /7] = G/ly/z)[u/t"]. Henes Flu/t] = F'lu/t].

Case 2. F' = My .G[y/y] where y is replaceable by v/, v/ is free for y, and ¢/
does not occur free in G.

Then F'[z/t] = N\ .Gly/y'|[y'/2'][z* /t*] where 2" is ¢ if ¥ & fv(t*), otherwise
2’ is the first individual variable which is not in fo(Gly/y']) U fo(t*).

Since 2 ¢ (£0(G) = {y) U folt), either 2 & fo(Gly/+lz*/27) or 2 = 2.

Hence, by the induction hypothesis (Lemmas 3.2.19 and 3.2.24) and Corollary

3.2.18,
Fllz/t] = X .Gly/yly /2" /1]
= A\.G[y/?]|[z*/t"]
= A\2.Gly/][z*/t"][7] 7]
= \2.Gly /27 /) =][x" /]
= MGly/z|[z"/t*) = Flz/t].
(iif) F = AP.G.

Case 1. F' = AP.G' where G’ = G.

This case follows by the main induction hypothesis.

Case 2. F' = AP'.G|P/P’] where P’ is of the same arity as P, P is replaceable
by P’, P is free for P, and P’ does not occur free in G.

Then P’ ¢ FV(G[z/t]). Hence, by the induction hypothesis (Lemma 3.2.20)

and Corollary 3.2.18, we have Fz/t] = AP.G[z/t] = AP .G[z/t]|[P/P'] =
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AP .GIP/P[z/t] = F'[z/t].

(iv) F = AX".G.

Then Flz/t] = \YP/U.GIXP/YF)[x/t], where Y7 is XP if XP.G has no free
term variable X such that o[z /t] = B[z/t], otherwise Y7 is the first term variable
of type [B] such that X”.G has no free term variable Y where oz/t] = 3z /t].

Case 1. F' = AX?.G" where § = and G' = G.

Since fv(G) = fv(@"), we have F'[z/t] = A\Y =2 G'[ X5 )Y ][z /t].

By the induction hypothesis (Lemmas 3.2.24 and 3.2.26), G[X?/Y"][z/t] =
G'[X7 /Y ][z/t]. Hence Flz/t] = F'[z/1].

Case 2. F' = \Z7 .G[X" /7P where 3" = 3, Z” is not equivalent to any free
term variable of G and is free for X” in G.

Then F'[z/t] = AZ0 W0 .GIx8 129129 |27 )[z/1), where Z7 is Z7' if
7% .G[XP/Z"] has no free term variable Z7 such that o[z/t] = #'[x/t], otherwise
Zl’g " is the first term variable of type [('] such that there is no free term variable
77 of 7% .G[X? /7P where olz/t] = F'[z/1].

Let 2224 be a term variable which is not equivalent to any term variable
occurring in @, G[X?/YP)z/t] or G[XP/Z271[2% |77 [z/1)].

By the induction hypothesis (Lemmas 3.2.21, 3.2.23, and 3.2.24), we have

B/t = A2 GIxP 2828 2 /]

AZIEGIX 27)(27 2] e 012 200

\Z2e.GIxP 27|27 ) 27127 1 20 ]

A28 GIXP 2727 | 22 [/

AZ2e/.GxP 202 /1), and
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Flz/t] = AYPEA.GIXP/YP /1]

)\Z*B[z/ﬁ .G[Xﬁ/Yﬁ] [&/ﬂ [yﬂ[z/ﬂ /Zf[@/ﬂ]

AZIHGIXP YO P 2] /1]

AZIE.GIXP ) 202 /1).

From the proofs of cases (ii)-(iv) we can also conclude that:
if C' is a context of the form y.G, P.G or X.G and C’ is a context which is
equivalent to C, then Clz/t] = C'[z/t].

By using the above result for contexts of the form X.G, we can prove in the
same way as the cases A\y.G and A\P.(&, respectively, that this result also holds for
contexts of the form y.X.G and P.X.G .

The cases ®(X.G,Y.H,K), ST(y.X.G, K), and ST(P.X.G, K) follow by ap-
plying the induction hypothesis to /i and the above results to X.G, Y.H, y. X.G,
and P.X.G.

Lemma 3.2.25 can be proved in the same way as Lemma 3.2.24 (using Lemma
2.17 when F'is a term variable).

Proof of Lemma 3.2.26.

(i) F is a term variable.

If F = X% for some 1 < ¢ <n, then I/ = X% and hence F[X/H| = Hq‘; =
Ky =F/[X/K], otherwise F[X/H] = F = F' = FI[X/K].

For the following cases, we will prove by induction on k. We will prove only
the case k = 1 since the case k > 1 easily follows by the subsidiary induction
hypothesis and the case k£ = 1.

Suppose X* = X;,,..., X, is the sublist of X consisting of those term variables
which are equivalent to some free term variables of F', and H* and K™ are the
corresponding sublists of H and K, respectively.

(i) F = \y.G.
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Then F[X/H] = XN/ .Gly/y|[X*/H"], where ¢ is y if y € fv(H"), otherwise
y' is the first individual variable which is not in fo(G) U fo(H").

Case 1. F' = \y.G" where G' = G.

Since H; = K forall 1 <i<nand G' =G, fu(H;) = fu(K;) forall1 <i<n
and fu(G") = fu(G). Hence F'[X /K| = \y'.G'ly/y'][X*/K*]. By the induction
hypothesis (Lemmas 3.2.24 and 3.2.26), we have F[X /H| = Xy .G[y/y|[ X*/H"| =
N Gly/y[ X7/ K] = F'IX/ K]

Case 2. F' = \z.Gy/z] where y is replaceable by z, z is free for y, and z does
not occur free in G.

Then F'[X /K] = X\".Gly/z][z/='|[ X" /K], where z"is z if z & fu(K™), other-
wise 2’ is the first individual variable which is not in fv(G[y/z]) U fo(K").

Let z* be an individual variable which does not occur in Gly/y'|[X*/H"] or
Gly/A[=/=][ X"/ K].

Since ¥’ ¢ fv(G) and y does not occur free in the type superscript of any free
term variable of G, for all 1 < s < I, G[y/y] has no free term variable X7 such
that X7 # X[ but X°W/=T = x2=W/= e xo = X

Similarly, for all 1 < s < I, Gly/z|[z/7'] has no free term variable X such
that X7 # X0= but X1/~ = X771,

By the induction hypothesis (Lemmas 3.2.19,°3.2.23, and 3.2.26), we have

FIX/K] = M\Gly/2][z/2][X" /K]

AZ"Gly/ =)/ X7 /K[ /7]

AZ"Gly/2)[z/ [ 2] X K]

A" Gly/2z/ ][ X7/ KT

A" .Gy /2" X/ K]

A2*.Gly/z*[X*/H], and
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FIX/H] = M\ Gly/y][X"/H]

A\ Gly/y X H Y [27]
A Gly /Yy 27X/ H]

A2 Gly/2 [ X" /H].

Similarly for the case AP.G.

(iii) F = \YP.G.

Then F[X/H] =\YP.G[Y? VP X*/H"], where Y/ is Y7 if Y7 is not equiv-
alent to any free term variable in H*, otherwise Y/’ is the first term variable of
type [] which is not equivalent to any free term variable in H* or G.

Case 1. F' = \Y?.G’ where f =3 and G' = G.

Since H; = K; for all 1 <4 <n, FI[X/K] = \YS.G'[Y? )YP[X* /K.

By the induction hypothesis, G[Y? /Y[ X*/H*| = G'Y? /Y/][X*/K*]. Hence
FIX/H) = F'[X/K].

Case 2. F' = NZ%.G[YP1Z5 ] where 3 = 3, Z% is free for Y? and is not
equivalent to any free term variable in G.

Then F'[X/K] = \2P .G[Y? /7727 |25 X* | K*], where 27" is 27 if 2%
is not equivalent to any free term variable in K*, otherwise Z7 is the first term
variable of type ['] which is not equivalent to any free term variable in K™ or
G[Y?/Z9].

Since Y% is Y or Y2 is not equivalent to any free term variable of G, either Y
is Z9 or Y2 is not equivalent to any free term variable of G[Y?/Z%]. Since Y/ is
not equivalent to any free term variable in H* and H; = K; for all 1 < i < n, either
Y2 is Z% or Y/ is not equivalent to any free term variable of G[Y?/Z%][X*/K*].

Hence, by the induction hypothesis (Lemmas 3.2.21 and 3.2.26) and Corollary
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3.2.18,

F'IX/K] = 227 .GIY?/27)(2" |20 X" /K]

A\Z7 GIYP )77 [X* | K]

YL .GIYP 280X (K27 YY)

XYL GIYP | ZNZ )Y P X/ K]

XYL GIYP )Y X* K¥)

YAV Y E|X /] = FIX/H).

As in the proof of Lemma 3.2.24, the lemma also holds for contexts and the
cases ®(Y1.F1, Yo Fo, G), ST (y.Y.Fi, F5), and ST(P.Y.Fy, F,) follow by these re-

sults and the induction hypothesis. Il

3.3 Reduction rules

We now give reduction rules for terms corresponding to the reductions of proofs
which are obtained by short cutting an introduction which is immediately followed

by an elimination of the same symbol.

Definition 3.3.1. We say that a term F reduces to a term F’, and write F' = F”,
if F' s obtained from F by a finite sequence of replacements of subterms using

the reduction rules below.

(Nntro, AElim) (G, HP) = G, mo(G*, HP) = HP.

(DIntro, DElim) (AX*.GP)(H®) = GP[X*/H].

(VIntro, YElim) (Az.GY)(t) = G*[x/t].
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(VIntro, VElim) ®(X*.GV,YP. HY, (1 K*)*VP) = GV[X*/K*],

S(X.GV,YP.HY, (upy JP)VB) = HY[YP/JP].

(3Intro, ELim) ST (x. X HY, I(t,GA@/D)) = HY[X*/Y][x/t][Y /1 jGo=/D],
where Y is X if X*.H" has no free term variable equivalent to X /1, otherwise
Y is the first term variable of type [a] such that Y /1 is not equivalent to any

free term variable of X*. H".

(Vo Intro, Vo Elim) (AP.G*)(T) »~ G*[P/TY.

(JoIntro, o Elim)

ST(P.X*.H",I(T, G = HY[X)Y|[P/T|[Y /T Ge®/T)],
where Y is X if X*.G7 has no free term variable equivalent to X°/T) other-
wise Y is the first term variable of type [a] such that Y2/ is not equivalent to

any free term variable of X*.G7.

In the above rules the expression on the left of the symbol =~ is called o redex
and the expression.on the right its contractum.

If F = F', we say F' is a reduct of F, and if F' is obtained from F by a
single application of one of the above rules, denoted by F-=, F', F'is called an
immediate reduct of I

A term is normal if it contains no redez.

Note. It can be easily proved by induction on F' that if /' > F’, then
a. I is of the same type as F;
b. fu(F') C fu(F), FV(F') C FV(F), and every free term variable of F’ is

equivalent to some free term variable of F'.
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Lemma 3.3.2. Let F, G, and ' be C-H terms.

IfF =F and F =1 G, then F' =1 G’ for some C-H term G’ such that G = G'.

Proof. Suppose F'= F' and F =1 G.

Since F' = F’, there is a sequence of C-H terms F = F,..., F,, = F, m > 1,
such that for each 1 < i < m, F; is obtained from F; ; either by replacing
some occurrences of term variables by equivalent term variables or by a legitimate
change of bound variable. We will prove by induction on m.

m = 1: We will prove by induction on F'.

Suppose F' is the redex which is reduced to G.

(i) F =m(F, Fy).

Then G = Fy and F' = m(F], F3) for some terms F| and F} such that F] = F}
and F) = F,. We have F' = m(F[, F3) = F{ =F, =G.

Similarly for mo(F7, F3).

(i) FF = (A X*Fy)(F).

Then G = F{[X*/Fg].

Case 1. F' = (AX®.F/)(F}) where o/ = a, F| = F|, and F = F.

Then F' =, FI[X* /F}] = F1[X*/F;] = G by Lemma. 3.2.26.

Case 2. F''= (AY* F[X*/Y*])(F,) where o/ = a, Y is free for X and is
not equivalent to any free term variable in F}.

Then F' =) Fi[X®/Y|[Y* /F)] = Fy[X*/F,] = G by Lemma 3.2.21.

(i) F = (\x.H)(t).

Then G = H[z/t].

Case 1. F' = (Az.H')(t) where H' = H.

Then F' =y H'[z/t] = H[z/t] by Lemma 3.2.24.

Case 2. F' = (A\y.H[z/y])(t) where x is replaceable by y, y is free for z, and y

does not occur free in H.
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Then F' = Hlz/y|[y/t] = H|z/t] = G by Lemma 3.2.19.

(iv) F = (AP.H)(T).

Then G = H[P/T].

Case 1. F' = (AP.H')(T) where H' = H.

Then F' =y H'[P/T] = H[P/T] by Lemma 3.2.25.

Case 2. F' = (AQ.H[P/Q])(T) where @ is of the same arity as P, P is
replaceable by @, @ is free for P, and () does not occur free in H.

Then F' =1 H[P/Q||Q/T] = H[P/T] = G by Lemma 3.2.20.

(v) F = (X F, YO Fy, gy HY).

Then G = F1[X*/H].

If the change when F becomes F’ occurs only in Y?.F,, then F’ > G.

The remaining cases are as follows.

Case 1. F' = (X . F/Y¥ F uH)where o/ =, 3 =3, F/ = F\, F} = F,,
and H' = H.

Then F' =, F{[X®/H'] = F,[X*/H] by Lemma 3.2.26.

Case 2. F' = ®(Z% .F\[X*/Z%],YP Fy, u H) where o/ = o, Z% is free for X
and is not equivalent to any free term variable in F.

Then F' =1 F\[X®/Z2¥[Z% |H] = F\[X®/H] = G by Lemma 3.2.21.

Similarly for &(X*.F, YP.Fy, us HP).

(vi) F = ST(z.X* K7, I(t; Ho@0Y),

Then G = K[X®/Y][x/t][Y*//H] where Y* is X if X* K has no free
term variable equivalent to X /Y otherwise Y is the first term variable of type
[a] such that Y°*/% is not equivalent to any free term variable of X*.K.

Case 1. F' = ST(x. X .K' I(t,H")) where o/ = a, K' = K, and H' = H.
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Then, by Lemmas 3.2.24 and 3.2.26,
F' o= KXY )Yz /Y=
= K[Xa/Ya][a:/t][Ya[z/t]/H] =G.

Case 2. F' = ST(x.2 . K[ X*/Z%), I(t, H)) where o/ = a, Z% is free for X
and is not equivalent to any free term variable in K.

Then F' =1 K[X®/Z2)[2° 12 V[a/t)| 22 “/ JH], where 2o is 2 if
Z¢ K[X®/Z*] has no free texm variable equivalent to Z*'*/1, otherwise Z is
the first term variable of type [@/] such that Z; /s not equivalent to any free
term variable of Z¢ K[X¥/Z%].

Since Z&™/M is not equivalent to any free term variable of Z% K [(X*/Z%] and
x does not occur free in the type superscript of any free term variable of X“. K,
cither Z' /" is not equivalent to any free term variable of K [ X*/Y[z/t] or
7'M = yrale/1),

Then, by Lemmas 3.2.21,.3.2.24, and 3.2.26,
F' = K[X%/2%)[2% )23 [z/1)[2X %0/ H]

KX/ 28w /1) 21 H]

KXY Y )22 [/t 221 ) H]

B S 5 7 e o

KX/ Y*][z/t][Y*/1/H] = G.

Case 3. F' = ST(y.X°/Y.K"[x/y], I(t, H)) where x is replaceable by y, y is
free for x, and y does not occur free in X“. K.

Then F' = K[x/y|[X /v ze/) [y /t][Ze=/WW/0 ) H], where Zo#/v] is X ol2/y]
if XVl K[x/y] has no free term variable equivalent to X°*/¥W/1  otherwise
Zel#/4) is the first term variable of type [a[z/y]] such that Z=/¥b/1 is not equiv-

alent to any free term variable of X°=/¥ K[z /y].
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Note that:

=1 x does

(1) since X*. K has no free term variable which is equivalent to Y
not occur free in the type superscript of any free term variable of X*. K, and
y & fu(X*.K), either Yo/t = zel2/1l op Yol#/t] is not equivalent to any free term
variable of K[z /y|[X /vl Zo@/l|[y /t];

(2) since X#/¥ K[z /y] has no free term variable which is equivalent to
Zoleiv/l (= Zele/M) - gele /il K g fy] [ X /¥l | Ze12/9)] also has no free term variable
which is equivalent to Z2@/!;

(3) since y ¢ fv(K) and x does not occur free in the type superscript of any
free term variable of XK, either Zo#/¥ js Xle/vl or Zol#/4] is not equivalent to
any free term variable of K[z /y];

(4) since y ¢ fu(K), X®.K has no free term variable which is equivalent to

eale/y)

By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26,

F' o Klz/y] [Xa[x/y]/Za[w/y]][y/t] [Za[x/y][y/t]/H]
= Klz/y|[ X zol) [y 1)zl pyelelvlls/0) [y ele/sls/ ) g

(since (1))

= Kla/y|[xM)zeemze fy ey mly e/ /H] @0 (since (2))
= Klo/y)[x00) ekl gfa)fye) H] (since (3))
= K[X°/Y[e/ylly/ 1Y/ H] (since (4))

K[X*)Y*[z/t][Y®1/H] = G.

Similarly for ST(P.X*.K, (T, H**/D)).
Now suppose F' is not the redex which is reduced to G.
(Vll) F = (Fl,FQ).

Without loss of generality, we may assume that the reduction occurs in Fj.
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Then G = (Gy, Fy) for some term Gy such that Fy =y Gy and F' = (F], F})
for some terms F| and F} such that F] = F} and Fj = F,. By the subsidiary
induction hypothesis, F] =; G} for some term G such that G} = G;. Hence
F' = (Fl, F}) =1 (Gl F) = (G1, F2) = G.

The remaining cases can be proved similarly.
m > 1: By the main induction hypothesis, £, | =; H’ for some term H’ such
that H' = G. By the case m = 1, F' =1 H for some term H such that H = H’,

and so H = (. O

Corollary 3.3.3. For any terms F, G, and F', if F = F' and F ~= G, then

F' = G for some term G’ such that G = G'.

Lemma 3.3.4. Let F' and G be terms. If F' 1 G, then

a. for any individual variable x and any individual term t, Flx/t] =1 H for
some term H such that H = Glz/[t];

b. for any n-ary predicate variable P-and any abstraction term T = A\xq, ..., x,0,
F[P/T) >y H for some term H such that H = G[P/T|;

c. for any term variable X® and any term K, where a = o/, F[X*/K'] =,

H for some term H such that H = G[X%/ K.

Proof.-Suppose F.»>-1 GG. We will prove by induction on F.
a: Let x be an individual variable and ¢ be an individual term.
First we suppose F' is the redex which is reduced to G. By Lemma 3.2.16, we
may assume that x is replaceable by t and t is free for x in F.
(i) F = m(F, Fy).
Then G = Fy. Hence Flz/t] = m(Fi[x/t], Fy[z/t]) =1 Fi[z/t] = Glz/t].
Similarly for mo(F7, F3).

(i) F = (\YP.F)(FD).
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Then G = F1[Y?/F,]. By Lemmas 3.2.23, we have

Flz/t] = Y R/t (F /)
~1 Fl[iﬁ/t][ymx/t]/Fz[x/tH

= R/t = Glz/t].

Similarly for &(Y," By, Yy . Fo, s HY), i = 1,2.

(iii) F = (\y.H)(u).

Suppose = € fv(Ay.H). The proof of the other case can be easily modified
from this proof.

By Lemma 3.2.19, Flz/t] = (A\y.H[z/t])(ulz/t]) =1 H[z/t][y/u[z/t] =
Hly/ullz/1] = Gla /1)

Similarly for (AP.H)(7') (using Lemma 3.2.22).

(iv) F = ST(y.YP.J7, I(u, H?W/)),

Then G = J[Y?/Z8[y/u)[Z°¥/") | H], where Z® is Y7 if Y#.J has no free term
variable equivalent to YPW/ otherwise Z” is the first term variable of type [f]
such that Z5¥/" is not equivalent to any free term variable of Y7..J.

Suppose x € fv(y.Y?.J). The proof of the other case can be modified from

this proof. Then

Flz/t] = ST(y.YP® Jiz/t], I(ulz/t], H[z/t]))

=y S Y 22y ful ) [ 22 H [ ]),

where 77U/ i y B/t if Y8/t J[2/t] has no free term variable equivalent to
yAle/l/ulz/t] | otherwise ZP"/" is the first term variable of type [B[x/t]] such that
Z2w /e /8] 59 ot equivalent to any free term variable of YA/t J[z /t].

