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CHAPTER I

INTRODUCTION

There is a close correspondence between intuitionistic logic and typed-lambda

calculi. Curry (see [4]) and subsequently Howard (see [8]) noticed the correspon-

dence between term formation rules in lambda calculus and the rules of inference

in intuitionistic propositional calculus. Such a correspondence leads to the idea

of extracting programs from proofs to which a brief introduction is as follows.

The standard approach to extracting programs from proofs is by constructing

Curry-Howard terms.

Curry-Howard terms are typed-lambda terms which are defined to correspond

to formal proofs in the natural deduction system. Such a correspondence is called

Curry-Howard isomorphism (see [7] for more details). As in [3], the natural de-

duction system used here is the version of Gentzen’s intuitionistic system given

by Prawitz (see [12]) and types of Curry-Howard terms are first-order formulae.

By defining a Curry-Howard term formation rule corresponding to each rule in

the natural deduction system we will get the correspondence between proofs and

Curry-Howard terms. In order to give some ideas about the correspondence, we

will give some examples by using rules for the connective ∧. The full version

which deals with every connective and quantifier in first-order logic is in [3].
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(∧ Introduction)

Natural deduction rule C-H term formation rule

...
...

α β
(∧ Intro)

Fα Gβ

α ∧ β (F α, Gβ)α∧β

(∧ Elimination)

Natural deduction rules C-H term formation rules

...

α ∧ β
(∧1 Elim)

Fα∧β

α (π1F
α∧β)α

...

α ∧ β
(∧2 Elim)

Fα∧β

β (π2F
α∧β)β

A proof of α from premises α, β Construction of a corresponding C-H term

α β
(∧ Intro)

Xα Y β

α ∧ β
(∧1 Elim)

(Xα, Y β)α∧β

α (π1(X
α, Y β)α∧β)α

In the above proof, we can see that there are unnecessary steps, since if α is

a premise, we can deduce α from the premise α, so the above proof is redundant

and can be reduced to the uppermost α of which the corresponding Curry-Howard

term is Xα.

We use the notation Â for reduces and write the above reduction for the

Curry-Howard term as follows.

(π1(X
α, Y β)α∧β)α Â Xα
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A Curry-Howard term is said to be normal if it cannot be reduced.

In order to see the connexion between programs and proofs, let us consider

the following example.

Suppose we have a proof of ∀x∃yα. As explained above, we can construct a

corresponding Curry-Howard term F ∀x∃yα. When a closed individual term t is

given, by applying the (∀ Elim) rule (see [3]) to the last line of the proof, we

obtain a proof of ∃yα(x/t), where α(x/t) denotes the result of substituting t for

all free occurrences of x in α subject to avoiding clashes of variables, and the

corresponding Curry-Howard term is (F ∀x∃yα(t))∃yα(x/t). As shown in the proof of

Theorem 6.6 in [3], (F ∀x∃yα(t))∃yα(x/t) can be reduced to a normal term which is

of the form (I(u,Gα(x/t)(y/u)))∃yα(x/t) for some closed individual term u.

From the above process we can see that F ∀x∃yα is a program extracted from the

proof of ∀x∃yα and when a value t of x is given, we can extract the corresponding

value u of y by reducing (F ∀x∃yα(t))∃yα(x/t) to normal form. We can think of

the process of computing the value of y from a given value of x as reducing

(F ∀x∃yα(t))∃yα(x/t) to normal form and then extracting the y from the final term.

For computational purposes every term must eventually reduce in a finite num-

ber of steps to a normal form. A Curry-Howard term F is strongly normalizable if

all reduction sequences beginning with F are finite. A calculus satisfies the strong

normalization theorem if every term is strongly normalizable.

Takeuti (see [17]) first formulated a conjecture in 1954 that it would be possible

to prove strong normalization (otherwise known as cut-elimination) for simple type

theory and in 1966 Tait (see [14]) proved cut-elimination for second-order logic.

The theorem for higher order logic/simple type theory was published by Prawitz

[13] and Takahashi [15] and the full theorem was subsequently proved by Girard

in his thesis [6] and published in [5].
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In [3] Crossley and Shepherdson gave a proof of strong normalization for first-

order logic that provides a more user-friendly calculus from which to derive com-

puter programs. They use Girard’s candidates for reducibility (see [7]).

In carrying out mathematical proofs the same patterns frequently recur. There-

fore in extracting programs from proofs it would be helpful to characterize what

a pattern or template is. We will integrate templates into the system so that we

do not have to repeat what are essentially the same arguments. Moreover, this

mirrors ordinary mathematical practice.

In this thesis, we introduce two kinds of templates namely induction templates

and abbreviation templates.

The idea of induction templates comes from the induction used in ordinary

mathematical proofs. Adding induction on natural numbers or lists can be found

in [1], [3], [9], and [11]. The new induction templates are more general than

those inductions because they can be used on natural numbers, lists, and other

inductively defined predicates.

In ordinary mathematical proofs, we often abbreviate formulae by predicates.

We will introduce abbreviation templates for this purpose. Analogous templates

can be found as meta-rules in [9] and [11]. Now we will add them as formal rules.

It is essential that the systems to which the templates are added must be higher

order. Therefore, in this thesis, we do program extraction from proofs for higher

order systems of logic, specifically systems of full second-order predicate logic.

The new Curry-Howard terms produced in the systems to which templates are

added will still satisfy all the basic properties including the strong normalization

theorem.

The thesis is arranged as follows.
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In Chapter II we introduce our second-order language and define substitution

for second-order formulae. We prove some lemmas concerning substitutions that

establish basic properties and will be used in the following chapters.

Chapter III is separated into three sections. In the first section, we start with

the second-order natural deduction system, NJ2, extended from the first-order

natural deduction system, NJ . In the second section, we define associated Curry-

Howard terms. We then give definitions of substitutions, legitimate changes of

bound variables, and equivalence of the Curry-Howard terms together with some

lemmas concerning them. We give reduction rules for the new Curry-Howard

terms as well as some basic lemmas in the last section.

Chapter IV discusses strong normalization. It has two sections. We give

some basic definitions in the first section and a proof of the strong normalization

theorem in the second section.

Chapter V is about templates. We introduce two kinds of templates namely

induction templates and abbreviation templates as mentioned above.

Chapter VI summarizes the results of our work, and suggests possibilities for

further research.



CHAPTER II

SECOND-ORDER LANGUAGE AND SUBSTITUTIONS

In this chapter we set up the language and establish basic lemmas for substitutions.

We follow the approach of [3].

We define L2 to be a second-order language extended from a first order lan-

guage L as follows.

We take the basic symbols of L as ∧,∨,⊃,⊥,∀,∃, =, (, ), and an infinite se-

quence of variables x, y, z, x1, . . ., called individual variables. We also call terms

of L individual terms.

We define a new class of predicate variables of all arities. For each arity n,

we use P n, Qn, Rn, P n
1 , . . . to denote n-ary predicate variables. The superscript n

may be omitted if we do not want to state the arity or it is clear in the context

of which arity it is. We also add two new quantifier symbols ∀2 and ∃2.

Definition 2.1. An atomic formula of L2 is either an atomic formula of L or

an expression of the form P (t1, . . . , tn) where P is an n-ary predicate variable and

t1, . . . , tn are individual terms.

Definition 2.2. The formulae of L2 form the smallest set of expressions con-

taining the atomic formulae and ⊥, closed under the following formation rules.

i. If α and β are formulae so are the expressions (α∧β), (α∨β), and (α ⊃ β).

ii. If α is a formula and x is an individual variable, then (∀xα) and (∃xα) are

formulae.

iii. If α is a formula and P is a predicate variable, then (∀2Pα) and (∃2Pα)
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are formulae.

Notes.

a. Parentheses will be omitted when there is no ambiguity.

b. An occurrence of an individual variable x (respectively a predicate variable

P ) in a formula α is bound if it occurs in a subformula of α of the form ∀xβ or

∃xβ (respectively ∀2Pβ or ∃2Pβ), otherwise it is free. We call β the scope of the

quantifier.

c. From now on when we say “α is a formula”or “α is a second-order for-

mula”we mean “α is a formula of L2 for some extension L2”unless otherwise

stated.

d. When we say “x is the first individual variable . . . ”we mean “x is the first

individual variable in some fixed ordering of individual variables . . . ”. Similarly

for predicate variables of each arity.

e. When we give a definition or a proof that proceeds by induction on the

construction of a formula α, we will omit the case α is ⊥ whenever it is similar to

the case where α is an atomic formula.

f. When we say “induction on a formula α”we mean “induction on the con-

struction of a formula α”.

g. Sometimes we use x′, y′, z′, x′′, . . . or x∗, y∗, z∗, x∗∗, . . . to denote individual

variables. Similarly for predicate variables and any variables in this thesis.

Notation. We use

a. fv(α) (respectively FV (α)) to denote the set of free individual variables

(respectively the set of free predicate variables) of a formula α; similarly for fv(t)

where t is an individual term;

b. {x} to denote the set {x1, . . . , xn}, where x = x1, . . . , xn are individual

variables; similarly for {P}, where P is a list of predicate variables;
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c. fv(t) to denote
n⋃

i=1

fv(ti), where t = t1, . . . , tn are individual terms;

d. α[x/rt] (respectively u[x/t]) to denote the simple simultaneous replace-

ments of all free occurrences of (distinct) individual variables x = x1, . . . , xn in a

formula α (respectively an individual term u) by individual terms t = t1, . . . , tn,

respectively;

e. α[P/rR] to denote the simple simultaneous replacements of all free oc-

currences of (distinct) predicate variables P = Pm1
1 , . . . , Pmn

n in a formula α by

predicate variables R = Rm1
1 , . . . , Rmn

n , respectively.

Note. When we write “a∗ is the sublist of a . . . ”, a∗ could be empty and every

definition and notation used for a can also be used with a∗ in a natural way e.g.

fv(t∗) = ∅ if t∗ is the empty sublist of a list of individual terms t.

Definition 2.3. Let α be a formula, x = x1, . . . , xn be distinct individual vari-

ables, and t = t1, . . . , tn be individual terms. The result of simultaneously substi-

tuting t1, . . . , tn for all free occurrences of x1, . . . , xn, respectively, in α, denoted

by α[x1/t1, . . . , xn/tn] or α[x/t], is defined inductively as follows.

i. If α is an atomic formula, then α[x/t] = α[x/rt].

ii. (β ∧ γ)[x/t] = β[x/t] ∧ γ[x/t].

Similarly for (β ∨ γ)[x/t] and (β ⊃ γ)[x/t].

iii. (∀yβ)[x/t] = ∀y′(β[y/y′][x∗/t∗]),

where x∗ is the sublist of x consisting of those xi’s which are in fv(∀yβ), t∗ is

the corresponding sublist of t, and y′ is y if y 6∈ fv(t∗), otherwise y′ is the first

individual variable which is not in fv(β) ∪ fv(t∗).

Similarly for (∃yβ)[x/t].

iv. (∀2Pβ)[x/t] = ∀2P (β[x/t]).

Similarly for (∃2Pβ)[x/t].

Note. From the above definition, it can be easily proved by induction on α that
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a. α[x/t] is a formula and is of the same form as α;

b. α[x/t] = α[x∗/t∗], where x∗ is the sublist of x consisting of those xi’s which

are in fv(α) and t∗ is the corresponding sublist of t;

c. α[x/x] = α;

d. if x∗ is the sublist of x consisting of those variables which are in fv(α) and

t∗ is the corresponding sublist of t, then fv(α[x/t]) = (fv(α)− {x∗}) ∪ fv(t∗);

e. FV (α[x/t]) = FV (α).

Notation. α[x/t, y/u] will abbreviate α[x1/t1, . . . , xn/tn, y1/u1, . . . , ym/um], where

x = x1, . . . , xn, t = t1, . . . , tn, y = y1, . . . , ym, and u = u1, . . . , um.

Following Takeuti [17], we extend our language and define abstraction terms.

Definition 2.4. If α is a formula with fv(α) = {x1, . . . , xn}, then λx1, . . . , xnα

is called an abstraction term .

Note. All occurrences of xi, 1 ≤ i ≤ n, in λx1, . . . , xnα are bound, so every

abstraction term contains no free individual variable.

Notation.

a. The set of free predicate variables of an abstraction term T = λx1, . . . , xnα,

denoted by FV (T ), is the set FV (α).

b. We use FV (T ) to denote
m⋃

i=1

FV (Ti), where T = T1, . . . , Tm are abstraction

terms.

c. We may write an abstraction term of the form λx1, . . . , xnRn(x1, . . . , xn) as

Rn when there is no ambiguity.

Definition 2.5. Let α be a formula, P = P n1
1 , . . . , P nm

m be distinct predicate vari-

ables, and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, be abstraction

terms. We define α[P1/T1, . . . , Pm/Tm], which can be written as α[P/T ], induc-

tively as follows.
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i. If α is an atomic formula, then

α[P/T ] =





δq[x
q
1/t1, . . . , x

q
nq

/tnq ] if α = Pq(t1, . . . , tnq) for some 1 ≤ q ≤ m

and some individual terms t1, . . . , tnq ,

α otherwise.

ii. (β ∧ γ)[P/T ] = β[P/T ] ∧ γ[P/T ].

Similarly for (β ∨ γ)[P/T ] and (β ⊃ γ)[P/T ].

iii. (∀xβ)[P/T ] = ∀x(β[P/T ]).

Similarly for (∃xβ)[P/T ].

iv. (∀2Qβ)[P/T ] = ∀2Q
′(β[Q/Q′][P ∗/T ∗]),

where P ∗ is the sublist of P consisting of those Pi’s which are in FV (∀2Qβ), T ∗

is the corresponding sublist of T , and Q′ is Q if Q 6∈ FV (T ∗), otherwise Q′ is the

first predicate variable with the same arity as Q which is not in FV (β)∪FV (T ∗).

Similarly for (∃2Qβ)[P/T ].

Notation.

a. If U = λy1, . . . , ykγ is an abstraction term, we use U [P/T ] to denote

λy1, . . . , yk(γ[P/T ]).

b. ∀yβ[x/t] will abbreviate ∀y(β[x/t]). Similarly for ∀yβ[P/T ].

∀y in the above statement can also be replaced by ∃y, ∀2Q, or ∃2Q.

Note. From the above definition, it can be easily proved by induction on α that

a. α[P/T ] is a formula;

b. α[P/T ] = α[P ∗/T ∗], where P ∗ is the sublist of P consisting of those Pi’s

which are in FV (α) and T ∗ is the corresponding sublist of T ;

c. α[P/P ] = α;

d. if P ∗ is the sublist of P consisting of those variables which are in FV (α)

and T ∗ is the corresponding sublist of T , then FV (α[P/T ]) = (FV (α)− {P ∗})∪
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FV (T ∗);

e. fv(α[P/T ]) = fv(α).

Definition 2.6. Let α be a formula.

If x = x1, . . . , xn are distinct individual variables, and t = t1, . . . , tn are indi-

vidual terms, we say t is free for x in α if no free occurrence of any xi, 1 ≤ i ≤ n,

in α is within the scope of a quantifier ∀y or ∃y where y occurs in ti.

If P = P n1
1 , . . . , P nm

m are distinct predicate variables, and T = T1, . . . , Tm,

where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, are abstraction terms, we say T is free

for P in α if no free occurrence of Pi, 1 ≤ i ≤ n, in α is within the scope of a

quantifier ∀2Q or ∃2Q where Q occurs free in Ti.

Definition 2.7. Suppose ∀xβ or ∃xβ (respectively ∀2Pβ or ∃2Pβ) is a sub-

formula of a formula α. A change of an occurrence of ∀xβ to ∀x′β[x/rx
′] or

∃xβ to ∃x′β[x/rx
′] (respectively ∀2Pβ to ∀2P

′β[P/rP
′] or ∃2Pβ to ∃2P

′β[P/rP
′],

where P and P ′ are of the same arity) in α is called legitimate if x′ (respectively

P ′) does not occur free in β and x′ is free for x (respectively P ′ is free for P ) in

β.

Definition 2.8. If a formula α′ can be obtained from a formula α by a finite

sequence of legitimate changes of bound individual variables or bound predicate

variables, we say α is equivalent to α′, and write α ≡ α′.

Note. It can be proved by induction on α that

a. if α ≡ α′, then fv(α) = fv(α′) and FV (α) = FV (α′);

b. if t is free for x (respectively R is free for P ) in α, then α[x/t] = α[x/rt]

(respectively α[P/R] = α[P/rR]).

Lemma 2.9. ≡ is an equivalence relation.
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Proof. It is clear that ≡ is reflexive and transitive. To prove that ≡ is symmetric,

it is enough to show this for a single change of bound variable. Suppose an

occurrence of ∀xβ in a formula α is replaced by ∀x′β[x/rx
′], where x′ is free for x

and does not occur free in β, and the result is α′. Since x 6∈ fv(β[x/rx
′]) and x is

free for x′ in β[x/rx
′], the change from ∀x′β[x/rx

′] to ∀xβ[x/rx
′][x′/rx] which is

∀xβ is also legitimate. Thus α can be obtained from α′ by a legitimate change of

bound variable. Similarly, if the replaced subformula is of the form ∃xβ, ∀2Pβ,

or ∃2Pβ.

Notation. We use [α] to denote the equivalence class of a formula α.

Note. When we prove by induction on α and the proofs for the cases α = ∀yβ

and α = ∃yβ are similar, we will prove only the case α = ∀yβ and omit the case

α = ∃yβ. Similarly for the cases α = ∀2Qβ and α = ∃2Qβ.

Lemma 2.10. For any formula α,

a. if x = x1, . . . , xn are distinct individual variables and t = t1, . . . , tn are

individual terms, then α[x/t] = α′[x/t] for some formula α′ such that α′ ≡ α and

t is free for x in α′;

b. if P = P n1
1 , . . . , P nm

m are distinct predicate variables and T = T1, . . . , Tm,

where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, are abstraction terms, then α[P/T ] =

α′[P/T ] for some formula α′ such that α′ ≡ α and T is free for P in α′.

Proof. Let α be a formula. We will prove this by induction on α.

a: Let x = x1, . . . , xn be distinct individual variables and t = t1, . . . , tn be

individual terms.

If α is an atomic formula, then t is free for x in α. The cases where α is β ∧ γ,

β∨γ, β ⊃ γ, ∀2Qβ, or ∃2Qβ follow straightforwardly by the induction hypothesis.

The remaining cases are α = ∀yβ and α = ∃yβ for which the proofs are similar.

α = ∀yβ:
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Then α[x/t] = ∀y′β[y/y′][x∗/t∗], where x∗ is the sublist of x consisting of those

xi’s which are in fv(α), t∗ is the corresponding sublist of t, and y′ is y if y 6∈ fv(t∗),

otherwise y′ is the first individual variable which is not in fv(β) ∪ fv(t∗).

By the induction hypothesis, β[y/y′] = β′[y/y′] and β′[y/y′][x∗/t∗] = β∗[x∗/t∗]

for some formulae β′ and β∗ such that β′ ≡ β, β∗ ≡ β′[y/y′], y′ is free for y

in β′, and t∗ is free for x∗ in β∗. Hence α[x/t] = ∀y′β∗[x∗/t∗] = (∀y′β∗)[x/t]

and ∀y′β∗ ≡ ∀y′β′[y/y′] ≡ ∀yβ′ ≡ ∀yβ = α. Since t∗ is free for x∗ in β∗ and

y′ 6∈ fv(t∗), t is free for x in ∀y′β∗.
b: The proof is similar to (a).

Corollary 2.11. For any formula β,

a. if y and y′ are individual variables such that y′ 6∈ fv(β), then ∀yβ ≡
∀y′β[y/y′] and ∃yβ ≡ ∃y′β[y/y′];

b. if P and P ′ are predicate variables with the same arity and P ′ 6∈ FV (β),

then ∀2Pβ ≡ ∀2P
′β[P/P ′] and ∃2Pβ ≡ ∃2P

′β[P/P ′].

Proof. Let β be a formula.

a: Let y and y′ be individual variables such that y′ 6∈ fv(β). By the above

lemma, β[y/y′] = β′[y/y′] for some formula β′ such that β′ ≡ β (so y′ 6∈ fv(β′))

and y′ is free for y in β′. Hence ∀yβ ≡ ∀yβ′ ≡ ∀y′β′[y/ry
′] = ∀y′β′[y/y′] =

∀y′β[y/y′]. Similarly, ∃yβ ≡ ∃y′β[y/y′].

b: The proof is similar to (a).

Lemma 2.12. Let α be a formula, x = x1, . . . , xn be distinct individual variables,

t = t1, . . . , tn be individual terms, P = P r1
1 , . . . , P rm

m be distinct predicate variables,

and R = Rr1
1 , . . . , Rrm

m be predicate variables.

Then α[P/R][x/t] = α[x/t][P/R].

Proof. We will prove this by induction on α. The cases where α is β ∧ γ, β ∨ γ,

or β ⊃ γ follow straightforwardly by the induction hypothesis.
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(i) α is an atomic formula.

If α = Pq(u1, . . . , urq) for some 1 ≤ q ≤ m and some individual terms

u1, . . . , urq , then

α[P/R][x/t] = Pq(u1, . . . , urq)[P/R][x/t]

= Rq(u1, . . . , urq)[x/t]

= Rq(u1[x/t], . . . , urq [x/t])

= Pq(u1[x/t], . . . , urq [x/t])[P/R]

= Pq(u1, . . . , urq)[x/t][P/R] = α[x/t][P/R],

otherwise α[P/R][x/t] = α[x/t] = α[x/t][P/R].

(ii) α = ∀yβ.

By the induction hypothesis, we have

α[P/R][x/t] = (∀yβ[P/R])[x/t]

= ∀y′β[P/R][y/y′][x∗/t∗]

= ∀y′β[y/y′][P/R][x∗/t∗]

= ∀y′β[y/y′][x∗/t∗][P/R]

= (∀y′β[y/y′][x∗/t∗])[P/R]

= (∀yβ)[x/t][P/R] = α[x/t][P/R],

where x∗ is the sublist of x consisting of those xi’s which are in fv(α) (=

fv(α[P/R])), t∗ is the corresponding sublist of t, and y′ is y if y 6∈ fv(t∗), otherwise

y′ is the first individual variable which is not in fv(β) ∪ fv(t∗) (= fv(β[P/R]) ∪
fv(t∗)).

(iii) α = ∀2Qβ.
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By the induction hypothesis, we have

α[P/R][x/t] = (∀2Q
′β[Q/Q′][P ∗/R∗])[x/t]

= ∀2Q
′β[Q/Q′][P ∗/R∗][x/t]

= ∀2Q
′β[Q/Q′][x/t][P ∗/R∗]

= ∀2Q
′β[x/t][Q/Q′][P ∗/R∗]

= (∀2Qβ[x/t])[P/R]

= (∀2Qβ)[x/t][P/R] = α[x/t][P/R],

where P ∗ is the sublist of P consisting of those Pi’s which are in FV (α) (=

FV (α[x/t])), R∗ is the corresponding sublist of R, and Q′ is Q if Q 6∈ {R∗},
otherwise Q′ is the first predicate variable with the same arity as Q which is not

in FV (β) ∪ {R∗} (= FV (β[x/t]) ∪ {R∗}).

Lemma 2.13. Let α be a formula, x = x1, . . . , xm and y = y1, . . . , yn be sequences

of distinct individual variables, and t = t1, . . . , tm and u = u1, . . . , un be individual

terms.

Then α[x/t][y/u] ≡ α[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ],

where yi1 , . . . , yik is the sublist of y consisting of those yj’s which are in fv(α)−
{x}.

Lemma 2.14. Let α and α′ be formulae, x = x1, . . . , xn be distinct individual

variables, and t = t1, . . . , tn be individual terms.

If α ≡ α′, then α[x/t] ≡ α′[x/t].

Proof. We will prove these two lemmas simultaneously by induction on α.

Proof of Lemma 2.13. The cases where α is β ∧ γ, β ∨ γ, β ⊃ γ, ∀2Qβ, or ∃2Qβ

follow straightforwardly by the induction hypothesis. The remaining cases are as

follows.
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(i) α is an atomic formula.

This is clear from the definition since all substitutions are simple. For this

case we obtain the lemma with ≡ replaced by =.

(ii) α = ∀zβ.

Suppose x∗ = xj1 , . . . , xjl
and y∗ are the sublists of x and y, respectively,

consisting of those variables which are in fv(α) and fv(α[x/t]), respectively, and

t∗ and u∗ are the corresponding sublists of t and u, respectively.

We have (∀zβ)[x/t][y/u] = ∀z′′β[z/z′][x∗/t∗][z′/z′′][y∗/u∗], where z′ is z (re-

spectively z′′ is z′) if z 6∈ fv(t∗) (respectively z′ 6∈ fv(u∗)), otherwise z′ (respec-

tively z′′) is the first individual variable which is not in fv(β)∪fv(t∗) (respectively

fv(β[z/z′][x∗/t∗]) ∪ fv(u∗)).

We have (∀zβ)[x1/t1[y/u], . . . , xn/tn[y/u], yi1/ui1 , . . . , yik/uik ] =

∀z′′′β[z/z′′′][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ], where z′′′ is z if z 6∈
l⋃

r=1

fv(tjr [y/u])∪
k⋃

s=1

fv(uis), otherwise z′′′ is the first individual variable which is

not in fv(β) ∪
l⋃

r=1

fv(tjr [y/u]) ∪
k⋃

s=1

fv(uis).

Let z∗ be an individual variable which does not occur in x∗, y∗,

β[z/z′′′][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ], or

β[z/z′][x∗/t∗][z′/z′′][y∗/u∗]. Then, by the induction hypothesis, we have

α[x/t][y/u] = ∀z′′β[z/z′][x∗/t∗][z′/z′′][y∗/u∗]

≡ ∀z∗β[z/z′][x∗/t∗][z′/z′′][y∗/u∗][z′′/z∗]

≡ ∀z∗β[z/z′][x∗/t∗][z′/z′′][z′′/z∗][y∗/u∗]

≡ ∀z∗β[z/z′][x∗/t∗][z′/z∗][y∗/u∗]

≡ ∀z∗β[z/z′][z′/z∗][x∗/t∗][y∗/u∗]

≡ ∀z∗β[z/z∗][x∗/t∗][y∗/u∗], and
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α[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ]

= ∀z′′′β[z/z′′′][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ]

≡ ∀z∗β[z/z′′′][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ][z
′′′/z∗]

≡ ∀z∗β[z/z′′′][z′′′/z∗][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ]

≡ ∀z∗β[z/z∗][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ].

Since z∗ 6∈ {y∗}, (fv(β[z/z∗])− {x∗}) ∩ {y∗} = (fv(∀zβ)− {x}) ∩ {y} =

{yi1 , . . . , yik}. Hence, by the induction hypothesis,

β[z/z∗][x∗/t∗][y∗/u∗]

≡ β[z/z∗][xj1/tj1 [y
∗/u∗], . . . , xjl

/tjl
[y∗/u∗], yi1/ui1 , . . . , yik/uik ]

= β[z/z∗][xj1/tj1 [y/u], . . . , xjl
/tjl

[y/u], yi1/ui1 , . . . , yik/uik ].

Proof of Lemma 2.14. Suppose α ≡ α′. The cases where α is β ∧ γ, β ∨ γ, or

β ⊃ γ follow straightforwardly by the induction hypothesis.

By Lemma 2.10, we may assume that t is free for x in both α and α′.

The lemma is trivial if there is no change of bound variable. We can assume

there exists a sequence of formulae α = α0, α1, . . . , αm = α′, m ≥ 1, such that αi

is obtained from αi−1 by a single legitimate change of bound variable.

For the remaining cases, we proceed by induction on m. We will prove only

the case m = 1 since the case m > 1 follows straightforwardly by the subsidiary

induction hypothesis and the case m = 1.

(i) α = ∀yβ.

Then α[x/t] = ∀yβ[x∗/t∗], where x∗ is the sublist of x consisting of those xi’s

which are in fv(α) and t∗ is the corresponding sublist of t.

Case 1. α′ = ∀yβ′ where β′ ≡ β.

By the main induction hypothesis, β[x∗/t∗] ≡ β′[x∗/t∗]. Hence α[x/t] =

∀yβ[x∗/t∗] ≡ ∀yβ′[x∗/t∗] = α′[x/t].
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Case 2. α′ = ∀zβ[y/z] where z is free for y and does not occur free in β.

Then α′[x/t] = ∀zβ[y/z][x∗/t∗].

Let z∗ be an individual variable which does not occur in x∗, β[x∗/t∗], or

β[y/z][x∗/t∗].

By the main induction hypothesis, we have

α′[x/t] = ∀zβ[y/z][x∗/t∗]

≡ ∀z∗β[y/z][x∗/t∗][z/z∗]

≡ ∀z∗β[y/z][z/z∗][x∗/t∗]

≡ ∀z∗β[y/z∗][x∗/t∗]

≡ ∀z∗β[x∗/t∗][y/z∗]

≡ ∀yβ[x∗/t∗] = α[x/t].

(ii) α = ∀2Qβ.

Case 1. α′ = ∀2Qβ′ where β′ ≡ β.

This case follows straightforwardly by the main induction hypothesis.

Case 2. α′ = ∀2Q
′β[Q/Q′] where Q′ is a predicate variable with the same arity

as Q which is free for Q and does not occur free in β (similarly for β[x/t]).

Then α[x/t] = ∀2Qβ[x/t]

≡ ∀2Q
′β[x/t][Q/Q′]

= ∀2Q
′β[Q/Q′][x/t] (by Lemma 2.12)

= (∀2Q
′β[Q/Q′])[x/t] = α′[x/t].

Lemma 2.15. Let α be a formula, x = x1, . . . , xn be distinct individual variables,

t = t1, . . . , tn be individual terms, P = P r1
1 , . . . , P rm

m be distinct predicate variables,

and T = T1, . . . , Tm, where Ti = λyi
1, . . . , y

i
ri
δi, 1 ≤ i ≤ m, be abstraction terms.
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Then α[P/T ][x/t] ≡ α[x/t][P/T ].

Proof. We proceed by induction on α. The cases where α is β∧γ, β∨γ, or β ⊃ γ

follow straightforwardly by the induction hypothesis.

(i) α is an atomic formula.

If α = Pq(u1, . . . , urq) for some 1 ≤ q ≤ m and some individual terms

u1, . . . , urq , then

α[P/T ][x/t] = Pq(u1, . . . , urq)[P/T ][x/t]

= δq[y
q
1/u1, . . . , y

q
rq

/urq ][x/t]

≡ δq[y
q
1/u1[x/t], . . . , yq

rq
/urq [x/t]] (by Lemma 2.13)

= Pq(u1[x/t], . . . , urq [x/t])[P/T ]

= Pq(u1, . . . , urq)[x/t][P/T ] = α[x/t][P/T ],

otherwise α[P/T ][x/t] = α[x/t] = α[x/t][P/T ].

(ii) α = ∀yβ.

By the induction hypothesis, we have

α[P/T ][x/t] = (∀yβ[P/T ])[x/t]

= ∀y′β[P/T ][y/y′][x∗/t∗]

≡ ∀y′β[y/y′][P/T ][x∗/t∗] (by Lemma 2.14)

≡ ∀y′β[y/y′][x∗/t∗][P/T ]

= (∀y′β[y/y′][x∗/t∗])[P/T ]

= (∀yβ)[x/t][P/T ] = α[x/t][P/T ],

where x∗ is the sublist of x consisting of those xi’s which are in fv(α) (=

fv(α[P/T ])), t∗ is the corresponding sublist of t, and y′ is y if y 6∈ fv(t∗), otherwise

y′ is the first individual variable which is not in fv(β) ∪ fv(t∗) (= fv(β[P/T ]) ∪
fv(t∗)).
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(iii) α = ∀2Qβ.

By the induction hypothesis,

α[P/T ][x/t] = (∀2Q
′β[Q/Q′][P ∗/T ∗])[x/t]

= ∀2Q
′β[Q/Q′][P ∗/T ∗][x/t]

≡ ∀2Q
′β[Q/Q′][x/t][P ∗/T ∗]

= ∀2Q
′β[x/t][Q/Q′][P ∗/T ∗] (by Lemma 2.12)

= (∀2Qβ[x/t])[P/T ]

= (∀2Qβ)[x/t][P/T ] = α[x/t][P/T ],

where P ∗ is the sublist of P consisting of those Pi’s which are in FV (α) (=

FV (α[x/t])), T ∗ is the corresponding sublist of T , and Q′ is Q if Q 6∈ FV (T ∗),

otherwise Q′ is the first predicate variable with the same arity as Q which is not

in FV (β) ∪ FV (T ∗) (= FV (β[x/t]) ∪ FV (T ∗)).

Lemma 2.16. Let α be a formula, P = P r1
1 , . . . , P rm

m and R = Rl1
1 , . . . , Rln

n be se-

quences of distinct predicate variables, T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ri
δi,

1 ≤ i ≤ m, and U = U1, . . . , Un, where Uj = λyj
1, . . . , y

j
lj
σj, 1 ≤ j ≤ n, be

abstraction terms.