Suppose for a contradiction that Z2W/™ J[yY8 /78]y u][Z8w/% | Z22¥/")] has a

free term variable Z7 such that o[z /t] = Bly/u|[z/t]. Since y does not occur free
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in the type superscript of any free term variable of Y?..J, Z is equivalent to some
free term variable of Y?..J. Hence Z7 2/t i equivalent to some free term variable
of YA/ Jz/t], and so is Z2W/ e/ (= ZBle/v/ul/y - Thig s a contradiction.
Thus: (1) J[Y#/Z8)[y/u][2°W/" ) ZPW/"]] has no free term variable Z7 such that

o # Bly/u] but ofz/t] = Bly/ullz/t].

Z2w/0/i /] 56 16t equivalent to any free term variable of Y8#/4 J[z /¢]

Since
(neither is Z2W/ /1) 780/ 36 hot equivalent to any free term variable of Y9..J.
Since y does not occur free in the type superscript of any free term variable of
YP.J, we have: (2) either 72 3¢ not equivalent to any free term variable of

J[Y8)ZP)[y/u] or ZW/) = Pyl

By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26,

Fla/t] =1 Jla/ Yz y fula /) 206000 H o 1)
= JIY?/Z0)[wftlly ule NI H /)

JYP /20yl 1220 )]

JY P 2P 2% ) 22y /) 207 H [ 1]

JIYP ) Z°Yy/u)[ 229" ) 220 [ )| 20000 ) e )

TP 2y 2?0 [ 22 N[22 [ H [ ft) (since (1))

IY P 1200y ful | 28V H)farf t) = Gl /1] (since (2)).

Similarly for ST(P.Y?.J, I(T, HS(/T)Y),

Next we suppose F' is not the redex which is reduced to G.

(v) F = (Fy, Fy).

Without loss of generality, we may assume that the reduction occurs in Fj.

Then G = (G, Fy) for some term G; such that F; >=; G;. By the induction
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hypothesis, Fi[z/t] =1 H for some term H such that H = G;[x/t]. Hence

Fla/t] = (Flz/t], B[z /t])
—1 (H, Fyz/t])

= (Gi[z/t, Falz/t]) = Glz/1].

The remaining cases can be proved similarly.

b: The proof is similar to that for a.

c: Let X be a term variable and K be a term, where o = o’.

First, suppose F' is the redex which is reduced to G. By Lemma 3.2.16, we
may assume that K¢ is free for X in F.

(i) F=m(F1, Fy),i=1,2.

The proof is similar to (i) of a.

(i) F = (\YP.F)(FD).

By using Lemma 3.2.21, the proof is similar to (iii) of a.

Similarly for &(Y;.Fy, Yo Fo, i H), i = 1, 2.

(i) F = (\x.H)(t).

Then G = H[z/t] and-(\x. H)[X*/K*'] =Xy H[z/y][X*/K], where y is
v if 2 ¢ fo(K?), otherwise 7 is the first individual variable which is not in
fo(H)U fo(K2).

Since x does not occur free in the type superscript of any free term variable of
H and y ¢ fv(H), y does not occur free in the type superscript of any free term
variable of H[x/y|. Hence: (x) H|[x/y] has no free term variable X such that

oZabutoly/t)=0=a=aly/t].
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By Lemmas 3.2.19, 3.2.23, and 3.2.26, we have

FIX*/K*] = (\y.Hlz/y][X*/K"])(t)
=1 Hlx/yl[X*/K*][y/t]
= Hz/ylly/tX/ K] (since (%))

= Hlz/t][X°/K“]=G[X*/K"].

Similarly for (AP.H)(T').

(iv) F = ST(z.YP J, 1(t, HP@/D)).

Then G = J[Y? /7 [x /][ 2°#/1 JH], where Z° is Y? if Y#.J has no free term
variable equivalent to Y#*/4 otherwise Z is the first term variable of type [f]
such that Z%#/% is not equivalent to any free term variable of Y?..J.

Suppose X is equivalent to some free term variable of z.Y?.J (so Z°#/1 £
X®). The proof of the other case can be modified from this proof.

We have (z.YP.J)[XY/K®] = y. YO Jlz/y][X® /K], where y is z if 2 ¢
fu(K?), otherwise ¥ is the first individual variable which is not in fv(Y?.J) U

fo(K®"). Then

FIX*/K) 7= ST P Tl fyl XY K1 (6 HIXTER)))

Tl fy)[X° KO 20 iy ) 20y X KY)

where ZJY is YBl/l if YBR/ Jz /y][X/K®'] has no free term variable equiva-
lent to YA#/ub/ | otherwise Z/Y is the first term variable of type [3[z/y]] such
that Z2// is not equivalent to any free term variable of YAl/4 [z/y][ X/ K.

Let Zg /1 'be a term variable such that Z§ does not occur in J or K for any

type superscript o and Z; is neither X nor Z,.
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By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26, we have

GIX°/K*] = JIY?/Z°|x/t][2°0 ][ X K]
= JY?/Z°) /(2% ) 2 (2 H X e K
= J[Y?/2°)(2° ) Z\[x/1)[ 25" H) [ X ) K]

= J[YP/Z =/ 25 H) X/ K], and

F[XO‘/KC“/] =1 J[z/y) [Xa/Kw’][yﬁ[w/y]/zf[m/y]“y/t] [Zf[x/y][y/t]/H[Xa/Ka’H
= Ja/yl[X ) KXY P/ 280 [y )| 25w/ ) 70w/

[Zoﬁ[x/y][ﬂ/t]/H[Xa/Ka’]]

Tl /y)X &) K[y ol ) 70l 7Bl 70y /4]
[Zg[ﬂc/y“y/t]/H[Xa/Ka’”

Tla/yl[ X R Y Pl Z0 )y /) 25  H X e )

Il /yl[Y P/ )z X Ky iz H X K]

JYP ) Z5) [ [y X /Ky 12 0  H X K]

TP )28V ylly /41X K12y e K]

T2 Z5 o 118 S | 257 By K]

TP Z)) [ /112y JH) (X K.

Similarly for ST(P.Y?.J, (T, H3F/T))),
Proofs for the cases when F' is not the redex which is reduced to GG are as in

a. ]

Lemma 3.3.5. Let X* be a term variable, F' and G be terms of type ], and K
be a C-H term.

If F =1 G, then K[X*/F] = H for some term H such that H = K[X*/G].

Proof. We will prove by induction on K.
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Suppose F' =1 G. It is trivial if X® is not equivalent to any free term variable
of K. Suppose X is equivalent to some free term variable of K.

(i) K = X°.

Then K[X*/F]=F - G = K[X?%/G].

(i) K = A\x.J.

Then K[X*/F] = \y.J[z/y|[X*/F], where y is z if © ¢ fu(F), otherwise y is
the first individual variable which is not in fo(J) U fo(F).

By the induction hypethesis, J[z/y][X*/F]| = H for some term H such that
H = Jlo/y)[X*/G].

Note that since y ¢ fo(F) and F =1 G, y € fo(G) (by Note (b) on page 91).

Hence, by Lemma 3.2.26 and Corollary 3.2.18,

K[X*/F] = Xy J[z/yl| XY/ F] = \y.H

= \y.J[z/y][X*/G]
= (AyJlz/y))[X*/G]

(\z.J)[X%/G] = K[X°/G].

Similarly for AP.J, AYP.J, &(Y1.Ky,Ya. Ky, J), ST(x.Y.H, J), and
ST(P.Y.H,J).
(iif) K = (K1, K>).
Then K[X®/F] = (Ki[X®/F),Ks[X*/F]). By the induction hypothesis,
K,[X°/F] = K;[X*/G] for all i = 1,2. Hence
K[X®/F] = (Ki[X®/F], K3[X*/F])
= (Ki[X®/G] KR [X/G)) = (K1, KR)[X /G = K[X®/G].

Similarly for the remaining cases. O]

In this chapter we have created new Curry-Howard terms in order to corre-

spond to proofs in the second-order natural deduction system, N.J;. We have
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defined substitutions as well as reduction rules for these new Curry-Howard terms
and have proved some basic lemmas. As mentioned in Chapter I, for computa-
tional purposes, it is necessary that every Curry-Howard term must be strongly
normalizable. This is the strong normalization theorem which will be proved in

the next chapter.



CHAPTER IV

STRONG NORMALIZATION

The goal of this chapter is to give a proof of the strong normalization theorem for
the new Curry-Howard terms defined in the previous chapter. Before proving the

theorem, we need to give some basic definitions as in the following section.

4.1 Some basic definitions

Definition 4.1.1. A reduction sequence is a sequence of terms such that each
term which is not the first term in the sequence is an immediate reduct of the
previous term.

A term I is strongly normalizable if all reduction sequences beginning with
F are finite.

The length of a finite reduction sequence is the number of terms in the se-

quence —1.

Note. By Konig’s lemma, if F' is strongly normalizable, then there is a number
which bounds the length of every reduction sequence beginning with F'.(See [7],
page 27, for a proof.)
Notation. For any strongly normalizable term F', let N(F) denote the least
upper bound of lengths of the reduction sequences beginning with F'.
Notes. Let F' be a strongly normalizable term.

a. If G is a subterm of F, then G is also strongly normalizable and N(G) <

N(F).
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b. If G is an immediate reduct of F', then G is also strongly normalizable and

N(G) < N(F).

Definition 4.1.2. A term is neutral if it is not of one of the following forms:

(F,G), inF, psF, AX.F, \v.F, \P.F, I(t,F), and I(T, F).

Notes.

a. A neutral term is a term variable or is of one of the following forms:
mF, mF, F(t), F(T), &(X.F,Y.G.H), F(G), ST(x.X.G,H), ST(P.X.G,H),
and F+(a).

b. If F is a neutral term, then a term of the form F(G) (respectively m F,
mF, F(t), F(T), and F*(a)) is not a redex, and hence its immediate reduct is
of the form F'(G) or F(G') (respectively m F', moF', F'(t), F'(T), and F'(«)),
where F' =1 F" and G =, G'.

Similarly, if H is a neutral term, then every immediate reduct of a term
of the form @®(X.F,Y.G, H) (respectively ST(z.X.G,;H) and ST(P.X.G,H)) is
of the form &(X.F',Y.G, H), &(X.F,Y.G', H), or &(X.F,Y.G, H') (respectively
ST(x.X.G' H) or ST(2.X.G,H') and ST(P.X.G',H) or ST(P.X.G, H")), where

F = F/, G =1 G/, and H = H' .

4.2 A proof of the strong normalization theorem

Following Girard (see [7]) and extending Crossley and Shepherdson (see [3]), we

now give a proof of the strong normalization theorem for the second-order system.

Definition 4.2.1. A candidate for reducibility (CR) of type [a] is a set C
of Curry-Howard terms of type [«] such that:
CRO: if F isin C and F' = F, then F’ is in C;

CR1: if F is in C, then F is strongly normalizable;
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CR2: if Fis in C and F' is an immediate reduct of F, then F' is in C;
CR3: if F 1is neutral and all immediate reducts of F' are in C, then F is in C;
CR3 gives, in particular,

CRY4: if F is neutral and normal, then F' is in C.

Note. It is easy to see that CR2 also holds if we replace “an immediate reduct” by

“a reduct”.

Lemma 4.2.2. The set of all strongly normalizable terms of type (] is a CR of
type [a].

Proof. 1t is clear that the set satisfies CR1, CR2, and CR3. It follows by Lemma

3.3.2 that the set satisfies CRO. O
Notation. Let SN, denote the set of all strongly normalizable terms of type [«].

Definition 4.2.3. Suppose Ci and Cy are sets of terms of types [a1] and [as)],
respectively. We define

i. C1 D Cy as the set of all terms F of type [aq D 3| such that for all terms
G in Cy, the term F(G) is in Cy;

it. Cy N\ Cy as the set of all terms F' of type [aq A ] such that m F is in Cy
and m F is in Cy;

iti. C1 NV Cy as'the set of all terms F of type a1 V as] such that for all types [v],
all CRs C of type [7], all terms Fy and Fy in C; D C and Cy D C, respectively,
and all term variables X{" and X5? which are not equivalent to any free term
variables of Fy and Fy, respectively, the term &( X7 F1(X7h), X52. Fy(X5?), F) is

mn C.

Lemma 4.2.4. Let Cy and Cy be CRs of types [a1] and [as], respectively.
If (uy Fer)ve2 s gn Cy V Cy, then F is in Ch.

Similarly for (pugF*2)1Vez,
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Proof. Suppose (p F*1)*1V*2 is in C} V Cs.

Let X7 and X352 be term variables such that X; and X, are distinct.

Claim. AX{". X" isin C] D C) and AX5?. X" isin Cy D (Y.
Proof of the claim. To show that AX{". X" isin C) D (4, let G be in C;. We will
show that (AX{".X{")(G) is in C} by induction on N(G). Since (AX{".X7")(G)
is neutral, by CR3 for (', it is enough to show that all its immediate reducts are
in C. Every immediate reduet of (AX{"'. X" )(G) is of one of the following forms.

(i) X¢' (X0 /G.

This is G which is in C].

(i) (AXT.X7)(G") where G >, G'.

By CR2, G’ is in €. Since N(G') < N(G), (AXT".X{")(G") is in C} by the
subsidiary induction hypothesis.

To show that AX52.X{" isin Cy D €y, let H be in Cy. We will show that
(AX52.XTY)(H) is in C; by induction on N(H). Similar to the above proof, it
remains to show that all its immediate reducts are in €. Every immediate reduct
of (AX52.X{)(H) is of one of the following forms.

(i) X¢'[xg'/H).

This is X7 which is in C; by CRA4.

(i) (AX52.X7")(H') where H >~ H'.

By CR2, H'is'in (5. Since N(H') < N(H), (AX$2.X{")(H") is'in C by the
subsidiary induction hypothesis.

Thus we have the claim.

Since py Flisin C1 VO, @( X7 (AXT X)) (XT), X522 (AXS2 X7 )(X5?), i F)
is in Cy. Since &(XT* (AXTXT)(XT), X532 (AXS2 X)) (X52), i F) =
(AXTEXT)(XT)[XT/F] = (AXTVX{)(F) = X{'[X{/F] = F, by applying

CR2 twice, F'is in (. Il
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Lemma 4.2.5. Let Cy and Cy be CRs of types [a1] and [as], respectively.

Then C7; D Cy, C1 ACy, and Cy VvV Cy are CRs.

Proof.
C1 D Cs:

Assume F'is in C D (U for the proofs of CR0, CR1, and CR2.

CRO: Suppose F' = F. Let G be in (. Since F'is in C; D Cy, F(G) is in Cy.
Since F'(G) = F(G), by CRO for (5, F'(G) is in Cy. Since G is arbitrary, F’ is
in Cq D Cs.

CR1: By CR4 for €4, X' is in (. Since F is in C] D Cy, F(X*) is in Cy
and so it is strongly normalizable by CR1 for C5. Since F is a subterm of F'(X°1),
by Note on page 104, F' is strongly normalizable.

CR2: By using CR2 for (5, the proof is similar to the case CRO.

CR3: Suppose F is neutral and all immediate reducts of F' are in C; D (.
Let G be in Cy. Since F(G) is neutral, by CR3 for Cs, to show that it is in Cs,
it is enough to show that all its immediate reducts are in C5. We will show this
by induction on N(G). Since F is neutral, by Note on page 105, each immediate
reduct of F'(G).is of one of the following forms.

(i) F'(G) where F =, F".

By the assumption, F’ is'in € D Cy. Hence F'(G) is in Cs.

(ii) F(G") where G =, G'.

By CR2 for C, G’ is in (. Since N(G’) < N(G), by the induction hypothesis,
F(G) is in Cy.

Thus F(G) is in Cy and hence F' is in C} D Cy.

Ci NCy:
Assume F' is in C7 A Cy for the proofs of CR0, CR1, and CR2.

CRO: Suppose F' = F. Since F isin C1 ACy, m F is in (. Since m F' = 7 F,
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by CRO for Cy, m F” is in C. Similarly, moF” is in C5. Hence F” is in C7 A Cs.

CR1: Since F'is in C] A Cy, m F is in 1, and so it is strongly normalizable.
Since F' is a subterm of 7 F', F' is also strongly normalizable.

CR2: By using CR2 for C'; and C), the proof is similar to the case CRO.

CR3: Suppose F' is neutral and all immediate reducts of F' are in C; A Cs.
Since w1 F' is neutral, to show that it is in (Y, it is enough to show that all its
immediate reducts are in C';. Since F'is neutral, every immediate reducts of m F’
is of the form 7 F’. By the assumption, 7 /" is in (. Similarly, we can show
that moF' is in Cy. Thus F'is in Cy A Cs.

Cy Vv Oy

Assume F'is in (4 V Oy for the proofs of CR0, CR1, and CR2. Let [y] be a
type, C' be a CR of type [y], Fi and F, be in C; O C and Cy D C| respectively,
and X7 and X35 be term variables which are not equivalent to any free term
variables of F; and F5, respectively.

CRO: Suppose F”" = F. Then &(X|"'.Fi(X71), X52.Fo(X5?), F') =
@ (XTF(XTY), X2 Fy(X5?), F). Since F is in C V.Cs,

(X F(XT), X352 Fy(X5?), F).is in C and, by CRO for C, so is
B(XT F (X)), X5 Fo(X5?), ). Hence F' is in Cy V Cs.

CRI1: Since & (X Fy (X)), X% Fo(X5?), F)is in C, it is strongly normaliz-
able. Since F'is a subterm of @( X% Fy(X{"), X352 Fy(X5%), F)), Fis also strongly
normalizable.

CR2: By using CR2 for C', the proof is similar to the case CRO.

CR3: We first prove the following claim.

Claim. If G5 and Gy are in C, Y** and Y, are term variables, and G is a
neutral term of type [ag V as] such that for every immediate reduct G’ of G,

(Y .G1,Y52.Gy, G') is in O, then &(Y,".G1,Y52.Gy, G) is in C.
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Proof of the claim. Suppose G; and G5 are in C, Y|*' and Y™ are term variables,
and G is a neutral term of type [a; V ap] such that for every immediate reduct G’
of G, ®&(Y".G1,Y3?.Gy,G') is in C.

We will show that &(Y*.Gy,Y5?.Gs, G) is in C' by induction on N(Gq) +
N(Gs). Since ®(Y*.G1,Y52.Gy, G) is neutral, by CR3 for C, it is enough to
show that all its immediate reducts are in C.

Since G is neutral, every immediate reduct of ®(Y,".G1,Y5?.Gy, G) is of one
of the following forms.

(i) &(Y".G1, Yy 2 .Gay G') where G =1 G'.

By the assumption, &(Y*' .Gy, Y;2.Go,G") is in C.

(i) ®(Y\"'.G, Y52.Goy G) where Gy =1 GY.

First we will show that G satisfies the conditions as GG; in the hypothesis.

By CR2 for C, GG} is in C'. Since for every immediate reduct G’ of G,
d(Y".G1,Y5?.GoyG') is in C and ®(Y*.G4, Y52.Go, G)
®(Y".G,Y52.Gy, GY), by CR2 for C, @ (Y*1.GY, Y5 2.Go, G') is also in C for every
immediate reduct G’ of G. Since N(G) < N(G1), by the induction hypothesis,
d(Y".G,Y5?.Gy, G) is in C.

(iil) ®(Y".GL, Y52 .GY, G) where Gy =1 GY,.

The proof is similar to (ii).

Thus we have the claim.

Now suppose F' is neutral and all immediate reducts of F' are in C; V (.
Then for any immediate reduct F’ of F, &(X{*. Fy(X{), X52. Fo(X5?), F') is in
C'. Hence, by the claim, &(X{'.Fi(X{"), X532 . F5(X5?), F) is in C. Thus F is in

Cy Vv Ch. O

In [3] canonical CR C,,, where « is a first-order formula, is defined by induction

on . We have some problems when « is a second-order formula. For example,
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suppose a = VoQ"3 where f = Q(v1,...,yn) and T" = Ayy,...,y,a. We can
see that 3(Q/T) = «, so we cannot claim that Cg/r) has already been defined
before we define C,,.

In [7], page 117, Girard defines a relation called “parametric reducibility” for
the system F. We will adapt the definition for our second-order systems. We
cannot do that straightforwardly since, unlike the type system of Girard, we use
ordinary formulae as types. In order to have the definition, we need to define a

set called collections of C'Rs first.

Definition 4.2.6. Let T = Axq,...,x,0 be an abstraction term. For each se-
quence of indwidual terms t = t1, ..., t,, let Cy be a CR of type [0[z/t]], where
T=1T1,...,Ty.

We call the set C = {Cy | t = ti, ..., t, are individual terms.} a collection of

CRs corresponding to T.

Definition 4.2.7. Let a be a formula, P = P"* ..., P" be distinct predicate

variables, T = Ty,...,T,, where T, = Xz{....,z, 6. 1 < i < n, be abstrac-
tion terms, and C = Cq,...,C, be collections of C'Rs corresponding to Ty, ...,T,,
respectively.

We define a set Co[Py/Cy, ..., Py/Cy], which-can be written-as Co[P/C], of
terms of type [a[P/T]] inductively as follows.

If a 1s an atomic formula,

)
cyf if o = Py(t1,...,tm,) for some 1 < g <n and some

indiwidual terms t = t1,. .., ty,, where Cf is the
ColP/C) = .
element of Cy which is of type [0,[21/t1, ..., 2%, [tm,]];

SN, otherwise.




112

Claom[L2/C] is Cs[P/C] D C4[P/C].