Then α[P/T ][R/U ] ≡ α[P1/T1[R/U ], . . . , Pm/Tm[R/U ], Ri1/Ui1 , . . . , Rik/Uik ],

where Ri1 , . . . , Rik is the sublist of R consisting of those Rj’s which are in FV (α)−
{P}.

Lemma 2.17. Let α and α′ be formulae, P = P r1
1 , . . . , P rm

m be distinct predi-

cate variables, and T = T1, . . . , Tm, where Tj = λxj
1, . . . , x

j
rj

δj, 1 ≤ j ≤ m, be

abstraction terms.

If α ≡ α′, then α[P/T ] ≡ α′[P/T ].

Proof. We will prove these two lemmas simultaneously by induction on α.

Proof of Lemma 2.16. The proof is similar to the proof of Lemma 2.13 except for
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the following case.

α is an atomic formula:

If α = Pq(t1, . . . , trq) for some 1 ≤ q ≤ m and some individual terms t1, . . . , trq ,

then

α[P/T ][R/U ] = Pq(t1, . . . , trq)[P/T ][R/U ]

= δq[x
q
1/t1, . . . , x

q
rq

/trq ][R/U ]

≡ δq[R/U ][xq
1/t1, . . . , x

q
rq

/trq ] (by Lemma 2.15)

= Pq(t1, . . . , trq)[P1/T1[R/U ], . . . , Pm/Tm[R/U ]]

= α[P1/T1[R/U ], . . . , Pm/Tm[R/U ]], otherwise

α[P/T ][R/U ]

= α[R/U ]

=





α[Rs/Us] if FV (α) = {Rs} for some 1 ≤ s ≤ n,

α otherwise,

=





α[P1/T1[R/U ], . . . , Pm/Tm[R/U ], Rs/Us] if FV (α) = {Rs} for some

1 ≤ s ≤ n,

α[P1/T1[R/U ], . . . , Pm/Tm[R/U ]] otherwise.

Lemma 2.17 can be proved in the same way as Lemma 2.14.

Note. By using Lemmas 2.13, 2.14, 2.16, and 2.17, it can be proved by induction

on α that

a. if β ≡ ∀xα, then β = ∀yα′ for some formula α′ and some individual variable

y such that α′ ≡ α[x/y] and y 6∈ fv(∀xα); similarly if β ≡ ∃xα;

b. if β ≡ ∀2Pα, then β = ∀2Qα′ for some formula α′ and some predi-

cate variable Q, which is of the same arity as P , such that α′ ≡ α[P/Q] and
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Q 6∈ FV (∀2Pα); similarly if β ≡ ∃2Pα.

Next, we will give some definitions of substitutions which allow a wider range

of changed bound variables. In order to define these substitutions we proceed in

two stages. The first is a simultaneous definition and is only for replacing predicate

variables by predicate variables. In the second we extend this to substitutions by

abstraction terms.

Definition 2.18. Let α be a formula, x = x1, . . . , xn be distinct individual vari-

ables, t = t1, . . . , tn be individual terms, P = P r1
1 , . . . , P rm

m be distinct predicate

variables, and R = Rr1
1 , . . . , Rrm

m be predicate variables.

Part A. We define α(x1/t1, . . . , xn/tn), which can be written as α(x/t), induc-

tively as follows.

i. If α is an atomic formula, then α(x/t) = α[x/rt].

ii. (β ∧ γ)(x/t) = (β(x/t) ∧ γ(x/t)).

Similarly for (β ∨ γ)(x/t) and (β ⊃ γ)(x/t).

iii. (∀yβ)(x/t) = ∀y′(β(y/y′, x∗/t∗)),

where x∗ is the sublist of x consisting of those xj’s which are in fv(∀yβ), t∗ is

the corresponding sublist of t, and y′ is any individual variable which is not in

(fv(∀yβ)− {x∗}) ∪ fv(t∗).

Similarly for (∃yβ)(x/t).

iv. (∀2Qβ)(x/t) = ∀2Q
′(β(Q/Q′)(x/t)),

where Q′ is any predicate variable with the same arity as Q which is not in

FV (∀2Qβ).

Similarly for (∃2Qβ)(x/t).

Part B. We define α(P1/R1, . . . , Pm/Rm), which can be written as α(P/R), in-

ductively as follows.
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i. If α is an atomic formula, then

α(P/R) =





Rq(t1, . . . , trq) if α = Pq(t1, . . . , trq) for some 1 ≤ q ≤ m and

some individual terms t1, . . . , trq ,

α otherwise.

ii. (β ∧ γ)(P/R) = (β(P/R) ∧ γ(P/R)).

Similarly for (β ∨ γ)(P/R) and (β ⊃ γ)(P/R).

iii. (∀yβ)(P/R) = ∀y′(β(y/y′)(P/R)),

where y′ is any individual variable which is not in fv(∀yβ).

Similarly for (∃yβ)(P/R).

iv. (∀2Qβ)(P/R) = ∀2Q
′(β(Q/Q′, P ∗/R∗)),

where P ∗ is the sublist of P consisting of those Pj’s which are in FV (∀2Qβ), R∗

is the corresponding sublist of R, and Q′ is any predicate variable with the same

arity as Q which is not in (FV (∀2Qβ)− {P ∗}) ∪ {R∗}.
Similarly for (∃2Qβ)(P/R).

Definition 2.19. Let α be a formula, P = P n1
1 , . . . , P nm

m be distinct predicate

variables, and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, be abstrac-

tion terms. We define α(P1/T1, . . . , Pm/Tm), which can be written as α(P/T ),

inductively as follows.

i. If α is an atomic formula, then

α(P/T ) =





δq(x
q
1/t1, . . . , x

q
nq

/tnq) if α = Pq(t1, . . . , tnq) for some 1 ≤ q ≤ m

and some individual terms t1, . . . , tnq ,

α otherwise.

ii. (β ∧ γ)(P/T ) = (β(P/T ) ∧ γ(P/T )).

Similarly for (β ∨ γ)(P/T ) and (β ⊃ γ)(P/T ).
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iii. (∀yβ)(P/T ) = ∀y′(β(y/y′)(P/T )),

where y′ is any individual variable which is not in fv(∀yβ).

Similarly for (∃yβ)(P/T ).

iv. (∀2Qβ)(P/T ) = ∀2Q
′(β(Q/Q′, P ∗/T ∗)),

where P ∗ is the sublist of P consisting of those Pj’s which are in FV (∀2Qβ), T ∗

is the corresponding sublist of T , and Q′ is any predicate variable with the same

arity as Q which is not in (FV (∀2Qβ)− {P ∗}) ∪ FV (T ∗).

Similarly for (∃2Qβ)(P/T ).

Note. From the above definitions, it is easy to see that

a. α(x/t) is not unique if α contains bound variables;

b. α(P/T ) is not unique if α contains bound variables or δi contains bound

variables for some 1 ≤ i ≤ m where Pi ∈ FV (α).

Notation.

a. The notations and abbreviations used for the substitutions defined prviously

will also be used for the substitutions in the above definitions. Also, we may write

u(x/t) instead of u[x/t] where u is an individual term.

b. When we write “α(x/t)”we mean “some formula which can be denoted by

α(x/t)”. Similarly for α(P/T ).

c. We use {α(x/t)} to denote the set of all formulae which can be denoted by

α(x/t). Similarly for {α(P/T )}.
Note. From the above definitions, it can be proved by induction on α that

a. α(x/t) and α(P/T ) are formulae;

b. if t is free for x in α, then α[x/rt] ∈ {α(x/t)};
similarly if R is free for P in α, then α[P/rR] ∈ {α(P/R)};
c. FV (α(x/t)) = FV (α) and fv(α(P/T )) = fv(α);

d. if x∗ is the sublist of x consisting of those xj’s which are in fv(α) and t∗ is
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the corresponding sublist of t, then fv(α(x/t)) = (fv(α)− {x∗}) ∪ fv(t∗);

similarly for FV (α(P/T ));

e. α[x/t] is unique and it is one of the formulae in {α(x/t)}; similarly for

α[P/T ].

The aim of the rest of this chapter is to show that [α[x/t]] = [α(x/t)] =

{α(x/t)} and, similarly, [α[P/T ]] = [α(P/T )] = {α(P/T )}. First we need the

following lemmas.

Lemma 2.20. Let α be a formula, x = x1, . . . , xm and y = y1, . . . , yn be sequences

of distinct individual variables, and t = t1, . . . , tm and u = u1, . . . , un be individual

terms.

Then {α(x/t)(y/u)} = {α(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik)},
where yi1 , . . . , yik is the sublist of y consisting of those yj’s which are in fv(α)−
{x}.

Lemma 2.21. Let α be a formula, x = x1, . . . , xm be distinct individual variables,

t = t1, . . . , tm be individual terms, P = P1, . . . , Pn be distinct predicate variables,

and R = R1, . . . , Rn be predicate variables such that Pi and Ri are of the same

arity for all 1 ≤ i ≤ n.

Then {α(P/R)(x/t)} = {α(x/t)(P/R)}.

Lemma 2.22. Let α be a formula, P = P1, . . . , Pm and R = Rr1
1 , . . . , Rrn

n be

sequences of distinct predicate variables, P ′ = P ′
1, . . . , P

′
m be predicate variables

such that Pj and P ′
j are of the same arity for all 1 ≤ j ≤ m, and T = T1, . . . , Tn,

where Tj = λxj
1, . . . , x

j
rj

δj, 1 ≤ j ≤ n, be abstraction terms.

Then {α(P/P ′)(R/T )} = {α(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik)},
where Ri1 , . . . , Rik is the sublist of R consisting of those Rj’s which are in FV (α)−
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{P} and for all 1 ≤ j ≤ m, Uj =





Tq if P ′
j = Rq for some 1 ≤ q ≤ n,

P ′
j otherwise.

Proof. We will prove these three lemmas simultaneously by induction on α. The

cases where α is β ∧ γ, β ∨ γ, or β ⊃ γ follow straightforwardly by the induction

hypothesis.

Proof of Lemma 2.20. This is clear from the definition if α is an atomic formula,

since all substitutions are simple. The remaining cases are as follows.

(i) α = ∀zβ.

Suppose x∗ = xj1 , . . . , xjl
and y∗ are the sublists of x and y, respectively,

consisting of all those variables which are in fv(α) and fv(α(x/t)), respectively,

and t∗ and u∗ are the corresponding sublists of t and u, respectively.

Note that {y∗} ⊇ (fv(α)− {x}) ∩ {y} = {yi1 , . . . , yik}.
Let α∗ ∈ {α(x/t)(y/u)}. Then α∗ = ∀z′′β(z/z′, x∗/t∗)(z′/z′′, y∗/u∗), where

z′ and z′′ are individual variables such that z′ 6∈ (fv(∀zβ) − {x∗}) ∪ fv(t∗) and

z′′ 6∈ (fv(∀z′β(z/z′, x∗/t∗))−{y∗})∪fv(u∗), so z′′ 6∈
l⋃

r=1

fv(tjr(y
∗/u∗))∪

k⋃
s=1

fv(uis)

and z′′ 6∈ fv(∀zβ)− ({x∗} ∪ {yi1 , . . . , yik}).
By the induction hypothesis, we have

α∗ = ∀z′′β(z/z′, x∗/t∗)(z′/z′′, y∗/u∗)

= ∀z′′β(z/z′′, xj1/tj1(y
∗/u∗), . . . , xjl

/tjl
(y∗/u∗), yi1/ui1 , . . . , yik/uik)

= (∀zβ)(x1/t1(y
∗/u∗), . . . , xm/tm(y∗/u∗), yi1/ui1 , . . . , yik/uik)

= α(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik).

Now, let α∗ ∈ {α(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik)}. Then

α∗ = ∀z′β(z/z′, xj1/tj1(y/u), . . . , xjl
/tjl

(y/u), yi1/ui1 , . . . , yik/uik), where z′ is

an individual variable such that z′ 6∈ (fv(∀zβ)− ({x∗} ∪ {yi1 , . . . , yik})) ∪
l⋃

r=1

fv(tjr(y/u)) ∪
k⋃

s=1

fv(uis).



27

Let z∗ be an individual variable such that z∗ 6∈ (fv(∀zβ) − {x∗}) ∪ fv(t∗).

Since z′ 6∈ (fv(∀zβ)− {x∗}) ∪
l⋃

r=1

fv(tjr(y/u)),

z′ 6∈ (fv(∀z∗β(z/z∗, x∗/t∗))− {y∗}) ∪ fv(u∗). By the induction hypothesis,

α∗ = ∀z′β(z/z′, xj1/tj1(y/u), . . . , xjl
/tjl

(y/u), yi1/ui1 , . . . , yik/uik)

= ∀z′β(z/z′, xj1/tj1(y
∗/u∗), . . . , xjl

/tjl
(y∗/u∗), yi1/ui1 , . . . , yik/uik)

= ∀z′β(z/z∗, x∗/t∗)(z∗/z′, y∗/u∗)

= (∀z∗β(z/z∗, x∗/t∗))(y/u)

= (∀zβ)(x/t)(y/u) = α(x/t)(y/u).

(ii) α = ∀2Qβ.

We will prove that {α(x/t)(y/u)} ⊆ {α(x1/t1(y/u), . . . , xm/tm(y/u))} and

omit the proof of the converse which easily follows by the induction hypothesis.

Let α∗ ∈ {α(x/t)(y/u)}. Then α∗ = ∀2Q
′′β(Q/Q′)(x/t)(Q′/Q′′)(y/u), where

Q′ and Q′′ are predicate variables with the same arity as Q such that Q′ 6∈
FV (∀2Qβ) and Q′′ 6∈ FV (∀2Q

′β(Q/Q′)(x/t)), so Q′′ 6∈ FV (∀2Qβ).

By the induction hypothesis,

α∗ = ∀2Q
′′β(Q/Q′)(x/t)(Q′/Q′′)(y/u)

= ∀2Q
′′β(Q/Q′)(Q′/Q′′)(x/t)(y/u)

= ∀2Q
′′β(Q/Q′′)(x/t)(y/u)

= ∀2Q
′′β(Q/Q′′)(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik)

= (∀2Qβ)(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik)

= α(x1/t1(y/u), . . . , xm/tm(y/u), yi1/ui1 , . . . , yik/uik).

Proof of Lemma 2.21.

(i) α is an atomic formula.
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If α = Ph(u1, . . . , ug) for some 1 ≤ h ≤ n and some individual terms u1, . . . , ug,

where g is the arity of Ph, then

α(P/R)(x/t) = Rh(u1, . . . , ug)(x/t)

= Rh(u1(x/t), . . . , ug(x/t))

= Ph(u1(x/t), . . . , ug(x/t))(P/R)

= Ph(u1, . . . , ug)(x/t)(P/R) = α(x/t)(P/R),

otherwise α(P/R)(x/t) = α(x/t) = α(x/t)(P/R).

For the remaining cases, we will show that {α(P/R)(x/t)} ⊆ {α(x/t)(P/R)}
and omit the proof of the converse which can be proved similarly.

Let α∗ ∈ {α(P/R)(x/t)}.
(ii) α = ∀yβ.

Then α∗ = ∀y′′β(y/y′)(P/R)(y′/y′′, x∗/t∗), where x∗ is the sublist of x con-

sisting of those xi’s which are in fv(α(P/R)), t∗ is the corresponding sublist of t,

and y′ and y′′ are individual variables such that y′ 6∈ fv(∀yβ) and

y′′ 6∈ (fv(∀y′β(y/y′)(P/R))− {x∗}) ∪ fv(t∗), so y′′ 6∈ (fv(∀yβ)− {x∗}) ∪ fv(t∗).

By the induction hypothesis, we have

α∗ = ∀y′′β(y/y′)(P/R)(y′/y′′, x∗/t∗)

= ∀y′′β(y/y′)(y′/y′′, x∗/t∗)(P/R)

= ∀y′′β(y/y′′, x∗/t∗)(P/R)

= (∀y′′β(y/y′′, x∗/t∗))(P/R)

= (∀yβ)(x/t)(P/R) = α(x/t)(P/R).

(iii) α = ∀2Qβ.

We have α∗ = ∀2Q
′′β(Q/Q′, P ∗/R∗)(Q′/Q′′)(x/t), where P ∗ is the sublist of

P consisting of those Pi’s which are in fv(α), R∗ is the corresponding sublist of
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R, and Q′ and Q′′ are predicate variables with the same arity as Q such that

Q′ 6∈ (FV (∀2Qβ) − {P ∗}) ∪ {R∗}, and Q′′ 6∈ FV (∀2Q
′β(Q/Q′, P ∗/R∗)), so Q′′ 6∈

(FV (∀2Qβ(x/t))− {P ∗}) ∪ {R∗}.
By the induction hypothesis, we have

α∗ = ∀2Q
′′β(Q/Q′, P ∗/R∗)(Q′/Q′′)(x/t)

= ∀2Q
′′β(Q/Q′′, P ∗/R∗)(x/t)

= ∀2Q
′′β(x/t)(Q/Q′′, P ∗/R∗)

= (∀2Qβ(x/t))(P/R)

= (∀2Qβ)(x/t)(P/R) = α(x/t)(P/R).

Proof of Lemma 2.22.

For all 1 ≤ j ≤ m, let Uj =





Tq if P ′
j = Rq for some 1 ≤ q ≤ n,

P ′
j otherwise.

(i) α is an atomic formula.

Let α∗ ∈ {α(P/P ′)(R/T )}.
If α = Ph(t1, . . . , tg) for some 1 ≤ h ≤ m and some individual terms t1, . . . , tg,

where g is the arity of Ph, then

α∗ = P ′
h(t1, . . . , tg)(R/T )

=





δq(x
q
1/t1, . . . , x

q
g/tg) if P ′

h = Rq for some 1 ≤ q ≤ n,

P ′
h(t1, . . . , tg) otherwise,

∈ {α(P1/U1, . . . , Pm/Um)},
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otherwise α∗ = α(R/T )

=





α(Rg/Tg) if FV (α) = {Rg} for some 1 ≤ g ≤ n,

α otherwise,

∈





{α(P1/U1, . . . , Pm/Um, Rg/Tg)} if FV (α) = {Rg} for some 1 ≤ g ≤ n,

{α(P1/U1, . . . , Pm/Um)} otherwise.

The converse can be proved similarly.

For the remaining cases, we will show that

{α(P/P ′)(R/T )} ⊆ {α(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik)} and omit the

proof of the converse which can be proved similarly.

Let α∗ ∈ {α(P/P ′)(R/T )}.
(ii) α = ∀zβ.

Then α∗ = ∀z′′β(z/z′)(P/P ′)(z′/z′′)(R/T ), where z′ and z′′ are individual

variables such that z′ 6∈ fv(∀zβ) and z′′ 6∈ fv(∀z′β(z/z′)(P/P ′)).

By the induction hypothesis,

α∗ = ∀z′′β(z/z′)(P/P ′)(z′/z′′)(R/T )

= ∀z′′β(z/z′)(z′/z′′)(P/P ′)(R/T )

= ∀z′′β(z/z′′)(P/P ′)(R/T )

= ∀z′′β(z/z′′)(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik)

= (∀zβ)(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik)

= α(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik).

(iii) α = ∀2Qβ.

Then α∗ = ∀2Q
′′β(Q/Q′, P ∗/P ′∗)(Q′/Q′′, R∗/T ∗), where P ∗ = Pj1 , . . . , Pjl

and

R∗ are the sublists of P and R, respectively, consisting of those variables which

are in FV (α) and FV (α(P/P ′)), respectively, P ′∗ and T ∗ are the corresponding
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sublists of P ′ and T , respectively, and Q′ and Q′′ are predicate variables with the

same arity as Q such that Q′ 6∈ (FV (∀2Qβ)− {P ∗}) ∪ {P ′∗} and

Q′′ 6∈ (FV (∀2Q
′β(Q/Q′, P ∗/P ′∗))− {R∗}) ∪ FV (T ∗).

By the induction hypothesis,

α∗ = ∀2Q
′′β(Q/Q′, P ∗/P ′∗)(Q′/Q′′, R∗/T ∗)

= ∀2Q
′′β(Q/Q′′, Pj1/Uj1 , . . . , Pjl

/Ujl
, Ri1/Ti1 , . . . , Rik/Tik)

= (∀2Qβ)(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik)

= α(P1/U1, . . . , Pm/Um, Ri1/Ti1 , . . . , Rik/Tik).

Lemma 2.23. Let α be a formula, x = x1, . . . , xm be distinct individual variables,

t = t1, . . . , tm be individual terms, P = P r1
1 , . . . , P rn

n be distinct predicate variables,

and T = T1, . . . , Tn, where Ti = λyi
1, . . . , y

i
ri
δi, 1 ≤ i ≤ n, be abstraction terms.

Then {α(P/T )(x/t)} = {α(x/t)(P/T )}.

Proof. The proof is similar to the proof of Lemma 2.21 except for the following

case.

α = Pq(u1, . . . , urq) for some 1 ≤ q ≤ n and some individual terms u1, . . . , urq .

We will show that {α(P/T )(x/t)} ⊆ {α(x/t)(P/T )} and omit the proof of the

converse which can be proved similarly. Let α∗ ∈ {α(P/T )(x/t)}.

Then α∗ = Pq(u1, . . . , urq)(P/T )(x/t)

= δq(y
q
1/u1, . . . , y

q
rq

/urq)(x/t)

= δq(y
q
1/u1(x/t), . . . , yq

rq
/urq(x/t)) (by Lemma 2.20)

= Pq(u1(x/t), . . . , urq(x/t))(P/T )

= Pq(u1, . . . , urq)(x/t)(P/T ) = α(x/t)(P/T ).
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Lemma 2.24. Let α be a formula, P = P r1
1 , . . . , P rm

m and R = Rl1
1 , . . . , Rln

n

be sequences of distinct predicate variables, and T = T1, . . . , Tm, where Ti =

λxi
1, . . . , x

i
ri
δi, 1 ≤ i ≤ m, and U = U1, . . . , Un, where Uj = λyj

1, . . . , y
j
lj
σj,

1 ≤ j ≤ m, be abstraction terms. Then

{α(P/T )(R/U)} = {α(P1/T1(R/U), . . . , Pm/Tm(R/U), Ri1/Ui1 , . . . , Rik/Uik)},
where Ri1 , . . . , Rik is the sublist of R consisting of those Rj’s which are in FV (α)−
{P}.

Proof. The proof is similar to the proof of Lemma 2.22 except for the following

case.

α = Pq(t1, . . . , trq) for some 1 ≤ q ≤ m and some individual terms t1, . . . , trq :

As usual we will show that

{α(P/T )(R/U)} ⊆ {α(P1/T1(R/U), . . . , Pm/Tm(R/U))} and omit the proof of

the converse.

Let α∗ ∈ {α(P/T )(R/U)}.

Then α∗ = Pq(t1, . . . , trq)(P/T )(R/U)

= δq(x
q
1/t1, . . . , x

q
rq

/trq)(R/U)

= δq(R/U)(xq
1/t1, . . . , x

q
rq

/trq) (by Lemma 2.23)

= Pq(t1, . . . , trq)(Pq/Tq(R/U))

= α(P1/T1(R/U), . . . , Pm/Tm(R/U)).

Lemma 2.25. Let α and α′ be formulae, x = x1, . . . , xm be distinct individual

variables, t = t1, . . . , tm be individual terms, P = P r1
1 , . . . , P rn

n be distinct predicate

variables, and T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
ri
δi, 1 ≤ i ≤ n, be abstraction

terms.

If α ≡ α′, then {α(x/t)} = {α′(x/t)} and {α(P/T )} = {α′(P/T )}.
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Lemma 2.26. Let α, β, and γ be formulae.

a. If β and γ are in {α(x/t)}, where x = x1, . . . , xn are distinct individual

variables and t = t1, . . . , tn are individual terms, then β ≡ γ.

b. If β and γ are in {α(P/R)}, where P = P n1
1 , . . . , P nm

m are distinct predicate

variables and R = Rn1
1 , . . . , Rnm

m are predicate variables, then β ≡ γ.

Proof. We will prove both lemmas simultaneously by induction on α. The cases

where α is α1 ∧ α2, α1 ∨ α2, or α1 ⊃ α2 follow straightforwardly by the induction

hypothesis.

Proof of Lemma 2.25. Suppose α ≡ α′.

This is trivial if α = α′. Suppose there exists a sequence of formulae α =

α0, α1, . . . , αk = α′, k ≥ 1, such that αi is obtained from αi−1 by a single legitimate

change of bound variable for all 1 ≤ i ≤ k.

For the remaining cases, we proceed by induction on k. We will prove only

the case k = 1 since the case k > 1 follows easily by the subsidiary induction

hypothesis and the case k = 1.

(i) α = ∀yβ.

Suppose x∗ is the sublist of x consisting of those xi’s which are in fv(α)

(= fv(α′)).

Case 1. α′ = ∀yβ′ where β′ ≡ β.

{α(x/t)} ⊆ {α′(x/t)}:
Let α∗ ∈ {α(x/t)}. Then α∗ = ∀y′β(y/y′, x∗/t∗) for some individual variable

y′ such that y′ 6∈ (fv(∀yβ)− {x∗}) ∪ fv(t∗).

By the main induction hypothesis, we have

α∗ = ∀y′β(y/y′, x∗/t∗) = ∀y′β′(y/y′, x∗/t∗) = (∀yβ′)(x/t) = α′(x/t).

Similarly, we can prove that {α′(x/t)} ⊆ {α(x/t)}.
{α(P/T )} ⊆ {α′(P/T )}:
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Let α∗ ∈ {α(P/T )}. Then α∗ = ∀y′β(y/y′)(P/T ) for some individual variable

y′ such that y′ 6∈ fv(∀yβ).

By the main induction hypothesis, we have

α∗ = ∀y′β(y/y′)(P/T )

= ∀y′β′(y/y′)(P/T )

= (∀yβ′)(P/T ) = α′(P/T ).

Similarly, we can prove that {α′(P/T )} ⊆ {α(P/T )}.
Case 2. α′ = ∀zβ[y/rz], where z is an individual variable which is free for y

and does not occur free in β.

{α(x/t)} ⊆ {α′(x/t)}:
Let α∗ ∈ {α(x/t)}. Then α∗ = ∀y′β(y/y′, x∗/t∗) for some individual variable

y′ such that y′ 6∈ (fv(∀yβ)− {x∗}) ∪ fv(t∗).

Since β[y/rz] ∈ {β(y/z)}, by the main induction hypothesis, for any formula

β′ in {β(y/z)}, β′ ≡ β[y/rz] and so {β′(z/y′, x/t)} = {β[y/rz](z/y′, x/t)}. Hence

α∗ = ∀y′β(y/y′, x∗/t∗)

= ∀y′β(y/z)(z/y′, x∗/t∗) (by Lemma 2.20)

= ∀y′β[y/rz](z/y′, x∗/t∗)

= (∀zβ[y/rz])(x/t) = α′(x/t).

{α′(x/t)} ⊆ {α(x/t)}:
Let α∗ ∈ {α′(x/t)}. Then α∗ = ∀y′β[y/rz](z/y′, x∗/t∗) for some individual

variable y′ such that y′ 6∈ (fv(∀zβ[y/rz])− {x∗}) ∪ fv(t∗). Then
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α∗ = ∀y′β[y/rz](z/y′, x∗/t∗)

= ∀y′β(y/z)(z/y′, x∗/t∗)

= ∀y′β(y/y′, x∗/t∗) (by Lemma 2.20)

= (∀yβ)(x/t) = α(x/t).

{α(P/T )} ⊆ {α′(P/T )}:
Let α∗ ∈ {α(P/T )}. Then α∗ = ∀y′β(y/y′)(P/T ) for some individual variable

y′ such that y′ 6∈ fv(∀yβ).

Similar to the above proof, by the main induction hypothesis,

{β[y/rz](z/y′)(P/T )} = {β′(z/y′)(P/T )} for any formula β′ in {β(y/z)}. Hence

α∗ = ∀y′β(y/y′)(P/T )

= ∀y′β(y/z)(z/y′)(P/T ) (by Lemma 2.20)

= ∀y′β[y/rz](z/y′)(P/T )

= (∀zβ[y/rz])(P/T ) = α′(P/T ).

{α′(P/T )} ⊆ {α(P/T )}:
Let α∗ ∈ {α′(P/T )}. Then α∗ = ∀y′β[y/rz](z/y′)(P/T ) for some individual

variable y′ such that y′ 6∈ fv(∀zβ[y/rz]). Then

α∗ = ∀y′β[y/rz](z/y′)(P/T )

= ∀y′β(y/z)(z/y′)(P/T )

= ∀y′β(y/y′)(P/T ) (by Lemma 2.20)

= (∀yβ)(P/T ) = α(P/T ).

(ii) α = ∀2Qβ.

This case can be proved in the same way as the above case.

Proof of Lemma 2.26. We will prove (a) and (b) simultaneously.
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a: Suppose β and γ are in {α(x/t)}, where x = x1, . . . , xn are distinct indi-

vidual variables and t = t1, . . . , tn are individual terms.

(i) α is an atomic formula.

Then β = α[x/rt] = γ.

(ii) α = ∀yσ.

Suppose x∗ is the sublist of x consisting of those xi’s which are in fv(α) and

t∗ is the corresponding sublist of t.

Then β = ∀y′σ′ and γ = ∀y′′σ′′ for some individual variables y′ and y′′ which

are not in (fv(∀yσ)−{x∗})∪fv(t∗) and some formulae σ′ and σ′′ in {σ(y/y′, x∗/t∗)}
and {σ(y/y′′, x∗/t∗)}, respectively.

Let y∗ be an individual variable which does not occur in σ′ or σ′′, so y∗ is free

for y′ and y′′ in σ′ and σ′′, respectively.

Then β = ∀y′σ′ ≡ ∀y∗σ′[y′/ry
∗] and γ = ∀y′′σ′′ ≡ ∀y∗σ′′[y′′/ry

∗]. By Note on

page 24 and Lemma 2.20,

σ′[y′/ry
∗] ∈ {σ′(y′/y∗)}

⊆ {σ(y/y′, x∗/t∗)(y′/y∗)}

= {σ(y/y∗, x∗/t∗)}.

Similarly, σ′′[y′′/ry
∗] ∈ {σ(y/y∗, x∗/t∗)}. Hence, by the induction hypothesis,

σ′[y′/ry
∗] ≡ σ′′[y′′/ry

∗]. Thus β ≡ γ.

(iii) α = ∀2Qσ.

Then β = ∀2Q
′σ′ and γ = ∀2Q

′′σ′′ for some predicate variables Q′ and Q′′

which are of the same arity as Q and are not in FV (∀2Qσ) and some formulae σ′

and σ′′ in {σ(Q/Q′)(x/t)} and {σ(Q/Q′′)(x/t)}, respectively.

Let Q∗ be a predicate variable with the same arity as Q which does not occur

in σ′ or σ′′. Then
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σ′[Q′/rQ
∗] ∈ {σ′(Q′/Q∗)}

⊆ {σ(Q/Q′)(x/t)(Q′/Q∗)}

= {σ(Q/Q′)(Q′/Q∗)(x/t)} (by Lemma 2.21)

= {σ(Q/Q∗)(x/t)}. (by Lemma 2.22)

Similarly, σ′′[Q′′/rQ
∗] ∈ {σ(Q/Q∗)(x/t)}.

Then σ′[Q′/rQ
∗] ∈ {σ1(x/t)} and σ′′[Q′′/rQ

∗] ∈ {σ2(x/t)} for some formulae

σ1 and σ2 in {σ(Q/Q∗)}. By the induction hypothesis, we have σ1 ≡ σ2, so

{σ1(x/t)} = {σ2(x/t)}, and hence σ′[Q′/rQ
∗] ≡ σ′′[Q′′/rQ

∗]. Thus β = ∀2Q
′σ′ ≡

∀2Q
∗σ′[Q′/rQ

∗] ≡ ∀2Q
∗σ′′[Q′′/rQ

∗] ≡ ∀2Q
′′σ′′ = γ.

b: The proof is similar to (a) except for the following case.

α is an atomic formula:

If α = Pq(t1, . . . , tnq) for some 1 ≤ q ≤ m and some individual terms t1, . . . , tnq ,

then β = Rq(t1, . . . , tnq) = γ, otherwise β = α = γ.

Lemma 2.27. Let β and γ be formulae, P = P n1
1 , . . . , P nm

m be distinct predicate

variables and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, be abstraction

terms

If β and γ are in {α(P/T )}, then β ≡ γ.

Proof. Suppose β and γ are in {α(P/T )}.
The proof is similar to the proof of Lemma 2.26 except the following case.

α is an atomic formula:

If α = Pq(t1, . . . , tnq) for some 1 ≤ q ≤ m and some individual terms t1, . . . , tnq ,

then β and γ are in {δq(x
q
1/t1, . . . , x

q
nq

/tnq)} and hence β ≡ γ by Lemma 2.26,

otherwise β = α = γ.
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Lemma 2.28. For any formulae α and β,

a. if β ≡ α∗ for some α∗ in {α(x/t)}, where x = x1, . . . , xn are distinct

individual variables and t = t1, . . . , tn are individual terms, then β ∈ {α(x/t)};
b. if β ≡ α∗ for some α∗ in {α(P/T )}, where P = P n1

1 , . . . , P nm
m are distinct

predicate variables and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, are

abstraction terms, then β ∈ {α(P/T )}.

Proof. Let α and β be formulae. We proceed by induction on α.

a: Suppose β ≡ α∗ for some α∗ in {α(x/t)}, where x = x1, . . . , xn are distinct

individual variables and t = t1, . . . , tn are individual terms.

It is trivial if there is no change of bound variable. Suppose there exists a

sequence of formulae α∗ = α0, α1, . . . , αk = β, k ≥ 1, such that for all 1 ≤ i ≤ k

αi is obtained from αi−1 by a single legitimate change of bound variable.

By our assumption, α is not atomic. The cases where α is α1 ∧ α2, α1 ∨ α2, or

α1 ⊃ α2 follow straightforwardly by the induction hypothesis.

For the remaining cases, we proceed by induction on k. As usual, we will prove

only the case k = 1 since the other case follows easily by the subsidiary induction

hypothesis.

(i) α = ∀yγ.

Suppose x∗ is the sublist of x consisting of those xi’s which are in fv(α) and

t∗ is the corresponding sublist of t.

We have α∗ = ∀y′γ∗ for some individual variable y′ and some formula γ∗ such

that y′ 6∈ (fv(∀yγ)− {x∗}) ∪ fv(t∗) and γ∗ ∈ {γ(y/y′, x∗/t∗)}.
Case 1. β = ∀y′γ′ where γ′ ≡ γ∗.

By the main induction hypothesis, γ′ ∈ {γ(y/y′, x∗/t∗)}. Hence β = ∀y′γ′ =

∀y′γ(y/y′, x∗/t∗) = (∀yγ)(x/t) = α(x/t).

Case 2. β = ∀zγ∗[y′/rz] where z is an individual variable which is free for y′
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and does not occur free in γ∗.

Since γ∗ ∈ {γ(y/y′, x∗/t∗)} and z 6∈ fv(γ∗), z 6∈ (fv(∀yγ)− {x∗}) ∪ fv(t∗).

Hence β = ∀zγ∗[y′/rz] = ∀zγ∗(y′/z)

= ∀zγ(y/y′, x/t)(y′/z)

= ∀zγ(y/z, x/t) (by Lemma 2.20)

= (∀yγ)(x/t) = α(x/t).

(ii) α = ∀2Qγ.

We have α∗ = ∀2Q
′γ∗ for some predicate variable Q′ which is of the same arity

as Q and is not in FV (∀2Qγ) and some formula γ∗ in {γ(Q/Q′)(x/t)}.
Case 1. β = ∀2Q

′γ′ where γ′ ≡ γ∗.

By the main induction hypothesis, γ′ ∈ {γ(Q/Q′)(x/t)}. Hence β = ∀2Q
′γ′ =

∀2Q
′γ(Q/Q′)(x/t) = (∀2Qγ)(x/t) = α(x/t).

Case 2. β = ∀2Rγ∗[Q′/rR] where R is a predicate variable with the same arity

as Q′ which is free for Q′ and does not occur free in γ∗.

Then β = ∀2Rγ∗[Q′/rR] = ∀2Rγ∗(Q′/R)

= ∀2Rγ(Q/Q′)(x/t)(Q′/R)

= ∀2Rγ(Q/Q′)(Q′/R)(x/t) (by Lemma 2.21)

= ∀2Rγ(Q/R)(x/t) (by Lemma 2.22)

= (∀2Qγ)(x/t) = α(x/t).

b: Suppose β ≡ α∗ for some α∗ in {α(P/T )}, where P = P n1
1 , . . . , P nm

m are

distinct predicate variables and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤
i ≤ m, are abstraction terms.

By using Lemmas 2.20 and 2.23, (b) can be proved in the same way as (a)

except for the following case.

α = Pq(t1, . . . , tnq) for some 1 ≤ q ≤ m and some individual terms t1, . . . , tnq :
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Then β ≡ α∗ where α∗ ∈ {δq(x
q
1/t1, . . . , x

q
nq

/tnq)}. By (a),

β ∈ {δq(x
q
1/t1, . . . , x

q
nq

/tnq)} = {α(P/T )}.

Corollary 2.29. For any formula α,

a. if x = x1, . . . , xn are distinct individual variables and t = t1, . . . , tn are

individual terms, then [α[x/t]] = [α(x/t)] = {α(x/t)};
b. if P = P n1

1 , . . . , P nm
m are distinct predicate variables and T = T1, . . . , Tm,

where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, are abstraction terms, then [α[P/T ]] =

[α(P/T )] = {α(P/T )}.

Proof. It can be easily proved by induction on α that α[x/t] ∈ {α(x/t)} and

α[P/T ] ∈ {α(P/T )}. Then (a) follows by Lemmas 2.26 and 2.28 and (b) follows

by Lemmas 2.27 and 2.28.

By extending the work in [3], we have introduced our second-order language.

We have defined substitutions for second-order formulae and have proved some

lemmas that establish basic properties and will be used in the following chapters.



CHAPTER III

CURRY-HOWARD TERMS

We have dealt with the technicalities of substitutions in the previous chapter, now

we can define Curry-Howard terms.

3.1 The formal calculus

We take NJ to be Gentzen’s intuitionistic natural deduction system given by

Prawitz (see [12]). We will extend NJ to a second-order system, denoted by NJ2.

The rules of NJ2 include the rules of NJ, extended to second-order formulae,

which are as follows.

• Atomic deductions

For every formula α, α is a deduction (with uncancelled premise α).

• Introduction and elimination rules for the various connectives

(∧ Intro)
...

...

α β

α ∧ β

(∧ Elim)
...

α ∧ β

α
(∧1 Elim)

...

α ∧ β

β
(∧2 Elim)
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(⊃ Intro)

[α]

...

β

α ⊃ β

(⊃ Elim)
...

...

α ⊃ β α

β

(∀ Intro)
...

α

∀xα

provided x is not free in any uncancelled premise.

(∀ Elim)
...

∀xα

α(x/t)

where t is an individual term.

(∨ Intro)
...

α

α ∨ β
(∨1 Elim)

...

β

α ∨ β
(∨2 Elim)

(∨ Elim)

[α] [β]

...
...

...

α ∨ β γ γ

γ
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(∃ Intro)
...

α(x/t)

∃xα

(∃ Elim)

[α]

...
...

∃xα γ

γ

provided x is not free in γ nor in any uncancelled premise of the given deduction

of γ.

(⊥ Elim)
...

⊥
α

Notation. [α] in a proof means that none or some or all occurrences of premise

α may be cancelled. We also use [α] for the equivalence class of α but the context

makes clear the intention.

We now add rules for second-order quantifiers ∀2 and ∃2 as follows.

(∀2 Intro)
...

α

∀2Pα

provided P is not free in any uncancelled premise.

(∀2 Elim)
...

∀2P
nα

α(P n/T )
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where T = λx1, . . . , xnβ is an abstraction term.

(∃2 Intro)
...

α(P/T )

∃2Pα

(∃2 Elim)

[α]

...
...

∃2Pα γ

γ

provided P is not free in γ nor in any uncancelled premise of the given deduction

of γ.

3.2 Basic properties of Curry-Howard terms

First we will give rules (taken from [3]) for the formation of the original Curry-

Howard terms which correspond to the rules of the natural deduction system in

first-order logic.

Note. Sometimes we write “C-H term”or just “term”instead of “Curry-Howard

term”.

Rules for the formation of the original Curry-Howard terms:

(Atomic) For each formula α, the term variables Xα, Y α, Zα, . . . are terms of

type [α].

(∧ Intro) If Fα and Gβ are terms of types [α] and [β], respectively, then

(Fα, Gβ) is a term of type [α ∧ β].

(∧ Elim) If Fα∧β is a term of type [α∧β], then π1F
α∧β and π2F

α∧β are terms

of types [α] and [β], respectively.
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(⊃ Intro) If Xα is a term variable of type [α] and F β is a term of type [β],

then λXα.F β is a term of type [α ⊃ β].

Note. All occurrences of Xα′ , where [α′] = [α], in this term are bound.

(⊃ Elim) If Fα⊃β and Gα′ are terms of types [α ⊃ β] and [α′], respectively,

where [α′] = [α], then Fα⊃β(Gα′) is a term of type [β].

(∀ Intro) If F α is a term of type [α] and x is an individual variable which

does not occur free in the type superscript of any free term variable of Fα, then

λx.Fα is a term of type [∀xα].

Note. All occurrences of x in this term are bound.

(∀ Elim) If F ∀xα is a term of type [∀xα] and t is an individual term, then

F ∀xα(t) is a term of type [α(x/t)].

(∨ Intro) If Fα is a term of type [α] and β is a formula, then (µ1F
α)α∨β is a

term of type [α∨β]; if F β is a term of type [β] and α is a formula, then (µ2F
β)α∨β

is a term of type [α ∨ β].

(∨ Elim) If F γ, Gγ′ , and Hα∨β are terms of types [γ], [γ′], and [α ∨ β],

respectively, where [γ] = [γ′], and Xα′ and Y β′ are term variables of types [α′] and

[β′], respectively, where [α′] = [α] and [β′] = [β], then ⊕(Xα′ .F γ, Y β′ .Gγ′ , Hα∨β)

is a term of type [γ].

Note. All occurrences of Xα′′ , where [α′′] = [α′], in Xα′ .F γ and all occurrences

of Y β′′ , where [β′′] = [β′], in Y β′ .Gγ′ are bound.

(∃ Intro) If Fα(x/t) is a term of type [α(x/t)], then I(t, F α(x/t))∃xα is a term

of type [∃xα].

(∃ Elim) If F γ is a term of type [γ], Xα is a term variable of type [α], x is

an individual variable which does not occur free in γ or in the type superscript

of any free term variable of F γ except Xα, and Gα∗ is a term of type [α∗], where

[α∗] = [∃xα], then ST (x.Xα.F γ, Gα∗) is a term of type [γ].
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Note. All occurrences of x in x.Xα.F γ and all occurrences of Xα′ , where [α′] =

[α], in Xα.F γ are bound.

(⊥ Elim) If F⊥ is a term of type [⊥] and α is a formula, then F⊥(α) is a term

of type [α].

The new Curry-Howard terms include the terms of the above forms with the

extension of first-order formulae to second-order formulae. We also add term

formation rules for second-order quantifiers as follows.

(∀2 Intro) If Fα is a term of type [α] and P is a predicate variable which does

not occur free in the type superscript of any free term variable of Fα, then λP.Fα

is a term of type [∀2Pα].

Note. All occurrences of P in this term are bound.

(∀2 Elim) If F ∀2Pα is a term of type [∀2Pα] and T = λx1, . . . , xnβ is an

abstraction term, where n is the arity of P , then F ∀2Pα(T ) is a term of type

[α(P/T )].

(∃2 Intro) If Fα(P/T ) is a term of type [α(P/T )], then I(T, F α(P/T ))∃2Pα is a

term of type [∃2Pα].

(∃2 Elim) If F γ is a term of type [γ], Xα is a term variable of type [α], P

is a predicate variable which does not occur free in γ or in the type superscript

of any free term variable of F γ except Xα, and Gα∗ is a term of type [α∗], where

[α∗] = [∃2Pα], then ST (P.Xα.F γ, Gα∗) is a term of type [γ].

Note. All occurrences of P in P.Xα.F γ and all occurrences of Xα′ , where

[α′] = [α], in Xα.F γ are bound.

Notes.

a. We may omit the type superscript of a Curry-Howard term when we do not
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want to state the type or it it is clear in the context of which type it is. When we

write “Fα”we mean “[α] is the type of Fα”.

b. When we say “Xα is the first term variable of type [α] . . . ”we mean “Xα

is the first term variable of type [α] in some fixed ordering . . . ”.

c. We may write each type superscript as any formula in the same equivalence

class since the type of every Curry-Howard term depends on the types (not on the

formulae which are the type superscripts) of terms from which it is constructed.

We will prove the following cases and omit the others which can be proved easily.

Proof.

(∀ Elim) Suppose F β1

1 and F β2

2 are terms where [β1] = [∀xα] = [β2]. By Note

on page 21, βi = ∀yiαi for some formula αi and some individual variable yi such

that αi ≡ α[x/yi], and yi 6∈ fv(∀xα) for all i = 1, 2. Let t be an individual

term. Thus, for all i = 1, 2, F βi

i (t) is a term of type [αi(yi/t)] = [αi[yi/t]] =

[α[x/yi][yi/t]] = [α[x/t]] = [α(x/t)] by Lemmas 2.13 and 2.14.

By using Lemmas 2.16 and 2.17, the case (∀2 Elim) can be proved similarly.

(∃ Intro) Suppose F β1

1 and F β2

2 are terms where [β1] = [α(x/t)] = [β2]. By

Lemma 2.28, βi ∈ {α(x/t)} for all i = 1, 2. Hence I(t, F β1

1 )∃xα and I(t, F β2

2 )∃xα

are terms of type [∃xα].

Similarly for (∃2 Intro).

Definition 3.2.1. A context is an expression which is of one of the following

forms: x.Fα, P.Fα, Xβ.Fα, x.Xβ.Fα, and P.Xβ.Fα.

Note. An occurrence of a term variable Xα′ in a Curry-Howard term is bound if

it occurs in a context of the form Xα.F β, x.Xα.F β, or P.Xα.F β, where α ≡ α′,

otherwise it is free, and we say the binding of Xα has scope F β.
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Definition 3.2.2. The set of free individual variables of a Curry-Howard

term Fα, denoted by fv(Fα), is defined inductively as follows.

i. fv(Xα) = fv(α).

ii. fv(Gβ, Hγ) = fv(Gβ) ∪ fv(Hγ).

Similarly for fv(πiG
β∧γ), i = 1, 2, and fv(Gβ⊃α(Hβ)).

iii. fv((µ1G
β)β∨γ) = fv(Gβ) ∪ fv(γ).

Similarly for fv((µ2G
β)γ∨β).

iv. fv(G∀xβ(t)) = fv(G∀xβ) ∪ fv(t).

Similarly for fv(I(t, Gβ(x/t))).

v. fv(G∀2Pβ(T )) = fv(G∀2Pβ).

Similarly for fv(I(T, Gβ(P/T ))).

vi. fv(G⊥(α)) = fv(G⊥) ∪ fv(α).

vii. fv(λXβ.Gγ) = fv(Xβ.Gγ), where fv(Xβ.Gγ) = fv(β) ∪ fv(Gγ).

viii. fv(⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ)) = fv(Xβ.Gα) ∪ fv(Y γ.Hα) ∪ fv(Kβ∨γ).

ix. fv(λx.Gβ) = fv(x.Gβ), where fv(x.Gβ) = fv(Gβ)− {x}.
x. fv(λP.Gβ) = fv(P.Gβ), where fv(P.Gβ) = fv(Gβ).

xi. fv(ST (x.Xβ.Gα, H∃xβ)) = fv(x.Xβ.Gα) ∪ fv(H∃xβ), where

fv(x.Xβ.Gα) = fv(Xβ.Gα)− {x}.
xii. fv(ST (P.Xβ.Gα, H∃2Pβ)) = fv(P.Xβ.Gα) ∪ fv(H∃2Pβ), where

fv(P.Xβ.Gα) = fv(Xβ.Gα).

Definition 3.2.3. The set of free predicate variables of a Curry-Howard term

Fα, denoted by FV (Fα), is defined inductively as follows.

i. FV (Xα) = FV (α).

ii. FV (Gβ, Hγ) = FV (Gβ) ∪ FV (Hγ).

Similarly for FV (πiG
β∧γ), i = 1, 2, and FV (Gβ⊃α(Hβ)).

iii. FV ((µ1G
β)β∨γ) = FV (Gβ) ∪ FV (γ).
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Similarly for FV ((µ2G
β)γ∨β).

iv. FV (G∀xβ(t)) = FV (G∀xβ).

Similarly for FV (I(t, Gβ(x/t))).

v. FV (G∀2Pβ(T )) = FV (G∀2Pβ) ∪ FV (T ).

Similarly for FV (I(T, Gβ(P/T ))).

vi. FV (G⊥(α)) = FV (G⊥) ∪ FV (α).

vii. FV (λXβ.Gγ) = FV (Xβ.Gγ), where FV (Xβ.Gγ) = FV (β) ∪ FV (Gγ).

viii. FV (⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ))

= FV (Xβ.Gα) ∪ FV (Y γ.Hα) ∪ FV (Kβ∨γ).

ix. FV (λx.Gβ) = FV (x.Gβ), where FV (x.Gβ) = FV (Gβ).

x. FV (λP.Gβ) = FV (P.Gβ), where FV (P.Gβ) = FV (Gβ)− {P}.
xi. FV (ST (x.Xβ.Gα, H∃xβ)) = FV (x.Xβ.Gα) ∪ FV (H∃xβ), where

FV (x.Xβ.Gα) = FV (Xβ.Gα).

xii. FV (ST (P.Xβ.Gα, H∃2Pβ)) = FV (P.Xβ.Gα) ∪ FV (H∃2Pβ), where

FV (P.Xβ.Gα) = FV (Xβ.Gα)− {P}.

Notation. We use fv(K) to denote
n⋃

i=1

fv(Ki), where K = K1, . . . , Kn is a

sequence of C-H terms; similarly for FV (K).

Notes.

a. All occurrences of x (respectively P ) in x.F β and x.Xα.F β (respectively

P.F β and P.Xα.F β) are bound and we say the binding of x (respectively P ) has

scope F β and Xα.F β, respectively.

b. It can be proved by induction on Fα that

(b1) fv(α) ⊆ fv(Fα) and FV (α) ⊆ FV (Fα);

(b2) if Xβ is a free term variable of Fα and x ∈ fv(β) (respectively P ∈
FV (β)), then each free occurrence of x (respectively P ) in the free occurrences of

Xβ is also free in Fα.
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Definition 3.2.4. Term variables Xα and Xα′ are equivalent , denoted by Xα ≡
Xα′, if α ≡ α′.

Notation. Let

a. F α[x/rt] (respectively Fα[P/rR]) denote the simple simultaneous replace-

ments of all free occurrences of (distinct) individual variables x = x1, . . . , xn (re-

spectively (distinct) predicate variables P = Pm1
1 , . . . , Pmn

n ) in a C-H term Fα by

individual terms t = t1, . . . , tn (respectively predicate variables R = Rm1
1 , . . . , Rmn

n ),

respectively;

b. Fα[X/rtK] denote the simple simultaneous replacements of all free oc-

currences of term variables which are equivalent to (inequivalent) term variables

X = Xδ1
1 , . . . , Xδn

n in a C-H term Fα by C-H terms K = K
δ′1
1 , . . . , K

δ′n
n , respec-

tively, where δi ≡ δ′i for all 1 ≤ i ≤ n.

Definition 3.2.5. If x = x1, . . . , xn are distinct individual variables (respectively

P = P r1
1 , . . . , P rm

m are distinct predicate variables) and t = t1, . . . , tn are individual

terms (respectively T = T1, . . . , Tm, where Tj = λyj
1, . . . , y

j
rj

δj, 1 ≤ j ≤ m, are

abstraction terms), we say t is free for x (respectively T is free for P ) in an

expression E of the form Fα or Xβ.Fα, if no free occurrence of any xi, 1 ≤ i ≤ n,

(respectively Pj, 1 ≤ j ≤ m) in E is within the scope of a bound variable y

(respectively Q) of E where y occurs in ti (respectively Q occurs free in Tj).

Let Fα be a C-H term, X = Xδ1
1 , . . . , Xδn

n be inequivalent term variables,

K = K
δ′1
1 , . . . , K

δ′n
n be C-H terms, where δi ≡ δ′i for all 1 ≤ i ≤ n. We say K

is free for X in Fα if no free occurrence of any term variable equivalent to Xδi
i ,

1 ≤ i ≤ n, in F α is within the scope of a bound term variable Y β of F α, where

Y β is equivalent to some free term variable of K
δ′i
i .

For substitution purposes, we want to treat equivalent term variables as the

same. Moreover, substitutions for Curry-Howard terms must satisfy all the basic
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properties of substitutions including the property that every free variable should

not become bound after each substitution.

Since it could happen that α and β are inequivalent formulae but α[x/t] ≡
β[x/t] for some individual variable x and individual term t (e.g. α = P (x) and

β = P (t) where x 6∈ fv(t)), so Xα 6≡ Xβ but Xα[x/t] ≡ Xβ[x/t]. Consider the term

λXα.Xβ. In this term Xβ is free. If we simply substitute t for free occurrences of

x in λXα.Xβ, this term becomes λXα[x/t].Xβ[x/t]. Since Xα[x/t] ≡ Xβ[x/t], Xβ[x/t]

in the new term is bound. We do not want this to happen. In order to overcome

this problem, we need to change the bound term variable Xα to some other term

variable which will not cause the problem before substituting t for x.

We first define replaceability which is needed in defining legitimate changes of

bound variables later.

Definition 3.2.6. Replaceability of distinct individual variables x = x1, . . . ,

xn by individual terms t = t1, . . . , tn in a C-H term Fα is defined inductively as

follows.

i. If Fα is a term variable, then x is replaceable by t in Fα.

ii. x is replaceable by t in (Gβ, Hγ) if x is replaceable by t in Gβ and Hγ.

Similarly for πiG
β∧γ, µiG

β, i = 1, 2, and Gβ⊃α(Hβ).

iii. x is replaceable by t in G∀yβ(u) if x is replaceable by t in G∀yβ.

Similarly for I(u,Gβ(y/u)), G∀2Qβ(U), I(U,Gβ(Q/U)), and G⊥(α).

iv. x is replaceable by t in λXβ.Gγ if x is replaceable by t in Xβ.Gγ i.e.

x is replaceable by t in Gγ and Xβ.Gγ has no free term variable Xσ such that

σ[x/t] ≡ β[x/t].

v. x is replaceable by t in ⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ) if x is replaceable by t in

Xβ.Gα, Y γ.Hα, and Kβ∨γ.

vi. x is replaceable by t in λQ.Gβ if x is replaceable by t in Gβ.
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vii. x is replaceable by t in ST (Q.Xβ.Gα, H∃2Qβ) if x is replaceable by t in

Xβ.Gα and H∃2Qβ.

viii. x is replaceable by t in λy.Gβ if x∗ is replaceable by t∗ in Gβ, where x∗

is the sublist of x consisting of those xi’s which are in fv(λy.Gβ) and t∗ is the

corresponding sublist of t.

ix. x is replaceable by t in ST (y.Xβ.Gα, H∃yβ) if x is replaceable by t in H∃yβ

and x∗ is replaceable by t∗ in Xβ.Gα, where x∗ is the sublist of x consisting of

those xi’s which are in fv(y.Xβ.Gα) and t∗ is the corresponding sublist of t.

Replaceability of distinct predicate variables P = P r1
1 , . . . , P rm

m by abstrac-

tion terms T = T1, . . . , Tm, where Tj = λyj
1, . . . , y

j
rj

δj, 1 ≤ j ≤ m, in a C-H term

Fα is defined similarly.

Definition 3.2.7. A replacement of an occurrence of a context x.Fα (respectively

x.Xβ.Fα) in a C-H term by x′.Fα[x/rx
′] (respectively x′.Xβ[x/rx′].Fα[x/rx

′]) is

called a legitimate change of bound individual variable if x′ is an individual

variable such that x is replaceable by x′, x′ is free for x, and x′ does not occur free

in Fα (respectively Xβ.Fα).

A replacement of an occurrence of a context P.Fα (respectively P.Xβ.Fα) in

a C-H term by P ′.Fα[P/rP
′] (respectively P ′.Xβ[P/rP ′].Fα[P/rP

′]), where P ′ is a

predicate variable with the same arity as P , is called a legitimate change of

bound predicate variable if P is replaceable by P ′, P ′ is free for P , and P ′

does not occur free in Fα (respectively Xβ.Fα).

A replacement of a context Xβ.Fα (respectively x.Xβ.Fα and P.Xβ.F α) in a

C-H term by Y β′ .Fα[Xβ/rtY
β′ ] (respectively x.Y β′ .Fα[Xβ/rtY

β′ ] and

P.Y β′ .Fα[Xβ/rtY
β′ ]), where Y β′ is a term variable such that β ≡ β′, is called a

legitimate change of bound term variable if Y β′ is free for Xβ in Fα and

is not equivalent to any free term variable of Fα.
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Definition 3.2.8. If there exists a sequence of C-H terms F = F0, F1, . . . , Fn =

F ′, n ≥ 1, such that for each 1 ≤ i ≤ n, Fi is obtained from Fi−1 either by

replacing some occurrences of term variables by equivalent term variables or by a

legitimate change of bound individual variable, bound predicate variable, or bound

term variable, we say F is equivalent to F ′, denoted by F ≡ F ′.

This relation is defined similarly for contexts.

Note. It can be proved by induction on F that if F ≡ F ′, then

a. fv(F ) = fv(F ′), FV (F ) = FV (F ′), and every free term variable of F is

equivalent to some free term variable of F ′ and vice versa;

b. F and F ′ are of the same type.

Lemma 3.2.9. ≡ is an equivalence relation.

Proof. It is easy to see that ≡ is reflexive and transitive. It remains to show that

≡ is symmetric.

First we need the following claim.

Claim. For any individual variables x and x′, if x is replaceable by x′ in a term

Fα, then x′ is replaceable by x in Fα[x/rx
′].

Proof of the claim. We will prove by induction on Fα.

(i) Fα is a term variable.

Then Fα[x/rx
′] is also a term variable and hence x′ is replaceable by x in

Fα[x/rx
′].

(ii) Fα = (Gβ, Hγ).

This case follows by the induction hypothesis.

Similarly for πiG
β∧γ, µiG

β, i = 1, 2, Gβ⊃α(Hβ), G∀yβ(u) , I(u,Gβ(y/u)),

G∀2Qβ(U), I(U,Gβ(Q/U)), λQ.Gβ, and G⊥(α).

(iii) Fα = λXβ.Gγ.
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Then Fα[x/rx
′] = λXβ[x/rx′].Gγ[x/rx

′]. We have to show that x′ is replaceable

by x in Xβ[x/rx′].Gγ[x/rx
′].

By the induction hypothesis, x′ is replaceable by x in Gγ[x/rx
′]. Suppose for

a contradiction that Xβ[x/rx′].Gγ[x/rx
′] has a free occurrence of a term variable

Xσ such that σ[x′/x] ≡ β[x/rx
′][x′/x]. Since Xσ occurs free in Gγ[x/rx

′] and

x 6∈ fv(Gγ[x/rx
′]), by Note (b2) on page 49, x 6∈ fv(σ). Hence, by Lemmas

2.13 and 2.14, σ ≡ σ[x′/x][x/x′] ≡ β[x/rx
′][x′/x][x/x′] ≡ β[x/rx

′]. This is a

contradiction. Thus x′ is replaceable by x in F α[x/rx
′].

(iv) Fα = ⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ).

Then Fα[x/rx
′] = ⊕(Xβ[x/rx′].Gα[x/rx

′], Y γ[x/rx′].Hα[x/rx
′], Kβ∨γ[x/rx

′]). Sim-

ilar to the above case, we can prove that x′ is replaceable by x in Xβ[x/rx′].Gα[x/rx
′]

and Y γ[x/rx′].Hα[x/rx
′]. By the induction hypothesis, x′ is replaceable by x in

Kβ∨γ[x/rx
′]. Hence x′ is replaceable by x in F α[x/rx

′].

Similarly for ST (Q.Xβ.Gα, H∃2Qβ).

(v) Fα = λy.Gβ.

If x = y, then Fα[x/rx
′] = Fα, so x′ 6∈ fv(Fα[x/rx

′]) since x′ 6∈ fv(Fα) and

hence x′ is replaceable by x in Fα[x/rx
′]. Suppose x 6= y. Then Fα[x/rx

′] =

λy.Gβ[x/rx
′]. By the induction hypothesis, x′ is replaceable by x in Gβ[x/rx

′] and

hence in Fα[x/rx
′].

(vi) Fα = ST (y.Xβ.Gα, H∃yβ).

By the induction hypothesis, x′ is replaceable by x in H∃yβ[x/rx
′].

If x = y, then Fα[x/rx
′] = ST (y.Xβ.Gα, H∃yβ[x/rx

′]) and x′ 6∈ fv(y.Xβ.Gα)

since x′ 6∈ fv(Fα), hence x′ is replaceable by x in y.Xβ.Gα and so in Fα[x/rx
′].

Suppose x 6= y. Then Fα[x/rx
′] = ST (y.(Xβ.Gα)[x/rx

′], H∃yβ[x/rx
′]). We can

show that x′ is replaceable by x in (Xβ.Gα)[x/rx
′] as in (iii). Thus x′ is replaceable

by x in Fα[x/rx
′].
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Hence we have the claim.

To show that ≡ is symmetric, it is enough to show this for a single change of

bound variable. First, suppose an occurrence of a context x.Fα in a C-H term is

replaced by x′.Fα[x/rx
′], where x is replaceable by x′, x′ is free for x, and x′ does

not occur free in Fα. It is clear that x is free for x′ and does not occur free in

Fα[x/rx
′]. By the claim, x′ is replaceable by x in Fα[x/rx

′]. Hence the change

from x′.Fα[x/rx
′] to x.F α[x/rx

′][x′/rx] which is x.Fα is legitimate. Similarly, if

the replaced context is of the form P.F α.

Now, suppose a context x.Xβ.F α in a C-H term is replaced by

x′.Xβ[x/rx′].Fα[x/rx
′], where x′ is an individual variable such that x is replaceable

by x′, x′ is free for x, and x′ does not occur free in Xβ.F α. It is easy to see that x

is free for x′ and x does not occur free in Xβ[x/rx′].Fα[x/rx
′]. It remains to show

that x′ is replaceable by x in Xβ[x/rx′].Fα[x/rx
′].

Since x is replaceable by x′ in Xβ.Fα, x is replaceable by x′ in Fα. Hence,

by the above claim, x′ is replaceable by x in F α[x/rx
′]. We can show that

Xβ[x/rx′].Fα[x/rx
′] has no free occurrence of a term variable Xσ such that σ[x′/x] ≡

β[x/rx
′][x′/x] in the same way as in (iii) of the above claim. Hence x′ is replace-

able by x in Xβ[x/rx′].Fα[x/rx
′]. Thus the change from x′.Xβ[x/rx′].F α[x/rx

′] to

x.Xβ[x/rx′][x′/rx].Fα[x/rx
′][x′/rx] which is x.Xβ.Fα is also legitimate. Similarly, if

the replaced context is of the form P.Xβ.Fα.

The proof for a change of bound term variable is similar to the proof of Lemma

2.9.

The following three definitions interact and their terms are therefore defined

simultaneously.

Definition 3.2.10. Let Fα be a Curry-Howard term, x = x1, . . . , xn be distinct
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individual variables, and t = t1, . . . , tn be individual terms. The result of simulta-

neously substituting t1, . . . , tn for all free occurrences of x1, . . . , xn, respectively, in

Fα, denoted by Fα[x1/t1, . . . , xn/tn] or Fα[x/t], is defined inductively as follows.

i. Xα[x/t] = Xα[x/t].

ii. (Gβ, Hγ)[x/t] = (Gβ[x/t], Hγ[x/t]).

Similarly for (πiG
β∧γ)[x/t], i = 1, 2, (Gβ⊃α(Hβ))[x/t], (G∀yβ(s))[x/t], and

(G⊥(α))[x/t].

iii. (µ1G
β)β∨γ[x/t] = (µ1G

β[x/t])(β∨γ)[x/t].

Similarly for (µ2G
β)γ∨β[x/t] and I(s,Gβ(y/s))∃yβ[x/t].

iv. (G∀2Pβ(T ))[x/t] = G∀2Pβ[x/t](T ).

v. I(T, Gβ(P/T ))∃2Pβ[x/t] = I(T, Gβ(P/T )[x/t])(∃2Pβ)[x/t].

vi. (λXβ.Gγ)[x/t] = λ(Xβ.Gγ)[x/t], where

(Xβ.Gγ)[x/t] = Y β[x/t].(Gγ[Xβ/Y β][x/t]), where Y β is Xβ if Xβ.Gγ has no

free term variable Xσ such that σ[x/t] ≡ β[x/t], otherwise Y β is the first term

variable of type [β] such that Xβ.Gγ has no free term variable Y σ where σ[x/t] ≡
β[x/t].

vii. ⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ)[x/t]

= ⊕((Xβ.Gα)[x/t], (Y γ.Hα)[x/t], Kβ∨γ[x/t]).

viii. (λy.Gβ)[x/t] = λ(y.Gβ)[x/t], where

(y.Gβ)[x/t] = y′.(Gβ[y/y′][x∗/t∗]), where x∗ is the sublist of x consisting of

those xi’s which are in fv(y.Gβ), t∗ is the corresponding sublist of t, and y′ is y

if y 6∈ fv(t∗), otherwise y′ is the first individual variable which is not in fv(Gβ)∪
fv(t∗).

ix. ST (y.Xβ.Gα, H∃yβ)[x/t] = ST ((y.Xβ.Gα)[x/t], H∃yβ[x/t]), where

(y.Xβ.Gα)[x/t] = y′.((Xβ.Gα)[y/y′][x∗/t∗]), where x∗ is the sublist of x con-

sisting of those xi’s which are in fv(y.Xβ.Gα), t∗ is the corresponding sublist of
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t, and y′ is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which is

not in fv(Xβ.Gα) ∪ fv(t∗).

x. (λQ.Gβ)[x/t] = λ(Q.Gβ)[x/t], where (Q.Gβ)[x/t] = Q.(Gβ[x/t]).

xi. ST (Q.Xβ.Gα, H∃2Qβ)[x/t] = ST ((Q.Xβ.Gα)[x/t], H∃2Qβ[x/t]), where

(P.Xβ.Gα)[x/t] = P.((Xβ.Gα)[x/t]).