Ciany[B/C] is Cl2/CI N Cy[2/C].

Clavy [2/C] is Co[B/C] v C4[E/C].

Cvap)[P/C] is the set of all terms F of type [Vx3[P/T]| such that F(u) is in
Cplayu)[P/C] for all individual terms .

Czep)[P/C] is the set of all terms F' of type [3x3[P/T| such that for all indi-
vidual variables y where y & fu(B) — {x}, all types [v] with y & fu(y), all CRs
D of type [7], all terms G of type |Gz /y|[P/T] D 7] such that for each individual
term u, Gly/u] is in Cgapy[P/C] D D, and y is not free in the type superscript of
any free term variable of G, and all term variables X PYIE/TI which is not equiv-
alent to any free term variable of G, the term ST (y.XP=/MIE/T] G XBl/IE/T]) | )
is in D; and if F' reduces to a term of the form I(t, H), then H is in Cgy/q[P/C].
Notation. In the following, P* is the sublist of P consisting of all P;’s which are
in FV(a), T and C* are the corresponding sublists of T and C, respectively.

Cv,ya8[P/C] is the set of all terms F of type [(V2QB)[P/T]] such that for all
abstraction terms U = Ay, ..., y,0 and all collections of CRs D corresponding to
U, F(U) is in C3(Q/D, P7/C7].

C,048[P/C] is the set of all terms F' of type [(F.QB)[P/L]] such that for all
q-ary predicate variables R where R ¢ FV (B[P*/T"]) — {Q}, all types [y] with
R ¢ FV(9), all ORs'D of type [4, all terms G"of type [S[Q/R, /"] > 4]
such that for each abstraction term U = Ay1,...,y,0 and all collections of CRs
E corresponding to U, G[R/U] is in CslQ/E,P*/C*| D D, and R is not free
in the type superscript of any free term wariable of G, and all term wvariables
XBRIBE T which is not equivalent to any free term variable of G, the term
ST(R.XPR/ELYT] G XPRIRLYTN I s in D; and if F reduces to a term of

the form I(U,H), then H is in C3(Q/D,P*/C*] for some collection of CRs D
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corresponding to U.

Note. From the above definition, it can be easily proved by induction on « that
for every r-ary predicate variable R which is not in {P}, if R ¢ FV(«), then

C.|R/D,P/C] = C,[P/C] for every collection of C'Rs D which corresponds to

some abstraction term Ayq,...,y,0.
Lemma 4.2.8. Let a be a formula, P = P["', ..., P"" be distinct predicate vari-
ables, T =Ty,...,T,, where T; = \z{,..., 2}, 6;. 1 <1 <n, be abstraction terms,

and C = Cy,...,C, be collections of C'Rs corresponding to T, ..., T,, respectively.

Then C,[P/C] isa CR of type [a[P/T]].

Proof. We will prove this by induction on «.

It is clear from the definition if « is an atomic formula. It follows by Lemma
4.2.5 and the induction hypothesis if « is of the form 3 D v, A ~, or V. The
remaining cases are as follows.

CuyslP/C]:

Assume F' is in Cy,g[P/C] for the proofs of CR0, CR1, and CR2.

Let u be an individual term. Then for the proofs of CR0, CR1, and CR2, F'(u)
is in Cgy [P /C] which is a CR by the induction hypothesis.

CRO: Suppose £’ = F.. Then £’ (u) = F(u). Hence £ (u).is in-Cpapy ) [P/C] by
CRO. Thus F” is in Cy,g[P/C].

CR1: Since F(u) is in Cgpy [P /C], by CR1, F(u) is strongly normalizable and
so is F since F'is a subterm of F'(u).

CR2: By using CR2 for Cgyy/y[P/C], the proof is similar to the case CRO.

CR3: Assume F' is neutral and all immediate reducts of F' are in
Cyys|P/C]. Since F(u) is neutral, by CR3, to show that it is in Cpgp[P/C], it

is enough to show that all its immediate reducts are in Cgy, /[P /C]. Suppose F*
Bly/u]
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is an immediate reduct of F'(u). Since F' is neutral, F* = F'(u) for some term
F’" such that F' > F’. By the assumption, F” is in Cy,g[P/C]. Hence F* is in
Cptyu[2/C]-

Similarly for Cy,qs[P/C].
Caep[L/C]:

Assume F' is in C5,4[P/C] for the proofs of CR0, CR1, and CR2.

Let y be an individual variable such that y € fv(8) — {z}, [y] be a type with
y & fu(y), D be a CR of type [7], G be a term of type [B[z/y][P/T] D 7] such
that for each individual term w, Gly/u] is in Cppy[P/C] O D and y is not free

P/

in the type superscript of any free term variable of G, and XPF/¥I2/T] be a term

variable which is not equivalent to any free term variable of G.

For the proofs of CR0, CR1, and CR2, since F is in C3,3[P/C],

ST (y. X Pl=/WIP/T] G XPe/WIP/T FY i in D and if F = I(t,H), then H is in
Cta/y[2/C].

CRO: Suppose F' = F. Suppose F' = I(t,H"). By Corollary 3.3.3, F = H*
for some term H* such that H* = I(t, H"). Then H* = I(t, H) for some term H
such that H = H. Since H is in Cg,/q[P/C], so is H' by CRO. Since
ST (y. X Pl/WIPIT G XA MIP/TY Py = ST (y. XPR/MIE/T G(XPR/WIE/TN ) by
CRO for D, ST (y. XAl=/vIIE/T) G X Bl=/WIP/T] | F'Y isin D. Hence F”is in Co,5[P/C].

CR1: Since ST(y. X /MIE/TLGXPRVIEITY [ is in'D, by CR1-for D, it is
strongly normalizable, and so is F' since F' is one of its subterms.

CR2: Suppose F =1 F'. If F' > I(t,H), then F > I(t,H), and so H is in
Cplzyg[P/C]. The rest of the proof is similar to the case CRO.

CR3: First we will prove the following claim.

Claim. If H is in D, K is a neutral term of type [3x3[P/T]] such that for every

immediate reduct K’ of K, ST (y. X" =/WIE/T] [ K') is in D, then
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ST (y. XP=MIP/T [ K) is in D.

Proof of the claim. Suppose H is in D, K is a neutral term of type [Jz([P/T]]
such that for every immediate reduct K’ of K, ST (y. XP/VIE/TI [ K'Y is in D.
We will show that ST (y. XPE/MIE/T [ ) is in D by induction on N(H). Since
ST (y. XP=/WIE/T] H K) is neutral, it is enough to prove that all its immediate
reducts are in D. Since K is neutral, every immediate reduct of

ST (y. XPl/IE/TI [ ) is of one of the following forms.

(1) ST (y. XP=MIE/ HIK") where K =1 K'.

This reduct is in D by the assumption.

(ii) ST (y. XPE/IE/T [ K) where H =1 H'.

By CR2 for D, H" is in D. Since for every immediate reduct K’ of K,
ST (y. XPMWIE/T] [ K'Y = ST (y. X eIB/T] [ K'Y and ST (y. XO=/MIE/T [ K
is in D, by CR2 for D, ST(y.X =/ {' K"} is in D for every immediate
reduct K’ of K. Hence H' satisfies the conditions of the hypothesis. Since
N(H') < N(H), ST (y. XPEAIED F{' K) is in D.

Thus we have the claim.

Now suppose F' is neutral and all immediate reducts of F' are in C5,3[P/C].
Then for every immediate reduct [ of F, ST (y.XP#/WE/T G XAl/VIE/TI) )
is in D. Since G is in Cgpy[P/C] D D, G(XPEAIE/ is in D. By the claim,
ST (y. XB=MIE/T] q(XAl=iIB/T) JRYis'in D.

Suppose F' > I(t,H). Since F' is neutral, there is a finite reduction sequence
from F to I(t, H) with length > 1. Let F’ be the immediate reduct of F in the
sequence. By the assumption, F” is in C3,4[P/C]. Since F' = I(t,H), H is in
Cglz/y[P/C]. Hence F is in C3,43[P/C].

Similarly for Cs,qs[P/C]. O

Lemma 4.2.9. Let a be a formula, P = P"*,..., P be distinct predicate vari-
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ables, T =Ty,...,T,, where T, = \z{,... 2}, 6;, 1 <1 < n, be abstraction terms,
and C = Cy,...,C, be collections of C'Rs corresponding to T, ..., T,, respectively.

If R and R' are r-ary predicate variables which are not in {P} and R ¢
FV(a) —{R}, U = Azy,...,2.0 is an abstraction term, and D is a collection of

CRs corresponding to U, then Co[R/D, P/C| = Cyor/r[R' /D, P/C].

Proof. Suppose R and R’ are r-ary predicate variables which are not in {P} and
R ¢ FV(a)—{R}, U = Az,..., z0 is an abstraction term, and D is a collection
of C'Rs corresponding to U.

We proceed by induction on «. The cases where acis 6 D vy, B Ay, or BV 7y
easily follow by the induction hypothesis.

Suppose R ¢ FV(a). Then R' ¢ FV(a[R/R']) since R' ¢ FV(a) — {R}.
Hence, by the Note on page 113, C,[R/D, P/C] = C,[P/C] = Cyr/r|R' /D, P/C].
Suppose R € FV («).

(i) « = R(ty,...,t,) for some individual terms ¢y, ... ,.

We have C,[R/D, P/C|] = D, where D; is the element of D which is of type

.....

lo[z1/t1, ..., 2z /t]] and Cug/ry[R' /D, P/C] = Criq,,..1) R /D, P/C] = Dy.

For the remaining cases, we will show that C,[R/D, P/C| C Cyr/r[R' /D, P/C]
and omit proofs of the converse which can be done similarly.

Let F'be in C[R/D, P/C].

(ii) & = Vap3.

Let ¢t be an individual term. Then F(t) is in Cg,/q[R/D, P/C]. By Lemma
2.12 and the induction hypothesis, Cgl,/q[R/D, P/C] = Cpa/gir/r| R /D, P/C] =
Cor/riz/q R /D, P/C]|. Thus F(t) is in Cgr/riz/q[R'/D, P/C|, and hence F is
in Cvagir/m [ /D, P/C] Le. Copryry[R'/D, P/C].

(iii) a = Jaf.

We want to show that F'is in Cs,gr/r1[R'/D, P/C].
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Since F is in C5,5[R/D, P/C], it ' = I(t, H), then H is in Cypq[R/D, P/C]
which is Cir)rw/q[R'/D, P/C] by the induction hypothesis and Lemma 2.12.

Let y be an individual variable such that y & fu(G5[R/R']) —{z}, [7] be a type
with y & fuv(v), E be a CR of type [y], G be a term of type
B[R/ R|[x/y][R'/U,P/T] D 7] such that for each individual term u, Gly/u| is
in Cpir/r2/u[R' /D, P/C] D E, and y is not free in the type superscript of any
free term variable of @, and XU/ H1#/vllF/U.L/T] ha g term variable which is not
equivalent to any free term variable of G.

By Lemmas 2.12 and 2.16, B[R/ R'|[z/y|[R' /U, P/T| = Bz /y][R/U, P/T]. By
the induction hypothesis and Lemma 2.12, Cgir/rz/u[R' /D, P/C] =
Colayuir/r) [ R /D, P/C| = Cppa )[R/ D, P/C] for every individual term u.

Then we have XPRRIR [UEIT) = X0le/IR/VE/T (G is of type
[Blz/y][R/U, P/T] D ~] and for each individual term u, Gly/u] is in
Cylz/u)|[R/D, P/C] D E.

Since F is in C5.3[R/D, P/C], ST (y XPEMRICEL G( X Pl=/WIR/VE/T]) F) is
in B, and so is ST(y. XOUR/RI=lIRULIT) G XPR/RIEMIR VLT F). Thus F is
in Caogr/r [/ D, B/C].

Notation. In the following, P* is the sublist of P consisting of all P;’s which are
in FV(«a), T* and C* are the corresponding sublists of 7" and C, respectively.

(iv) a = ¥,Q905.

Let V' = Ay1,...,y,7 be an abstraction term and & be a collection of C'Rs
corresponding to V. Then F(V) is in C3[Q/E, R/D, P*/C™].

We have (VoQpB)[R/R| = V2Q'B[Q/Q'][R/R'], where Q' is a g-ary predicate
variable which is not in (FV(8) — {Q}) U {R'}. By the induction hypothesis,
Coig/@r/m[Q' /€, R /D, P*[C] = Cyqn|Q'/E, R/D, P*|C"] =
Cs[R/D,Q/E, E7/C"]. Hence F(V) is in Cyiq/qr/r[Q'/€, R'/D, 27/C"]. Thus
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Fis in Co,qpiQ/@r/r) R /D, P/C] ie. Corymy[ /D, P/C].

(V) a = F,Q95.

We have (F2Q0)[R/R'] = HQ'B|Q/Q'||R/R'], where )’ is a g-ary predicate
variable which is not in (FV(8) — {Q}) U {R'}.

We want to show that F'is in C5,¢510/0na/r1 R’ /D, P/C].

Since F is in Cs,08[R/D, P/C], if F = I(V, H), then H is in
CslQ/E, R/D, P*/C*| which is Cpig/onr/m|@Q'/E, R'/D, P*/C*] by the induction
hypothesis, where £ is some collection of C'Rs corresponding to V.

Let Q* be a g-ary predicate variable such that Q* ¢
FV(B1Q/QIR/RIR /U PT]) — {Q}, 7] be a type with Q* & FV(3), E be
a OR of type [7], G'be a term of type [8[Q/Q[R/R1Q'/Q*, /U, P*/T*] O
7] such that for each abstraction term V' = Ay, ...,y,7 and all collections of
CRs & corresponding to V', G|Q*/V] is in Cyig/0nr/r @'/, R'/D,P*/C*| D E,
and Q* is not free in the type superscript of any free term variable of G, and
XOQ/QNR/RNQ/QHIUEYT] 1o g term variable which is not equivalent to any
free term variable of G.

By Lemma 2,16, 5(Q/Q(R/RIQ'/Q", R /U, B*/T*) = BIR/U,Q/Q", P*/T"].
By the induction hypothesis, Cgjo/0nr/m1(Q"/E, R /D, P*/C*] =
CslQ/E, R/D, P*/C7].

Then we have XPQIQIR/RIQYQLRIGPY/IT] = xAIQ/QLRVEIT (G is of type
1B]Q/Q*, R/U, P*/T*] O ~] and for each abstraction term V' = Ay, ..., y,7 and all
collections of C'Rs & corresponding to V', G[Q*/V]isin Cs|Q/E, R/D, P*/C*] D E.

Since Q" ¢ FV(B[Q/Q[R/R[R' /U, P*/T"]) —{Q'}, Q" ¢
FV(BIR/U, P*/T*]) - {Q}.

Hence, since F'is in C5,o3[R/D, P/C],

ST(Q*.XPR/QR/IULYT™] X BIQ/Q™R/ULYT']) [ is in E, and so is
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ST(Q*. XPIR/IQIR/RNQ/Q* R UL /T"] G X PIQ/QR/RIQ/Q"E/UL /T [) Thus F

is in CEIgQ’ﬁ[Q/Q’][R/R’] [R//D,B/Q] i.e. Ca[R/R’] [R//D,B/Q] ]

Lemma 4.2.10. Let a and o be formulae, P = P{"™,..., P be distinct predi-
cate variables, T =Ty, ..., T,, where Ty = Az}, ... ,xﬁni@, 1 <1 < n, be abstrac-
tion terms, and C = Cy,...,C, be collections of CRs corresponding to Ty, ..., T,,

respectively.

If a = o, then C,[P/C] = Cu/[P/C].

Proof. We proceed by induction on a. The cases where avis 3 D v, A7y, or BV~
easily follow by the induction hypothesis.

Suppose o = «'. It is trivial if @ = o/. Suppose there is a sequence of formulae
a = g, 01,...,0, =, r > 1, such that for each 1 <7 < r, «; is obtained from
a;_1 by a single legitimate change of bound variable. For the remaining cases,
we proceed by induction on 7. We will prove only the case r = 1 since the case
r > 1 follows straightforwardly by the subsidiary induction hypothesis and the
case r = 1.

We will show that C,[P/C] C Cy[P/C] and omit proofs of the converse which
can be done similarly.

Let F' be in C,[P/C]. Then F isof type [a[P/T]] = [o/[P/T]}.

(i) o = V.

Let t be an individual term. Then F(t) is in Cgp,/q[P/C].

Case 1. o =V where ' = .

By Lemma 2.14, [z /t] = f'[x/t]. By the main induction hypothesis,
Cplayg|P/C] = Caie[P/C]. Thus F(t) is in Cpgiyyy[L/C], and hence F' is in
Co[P/C].

Case 2. o = Vyp[z/y] where y is free for = and does not occur free in 3.
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By Lemma 2.13, f[z/y|[y/t] = Blx/t] and the rest of the proof is similar to
Case 1.

(ii) a = Jxp.

Case 1. o = Jxf’ where ' = 3.

This case can be proved in the same way as the following case by using the fact
that Cgp/q[P/C] = Cppe[P/C] for every individual term ¢, which is obtained by
Lemma 2.14 and the main induction hypothesis.

Case 2. o/ = Jyllz/y| where y is free for x and does not occur free in .

If F=I(t,H), then H is in Cgj,/[P/C] which is Cplz /g4 L/C] by the main
induction hypothesis and Lemma 2.13.

Let z be an individual variable such that z & fu(8[z/y]) — {y}, [v] be a type
with z € fu(), D be a CR of type [7], G be a term of type [B[x/y]ly/z][P/T] D 7]
such that for each individual term ¢, G[z/t] is in Cppy/y)pg[P/C] D D, and z is
not free in the type superscript of any free term variable of G, and X #l=/vllv/=P/T]
be a term variable which is not equivalent to any free term variable of G.

By Lemmas 2.13 and 2.17, 5lz/y]ly/=][2/T] = Blz/=][P/T]. Then
XBlMy/AR/T = xOl/EI2/T] - By Lemma 2.13, for every individual term t,
Ble/ylly/t] = Bleft], and s0 Capyiy/qlL/C] = Cpasg[L/C] by the main induc-
tion hypothesis. Hence G is of type [Gz/z][P/T] D ~] and for each individ-
ual term ¢, G[z/t]'is in Cppg[P/Cl"D D We also have-that » € fo(3) — {z}
and z is not free in the type superscript of any free term variable of G. Hence,
since F is in Ca,p[P/C], ST(z. XP/AE/T G(XAle/ZIP/TH I is in D, and so is
ST (2. XPl/y/AL/T] G X Bl/vlv/AL/T] F). Hence F is in Cysiz/4) [ P/C).
Notation. In the following, P* is the sublist of P consisting of all P;’s which are

in FV(«), T* and C* are the corresponding sublists of T" and C, respectively.

(iif) @ = VoQI8.
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Let U = Ay1,...,y,0 be an abstraction term and D be a collection of C'Rs
corresponding to U.

Then F(U) is in C3(Q/D, P*/C*].

Case 1. o/ =VoQ0" where ' = 3.

By the main induction hypothesis, C3(Q/D, P*/C*| = C3[Q/D, P*/C*]. Thus
F(U) is in Cy[Q/D, P*/C*], and hence F' is in C,/ [P/C].

Case 2. o =Y,Q'B[Q/Q'| where @)’ is a g-ary predicate variable which is free
for ) and does not occur free in f.

By Lemma 4.2.9, C3(Q /D, P*/C*| = Cyi0/0q[Q"/D, P*/C*| and the rest of the
proof is similar to Case 1.

(iv) a = FQ70.

Case 1. o = F,Q where ' = [3.

This case can be proved in the same way as the following case by using the
fact, which is obtained by the main induction hypothesis, that Cy[Q/D, P*/C*] =
Cs(Q/D, P /C*] for every collection of C'Rs D which corresponds to some abstrac-
tion term U = Ay, ..., y,0.

Case 2. o = 1Q'[[Q/Q'] where Q' is a g-ary predicate variable which is free
for @) and does not. occur free in (.

If F - I(U H), then H is in Cs[Q/D, P*/C*| which is Cgq,01|Q"/D, P*/C"]
by Lemma 4.2.9, where D is some collection of C'Rs corresponding to U.

Let R be a g-ary predicate variable such that R ¢ FV (5[Q/Q’'|[P*/T*])—{Q'},
[v] be a type with R ¢ FV(v), D be a CR of type [y], G be a term of type
81Q/QQ' /R, P*/T*] D ~] such that for each abstraction term U = Ayy, ..., y,0
and all collections of C'Rs & corresponding to U, G[R/U] is in Cyig o [P*/C*, Q' /€]
D D, and R is not free in the type superscript of any free term variable of G,

and XPlQ/QNQ/RLY/T"] e g term variable which is not equivalent to any free term
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variable of G.