Definition 3.2.11. Let Fα be a Curry-Howard term, P = P n1
1 , . . . , P nm

m be dis-

tinct predicate variables, and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤
m, be abstraction terms. We define Fα[P1/T1, . . . , Pm/Tm], which can be written

as Fα[P/T ], inductively as follows.

i. Xα[P/T ] = Xα[P/T ].

ii. (Gβ, Hγ)[P/T ] = (Gβ[P/T ], Hγ[P/T ]).

Similarly for (πiG
β∧γ)[P/T ], i = 1, 2, (Gβ⊃α(Hβ))[P/T ], (G∀2Qβ(U))[P/T ],

and (G⊥(α))[P/T ].

iii. (µ1G
β)β∨γ[P/T ] = (µ1G

β[P/T ])(β∨γ)[P/T ].

Similarly for (µ2G
β)γ∨β[P/T ] and I(U,Gβ(Q/U))∃2Qβ[P/T ].

iv. (G∀yβ(u))[P/T ] = G∀yβ[P/T ](u).

v. I(u,Gβ(y/t))∃yβ[P/T ] = I(u,Gβ(y/u)[P/T ])(∃yβ)[P/T ].

vi. (λY β.Gγ)[P/T ] = λ(Y β.Gγ)[P/T ], where

(Y β.Gγ)[P/T ] = Zβ[P/T ].(Gγ[T β/Zβ][P/T ]), where Zβ is Y β if Y β.Gγ has

no free term variable Y σ such that σ[P/T ] ≡ β[P/T ], otherwise Zβ is the first

term variable of type [β] such that Y β.Gγ has no free term variable Zσ where

σ[P/T ] ≡ β[P/T ].

vii. ⊕(Y β.Gα, Zγ.Hα, Kβ∨γ)[P/T ]

= ⊕((Y β.Gα)[P/T ], (Zγ.Hα)[P/T ], Kβ∨γ[P/T ]).

viii. (λy.Gβ)[P/T ] = λ(y.Gβ)[P/T ], where (y.Gβ)[P/T ] = y.(Gβ[P/T ]).

ix. ST (y.Y β.Gα, H∃yβ)[P/T ] = ST ((y.Y β.Gα)[P/T ], H∃yβ[P/T ]), where
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(y.Y β.Gα)[P/T ] = y.((Y β.Gα)[P/T ]).

x. (λQ.Gβ)[P/T ] = λ(Q.Gβ)[P/T ], where

(Q.Gβ)[P/T ] = Q′.(Gβ[Q/Q′][P ∗/T ∗]), where P ∗ is the sublist of P consisting

of those Pi’s which are in FV (Q.Gβ), T ∗ is the corresponding sublist of T , and

Q′ is Q if Q 6∈ FV (T ∗), otherwise Q′ is the first predicate variable with the same

arity as Q which is not in FV (Gβ) ∪ FV (T ∗).

xi. ST (Q.Y β.Gα, H∃2Qβ)[P/T ] = ST ((Q.Y β.Gα)[P/T ], H∃2Qβ[P/T ]), where

(Q.Y β.Gα)[P/T ] = Q′.((Y β.Gα)[Q/Q′][P ∗/T ∗]), where P ∗ is the sublist of P

consisting of those Pi’s which are in FV (Q.Y β.Gα), T ∗ is the corresponding sublist

of T , and Q′ is Q if Q 6∈ FV (T ∗), otherwise Q′ is the first predicate variable with

the same arity as Q which is not in FV (Y β.Gα) ∪ FV (T ∗).

Definition 3.2.12. Let Fα be a Curry-Howard term, X = Xδ1
1 , . . . , Xδn

n be in-

equivalent term variables, and K = K
δ′1
1 , . . . , K

δ′n
n be Curry-Howard terms, where

δi ≡ δ′i for all 1 ≤ i ≤ n. The result of simultaneously substituting K
δ′1
1 , . . . , K

δ′n
n

for all free occurrences of term variables which are equivalent to Xδ1
1 , . . . , Xδn

n , re-

spectively, in Fα, denoted by Fα[Xδ1
1 /K

δ′1
1 , . . . , Xδn

n /K
δ′n
n ] or Fα[X/K], is defined

inductively as follows.

i.

Y α[X/K] =





K
δ′m
m if Y α ≡ Xδm

m for some 1 ≤ m ≤ n,

Y α otherwise.

ii. (Gβ, Hγ)[X/K] = (Gβ[X/K], Hγ[X/K]).

Similarly for (πiG
β∧γ)[X/K], (µiG

β)[X/K], i = 1, 2, and (Gβ⊃α(Hβ))[X/K].

iii. (G∀yβ(u))[X/K] = G∀yβ[X/K](u).

Similarly for I(u,Gβ(y/u))[X/K], (G∀2Qβ(U))[X/K], I(U,Gβ(Q/U))[X/K], and

(G⊥(α))[X/K].

iv. (λy.Gβ)[X/K] = λ(y.Gβ)[X/K], where
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(y.Gβ)[X/K] = y′.(Gβ[y/y′][X∗/K∗]), where X∗ is the sublist of X consisting

of those Xδi
i ’s which are equivalent to some free term variables of Gβ, K∗ is the

corresponding sublist of K, and y′ is y if y 6∈ fv(K∗), otherwise y′ is the first

individual variable which is not in fv(Gβ) ∪ fv(K∗).

v. (λQ.Gβ)[X/K] = λ(Q.Gβ)[X/K], where

(Q.Gβ)[X/K] = Q′.(Gβ[Q/Q′][X∗/K∗]), where X∗ is the sublist of X consist-

ing of those Xδi
i ’s which are equivalent to some free term variables of Gβ, K∗ is the

corresponding sublist of K, and Q′ is Q if Q 6∈ FV (K∗), otherwise Q′ is the first

predicate variable with the same arity as Q which is not in FV (Gβ) ∪ FV (K∗).

vi. (λY γ.Gβ)[X/K] = λ(Y γ.Gβ)[X/K], where

(Y γ.Gβ)[X/K] = Zγ.(Gβ[Y γ/Zγ][X∗/K∗]), where X∗ is the sublist of X con-

sisting of those Xδi
i ’s which are equivalent to some free term variables of Y γ.Gβ,

K∗ is the corresponding sublist of K, and Zγ is Y γ if Y γ is not equivalent to any

free term variable in K∗, otherwise Zγ is the first term variable of type [γ] which

is not equivalent to any free term variable in K∗ or Gβ.

vii. ⊕(Y β.Gα, Zγ.Hα, Jβ∨γ)[X/K] =

⊕((Y β.Gα)[X/K], (Zγ.Hα)[X/K], Jβ∨γ[X/K]).

viii. ST (y.Y β.Gα, H∃yβ)[X/K] = ST ((y.Y β.Gα)[X/K], H∃yβ[X/K]), where

(y.Y β.Gα)[X/K] = y′.((Y β.Gα)[y/y′][X∗/K∗]), where X∗ is the sublist of X

consisting of those Xδi
i ’s which are equivalent to some free term variables of Y β.Gα,

K∗ is the corresponding sublist of K, and y′ is y if y 6∈ fv(K∗), otherwise y′ is

the first individual variable which is not in fv(Y β.Gα) ∪ fv(K∗).

ix. ST (Q.Y β.Gα, H∃2Qβ)[X/K] = ST ((Q.Y β.Gα)[X/K], H∃2Qβ[X/K]), where

(Q.Y β.Gα)[X/K] = Q′.((Y β.Gα)[Q/Q′][X∗/K∗]), X∗ is the sublist of X con-

sisting of those Xδi
i ’s which are equivalent to some free term variables of Y β.Gα,

K∗ is the corresponding sublist of K, and Q′ is Q if Q 6∈ FV (K∗), otherwise Q′ is
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the first predicate variable with the same arity as Q which is not in FV (Y β.Gα)∪
FV (K∗).

Notation. Y β.Fα[x/t] will abbreviate Y β.(Fα[x/t]). Similarly for Y β.Fα[P/T ]

and Y β.Fα[X/K].

Y β in the above statement can also be replaced by y, Q, y.Y β or Q.Y β.

Note. From the above definitions, it can be proved by induction on F α that

a. F α[x/t] = Fα[x∗/t∗], where x∗ is the sublist of x consisting of those xi’s

which are in fv(Fα) and t∗ is the corresponding sublist of t;

similarly for Fα[P/T ];

b. Fα[X/K] = Fα[X∗/K∗], where X∗ is the sublist of X consisting of those

Xδi
i ’s which are equivalent to some free term variables of Fα and K∗ is the corre-

sponding sublist of K;

c. Fα[x/x] = Fα, Fα[P/P ] = Fα, and Fα[X/X] = F α;

d. FV (Fα[x/t]) = FV (Fα) and fv(Fα[P/T ]) = fv(Fα);

e. if x∗ is the sublist of x consisting of those variables which are in fv(Fα) and

t∗ is the corresponding sublist of t, then fv(Fα[x/t]) = (fv(Fα)−{x∗})∪ fv(t∗);

similarly for FV (Fα[P/T ]);

f. fv(Fα) ⊆ fv(Fα[X/K]) and FV (Fα) ⊆ FV (Fα[X/K]);

g. if Y = Y τ1
1 , . . . , Y τn

n are term variables such that Y τ1
i ≡ Xδi

i for all 1 ≤ i ≤ n,

then F [Y /K] = F [X/K].

Lemma 3.2.13. Let Fα be a C-H term, x = x1, . . . , xn be distinct individual

variables, and t = t1, . . . , tn be individual terms.

Then Fα[x/t] is a C-H term of type [α[x/t]].

Lemma 3.2.14. Let Fα be a C-H term, P = P n1
1 , . . . , P nm

m be distinct predi-

cate variables, and T = T1, . . . , Tm, where Ti = λxi
1, . . . , x

i
ni

δi, 1 ≤ i ≤ m, be

abstraction terms.
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Then Fα[P/T ] is a C-H term of type [α[P/T ]].

Lemma 3.2.15. Let Fα be a C-H term, X = Xδ1
1 , . . . , Xδn

n be inequivalent term

variables, and K = K
δ′1
1 , . . . , K

δ′n
n be C-H terms, where δi ≡ δ′i for all 1 ≤ i ≤ n.

Then Fα[X/K] is a C-H term of type [α].

Proof. We will prove these three lemmas simultaneously by induction on Fα.

Proof of Lemma 3.2.13.

(i) Fα = Xα.

Then Fα[x/t] = Xα[x/t] which is a term variable of type [α[x/t]].

(ii) Fα = (Gβ, Hγ).

Then Fα[x/t] = (Gβ[x/t], Hγ[x/t]). By the induction hypothesis, Gβ[x/t] and

Hγ[x/t] are C-H terms of types [β[x/t]] and [γ[x/t]], respectively. Hence F α[x/t]

is a C-H term of type [β[x/t] ∧ γ[x/t]] = [(β ∧ γ)[x/t]] = [α[x/t]].

Similarly for πiG
β∧γ, µiG

β, i = 1, 2, Gβ⊃α(Hβ), and G⊥(α).

(iii) Fα = G∀yβ(u).

Then [α] = [β[y/u]] and Fα[x/t] = G∀yβ[x/t](u[x/t]). By the induction hy-

pothesis, G∀yβ[x/t] is a C-H term of type [(∀yβ)[x/t]].

We have (∀yβ)[x/t] = ∀y′β[y/y′][x∗/t∗], where x∗ is the sublist of x consist-

ing of those xi’s which are in fv(∀yβ), t∗ is the corresponding sublist of t, y′

is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which is not in

fv(β) ∪ fv(t∗). Hence Fα[x/t] is a C-H term of type [β[y/y′][x∗/t∗][y′/u[x/t]]] =

[β[y/y′][y′/u][x/t]] = [β[y/u][x/t]] = [α[x/t]] by Lemmas 2.13 and 2.14.

(iv) Fα = I(u, Gβ(y/u))∃yβ.

Then Fα[x/t] = I(u[x/t], Gβ(y/u)[x/t])(∃yβ)[x/t]. By the induction hypothesis,

Gβ(y/u)[x/t] is a C-H term of type [β(y/u)[x/t]] = [β[y/u][x/t]].

We have (∃yβ)[x/t] = ∃y′β[y/y′][x∗/t∗], where x∗ is the sublist of x con-

sisting of those xi’s which are in fv(∃yβ), t∗ is the corresponding sublist of t,
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y′ is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which is not

in fv(β) ∪ fv(t∗). Similar to (iii), [β[y/u][x/t]] = [β[y/y′][x∗/t∗][y′/u[x/t]]], so

Gβ(y/u)[x/t] is of type [β[y/y′][x∗/t∗][y′/u[x/t]]]. Hence Fα[x/t] is a C-H term of

type [∃y′β[y/y′][x∗/t∗]] = [α[x/t]].

(v) Fα = λy.Gβ.

We have Fα[x/t] = λy′.Gβ[y/y′][x∗/t∗], where x∗ is the sublist of x consisting

of those xi’s which are in fv(y.Gβ), t∗ is the corresponding sublist of t, y′ is y if y 6∈
fv(t∗), otherwise y′ is the first individual variable which is not in fv(Gβ)∪fv(t∗).

By the induction hypothesis, Gβ[y/y′][x∗/t∗] is a C-H term of type [β[y/y′][x∗/t∗]].

Thus F α[x/t] is a C-H term of type [∀y′β[y/y′][x∗/t∗]] = [(∀y′β[y/y′])[x/t]] =

[(∀yβ)[x/t]] = [α[x/t]] by Corollary 2.11 and Lemma 2.14.

(vi) Fα = λQ.Gβ.

Then Fα[x/t] = λQ.Gβ[x/t]. By the induction hypothesis, Gβ[x/t] is a C-

H term of type [β[x/t]]. Thus Fα[x/t] is a C-H term of type [∀2Qβ[x/t]] =

[(∀2Qβ)[x/t]] = [α[x/t]].

(vii) F α = G∀2Qβ(U).

Then [α] = [β[Q/U ]] and Fα[x/t] = G∀2Qβ[x/t](U). By the induction hypoth-

esis, G∀2Qβ[x/t] is a C-H term of type [(∀2Qβ)[x/t]] = [∀2Qβ[x/t]]. Hence F α[x/t]

is a C-H term of type [β[x/t][Q/U ]] = [β[Q/U ][x/t]] = [α[x/t]] by Lemmas 2.14

and 2.15.

(viii) Fα = I(U,Gβ(Q/U))∃2Qβ.

Then Fα[x/t] = I(U,Gβ(Q/U)[x/t]). By the induction hypothesis, Gβ(Q/U)[x/t]

is a C-H term of type [β(Q/U)[x/t]] = [β[Q/U ][x/t]] = [β[x/t][Q/U ]] by Lemmas

2.14 and 2.15. Hence Fα[x/t] is a C-H term of type [∃2Qβ[x/t]] = [(∃2Qβ)[x/t]] =

[α[x/t]].

(ix) Fα = λXβ.Gγ.
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We have Fα[x/t] = λ(Xβ.Gγ)[x/t]. By the following claim, Fα[x/t] is a C-H

term of type [β[x/t] ⊃ γ[x/t]] = [α[x/t]].

Claim 1. (Xβ.Gγ)[x/t] = Y β∗ .Hγ∗ for some term variable Y β∗ and some C-H

term Hγ∗ such that [β∗] = [β[x/t]] and [γ∗] = [γ[x/t]].

Proof of Claim 1. We have (Xβ.Gγ)[x/t] = Y β[x/t].Gγ[Xβ/Y β][x/t], where Y β is

Xβ if Xβ.Gγ has no free term variable Xσ where σ[x/t] ≡ β[x/t], otherwise Y β is

the first term variable of type [β] such that Xβ.Gγ has no free term variable Y σ

where σ[x/t] ≡ β[x/t].

By the induction hypothesis, Gγ[Xβ/Y β][x/t] is a C-H term of type [γ[x/t]].

Thus we have the claim.

(x) Fα = ⊕(Xβ.Gα, Y γ.Hα, Kβ∨γ).

Then Fα[x/t] = ⊕((Xβ.Gα)[x/t], (Y γ.Hα)[x/t], Kβ∨γ[x/t]).

By the induction hypothesis, Kβ∨γ[x/t] is a C-H term of type [(β ∨ γ)[x/t]]

= [β[x/t] ∨ γ[x/t]]. Hence, by the above claim, Fα[x/t] is a C-H term of type

[α[x/t]].

(xi) Fα = ST (y.Xβ.Gα, H∃yβ).

We have (y.Xβ.Gα)[x/t] = y′.((Xβ.Gα)[y/y′][x∗/t∗]), where x∗ is the sublist

of x consisting of those xi’s which are in fv(y.Xβ.Gα), t∗ is the corresponding

sublist of t, y′ is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which

is not in fv(Xβ.Gα) ∪ fv(t∗).

By the claim, (Xβ.Gα)[y/y′][x∗/t∗] = Y β∗ .Kα∗ for some term variable Y β∗ and

some C-H term Kα∗ such that [β∗] = [β[y/y′][x∗/t∗]] and [α∗] = [α[y/y′][x∗/t∗]] =

α[x∗/t∗] since y 6∈ fv(α).

Since y′ is y or y′ 6∈ fv(Xβ.Gα) (so y′ 6∈ fv(β)), by Corollary 2.11, ∃yβ ≡
∃y′β[y/y′]. By the induction hypothesis, H∃yβ[x/t] is a C-H term of type

[(∃yβ)[x/t]] = [(∃y′β[y/y′])[x/t]] = [∃y′β[y/y′][x∗/t∗]] by Lemma 2.14. Hence
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ST (y′.(Xβ.Gα)[y/y′][x∗/t∗], H∃yβ[x/t]) is a C-H term of type [α[x∗/t∗]] i.e. F α[x/t]

is a C-H term of type [α[x/t]].

(xii) F α = ST (Q.Xβ.Gα, H∃2Qβ).

Then F α[x/t] = ST (Q.(Xβ.Gα)[x/t], H∃2Qβ[x/t]). By the induction hypothe-

sis, H∃2Qβ[x/t] is a C-H term of type [(∃2Qβ)[x/t]] = [∃2Qβ[x/t]]. Hence, by the

claim, Fα[x/t] is a C-H term of type [α[x/t]].

Lemma 3.2.14 can be proved in the same way as Lemma 3.2.13 by using

Lemmas 2.16 and 2.17 instead of Lemmas 2.13 and 2.14, respectively.

Proof of Lemma 3.2.15.

(i) Fα is a term variable.

If Fα ≡ Xδm
m for some 1 ≤ m ≤ n, then Fα[X/K] = K

δ′m
m which is a C-H term

of type [δ′m] = [δm] = [α], otherwise Fα[X/K] = Fα which is a C-H term of type

[α].

(ii) Fα = (Gβ, Hγ).

This case follows by the induction hypothesis.

Similarly for πiG
β∧γ, µiG

β, i = 1, 2, Gβ⊃α(Hβ), and G⊥(α).

(iii) Fα = λy.Gβ.

Then Fα[X/K] = λy′.Gβ[y/y′][X∗/K∗], where X∗ is the sublist of X consisting

of those Xδi
i ’s which are equivalent to some free term variables of Gβ, K∗ is the

corresponding sublist of K, and y′ is y if y 6∈ fv(K∗), otherwise y′ is the first

individual variable which is not in fv(Gβ) ∪ fv(K∗), so y′ 6∈ fv(β).

By the induction hypothesis, Gβ[y/y′][X∗/K∗] is a C-H term of type [β[y/y′]].

Hence Fα[X/K] is a C-H term of type [∀y′β[y/y′]] = [∀yβ] = [α] by Corollary

2.11.

Similarly for λQ.Gβ.

(iv) Fα = G∀yβ(u).
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Then Fα[X/K] = G∀yβ[X/K](u). By the induction hypothesis, G∀yβ[X/K] is

a C-H term of type [∀yβ]. Hence Fα[X/K] is a C-H term of type [β(y/u)] = [α].

Similarly for G∀2Qβ(U), I(u,Gβ(y/u))∃yβ, and I(U,Gβ(Q/U))∃2Qβ.

(vi) λY β.Gγ.

This case follows straightforwardly by the following claim.

Claim 2. (Y β.Gγ)[X/K] = Zβ′ .Hγ′ for some term variable Zβ′ and some C-H

term Hγ′ such that [β′] = [β] and [γ′] = [γ].

Proof of Claim 2. We have (Y β.Gγ)[X/K] = Zβ.Gγ[Y β/Zβ][X∗/K∗], where X∗

is the sublist of X consisting of those Xi’s which are equivalent to some free term

variables of Y β.Gγ, K∗ is the corresponding sublist of K, Zβ is Y β if Y β is not

equivalent to any free term variable in K∗, otherwise Zβ is the first term variable

of type [β] which is not equivalent to any free term variable in K∗ or Gγ. By the

induction hypothesis, Gγ[Y β/Zβ][X∗/K∗] is a C-H term of type [γ]. Hence we

have the claim.

(vii) ⊕(Y β.Gα, Zγ.Hα, Kβ∨γ)

This case follows straightforwardly by the above claim and the induction hy-

pothesis.

(viii) Fα = ST (y.Y β.Gα, H∃yβ).

We have Fα[X/K] = ST (y′.(Y β.Gα)[y/y′][X∗/K∗], H∃yβ[X/K]), where X∗ is

the sublist of X consisting of those Xi’s which are equivalent to some free term

variables of Y β.Gα, K∗ is the corresponding sublist of K, y′ is y if y 6∈ fv(K∗),

otherwise y′ is the first individual variable which is not in fv(Y β.Gα) ∪ fv(K∗).

By the claims, (Y β.Gα)[y/y′][X∗/K∗] = Zβ∗ .Kα∗ for some term variable Zβ∗

and some C-H term Kα∗ such that [β∗] = [β[y/y′]] and [α∗] = [α[y/y′]] = [α]

since y 6∈ fv(α). By the induction hypothesis, H∃yβ[X/K] is a C-H term of type

[∃yβ] = [∃y′β[y/y′]]. Hence Fα[X/K] is a C-H term of type [α].
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Similarly for ST (Q.Y β.Gα, H∃2Qβ).

Lemma 3.2.16. For any C-H term F ,

a. if x = x1, . . . , xn are distinct individual variables and t = t1, . . . , tn are

individual terms, then F [x/t] = F ′[x/t] for some C-H term F ′ such that F ′ ≡ F ,

x is replaceable by t, and t is free for x in F ′;

b. if P = P r1
1 , . . . , P rn

n are distinct predicate variables and T = T1, . . . , Tn,

where Ti = λzi
1, . . . , z

i
ri
δi, 1 ≤ i ≤ n, are abstraction terms, then F [P/T ] =

F ′[P/T ] for some C-H term F ′ such that F ′ ≡ F , P is replaceable by T , and T

is free for P in F ′;

c. if X = Xδ1
1 , . . . , Xδn

n are inequivalent term variables and K = K
δ′1
1 , . . . , K

δ′n
n

are C-H terms, where δi ≡ δ′i for all 1 ≤ i ≤ n, then F [X/K] = F ′[X/K] for

some C-H term F ′ such that F ′ ≡ F and K is free for X in F ′.

Proof. Let Fα be a C-H term. We will prove a, b, and c simultaneously by

induction on Fα.

a: Let x = x1, . . . , xn be distinct individual variables and t = t1, . . . , tn be

individual terms.

(i) Fα = Xα.

By Lemma 2.10, α[x/t] = α′[x/t] for some formula α′ such that α′ ≡ α and

t is free for x in α′. So we have Xα[x/t] = Xα[x/t] = Xα′[x/t] = Xα′ [x/t] where

Xα ≡ Xα′ , x is replaceable by t, and t is free for x in Xα′ .

(ii) F = λXβ.G.

This case follows by the following claim.

Claim 1. (Xβ.G)[x/t] = C[x/t] for some context C such that C ≡ Xβ.G and x

is replaceable by t and t is free for x in C.

Proof of Claim 1. We have (Xβ.G)[x/t] = Y β[x/t].G[Xβ/Y β][x/t], where Y β is Xβ

if Xβ.G has no free term variable Xσ such that σ[x/t] ≡ β[x/t], otherwise Y β is
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the first term variable of type [β] such that Xβ.G has no free term variable Y σ

where σ[x/t] ≡ β[x/t].

By the induction hypothesis, G[Xβ/Y β] = G′[Xβ/Y β] and G′[Xβ/Y β][x/t] =

G∗[x/t] for some terms G′ and G∗ such that G′ ≡ G, G∗ ≡ G′[Xβ/Y β], Y β

is free for Xβ in G′, and x is replaceable by t and t is free for x in G∗. By

Lemma 2.10, β[x/t] = β′[x/t] for some formula β′ such that β′ ≡ β and t is free

for x in β′. So we have (Xβ.G)[x/t] = Y β′[x/t].G∗[x/t] = (Y β′ .G∗)[x/t] where

Y β′ .G∗ ≡ Y β.G′[Xβ/Y β] ≡ Xβ.G′ ≡ Xβ.G and t is free for x in Y β′ .G∗. Since

G′ ≡ G and Xβ.G has no free term variable Y σ where σ[x/t] ≡ β[x/t], Xβ.G′

also has no such Y σ. Since G∗ ≡ G′[Xβ/Y β], Y β′ .G∗ has no free term variable Y σ

such that σ[x/t] ≡ β[x/t]. Hence x is replaceable by t in Y β′ .G∗.

The case ⊕(X.G, Y.H, K) also follows by the above claim and the induction

hypothesis.

(iii) F = λy.G.

This case follows by the following claim.

Claim 2. (y.G)[x/t] = C[x/t] for some context C such that C ≡ y.G and x is

replaceable by t and t is free for x in C.

Proof of Claim 2. We have (y.G)[x/t] = y′.(G[y/y′][x∗/t∗]), where x∗ is the sublist

of x consisting of those xi’s which are in fv(y.G), t∗ is the corresponding sublist

of t, y′ is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which is not

in fv(G) ∪ fv(t∗).

By the induction hypothesis, G[y/y′] = G′[y/y′] and G′[y/y′][x∗/t∗] = G∗[x∗/t∗]

for some terms G′ and G∗ such that G′ ≡ G, G∗ ≡ G′[y/y′], y is replaceable by y′

and y′ is free for y in G′, and x∗ is replaceable by t∗ and t∗ is free for x∗ in G∗. Hence

(y.G)[x/t] = y′.G∗[x∗/t∗] = (y′.G∗)[x/t], where y′.G∗ ≡ y′.G′[y/y′] ≡ y.G′ ≡ y.G

and x is replaceable by t and t is free for x in y′.G∗.
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(iv) F = ST (y.X.G, K).

This case follows by the following claim and the induction hypothesis.

Claim 3. (y.X.G)[x/t] = C[x/t] for some context C such that C ≡ y.X.G and x

is replaceable by t and t is free for x in C.

Proof of Claim 3. We have (y.X.G)[x/t] = y′.(X.G)[y/y′][x∗/t∗], where x∗ is the

sublist of x consisting of those xi’s which are in fv(y.X.G), t∗ is the corresponding

sublist of t, y′ is y if y 6∈ fv(t∗), otherwise y′ is the first individual variable which

is not in fv(X.G) ∪ fv(t∗).

By Claim 1, (X.G)[y/y′] = C[y/y′] and C[y/y′][x∗/t∗] = C∗[x∗/t∗] for some

contexts C and C∗ such that C ≡ X.G, C∗ ≡ C[y/y′], y is replaceable by y′ and

y′ is free for y in C and x∗ is replaceable by t∗ and t∗ is free for x∗ in C∗. So

we have (y.X.G)[x/t] = y′.C∗[x∗/t∗] = (y′.C∗)[x/t], where y′.C∗ ≡ y′.C[y/y′] ≡
y.C ≡ y.X.G, and x is replaceable by t and t is free for x in y′.C∗.

Similarly for the case ST (Q.X.G, K).

The remaining cases follow straightforwardly by the induction hypothesis.

b: The proof is similar to that for a.

c: Let X = Xδ1
1 , . . . , Xδn

n be inequivalent term variables and K = K
δ′1
1 , . . . ,

K
δ′n
n be C-H terms, where δi ≡ δ′i for all 1 ≤ i ≤ n.

If F is a term variable, then K is free for X in F .

(i) F = λZβ.G.

This case follows by the following claim which can be proved in the same way

as Claim 2 in the proof of a.

Claim 1. (Zβ.G)[X/K] = C[X/K] for some context C such that C ≡ Zβ.G and

K is free for X in C.

The case ⊕(Y.G, Z.H,K) also follows by the above claim and the induction

hypothesis.
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(ii) F = λy.G.

This case follows by the following claim.

Claim 2. (y.G)[X/K] = C[X/K] for some context C such that C ≡ y.G and K

is free for X in C.

Proof of Claim 2. We have (y.G)[X/K] = y′.G[y/y′][X∗/K∗], where X∗ is the

sublist of X consisting of those Xδi
i ’s which are equivalent to some free term

variable of F , K∗ is the corresponding sublist of K, y′ is y if y 6∈ fv(K∗), otherwise

y′ is the first individual variable which is not in fv(G) ∪ fv(K∗).

By the induction hypothesis, G[y/y′] = G′[y/y′] and G′[y/y′][X∗/K∗] =

G∗[X∗/K∗] for some terms G′ and G∗ such that G′ ≡ G, G∗ ≡ G′[y/y′], y is

replaceable by y′ and y′ is free for y in G′, and K∗ is free for X∗ in G∗.

Hence (y.G)[X/K] = y′.G∗[X∗/K∗] = (y′.G∗)[X/K], where y′.G∗ ≡ y′.G′[y/y′]

≡ y.G′ ≡ y.G and K is free for X in y′.G∗.

Similarly for the case λQ.G.

(iii) F = ST (y.Z.G, H).

This case follows by the induction hypothesis and the following claim.

Claim 3. (y.Z.G)[X/K] = C[X/K] for some context C such that C ≡ y.Z.G

and K is free for X in C.

Proof of Claim 3. We have (y.Z.G)[X/K] = y′.(Z.G)[y/y′][X∗/K∗], where X∗

is the sublist of X consisting of those Xδi
i ’s which are equivalent to some free

term variable of Z.G, K∗ is the corresponding sublist of K, y′ is y if y 6∈ fv(K∗),

otherwise y′ is the first individual variable which is not in fv(Z.G) ∪ fv(K∗).

By Claim 1 of (a), (Z.G)[y/y′] = C[y/y′] for some context C such that

C ≡ Z.G, y is replaceable by y′ and y′ is free for y in C. By Claim 1 of (c),

C[y/y′][X∗/K∗] = C∗[X∗/K∗] for some context C∗ such that C∗ ≡ C[y/y′] and

K∗ is free for X∗ in C∗.
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Hence (y.Z.G)[X/K] = y′.C∗[X∗/K∗] = (y′.C∗)[X/K], where y′.C∗ ≡
y′.C[y/y′] ≡ y.C ≡ y.Z.G and K is free for X in y′.C∗.

Similarly for the case ST (Q.Z.G, H).

The remaining cases follow straightforwardly by the induction hypothesis.

Corollary 3.2.17. Lemma 3.2.16 also holds for contexts.

Proof. By using Lemma 3.2.16, this corollary can be proved in the same way as

the claims in the lemma.

Corollary 3.2.18.

a. For any context x.F (respectively x.X.F ), if y 6∈ fv(F ) (respectively y 6∈
fv(X.F )), then x.F ≡ y.F [x/y] (respectively x.X.F ≡ y.(X.F )[x/y]).

b. For any context P n.F (respectively P n.X.F ), if Qn 6∈ FV (F ) (respectively

Qn 6∈ FV (X.F )), then P.F ≡ Q.F [P/Q] (respectively P.X.F ≡ Q.(X.F )[P/Q]).

c. For any context Xα.F , if Y α′, where α′ ≡ α, is a term variable which is

not equivalent to any free term variable of F , then Xα.F ≡ Y α′ .F [X/Y α′ ], and so

for any individual variable x, x.Xα.F ≡ x.Y α′ .F [Xα/Y α′ ] and for any predicate

variable P , P.Xα.F ≡ P.Y α′ .F [Xα/Y α′ ].

Proof. By using Lemma 3.2.16, the proof is similar to the proof of Corollary

2.11.

Lemma 3.2.19. Let Fα be a C-H term, x = x1, . . . , xm and y = y1, . . . , yn be

sequences of distinct individual variables, and t = t1, . . . , tm and u = u1, . . . , un be

individual terms. Then

Fα[x/t][y/u] ≡ Fα[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ],

where yi1 , . . . , yik is the sublist of y consisting of those yj’s which are in fv(Fα)−
{x}.
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Lemma 3.2.20. Let Fα be a C-H term, P = P r1
1 , . . . , P rm

m and R = Rl1
1 , . . . , Rln

n

be sequences of distinct predicate variables, T = T1, . . . , Tm, where Ti =

λxi
1, . . . , x

i
ri
δi, 1 ≤ i ≤ m, and U = U1, . . . , Un, where Uj = λyj

1, . . . , y
j
lj
σj, 1 ≤

j ≤ n, be abstraction terms. Then

Fα[P/T ][R/U ] ≡ Fα[P1/T1[R/U ], . . . , Pm/Tm[R/U ], Ri1/Ui1 , . . . , Rik/Uik ],

where Ri1 , . . . , Rik is the sublist of R consisting of those Rj’s which are in FV (Fα)−
{P}.

Lemma 3.2.21. Let Fα be a C-H term, X = Xδ1
1 , . . . , Xδm

m and Y = Y τ1
1 , . . . , Y τn

n

be sequences of inequivalent term variables, and H = H
δ′1
1 , . . . , H

δ′m
m and K =

K
τ ′1
1 , . . . , K

τ ′n
n be C-H terms, where δi ≡ δ′i for all 1 ≤ i ≤ m and τj ≡ τ ′j for all

1 ≤ j ≤ n. Then

Fα[X/H][Y /K] ≡ F α[X1/H1[Y /K], . . . , Xm/Hm[Y /K], Yi1/Ki1 , . . . , Yik/Kik ],

where Yi1 , . . . , Yik is the sublist of Y consisting of those Yj’s which are equivalent

to some free term variables of Fα but are not equivalent to any Xi in X.

Lemma 3.2.22. Let Fα be a C-H term, x = x1, . . . , xn be distinct individual

variables, t = t1, . . . , tn be individual terms, P = P r1
1 , . . . , P rm

m be distinct predicate

variables, and T = T1, . . . , Tm, where Ti = λzi
1, . . . , z

i
ri
δi, 1 ≤ i ≤ m, be abstraction

terms.

Then Fα[P/T ][x/t] ≡ Fα[x/t][P/T ].

Lemma 3.2.23. Let Fα be a C-H term, X = Xδ1
1 , . . . , Xδm

m be inequivalent term

variables, and K = K
δ′1
1 , . . . , K

δ′m
m be C-H terms such that δi ≡ δ′i for all 1 ≤ i ≤ m.

a. For any distinct individual variables x = x1, . . . , xn and any individual

terms t = t1, . . . , tn, if for all 1 ≤ i ≤ m, Fα has no free term variable Xσ
i such

that σ 6≡ δi but σ[x/t] ≡ δi[x/t], then

Fα[X/K][x/t] ≡ F α[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]].
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b. For any distinct predicate variables P = P l1
1 , . . . , P ln

n and any abstraction

terms T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
li
δi, 1 ≤ i ≤ n, if for all 1 ≤ i ≤ m,

Fα has no free term variable Xσ
i such that σ 6≡ δi but σ[P/T ] ≡ δi[P/T ], then

Fα[X/K][P/T ] ≡ Fα[P/T ][X
δ1[P/T ]
1 /K

δ′1
1 [P/T ], . . . , X

δm[P/T ]
m /K

δ′m
m [P/T ]].

Lemma 3.2.24. Let F and F ′ be C-H terms, x = x1, . . . , xn be distinct individual

variables, and t = t1, . . . , tn be individual terms.

If F ≡ F ′, then F [x/t] ≡ F ′[x/t].

Lemma 3.2.25. Let F and F ′ be C-H terms, P = P r1
1 , . . . , P rm

m be distinct pred-

icate variables, and T = T1, . . . , Tm, where Tj = λxj
1, . . . , x

j
rj

δj, 1 ≤ j ≤ m, be

abstraction terms.

If F ≡ F ′, then F [P/T ] ≡ F ′[P/T ].

Lemma 3.2.26. Let F and F ′ be C-H terms, X = Xδ1
1 , . . . , Xδn

n be inequivalent

term variables, and H = H
δ′1
1 , . . . , H

δ′n
n and K = K

δ′′1
1 , . . . , K

δ′′n
n be C-H terms,

where δi ≡ δ′i ≡ δ′′i and H
δ′i
i ≡ K

δ′′i
i for all 1 ≤ i ≤ n.

If F ≡ F ′, then F [X/H] ≡ F ′[X/K].

Proof. We will prove all the above lemmas simultaneously by induction on Fα.

Proof of Lemma 3.2.19.

It follows by Lemma 2.13 if Fα is a term variable.

(i) Fα = λXβ.G.

This case follows by the following claim.

Claim 1. The context Xβ.G satisfies the lemma.

Proof of Claim 1. We have

(Xβ.G)[x/t][y/u] = (Y
β[x/t]
1 .G[Xβ/Y β

1 ][x/t])[y/u]

= Y
β[x/t][y/u]

2 .G[Xβ/Y β
1 ][x/t][Y

β[x/t]
1 /Y

β[x/t]
2 ][y/u],
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where Y β
1 is Xβ (respectively Y

β[x/t]
2 is Y

β[x/t]
1 ) if Xβ.G (respectively

Y
β[x/t]
1 .G[Xβ/Y β

1 ][x/t]) has no free term variable Xσ such that σ[x/t] ≡ β[x/t] (re-

spectively Y σ
1 such that σ[y/u] ≡ β[x/t][y/u]), otherwise Y β

1 (respectively Y
β[x/t]
2 )

is the first term variable of type [β] (respectively [β[x/t]]) such that there is

no free term variable Y σ
1 of Xβ.G where σ[x/t] ≡ β[x/t] (respectively Y σ

2 of

Y
β[x/t]
1 .G[Xβ/Y β

1 ][x/t] where σ[y/u] ≡ β[x/t][y/u]).

Let β∗ denote β[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ].

By Lemma 2.13, β[x/t][y/u] ≡ β∗.

We have (Xβ.G)[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ] =

Y β∗
3 .G[Xβ/Y β

3 ][x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ], where Y β
3 is Xβ if

Xβ.G has no free term variable Xσ such that σ[x/t] ≡ β[x/t], otherwise Y β
3 is the

first term variable of type [β] such that there is no free term variable Y σ
3 of Xβ.G

where σ[x/t] ≡ β[x/t].

Let Y
β[x/t][y/u]
∗ be a term variable of type [β[x/t][y/u]] which is not equiv-

alent to any term variable occurring in G[Xβ/Y β
1 ][x/t][Y

β[x/t]
1 /Y

β[x/t]
2 ][y/u] or

G[Xβ/Y β
3 ][x1/t1[y/u], . . . , xm/tm[y/u]].

By the induction hypothesis, we have

(Xβ.G)[x/t][y/u]

= Y
β[x/t][y/u]

2 .G[Xβ/Y β
1 ][x/t][Y

β[x/t]
1 /Y

β[x/t]
2 ][y/u]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

1 ][x/t][Y
β[x/t]
1 /Y

β[x/t]
2 ][y/u][Y

β[x/t][y/u]

2 /Y
β[x/t][y/u]
∗ ]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

1 ][x/t][Y
β[x/t]
1 /Y

β[x/t]
2 ][Y

β[x/t]
2 /Y β[x/t]

∗ ][y/u]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

1 ][x/t][Y
β[x/t]
1 /Y β[x/t]

∗ ][y/u]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

1 ][Y β
1 /Y β

∗ ][x/t][y/u]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

∗ ][x/t][y/u], and
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(Xβ.G)[x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ]

= Y β∗
3 .G[Xβ/Y β

3 ][x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ]

≡ Y β∗
∗ .G[Xβ/Y β

3 ][x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ][Y
β∗
3 /Y β∗

∗ ]

≡ Y β∗
∗ .G[Xβ/Y β

3 ][Y β
3 /Y β

∗ ][x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ]

≡ Y β∗
∗ .G[Xβ/Y β

∗ ][x1/t1[y/u], . . . , xm/tm[y/u], yi1/ui1 , . . . , yik/uik ]

≡ Y β∗
∗ .G[Xβ/Y β

∗ ][x/t][y/u]

≡ Y
β[x/t][y/u]
∗ .G[Xβ/Y β

∗ ][x/t][y/u].

The cases ⊕(X.G, Y.H,K) and ST (P.X.G, H) also follow by the above claim

and the induction hypothesis.

(ii) Fα = λz.G.

This case follows by the following claim which can be proved in the same way

as the case ∀zβ in the proof of Lemma 2.13.

Claim 2. The context z.G satisfies the lemma.

Similarly, for the case ST (z.X.G, H) we prove the lemma for the context z.X.G

(by using Claim 1) and apply the induction hypothesis to H.

The remaining cases follow straightforwardly by the induction hypothesis.

Lemma 3.2.20 can be proved similarly (using Lemma 2.16 for the atomic case).

Proof of Lemma 3.2.21.

(i) Fα is a term variable.

If Fα ≡ Y τr
r for some 1 ≤ r ≤ n where Y τr

r 6≡ Xi for all 1 ≤ i ≤ m, then

Fα[X/H][Y /K] = Kr = Fα[X1/H1[Y /K], . . . , Xm/Hm[Y /K], Yr/Kr], otherwise

Fα[X/H][Y /K]

=





H
δ′q
q [Y /K] if Fα ≡ X

δq
q for some 1 ≤ q ≤ m,

Fα otherwise,

= Fα[X1/H1[Y /K], . . . , Xm/Hm[Y /K]].
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(ii) Fα = λY β.G.

This case follows by the following claim which can be proved in the same way

as the case ∀zβ in the proof of Lemma 2.13.

Claim 1. The context Y β.G satisfies the lemma.

The case ⊕(Z1.F1, Z2.F2, G) also follows by the above claim and the induction

hypothesis.

(iii) Fα = λx.G.

This case follows by the following claim.

Claim 2. The context x.G satisfies the lemma.

Proof of Claim 2. We have (x.G)[X/H][Y /K] = x′′.G[x/x′][X∗/H∗][x′/x′′][Y ∗/K∗],

where X∗ = Xj1 , . . . , Xjl
(respectively Y ∗) is the sublist of X (respectively Y ) con-

sisting of those term variables which are equivalent to some free term variable of

x.G (respectively (x.G)[X/H]), H∗ (respectively K∗) is the corresponding sublist

of H (respectively K), x′ and x′′ are individual term variables such that x′ is

x (respectively x′′ is x′) if x 6∈ fv(H∗) (respectively x′ 6∈ fv(K∗)), otherwise x′

(respectively x′′) is the first individual variable which is not in fv(G) ∪ fv(H∗)

(respectively fv(G[x/x′][X∗/H∗]) ∪ fv(K∗)), and

(x.G)[X1/H1[Y /K], . . . , Xm/Hm[Y /K], Yi1/Ki1 , . . . , Yik/Kik ]

= x′′′.G[x/x′′′][Xj1/Hj1 [Y /K], . . . , Xjl
/Hjl

[Y /K], Yi1/Ki1 , . . . , Yik/Kik ], where

x′′′ is x if x does not occur free in Hj1 [Y /K], . . . , Hjl
[Y /K], Ki1 , . . . , Kik , oth-

erwise x′′′ is the first individual variable which does not occur free in G or

Hj1 [Y /K], . . . , Hjl
[Y /K], Ki1 , . . . , Kik .

Let x∗ be an individual variable which does not occur in

G[x/x′][X∗/H∗][x′/x′′][Y ∗/K∗] or

G[x/x′′′][Xj1/Hj1 [Y /K], . . . , Xjl
/Hjl

[Y /K], Yi1/Ki1 , . . . , Yik/Kik ].

Suppose for a contradiction that there is some term variable Y σ
r , where Y τr

r
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is in Y ∗, such that σ 6≡ τr but σ[x′′/x∗] ≡ τr[x
′′/x∗] (= τr since x′′ 6∈ fv(K

τ ′r
r )

and so x′′ 6∈ fv(τr)). Then x∗ must occur free in τr. This is a contradiction by

the choice of x∗. Hence there is no such term variable. Similarly, there is no

term variable Xσ
jq

, 1 ≤ q ≤ l, such that σ 6≡ δjq but σ[x′/x∗] ≡ δjq [x
′/x∗] or

σ[x′′′/x∗] ≡ δjq [x
′′′/x∗]. Thus, by the induction hypothesis, we have

(x.G)[X/H][Y /K] = x′′.G[x/x′][X∗/H∗][x′/x′′][Y ∗/K∗]

≡ x∗.G[x/x′][X∗/H∗][x′/x′′][Y ∗/K∗][x′′/x∗]

≡ x∗.G[x/x′][X∗/H∗][x′/x′′][x′′/x∗][Y ∗/K∗]

≡ x∗.G[x/x′][X∗/H∗][x′/x∗][Y ∗/K∗]

≡ x∗.G[x/x′][x′/x∗][X∗/H∗][Y ∗/K∗]

≡ x∗.G[x/x∗][X∗/H∗][Y ∗/K∗], and

(x.G)[X1/H1[Y /K], . . . , Xm/Hm[Y /K], Yi1/Ki1 , . . . , Yik/Kik ]

= x′′′.G[x/x′′′][Xj1/Hj1 [Y /K], . . . , Xjl
/Hjl

[Y /K], Yi1/Ki1 , . . . , Yik/Kik ]

= x′′′.G[x/x′′′][Xj1/Hj1 [Y
∗/K∗], . . . , Xjl

/Hjl
[Y ∗/K∗], Yi1/Ki1 , . . . , Yik/Kik ]

≡ x∗.G[x/x′′′][Xj1/Hj1 [Y
∗/K∗], . . . , Xjl

/Hjl
[Y ∗/K∗], Yi1/Ki1 , . . . , Yik/Kik ]

[x′′′/x∗]

≡ x∗.G[x/x′′′][x′′′/x∗]

[Xj1/Hj1 [Y
∗/K∗], . . . , Xjl

/Hjl
[Y ∗/K∗], Yi1/Ki1 , . . . , Yik/Kik ]

≡ x∗.G[x/x∗][Xj1/Hj1 [Y
∗/K∗], . . . , Xjl

/Hjl
[Y ∗/K∗], Yi1/Ki1 , . . . , Yik/Kik ]

≡ x∗.G[x/x∗][X∗/H∗][Y ∗/K∗].

Similarly for λP.G.

(iv) Fα = ST (x.Z.G1, G2).

Similar to the above case, by using the previous results for the context Z.G1,
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we first show that the context x.Z.G1 satisfies the lemma in the same way as in

the above claim, and then apply the induction hypothesis to G2.

Similarly for ST (P.Z.G1, G2).

The remaining cases follow straightforwardly by the induction hypothesis.

Proof of Lemma 3.2.22. It follows by Lemma 2.15 if Fα is a term variable. The

cases λy.G and λQ.G can be proved in the same way as the cases ∀yβ and ∀2Qβ,

respectively, in Lemma 2.15.

The following cases, each of which contains a context of the form Xβ.G, need

the claim below.

Claim 1. Xβ.G satisfies the lemma.

Proof of Claim 1. We have

(Xβ.G)[P/T ][x/t] = (Y
β[P/T ]
1 .G[Xβ/Y β

1 ][P/T ])[x/t]

= Y
β[P/T ][x/t]
2 .G[Xβ/Y β

1 ][P/T ][Y
β[P/T ]
1 /Y

β[P/T ]
2 ][x/t],

where Y β
1 is Xβ (respectively Y

β[P/T ]
2 is Y

β[P/T ]
1 ) if Xβ.G (respectively

Y
β[P/T ]
1 .G[Xβ/Y β

1 ][P/T ]) has no free term variable Xσ (respectively Y σ
1 ) such that

σ[P/T ] ≡ β[P/T ] (respectively σ[x/t] ≡ β[P/T ][x/t]), otherwise Y β
1 (respectively

Y
β[P/T ]
2 ) is the first term variable of type [β] (respectively [β[P/T ]]) such that

there is no free term variable Y σ
1 of Xβ.G where σ[P/T ] ≡ β[P/T ] (respectively

Y σ
2 of Y

β[P/T ]
1 .G[Xβ/Y β

1 ][P/T ] where σ[x/t] ≡ β[P/T ][x/t]), and

(Xβ.G)[x/t][P/T ] = (Y
β[x/t]
3 .G[Xβ/Y β

3 ][x/t])[P/T ]

= Y
β[x/t][P/T ]
4 .G[Xβ/Y β

3 ][x/t][Y
β[x/t]
3 /Y

β[x/t]
4 ][P/T ],

where Y β
3 is Xβ (respectively Y

β[x/t]
4 is Y

β[x/t]
3 ) if Xβ.G (respectively

Y
β[x/t]
3 .G[Xβ/Y β

3 ][x/t]) has no free term variable Xσ (respectively Y σ
3 ) such that

σ[x/t] ≡ β[x/t] (respectively σ[P/T ] ≡ β[x/t][P/T ]), otherwise Y β
3 (respectively

Y
β[x/t]
4 ) is the first term variable of type [β] (respectively [β[x/t]]) such that there
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is no free term variable Y σ
3 of Xβ.G where σ[x/t] ≡ β[x/t] (respectively Y σ

4 of

Y
β[x/t]
3 .G[Xβ/Y β

3 ][x/t] where σ[P/T ] ≡ β[x/t][P/T ]).

Let Zβ[P/T ][x/t] be a term variable of type [β[P/T ][x/t]] (= [β[x/t][P/T ]] by

Lemma 2.15) which is not equivalent to any term variable occurring in

G[Xβ/Y β
1 ][P/T ][Y

β[P/T ]
1 /Y

β[P/T ]
2 ][x/t] or G[Xβ/Y β

3 ][x/t][Y
β[x/t]
3 /Y

β[x/t]
4 ][P/T ].

By the induction hypothesis, we have

(Xβ.G)[P/T ][x/t]

= Y
β[P/T ][x/t]
2 .G[Xβ/Y β

1 ][P/T ][Y
β[P/T ]
1 /Y

β[P/T ]
2 ][x/t]

≡ Zβ[P/T ][x/t].G[Xβ/Y β
1 ][P/T ][Y

β[P/T ]
1 /Y

β[P/T ]
2 ][x/t][Y

β[P/T ][x/t]
2 /Zβ[P/T ][x/t]]

≡ Zβ[P/T ][x/t].G[Xβ/Y β
1 ][P/T ][Y

β[P/T ]
1 /Y

β[P/T ]
2 ][Y

β[P/T ]
2 /Zβ[P/T ]][x/t]

≡ Zβ[P/T ][x/t].G[Xβ/Y β
1 ][P/T ][Y

β[P/T ]
1 /Zβ[P/T ]][x/t]

≡ Zβ[P/T ][x/t].G[Xβ/Y β
1 ][Y β

1 /Zβ][P/T ][x/t]

≡ Zβ[P/T ][x/t].G[Xβ/Zβ][P/T ][x/t]

≡ Zβ[x/t][P/T ].G[Xβ/Zβ][x/t][P/T ], and

(Xβ.G)[x/t][P/T ]

= Y
β[x/t][P/T ]
4 .G[Xβ/Y β

3 ][x/t][Y
β[x/t]
3 /Y

β[x/t]
4 ][P/T ]

≡ Zβ[x/t][P/T ].G[Xβ/Y β
3 ][x/t][Y

β[x/t]
3 /Y

β[x/t]
4 ][P/T ][Y

β[x/t][P/T ]
4 /Zβ[x/t][P/T ]]

≡ Zβ[x/t][P/T ].G[Xβ/Y β
3 ][x/t][Y

β[x/t]
3 /Y

β[x/t]
4 ][Y

β[x/t]
4 /Zβ[x/t]][P/T ]

≡ Zβ[x/t][P/T ].G[Xβ/Y β
3 ][x/t][Y

β[x/t]
3 /Zβ[x/t]][P/T ]

≡ Zβ[x/t][P/T ].G[Xβ/Y β
3 ][Y β

3 /Zβ][x/t][P/T ]

≡ Zβ[x/t][P/T ].G[Xβ/Zβ][x/t][P/T ].

Hence we have the claim.

The case λX.G follows by the claim. The case ⊕(X.G, Y.H, K) follows by the

claim and the induction hypothesis. By applying the induction hypothesis to H,
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the cases ST (y.X.G, H) and ST (Q.X.G,H) can be proved in the same way as

the cases λy.G and λQ.G, respectively, by using the above claim.

The remaining cases follow straightforwardly by the induction hypothesis.

Proof of Lemma 3.2.23.

a: Let x = x1, . . . , xn be distinct individual variables and t = t1, . . . , tn be

individual terms. Suppose for all 1 ≤ i ≤ m, Fα has no free term variable Xσ
i

such that σ 6≡ δi but σ[x/t] ≡ δi[x/t].

(i) Fα is a term variable.

By the assumption of Fα, we have

Fα[X/K][x/t] =





Kδ′q [x/t] if F α ≡ Xδq for some 1 ≤ q ≤ m,

Fα[x/t] otherwise,

= Fα[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , Xδm[x/t]

m /Kδ′m
m [x/t]].

For the following cases, suppose X∗ = Xi1 , . . . , Xir (respectively x∗) is the

sublist of X (respectively x) consisting of those variables which are equivalent

to some free term variables of Fα (respectively are in fv(F α[X/K])) and K∗

(respectively t∗) is the corresponding sublist of K (respectively t).

(ii) Fα = λy.G.

This case follows by the following claim.

Claim 1. The context y.G satisfies the lemma.

Proof of Claim 1. We have (y.G)[X/K][x/t] = y′′.G[y/y′][X∗/K∗][y′/y′′][x∗/t∗],

where y′ is y (respectively y′′ is y′) if y 6∈ fv(K∗) (respectively y′ 6∈ fv(t∗)),

otherwise y′ (respectively y′′) is the first individual variable which is not in fv(G)∪
fv(K∗) (respectively fv(G[y/y′][X∗/K∗]) ∪ fv(t∗)).

Suppose x∗∗ is the sublist of x consisting of those xi’s which are in fv(Fα)

and t∗∗ is the corresponding sublist of t. Note that x∗∗is also a sublist of x∗ since

fv(Fα) ⊆ fv(Fα[X/K]) (Note (f) on page 60).
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We have (y.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]] =

y′′′′.G[y/y′′′][x∗∗/t∗∗][y′′′/y′′′′][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]],

where y′′′ is y (respectively y′′′′ is y′′′) if y 6∈ fv(t∗∗) (respectively y′′′ 6∈
r⋃

j=1

fv(K
δ′ij
ij

[x∗/t∗])), otherwise y′′′ (respectively y′′′′) is the first individual variable

which is not in fv(G) ∪ fv(t∗∗) (respectively fv(G[y/y′′′][x∗∗/t∗∗]) ∪
r⋃

j=1

fv(K
δ′ij
ij

[x∗/t∗])).

Let z be an individual variable which does not occur in x∗,

G[y/y′][X∗/K∗][y′/y′′][x∗/t∗] or

G[y/y′′′][x∗∗/t∗∗][y′′′/y′′′′][X
δi1
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir
ir

/K
δ′ir
ir

[x∗/t∗]].

By the induction hypothesis, we have

(y.G)[X/K][x/t]

= y′′.G[y/y′][X∗/K∗][y′/y′′][x∗/t∗]

≡ z.G[y/y′][X∗/K∗][y′/y′′][x∗/t∗][y′′/z]

≡ z.G[y/y′][X∗/K∗][y′/y′′][y′′/z][x∗/t∗]

≡ z.G[y/y′][X∗/K∗][y′/z][x∗/t∗]

≡ z.G[y/y′][y′/z][X∗/K∗][x∗/t∗]

≡ z.G[y/z][X∗/K∗][x∗/t∗]

≡ z.G[y/z][x∗/t∗][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

= z.G[y/z][x∗∗/t∗∗][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]], and
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(y.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]]

= y′′′.G[y/y′′′][x∗∗/t∗∗][y′′′/y′′′′][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

≡ z.G[y/y′′′][x∗∗/t∗∗][y′′′/y′′′′][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

[y′′′′/z]

≡ z.G[y/y′′′][x∗∗/t∗∗][y′′′/y′′′′][y′′′′/z]

[X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

≡ z.G[y/y′′′][x∗∗/t∗∗][y′′′/z][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

≡ z.G[y/y′′′][y′′′/z][x∗∗/t∗∗][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]]

≡ z.G[y/z][x∗∗/t∗∗][X
δi1

[x∗/t∗]
i1

/K
δ′i1
i1

[x∗/t∗], . . . , Xδir [x∗/t∗]
ir

/K
δ′ir
ir

[x∗/t∗]].

Thus we have the claim.

(iii) Fα = λP.G.

This case follows by the following claim.

Claim 2. The context P.G satisfies the lemma.

Proof of Claim 2. We have (P.G)[X/K][x/t] = P ′.G[P/P ′][X∗/K∗][x/t] and

(P.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]]

= P ′.G[x/t][P/P ′][X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]],

where P ′ is P if P 6∈ FV (K∗) (so P 6∈
r⋃

j=1

FV (K
δ′ij
ij

[x/t])), otherwise P ′ is the

first predicate variable with the same arity as P which is not in FV (G)∪FV (K∗)

(= FV (G[x/t]) ∪
r⋃

j=1

FV (K
δ′ij
ij

[x/t])).

By the induction hypothesis, we have
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(P.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]]

= P ′.G[x/t][P/P ′][X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ P ′.G[P/P ′][x/t][X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ P ′.G[P/P ′][X∗/K∗][x/t]

= (P.G)[X/K][x/t].

(iv) Fα = λY β.G.

This case follows by the following claim.

Claim 3. The context Y β.G satisfies the lemma.

Proof of Claim 3. We have

(Y β.G)[X/K][x/t] = (Zβ
1 .G[Y β/Zβ

1 ][X∗/K∗])[x/t]

= Z
β[x/t]
2 .G[Y β/Zβ

1 ][X∗/K∗][Zβ
1 /Zβ

2 ][x/t],

where Zβ
1 is Y β if Y β is not equivalent to any free term variable in K∗, otherwise

Zβ
1 is the first term variable of type [β] which is not equivalent to any free term

variable in K∗ or G, and Zβ
2 is Zβ

1 if Zβ
1 .G[Y β/Zβ

1 ][X∗/K∗] has no free term

variable Zσ
1 such that σ[x/t] ≡ β[x/t], otherwise Zβ

2 is the first term variable of

type [β] such that there is no free term variable Zσ
2 of Zβ

1 .G[Y β/Zβ
1 ][X∗/K∗] where

σ[x/t] ≡ β[x/t], and

(Y β.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]]

= (Z
β[x/t]
3 .G[Y β/Zβ

3 ][x/t])[X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , Xδm[x/t]

m /Kδ′m
m [x/t]]

= Z
β[x/t]
4 .G[Y β/Zβ

3 ][x/t][Z
β[x/t]
3 /Z

β[x/t]
4 ]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]],

where Zβ
3 is Y β if Y β.G has no free term variable Y σ such that σ[x/t] ≡ β[x/t],

otherwise Zβ
3 is the first term variable of type [β] such that there is no free term
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variable Zσ
3 of Y β.G such that σ[x/t] ≡ β[x/t], and Z

β[x/t]
4 is Z

β[x/t]
3 if Z

β[x/t]
3 is not

equivalent to any free term variable in K
δ′i1
i1

[x/t], . . . , K
δ′ir
ir

[x/t], otherwise Z
β[x/t]
4

is the first term variable of type [β[x/t]] which is not equivalent to any free term

variable in K
δ′i1
i1

[x/t], . . . , K
δ′ir
ir

[x/t] or G[Y β/Zβ
3 ][x/t].

Let Zβ[x/t] be a term variable which is not equivalent to any term variable

occurring in X∗, X
δi1

[x/t]

i1
, . . . , X

δir [x/t]
ir

, G[Y β/Zβ
1 ][X∗/K∗][Zβ

1 /Zβ
2 ][x/t], or

G[Y β/Zβ
3 ][x/t][Z

β[x/t]
3 /Z

β[x/t]
4 ][X

δi1
[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]].

By the induction hypothesis, we have

(Y β.G)[x/t][X
δ1[x/t]
1 /K

δ′1
1 [x/t], . . . , X

δm[x/t]
m /K

δ′m
m [x/t]]

= Z
β[x/t]
4 .G[Y β/Zβ

3 ][x/t][Z
β[x/t]
3 /Z

β[x/t]
4 ]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ Zβ[x/t].G[Y β/Zβ
3 ][x/t][Z

β[x/t]
3 /Z

β[x/t]
4 ]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]][Z
β[x/t]
4 /Zβ[x/t]]

≡ Zβ[x/t].G[Y β/Zβ
3 ][x/t][Z

β[x/t]
3 /Z

β[x/t]
4 ][Z

β[x/t]
4 /Zβ[x/t]]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ Zβ[x/t].G[Y β/Zβ
3 ][x/t][Z

β[x/t]
3 /Zβ[x/t]]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ Zβ[x/t].G[Y β/Zβ
3 ][Zβ

3 /Zβ][x/t]

[X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ Zβ[x/t].G[Y β/Zβ][x/t][X
δi1

[x/t]

i1
/K

δ′i1
i1

[x/t], . . . , X
δir [x/t]
ir

/K
δ′ir
ir

[x/t]]

≡ Zβ[x/t].G[Y β/Zβ][X∗/K∗][x/t], and
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(Y β.G)[X/K][x/t] = Z
β[x/t]
2 .G[Y β/Zβ

1 ][X∗/K∗][Zβ
1 /Zβ

2 ][x/t]

≡ Zβ[x/t].G[Y β/Zβ
1 ][X∗/K∗][Zβ

1 /Zβ
2 ][x/t][Z

β[x/t]
2 /Zβ[x/t]]

≡ Zβ[x/t].G[Y β/Zβ
1 ][X∗/K∗][Zβ

1 /Zβ
2 ][Zβ

2 /Zβ][x/t]

≡ Zβ[x/t].G[Y β/Zβ
1 ][X∗/K∗][Zβ

1 /Zβ][x/t]

≡ Zβ[x/t].G[Y β/Zβ
1 ][Zβ

1 /Zβ][X∗/K∗][x/t]

≡ Zβ[x/t].G[Y β/Zβ][X∗/K∗][x/t].

Thus we have the claim.

The case ⊕(Y1.G1, Y2.G2, H) also follows by the above claim and the induction

hypothesis. By applying the induction hypothesis to H, the cases ST (y.Y.G,H)

and ST (P.Y.G, H) can be proved in the same way as the cases λy.G and λP.G,

respectively, by using the previous claims for the context Y.G.

For the proofs of Lemmas 3.2.24, 3.2.25, and 3.2.26, suppose F ≡ F ′. Then

there exists a sequence of C-H terms F = F0, . . . , Fk = F ′, k ≥ 1 such that for

each 1 ≤ i ≤ k, Fi is obtained from Fi−1 either by replacing some occurrences of

term variables by equivalent term variables or by a legitimate change of bound

variable.

Proof of Lemma 3.2.24.

(i) F = Zα.

Then F ′ = Zα′ for some formula α′ where α′ ≡ α. By Lemma 2.14, α′[x/t] ≡
α[x/t]. Hence F [x/t] = Zα[x/t] ≡ Zα′[x/t] = F ′[x/t].

For the following cases, we will prove by induction on k. We will prove only

the case k = 1 since the case k > 1 easily follows by the subsidiary induction

hypothesis and the case k = 1.

(ii) F = λy.G.
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Then F [x/t] = λz.G[y/z][x∗/t∗], where x∗ is the sublist of x consisting of those

variables which are in fv(F ), t∗ is the corresponding sublist of t, z is y if y 6∈ fv(t∗),

otherwise z is the first individual variable which is not in fv(G) ∪ fv(t∗).

Case 1. F ′ = λy.G′ where G′ ≡ G.

Since fv(G) = fv(G′), F ′[x/t] = λz.G′[y/z][x∗/t∗]. By the main induction

hypothesis, G[y/z][x∗/t∗] ≡ G′[y/z][x∗/t∗]. Hence F [x/t] ≡ F ′[x/t].

Case 2. F ′ = λy′.G[y/y′] where y is replaceable by y′, y′ is free for y, and y′

does not occur free in G.

Then F ′[x/t] = λz′.G[y/y′][y′/z′][x∗/t∗] where z′ is y′ if y′ 6∈ fv(t∗), otherwise

z′ is the first individual variable which is not in fv(G[y/y′]) ∪ fv(t∗).

Since z 6∈ (fv(G)− {y}) ∪ fv(t∗), either z 6∈ fv(G[y/z′][x∗/t∗]) or z = z′.

Hence, by the induction hypothesis (Lemmas 3.2.19 and 3.2.24) and Corollary

3.2.18,

F ′[x/t] = λz′.G[y/y′][y′/z′][x∗/t∗]

≡ λz′.G[y/z′][x∗/t∗]

≡ λz.G[y/z′][x∗/t∗][z′/z]

≡ λz.G[y/z′][z′/z][x∗/t∗]

≡ λz.G[y/z][x∗/t∗] = F [x/t].

(iii) F = λP.G.