By Lemma 2.16, 5Q/Q')[Q/R. P*/T"] = BiQ/R. P*/T"]. Then
XPR/QIQ /LT = XBlQ/ELY/T'] By Lemma 4.2.9, for all collections of CRs &
corresponding to some abstraction term U = Ay1, ..., 4,0, Cpg/0q(Q'/E, P*/C*] =
CslQ/E,P*/C*]. Then G is of type [B[Q/R,P*/T*] D ~] and for each abstrac-
tion term U = Ayi,...,y,0 and all collections of C'Rs & corresponding to U,
G[R/U] is in Cp[Q/E,P7/C7) S D. Since R & FV(5[Q/QE"/TT]) - {Q'},
R ¢ FV(B[P*/T"]) —{Q}. Hence, since F' is in C5,03[P/C],
ST(R.XPR/ELYT] G XPIR/BEL Iy B s in D, and so is
ST (R.XPIR/QNQ/RLYT| G X AR/QIRYRLT] | 7). Hence F is in

Caq 810/ P/C] i.e. Cu[P/C]. O

Lemma 4.2.11. Let « be a formula, P = P™', ..., P be distinct predicate vari-

ables, T =Ty, ..., T,, where T; = Az}, ... ,xfm(si, 1 <1 < mn, be abstraction terms,

and C = Cyq,...,C, be collections of C'Rs corresponding to T4, ..., T, , respectively.
Let R be a k-ary predicate variable which is not in {P}, U = Azq,...,zx0 be

an abstraction term, say z = z1,..., 2, and let

D = {CoizyP/C] | .t = t1,... tpare individual terms.}, so D is a collection of

CRs corresponding to U[P/T].

Then Co[R/D,P/C] = Cur/u)[P/C].

Proof. It R ¢ FV («), then, by the Note on page 113, C[R/D, P/C] = C,[P/C] =
Car/u[P/C]. Suppose R € FV(a).

We proceed by induction on «. The cases where v is 3 D v, BV, or B A~
easily follow by the induction hypothesis. The remaining cases are as follows.

(i) « = R(t1,...,t;) for some individual terms t = ¢y,.. ., t.

Then Co[R/D, P/C| = Cyz/y[P/C] = Cafryv)[2/C].
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For the remaining cases, we will show that C,,[R/D, P/C] C Cyr/u)[P/C] and
omit proofs of the converse which can be done similarly.

Let F be in C,[R/D, P/C].

(i) a = Vaps.

By the induction hypothesis and Lemmas 2.15 and 4.2.10, for every individual
term ¢, Cpa/g[R/D, P/Cl = Cppopnirjun[L/C] = Chiryvyiw/g[L/C]. Then this case
easily follows by this fact.

(iii) o = JzL.

We will show that F'is in C3,5p0[P/C]. If F' = I(t,H), then H is in
Cplayg|R/D, P/C] which is Cgir/ui/[P/C] by the induction hypothesis, Lemmas
2.15 and 4.2.10.

Let y be an individual variable such that y & fo(B[R/U]) — {x}, [y] be a type
with y € fu(y), E be a CR of type [7], G be a term of type [B[R/U][x/y][P/T] D
7] such that for each individual term ¢, Gly/t] is in Cgirv/q[L/C] O E, and y is
not free in the type superscript of any free term variable of G, and X A#/Ull=/y|[E/T]
be a term variable which is not equivalent to any free term variable of G.

By Lemmas 2.15, 2.16,and 2.17, S[R/Ul[z/y|[2/T] = lz/y|[P/T, R/U[P/T]).
By the induction hypothesis and Lemma 4.2.10, for every individual term ¢,
Cstrjulia/al2/Cl = Copgynirm[£/Cl = Cppeyq|£/C. R/D]. Hence we have
XOWR/UNe/ylPIT) = X Ol/IP/T.R/UIP/TN gnd @ is of type [Blx/y|[RP/T, R/U[P/T]] D
7] and for each individual term ¢, G[y/t] is in Cgpp/y[P/C, R/D] D E and y is not
free in the type superscript of any free term variable of G.

Since F'is in Cq,3[P/C, R/ D],

ST (y. X Ple/AIE/TRUIRIT] G X B/ R/TE/UI/TYY F) s in F, and so is
ST (y. X AW/UN=/WIP/T] q( X AIR/UI=/WIP/TT) ) Thus F is in Causiryu)[P/C).

Notation. In the following, P* and P** are the sublists of P consisting of all P;’s
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which are in FV(a[R/U]) and FV(«), respectively, 7" and T, C* and C** are
the corresponding sublists of T and C, respectively.

Note that P*™ is a sublist of P* since R ¢ {P}, similarly for 7" and C**.

(iv) a = VLQ1p.

By Lemma 4.2.10, we may assume that @ ¢ FV(U)U FV(T"),so Q & {P"}.
We want to show that F'is in Cy,ogrw[L/C).

Let V- = Ay, ..., y,7 be an abstraction term and € be a collection of C'Rs corre-
sponding to V. Since F'isin Cy,05|R/D, P/C|, F(V)isin C3(Q/E, R/D, P* /C*™].

Since Q ¢ FV(U) i.e Q & EV(0), Colzyg[P/Cl = Coryq(Q/E, P*/C*] for all
individual terms t =t;,...,t;. Hence D =
{CoylQ/E,P/CT] |t =11, .., t are individual terms.}. By the induction hy-
pothesis, C5[Q/€, R/, P**/C] = Cal@JE, R/D, P* /") = Comu@/E, P*/C7).
Thus F(V) is in Cgry[Q/E, P7/C*], and so F is in Cy,qar/u)[P/C] i.e.
Carrym[2/C].

(V) a =HQIp.

By Lemma 4.2.10, we may assume that Q & FV(U)U FV(T"), so Q ¢ {P*}.
We want to show that F' is in Cg,qa1r/u0)[P/C].

Since F is in Cs,08[R/D, P/C], if F' = 1(V, H), then H is in
Cs[P™/C™, R/D,Q /€] which is Cyp/uy[P*/C*, Q/E] (as shown in the above case),
where £ is some collection of C'Rs corresponding to V.

Let @' be a g-ary predicate variable such that Q' ¢ FV(B[R/U][P*/T7])—{Q},
[v] be a type with Q' ¢ FV (), E be a CR of type [7], G be a term of type
BIR/UQ/Q', P*/T*] D ~] such that for each abstraction term V' = A\yy, ..., y,T
and all collections of C'Rs € corresponding to V', G[Q'/V] is in Cyr/u)[P*/C*, Q /€]
D F, and (' is not free in the type superscript of any free term variable of G,

and XPIR/UIQ/QLEY/T"] he g term variable which is not equivalent to any free term
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variable of G.

By Lemma 2.16, S[R/U)Q/Q, P*/T"] = GIR/UIP/T),Q/Q\P"/T"]. As
shown in the above case, Cgr/)[Q/E, P*/C*| = C3(Q/E, P /C™] for all col-
lections of C'Rs £ which corresponds to some abstraction term V = Ayy, ..., y,T.

Hence we have XPIR/VIQIQEY/T = XAIRMUIE/TIQIQ B /Tl G is of type
BIR/U[P/T),Q/Q, P*/T*| D ~] and for each abstraction term V = Ay, ..., y,T
and all collections of C'Rs € corresponding to V/, G[Q"/V] is in C3[Q/E, P™ /C™] D
E and @' is not free in the type superscript of any free term variable of G.

Since F is in Ca,08[R/D, P/C]|,

ST(Q. XPR/QE/VIRITLEYT] i X AQ/QE/UIR/TLEY T 'FY is in F, and so is

ST(Q'.XPIR/UIRQ/Q.PYT"] G XAIR/VIRQ/IQLEY /Ty ). Thus F is in Cs,q8r/01 | P/C]

i.e. Corryu)[P/Cl. O
Lemma 4.2.12. Let F'“ be a Curry-Howard term, x = x4, ..., x, be distinct indi-
vidual variables, t = t1, ..., t, be individual terms, P = P{"*, ..., P."* be distinct
predicate variables, T = Ty, ..., Ty, where T, = X\z{, ... 2, 7;, 1 < i < k, be ab-
straction terms, C = Cy,...,Cy be collections of C'Rs corresponding to Ty, ..., T},
respectively, Xfl, e ,Xfl be inequivalent term variables such that every free term

variable of F“ 1s equivalent to Xfi for some 1 <i <[, and X = Xfi, e ,Xfl/,

where 8 = §;[z/t|][P/T]; 1< 4 < I, are inequivalent term variables, and let
K = Kfll, . ,Kf; be Curry-Howard terms in Cs /g P/Cl, ..., Csz/q[P/C], re-

spectively.

Proof. We will prove by induction on F'*.
Notation. Throughout this proof, 4" denotes [z /t][P/T] for any formula .

(Atomic) F* = X3¢ for some 1 < ¢ < I:
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Lemmas 2.14 and 4.2.10.

(D Intro) F® = \YA.G7:

We first prove the following claim.

Claim 1. For any terms J and H, if J is in Cgj,/q[P/C], H and H[Y?'/J] are in
Cotesa[P/C), then (AYP.H)(J) is in Cyjz/[P/C].

Proof of Claim 1. Suppose J is in Cgpp g [P/C), H and H[Y#?'/J] are in C,,(,/4[P/C).
We proceed by induction on N(J)+ N(H). Since (\Y?.H)(J) is neutral, to show
that it is in C,y/g[P/Cl, it is enough to show that all its immediate reducts are
in C,,/g[P/C). Every immediate reduct of (\Y?.H)(J) is of one of the following
forms.

(i) H[Y?')J].

This is in C,z/q[P/C] by the assumption.

(ii) (A\Y?'.H")(J) where H =, H'.

By CR2 for C,/y[P/C], H' is in C,pq[P/C]. By Lemma 3.3.4, H[Y?/J] =,
H* for some term H* such that H* = H'[Y# /J]. Since H[Y? /J]isin C, [y [P/C],
by CR2, H* is in C,,g[P/C], and so is H'[Y?/J] by CRO. Thus H’ satisfies the
conditions of the hypothesis and N(H') < N(H). By the subsidiary induction
hypothesis, (AY?.H')(J) is in C,/4[P/C].

(iii) (AYP.H)(J") where J=y J'.

By CR2 for Cyy,/g[P/C], J"is in Cpyyy[P/C]. By Lemma 3.3.5, H[Y? /J] = H*
for some term H* such that H* = H[Y?/J]. By CR2 and CRO, H* is in
Co/g[P/C), and so is H[Y?'/J']. Thus J’ satisfies the conditions of the hypoth-
esis and N(J') < N(J). Hence (\Y?.H)(J') is in C,y/q[P/C] by the induction
hypothesis.

Thus we have Claim 1.
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C,/q[P/C). By CRO, we may assume that Y is not equivalent to any free term

variable in X or K and G has no free term variable Y7 such that ¢ # 3. Then

Cyz/g[P/C]. Thus, by Claim 1, M(J) is in C,uy[L£/C]. Since J is arbitrary, M

is in Cpieyg[P/C] D CLuyg[2/C) i-e. CopuyylP/Cl-

(> Elim) F® = G2 (HP):

(A Intro) F® = (GP, HY):

ConpegP/C] ie. Cgay[P/Cl N Cypq[P/C. ~We will show that m M is in

Since m; M is neutral, by CR3, it is enough to show that all its immediate reducts
are in Cppgg[P/C]. Every immediate reduct of 71 M is of one of the following

forms.
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This case follows by the subsidiary induction hypothesis as in (ii).

Similarly, we can show that moM is in Cp/[P/C]. Thus M is in

Clorz/glL2/Cl-

(A Elim) F® = m,GY:

is in Cyz/q[P/C].

Similarly for moGPN,

(V Intro) F® = \y.GP:

that all its immediate reducts are in Cgjg /gy [P/C]. Every immediate reduct of
M (u) is of one of the following forms.

Since y € fuv(t) and y does not occur free in the type superscript of any free
term variable of G/, if X f Cis equivalent to some free term variable of G*[z/t][P/T]

for some 1 < i < [, then there is no free term variable X¢ of G®[z/t][P/T] such
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that o #Z J; but oly/u] = 0lly/u] (i.e. o = 4}). By Lemmas 2.13, 3.2.19, 3.2.22,
GPlu/t,y/u[P/T)IX /K] and Bla/tlly/u] = Blaft, y/u].

Since y € {z} U fv(K), y € fv(0;) and so Cy,(z/ty/u[P/C] = Cs,z/q[P/C] for
all 1 < <. Hence, by the induction hypothesis, G®[z/t, y/u][P/T][X /K] is in

Oﬁ[g/g,y/u] [B/Q] 1.e. Cg[g/ﬂ[y/u] [B/Q] by Lemma 4.2.10.

duction hypothesis, (Ay.G")(u) is in Cpg /gy [2/C)-

(V5 Intro) F* = \Q4.G7:
As in the above case, we may assume that Q ¢ {P} U FV(T)U FV(K). We

Let U = Ay1,....y,0 be an abstraction term and D be a collection of C'Rs

corresponding to U. We will show that M (U) is in Cpppg[P/C, Q/D] by induction

immediate reducts are in Cpz/[P/C,Q/D]. Every immediate reduct of M(U) is

of one of the following forms.

Since Q ¢ {P}U FV(K), Q & FV(&i[z/t]), and so Cyuy[P/C,Q/D)] =
Csifz/q[P/C] for all 1 <14 <. Hence, by the induction hypothesis,

GPlz/t][P/T,Q/U)[X/K] is in Cypyy[P/C, Q/D].
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Similar to (ii) in the above case, this case follows by the subsidiary induction

hypothesis.

(V Elim) F® = G"P(u):

is i Clgpa/gy/ule/a)[£/Cle By Lemmas 2.13 and 4.2.10, Cpparpy/ufz/g)[B/C] =

& corresponding to U[P/T].

Say U = My1,..,9q0, Y = Y1, Y and let D = {Copy[P/C] | u =
Uy, . .., u, are individual terms.}.. Then D is a collection of C'Rs corresponding
to U[P/T]. By Lemmas 2.15, 4.2.10, and 4.2.11, Cg/g[P/C,Q/D] =

Co/ieuulL2/Cl = Coiguue/glL/Cl = Capeyy[P/Cl. Hence M is in Coupp[P/C].

(V Intro) F* = (u G*)*1Vvee:
Confe/g[2/ClV Canpen[2/C].

Let [y] be a type, D be a CR of type [7], F} and F, be terms in Cy,z/q[P/C]
D D and Co,g[P/C] D D, respectively, and Yf/1 and Y;IQ be term variables

which are not equivalent to any free term variables of F} and F5, respectively. We
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have to show that @ (Y. Fy (Y1), Y2 Fy(Yy2), M) is in D.

We first prove the following claim.
Claim 2. For any terms G1, Go, and Gj, if Gs is in Cy,z/q[P/C] and Gy, G,
and Gl[Ylall/Gg;] are in D, then GB(Ylall.Gl, YQ%.GQ, p1Gs) is in D.
Proof of Claim 2. Suppose Gg is in Cy,m[L2/C] and G4, G5, and Gl[Ylall/Gg]
are in D. We will prove by induction on N(G;) + N(G2) + N(G3). Since
@(Yla/l.Gl, Y2al2.G2, p1Gs) is neutral, to show that it is in D, it is enough to show
that all its immediate reducts are in D. Every immediate reduct of
GB(Ylall.Gl, Y;/Z.GQ, p1G3) is of one of the following forms.

(i) G1[¥;" /Gs).

This is in D by the assumption.

(ii) @(Yla/l.Gl,}/'zaé.G’Q,ung) where Gy > G5.

This is in D by the subsidiary induction hypothesis.

(i) (V.G YL .G, 1 Gs) where Gy =1 G

By CR2, G} is in D. By Lemma 3.34, G [Ylall/Gg] is equivalent to some
immediate reduct of Gl[Ylall/Gg]. Since G4 [Ylall/Gg] is in D, by CRO and CR2,
so is G [Ylall /G3]. Thus (] satisfies the conditions of the hypothesis. Hence
EB(Ylall.G’l, YQQQ.GQ, 11G3) is in D by the subsidiary induction hypothesis.

(iv) BV .Gy, Y32 .Go, un GY) where Gs =1 G

By CR2, Gf is'in Cy,/q[P/C]. By Lemma 3.3.5, Gy [Ylall/Gg] is equivalent to
some reduct of Gy [Ylall/Gg]. Hence, by CRO and CR2, G [Ylall/Gg] is in D. Thus
G, satisfies the conditions of the hypothesis. Hence @()ﬂaa.Gl,Yfé.GQ,ung) is
in D by the subsidiary induction hypothesis.

Thus we have Claim 2.
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is in D. Hence, by the claim, @(Ylall.Fl(Yla/l), }/20/2.F2(}/2al2), M) is in D. Thus M
is i o/ [P/C]V Caalayg[P/C] 10 Cagayn[P/C].

Similarly for the case F'* = (uyG*2)%1Ve2,

(V Elim) F* = @(Y{ 1. P2, Y32 Fyg GV
Since Cyz/4[L/C] is closed under equivalence of terms, we may assume that F;
has no free term variable ¥,? such that ¢ # [, for all + = 1,2, and both Ylﬁ " and

/

Yf 2 are not equivalent to any free term variables in X or K. We want to show

By the main induction hypothesis, 111 H is in Cg,vg,)/1[P/C] ..

Cpye/[2/ClV Cpylayy[P/C]. By Lemma 4.2.4, H is in Cg,p/q[P/C].
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(3 Intro) F® = I(u, GAW/®)ws,
Clays)le/g[L/C]-

As usual, we may assume that y & {2} U fu(t).

By the induction hypothesis, M is in Cgy ue/q[L/C] which is
Cla/tlly/ule/t) | £2/C] by Lemmas 2.13 and 4.2.10. If T(ulz/t], M) = I(ulz/t], M'),
M = M’, and so M" is in Cgja /gy ule/q)[L/C] by CR2.

Let z be an individual variable such that z € fu(5[z/t]) — {y}, [7] be a type

such that z € fv(vy), D bea CR of type [v], H be a term of type [[z/t][y/z][P/TL]

U

7] such that for each individual term v, H[z/v] is in Cpjz/gjy/v)[P/C] D D, and z is
not free in the type superscript of any free term variable of H, and YAlz/dlv/=E/T]
be a term variable which is not equivalent to any free term variable of H.

We want to show that ST (z.YAe/dlv/2IP/T] fy(y Alz/Ulu/=IP/T]) [ (y[z/t], M)) is
in D. Again, since D is closed under equivalence of terms, we may assume that
Y Bl/8/=II2/T] [ has no free term variable equivalent to YA/8ly/2l2/Tl[=/ulz/4]

We first prove the following claim.

Claim 3. For any terms G and Hy, if Gy is in Cgpyjujje/q[P/C], Hy is in D, z does
not occur free in the type superscript of any free term variable of Y #&/dlv/=IIP/T]
Yy Ble/tlw/=IE/T [T, ‘has no free term variable equivalent to Yﬁ[@/t][y/Z][B/ﬂ[Z/U[i/t]]7
and H, [z /u[z/t]][Y Ple/dly/AL/TIE/vle/t] /G ] is in D, then

ST (2. Y Pe//AL/T [ [(u[z/t],Gy)) is in D.

Proof of Claim 3. Suppose Gy is in Cgjy /g L/Cl, Hi is in D, z does not
occur free in the type superscript of any free term variable of YA/8l/2II2/T] fr
Y Bl/t/=I2/T] F| has no free term variable equivalent to Y Ple/dlv/=E/T][z/ulz/t]

and H,[z/ulz/t]][YPle/dlv/=IL/T]z/ul2/t] /4] is in D. We will prove by induction
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on N(Gy) + N(H,). Since ST(z.YP/MW/AE/T [, [(u[z/t],Gy)) is neutral, to
show that it is in D, it is enough to show that all its immediate reducts are in D.
Every immediate reduct of ST'(z.YP/UW/ZE/T] [, [ (u[z/t],G1)) is of one of the
following forms.

(i) Hilz/ulz/t))[YPlz/dl/AE/TE/ uz/dl /G ).

This is in D by the assumption.

(ii) ST (z.YPle/d/ARIT] gt [ (u[z /t], Gy)) where H; =, H}.

By CR2, H; isin D. By Note (b) on page 91, z does not occur free in the type
superscript of any free term variable of YA/tl/=IP/T] [t and yAle/tly/=IP/T] f!
has no free term variable equivalent to Y A&/Aly/IE/T][z/ulz/t]

By Lemma 3.3.4, Hy|z/ul[z/t]] =1 H* for some term H* such that H* =
H![z/u[z/t]] and H, [z ulz/t]][y 2/8l/ARTE/ v/t JG1] — H** for some term
H** such that H** = H*[YPl/tlv/zL/TIz/uiz/t] /G ] so, by Lemma 3.2.26, H** =
H![z/ulz/t]] [yﬁ[z/ﬂ ly/=1[P/T][z/ulz/t] /G4].

Since H[z/ulz/t]][YPe/Aw/AR/ D /8l /G] is in D, by CR0O and CR2,
H![z/ulz/t))[YPle/dlw/AL/ T2/t /G T s in D. Hence H) satisfies the conditions
of the hypothesis. Thus-ST (z.Yle/lw/zIL/T] [t [(u[z/t],G4)) is in D by the
subsidiary induction hypothesis.

(iii) ST (z.YP/Ww/=IB/T] | | [ (ulz/t], G))) where Gy =1 GY.