Case 1. F ′ = λP.G′ where G′ ≡ G.

This case follows by the main induction hypothesis.

Case 2. F ′ = λP ′.G[P/P ′] where P ′ is of the same arity as P , P is replaceable

by P ′, P ′ is free for P , and P ′ does not occur free in G.

Then P ′ 6∈ FV (G[x/t]). Hence, by the induction hypothesis (Lemma 3.2.20)

and Corollary 3.2.18, we have F [x/t] = λP.G[x/t] ≡ λP ′.G[x/t][P/P ′] ≡



86

λP ′.G[P/P ′][x/t] = F ′[x/t].

(iv) F = λXβ.G.

Then F [x/t] = λY β[x/t].G[Xβ/Y β][x/t], where Y β is Xβ if Xβ.G has no free

term variable Xσ such that σ[x/t] ≡ β[x/t], otherwise Y β is the first term variable

of type [β] such that Xβ.G has no free term variable Y σ where σ[x/t] ≡ β[x/t].

Case 1. F ′ = λXβ′ .G′ where β ≡ β′ and G′ ≡ G.

Since fv(G) = fv(G′), we have F ′[x/t] = λY β′[x/t].G′[Xβ′/Y β′ ][x/t].

By the induction hypothesis (Lemmas 3.2.24 and 3.2.26), G[Xβ/Y β′ ][x/t] ≡
G′[Xβ′/Y β′ ][x/t]. Hence F [x/t] ≡ F ′[x/t].

Case 2. F ′ = λZβ′ .G[Xβ/Zβ′ ] where β′ ≡ β, Zβ′ is not equivalent to any free

term variable of G and is free for Xβ in G.

Then F ′[x/t] = λZ
β′[x/t]
1 .G[Xβ/Zβ′ ][Zβ′/Zβ′

1 ][x/t], where Zβ′
1 is Zβ′ if

Zβ′ .G[Xβ/Zβ′ ] has no free term variable Zσ such that σ[x/t] ≡ β′[x/t], otherwise

Zβ′
1 is the first term variable of type [β′] such that there is no free term variable

Zσ
1 of Zβ′ .G[Xβ/Zβ′ ] where σ[x/t] ≡ β′[x/t].

Let Z
β[x/t]
∗ be a term variable which is not equivalent to any term variable

occurring in G, G[Xβ/Y β][x/t] or G[Xβ/Zβ′ ][Zβ′/Zβ′
1 ][x/t].

By the induction hypothesis (Lemmas 3.2.21, 3.2.23, and 3.2.24), we have

F ′[x/t] = λZ
β′[x/t]
1 .G[Xβ/Zβ′ ][Zβ′/Zβ′

1 ][x/t]

≡ λZβ[x/t]
∗ .G[Xβ/Zβ′ ][Zβ′/Zβ′

1 ][x/t][Z
β′[x/t]
1 /Zβ[x/t]

∗ ]

≡ λZβ[x/t]
∗ .G[Xβ/Zβ′ ][Zβ′/Zβ′

1 ][Zβ′
1 /Zβ

∗ ][x/t]

≡ λZβ[x/t]
∗ .G[Xβ/Zβ′ ][Zβ′/Zβ

∗ ][x/t]

≡ λZβ[x/t]
∗ .G[Xβ/Zβ

∗ ][x/t], and
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F [x/t] = λY β[x/t].G[Xβ/Y β][x/t]

≡ λZβ[x/t]
∗ .G[Xβ/Y β][x/t][Y β[x/t]/Zβ[x/t]

∗ ]

≡ λZβ[x/t]
∗ .G[Xβ/Y β][Y β/Zβ

∗ ][x/t]

≡ λZβ[x/t]
∗ .G[Xβ/Zβ

∗ ][x/t].

From the proofs of cases (ii)-(iv) we can also conclude that:

if C is a context of the form y.G, P.G or X.G and C ′ is a context which is

equivalent to C, then C[x/t] ≡ C ′[x/t].

By using the above result for contexts of the form X.G, we can prove in the

same way as the cases λy.G and λP.G, respectively, that this result also holds for

contexts of the form y.X.G and P.X.G .

The cases ⊕(X.G, Y.H,K), ST (y.X.G,K), and ST (P.X.G, K) follow by ap-

plying the induction hypothesis to K and the above results to X.G, Y.H, y.X.G,

and P.X.G.

Lemma 3.2.25 can be proved in the same way as Lemma 3.2.24 (using Lemma

2.17 when F is a term variable).

Proof of Lemma 3.2.26.

(i) F is a term variable.

If F ≡ Xδq for some 1 ≤ q ≤ n, then F ′ ≡ Xδq and hence F [X/H] = H
δ′q
q ≡

K
δ′′q
q = F ′[X/K], otherwise F [X/H] = F ≡ F ′ = F ′[X/K].

For the following cases, we will prove by induction on k. We will prove only

the case k = 1 since the case k > 1 easily follows by the subsidiary induction

hypothesis and the case k = 1.

Suppose X∗ = Xi1 , . . . , Xil is the sublist of X consisting of those term variables

which are equivalent to some free term variables of F , and H∗ and K∗ are the

corresponding sublists of H and K, respectively.

(ii) F = λy.G.
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Then F [X/H] = λy′.G[y/y′][X∗/H∗], where y′ is y if y 6∈ fv(H∗), otherwise

y′ is the first individual variable which is not in fv(G) ∪ fv(H∗).

Case 1. F ′ = λy.G′ where G′ ≡ G.

Since Hi ≡ Ki for all 1 ≤ i ≤ n and G′ ≡ G, fv(Hi) = fv(Ki) for all 1 ≤ i ≤ n

and fv(G′) = fv(G). Hence F ′[X/K] = λy′.G′[y/y′][X∗/K∗]. By the induction

hypothesis (Lemmas 3.2.24 and 3.2.26), we have F [X/H] = λy′.G[y/y′][X∗/H∗] ≡
λy′.G′[y/y′][X∗/K∗] = F ′[X/K].

Case 2. F ′ = λz.G[y/z] where y is replaceable by z, z is free for y, and z does

not occur free in G.

Then F ′[X/K] = λz′.G[y/z][z/z′][X∗/K∗], where z′ is z if z 6∈ fv(K∗), other-

wise z′ is the first individual variable which is not in fv(G[y/z]) ∪ fv(K∗).

Let z∗ be an individual variable which does not occur in G[y/y′][X∗/H∗] or

G[y/z][z/z′][X∗/K∗].

Since y′ 6∈ fv(G) and y does not occur free in the type superscript of any free

term variable of G, for all 1 ≤ s ≤ l, G[y/y′] has no free term variable Xσ such

that Xσ 6≡ X
δis
is

but Xσ[y′/z∗] ≡ X
δis [y′/z∗]
is

i.e. Xσ ≡ X
δis
is

.

Similarly, for all 1 ≤ s ≤ l, G[y/z][z/z′] has no free term variable Xσ such

that Xσ 6≡ X
δis
is

but Xσ[z/z∗] ≡ X
δis [z′/z∗]
is

.

By the induction hypothesis (Lemmas 3.2.19, 3.2.23, and 3.2.26), we have

F ′[X/K] = λz′.G[y/z][z/z′][X∗/K∗]

≡ λz∗.G[y/z][z/z′][X∗/K∗][z′/z∗]

≡ λz∗.G[y/z][z/z′][z′/z∗][X∗/K∗]

≡ λz∗.G[y/z][z/z∗][X∗/K∗]

≡ λz∗.G[y/z∗][X∗/K∗]

≡ λz∗.G[y/z∗][X∗/H∗], and
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F [X/H] = λy′.G[y/y′][X∗/H∗]

≡ λz∗.G[y/y′][X∗/H∗][y′/z∗]

≡ λz∗.G[y/y′][y′/z∗][X∗/H∗]

≡ λz∗.G[y/z∗][X∗/H∗].

Similarly for the case λP.G.

(iii) F = λY β.G.

Then F [X/H] = λY β
∗ .G[Y β/Y β

∗ ][X∗/H∗], where Y β
∗ is Y β if Y β is not equiv-

alent to any free term variable in H∗, otherwise Y β
∗ is the first term variable of

type [β] which is not equivalent to any free term variable in H∗ or G.

Case 1. F ′ = λY β′ .G′ where β ≡ β′ and G′ ≡ G.

Since Hi ≡ Ki for all 1 ≤ i ≤ n, F ′[X/K] = λY β
∗ .G′[Y β′/Y β

∗ ][X∗/K∗].

By the induction hypothesis, G[Y β/Y β
∗ ][X∗/H∗] ≡ G′[Y β′/Y β

∗ ][X∗/K∗]. Hence

F [X/H] ≡ F ′[X/K].

Case 2. F ′ = λZβ′ .G[Y β/Zβ′ ] where β′ ≡ β, Zβ′ is free for Y β and is not

equivalent to any free term variable in G.

Then F ′[X/K] = λZβ′
∗ .G[Y β/Zβ′ ][Zβ′/Zβ′

∗ ][X∗/K∗], where Zβ′
∗ is Zβ′ if Zβ′

is not equivalent to any free term variable in K∗, otherwise Zβ′
∗ is the first term

variable of type [β′] which is not equivalent to any free term variable in K∗ or

G[Y β/Zβ′ ].

Since Y β
∗ is Y β or Y β

∗ is not equivalent to any free term variable of G, either Y β
∗

is Zβ′
∗ or Y β

∗ is not equivalent to any free term variable of G[Y β/Zβ′
∗ ]. Since Y β

∗ is

not equivalent to any free term variable in H∗ and Hi ≡ Ki for all 1 ≤ i ≤ n, either

Y β
∗ is Zβ′

∗ or Y β
∗ is not equivalent to any free term variable of G[Y β/Zβ′

∗ ][X∗/K∗].

Hence, by the induction hypothesis (Lemmas 3.2.21 and 3.2.26) and Corollary
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3.2.18,

F ′[X/K] = λZβ′
∗ .G[Y β/Zβ′ ][Zβ′/Zβ′

∗ ][X∗/K∗]

≡ λZβ′
∗ .G[Y β/Zβ′

∗ ][X∗/K∗]

≡ λY β
∗ .G[Y β/Zβ′

∗ ][X∗/K∗][Zβ′
∗ /Y β

∗ ]

≡ λY β
∗ .G[Y β/Zβ′

∗ ][Zβ′
∗ /Y β

∗ ][X∗/K∗]

≡ λY β
∗ .G[Y β/Y β

∗ ][X∗/K∗]

≡ λY β
∗ .G[Y β/Y β

∗ ][X∗/H∗] = F [X/H].

As in the proof of Lemma 3.2.24, the lemma also holds for contexts and the

cases ⊕(Y1.F1, Y2.F2, G), ST (y.Y.F1, F2), and ST (P.Y.F1, F2) follow by these re-

sults and the induction hypothesis.

3.3 Reduction rules

We now give reduction rules for terms corresponding to the reductions of proofs

which are obtained by short cutting an introduction which is immediately followed

by an elimination of the same symbol.

Definition 3.3.1. We say that a term F reduces to a term F ′, and write F Â F ′,

if F ′ is obtained from F by a finite sequence of replacements of subterms using

the reduction rules below.

(∧Intro, ∧Elim) π1(G
α, Hβ) Â Gα, π2(G

α, Hβ) Â Hβ.

(⊃Intro, ⊃Elim) (λXα.Gβ)(Hα) Â Gβ[Xα/Hα].

(∀Intro, ∀Elim) (λx.Gα)(t) Â Gα[x/t].
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(∨Intro, ∨Elim) ⊕(Xα.Gγ, Y β.Hγ, (µ1K
α)α∨β) Â Gγ[Xα/Kα],

⊕(Xα.Gγ, Y β.Hγ, (µ2J
β)α∨β) Â Hγ[Y β/Jβ].

(∃Intro, ∃Elim) ST (x.Xα.Hγ, I(t, Gα(x/t))) Â Hγ[Xα/Y α][x/t][Y α[x/t]/Gα(x/t)],

where Y α is Xα if Xα.Hγ has no free term variable equivalent to Xα[x/t], otherwise

Y α is the first term variable of type [α] such that Y α[x/t] is not equivalent to any

free term variable of Xα.Hγ.

(∀2Intro, ∀2Elim) (λP.Gα)(T ) Â Gα[P/T ].

(∃2Intro, ∃2Elim)

ST (P.Xα.Hγ, I(T, Gα(P/T ))) Â Hγ[Xα/Y α][P/T ][Y α[P/T ]/Gα(P/T )],

where Y α is Xα if Xα.Gγ has no free term variable equivalent to Xα[P/T ], other-

wise Y α is the first term variable of type [α] such that Y α[P/T ] is not equivalent to

any free term variable of Xα.Gγ.

In the above rules the expression on the left of the symbol Â is called a redex

and the expression on the right its contractum .

If F Â F ′, we say F ′ is a reduct of F , and if F ′ is obtained from F by a

single application of one of the above rules, denoted by F Â1 F ′, F ′ is called an

immediate reduct of F .

A term is normal if it contains no redex.

Note. It can be easily proved by induction on F that if F Â F ′, then

a. F ′ is of the same type as F ;

b. fv(F ′) ⊆ fv(F ), FV (F ′) ⊆ FV (F ), and every free term variable of F ′ is

equivalent to some free term variable of F .
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Lemma 3.3.2. Let F , G, and F ′ be C-H terms.

If F ≡ F ′ and F Â1 G, then F ′ Â1 G′ for some C-H term G′ such that G ≡ G′.

Proof. Suppose F ≡ F ′ and F Â1 G.

Since F ≡ F ′, there is a sequence of C-H terms F = F0, . . . , Fm = F ′, m ≥ 1,

such that for each 1 ≤ i ≤ m, Fi is obtained from Fi−1 either by replacing

some occurrences of term variables by equivalent term variables or by a legitimate

change of bound variable. We will prove by induction on m.

m = 1: We will prove by induction on F .

Suppose F is the redex which is reduced to G.

(i) F = π1(F1, F2).

Then G = F1 and F ′ = π1(F
′
1, F

′
2) for some terms F ′

1 and F ′
2 such that F ′

1 ≡ F1

and F ′
2 ≡ F2. We have F ′ = π1(F

′
1, F

′
2) Â1 F ′

1 ≡ F1 = G.

Similarly for π2(F1, F2).

(ii) F = (λXα.F1)(F
α
2 ).

Then G = F1[X
α/Fα

2 ].

Case 1. F ′ = (λXα′ .F ′
1)(F

′
2) where α′ ≡ α, F ′

1 ≡ F1, and F ′
2 ≡ F2.

Then F ′ Â1 F ′
1[X

α′/F ′
2] ≡ F1[X

α/F2] = G by Lemma 3.2.26.

Case 2. F ′ = (λY α′ .F1[X
α/Y α′ ])(F2) where α′ ≡ α, Y α′ is free for Xα and is

not equivalent to any free term variable in F1.

Then F ′ Â1 F1[X
α/Y α′ ][Y α′/F2] ≡ F1[X

α/F2] = G by Lemma 3.2.21.

(iii) F = (λx.H)(t).

Then G = H[x/t].

Case 1. F ′ = (λx.H ′)(t) where H ′ ≡ H.

Then F ′ Â1 H ′[x/t] ≡ H[x/t] by Lemma 3.2.24.

Case 2. F ′ = (λy.H[x/y])(t) where x is replaceable by y, y is free for x, and y

does not occur free in H.
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Then F ′ Â1 H[x/y][y/t] ≡ H[x/t] = G by Lemma 3.2.19.

(iv) F = (λP.H)(T ).

Then G = H[P/T ].

Case 1. F ′ = (λP.H ′)(T ) where H ′ ≡ H.

Then F ′ Â1 H ′[P/T ] ≡ H[P/T ] by Lemma 3.2.25.

Case 2. F ′ = (λQ.H[P/Q])(T ) where Q is of the same arity as P , P is

replaceable by Q, Q is free for P , and Q does not occur free in H.

Then F ′ Â1 H[P/Q][Q/T ] ≡ H[P/T ] = G by Lemma 3.2.20.

(v) F = ⊕(Xα.F1, Y
β.F2, µ1H

α).

Then G = F1[X
α/H].

If the change when F becomes F ′ occurs only in Y β.F2, then F ′ Â1 G.

The remaining cases are as follows.

Case 1. F ′ = ⊕(Xα′ .F ′
1, Y

β′ .F ′
2, µ1H

′) where α′ ≡ α, β′ ≡ β, F ′
1 ≡ F1, F ′

2 ≡ F2,

and H ′ ≡ H.

Then F ′ Â1 F ′
1[X

α′/H ′] ≡ F1[X
α/H] by Lemma 3.2.26.

Case 2. F ′ = ⊕(Zα′ .F1[X
α/Zα′ ], Y β.F2, µ1H) where α′ ≡ α, Zα′ is free for Xα

and is not equivalent to any free term variable in F1.

Then F ′ Â1 F1[X
α/Zα′ ][Zα′/H] ≡ F1[X

α/H] = G by Lemma 3.2.21.

Similarly for ⊕(Xα.F1, Y
β.F2, µ2H

β).

(vi) F = ST (x.Xα.Kγ, I(t,Hα(x/t))).

Then G = K[Xα/Y α][x/t][Y α[x/t]/H] where Y α is Xα if Xα.K has no free

term variable equivalent to Xα[x/t], otherwise Y α is the first term variable of type

[α] such that Y α[x/t] is not equivalent to any free term variable of Xα.K.

Case 1. F ′ = ST (x.Xα′ .K ′, I(t,H ′)) where α′ ≡ α, K ′ ≡ K, and H ′ ≡ H.
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Then, by Lemmas 3.2.24 and 3.2.26,

F ′ Â1 K ′[Xα′/Y α′ ][x/t][Y α′[x/t]/H ′]

≡ K[Xα/Y α][x/t][Y α[x/t]/H] = G.

Case 2. F ′ = ST (x.Zα′ .Kγ[Xα/Zα′ ], I(t,H)) where α′ ≡ α, Zα′ is free for Xα

and is not equivalent to any free term variable in K.

Then F ′ Â1 K[Xα/Zα′ ][Zα′/Zα′
∗ ][x/t][Z

α′[x/t]
∗ /H], where Zα′

∗ is Zα′ if

Zα′ .K[Xα′/Zα′ ] has no free term variable equivalent to Zα′[x/t], otherwise Zα′
∗ is

the first term variable of type [α′] such that Z
α′[x/t]
∗ is not equivalent to any free

term variable of Zα′ .K[Xα/Zα′ ].

Since Z
α′[x/t]
∗ is not equivalent to any free term variable of Zα′ .K[Xα/Zα′ ] and

x does not occur free in the type superscript of any free term variable of Xα.K,

either Z
α′[x/t]
∗ is not equivalent to any free term variable of K[Xα/Y α][x/t] or

Z
α′[x/t]
∗ ≡ Y α[x/t].

Then, by Lemmas 3.2.21, 3.2.24, and 3.2.26,

F ′ Â1 K[Xα/Zα′ ][Zα′/Zα′
∗ ][x/t][Zα′[x/t]

∗ /H]

≡ K[Xα/Zα′
∗ ][x/t][Zα′[x/t]

∗ /H]

≡ K[Xα/Y α][Y α/Zα′
∗ ][x/t][Zα′[x/t]

∗ /H]

≡ K[Xα/Y α][x/t][Y α[x/t]/Zα′[x/t]
∗ ][Zα′[x/t]

∗ /H]

≡ K[Xα/Y α][x/t][Y α[x/t]/H] = G.

Case 3. F ′ = ST (y.Xα[x/y].Kγ[x/y], I(t,H)) where x is replaceable by y, y is

free for x, and y does not occur free in Xα.K.

Then F ′ Â1 K[x/y][Xα[x/y]/Zα[x/y]][y/t][Zα[x/y][y/t]/H], where Zα[x/y] is Xα[x/y]

if Xα[x/y].K[x/y] has no free term variable equivalent to Xα[x/y][y/t], otherwise

Zα[x/y] is the first term variable of type [α[x/y]] such that Zα[x/y][y/t] is not equiv-

alent to any free term variable of Xα[x/y].K[x/y].
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Note that:

(1) since Xα.K has no free term variable which is equivalent to Y α[x/t], x does

not occur free in the type superscript of any free term variable of Xα.K, and

y 6∈ fv(Xα.K), either Y α[x/t] ≡ Zα[x/t] or Y α[x/t] is not equivalent to any free term

variable of K[x/y][Xα[x/y]/Zα[x/y]][y/t];

(2) since Xα[x/y].K[x/y] has no free term variable which is equivalent to

Zα[x/y][y/t] (≡ Zα[x/t]), Zα[x/y].K[x/y][Xα[x/y]/Zα[x/y]] also has no free term variable

which is equivalent to Zα[x/t];

(3) since y 6∈ fv(K) and x does not occur free in the type superscript of any

free term variable of Xα.K, either Zα[x/y] is Xα[x/y] or Zα[x/y] is not equivalent to

any free term variable of K[x/y];

(4) since y 6∈ fv(K), Xα.K has no free term variable which is equivalent to

Xα[x/y].

By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26,

F ′ Â1 K[x/y][Xα[x/y]/Zα[x/y]][y/t][Zα[x/y][y/t]/H]

≡ K[x/y][Xα[x/y]/Zα[x/y]][y/t][Zα[x/y][y/t]/Y α[x/y][y/t]][Y α[x/y][y/t]/H]

(since (1))

≡ K[x/y][Xα[x/y]/Zα[x/y]][Zα[x/y]/Y α[x/y]][y/t][Y α[x/t]/H] (since (2))

≡ K[x/y][Xα[x/y]/Y α[x/y]][y/t][Y α[x/t]/H] (since (3))

≡ K[Xα/Y α][x/y][y/t][Y α′[x/t]/H] (since (4))

≡ K[Xα/Y α][x/t][Y α[x/t]/H] = G.

Similarly for ST (P.Xα.K, I(T, Hα(P/T ))).

Now suppose F is not the redex which is reduced to G.

(vii) F = (F1, F2).

Without loss of generality, we may assume that the reduction occurs in F1.
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Then G = (G1, F2) for some term G1 such that F1 Â1 G1 and F ′ = (F ′
1, F

′
2)

for some terms F ′
1 and F ′

2 such that F ′
1 ≡ F1 and F ′

2 ≡ F2. By the subsidiary

induction hypothesis, F ′
1 Â1 G′

1 for some term G′
1 such that G′

1 ≡ G1. Hence

F ′ = (F ′
1, F

′
2) Â1 (G′

1, F
′
2) ≡ (G1, F2) = G.

The remaining cases can be proved similarly.

m > 1: By the main induction hypothesis, Fm−1 Â1 H ′ for some term H ′ such

that H ′ ≡ G. By the case m = 1, F ′ Â1 H for some term H such that H ≡ H ′,

and so H ≡ G.

Corollary 3.3.3. For any terms F , G, and F ′, if F ≡ F ′ and F Â G, then

F ′ Â G′ for some term G′ such that G ≡ G′.

Lemma 3.3.4. Let F and G be terms. If F Â1 G, then

a. for any individual variable x and any individual term t, F [x/t] Â1 H for

some term H such that H ≡ G[x/t];

b. for any n-ary predicate variable P and any abstraction term T = λx1, . . . , xnδ,

F [P/T ] Â1 H for some term H such that H ≡ G[P/T ];

c. for any term variable Xα and any term Kα′, where α ≡ α′, F [Xα/Kα′ ] Â1

H for some term H such that H ≡ G[Xα/Kα′ ].

Proof. Suppose F Â1 G. We will prove by induction on F .

a: Let x be an individual variable and t be an individual term.

First we suppose F is the redex which is reduced to G. By Lemma 3.2.16, we

may assume that x is replaceable by t and t is free for x in F .

(i) F = π1(F1, F2).

Then G = F1. Hence F [x/t] = π1(F1[x/t], F2[x/t]) Â1 F1[x/t] = G[x/t].

Similarly for π2(F1, F2).

(ii) F = (λY β.F1)(F
β
2 ).
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Then G = F1[Y
β/F2]. By Lemmas 3.2.23, we have

F [x/t] = (λY β[x/t].F1[x/t])(F β
2 [x/t])

Â1 F1[x/t][Y β[x/t]/F2[x/t]]

≡ F1[Y
β/F2][x/t] = G[x/t].

Similarly for ⊕(Y β
1 .F1, Y

γ
2 .F2, µiH

γ′), i = 1, 2.

(iii) F = (λy.H)(u).

Suppose x ∈ fv(λy.H). The proof of the other case can be easily modified

from this proof.

By Lemma 3.2.19, F [x/t] = (λy.H[x/t])(u[x/t]) Â1 H[x/t][y/u[x/t]] ≡
H[y/u][x/t] = G[x/t].

Similarly for (λP.H)(T ) (using Lemma 3.2.22).

(iv) F = ST (y.Y β.Jγ, I(u,Hβ(y/u))).

Then G = J [Y β/Zβ][y/u][Zβ[y/u]/H], where Zβ is Y β if Y β.J has no free term

variable equivalent to Y β[y/u], otherwise Zβ is the first term variable of type [β]

such that Zβ[y/u] is not equivalent to any free term variable of Y β.J .

Suppose x ∈ fv(y.Y β.J). The proof of the other case can be modified from

this proof. Then

F [x/t] = ST (y.Y β[x/t].J [x/t], I(u[x/t], H[x/t]))

Â1 J [x/t][Y β[x/t]/Zβ[x/t]
∗ ][y/u[x/t]][Zβ[x/t][y/u[x/t]]

∗ /H[x/t]],

where Z
β[x/t]
∗ is Y β[x/t] if Y β[x/t].J [x/t] has no free term variable equivalent to

Y β[x/t][y/u[x/t]], otherwise Z
β[x/t]
∗ is the first term variable of type [β[x/t]] such that

Z
β[x/t][y/u[x/t]]
∗ is not equivalent to any free term variable of Y β[x/t].J [x/t].

Suppose for a contradiction that Z
β[y/u]
∗ .J [Y β/Zβ][y/u][Zβ[y/u]/Z

β[y/u]
∗ ] has a

free term variable Zσ
∗ such that σ[x/t] ≡ β[y/u][x/t]. Since y does not occur free
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in the type superscript of any free term variable of Y β.J , Zσ
∗ is equivalent to some

free term variable of Y β.J . Hence Z
σ[x/t]
∗ is equivalent to some free term variable

of Y β[x/t].J [x/t], and so is Z
β[y/u][x/t]
∗ (≡ Z

β[x/t][y/u[x/t]]
∗ ). This is a contradiction.

Thus: (1) J [Y β/Zβ][y/u][Zβ[y/u]/Z
β[y/u]
∗ ] has no free term variable Zσ

∗ such that

σ 6≡ β[y/u] but σ[x/t] ≡ β[y/u][x/t].

Since Z
β[x/t][y/u[x/t]]
∗ is not equivalent to any free term variable of Y β[x/t].J [x/t]

(neither is Z
β[y/u][x/t]
∗ ), Z

β[y/u]
∗ is not equivalent to any free term variable of Y β.J .

Since y does not occur free in the type superscript of any free term variable of

Y β.J , we have: (2) either Z
β[y/u]
∗ is not equivalent to any free term variable of

J [Y β/Zβ][y/u] or Z
β[y/u]
∗ ≡ Zβ[y/u].

By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26,

F [x/t] Â1 J [x/t][Y β[x/t]/Zβ[x/t]
∗ ][y/u[x/t]][Zβ[x/t][y/u[x/t]]

∗ /H[x/t]]

≡ J [Y β/Zβ
∗ ][x/t][y/u[x/t]][Zβ[x/t][y/u[x/t]]

∗ /H[x/t]]

≡ J [Y β/Zβ
∗ ][y/u][x/t][Zβ[y/u][x/t]

∗ /H[x/t]]

≡ J [Y β/Zβ][Zβ/Zβ
∗ ][y/u][x/t][Zβ[y/u][x/t]

∗ /H[x/t]]

≡ J [Y β/Zβ][y/u][Zβ[y/u]/Zβ[y/u]
∗ ][x/t][Zβ[y/u][x/t]

∗ /H[x/t]]

≡ J [Y β/Zβ][y/u][Zβ[y/u]/Zβ[y/u]
∗ ][Zβ[y/u]

∗ /H][x/t] (since (1))

≡ J [Y β/Zβ][y/u][Zβ[y/u]/H][x/t] = G[x/t] (since (2)).

Similarly for ST (P.Y β.J, I(T,Hβ(P/T ))).

Next we suppose F is not the redex which is reduced to G.

(v) F = (F1, F2).

Without loss of generality, we may assume that the reduction occurs in F1.

Then G = (G1, F2) for some term G1 such that F1 Â1 G1. By the induction
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hypothesis, F1[x/t] Â1 H for some term H such that H ≡ G1[x/t]. Hence

F [x/t] = (F1[x/t], F2[x/t])

Â1 (H, F2[x/t])

≡ (G1[x/t], F2[x/t]) = G[x/t].

The remaining cases can be proved similarly.

b: The proof is similar to that for a.

c: Let Xα be a term variable and Kα′ be a term, where α ≡ α′.

First, suppose F is the redex which is reduced to G. By Lemma 3.2.16, we

may assume that Kα′ is free for Xα in F .

(i) F = πi(F1, F2), i = 1, 2.

The proof is similar to (i) of a.

(ii) F = (λY β.F1)(F
β
2 ).

By using Lemma 3.2.21, the proof is similar to (iii) of a.

Similarly for ⊕(Y1.F1, Y2.F2, µiH), i = 1, 2.

(iii) F = (λx.H)(t).

Then G = H[x/t] and (λx.H)[Xα/Kα′ ] = λy.H[x/y][Xα/Kα′ ], where y is

x if x 6∈ fv(Kα′), otherwise y is the first individual variable which is not in

fv(H) ∪ fv(Kα′).

Since x does not occur free in the type superscript of any free term variable of

H and y 6∈ fv(H), y does not occur free in the type superscript of any free term

variable of H[x/y]. Hence: (∗) H[x/y] has no free term variable Xσ such that

σ 6≡ α but σ[y/t] = σ ≡ α = α[y/t].
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By Lemmas 3.2.19, 3.2.23, and 3.2.26, we have

F [Xα/Kα′ ] = (λy.H[x/y][Xα/Kα′ ])(t)

Â1 H[x/y][Xα/Kα′ ][y/t]

≡ H[x/y][y/t][Xα/Kα′ ] (since (∗))

≡ H[x/t][Xα/Kα′ ] = G[Xα/Kα′ ].

Similarly for (λP.H)(T ).

(iv) F = ST (x.Y β.J, I(t,Hβ(x/t))).

Then G = J [Y β/Zβ][x/t][Zβ[x/t]/H], where Zβ is Y β if Y β.J has no free term

variable equivalent to Y β[x/t], otherwise Zβ is the first term variable of type [β]

such that Zβ[x/t] is not equivalent to any free term variable of Y β.J .

Suppose Xα is equivalent to some free term variable of x.Y β.J (so Zβ[x/t] 6≡
Xα). The proof of the other case can be modified from this proof.

We have (x.Y β.J)[Xα/Kα′ ] = y.Y β[x/y].J [x/y][Xα/Kα′ ], where y is x if x 6∈
fv(Kα′), otherwise y is the first individual variable which is not in fv(Y β.J) ∪
fv(Kα′). Then

F [Xα/Kα′ ] = ST (y.Y β[x/y].J [x/y][Xα/Kα′ ], I(t,H[Xα/Kα′ ]))

Â1 J [x/y][Xα/Kα′ ][Y β[x/y]/Zβ[x/y]
∗ ][y/t][Zβ[x/y][y/t]

∗ /H[Xα/Kα′ ]],

where Z
β[x/y]
∗ is Y β[x/y] if Y β[x/y].J [x/y][Xα/Kα′ ] has no free term variable equiva-

lent to Y β[x/y][y/t], otherwise Z
β[x/y]
∗ is the first term variable of type [β[x/y]] such

that Z
β[x/y][y/t]
∗ is not equivalent to any free term variable of Y β[x/y].J [x/y][Xα/Kα′ ].

Let Z
β[x/t]
0 be a term variable such that Zσ

0 does not occur in J or K for any

type superscript σ and Z0 is neither X nor Z∗.
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By Lemmas 3.2.19, 3.2.21, 3.2.23, 3.2.24, and 3.2.26, we have

G[Xα/Kα′ ] = J [Y β/Zβ][x/t][Zβ[x/t]/H][Xα/Kα′ ]

≡ J [Y β/Zβ][x/t][Zβ[x/t]/Z
β[x/t]
0 ][Z

β[x/t]
0 /H][Xα/Kα′ ]

≡ J [Y β/Zβ][Zβ/Zβ
0 ][x/t][Z

β[x/t]
0 /H][Xα/Kα′ ]

≡ J [Y β/Zβ
0 ][x/t][Z

β[x/t]
0 /H][Xα/Kα′ ], and

F [Xα/Kα′ ] Â1 J [x/y][Xα/Kα′ ][Y β[x/y]/Zβ[x/y]
∗ ][y/t][Zβ[x/y][y/t]

∗ /H[Xα/Kα′ ]]

≡ J [x/y][Xα/Kα′ ][Y β[x/y]/Zβ[x/y]
∗ ][y/t][Zβ[x/y][y/t]

∗ /Z
β[x/y][y/t]
0 ]

[Z
β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [x/y][Xα/Kα′ ][Y β[x/y]/Zβ[x/y]
∗ ][Zβ[x/y]

∗ /Z
β[x/y]
0 ][y/t]

[Z
β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [x/y][Xα/Kα′ ][Y β[x/y]/Z
β[x/y]
0 ][y/t][Z

β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [x/y][Y β[x/y]/Z
β[x/y]
0 ][Xα/Kα′ ][y/t][Z

β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [Y β/Zβ
0 ][x/y][Xα/Kα′ ][y/t][Z

β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [Y β/Zβ
0 ][x/y][y/t][Xα/Kα′ ][Z

β[x/y][y/t]
0 /H[Xα/Kα′ ]]

≡ J [Y β/Zβ
0 ][x/t][Xα/Kα′ ][Z

β[x/t]
0 /H[Xα/Kα′ ]]

≡ J [Y β/Zβ
0 ][x/t][Z

β[x/t]
0 /H][Xα/Kα′ ].

Similarly for ST (P.Y β.J, I(T,Hβ(P/T ))).

Proofs for the cases when F is not the redex which is reduced to G are as in

a.

Lemma 3.3.5. Let Xα be a term variable, F and G be terms of type [α], and K

be a C-H term.

If F Â1 G, then K[Xα/F ] Â H for some term H such that H ≡ K[Xα/G].

Proof. We will prove by induction on K.
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Suppose F Â1 G. It is trivial if Xα is not equivalent to any free term variable

of K. Suppose Xα is equivalent to some free term variable of K.

(i) K ≡ Xα.

Then K[Xα/F ] = F Â1 G = K[Xα/G].

(ii) K = λx.J .

Then K[Xα/F ] = λy.J [x/y][Xα/F ], where y is x if x 6∈ fv(F ), otherwise y is

the first individual variable which is not in fv(J) ∪ fv(F ).

By the induction hypothesis, J [x/y][Xα/F ] Â H for some term H such that

H ≡ J [x/y][Xα/G].

Note that since y 6∈ fv(F ) and F Â1 G, y 6∈ fv(G) (by Note (b) on page 91).

Hence, by Lemma 3.2.26 and Corollary 3.2.18,

K[Xα/F ] = λy.J [x/y][Xα/F ] Â λy.H

≡ λy.J [x/y][Xα/G]

= (λy.J [x/y])[Xα/G]

≡ (λx.J)[Xα/G] = K[Xα/G].

Similarly for λP.J , λY β.J , ⊕(Y1.K1, Y2.K2, J), ST (x.Y.H, J), and

ST (P.Y.H, J).

(iii) K = (K1, K2).

Then K[Xα/F ] = (K1[X
α/F ], K2[X

α/F ]). By the induction hypothesis,

Ki[X
α/F ] Â Ki[X

α/G] for all i = 1, 2. Hence

K[Xα/F ] = (K1[X
α/F ], K2[X

α/F ])

Â (K1[X
α/G], K2[X

α/G]) = (K1, K2)[X
α/G] = K[Xα/G].

Similarly for the remaining cases.

In this chapter we have created new Curry-Howard terms in order to corre-

spond to proofs in the second-order natural deduction system, NJ2. We have
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defined substitutions as well as reduction rules for these new Curry-Howard terms

and have proved some basic lemmas. As mentioned in Chapter I, for computa-

tional purposes, it is necessary that every Curry-Howard term must be strongly

normalizable. This is the strong normalization theorem which will be proved in

the next chapter.



CHAPTER IV

STRONG NORMALIZATION

The goal of this chapter is to give a proof of the strong normalization theorem for

the new Curry-Howard terms defined in the previous chapter. Before proving the

theorem, we need to give some basic definitions as in the following section.

4.1 Some basic definitions

Definition 4.1.1. A reduction sequence is a sequence of terms such that each

term which is not the first term in the sequence is an immediate reduct of the

previous term.

A term F is strongly normalizable if all reduction sequences beginning with

F are finite.

The length of a finite reduction sequence is the number of terms in the se-

quence −1.

Note. By König’s lemma, if F is strongly normalizable, then there is a number

which bounds the length of every reduction sequence beginning with F .(See [7],

page 27, for a proof.)

Notation. For any strongly normalizable term F , let N(F ) denote the least

upper bound of lengths of the reduction sequences beginning with F .

Notes. Let F be a strongly normalizable term.

a. If G is a subterm of F , then G is also strongly normalizable and N(G) ≤
N(F ).
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b. If G is an immediate reduct of F , then G is also strongly normalizable and

N(G) < N(F ).

Definition 4.1.2. A term is neutral if it is not of one of the following forms:

(F,G), µ1F , µ2F , λX.F , λx.F , λP.F , I(t, F ), and I(T, F ).

Notes.

a. A neutral term is a term variable or is of one of the following forms:

π1F , π2F , F (t), F (T ), ⊕(X.F, Y.G, H), F (G), ST (x.X.G, H), ST (P.X.G, H),

and F⊥(α).

b. If F is a neutral term, then a term of the form F (G) (respectively π1F ,

π2F , F (t), F (T ), and F⊥(α)) is not a redex, and hence its immediate reduct is

of the form F ′(G) or F (G′) (respectively π1F
′, π2F

′, F ′(t), F ′(T ), and F ′(α)),

where F Â1 F ′ and G Â1 G′.

Similarly, if H is a neutral term, then every immediate reduct of a term

of the form ⊕(X.F, Y.G,H) (respectively ST (x.X.G, H) and ST (P.X.G,H)) is

of the form ⊕(X.F ′, Y.G, H), ⊕(X.F, Y.G′, H), or ⊕(X.F, Y.G,H ′) (respectively

ST (x.X.G′, H) or ST (x.X.G,H ′) and ST (P.X.G′, H) or ST (P.X.G, H ′)), where

F Â1 F ′, G Â1 G′, and H Â1 H ′.

4.2 A proof of the strong normalization theorem

Following Girard (see [7]) and extending Crossley and Shepherdson (see [3]), we

now give a proof of the strong normalization theorem for the second-order system.

Definition 4.2.1. A candidate for reducibility (CR) of type [α] is a set C

of Curry-Howard terms of type [α] such that:

CR0: if F is in C and F ′ ≡ F , then F ′ is in C;

CR1: if F is in C, then F is strongly normalizable;



106

CR2: if F is in C and F ′ is an immediate reduct of F , then F ′ is in C;

CR3: if F is neutral and all immediate reducts of F are in C, then F is in C;

CR3 gives, in particular,

CR4: if F is neutral and normal, then F is in C.

Note. It is easy to see that CR2 also holds if we replace “an immediate reduct”by

“a reduct”.

Lemma 4.2.2. The set of all strongly normalizable terms of type [α] is a CR of

type [α].

Proof. It is clear that the set satisfies CR1, CR2, and CR3. It follows by Lemma

3.3.2 that the set satisfies CR0.

Notation. Let SNα denote the set of all strongly normalizable terms of type [α].

Definition 4.2.3. Suppose C1 and C2 are sets of terms of types [α1] and [α2],

respectively. We define

i. C1 ⊃ C2 as the set of all terms F of type [α1 ⊃ α2] such that for all terms

G in C1, the term F (G) is in C2;

ii. C1 ∧ C2 as the set of all terms F of type [α1 ∧ α2] such that π1F is in C1

and π2F is in C2;

iii. C1∨C2 as the set of all terms F of type [α1∨α2] such that for all types [γ],

all CRs C of type [γ], all terms F1 and F2 in C1 ⊃ C and C2 ⊃ C, respectively,

and all term variables Xα1
1 and Xα2

2 which are not equivalent to any free term

variables of F1 and F2, respectively, the term ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ) is

in C.

Lemma 4.2.4. Let C1 and C2 be CRs of types [α1] and [α2], respectively.

If (µ1F
α1)α1∨α2 is in C1 ∨ C2, then F is in C1.

Similarly for (µ2F
α2)α1∨α2.
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Proof. Suppose (µ1F
α1)α1∨α2 is in C1 ∨ C2.

Let Xα1
1 and Xα2

2 be term variables such that X1 and X2 are distinct.

Claim. λXα1
1 .Xα1

1 is in C1 ⊃ C1 and λXα2
2 .Xα1

1 is in C2 ⊃ C1.

Proof of the claim. To show that λXα1
1 .Xα1

1 is in C1 ⊃ C1, let G be in C1. We will

show that (λXα1
1 .Xα1

1 )(G) is in C1 by induction on N(G). Since (λXα1
1 .Xα1

1 )(G)

is neutral, by CR3 for C1, it is enough to show that all its immediate reducts are

in C1. Every immediate reduct of (λXα1
1 .Xα1

1 )(G) is of one of the following forms.

(i) Xα1
1 [Xα1

1 /G].

This is G which is in C1.

(ii) (λXα1
1 .Xα1

1 )(G′) where G Â1 G′.

By CR2, G′ is in C1. Since N(G′) < N(G), (λXα1
1 .Xα1

1 )(G′) is in C1 by the

subsidiary induction hypothesis.

To show that λXα2
2 .Xα1

1 is in C2 ⊃ C1, let H be in C2. We will show that

(λXα2
2 .Xα1

1 )(H) is in C1 by induction on N(H). Similar to the above proof, it

remains to show that all its immediate reducts are in C1. Every immediate reduct

of (λXα2
2 .Xα1

1 )(H) is of one of the following forms.

(i) Xα1
1 [Xα1

2 /H].

This is Xα1
1 which is in C1 by CR4.

(ii) (λXα2
2 .Xα1

1 )(H ′) where H Â1 H ′.

By CR2, H ′ is in C2. Since N(H ′) < N(H), (λXα2
2 .Xα1

1 )(H ′) is in C1 by the

subsidiary induction hypothesis.

Thus we have the claim.

Since µ1F is in C1∨C2, ⊕(Xα1
1 .(λXα1

1 .Xα1
1 )(Xα1

1 ), Xα2
2 .(λXα2

2 .Xα1
1 )(Xα2

2 ), µ1F )

is in C1. Since ⊕(Xα1
1 .(λXα1

1 .Xα1
1 )(Xα1

1 ), Xα2
2 .(λXα2

2 .Xα1
1 )(Xα2

2 ), µ1F ) Â1

(λXα1
1 .Xα1

1 )(Xα1
1 )[Xα1

1 /F ] = (λXα1
1 .Xα1

1 )(F ) Â1 Xα1
1 [Xα1

1 /F ] = F , by applying

CR2 twice, F is in C1.
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Lemma 4.2.5. Let C1 and C2 be CRs of types [α1] and [α2], respectively.

Then C1 ⊃ C2, C1 ∧ C2, and C1 ∨ C2 are CRs.

Proof.

C1 ⊃ C2:

Assume F is in C1 ⊃ C2 for the proofs of CR0, CR1, and CR2.

CR0: Suppose F ′ ≡ F . Let G be in C1. Since F is in C1 ⊃ C2, F (G) is in C2.

Since F ′(G) ≡ F (G), by CR0 for C2, F ′(G) is in C2. Since G is arbitrary, F ′ is

in C1 ⊃ C2.

CR1: By CR4 for C1, Xα1 is in C1. Since F is in C1 ⊃ C2, F (Xα1) is in C2

and so it is strongly normalizable by CR1 for C2. Since F is a subterm of F (Xα1),

by Note on page 104, F is strongly normalizable.

CR2: By using CR2 for C2, the proof is similar to the case CR0.

CR3: Suppose F is neutral and all immediate reducts of F are in C1 ⊃ C2.

Let G be in C1. Since F (G) is neutral, by CR3 for C2, to show that it is in C2,

it is enough to show that all its immediate reducts are in C2. We will show this

by induction on N(G). Since F is neutral, by Note on page 105, each immediate

reduct of F (G) is of one of the following forms.

(i) F ′(G) where F Â1 F ′.

By the assumption, F ′ is in C1 ⊃ C2. Hence F ′(G) is in C2.

(ii) F (G′) where G Â1 G′.

By CR2 for C1, G′ is in C1. Since N(G′) < N(G), by the induction hypothesis,

F (G′) is in C2.

Thus F (G) is in C2 and hence F is in C1 ⊃ C2.

C1 ∧ C2:

Assume F is in C1 ∧ C2 for the proofs of CR0, CR1, and CR2.

CR0: Suppose F ′ ≡ F . Since F is in C1∧C2, π1F is in C1. Since π1F
′ ≡ π1F ,
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by CR0 for C1, π1F
′ is in C1. Similarly, π2F

′ is in C2. Hence F ′ is in C1 ∧ C2.

CR1: Since F is in C1 ∧ C2, π1F is in C1, and so it is strongly normalizable.

Since F is a subterm of π1F , F is also strongly normalizable.

CR2: By using CR2 for C1 and C2, the proof is similar to the case CR0.

CR3: Suppose F is neutral and all immediate reducts of F are in C1 ∧ C2.

Since π1F is neutral, to show that it is in C1, it is enough to show that all its

immediate reducts are in C1. Since F is neutral, every immediate reducts of π1F

is of the form π1F
′. By the assumption, π1F

′ is in C1. Similarly, we can show

that π2F is in C2. Thus F is in C1 ∧ C2.

C1 ∨ C2:

Assume F is in C1 ∨ C2 for the proofs of CR0, CR1, and CR2. Let [γ] be a

type, C be a CR of type [γ], F1 and F2 be in C1 ⊃ C and C2 ⊃ C, respectively,

and Xα1
1 and Xα2

2 be term variables which are not equivalent to any free term

variables of F1 and F2, respectively.

CR0: Suppose F ′ ≡ F . Then ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ′) ≡

⊕ (Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ). Since F is in C1 ∨ C2,

⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ) is in C and, by CR0 for C, so is

⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ′). Hence F ′ is in C1 ∨ C2.

CR1: Since ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ) is in C, it is strongly normaliz-

able. Since F is a subterm of ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F )), F is also strongly

normalizable.

CR2: By using CR2 for C, the proof is similar to the case CR0.

CR3: We first prove the following claim.

Claim. If G1 and G2 are in C, Y α1
1 and Y α2

2 are term variables, and G is a

neutral term of type [α1 ∨ α2] such that for every immediate reduct G′ of G,

⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) is in C, then ⊕(Y α1
1 .G1, Y

α2
2 .G2, G) is in C.
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Proof of the claim. Suppose G1 and G2 are in C, Y α1
1 and Y α2

2 are term variables,

and G is a neutral term of type [α1 ∨α2] such that for every immediate reduct G′

of G, ⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) is in C.

We will show that ⊕(Y α1
1 .G1, Y

α2
2 .G2, G) is in C by induction on N(G1) +

N(G2). Since ⊕(Y α1
1 .G1, Y

α2
2 .G2, G) is neutral, by CR3 for C, it is enough to

show that all its immediate reducts are in C.

Since G is neutral, every immediate reduct of ⊕(Y α1
1 .G1, Y

α2
2 .G2, G) is of one

of the following forms.

(i) ⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) where G Â1 G′.

By the assumption, ⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) is in C.

(ii) ⊕(Y α1
1 .G′

1, Y
α2
2 .G2, G) where G1 Â1 G′

1.

First we will show that G′
1 satisfies the conditions as G1 in the hypothesis.

By CR2 for C, G′
1 is in C. Since for every immediate reduct G′ of G,

⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) is in C and ⊕(Y α1
1 .G1, Y

α2
2 .G2, G

′) Â1

⊕(Y α1
1 .G′

1, Y
α2
2 .G2, G

′), by CR2 for C, ⊕(Y α1
1 .G′

1, Y
α2
2 .G2, G

′) is also in C for every

immediate reduct G′ of G. Since N(G′
1) < N(G1), by the induction hypothesis,

⊕(Y α1
1 .G′

1, Y
α2
2 .G2, G) is in C.

(iii) ⊕(Y α1
1 .G1, Y

α2
2 .G′

2, G) where G2 Â1 G′
2.

The proof is similar to (ii).

Thus we have the claim.

Now suppose F is neutral and all immediate reducts of F are in C1 ∨ C2.

Then for any immediate reduct F ′ of F , ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ′) is in

C. Hence, by the claim, ⊕(Xα1
1 .F1(X

α1
1 ), Xα2

2 .F2(X
α2
2 ), F ) is in C. Thus F is in

C1 ∨ C2.

In [3] canonical CR Cα, where α is a first-order formula, is defined by induction

on α. We have some problems when α is a second-order formula. For example,
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suppose α = ∀2Q
nβ where β = Q(y1, . . . , yn) and T = λy1, . . . , ynα. We can

see that β(Q/T ) ≡ α, so we cannot claim that Cβ(Q/T ) has already been defined

before we define Cα.

In [7], page 117, Girard defines a relation called “parametric reducibility”for

the system F . We will adapt the definition for our second-order systems. We

cannot do that straightforwardly since, unlike the type system of Girard, we use

ordinary formulae as types. In order to have the definition, we need to define a

set called collections of CRs first.

Definition 4.2.6. Let T = λx1, . . . , xnδ be an abstraction term. For each se-

quence of individual terms t = t1, . . . , tn, let Ct be a CR of type [δ[x/t]], where

x = x1, . . . , xn.

We call the set C = {Ct | t = t1, . . . , tn are individual terms.} a collection of

CRs corresponding to T .

Definition 4.2.7. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate

variables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstrac-

tion terms, and C = C1, . . . , Cn be collections of CRs corresponding to T1, . . . , Tn,

respectively.

We define a set Cα[P1/C1, . . . , Pn/Cn], which can be written as Cα[P/C], of

terms of type [α[P/T ]] inductively as follows.

If α is an atomic formula,

Cα[P/C] =





Cq
t if α = Pq(t1, . . . , tmq) for some 1 ≤ q ≤ n and some

individual terms t = t1, . . . , tmq ,where Cq
t is the

element of Cq which is of type [δq[z
q
1/t1, . . . , z

q
mq

/tmq ]],

SNα otherwise.
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C(β⊃γ)[P/C] is Cβ[P/C] ⊃ Cγ[P/C].

C(β∧γ)[P/C] is Cβ[P/C] ∧ Cγ[P/C].

C(β∨γ)[P/C] is Cβ[P/C] ∨ Cγ[P/C].

C(∀xβ)[P/C] is the set of all terms F of type [∀xβ[P/T ]] such that F (u) is in

Cβ[x/u][P/C] for all individual terms u.

C(∃xβ)[P/C] is the set of all terms F of type [∃xβ[P/T ]] such that for all indi-

vidual variables y where y 6∈ fv(β) − {x}, all types [γ] with y 6∈ fv(γ), all CRs

D of type [γ], all terms G of type [β[x/y][P/T ] ⊃ γ] such that for each individual

term u, G[y/u] is in Cβ[x/u][P/C] ⊃ D, and y is not free in the type superscript of

any free term variable of G, and all term variables Xβ[x/y][P/T ] which is not equiv-

alent to any free term variable of G, the term ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F )

is in D; and if F reduces to a term of the form I(t,H), then H is in Cβ[x/t][P/C].

Notation. In the following, P ∗ is the sublist of P consisting of all Pi’s which are

in FV (α), T ∗ and C∗ are the corresponding sublists of T and C, respectively.

C∀2Qqβ[P/C] is the set of all terms F of type [(∀2Qβ)[P/T ]] such that for all

abstraction terms U = λy1, . . . , yqσ and all collections of CRs D corresponding to

U , F (U) is in Cβ[Q/D, P ∗/C∗].
C∃2Qqβ[P/C] is the set of all terms F of type [(∃2Qβ)[P/T ]] such that for all

q-ary predicate variables R where R 6∈ FV (β[P ∗/T ∗]) − {Q}, all types [γ] with

R 6∈ FV (γ), all CRs D of type [γ], all terms G of type [β[Q/R,P ∗/T ∗] ⊃ γ]

such that for each abstraction term U = λy1, . . . , yqσ and all collections of CRs

E corresponding to U , G[R/U ] is in Cβ[Q/E , P ∗/C∗] ⊃ D, and R is not free

in the type superscript of any free term variable of G, and all term variables

Xβ[Q/R,P ∗/T ∗] which is not equivalent to any free term variable of G, the term

ST (R.Xβ[Q/R,P ∗/T ∗].G(Xβ[Q/R,P ∗/T ∗]), F ) is in D; and if F reduces to a term of

the form I(U,H), then H is in Cβ[Q/D, P ∗/C∗] for some collection of CRs D
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corresponding to U .

Note. From the above definition, it can be easily proved by induction on α that

for every r-ary predicate variable R which is not in {P}, if R 6∈ FV (α), then

Cα[R/D, P/C] = Cα[P/C] for every collection of CRs D which corresponds to

some abstraction term λy1, . . . , yrσ.

Lemma 4.2.8. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate vari-

ables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms,

and C = C1, . . . , Cn be collections of CRs corresponding to T1, . . . , Tn, respectively.

Then Cα[P/C] is a CR of type [α[P/T ]].

Proof. We will prove this by induction on α.

It is clear from the definition if α is an atomic formula. It follows by Lemma

4.2.5 and the induction hypothesis if α is of the form β ⊃ γ, β ∧ γ, or β ∨ γ. The

remaining cases are as follows.

C∀yβ[P/C]:

Assume F is in C∀yβ[P/C] for the proofs of CR0, CR1, and CR2.

Let u be an individual term. Then for the proofs of CR0, CR1, and CR2, F (u)

is in Cβ[y/u][P/C] which is a CR by the induction hypothesis.

CR0: Suppose F ′ ≡ F . Then F ′(u) ≡ F (u). Hence F ′(u) is in Cβ[y/u][P/C] by

CR0. Thus F ′ is in C∀yβ[P/C].

CR1: Since F (u) is in Cβ[y/u][P/C], by CR1, F (u) is strongly normalizable and

so is F since F is a subterm of F (u).

CR2: By using CR2 for Cβ[y/u][P/C], the proof is similar to the case CR0.

CR3: Assume F is neutral and all immediate reducts of F are in

C∀yβ[P/C]. Since F (u) is neutral, by CR3, to show that it is in Cβ[y/u][P/C], it

is enough to show that all its immediate reducts are in Cβ[y/u][P/C]. Suppose F ∗
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is an immediate reduct of F (u). Since F is neutral, F ∗ = F ′(u) for some term

F ′ such that F Â1 F ′. By the assumption, F ′ is in C∀yβ[P/C]. Hence F ∗ is in

Cβ[y/u][P/C].

Similarly for C∀2Qβ[P/C].

C∃xβ[P/C]:

Assume F is in C∃xβ[P/C] for the proofs of CR0, CR1, and CR2.

Let y be an individual variable such that y 6∈ fv(β)− {x}, [γ] be a type with

y 6∈ fv(γ), D be a CR of type [γ], G be a term of type [β[x/y][P/T ] ⊃ γ] such

that for each individual term u, G[y/u] is in Cβ[x/u][P/C] ⊃ D and y is not free

in the type superscript of any free term variable of G, and Xβ[x/y][P/T ] be a term

variable which is not equivalent to any free term variable of G.

For the proofs of CR0, CR1, and CR2, since F is in C∃xβ[P/C],

ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ) is in D and if F Â I(t, H), then H is in

Cβ[x/t][P/C].

CR0: Suppose F ′ ≡ F . Suppose F ′ Â I(t,H ′). By Corollary 3.3.3, F Â H∗

for some term H∗ such that H∗ ≡ I(t,H ′). Then H∗ = I(t,H) for some term H

such that H ≡ H. Since H is in Cβ[x/t][P/C], so is H ′ by CR0. Since

ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ′) ≡ ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ), by

CR0 for D, ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ′) is in D. Hence F ′ is in C∃xβ[P/C].

CR1: Since ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ) is in D, by CR1 for D, it is

strongly normalizable, and so is F since F is one of its subterms.

CR2: Suppose F Â1 F ′. If F ′ Â I(t,H), then F Â I(t,H), and so H is in

Cβ[x/t][P/C]. The rest of the proof is similar to the case CR0.

CR3: First we will prove the following claim.

Claim. If H is in D, K is a neutral term of type [∃xβ[P/T ]] such that for every

immediate reduct K ′ of K, ST (y.Xβ[x/y][P/T ].H, K ′) is in D, then
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ST (y.Xβ[x/y][P/T ].H, K) is in D.

Proof of the claim. Suppose H is in D, K is a neutral term of type [∃xβ[P/T ]]

such that for every immediate reduct K ′ of K, ST (y.Xβ[x/y][P/T ].H, K ′) is in D.

We will show that ST (y.Xβ[x/y][P/T ].H, K) is in D by induction on N(H). Since

ST (y.Xβ[x/y][P/T ].H, K) is neutral, it is enough to prove that all its immediate

reducts are in D. Since K is neutral, every immediate reduct of

ST (y.Xβ[x/y][P/T ].H, K) is of one of the following forms.

(i) ST (y.Xβ[x/y][P/T ].H, K ′) where K Â1 K ′.

This reduct is in D by the assumption.

(ii) ST (y.Xβ[x/y][P/T ].H ′, K) where H Â1 H ′.

By CR2 for D, H ′ is in D. Since for every immediate reduct K ′ of K,

ST (y.Xβ[x/y][P/T ].H, K ′) Â1 ST (y.Xβ[x/y][P/T ].H ′, K ′) and ST (y.Xβ[x/y][P/T ].H, K ′)

is in D, by CR2 for D, ST (y.Xβ[x/y][P/T ].H ′, K ′) is in D for every immediate

reduct K ′ of K. Hence H ′ satisfies the conditions of the hypothesis. Since

N(H ′) < N(H), ST (y.Xβ[x/y][P/T ].H ′, K) is in D.

Thus we have the claim.

Now suppose F is neutral and all immediate reducts of F are in C∃xβ[P/C].

Then for every immediate reduct F ′ of F , ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ′)

is in D. Since G is in Cβ[x/y][P/C] ⊃ D, G(Xβ[x/y][P/T ]) is in D. By the claim,

ST (y.Xβ[x/y][P/T ].G(Xβ[x/y][P/T ]), F ) is in D.

Suppose F Â I(t,H). Since F is neutral, there is a finite reduction sequence

from F to I(t,H) with length ≥ 1. Let F ′ be the immediate reduct of F in the

sequence. By the assumption, F ′ is in C∃xβ[P/C]. Since F ′ Â I(t,H), H is in

Cβ[x/t][P/C]. Hence F is in C∃xβ[P/C].

Similarly for C∃2Qβ[P/C].

Lemma 4.2.9. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate vari-
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ables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms,

and C = C1, . . . , Cn be collections of CRs corresponding to T1, . . . , Tn, respectively.

If R and R′ are r-ary predicate variables which are not in {P} and R′ 6∈
FV (α) − {R}, U = λz1, . . . , zrσ is an abstraction term, and D is a collection of

CRs corresponding to U , then Cα[R/D, P/C] = Cα[R/R′][R
′/D, P/C].

Proof. Suppose R and R′ are r-ary predicate variables which are not in {P} and

R′ 6∈ FV (α)−{R}, U = λz1, . . . , zrσ is an abstraction term, and D is a collection

of CRs corresponding to U .

We proceed by induction on α. The cases where α is β ⊃ γ, β ∧ γ, or β ∨ γ

easily follow by the induction hypothesis.

Suppose R 6∈ FV (α). Then R′ 6∈ FV (α[R/R′]) since R′ 6∈ FV (α) − {R}.
Hence, by the Note on page 113, Cα[R/D, P/C] = Cα[P/C] = Cα[R/R′][R

′/D, P/C].

Suppose R ∈ FV (α).

(i) α = R(t1, . . . , tr) for some individual terms t1, . . . , tr.

We have Cα[R/D, P/C] = Dt where Dt is the element of D which is of type

[σ[z1/t1, . . . , zr/tr]] and Cα[R/R′][R
′/D, P/C] = CR′(t1,...,tr)[R

′/D, P/C] = Dt.

For the remaining cases, we will show that Cα[R/D, P/C] ⊆ Cα[R/R′][R
′/D, P/C]

and omit proofs of the converse which can be done similarly.

Let F be in Cα[R/D, P/C].

(ii) α = ∀xβ.

Let t be an individual term. Then F (t) is in Cβ[x/t][R/D, P/C]. By Lemma

2.12 and the induction hypothesis, Cβ[x/t][R/D, P/C] = Cβ[x/t][R/R′][R
′/D, P/C] =

Cβ[R/R′][x/t][R
′/D, P/C]. Thus F (t) is in Cβ[R/R′][x/t][R

′/D, P/C], and hence F is

in C∀xβ[R/R′][R
′/D, P/C] i.e. Cα[R/R′][R

′/D, P/C].

(iii) α = ∃xβ.

We want to show that F is in C∃xβ[R/R′][R
′/D, P/C].
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Since F is in C∃xβ[R/D, P/C], if F Â I(t,H), then H is in Cβ[x/t][R/D, P/C]

which is Cβ[R/R′][x/t][R
′/D, P/C] by the induction hypothesis and Lemma 2.12.

Let y be an individual variable such that y 6∈ fv(β[R/R′])−{x}, [γ] be a type

with y 6∈ fv(γ), E be a CR of type [γ], G be a term of type

[β[R/R′][x/y][R′/U, P/T ] ⊃ γ] such that for each individual term u, G[y/u] is

in Cβ[R/R′][x/u][R
′/D, P/C] ⊃ E, and y is not free in the type superscript of any

free term variable of G, and Xβ[R/R′][x/y][R′/U,P/T ] be a term variable which is not

equivalent to any free term variable of G.

By Lemmas 2.12 and 2.16, β[R/R′][x/y][R′/U, P/T ] ≡ β[x/y][R/U, P/T ]. By

the induction hypothesis and Lemma 2.12, Cβ[R/R′][x/u][R
′/D, P/C] =

Cβ[x/u][R/R′][R
′/D, P/C] = Cβ[x/u][R/D, P/C] for every individual term u.

Then we have Xβ[R/R′][x/y][R′/U,P/T ] ≡ Xβ[x/y][R/U,P/T ], G is of type

[β[x/y][R/U, P/T ] ⊃ γ] and for each individual term u, G[y/u] is in

Cβ[x/u][R/D, P/C] ⊃ E.

Since F is in C∃xβ[R/D, P/C], ST (y.Xβ[x/y][R/U,P/T ].G(Xβ[x/y][R/U,P/T ]), F ) is

in E, and so is ST (y.Xβ[R/R′][x/y][R′/U,P/T ].G(Xβ[R/R′][x/y][R′/U,P/T ]), F ). Thus F is

in C∃xβ[R/R′][R
′/D, P/C].

Notation. In the following, P ∗ is the sublist of P consisting of all Pi’s which are

in FV (α), T ∗ and C∗ are the corresponding sublists of T and C, respectively.

(iv) α = ∀2Q
qβ.

Let V = λy1, . . . , yqτ be an abstraction term and E be a collection of CRs

corresponding to V . Then F (V ) is in Cβ[Q/E , R/D, P ∗/C∗].
We have (∀2Qβ)[R/R′] = ∀2Q

′β[Q/Q′][R/R′], where Q′ is a q-ary predicate

variable which is not in (FV (β) − {Q}) ∪ {R′}. By the induction hypothesis,

Cβ[Q/Q′][R/R′][Q
′/E , R′/D, P ∗/C∗] = Cβ[Q/Q′][Q

′/E , R/D, P ∗/C∗] =

Cβ[R/D, Q/E , P ∗/C∗]. Hence F (V ) is in Cβ[Q/Q′][R/R′][Q
′/E , R′/D, P ∗/C∗]. Thus
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F is in C∀2Q′β[Q/Q′][R/R′][R
′/D, P/C] i.e. Cα[R/R′][R

′/D, P/C].

(v) α = ∃2Q
qβ.

We have (∃2Qβ)[R/R′] = ∃2Q
′β[Q/Q′][R/R′], where Q′ is a q-ary predicate

variable which is not in (FV (β)− {Q}) ∪ {R′}.
We want to show that F is in C∃2Q′β[Q/Q′][R/R′][R

′/D, P/C].

Since F is in C∃2Qβ[R/D, P/C], if F Â I(V,H), then H is in

Cβ[Q/E , R/D, P ∗/C∗] which is Cβ[Q/Q′][R/R′][Q
′/E , R′/D, P ∗/C∗] by the induction

hypothesis, where E is some collection of CRs corresponding to V .

Let Q∗ be a q-ary predicate variable such that Q∗ 6∈
FV (β[Q/Q′][R/R′][R′/U, P ∗/T ∗]) − {Q′}, [γ] be a type with Q∗ 6∈ FV (γ), E be

a CR of type [γ], G be a term of type [β[Q/Q′][R/R′][Q′/Q∗, R′/U, P ∗/T ∗] ⊃
γ] such that for each abstraction term V = λy1, . . . , yqτ and all collections of

CRs E corresponding to V , G[Q∗/V ] is in Cβ[Q/Q′][R/R′][Q
′/E , R′/D, P ∗/C∗] ⊃ E,

and Q∗ is not free in the type superscript of any free term variable of G, and

Xβ[Q/Q′][R/R′][Q′/Q∗,R′/U,P ∗/T ∗] be a term variable which is not equivalent to any

free term variable of G.