By CR2, G is'in Cppy /g [P/C. By Lemma 3.3.5,
H, [z /ulz /1)) [YPle/dl/AL/T=/uiz/t] /G is equivalent to some reduct of
Hi[z/ulz/t]|[YPle/dy/2R/T)E/ulz/t) /G so it is in D by CRO and CR2. Hence G
satisfies the conditions of the hypothesis. Thus
ST (2. YPMW/ALT [ (ulz/t], GY)) is in D.

Hence we have Claim 3.

We have
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(1) M is in Capyjujia/g[L/C] by the induction hypothesis;

(2) H(YPe/MW/AR/T) is in D since H is in Cp g4 [P/C] D D;

(3) z does not occur free in the type superscript of any free term variable of
yBle/tlu/AR/T) p (v 8le/tlu/R/TY and Y Sle/tl/AR/T) p (v Sle/lu/AR/T hag no free
term variable equivalent to Y/Ale/dl/=2/T]z/ulz/4].

(4) H(YP/AW/AL/TN [ fyfw/t]][Y A2/l ZARADE w2/ /) is in D, since it is
Hz/ulz/t]](M), where H[z/ulz/t] is in Caw/gy/ue/gL/C] O D and M is in
Coly/uz/g[2/Cl i-e. Copwyafyufw/a)2/Cl:

Thus, by (1)-(4) and the claim,

ST (.Y Ple/dly/AL/T] (Y Ple/Au/ZL/TH T (yla/t], M) is in D. Hence I(ufz/t], M)

is in Caygjz/g[P/C] i-e. Capyy[L/Cl.

(3 Intro) F& = [(U, GAQ/U))FQ15,

We want to show that I(U[P/T], M), where M = GA@/V[z/t][P/T)[X /K], is
in C5,qs0/4[P/C]-

As usual, we may assume that Q & {P} U FV(T).

By the induction hypothesis, M is in Cgjou)z/q[£/C]. By Lemmas 2.15,
4210, and 4211, Cyigua/glL/Cl = Copsmioul2/€l = Coja/y2/C, QD] for
some collection of C'Rs D corresponding to U[P/T]. Hence M is in
Cog|2/C,Q/D).- 1t I(U[R/T], M) = T(U[P/T], M), M M' so M"is in
Cpia/g[2/C, Q/D] by CR2.

Let R be a g-ary predicate variable such that R ¢ FV (5[z/t][P/T]) — {Q},
[v] be a type such that R & FV (), D be a CR of type [y], H be a term of type
[Blz/t]|Q/R, P/T] D ] such that for each abstraction term V' = Ay, ..., y,0 and
all collections of C'Rs & corresponding to V', H[R/V] is in Ca/q[P/C,Q/E] D D

and R is not free in the type superscript of any free term variable of H, and
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Y Ale/dIQ/R.P/T] he g term variable which is not equivalent to any free term variable
of H.

We want to show that ST(R.YAlz/tQ/RL/T] py(ySle/lIQ/RL/TY [(U[P/T], M))
is in D. Again, since D is closed under equivalence of terms, we may assume that
Y Bl/8R/RP/TI [T has no free term variable equivalent to YAle/tlQ/R.P/TI[R/UIR/T]]

We first need the following claim which can be proved in the same way as
Claim 3.

Claim 4. For any terms Gy and H,, if Gy is in Cgguj/g[L/C), Hy is in
D, R does not occur free in the type superscript of any free term variable of
yBl/8Q/RL/T] f,  yPlz/UlQ/RBL/T] T, has no free term variable equivalent to
yBlz/tlQ/RE/TR/VIP/D and H, [R/UTP/E) [y Pe/AQ/RE/TIE/VIEITY 1G] s in D,
then ST(R.YPRMIQ/ELI] H, [(U[P/T],Gy)) is in D.

We have

(1) M is in Caigue/q[L/C] by the induction hypothesis;

(2) H(YPeMIRQIRET s in D since H is in Cay[P/C, Q/Er) D D, where Ex
is a collection of C'Rs corresponding to A\yy, . .., Y, R(y1, - . ., y,) and Y 2/HIQ/R.P/T]
is in Cigjayy [P/C, Q/ER];

(3) R does not. occur free in the type superscript of any free term variable
of YB/1Q/R.P/T] H(yﬁ[&/ﬂ [Q/R,B/Z]) and YB8lz/UQ/R.L/T] H(yﬂ[&/ﬂ [Q/RB/Z]) has no
free term variable equivalent to YA&/dIQ/R.L/TIR/UE/TI].

(4) H(YPMR/ELITIR/U[P/T])[YPle/dlQ/RL/TIR/UIL/T /N ] is in D, since
it is H{R/U[P/T)|(M), where H[R/U[P/T]] is in Cay/q[P/C,Q/E] D D and,
by Lemma 4.2.11, M is in Caiou)z/g[L/C] i.e. Cawmy[P/C,Q/E], where U =
A2y, 2q0, 2= 21,...,%g, and £ =
{Coi29[P/C] | v =11, ..., v, are individual terms.}.

Thus, by (1)-(4) and the claim,
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ST(R.YPl/UQ/RL/T] f(yAle/tQ/RL/TY) [(U[P/T), M)) is in D, and so

I(U[P/T], M) is in Cz,qp(e/q[L2/C] i-e. Cap/ylP/C].

(3 Elim) F® = ST(y.YP.G®, H¥5):
As usual, we may assume that y & {z} U fo(t) U fo(K), G* has no free term
variable Y7 such that ¢ # £, and Y” is not equivalent to any free term variable

in X or K.

By the main induction-hypothesis, I(u, Hy) is.in C(gyg)z/q[L2/C]. Hence H is
in Ca /gy [P/C) ie. CalaytyulP/C] by Lemmas 2.13 and 4.2.10.

Since y & {z} U fu(K), y & fv(6;) and so C5a/t,yu[L/C] = Cis,pn/n[L/C] for
all 1 < <L

Hence, by the main induction hypothesis, G*[z/t, y /u][P/T|[X /K, YW/ | H|]
is in Cofg/ty/u)[P/C) which is Cyppyq[P/C] since y € fv(a).

By Lemmas 3.2.19, 3.2.21, 3.2.22, 3.2.23, 3.2.25, and 3.2.26,
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(3, Elim) F* = ST(Q.YP.G*, H?9P):
As usual, we may assume that Q ¢ {P} U FV(T)U FV(K), G* has no free
term variable Y7 such that o # 3, and Y? is not equivalent to any free term

variable in X or K.

We will show that M =

By the main induction hypothesis, I(U, ;) is in Ca;08)2/4[L/C]. Hence H,y
is in Cgpe/y[P/C, Q/D] for some collection of C'Rs D corresponding to U.

Since @ ¢ {P} U FV(K), Q ¢ FV(4i[z/t]) and so Cs,./n[L2/C, Q/D] =
Cs,io/q[P/C] for all 1 < i < I. Hence, by the main induction hypothesis,
Gola )L/ T, QUK /K YU [ 5 Gy /€. QD) which i
Cajz/g[P/C] since Q & FV(a).

By Lemmas 3.2.21, 3.2.22,3.2.23, ‘and 3.2.26,



139

Since M is neutral, we will show that all its immediate reducts are in

Cafz/2/Cl.

Suppose G* is an immediate reduct of M. Then G* = G'(¢/) for some term

subsidiary induction hypothesis. O]
Theorem 4.2.13. Fach Curry-Howard term is strongly normalizable.

Proof. Let F® be a Curry-Howard term, x = z1,...,x, be distinct individual

variables, P = P/, ..., P be distinct predicate variables, C = Cy,...,C; be

collections of C'Rs where each C; is corresponding to Az}, ..., zmeZ(zi, . ,zfni),
X=X f oo X f ! be inequivalent term variables such that every free term variable

of F'* is equivalent to some Xfi in X.
By the above lemma, F[z/z][P/P][X/X] is in Cup/u[P/C] ie. F* is in

Co[P/C]. Hence F“ is strongly normalizable by CR1. [

We have shown that every Curry-Howard term for second-order logic is strongly
normalizable. This means that we can then take proofs in second-order logic and

directly produce programs from them.



CHAPTER V

TEMPLATES

In carrying out mathematical proofs the same patterns frequently recur. What
we want to do is to characterize what a pattern, or template, is and then add
new rules to the formal system N.J;. We then define new Curry-Howard terms
formation rules corresponding to the new rules as well as new reduction rules
corresponding to reductions of proofs. After these additions, the Curry-Howard
terms will still satisfy all the basic properties including the strong normalization
theorem. Therefore we can use such patterns in the formal system properly.

In this chapter, we introduce two kinds of templates namely induction tem-
plates and abbreviation templates which can be used for different purposes. The

details will be presented in the following sections.

5.1 Induction templates

We often use induction in ordinary mathematical proofs. Now, we will add induc-
tion to the formal system N.J;. We want the new induction to be more versatile
so that it does not have to be used only on natural numbers but on predicates
that are defined inductively from finite numbers of basic constants. We need to

add axioms and rules to NJ; as follows.

Let

¢ be a unary predicate symbol,
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ai,...,a, be constant symbols;

fi, ..., fm be function symbols with arities p; + q1, ..., Pm + ¢m, respectively,
where p; > 1 and ¢; > 0 for all 1 <1 < m;

Yy, ..., Yy, beunary predicate symbols, where ry, ..., r;is the sublistof 1,...,m
consisting of all ¢’s such that ¢; # 0.
Note.

a. The sequence ¥,,...,%,, may be empty.

b. Some parentheses will be omitted by using association to the left.
Axioms:

¢ar), ..., olan),

Vg .. Vo, Yyr .. Yy (o(z1) Ao A dlay) Aily) A ... Aiyg,)

D o(filxey oo, Tpa ¥ty - -1 Yy))), Where ¢; # 0, 1 < i <m,
V.. Vo, (o(x) Ao Ad(ay,) D o fil@y, ..., xp,))), where ¢; =0, 1 < i < m.

Rule:

alz/ay) ... alzfa,) a1 ... am

Va(p(r) O a)

(Induction)

where « is any formula and for all. 1. <¢ < m, a; denotes
Vay . Ve, Yyr .o Yy (o(z1) Ao A d(xp,) Abi(yn) Ao Ailyg,)

O (a(w/z1) A Na(afay,) D ale/ filta, . o Zp Y1y -1 Ya))))s
where ¢; # 0 and fo(a) N{zy, ..., 2p, Y1, Yg } = &, OF
Vay .. Vo, (o(x) A A(xp,) D (alz/z) A Aa(z/xy,) D alz/filzr,. ... zp))),
where ¢; = 0 and fo(a) N{zy,...,2,,} = @.
Notation. Throughout this section, when a formula « is given, we will use the

notations «;, 1 <i < m, as above.
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Examples.
I. Let L = (5,0) be a language for natural numbers.
We extend L to L' = (N, S,0), where N is a unary predicate symbol.
We introduce the following axioms.
(i) N (0);
(i) V(N (z) D N(S(x))).

We have the following induction rule.

a(z/0) Va(N(r) S (a2 a(z/S5(x))))
Vz(N(z) D «)

Next, we extend L' to L” = (N, S, List, con, 0, [ ]), where
List is a unary predicate symbol;

con is a binary function symbol; and

[ ] is a constant symbol.

We add the following axioms.

(i) List([ ]);

(ii) YaVy(List(a) A-N(y) D List(con(x,y))):

We have the list induction rule as follows.

a(z/[]) Vavy(List(x) A N(y) D (a(z/x) > a(z/con(z,y))))
Vz(List(z) D «)

IT. We consider a finitely generated algebraic system. For definiteness, we
consider a group which is finitely generated by a; ..., a,.

Let (G,inv,*,aq,...,a,) be a language, where

G is a unary predicate symbol;

inv is a unary function symbol;
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* is a binary function symbol; and
ai,...,a, are constant symbols.

We include the following axioms.

(i) G(ay),...,G(ay);

(i) Yz(G(z) D G(inv(x)));

(iii) VaVy(G(x) A G(y) D G(x(x,y))).

Then we have the following rule.

alz/ay) ... alz/a,) Vae(G(z) D (a(z/z) D alz/inv(x))))

Va¥y(G(z) A Gly) D (alz/2) A a(z/y) D a(z/ * (z,y))))
Vz(G(z) D «)

In the following, we will define new Curry-Howard terms, called constant terms,

which correspond to some formulae that are obtained from the axioms.

For each axiom «, let A® be a constant term and then introduce reduction
rules and new constant terms as follows.

For each 1 <1 < m such that ¢; # 0,

AVxl..,priVyl...‘v’yqi (p@1)NA- AD(zp, )ADi (Y1 )N A (Yq, ) DB(fi (T2 51Ty Y1 5-Yg; ) (tl)

>_AV(L’Q...VZpivylmqui(¢(t1)/\¢($2)/\m/\¢’(1'pi)/\wi(yl)/\w/\wi(yqi)D¢(fi(t1:$2:-~~:mpi7y1»~~:yqi)));

AVa; (St A AS(tp )N (W) Ao A (g —1) Ai (Yq; ) DO(Sfi (B0t st 5o sUg; —15Yg;))) (ug)

. Ad)(tl)/\m/\d)(tm‘)/\wi(ul)/\m/\wi(“qi)D¢(fi(t1:-~~vtpi:Ulr--»uqi))’

where t1,...,%,,,u1,...,u, are closed individual terms.
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For each 1 <4 < m such that ¢; = 0,

— AV.’L'Q...V{EPZ. (¢(t1)/\¢($2)/\.‘./\¢($pi )DP(fi(t1,x2,ey Tp; ).

Y

AVI,,Z.(<z>(t1)/\.../\¢(tpi_1)/\¢(a:pi)3¢(fi(t1,,..,tpi_l,a:pi)))(tp_) s A¢(t1)/\.../\¢>(tpi)3¢(fi(t1 ..... t,,i))7

where t,...,t,, are closed individual terms.

Note. For every constant term A%, « is a closed formula.

We define a term formation rule corresponding to the induction rule as follows.
(Induction) If F®/*) 0 /o) goa - Gom are terms of types [a(z/as))],
oo lalx/an)], [oa), - o [ouml, Tespectively, then p([Fi, ..., F,], [G1,...,Gn]) is a

term of type [Vz(¢(x) D o).

We introduce reduction rules as follows.
For each 1 < 5 <n,
Py Ful [Gy, o Gl ag) (HO@)) = P10,
where H?(%) contains no free term variable.
For each 1 <¢ < 'm such that ¢; # 0,
p([F1, .. Fol, (G, oo Gl (fi(t, - ot w2 ug)
(H((JPO] N 280 gow o b galiady))
= Gi(t) .. (tp,)(ur) o (g ) ((Jry ooy pyy Ky oo Ky,))
(PP o Bl [Gas o, G ) (), oo (s Fu (G, o) ) ()
where H is a constant term of type [¢(t1) A ... A @(tp,) Ai(ur) A Ahiug,) D
O(filtr, ..ty ur, ... uy )] and Jy, ..., Jp,, Ky, ..., K, contain no free term vari-

able.
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For each 1 < i < m such that ¢; = 0,
Py FL (G Gul) (filty, - ) H (T )
= Gi(t) ... (t,) (1, )
(p([Fr, . Bl [Gry - G () () o p([Fr - Fal (G, Gal) (1) (),
where H is a constant term of type [d(f1) A ... A ¢(t,,) D o(fi(ts, ..., tp,))] and

Ji,...,Jp, contain no free term variable.

Now, we have new forms of Curry-Howard terms as well as new reduction
rules. In the following, we will add the new cases to some definitions in Chapter
ITI. All lemmas in Chapter ITI, which can be proved in the same way as the old
ones by straightforwardly following the definitions for the new cases, still hold
after these additions.

Definitions 3.2.2 and 3.2.3.

fo(A%) = fo(a);

Fop(Fr, ., Bui(Ghy . Gnl)) = u FuE) U U Fo(G).

Similarly for FV(A%) and FV (p([F1, ..., F.],[G1,...,Gn])).

Note. fv(AY) = FV(A%)=2.
Definition 3.2.4.

Constant terms A* and AY are equivalent, denoted by A* =AY, ifa = o/.
Definition 3.2.6.

x is replaceable byt in A%;

z is replaceable by t in p([Fi, ..., F,],[G1,...,Gu]) if z is replaceable by t
in F for all1 < j <n and G; for all 1 <i<m.

Similarly for replaceability of P by T.
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Definitions 3.2.10 and 3.2.11.
A%z /t] = A/t

p([Fr, o Bl (G, G/t = p((F[z/t], - Falz/t)], [Galz/t], -, Galz/t])).
Similarly for A°[P/T] and p([Fis.. 1, Ful, [Gr, - . . G [P/T].

Note. A%[z/t] = A*[P/T] = A,

Definition 3.2.12.
A X /K] = A%

p([Fr, - Fl, [Gh, - -, Gl ) [ X/ K]

= p((R[X/K] - B[XTK]GHXK], . G X K])).

Next, we will show that the new Curry-Howard terms satisfy the strong nor-
malization theorem. All lemmas in Chapter IV still hold after the additions. We
will give only the proof for the additional cases of Lemma 4.2.12 and omit the
others of which proofs are similar to the old ones. First, we will extend the defi-
nition of neutral terms in Chapter IV as follows.

Definition 4.1.2. A constant term A% is neutral if a is ¢(t) for some (closed)
individual term t, otherwise A% is not neutral.

A term of the form p([Fi,..., F.], |Gy, ..., Gy]) is not neutral.

Lemma 4.2.12.

We will prove by induction on the number s of all occurrences of the symbol
Y in a.
5 =0:

Case 1. o = ¢(u) for some (closed) individual term w:



147

Then A® is neutral and normal, and so it is in Cy[y/q[P/C] by CRA4.

Case 2. a = @(ur)A. . .AP(up, ) AP (v1) AL AYi(vg,) D (filur, ... up,,v1, ...,
v,,)) for some 1 < ¢ < m and some (closed) individual terms uy, . .., up,, V1, . .., Vy:

Let G be in Copguy)n... A (up, ) At (1) A A (g, ) [P/C]. We will prove that A%(G) is in
Co(fi(ur gy 1. 0q,)) [2/C] by induction on N(G). Since A%(G) is neutral, we will
by the subsidiary induction hypothesis since every immediate reduct is obtained
by reducing G.

Similarly if o = ¢(ug) Ao A @(uy,) D o(fi(ur, ... up,)) for some 1 <i <m
and some (closed) individual terms wy, .. ., u,,.
s > 0: Then « is of the form Vyv. Note that fo(y) C {y} since « is closed. As
usual, we may assume that y & {z}U fu(t). Let v be an individual term. We want
to show that A% (u) is in C, gz gy [£2/C]. Since the only immediate reduct of A*(u)
is A/ which is in Cypyyu[P/C] ie. CypynysuP/C] by the subsidiary induction
hypothesis, A%(u) is in Cyz/gpy/a[L/C] by CR3. Thus A% is in Cyyyz/q[P/C] i.e.

Cafz/2/Cl.

(InduCtion) = p([Fla F -k 7Fn]7 [Gh L Gm])Vy(tb(y)Dﬁ):
As usual, we may assume that yis not in {z} U fo(t).
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are in Cglp/gpy/u[L2/C]. It follows by the subsidiary induction hypothesis if an

prove by induction on wu.
u = a; for some 1 < 5 <n:
by the main induction hypothesis.
u = fi(uy,...,up,v1,...,0,) for some 1 < ¢ < m and some individual terms
Uty ooy Up,, U1,y ..., U, and H = H*((Jf(ul), é .\ Ji(u”), Kfi(vl), . ,K;f.i(vq"))), where
H, is a constant term of type [@(ui) A ... A ¢(uy,) A ¥i(v1) Ao A i(vg) D
O(filur, ..o Up,, V1, .., 0))]:

Then the immediate reduct is M =

Gilz/O[2/TNX/ K (ur) - - (up ) (01) - (g ) (a5 Tp K - Ky))

Gulz/U[P/T)X/K])(ur) (1), - p([Frlz/t[E/T][X/K], ..., Folz/H[P/T][X/K]],
Grl/QIP/TIX/K), ..., Gola/QIP/TIX /K] (1) ().

It can be easily checked by induction on h that if Hq,..., H, are terms in
CR C4,...,Cp, respectively, then (Hy,..., Hy) isin C; A ... A Cy. Since for all
1 < j < pi, Jjis a subterm of H which is in' Cyy[P/C] i.e. SNy, J; is in
SNyu,) i-e. Cypu,)[P/C] for all 1 < j < p; and similarly, for all 1 < j < ¢;, K is in
Cywy[P/C]. Hence (Ji, ..., Jp,, K1, ..., Ky,) is in Coyup) [P/CIA. . .ACyu, ) [P/CIA

Coin)[B/CI A - A Cy ) [P/C] i€ Copun)n... nd(up,)nths (o1) A A (0g,) [/ C -



149

[2/C]. Thus Gyla/U][2/T][X/K](u1) .. (up,)(01) - - (0g ) (J1, s Tpis K5 Ky, )

Cota/tly/u[L/C].

u= fi(uy,...,up,) for some 1 < i < m and some individual terms wu, ..., u,, and
H = H*((Jf)(“l), e Ji(u”))), where H, is a constant term of type [p(ug) A ... A
('b(upz) 2 (b(fl(ula T 7“}%‘))]:

This case can be proved as the above case. Il

5.2 Abbreviation templates

In ordinary mathematics, we often abbreviate a formula by a predicate. We will
introduce Abbreviation Introduction and Abbreviation Elimination rules to N.J,

which will allow us to use such abbreviations in the formal system.

For each formula a with fv(a) = {z1,..., 25}, na > 1, and FV(a) = &,
let P, be a new ny-ary predicate symbol corresponding to aw. We call these new
predicate symbols abbreviation predicates.

Notes.
a. For each P,, o does not contain any abbreviation predicates.

b. We restrict the definition of abstraction terms T' = Axq, ..., z,« so that «
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does not contain any abbreviation predicates.
c. We define §[P/P,] and $(P/P,) in the same way as substitutions by pred-

icate variables in Definition 2.5 and Part B of Definition 2.18, respectively.

Every lemma that holds for substitutions by predicate variables also holds for
substitutions by abbreviation predicates and the proof is similar.

Since we do not allow abstraction terms to contain abbreviation predicates,
we will modify some lemmas in Chapter II for substitutions by abbreviation pred-
icates as follows.

Note. In the following R is an r-ary predicate variable and P, is an r-ary abbre-
viation predicate.

Lemma 2.16 If R ¢ {P} U FV(L), then o|P/T|[R/F,] = o[R/F,|[P/T].
Lemma 2.24 If R ¢ {P} U FV(Z). then {a(P/T)(R/P,)} = {a(R/P,)(P/T)}.

Proofs of both lemmas are similar to the original ones.

We introduce the following rules.

(Abbr Intro)

B(P/T)
AL Pa)
(Abbr Elim)

6(P/T)]

B(P/Pa) 8
Y

where P is an n-ary predicate variable and 7' = Azy, ..., z,a with FV(a) = @.
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We define the corresponding term formation rules as follows.

(Abbr Intro) If FAP/T) is a term of type [3(P/T)], where T = A\xy,. .., 1,0
with FV (o) = @, then abbr(P,, FA/1) is a term of type [3(P/P,)].

(Abbr Elim) If FA(F/Pe) is a term of type [3(P/P,)], G7 is a term of type [v],
and XAP/T) is a term variable of type [3(P/T)], where T = Axy,...,z,a, then
unabbr (XA G, FAPIE)) is a term of type [4].

Note. Every occurrence of X7, where [o] = [B(P/T)], in X F/T).G" is bound.

We add reduction rules as follows.
Note. In the following, T = A\zy, ...,z o where F'V (o) = @.
(Abbr Intro, Abbr Elim)
unabbr( XPEIT) .G abbr(P,, FAT/T))) = G[XPPIT) | pAE/T)]
provided P € FV(f3); and
unabbr(XP.G7, FP) = GIXP [ FP];
abbr (P, FP)P = FP.
Note. The above two reduction rules are obtained from the trivial case i.e. when
P & FV(p).
(Abbr Intro, A Elim)
i (abbr (P, FGNR)PIT)Y) o abbr(P,, mF), i =1, 2.
(Abbr Intro, D Elim)
(abbr (P, FB1282)(P/T))) (GALEIF)) o abbr (P, F (unabbr( X1/ XAEIT) GY)),
where XP1(P/T) is the first term variable of type [3,(P/T)].

(Abbr Intro, v Elim)
63()(—151(P/Pa).G?(P/PQ)DV (Xlﬁl(P/Pa))’ Xgﬁz(P/Pa) 'ng(P/Pa)D“%ng(P/Pa))

abb'r’(Pa, F(ﬁl\/ﬁz)(P/T)» . @(}qﬁl(P/T).unabbr(iflﬁl(P/T)D’Y.Y*lﬁl(P/T)D’Y, G1>(§/1ﬁ1(P/T))’

}/2/82(P/T).unabbr(}/é@(P/T)DW‘YfQ(P/T)D’Y G2)(}/2/32(P/T)) F)
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where Xf iP/P) is not equivalent to any free term variable of G; and Y;B WPIT)

S
the first term variable of type [3;(P/T)] which is not equivalent to any free term
variable of G;, 1 =1, 2.
(Abbr Intro, V Elim)

abbr (P, FOS)WPIT (t) w abbr(Py, F(t)).
(Abbr Intro, Vo Elim)

abbr (P, FC2@NEN () = abbr (P, F(U)).
(Abbr Intro, 3 Elim)
ST (. XPIPo) G OB/ B)Y (P, F30E/T)

= ST (z.YP'D) unabbr (Yo &/T)27 Yo BTy Gy (YoP/T)) F),
where X?(/P2) i not equivalent to any free term variable of G and Y7W/T) ig
the first term variable of type [o(P/T)| which is not equivalent to any free term
variable of G.
(Abbr Intro, 3o Elim)
ST(Q.XWF/Fe) GolPIPSY( X oPIFa)y “abbr(P,, FF2Q0(F/1)))

= ST(Q.Y /D) unabbr (Y oF/M2 ye(PIT)Sy Gy (Y e(P/T) |,
where X?(/P2) is not equivalent to any free term variable of G and Y7U/T) ig
the first term variable of type [o0(P/T)| which is not equivalent to any free term

variable of G.

Now, we have new forms of Curry-Howard terms as well as new reduction
rules. In the following, we will add the new cases to some definitions in Chapter
ITI. All lemmas in Chapter III still hold after these additions. The proofs for the
additional cases of all lemmas in Section 3.2 are similar to those in the section.
For Section 3.3, we will prove Lemmas 3.3.2 and 3.3.4 for the new cases and omit

the proof of Lemma 3.3.5 since it is similar to the original one.
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Definitions 3.2.2 and 3.2.3.
Folabbr(Po, FAPIY) = fu(FEID)
fo(unabbr(XPEIT) G FAPIF))) = fo(XPET) GVY U fo(FPEIP)),
Similarly for FV (abbr(P,, FPF/T)) and FV (unabbr(XPE/T) .Gv, FAP/F))),
Definition 3.2.6.
z is replaceable by t in abbr(P,, F*CT)) if x is replaceable by t in FAE/T);
x is replaceable byt in unabbr (XD GV FAE/F)Y if v is replaceable by t
in XPWPIT) G and FPP/Fe).
Similarly for replaceability of P by T
Definitions 3.2.10, 3.2.11, and 3.2.12.
abbr(Pa, FXPIT) 1] & abbr (P, FO®ID (/o))
unabbr( XPEIT) G FARIFON (5 /1] = unabbr (XX Gz /t], FPE/P) [z /1]).
Similarly for abbr(P., FPPMNP/T], unabbr (XA .Gv, FAP/P)P/T],
abbr (P, FAP/M)[X /K], and unabbr( X /1) .GV, FAF/P)) X /K],
Lemma 3.3.2. [f FF = I and F' =, G, then F' = G’ for some C-H term G’

such that G = G'.

Proof. If F' is not the redex which is reduced to G, the proof is as in Chapter
ITI. Suppose F'is the redex which is reduced to GG. 'As shown in Chapter I1I, we
may assume that F’ is obtained from F! by a single legitimate change of bound
variable.

(i) F = unabbr(XPE/T) K7 abbr(P,, H?T/T))), where P € FV(f3).

Then G = K[XPP/1) /H].

Case 1. F' = unabbr(XP®/T) K’ abbr(P,, H')) for some terms H’ and K’ such
that H' = H and K' = K.

Then F’' =, K'[X®/T) /H'] = G by Lemma 3.2.26.
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Case 2. I = unabbr(YP/T) K[ XAEIT) )y BEID] abbr(P,, H)) where Y#(F/T)
is free for XP(P/T) and is not equivalent to any free term variable in K.
Then F' =, K[XPW/T) )y BE/D[ySPF/T) /H] = G by Lemma 3.2.21.

Similarly for the case F' = unabbr(X°. K", HP).
(ii) F = @(Xlﬂl(P/Pa).G/fl(P/Pa)DW(Xlﬂl(P/Pa))7 X252(P/Pa)'G§2(P/Pa)3’7(X252(P/Pa))

I

abbr (P, HP1VA)PIT))) where Xiﬁ iP/Fe) i hot equivalent to any free term variable
of Gy, i=1,2.

Then G = @ (YD ainabbr (P B/ T21 y S D Gy AP/
YEPIT) b (v 2P0 yPaPITIT Gy (PO By e yAPIT) G the
first term variable of type [3;(P/T))] which is not equivalent to any free term
variable of G;, 1 =1, 2.

Case 1. F' = (XP1W/Te) qr(x i PIFe)y x52(B/Pa) o (x B2(PIT)y (P, HYY),
where G, =G, 1 =1,2, and H' = H.

Since G} = G}, Yfi(P/T) is also the first term variable of type [3;(P/T)] which
is not equivalent to any free term variable of G}, ¢ = 1,2. Hence
F' oy @ (YA ynabbr (v P21 y B G i (PIT))

YD ynabbr (Y2 E/D2 y 2P0 oy Sy gy = ¢

Case 2. F' = @217 Gy (z WPy X PPIPd Gy (X PPIP)Y b (P, H)),
where Zlﬁ 1P/ s free for X f 1(P/Pe) 4nd is not equivalent to any free term variable
in Gy (XY,

Then F' =, G.

Similarly if the changed bound term variable in F' is Xg 2(P/Fa)

(iii) F = ST (x.XoWP/Pa) KoP/Pa)2v( XoP/P)) aqbbr(P,, HEW/T)))  where
X(P/Fa) ig not equivalent to any free term variable of K.
Then G = ST (2.Y F/T) unabbr (Yo F/T)27 y o PIT)>y ) (YoP/T)) H), where

Ye(P/T) is the first term variable of type [o(P/T)] which is not equivalent to any
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free term variable of K.
Every case can be proved in the same way as in (ii) except the case ' =
ST (y. X P)le/vl [ [ [y (X oF/ P2/ abbr(P,, H)), where x is replaceable by

y, y is free for z, and y does not occur free in XF/Pa) K(X7F/P)) We have

F' =1 ST(y.2° @D ypabby (2@@D2DE/Y) 7 PITVE/ | [l /)
(ZtT(P/T)[fJ«“/y])7 H)
= ST(z.Z7%D unabbr(Z @ F/T)>0) 7@ P27 | [y ( 70T H)

= @,

where ZW/DIE/vl is the first term variable of type [o(P/T)[x/y]] which is not
equivalent to any free term variable of K[z /y], so Z7¢/T) is not equivalent to any
free term variable of K.

Similarly for ST(Q.XF/Fe) [Ko(PIP)DV( X o (P/F)) qbbr (P, HE2Q0)(P/T))),

(iv) F = 71 (abbr( Py, HPNRIE/T)Y)

Then G = abbr(P,,m H) and F' = m(abbr(P,, H")) for some term H' such
that H' = H. Hence F' >, abbr(P,,mH') = G.

Similarly for the remaining cases. ]

Lemma 3.3.4. If I =1 G, then
a. Elz/t] =1 H for some term H such that H = Gz /t];
b. F[R/U] =1 H for some term H such that H = G|R/U];
c. F[X°/K%] =, H for some term H such that H = G[X°/K?].
Note. For (b), we use R and U instead of P and T, respectively, in Chapter III

to avoid confusion with P and 7" in the type superscripts of new terms.

Proof. If F' is not the redex which is reduced to GG, the proof is as in Chapter III.

Suppose F' is the redex which is reduced to G. As in the original proof, we will
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omit the proof of (b) since it is similar to (a) and for (a) we assume that x is
replaceable by ¢ and ¢ is free for x in F and for (¢) K% is free for X% in F.

(i) F = unabbr(YPE/T)_J7, abbr(P,, H*®/T)), where P € FV(3).

Then G = J[YPP/D) /H].

a: By Lemma 3.2.23, we have

Flz/t] = unabbr(YPEIDEMA Jl2 /] abbr(P,, H|z/t]))
T [t H ]

= @Glx/t].

¢: Suppose X9 is equivalent to some free term variable of YA#/T) J. The proof
of the other case can be easily modified from this proof.

By Lemma 3.2.21,

FIX/K] = unabbr(YPY/1 JIX° /K], abbr(P,, H[X°/K]))
I X RNV HIX K]

= G[X°/K].

Similarly for the case F' = unabbr(Y".J", H?).

(11) F— @(Xf1(P/Pa)_G,fl(P/Pa)DV(Xlﬂl(P/Pa))? ng(P/Pa)'G§2(P/Pa)3“/<X2ﬁ2(P/Pa))

Y

abbr (P, HOVA)(PIT))) . where Xiﬁ ilF/Te) is not equivalent to any free term variable
of G, 1=1,2.

Then G = (YA unabbr (Y /D27 y S0 Gy AP/ e
unabbr(}@BQ(P/TDW.YQ@(P/TDV, Gg)(YfQ(P/T)), H), where Yiﬁi(P/T) is the first term
variable of type [3;(P/T")] which is not equivalent to any free term variable of G;,
i=1,2.

a: We have

Gla/t] = @ (YA EDIEI gy by (P P/ /8) 3 BB/ DM 1o )
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(Ygﬁl( P/T)[x /t])7 Yfz(P/T) ©/Y nabbr (YQB2(P/T) [z/tbv[a:/t]‘YQﬁz(P/T) [z/tbv[x/t]’ Galz /1))

(vf 2le/0(F/ T)), Hlz/t]), where Yf:ép/ D i Y/ i{P/T) §f @, has no free term variable
Y.? such that o £ §;(P/T) but o[z/t] = 5;(P/T)[x/t], otherwise Yii"Q(P/T) is the

first term variable such that G; has no free term variable Y7, where o # 3;(P/T)

but o[z /t] = 5;(P/T)[z/t], i = 1,2, and

F[x/t] _ EB(Xlﬁl(P/Pa)[m/t].Gl [x/t] (Xl’gl(P/Pa)[x/t]), XgQ(P/Pa)[x/t].Gg[x/t]
(X 2P/l abpr (P, Hlz/t]))
- @(Zlﬁl [z/8)(P/T) .unabbr(Zlﬂl [z/8)(P/T)2y[x/1] .Zlﬁl [»’U/It](P/T)D“Y[Oﬁ/t]7 Gi[z/1])

(Zlﬁl [x/t](P/T)) Z2ﬁz [Z‘/t](P/T)D’Y[CC/t].ZZﬁQ [x/t}(P/T)Dv[w/t], Golz/t])

, unabbr(

(Z2FETN He /1))

Gla/t],

where 2! i=/MPIT) §g the first term variable of type [Bi[x/t](P/T)] which is not
equivalent to any free term variable of Gz /t], i = 1,2.

¢: Suppose X° is-equivalent to some free term variables of Gy and Gs. Proofs
of other cases can be easily modified from this proof. We have
GLX K] = @O /T amabbr (V2T v P00 Grixed K (v 2Py,

Yfz(P/T).unabbr(yvzﬂz(P/T)D’Y'Y'Qﬂz(P/T)D’Y’ G [XJ/K])(YZFQ(P/T)), H[XJ/K]), where

Yﬂi(P/T) s Y;ﬁi(P/T) if }/iﬁi(P/T)

i) i is not equivalent to any free term variable of K,

otherwise Yiiiép/ ™) is the first term variable which is not equivalent to any free

term variable in K or G;, i = 1,2, and
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FIX°/K] = @XM a0 X0 K (X)), X Gl X0 K
(X PIPDY by (P, HIX®/K]))
=1 @20 wnabbr (207127 28 FTY Gl XCK))
(2" D) unabbr (2 F021 7> Gy X0 K))
(Zy2 ), HIX [ K))
= G[X°/K],

where 2! “P/T) i5 the first term variable of type [3:(P/T)] which is not equivalent
to any free term variable of G;[X°/K], i = 1,2.

Similarly for the cases ST\(y.Y oF/Fa) jo P/ Fa)on (ye(P/P)) abbr(P,,
FEOPITY) and ST(Q.Y 7F/P) JoPIE (Y oPIFD abbr(P,, HE2Q0)P/T)))

The remaining cases follow straightforwardly by the induction hypothesis. [

The aim of the rest of this section is to show that the new Curry-Howard terms
satisfy the strong mormalization theorem. In order to do this, we will extend the
definitions of CR to CR™ as well as C,[P/C] to CF[P/C] and use these new
definitions instead of the old ones in proving the theorem. First, we will extend
the definition of neutral terms in Chapter IV for the new forms of Curry-Howard
terms-as follows.

Definition 4.1.2. A term of the form unabbr( X/ .G7, FAP/F)) s neutral

while a term of the form abbr(P,, FA*/T)) is not.
Definition 5.2.1. A candidate for reducibility CR C of type [a] is a CR™ of type
la] if it satisfies the following.
If F is in C, so is abbr(Pg, F*)* for every abbreviation predicate Pg.
Note. It can be easily checked that if F'* is in a CR (also CR™) C, then so is

unabbr(X*. X F*) for every term variable X“.
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In the following, we will state and prove lemmas for CR* which correspond

to those for C'R in Chapter IV.

Lemma 5.2.2. The set of all strongly normalizable terms of type [a] is a CRT of

type [a].

Proof. By Lemma 4.2.2, SN, is a C'R.

Suppose F'* is strongly normalizable. Since for all Pg, every reduction se-
quence beginning with abbr(FPg, F'“)* gives a reduction sequence beginning with
F*, abbr(Ps, F*)* is also strongly normalizable for all Ps. Hence SN, is a

CR™. O

Lemma 5.2.3. Let Cy and Cy be CR™s of types [aq] and [as], respectively.

Then C; A Cy and C; D Cy are C R s.

Proof. By Lemma 4.2.5, Cy A Cy and C; D Cy are CRs.
C1ACy: Tt remains to show that if F*14*2 is in C; ACy, then so is abbr(Pg, F)*1/2
for every Pg.

Let Pjs be given and suppose F*1*2 is in Cy A Cy.

First, we will show that ijabbr(Ps, F') isin Cy by induetion on N(F').

Since mabbr(Pg, F) is neutral, we will show that all its immediate reducts are
in C. It follows by the subsidiary induction hypothesis if an immediate reduct is
obtained by reducing F'. The other immediate reducts are as follows.

(i) m F.

It is in C] since F is in Cy A Cs.

(ii) abbr(Pg, m F).

Since m F' is in C} which is a CR™, abbr(Pg, m F) is also in C'.

Hence mabbr(Pg, F') is in C4.
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Similarly, we can show that maabbr(Ps, F') is in Cy. Thus abbr(Ps, F) is in
Cy N Cs.

C1 D Cy: It remains to show that if F*1°*? isin C} D Cy, then so is abbr(Pg, F)*1 22
for every Pg.

Let P3 be given and suppose F'“12? is in Cy D Cs.

Let G be in C. We will prove that abbr(Ps, F)(G) is in Cy by induction on
N(F)+ N(G). As above, we will show that all its immediate reducts are in Cy. It
follows by the subsidiary induction hypothesis if an immediate reduct is obtained
by reducing F' or GG. The other immediate reducts are as follows.

(i) F(Q).

It is in C since F'is in Cf D Cs.

(ii) abbr(Pg, F(unabbr(X* . X G))).

By Note on page 158, unabbr(X* . X% G*') is in C].

Since F'is in Cy D Cy, F(unabbr(X*.X* G)) isin Cy which is a CR*. Hence

abbr(Pg, F(unabbr(X*. X% G))) is in Cs. O

Definition 5.2.4. Let T = Axy,...,x,0 be an abstraction term. For each se-
quence of indiwidual terms t = t1,. .., tn, let Cy be.a CRY of type [0[z/t]], where
T=121,...,0,.

We_call the set C ={Cy |t =t1, ..., t, are individual terms.} a collection of

CR"s corresponding to T.
The following definition is needed for defining a set CJ'[P/C] later.

Definition 5.2.5. Let a be a formula, P = P/"',..., P be distinct predicate
variables, T = Ty,...,T,, where T; = Az},..., 2. &, 1 < i < n, be abstraction
terms, and C = Cy,...,C, be collections of CR"s corresponding to Ty,...,T,,

respectively.
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We define a set C![P/Cy,...,P,/Cy,], which can be written as C![P/C], of
terms of type [a[P/T]] in the same way as Co[P/C| in Definition 4.2.7 (by re-
placing every CR and C,[P/C] by CR* and C![P/C], respectively) except for the
existence cases below.

YoslP/C] is the set of all terms F which satisfy the conditions for the cor-
responding existence case in Definition 4.2.7 (with the replacements of every CR
and C,[P/C] by CR* and CL|P/C], respectively); and

if B contains some abbreviation predicates and
F = abbr(P,,, abbr(. .. abbr(P,, , [(u, H)38 /LY))3=0L/T] | > 1 for some for-
mula (3, then abbr(Py,, abbr(. .., abbr (P, H))) is in Cy, ,[P/C].

éQQﬁ[B/Q] 15 the set of all terms F' which satisfy the conditions for the cor-
responding existence case in Definition 4.2.7 (with the replacements of every CR
and C,[P/C] by CRT and C![P/C], respectively); and

if B contains some abbreviation predicates and
F = abbr(P,,,abbr(...,abbr(P,, , [(U, H)E2@EINEIN ) EQ0L/T] | > 1 for some
formula 3%, then abbr (P, , abbr(. .., abbr(P,,, H))) is in C5[P*/C*,Q/D] for some
collection of CR*s D corresponding to U, where P* is the sublist of P consisting

of all P;’s which are in FV (3Q0) and C* is the corresponding sublist of C.

Lemma 5.2.6. Let « be a formula, P.= B"';.. ., P be distinct predicate vari-
ables, T'="Ty,...,T,, where T, = \z{,..., 2}, 6;, 1 <1 < n, be abstraction terms,
and C = Cy,...,C, be collections of CR*s corresponding to Ty, ...,T,, respec-
tively.

Then C![P/C] is a CR*Y of type [a[P/T]].

Proof. We will prove by induction on «. It follows by Lemma 5.2.2 if « is atomic.
It follows by Lemma 5.2.3 and the induction hypothesis if a is a3 A an or a1 D .

It can be proved in the same way as Lemma 4.2.8, that C/[P/C] is a CR. For
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the remaining cases, it remains to show that if Fe2/T) is in C"[P/C], then so is
abbr(Pg, )£/ for every Pj.

Let Ps be given and suppose FL/T is in C' [P/C].
o= o1V ay:

Let [y] be a type, C be a CR* of type [7], Fy and F be terms in Cy, [P/C] D C
and C), [P/C] D C, respectively, and X' B and X52P/ T be term variables
which are not equivalent to any free term variables of F; and F5, respectively.

We will prove that @(Xfl[g/z].Fl(Xlal[B/ﬂ), X;Q[B/Z] .F2(X§‘2[£/ﬂ), abbr(Ps, F))
is in C' by induction on N(Fl(Xlal[B/ﬂ)) + N(FQ(XQQQ[B/Q)) + N(F). As usual,
we will show that all its immediate reducts are in C'. If an immediate reduct
is obtained by reducing £y (XIO“[B/I]), Fz(X;”‘?[B/ﬂ), or F, then it is in C' by the
subsidiary induction hypothesis. The other immediate reducts are as follows.

(i) @(Xfl[B/Z].Fl(Xf‘l[B/ﬂ),X;ﬂB/E.FQ(X;Z[B@), F).

. : N
It is in C since [ is in CF .,

[2/C].

(i) (¥ /T b (Ve BT ot BT ooy (i /1)) yeale/T)
unabbr (Y2 EA27 y ool BT Ty (y 2B TR D where Y is the first term vari-
able which is not equivalent to any free term variable of F;, 1 = 1, 2.

By Lemma 5.2.3 and the induction hypothesis, C7, [P/C] D C is a CR" for
all i = 1,2. By Note on page 158, unabb'r’(Y;ai[B/IDv.Y;ai[B/Ibv, Eai[B/Iny) is in
C..[P/C] D C forall i =1,2.

Since F is in C’ [P/C], @(Ylal[g/ﬂ.unabbr(Ylal[B/IDV.YlO”[B/IDV, Fy)

a1Vas
(VLI yealBIT) g el PITY yasl/TDY pyyesl/T py i o
a = Vzo:

Let t be an individual term. We will prove by induction on N(F') that
abbr (P, F)(t) is in C7, y[P/C], which is a CR™ by the induction hypothesis.

We will show that all its immediate reducts are in Cé[x p [P/C]. If an immedi-
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ate reduct is obtained by reducing F, then it is in €, ,[P/C] by the subsidiary
induction hypothesis. The other immediate reducts are as follows.

(i) F(t).

It is in €,y [P/C] since F'is in CQ,, [P/C].

(ii) abbr(Pgs, F(t)).

It is in C7(, 4 [P/C] since F(t) is in, C7 [ P/C].

Similarly for CY, ,[P/C].
a = Jxo:

Let y be an individual variable such that y € fu(c) — {z}, [y] be a type with
y & fu(y), D be a CR" of type [7], G be a term of type [o[z/y][P/T] D 7] such
that for each individual term ¢, Gly/t] is in C7,4[P/C] D D, and y is not free

P/T]

in the type superscript of any free term variable of G, and X7[=/vl be a term

variable which is not equivalent to any free term variable of G.

We will prove that ST'(y. X@/VIE/T] G(Xl/E/TT) qbbr(Ps, F)) is in D by
induction on N(G(X°EMIETN) 1 N(F). We will show that all its immediate
reducts are in D. If an immediate reduct is obtained by reducing G(Xl/vIE/Tl)
or F', then it is in D by the subsidiary induction hypothesis. The other immediate
reducts are as follows.

(i) ST (y.Xl/IE/T q(Xxeole/vE/T]) F),

It is in' D since F' is in C%, [P /C].

(ii) ST (y.Y =W/ ynabbr (Y ole/WIR/TIDY yole/ylP/TIoy G (yele/vilE/TT | F),
where Yl#/YIP/T] ig the first term variable which is not equivalent to any free term
variable of G.

Let t be an individual term. By the main induction hypothesis, C!, 2/ [P/C]is a
CR* and sois )y, 4[P/C] D D by Lemma 5.2.3. Since G[y/t] is in C7,, 4[P/C] D

D, by Note on page 158, unabbr (Y 7#/VIE/LISy yole/VIE/TIDY Gy /1] ie.
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unabbr (Y @/ /Ty yole/UIP/TI>Y Gy /t]) is in CluylP/C1 D D.

Since F'is in C.

dzo

[P/C], ST(y,ya[ﬂc/y] (P/T] 'unabbr(ya[a«“/y} [B/T1>y yole/yll2/T]DY
G)(YoMIE/TN FYis in D.

Next, suppose abbr(Ps, F') > I(u, K). Then there is a finite reduction se-
quence from abbr(Ps, F') to I(u, ) with length r > 1. We will show that K is in

O/

olz/u]

[P/C] by induction on 7.
r = 1: Since abbr(Ps, F) and I(u, K) are of different forms, abbr(Pgs, F') must be
the redex which is reduced to I(u, K'). Hence abbr(Ps, F') =1 F = I(u, K). Since
Fis in C5,,[P/C], Kis in C7., 4[P/C].
r > 1: Suppose F* is the immediate reduct in the reduction sequence.

Case 1. F* = abbr(Ps, I') where F' = F".

By CR2, F'isin C%, [P/C]. Since abbr(Ps, F') = I(u, K) with length < r, by

the subsidiary induction hypothesis, K" isin €7, [P/C].
Case 2. F* = F.

Then F > I(u,K). Hence K is in C

olz/u]

[2/C] since F' is in C5,,[P/C].

Now, suppose abbr(Pg, F') = abbr(Pg,, abbr(. .., abbr(Ps,, I (u, K)*"))). Then
there is a finite reduction sequence from abbr(Pg, F) to abbr(Ps,, abbr(. . ., abbr(Pg,,
I(u, K)3°7))) with length r > 0. We will show that abbr(Ps,, abbr(. .., abbr(Ps,,
K))) is in Cly ,,[P/C] by induction on 7.

r = 0: Then 8, = @ and F = abbr(Pg,,abbr(. . abbr(Ps,, I(u, K))))3L/1,

. oy
Since F'is in (5,

[P/C], abbr(Pg,, abbr(. .., abbr(Ps,, K)))°@/WE/T ig in
o(z/u [2/C] which is a CR™ by the induction hypothesis. Hence
abbr(Pg, ,abbr(. . ., abbr(Ps,, K)))°#/E/L is in Cieyu[2/Cl.
r > 0: Suppose F* is the immediate reduct in the reduction sequence.
Case 1. F* = abbr(Pg, F') where F -, F".

This case follows by the subsidiary induction hypothesis.
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Case 2. F*=F.

Then F' > abbr(Ps,,abbr(...,abbr(Ps,, I(u, K)))) and so this case follows by

the fact that F' is in C%,,[P/C].
Thus we can conclude that abbr(Pg, F') is in C%, [P /C].
Similarly for C% o, [P/C]. O

Definition 5.2.7. Let o be a formula, P = P, ..., P be distinct predicate
variables, T = Ti,..., Ty, where T; = \zi, ... ,zfniéi, 1 < i < n, be abstraction
terms, and C = Cy,...,C, be collections of CR"s corresponding to Ty,...,T,,
respectively.

We define a set CH{P,/Ci,. .., P,/Cy], which can be written as C[P/C], of
terms of type [a[P/T]] inductively as follows.

a is an atomic formula:

If a is P,(t) for some abbreviation predicate P, and some individual terms t,
CHP/C] is the set of all terms F in SNp, ) such that if ¥ = abbr(P,, Ge/t)F=®
where fv(o) = {z}, then G is in C}, 4 [P/C];

otherwise C[P/C| = C![P/C].

« is not an atomic formula:

CH[P/C] is defined in the same way as C! [P/C] in Definition 5.2.5 (by replac-

ing every CL[P/C] by CHRP/C)):

Note. It can be easily checked by induction on « that if a does not contain any

abbreviation predicates, then CI'[P/C] = C’[P/C].

From the above definition, we can see that we need the set C7 . 4[P/C] in
defining C'f; v 2/C]. Actually, we want to use the set C’:[x syl L/C] in the definition
but we cannot do that since we use it in the basic case of an inductive definition,

so the set must already exist. By the restriction that every formula which can be
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abbreviated must not contain any abbreviation predicates and the above Note,

ultimately, we have what we want.

Lemma 5.2.8. Let a be a formula, P = P"*,..., P be distinct predicate vari-
ables, T =Ti,...,T,, where Ty = A2}, ... ,zfnifii, 1 <i <mn, be abstraction terms,
and C = Cy,...,C, be collections of C'R"s corresponding to T4, ...,T,, respec-
tively.

Then CY[P/C] is a CR* of type [a[P/T]].

Proof. We will prove by induction on «a. It follows by Lemma 5.2.3 and the
induction hypothesis if a is ay A as or @y D as. If a'is a1 V ag, Vo, dzo, VoQo,
or 35, the proof is similar to the proof of Lemma 5.2.6.

Suppose « is an atomic formula. It follows by Lemma 5.2.6 if « is not of the
form P,(t).

Suppose o = P,(t), where fo(o) = {z}.

For the proofs of CR0O, CR1, and CR2, we suppose F is in C’;{U@) [P/C], so F'is
strongly normalizable and if F' = abbr(P,, G72/1)P®) then G is in Crie/gl2/Cl.

CRO: Suppose I’ = F. Since F is strongly normalizable, so is F’ by Lemma
3.3.2. Suppose. F' = abbi( Py, Gole/th)=@, By Corollary 3.3.3, F = abbr(P,,G")
for some term G’ such that G’ = G. Then G’ is in C’

olz/i]
by Lemma 5.2.6, and so is G by CR0. Thus F’ is in C’;g@ [P/C]:

[P/C], which is a CR™T

CRI1: It is clear from the definition.
CR2: Suppose F =1 F’. Since F' is strongly normalizable, so is F’. Sup-
pose F' = abbr(P,, G°2/thFe® Then F = abbr(P,, G°2/h)F®  Hence G is in

é’[g/ﬂ [P/C]. Thus F’ is in C;EU(D[B/Q].
CR3: Suppose F' is neutral and all its immediate reducts are in C;DLU(L) [P/C].
Then every immediate reduct of F' is strongly normalizable, and so is F'. Suppose

F = abbr(P,, G°2/1)P=®  Since F is neutral, F' and abbr(P,,G) are not of the
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same form, so there is a finite reduction sequence from F to abbr(P,, G72/1)P-®
with length > 1. Suppose F’ is the immediate reduct of F' in the sequence. Then
F' = abbr(P,, Ge2/t1)P-)  Since F' is in O;U@)[g/g], G is in C)y, [P/C]. Thus
Fisin C;;U@) [P/C].

We have shown that C;a(t) [P/C]is a CR. Now, suppose F7=® is in C’;U@ [P/C]
and let P3 be given. It remains to show that abbr(Pg, FF~®)F-0) is in CF, ! 2/Cl.

Since F is strongly normalizable and every reduction sequence beginning with
abbr(Pg, F') gives a reduction sequence beginning with F, abbr(Ps, F) is also
strongly normalizable. Suppose abbr(Ps, Ff=®) = abbr(P,, Ho2/1)P®  Then
there is a finite reduction sequence from abbr(Pg, F') to abbr(P,, H) with length
r > 1. We will show that H is in C7, ,[P/C] by induction on r.
r = 1. Then abbr(P,, H) is an immediate reduct of abbr(Ps, F). Since F**® and
H2/Y are not of the same type, H is not a reduct of F. Hence abbr(Ps, F) =
F = abbr(P,, H). Since F' is in C;a(t)[ﬂ/g], H is in C) .0 [P/C].
r > 1: Suppose F* is the immediate reduct of F' in the sequence.

Case 1. F* = abbr(Pg, F') where F =1 F".

This case follows by the subsidiary induction hypothesis.

Case 2. F* = F.

Then I = abbr(P,, H). Since F'is in C [P/€], H is in C7(, \[P/C].

Hence abbr(Ps, F) is in C;a(i) [P/C].

Thus we can conclude that C}, wl2/Clisa CR". O

Lemmas 4.2.4, 4.2.9, 4.2.10, and 4.2.11 also hold if we replace every C'R by
CR™ and every C,[P/C] by C}[P/C] and the proofs are similar.
The following lemma is a new lemma which is needed for the proof of the

strong normalization theorem.
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Lemma 5.2.9. Let P = P["',..., P be distinct predicate variables, T =Ty, ...,
T,, where T; = )\zi,...,z;%&-, 1 <1 < n, be abstraction terms, C = Cy,...,C,
be collections of CRTs corresponding to Ty, ..., Ty, respectively, FPE/TE/U) pe g
term of type [B[P/T)(R/U)|, where R is an r-ary predicate variable which is not
in {P}UFV(T) and U = \zy,..., 2.« is an abstraction term with FV (a) = @.
Then FAE/TIR/U) s in C’;(R/U) [P/C] if and only if abbr(P,, F)PL/TIE/Fa) g

in Cyipyp,)L/C.

Proof. We will prove by induction on f.

Suppose R ¢ FV (). Then [B(2/TI(R/U)] = [BI/T)(R/P.)] = [BP/T)).

If FAP/T g in Cy[P/C], which is a CR" by Lemma 5.2.8, then
abbr (P, FPE/INAEAL s in CF[P/C].

If abbr(P,, FPE/DN)AE/ D is in C5[P/C], then, by CR2, so is F since abbr(P,, F)
-1 F.

Now, suppose R € FV (/).

B = R(1):

Suppose FAL/TIRIV) ig in Chryn2/C] ie. Felz/s in Cogl2/Cl (=
Chiz/g[2/C] by Note on page 165). Then F' is strongly normalizable. Since every
reduction sequence beginning with abbr(P,, F) gives a reduction sequence begin-
ning with £, abbr(P,, F) is also strongly normalizable:

Suppose abbr(Py, F) = abbr(P,, F'*2/M1). Then F = F'. Since F is in
CopeglB/Cl, so is F.

Thus abbr (P, F) is in Cf, ,[P/C].

The converse follows straightforwardly by the definition and Note on page 165.
B = 01 A Pa:

Suppose FAIE/TIR/U) g in C’;(R/U) [P/C]. We will show that mabbr(P,, F)

is in C;(R/Pa)[ﬂ/g] by induction on N(F'). Since mabbr(P,, F') is neutral, we
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will show that all its immediate reducts are in C'j (r/p.y[L/C]. 1t follows by the
subsidiary induction hypothesis if an immediate reduct is obtained by reducing
F.
The other immediate reduct is abbr(P,,m F). Since F' is in C;( r £2/Cl;
m F is in C’;(R/U) [P/C]. By the main induction hypothesis, abbr(P,,m F) is in
+
Oﬁl (R/Pa)
Similarly, we can show that mabbr(Py, F) is in CF 4 /p \[P/C]. Thus

[2/C].

abbr(P,, F') is in C’;(R/Pa)[ﬂ/g].
Now, suppose abbr(P,, FY) is in C;(R/Pa)[ﬂ/(_f]‘ Then myabbr(P,, F) is in

cr [P/C]. Since miabbr(P,, F') =1 abbr(P,,m F), abbr(P,, ™ F) is in

Br(R/Pa)
CE’I(R/PQ)[B/Q] by CR2. Hence m F is in C’;(R/U) [P/C] by the induction hypoth-

esis. Similarly, o F' is in ng(R/U) [P/C]. Hence F'is in C’;{(R/U) [P/C].

B =p1D P

Suppose F is in C’;(R/U) [P/C]. We want to show that abbr(P,, F) is in

O(El D02)(R/Pa) [B/Q] 3
Let G be in Cf /p[P/C]. We will prove that abbr(Pa, F)(G) is in
C,(r/puy [ 2/C) by induction on N(F) + N(G). Since abbr(Pa, F)(G) is neutral,

we will show that all its immediate reducts are in C/j, (ryp.y [ 2/C]. Tt follows by the
subsidiary induction hypothesis if an immediate reduct is obtained by reducing F’
or G. The other immediate reduct is abbr(P,, F/(unabbr( XLITIE/U),
XAE/TIE) G)).
First, we will prove that wunabbr( X E/TIE/U) X AIP/TIE/U) (1) s in

+
Covriu
FV(p1[P/T]). Suppose R € FV(5,[P/T]). We will show that all its immediate

,[2/C] by induction on N(G). It follows by Note on page 158 if R ¢

reducts are in C’;l( ry2/C]. 1t follows by the subsidiary induction hypothe-

sis if an immediate reduct is obtained by reducing G. The remaining case is
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when G = abbr(P,, H#'P/TIE/U)) and the immediate reduct is H. Since G is in
C’; (R/P) [P/Q], by the main induction hypothesis, H is in CB (R/U)

Thus we can conclude that unabbr( X% E/TIE/U) X AIP/TIR/U) ¢ ig in

Ci, (ryn | 2/Cl.
Since F' is in C'ﬁ ) (/o) 2/C, F(unabbr(XAE/TIER/U) X AIE/TIRIU) ) is

[2/C].

in C3, p/in[P/C]. Thus abbr (P, F(unabbr (XAIE/TI(E/U) xAIP/TIE/U) (1Y) is in
+
Coat/pa)
Now, suppose abbr( Py, F) is in C(Eoﬁz)(R/Pa)[B/Q]' We want to show that F

,[2/C] by the induction hypothesis.

is in 0&31362)(R/U)[£/Q]. Let G be in CEI(R/U)[B/Q].
By the induction hypothesis, abbr(P,, @) is in CE(R/PQ)[B/Q]. Hence

abbr(P,, F')(abbr(P,,G)) is in C’ [P/C]. Since

B2(R/ Po)
abbr( Py, F')(abbr(P,, G))
=1 abbr(P,, F(unabbr(XHEAED) xHP/TIEY) qbpr(P,, G))))
= abbr(Py, F(Q)),
abbr(P,, F(G)) is in C’;Q(R/Pa [P/C]. By the induction hypothesis, F(G) is in
+
Coatryv)
B=p1V P
Suppose F is in C’;(R/U) [P/C]. We want to show that abbr(Pg, F') is in

[P/Q] Thus F is in CF,

B(R/U) [P /Cl.

+
Cloivs) (R Po)

Let [y] be a type, C'be a CR™ of type [v], F1 and F; be terms in Cg (R/P.)

[P/C] D C, respectively, and Xl’gl[B/I](R/P"‘) and X§2[£/Z](R/P“)

[2/C].
[2/C]
D (' and C 2(R/Pa)
be term variables which are not equivalent to any free term variables of F} and
F5, respectively.

We will prove that &( Xlﬁ1 [B/TI(R/Pa) ( Xlﬁl[B/I](R/Pa))’ Xzﬂz[E/I](R/Pa)'
Fy( Xy By b (P, F)) is in C by induction on N (Fy (XA o

N(Fy(XPPEAMEFP)Y L N(F). As usual, we will show that all its immediate
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reducts are in C'. It follows by the subsidiary induction hypothesis if an immediate

reduct is obtained by reducing F (Xlﬁl[g/ﬂ(R/Pa)), F2(XQBQ[B/I](R/P"))7 or F. The

other immediate reduct is M = @ (Y™ [B/TVR/U),

unabbr (Y IEIWO>Y yBIPITRUY by y SRRV yal2/TIED)

unabbr (Y EE/DRD> y BRI o q BEITIER) ) ey SIE/TIR/D)

is the first term variable which is not equivalent to any free term variable of F},

i=1,2.

First, we will prove by induction on N(F,) that unabbr(Y;" [B/TR/U>Y,

YRS By g in C. (rjin|2/C] © €, which is a CR* by Lemmas 5.2.3 and
5.2.6. It follows by Note on page 158 if R & FV (/). Suppose R € FV (). We

,[2/€] > C. 1t follows by

will show that all its immediate reducts are in C (R

the subsidiary induction hypothesis if an immediate reduct is obtained by reducing
Fy. The remaining case is when Fy = abbr(B,, K% 2/TIR/U)27) and the immediate

reduct is K. To show that K is in C [P/C] D C, let H be in Cj 52 vy 2/Cl-

AL(R/U)
By the main induction hypothesis, abbr(Pa, H) is in C'; 5.k py L/C]. Since Fi ie.

abbr(P,, K) is in Cﬁl(R/Pa)[B/Q] > C, abbr(P,, K)(abbr(P,, H)) is in C. Since

abbr(P,, K)(abbr( P, H)) . »=1. .abbr(P,; K(unabbr(ZBl [P/TVR/U) 7B [B/TI(R/U)
abbr(P,, H))))
=1 abbr(P,, K(H)")

-1 K(H),

where ZAIE/TI(E/U) is the first term variable of type [3,[P/T](R/U)], K(H) is in
C. Hence K is in C (p[P/C] D C. Thus we can conclude that

unabbr(ylﬁl[B/ﬂ(R/U)DW'X/lﬁl[B/I](R/U)D’Y7 FI) is in O;l(R/U) [B/Q] S CO.

Similarly, we can show that unabbr(Yf 2E/TI(R/ U)nyf 2B/TIR/U)>Y Fy) is in

C+

s £/C1 D C.
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Since F' is in C’;(R/U)[B/Q], M isin C.

Now, suppose abbr(P,, F) is in C(—El\/ﬁg)(R/Pa)[B/g]'

Let [y] be a type, C' be a CR™ of type [v], F1 and F} be terms in CE(R/U) [P/C]
D C and C’;;(R/U) [P/C] D C, respectively, and Xfl[g/ﬂ(R/U) and XfQ[E/ﬂ(R/U) be
term variables which are not equivalent to any free term variables of F; and F3,
respectively.

We want to show that M = @(Xlﬁl[g/ﬂ(R/U).Fl(Xfl [B/E(R/U)), XQBQ[B/Z](R/U).
FQ(XQBQ[B/I](R/U)),F) is in C.

First, we will prove that abbr(P,, F}) is in CEI(R/P&)[B/Q] D C. Let G be
in C[;(R/Pa)[ﬂ/g]. We will prove that abbr(P,, F1)(G) is in C' by induction on
N(Fy)+ N(G). We will show that all its immediate reducts are in C. It follows by
the subsidiary induction hypothesis if an immediate reduct is obtained by reducing

Fy or G. The other immediate reduct is abbr(P,, ) (unabbr(Z%E/TIR/U),

ZAPITIRIV) )Y,

As in the proof of the case § = §; D [; on page 169, we can prove by induction

on N(G) that unabbr (2 AR ZBELED) G is in CF &)

is in C;(R/U) [P/C] D C, Fi(unabbr(Z%E/TIR/V) Z6IEP/TIE/V) GY) s in C, and so

)[2/C]. Since Fy

is abbr (P, Fy (unabbr (ZPULITE/U) 76(PITIRIU) CH)Y)Y since C' is a CR*.
Thus abbr (P, [1)(G) is in C and so abbr(Py, 1) is in Cf . p[P/C] D C.
Similarly, we can show that abbr(P,, F3) is in C;Q(R/Pa)[ﬁ/g] D C:

Let Z" [B/TR/Fe) and z [B/TI(R/Fe) he term variables which are not equivalent

to any free term variables of F; and Fj, respectively. Since abbr(P,, F) is in

+
C(ﬁ1 VB2)(R/ Pa

2P BRI by (P, Fy) (Zy? EEEED) abbr(P,, F)) s in C. Since

)[B/Q]; N = @(Zlﬁl[B/I](R/Pa).abbT(Pa, FI)(Zlﬁl[ﬂ/ﬂ(R/Pa)>7
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N >, @<Y51[P/T}(R/U) unabbr(Yﬁl [P/T)(R/U)Dy Yﬁl[P/T}(R/U abbr(Pa,Fl))

(Ylﬁl [P/TI(R/U) )7 }/'2/32 [P/T](R/U) (Yzﬂl [B/I}(R/U)D“/_Yfz [P/T)(R/U)Dy

.unabbr ,

abbr(Pa, Fz)) (Yfz[ﬂ/ﬂ(R/U))’ F)

 @(YPRDRI) p o B/ TIE/ D pBlR/TIRID) oy 5alB/TIE) by

M,

where Y/HE/TIRIV)

is the first term variable which is not equivalent to any free
term variable of F;, i = 1,2, by CRO and CR2, M is in C.
6 =Vzo:

Suppose F is in C’;(R/U) [P/C]. We want to show that abbr(P,, F) is in
C\mo (r/py[2/C]. Let t be an individual term. We will prove that abbr(F,, F)(t) is
in C’U( /Py 2/C) by induction on N(F). We will show that all its immediate
reducts are in C’;“( R/B)[z /] [P/C]. Tt follows by the subsidiary induction hypothesis
if an immediate reduct is obtained by reducing F'.

The other immediate reduct is abbr(P,, F(t)). Since F' is in Cv;w( =y 2/l
F(t) is in C:(R/U g [2/C] dee. CGWt](R/U [P/C]. Hence, by the main induction
hypothesis, abbr(Pa, F(t)) 18 in CJ, 1 g/py[P/Cl 1€ CF i/ P/C.

Now, suppose abbr(Py, F)-isin CJ, (/e [2/C]. Let t be an individual term.
We want to show that F(t) is in C’U(R/U)[I/t] [P/C]. Since abbr(P,, F') is in
Clrorypy[L/Cl, abbr(Po, F)(t) i in C gy [P/C) Le. CFppyp y[P/C), and
so is abbr(P,, F(t)) since it is an immediate reduct of abbr(P,, F)(t). By the
induction hypothesis, F(t) is in C’;L[x/t](R/U) [P/C] i.e. C’;“(R/U)[x/t] [P/C].

Similarly for the case § = V2Qo.

[ = dxo:

First, suppose F' is in C;U(R/U) [P/C]. We want to show that abbr(P,, F) is in
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Coao(rypm £/C]-

Note that since R € FV(f), every reduct of abbr(FP,, F') must be obtained by
reducing F, and so it must be of the same form as abbr(P,, F).

Suppose abbr(P,, F) = abbr(P,,,abbr(. .., abbr(P,,,I(u, H)**°"))). Then a =
oy and F = abbr(P,,, abbr (..., abbr(P,,, I(u, H)?°"))). Since F is in

O+

Seo(ryu) £/Cls abbr(Foy, abbr(. ..., abbr(Fy, H))) is in C:(R/U)[x/u] [P/C]. By the

induction hypothesis, abbr(FP,,,abbr(...,abbr(FP,,, H))) is in C';F(R/Pa)[m/u] [P/C].

Let y be an individual variable such that y ¢ fv(o) — {x}, [y] be a type with
y & fo(x), D bea CR* of type 3], & be'a term of type [o(R/Pa)[z/y][P/T] > 4]
such that for each individual term ¢, Gly/t] is in C, (7P 2/Cl D D, and y is
not free in the type supersceript of any free term variable of G, and X %/ Pe)l/yl[P/T]
be a term variable which is not equivalent to any free term variable of G.

We will prove that M = ST (y. X/ PIEMIP/T] G( xR/ Po)le/yllE/T]),
abbr(P,, F)) is in D by induction on N(G(X7E/P)l/VIL/T) 1 N(F). We will
show that all its immediate reducts are in D. It follows by the subsidiary induction
hypothesis if an immediate reduct is obtained by reducing G(X R/ Fa)le/VIIE/T]) op
F. The other immediate reduct is ST'(y.Y o/ V)le/vllE/T],
unabbr(YU(R/U)[m/y][B/ID’Y.YU(R/U)[w/y}[ﬂ/ﬂD’Y’ G)(YU(R/U)[I/?J][B/I]), F), where
Y o(B/UE/IE/T) s the first term variable which is not equivalent to any free term
variable of G

As in the proof of the case § = (3; V B3 on page 171, we can prove that for
every individual term ¢, unabbr (Y o/ DE/MIE/TISy yolR/U/MIP/TIZY Gy /1] is in
C’+R/U /g [2/€] O D by induction on N(Gly/t]).

Since F'is in Ca;m B/V) [P/C], ST (y.Y R/ OIEIT] ymabby (Y o/ O/IIE/TIDY,
y o/ ORIy G (y o (B/DE/YIE/TT FY) is in D. Thus M is in D.

Now, suppose abbr(P,, F) is in C3 o(r/ Pyl L/C]. We want to show that F' is
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in C;rmo(R/U) [2/C].
Suppose F = I(u, H?W/DE/IE/TY)  Then abbr(P,, F) -
abbr (Py, I(u, H)3e /DI - Since abbr(P,, F) is in C2 vo(r) Py £/Cl,
abbr(P,, H) is in CF o (R/ P/ /€l By the induction hypothesis, H is in
Now, suppose F = abbr(P,,,abbr(...,abbr(P,,, I(u, H)?"))). Then
abbr(P,, F') = abbr(P,, abbr(F,,,abbr(. .., abbr(P,, ., I(u, H))))). Since abbr(P,, F')
is in CF, o) Py 2/ Cl, abbr( Py, abbr(Pay, abbr (..., abbr (P, , H)))) is in

Cr [P/C]. By the induction hypothesis, abbr(F,,, abbr(. .., abbr(P,,, H)))

o(R/Po)[z/u]
18 0 Oy [2/CL

Next, let y be an individual variable such that y & fv(o) — {z}, [7] be a type
withy &€ fu(), D be a CRT of type [7], G be a term of type [o(R/U)[x/y][P/T] D
7] such that for each individual term ¢, Gly/t] is in C’;r( r/v)eyq /€1 D D, and y s
not free in the type superscript of any free term variable of G, and X 7(#/U)l=/yllP/T]
be a term variable which is not equivalent to any free term variable of G.

We have to show that M = ST(y. XeE/OEMIL/T] q( X oR/D=/IP/TY F) s in
D.

As in the proof of the case 3 = [,V Py on page 172, we can prove by induction
on N(G[y/t]). + N(H) that for every individual term ¢, abbr(P,,G)[y/t] is in
Co Ry Py [2/CI DD,

Let ZoW/P)lz/YIE/T] he a term variable which is not equivalent to any free
term variable of G.

Since abbr(P,, F) is in C’;;J(R/Pa)[ﬂ/(_f], N = ST(y.zoE/P)le/yIIP/T]

abbr(P,, G)(ZG(R/Pa)[r/y][B/Z]), abbr(P,, F')) is in D. Since
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N = ST(y_ya(R/U)[m/y] B/ unabbr(Y”(R/U)[’”/y] [B/T]5y yro(R/U)/yllP/T] >y

)

abbr(P,, G)) (YU(R/U)[I/y] [B/ﬂ)’ F)

- ST(yya(R/U)[I/y”B/I]’ G(YU(R/U)[x/y][B/I])’ F)

M,

where Y oE/ UL/ ig the first term variable which is not equivalent to any free

term of G, M is in D. Thus Fis in CF, , i [P/C].

Similarly for the case = J,Q0. Il
Lemma 5.2.10. Let F“ be a Curry-Howard term, x = x4, . .., x, be distinct indi-
vidual variables, t = tq,...,t, be individual terms, P = P{"*, ..., P."* be distinct
predicate variables, T = Ty, ... Ty, where T, = \zi,..., 2}, 7, 1 < i < k, be ab-
straction terms, C = Cy, . .., Cy be collections of CR* s corresponding to T, . .., Ty,
respectively, Xfl, h & ,Xlal be-inequivalent term variables such that every free term
variable of F'“ is equivalent to Xf" for some 1 <1 <[, and X = Xfi, o ,Xf{,

where O, = §[z/t][P/T], 1 < i < I, are inequivalent term variables, and let
5 5 ‘

K = Ky',.... 1" be Curry-Howard terins ‘in O [P/CL....Cf y[P/C], re-

spectively.

Then F*[z/t]|P/T)[X /K] is in CT

————— alz/t]

[P/C].

Proof. We will prove by induction on F'*.
Notation. Throughout this proof, 4" denotes [z /t][P/T] for any formula .
Every case except the following can be proved in the same way as in Lemma
4.2.12.
For the cases (Abbr Intro) and (Abbr Elim), @) is a g-ary predicate variable

and U = Azy,..., 2,0 where FV (o) = @.
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(Abbr Intro) F* = abbr(P,, Gﬁ(Q/U))ﬁ(Q/Pa);

By the induction hypothesis, G[z/t][P/T][X/K] is in C’;(Q/U)[ [2/C] ie.

————— z/t
+
Casav)

Note that since we can choose @' such that Q' ¢ {P} U FV(T) U FV(p),

and so A(Q/QN(Q'/U) = B(Q/U), we may assume that Q ¢ {P} U FV(T).

[2/C].

Flz/t][P/T][X /K] is in Cypy [P/C].

(Abbr Elim) F = unabbr(Z@/V) . Ge, gP(Q/Fa))e:
Since CR* is closed under equivalence of terms, we may assume that z is
replaceable by ¢ in Z.G, P is replaceable by T in (Z.G)[z/t], and Z%(@/Y) is not

equivalent any free term variable in X or K. As in the above case, we may assume

that Q ¢ {P} U FV(T).

Ot
in CyfeyylL/C) by inductionson NiGle/H|P/TI|X/K]) + N(Hz/H|P/T|IX
We will show that all its immediate reducts are in C’;“@ gl2/C]. 1t follows by the

subsidiary induction hypothesis if an immediate reduct is obtained by reducing

Glz/t][P/T)[X /K, 27 @Q/V) | H[z/t][P/T][X/K]] which is in C7_,.[P/C] by the

___________ alz/t]
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————— o/pg B/C) L. abbr(Py, J7@/D) is in

)[B/Q], by Lemma 5.2.9, J is in C;[

+
¢ /i)

Bla/1(Q/Ps P/Clie. Cf

o/l L/Cl

C:yr[g/ﬂ [E/Q] by CRO.

(V Elim) F* = &(Y/ F2, Y2 Fy, GOVe2):
As in the proof of Lemma 4.2.12, we assume that F; has no free term vari-

able Y7 such that ¢ #Z (; for all ¢« = 1,2, and both Ylﬁ ' and Yfé are not

1

equivalent to any free term variables in X or K. We will prove that M =

C:{[g / }[ﬂ /C]. The proof for every case except the following new one is as in the

t
proof of Lemma 4.2.12.

The new case is when M = @(Y’lﬁi,pra’(Ylﬁ;), igﬁé-HZBba’(}éﬁg)’
abbr(P,, HWGI V) QLTI BivE3)(Q/POIL/TY where [z /t] = B:(Q/P,), i = 1,2,

QE{P}UFV(T), U =Azn,...,z0, and the immediate reduct is N-=
o (ZPIETQID) i ZEEITNQIVR ZBHEITIQUUI by B (ITY/Y))

Y

2255 (2/T](Q/U) (ZZﬁS [P/T)(Q/U)>a’ .Z§5 [E/I}(Q/U)Da” H>) (Zgz? [E/I}(Q/U)% o),

unabbr
where Ziﬁ VIETIQ/U) s the first term variable of type [Bf[P/T](Q/U)] which is not
equivalent to any free term variable of H;, i = 1, 2.

By the assumption, Ylﬂ ' is not equivalent to any free term variable in K.
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is i Clynayyg[L/C] Re O y[P/CL D CF,y[P/C ie. Cgigrp,)[B/C] D
C:{@/ﬂ [P/C]. Similarly, H; is in C%(Q/Pg)[g/g] D) C;r[z/é] [P/C].

Next, we will prove that unabbfr’(ZlﬂT [B/I](Q/UDO/.ZfT[B/I](Q/UDal, Hy) is in

+
Car )

158 if Q ¢ FV (7). Suppose @ € FV(57). We will show that all its immediate

[P/C] D CH, }[B/Q] by induction on N(H;). It follows by Note on page

alz/t

reducts are in C;T(Q o [P/Cl.D CI[& /glL/C]. 1t follows by the subsidiary induction

hypothesis if an immediate reduct is obtained by reducing H;. The remaining case

(B,, HPIE/TQ/02at

is when H; = abbr and the immediate reduct is H,. Since

Hy is in CF /5, ynaeyB/Cl: by Lemma 5.2.9, H, is i CF o1 5apn [P/C] ie.
CE;‘(Q/U) [B/Q] - C;—[@/ﬁ [_B/Q Thus

unabbr(Z01E/D@ > g BN g i3 O, (/€] > €y P/C

Similarly, we can show that unabbr(Zg 2B/ UDQ/.Z? sIE/I@/ UDa/, Hy) is in

C+

s/ (/€] D Cgpy y[2/Cl.

C(J%Nﬁg)[z/z] [P/C] i.e. C(ETVB;)(Q/PU)[B/Q]‘ By Lemma 5.2.9, H is in
Clsrvay@/on 2/C)- Thus Nis in Gy, y[P/C).

(3 Elim) F* = ST (y.YP.G*, H>P):

As in the proof of Lemma 4.2.12; we assume that y ¢ {z} U fo(t)U fu(K), G*
has no free term variable Y such that ¢ % 3, and Y? is not equivalent to any
free term variable in X or K.

isin C;f, ,, [P/C] by induction on N(Gla/t][P/T)[X /K])+N(H[z/)[P/T)[X /K]).

Since M is neutral, we will show that all its immediate reducts are in Cy5/4[P/C].

The proof for every case except the following new one is as in the proof of Lemma
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4.2.12.
The new case is when M = ST (y.Y? .G, (Y*?),
abbr(P,, J5 Q/UIE/TN 36" (Q/Po)P/T] - where Blz/t] = (*(Q/F,), Q@ ¢ {P} U

FV(T), U = Az1,..., 2,0, and the immediate reduct is N = ST (y.Z5 (@/VIE/T],

*

unabbr (27 Q/UIR/TIoa" 75 Q/U)E/TISe! \Gx (76 (Q/UIE/T | J).
Similar to the above case, we can show that unabbr (27 (Q/VIE/T>"

ZBQIVI/IT> 3 Y ig'in C+( )[B/Q] D, C(j[g/g] [P/C] and J is in

B*(Q/U
C’;’yﬁ*(Q/U) [P/C]. Hence N is in C;@/ﬂ[g/g].
Similarly for the case (33 Elim). O

The strong normalization theorem for the new C-H terms follows by the above
lemma in the same way as Theorem 4.2.13 follows from Lemma 4.2.12 in Chapter

IV.



CHAPTER VI

CONCLUSIONS AND FURTHER WORK

We have extended the system of extracting programs from proofs in the language
of first-order predicate calculus (in [3]) to second-order logic. We have shown that
Curry-Howard terms produced in the new system still satisfy the strong normal-
ization theorem by extending Crossley and Shepherdson (see [3]) and adapting
Girard’s technique of parametric reducibility (see [7]). By using this technique,
we do not have to put any restrictions on formulae or abstraction terms. In [2],
Basin and Matthews extend a standard intuitionistic first-order sequent calcu-
lus to second-order and put the restriction on an abstracted formula (which is
an abstraction term in this thesis) \zq, ..., z,a so that o does not contain any
second-order quantifiers. This restriction enables them to prove the second-order
cut elimination theorem by induction on the construction of a formula. In [16],
Takayama introduces the second-order constructive calculus @ PCy where second-
order formulae are restricted so that the second-order universal quantifier never
occurs-inside a formula (only occurs at the head part of a formula) in order to
make the sequence of the second-order proof normalization simple. Our work here
goes further than theirs.

This new system is intended for templates to be added to but it is also useful on
its own since now programs can be obtained directly from proofs in second-order
logic in which a large part of mathematics is actually formulated (see [18]).

Finally, we have introduced two kinds of templates: induction templates and

abbreviation templates by adding new rules to the system and then defined the
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associated Curry-Howard terms as well as new reduction rules. For the induction
templates, everything is straightforward. We just add proofs for the new cases to
the proof of every lemma. We then get the strong normalization theorem for the
new Curry-Howard terms. On the contrary, for the abbreviation templates, the
proof of the strong normalization theorem seems to be much more complicated.
In order to have Lemma 5.2.9, which is the key to the strong normalization the-
orem, we have to extend CR to CR* and C,[P/C] to CH[P/C], where C’[P/C]

is introduced in order to define CF[P/C]

We restrict abstraction terms not to
contain any abbreviation predicates. This restriction is needed for the proofs of
(v Elim), (3 Elim), and (35 Elim) cases in Lemma 5.2.10. We also restrict the
formulae which can be abbreviated not to contain any abbreviation predicates or
free predicate variables. We make the latter restriction in order to make some
basic lemmas (e.g. Lemma 3.2.14) hold. The reason for the former restriction is
below the note on page 165 of which the result is needed for the proof of Lemma
5.2.9.

The induction templates allow us to use induction in formal proofs without
going through natural numbers. - As a result of this, programs extracted from
proofs using induction in the new system would become shorter. The abbreviation
templates enable us to abbreviate formulae by predicates in formal proofs. We can
see that the new system takes us closer to the actual practice of mathematicians
and the way they write proofs.

Some of the things we have not done in this thesis are the following.

We did not prove the Church-Rosser theorem, which states that “if a Curry-
Howard term reduces to two terms, these two terms must have a common reduct”,
for the new Curry-Howard terms. This should be a straightforward extension from

the proof of this theorem for the first-order system in [3].
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We did not give a definition of verifier, which may be regarded as a variant of
Kleene’s notion of realizer (see [10]). Verifiers for the first-order system in [3] give
constructive evidence for the truth of a formula in a structure. Extending these

to the second-order system would be a good subject for further work.
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