By Lemma 2.16, β[Q/Q′][R/R′][Q′/Q∗, R′/U, P ∗/T ∗] ≡ β[R/U,Q/Q∗, P ∗/T ∗].

By the induction hypothesis, Cβ[Q/Q′][R/R′][Q
′/E , R′/D, P ∗/C∗] =

Cβ[Q/E , R/D, P ∗/C∗].
Then we have Xβ[Q/Q′][R/R′][Q′/Q∗,R′/U,P ∗/T ∗] ≡ Xβ[Q/Q∗,R/U,P ∗/T ∗], G is of type

[β[Q/Q∗, R/U, P ∗/T ∗] ⊃ γ] and for each abstraction term V = λy1, . . . , yqτ and all

collections of CRs E corresponding to V , G[Q∗/V ] is in Cβ[Q/E , R/D, P ∗/C∗] ⊃ E.

Since Q∗ 6∈ FV (β[Q/Q′][R/R′][R′/U, P ∗/T ∗])− {Q′}, Q∗ 6∈
FV (β[R/U, P ∗/T ∗])− {Q}.

Hence, since F is in C∃2Qβ[R/D, P/C],

ST (Q∗.Xβ[Q/Q∗,R/U,P ∗/T ∗].G(Xβ[Q/Q∗,R/U,P ∗/T ∗]), F ) is in E, and so is
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ST (Q∗.Xβ[Q/Q′][R/R′][Q′/Q∗,R′/U,P ∗/T ∗].G(Xβ[Q/Q′][R/R′][Q′/Q∗,R′/U,P ∗/T ∗]), F ). Thus F

is in C∃2Q′β[Q/Q′][R/R′][R
′/D, P/C] i.e. Cα[R/R′][R

′/D, P/C].

Lemma 4.2.10. Let α and α′ be formulae, P = Pm1
1 , . . . , Pmn

n be distinct predi-

cate variables, T = T1, . . . , Tn, where Ti = λxi
1, . . . , x

i
mi

δi, 1 ≤ i ≤ n, be abstrac-

tion terms, and C = C1, . . . , Cn be collections of CRs corresponding to T1, . . . , Tn,

respectively.

If α ≡ α′, then Cα[P/C] = Cα′ [P/C].

Proof. We proceed by induction on α. The cases where α is β ⊃ γ, β∧γ, or β∨γ

easily follow by the induction hypothesis.

Suppose α ≡ α′. It is trivial if α = α′. Suppose there is a sequence of formulae

α = α0, α1, . . . , αr = α′, r ≥ 1, such that for each 1 ≤ i ≤ r, αi is obtained from

αi−1 by a single legitimate change of bound variable. For the remaining cases,

we proceed by induction on r. We will prove only the case r = 1 since the case

r > 1 follows straightforwardly by the subsidiary induction hypothesis and the

case r = 1.

We will show that Cα[P/C] ⊆ Cα′ [P/C] and omit proofs of the converse which

can be done similarly.

Let F be in Cα[P/C]. Then F is of type [α[P/T ]] = [α′[P/T ]].

(i) α = ∀xβ.

Let t be an individual term. Then F (t) is in Cβ[x/t][P/C].

Case 1. α′ = ∀xβ′ where β′ ≡ β.

By Lemma 2.14, β[x/t] ≡ β′[x/t]. By the main induction hypothesis,

Cβ[x/t][P/C] = Cβ′[x/t][P/C]. Thus F (t) is in Cβ′[x/t][P/C], and hence F is in

Cα′ [P/C].

Case 2. α′ = ∀yβ[x/y] where y is free for x and does not occur free in β.
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By Lemma 2.13, β[x/y][y/t] ≡ β[x/t] and the rest of the proof is similar to

Case 1.

(ii) α = ∃xβ.

Case 1. α′ = ∃xβ′ where β′ ≡ β.

This case can be proved in the same way as the following case by using the fact

that Cβ′[x/t][P/C] = Cβ[x/t][P/C] for every individual term t, which is obtained by

Lemma 2.14 and the main induction hypothesis.

Case 2. α′ = ∃yβ[x/y] where y is free for x and does not occur free in β.

If F Â I(t,H), then H is in Cβ[x/t][P/C] which is Cβ[x/y][y/t][P/C] by the main

induction hypothesis and Lemma 2.13.

Let z be an individual variable such that z 6∈ fv(β[x/y])− {y}, [γ] be a type

with z 6∈ fv(γ), D be a CR of type [γ], G be a term of type [β[x/y][y/z][P/T ] ⊃ γ]

such that for each individual term t, G[z/t] is in Cβ[x/y][y/t][P/C] ⊃ D, and z is

not free in the type superscript of any free term variable of G, and Xβ[x/y][y/z][P/T ]

be a term variable which is not equivalent to any free term variable of G.

By Lemmas 2.13 and 2.17, β[x/y][y/z][P/T ] ≡ β[x/z][P/T ]. Then

Xβ[x/y][y/z][P/T ] ≡ Xβ[x/z][P/T ]. By Lemma 2.13, for every individual term t,

β[x/y][y/t] ≡ β[x/t], and so Cβ[x/y][y/t][P/C] = Cβ[x/t][P/C] by the main induc-

tion hypothesis. Hence G is of type [β[x/z][P/T ] ⊃ γ] and for each individ-

ual term t, G[z/t] is in Cβ[x/t][P/C] ⊃ D. We also have that z 6∈ fv(β) − {x}
and z is not free in the type superscript of any free term variable of G. Hence,

since F is in C∃xβ[P/C], ST (z.Xβ[x/z][P/T ].G(Xβ[x/z][P/T ]), F ) is in D, and so is

ST (z.Xβ[x/y][y/z][P/T ].G(Xβ[x/y][y/z][P/T ]), F ). Hence F is in C∃yβ[x/y][P/C].

Notation. In the following, P ∗ is the sublist of P consisting of all Pi’s which are

in FV (α), T ∗ and C∗ are the corresponding sublists of T and C, respectively.

(iii) α = ∀2Q
qβ.
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Let U = λy1, . . . , yqσ be an abstraction term and D be a collection of CRs

corresponding to U .

Then F (U) is in Cβ[Q/D, P ∗/C∗].
Case 1. α′ = ∀2Qβ′ where β′ ≡ β.

By the main induction hypothesis, Cβ[Q/D, P ∗/C∗] = Cβ′ [Q/D, P ∗/C∗]. Thus

F (U) is in Cβ′ [Q/D, P ∗/C∗], and hence F is in Cα′ [P/C].

Case 2. α′ = ∀2Q
′β[Q/Q′] where Q′ is a q-ary predicate variable which is free

for Q and does not occur free in β.

By Lemma 4.2.9, Cβ[Q/D, P ∗/C∗] = Cβ[Q/Q′][Q
′/D, P ∗/C∗] and the rest of the

proof is similar to Case 1.

(iv) α = ∃2Q
qβ.

Case 1. α′ = ∃2Qβ′ where β′ ≡ β.

This case can be proved in the same way as the following case by using the

fact, which is obtained by the main induction hypothesis, that Cβ′ [Q/D, P ∗/C∗] =

Cβ[Q/D, P ∗/C∗] for every collection of CRs D which corresponds to some abstrac-

tion term U = λy1, . . . , yqσ.

Case 2. α′ = ∃2Q
′β[Q/Q′] where Q′ is a q-ary predicate variable which is free

for Q and does not occur free in β.

If F Â I(U,H), then H is in Cβ[Q/D, P ∗/C∗] which is Cβ[Q/Q′][Q
′/D, P ∗/C∗]

by Lemma 4.2.9, where D is some collection of CRs corresponding to U .

Let R be a q-ary predicate variable such that R 6∈ FV (β[Q/Q′][P ∗/T ∗])−{Q′},
[γ] be a type with R 6∈ FV (γ), D be a CR of type [γ], G be a term of type

[β[Q/Q′][Q′/R, P ∗/T ∗] ⊃ γ] such that for each abstraction term U = λy1, . . . , yqσ

and all collections of CRs E corresponding to U , G[R/U ] is in Cβ[Q/Q′][P
∗/C∗, Q′/E ]

⊃ D, and R is not free in the type superscript of any free term variable of G,

and Xβ[Q/Q′][Q′/R,P ∗/T ∗] be a term variable which is not equivalent to any free term
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variable of G.

By Lemma 2.16, β[Q/Q′][Q′/R, P ∗/T ∗] ≡ β[Q/R, P ∗/T ∗]. Then

Xβ[Q/Q′][Q′/R,P ∗/T ∗] ≡ Xβ[Q/R,P ∗/T ∗]. By Lemma 4.2.9, for all collections of CRs E
corresponding to some abstraction term U = λy1, . . . , yqσ, Cβ[Q/Q′][Q

′/E , P ∗/C∗] =

Cβ[Q/E , P ∗/C∗]. Then G is of type [β[Q/R, P ∗/T ∗] ⊃ γ] and for each abstrac-

tion term U = λy1, . . . , yqσ and all collections of CRs E corresponding to U ,

G[R/U ] is in Cβ[Q/E , P ∗/C∗] ⊃ D. Since R 6∈ FV (β[Q/Q′][P ∗/T ∗]) − {Q′},
R 6∈ FV (β[P ∗/T ∗])− {Q}. Hence, since F is in C∃2Qβ[P/C],

ST (R.Xβ[Q/R,P ∗/T ∗].G(Xβ[Q/R,P ∗/T ∗]), F ) is in D, and so is

ST (R.Xβ[Q/Q′][Q′/R,P ∗/T ∗].G(Xβ[Q/Q′][Q′/R,P ∗/T ∗]), F ). Hence F is in

C∃2Q′β[Q/Q′][P/C] i.e. Cα′ [P/C].

Lemma 4.2.11. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate vari-

ables, T = T1, . . . , Tn, where Ti = λxi
1, . . . , x

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms,

and C = C1, . . . , Cn be collections of CRs corresponding to T1, . . . , Tn, respectively.

Let R be a k-ary predicate variable which is not in {P}, U = λz1, . . . , zkσ be

an abstraction term, say z = z1, . . . , zk, and let

D = {Cσ[z/t][P/C] | t = t1, . . . , tk are individual terms.}, so D is a collection of

CRs corresponding to U [P/T ].

Then Cα[R/D, P/C] = Cα[R/U ][P/C].

Proof. If R 6∈ FV (α), then, by the Note on page 113, Cα[R/D, P/C] = Cα[P/C] =

Cα[R/U ][P/C]. Suppose R ∈ FV (α).

We proceed by induction on α. The cases where α is β ⊃ γ, β ∨ γ, or β ∧ γ

easily follow by the induction hypothesis. The remaining cases are as follows.

(i) α = R(t1, . . . , tk) for some individual terms t = t1, . . . , tk.

Then Cα[R/D, P/C] = Cσ[z/t][P/C] = Cα[R/U ][P/C].
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For the remaining cases, we will show that Cα[R/D, P/C] ⊆ Cα[R/U ][P/C] and

omit proofs of the converse which can be done similarly.

Let F be in Cα[R/D, P/C].

(ii) α = ∀xβ.

By the induction hypothesis and Lemmas 2.15 and 4.2.10, for every individual

term t, Cβ[x/t][R/D, P/C] = Cβ[x/t][R/U ][P/C] = Cβ[R/U ][x/t][P/C]. Then this case

easily follows by this fact.

(iii) α = ∃xβ.

We will show that F is in C∃xβ[R/U ][P/C]. If F Â I(t,H), then H is in

Cβ[x/t][R/D, P/C] which is Cβ[R/U ][x/t][P/C] by the induction hypothesis, Lemmas

2.15 and 4.2.10.

Let y be an individual variable such that y 6∈ fv(β[R/U ])−{x}, [γ] be a type

with y 6∈ fv(γ), E be a CR of type [γ], G be a term of type [β[R/U ][x/y][P/T ] ⊃
γ] such that for each individual term t, G[y/t] is in Cβ[R/U ][x/t][P/C] ⊃ E, and y is

not free in the type superscript of any free term variable of G, and Xβ[R/U ][x/y][P/T ]

be a term variable which is not equivalent to any free term variable of G.

By Lemmas 2.15, 2.16, and 2.17, β[R/U ][x/y][P/T ] ≡ β[x/y][P/T , R/U [P/T ]].

By the induction hypothesis and Lemma 4.2.10, for every individual term t,

Cβ[R/U ][x/t][P/C] = Cβ[x/t][R/U ][P/C] = Cβ[x/t][P/C, R/D]. Hence we have

Xβ[R/U ][x/y][P/T ] ≡ Xβ[x/y][P/T ,R/U [P/T ]] and G is of type [β[x/y][P/T ,R/U [P/T ]] ⊃
γ] and for each individual term t, G[y/t] is in Cβ[x/t][P/C, R/D] ⊃ E and y is not

free in the type superscript of any free term variable of G.

Since F is in C∃xβ[P/C, R/D],

ST (y.Xβ[x/y][P/T ,R/U [P/T ]].G(Xβ[x/y][P/T ,R/U [P/T ]]), F ) is in E, and so is

ST (y.Xβ[R/U ][x/y][P/T ].G(Xβ[R/U ][x/y][P/T ]), F ). Thus F is in C∃xβ[R/U ][P/C].

Notation. In the following, P ∗ and P ∗∗ are the sublists of P consisting of all Pi’s
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which are in FV (α[R/U ]) and FV (α), respectively, T ∗ and T ∗∗, C∗ and C∗∗ are

the corresponding sublists of T and C, respectively.

Note that P ∗∗ is a sublist of P ∗ since R 6∈ {P}, similarly for T ∗∗ and C∗∗.
(iv) α = ∀2Q

qβ.

By Lemma 4.2.10, we may assume that Q 6∈ FV (U) ∪ FV (T ∗), so Q 6∈ {P ∗}.
We want to show that F is in C∀2Qβ[R/U ][P/C].

Let V = λy1, . . . , yqτ be an abstraction term and E be a collection of CRs corre-

sponding to V . Since F is in C∀2Qβ[R/D, P/C], F (V ) is in Cβ[Q/E , R/D, P ∗∗/C∗∗].
Since Q 6∈ FV (U) i.e Q 6∈ FV (σ), Cσ[z/t][P/C] = Cσ[z/t][Q/E , P ∗/C∗] for all

individual terms t = t1, . . . , tk. Hence D =

{Cσ[z/t][Q/E , P ∗/C∗] | t = t1, . . . , tk are individual terms.}. By the induction hy-

pothesis, Cβ[Q/E , R/D, P ∗∗/C∗∗] = Cβ[Q/E , R/D, P ∗/C∗] = Cβ[R/U ][Q/E , P ∗/C∗].
Thus F (V ) is in Cβ[R/U ][Q/E , P ∗/C∗], and so F is in C∀2Qβ[R/U ][P/C] i.e.

Cα[R/U ][P/C].

(v) α = ∃2Q
qβ.

By Lemma 4.2.10, we may assume that Q 6∈ FV (U) ∪ FV (T ∗), so Q 6∈ {P ∗}.
We want to show that F is in C∃2Qβ[R/U ][P/C].

Since F is in C∃2Qβ[R/D, P/C], if F Â I(V,H), then H is in

Cβ[P ∗∗/C∗∗, R/D, Q/E ] which is Cβ[R/U ][P
∗/C∗, Q/E ] (as shown in the above case),

where E is some collection of CRs corresponding to V .

Let Q′ be a q-ary predicate variable such that Q′ 6∈ FV (β[R/U ][P ∗/T ∗])−{Q},
[γ] be a type with Q′ 6∈ FV (γ), E be a CR of type [γ], G be a term of type

[β[R/U ][Q/Q′, P ∗/T ∗] ⊃ γ] such that for each abstraction term V = λy1, . . . , yqτ

and all collections of CRs E corresponding to V , G[Q′/V ] is in Cβ[R/U ][P
∗/C∗, Q/E ]

⊃ E, and Q′ is not free in the type superscript of any free term variable of G,

and Xβ[R/U ][Q/Q′,P ∗/T ∗] be a term variable which is not equivalent to any free term
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variable of G.

By Lemma 2.16, β[R/U ][Q/Q′, P ∗/T ∗] ≡ β[R/U [P/T ], Q/Q′, P ∗/T ∗]. As

shown in the above case, Cβ[R/U ][Q/E , P ∗/C∗] = Cβ[Q/E , P ∗∗/C∗∗] for all col-

lections of CRs E which corresponds to some abstraction term V = λy1, . . . , yqτ .

Hence we have Xβ[R/U ][Q/Q′,P ∗/T ∗] ≡ Xβ[R/U [P/T ],Q/Q′,P ∗/T ∗], G is of type

[β[R/U [P/T ], Q/Q′, P ∗/T ∗] ⊃ γ] and for each abstraction term V = λy1, . . . , yqτ

and all collections of CRs E corresponding to V , G[Q′/V ] is in Cβ[Q/E , P ∗∗/C∗∗] ⊃
E and Q′ is not free in the type superscript of any free term variable of G.

Since F is in C∃2Qβ[R/D, P/C],

ST (Q′.Xβ[Q/Q′,R/U [P/T ],P ∗/T ∗].G(Xβ[Q/Q′,R/U [P/T ],P ∗/T ∗]), F ) is in E, and so is

ST (Q′.Xβ[R/U ][Q/Q′,P ∗/T ∗].G(Xβ[R/U ][Q/Q′,P ∗/T ∗]), F ). Thus F is in C∃2Qβ[R/U ][P/C]

i.e. Cα[R/U ][P/C].

Lemma 4.2.12. Let Fα be a Curry-Howard term, x = x1, . . . , xn be distinct indi-

vidual variables, t = t1, . . . , tn be individual terms, P = Pm1
1 , . . . , Pmk

k be distinct

predicate variables, T = T1, . . . , Tk, where Ti = λzi
1, . . . , z

i
mi

τi, 1 ≤ i ≤ k, be ab-

straction terms, C = C1, . . . , Ck be collections of CRs corresponding to T1, . . . , Tk,

respectively, Xδ1
1 , . . . , Xδl

l be inequivalent term variables such that every free term

variable of F α is equivalent to Xδi
i for some 1 ≤ i ≤ l, and X = X

δ′1
1 , . . . , X

δ′l
l ,

where δ′i = δi[x/t][P/T ], 1 ≤ i ≤ l, are inequivalent term variables, and let

K = K
δ′1
1 , . . . , K

δ′l
l be Curry-Howard terms in Cδ1[x/t][P/C], . . . , Cδl[x/t][P/C], re-

spectively.

Then Fα[x/t][P/T ][X/K] is in Cα[x/t][P/C].

Proof. We will prove by induction on Fα.

Notation. Throughout this proof, γ′ denotes γ[x/t][P/T ] for any formula γ.

(Atomic) Fα ≡ X
δq
q for some 1 ≤ q ≤ l:

Then Fα[x/t][P/T ][X/K] = K
δ′q
q which is in Cδq [x/t][P/C] i.e. Cα[x/t][P/C] by
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Lemmas 2.14 and 4.2.10.

(⊃ Intro) Fα = λY β.Gγ:

We first prove the following claim.

Claim 1. For any terms J and H, if J is in Cβ[x/t][P/C], H and H[Y β′/J ] are in

Cγ[x/t][P/C], then (λY β′ .H)(J) is in Cγ[x/t][P/C].

Proof of Claim 1. Suppose J is in Cβ[x/t][P/C], H and H[Y β′/J ] are in Cγ[x/t][P/C].

We proceed by induction on N(J)+N(H). Since (λY β′ .H)(J) is neutral, to show

that it is in Cγ[x/t][P/C], it is enough to show that all its immediate reducts are

in Cγ[x/t][P/C]. Every immediate reduct of (λY β′ .H)(J) is of one of the following

forms.

(i) H[Y β′/J ].

This is in Cγ[x/t][P/C] by the assumption.

(ii) (λY β′ .H ′)(J) where H Â1 H ′.

By CR2 for Cγ[x/t][P/C], H ′ is in Cγ[x/t][P/C]. By Lemma 3.3.4, H[Y β′/J ] Â1

H∗ for some term H∗ such that H∗ ≡ H ′[Y β′/J ]. Since H[Y β′/J ] is in Cγ[x/t][P/C],

by CR2, H∗ is in Cγ[x/t][P/C], and so is H ′[Y β′/J ] by CR0. Thus H ′ satisfies the

conditions of the hypothesis and N(H ′) < N(H). By the subsidiary induction

hypothesis, (λY β′ .H ′)(J) is in Cγ[x/t][P/C].

(iii) (λY β′ .H)(J ′) where J Â1 J ′.

By CR2 for Cβ[x/t][P/C], J ′ is in Cβ[x/t][P/C]. By Lemma 3.3.5, H[Y β′/J ] Â H∗

for some term H∗ such that H∗ ≡ H[Y β′/J ′]. By CR2 and CR0, H∗ is in

Cγ[x/t][P/C], and so is H[Y β′/J ′]. Thus J ′ satisfies the conditions of the hypoth-

esis and N(J ′) < N(J). Hence (λY β′ .H)(J ′) is in Cγ[x/t][P/C] by the induction

hypothesis.

Thus we have Claim 1.
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We have to show that M = (λY β.Gγ)[x/t][P/T ][X/K] is in Cβ[x/t][P/C] ⊃
Cγ[x/t][P/C]. By CR0, we may assume that Y β′ is not equivalent to any free term

variable in X or K and G has no free term variable Y σ such that σ 6≡ β. Then

M = λY β′ .Gγ[x/t][P/T ][X/K].

Let J be a term in Cβ[x/t][P/C]. By the induction hypothesis,

Gγ[x/t][P/T ][X/K] (= Gγ[x/t][P/T ][X/K, Y β′/Y β′ ]) and

Gγ[x/t][P/T ][X/K, Y β′/J ] are in Cγ[x/t][P/C]. Since Gγ[x/t][P/T ][X/K][Y β/J ]

≡ Gγ[x/t][P/T ][X/K, Y β/J ], by CR0, Gγ[x/t][P/T ][X/K][Y β/J ] is in

Cγ[x/t][P/C]. Thus, by Claim 1, M(J) is in Cγ[x/t][P/C]. Since J is arbitrary, M

is in Cβ[x/t][P/C] ⊃ Cγ[x/t][P/C] i.e. Cα[x/t][P/C].

(⊃ Elim) Fα = Gβ⊃α(Hβ):

By the induction hypothesis, Gβ⊃α[x/t][P/T ][X/K] is in C(β⊃α)[x/t][P/C] i.e.

Cβ[x/t][P/C] ⊃ Cα[x/t][P/C] and Hβ[x/t][P/T ][X/K] is in Cβ[x/t][P/C]. Hence

Fα[x/t][P/T ][X/K] is in Cα[x/t][P/C].

(∧ Intro) Fα = (Gβ, Hγ):

We have to show that M = (Gβ[x/t][P/T ][X/K], Hγ[x/t][P/T ][X/K]) is in

C(β∧γ)[x/t][P/C] i.e. Cβ[x/t][P/C] ∧ Cγ[x/t][P/C]. We will show that π1M is in

Cβ[x/t][P/C] by induction on N(Gβ[x/t][P/T ][X/K]) + N(Hγ[x/t][P/T ][X/K]).

Since π1M is neutral, by CR3, it is enough to show that all its immediate reducts

are in Cβ[x/t][P/C]. Every immediate reduct of π1M is of one of the following

forms.

(i) Gβ[x/t][P/T ][X/K].

It is in Cβ[x/t][P/C] by the main induction hypothesis.

(ii) π1(G
′, Hγ[x/t][P/T ][X/K]) where Gβ[x/t][P/T ][X/K] Â1 G′.
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By the main induction hypothesis, Gβ[x/t][P/T ][X/K] is in Cβ[x/t][P/C], and

so is G′ by CR2. Hence π1(G
′, Hγ[x/t][P/T ][X/K]) is in Cβ[x/t][P/C] by the

subsidiary induction hypothesis since N(G′) < N(Gβ[x/t][P/T ][X/K]).

(iii) π1(G
β[x/t][P/T ][X/K], H ′) where Hγ[x/t][P/T ][X/K] Â1 H ′.

This case follows by the subsidiary induction hypothesis as in (ii).

Similarly, we can show that π2M is in Cγ[x/t][P/C]. Thus M is in

C(β∧γ)[x/t][P/C].

(∧ Elim) Fα = π1G
α∧β:

By the induction hypothesis, Gα∧β[x/t][P/T ][X/K] is in C(α∧β)[x/t][P/C] i.e.

Cα[x/t][P/C]∧Cβ[x/t][P/C]. Hence F α[x/t][P/T ][X/K] i.e. π1G
α∧β[x/t][P/T ][X/K]

is in Cα[x/t][P/C].

Similarly for π2G
β∧α.

(∀ Intro) Fα = λy.Gβ:

We want to show that (λy.Gβ)[x/t][P/T ][X/K] is in C(∀yβ)[x/t][P/C]. By

Lemma 4.2.10 and CR0 for C(∀yβ)[x/t][P/C], we may assume that y 6∈ {x}∪fv(t)∪
fv(K). We have to show that M = λy.Gβ[x/t][P/T ][X/K] is in C∀yβ[x/t][P/C].

Let u be an individual term. We will show that M(u) is in Cβ[x/t][y/u][P/C] by

induction on N(Gβ[x/t][P/T ][X/K]). Since M(u) is neutral, it remains to show

that all its immediate reducts are in Cβ[x/t][y/u][P/C]. Every immediate reduct of

M(u) is of one of the following forms.

(i) Gβ[x/t][P/T ][X/K][y/u].

Since y 6∈ fv(t) and y does not occur free in the type superscript of any free

term variable of Gβ, if X
δ′i
i is equivalent to some free term variable of Gβ[x/t][P/T ]

for some 1 ≤ i ≤ l, then there is no free term variable Xσ
i of Gβ[x/t][P/T ] such
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that σ 6≡ δ′i but σ[y/u] ≡ δ′i[y/u] (i.e. σ ≡ δ′i). By Lemmas 2.13, 3.2.19, 3.2.22,

3.2.23, 3.2.25, and 3.2.26, we have Gβ[x/t][P/T ][X/K][y/u] ≡
Gβ[x/t, y/u][P/T ][X/K] and β[x/t][y/u] ≡ β[x/t, y/u].

Since y 6∈ {x} ∪ fv(K), y 6∈ fv(δi) and so Cδi[x/t,y/u][P/C] = Cδi[x/t][P/C] for

all 1 ≤ i ≤ l. Hence, by the induction hypothesis, Gβ[x/t, y/u][P/T ][X/K] is in

Cβ[x/t,y/u][P/C] i.e. Cβ[x/t][y/u][P/C] by Lemma 4.2.10.

(ii) (λy.G′)(u) where Gβ[x/t][P/T ][X/K] Â1 G′.

By the main induction hypothesis, Gβ[x/t][P/T ][X/K] is in Cβ[x/t][P/C], and

so is G′ by CR2. Since N(G′) < N(Gβ[x/t][P/T ][X/K]), by the subsidiary in-

duction hypothesis, (λy.G′)(u) is in Cβ[x/t][y/u][P/C].

(∀2 Intro) Fα = λQq.Gβ:

As in the above case, we may assume that Q 6∈ {P} ∪ FV (T ) ∪ FV (K). We

have to show that M = λQ.Gβ[x/t][P/T ][X/K] is in C∀2Qβ[x/t][P/C].

Let U = λy1, . . . , yqσ be an abstraction term and D be a collection of CRs

corresponding to U . We will show that M(U) is in Cβ[x/t][P/C, Q/D] by induction

on N(Gβ[x/t][P/T ][X/K]). Since M(U) is neutral, it remains to show that all its

immediate reducts are in Cβ[x/t][P/C, Q/D]. Every immediate reduct of M(U) is

of one of the following forms.

(i) Gβ[x/t][P/T ][X/K][Q/U ].

Similar to the above case, by Lemmas 3.2.20, 3.2.23, and 3.2.26, we have

Gβ[x/t][P/T ][X/K][Q/U ] ≡ Gβ[x/t][P/T ,Q/U ][X/K].

Since Q 6∈ {P} ∪ FV (K), Q 6∈ FV (δi[x/t]), and so Cδi[x/t][P/C, Q/D] =

Cδi[x/t][P/C] for all 1 ≤ i ≤ l. Hence, by the induction hypothesis,

Gβ[x/t][P/T ,Q/U ][X/K] is in Cβ[x/t][P/C, Q/D].

(ii) (λ2Q.G′)(U) where Gβ[x/t][P/T ][X/K] Â1 G′.
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Similar to (ii) in the above case, this case follows by the subsidiary induction

hypothesis.

(∀ Elim) Fα = G∀yβ(u):

By the induction hypothesis, G∀yβ[x/t][P/T ][X/K] is in C(∀yβ)[x/t][P/C]. By

Lemma 4.2.10, we may assume that y 6∈ {x} ∪ fv(t). Then G∀yβ[x/t][P/T ][X/K]

is in C∀yβ[x/t][P/C]. Hence Fα[x/t][P/T ][X/K] = G∀yβ[x/t][P/T ][X/K](u[x/t])

is in Cβ[x/t][y/u[x/t]][P/C]. By Lemmas 2.13 and 4.2.10, Cβ[x/t][y/u[x/t]][P/C] =

Cβ[y/u][x/t][P/C] = Cα[x/t][P/C]. Hence Fα[x/t][P/T ][X/K] is in Cα[x/t][P/C].

(∀2 Elim) F α = G∀2Qβ(U):

By the induction hypothesis, G∀2Qβ[x/t][P/T ][X/K] is in C∀2Qβ[x/t][P/C]. By

Lemma 4.2.10, we may assume that Q 6∈ {P}. Hence M =

G∀2Qβ[x/t][P/T ][X/K](U [P/T ]) is in Cβ[x/t][P/C, Q/E ] for all collections of CRs

E corresponding to U [P/T ].

Say U = λy1, . . . , yqσ, y = y1, . . . , yq, and let D = {Cσ[y/u][P/C] | u =

u1, . . . , uq are individual terms.}. Then D is a collection of CRs corresponding

to U [P/T ]. By Lemmas 2.15, 4.2.10, and 4.2.11, Cβ[x/t][P/C, Q/D] =

Cβ[x/t][Q/U ][P/C] = Cβ[Q/U ][x/t][P/C] = Cα[x/t][P/C]. Hence M is in Cα[x/t][P/C].

(∨ Intro) Fα = (µ1G
α1)α1∨α2 :

We want to show that M = µ1G
α1 [x/t][P/T ][X/K] is in C(α1∨α2)[x/t][P/C] i.e.

Cα1[x/t][P/C] ∨ Cα2[x/t][P/C].

Let [γ] be a type, D be a CR of type [γ], F1 and F2 be terms in Cα1[x/t][P/C]

⊃ D and Cα2[x/t][P/C] ⊃ D, respectively, and Y
α′1
1 and Y

α′2
2 be term variables

which are not equivalent to any free term variables of F1 and F2, respectively. We
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have to show that ⊕(Y
α′1
1 .F1(Y

α′1
1 ), Y

α′2
2 .F2(Y

α′2
2 ),M) is in D.

We first prove the following claim.

Claim 2. For any terms G1, G2, and G3, if G3 is in Cα1[x/t][P/C] and G1, G2,

and G1[Y
α′1
1 /G3] are in D, then ⊕(Y

α′1
1 .G1, Y

α′2
2 .G2, µ1G3) is in D.

Proof of Claim 2. Suppose G3 is in Cα1[x/t][P/C] and G1, G2, and G1[Y
α′1
1 /G3]

are in D. We will prove by induction on N(G1) + N(G2) + N(G3). Since

⊕(Y
α′1
1 .G1, Y

α′2
2 .G2, µ1G3) is neutral, to show that it is in D, it is enough to show

that all its immediate reducts are in D. Every immediate reduct of

⊕(Y
α′1
1 .G1, Y

α′2
2 .G2, µ1G3) is of one of the following forms.

(i) G1[Y
α′1
1 /G3].

This is in D by the assumption.

(ii) ⊕(Y
α′1
1 .G1, Y

α′2
2 .G′

2, µ1G3) where G2 Â1 G′
2.

This is in D by the subsidiary induction hypothesis.

(iii) ⊕(Y
α′1
1 .G′

1, Y
α′2
2 .G2, µ1G3) where G1 Â1 G′

1.

By CR2, G′
1 is in D. By Lemma 3.3.4, G′

1[Y
α′1
1 /G3] is equivalent to some

immediate reduct of G1[Y
α′1
1 /G3]. Since G1[Y

α′1
1 /G3] is in D, by CR0 and CR2,

so is G′
1[Y

α′1
1 /G3]. Thus G′

1 satisfies the conditions of the hypothesis. Hence

⊕(Y
α′1
1 .G′

1, Y
α′2
2 .G2, µ1G3) is in D by the subsidiary induction hypothesis.

(iv) ⊕(Y
α′1
1 .G1, Y

α′2
2 .G2, µ1G

′
3) where G3 Â1 G′

3.

By CR2, G′
3 is in Cα1[x/t][P/C]. By Lemma 3.3.5, G1[Y

α′1
1 /G′

3] is equivalent to

some reduct of G1[Y
α′1
1 /G3]. Hence, by CR0 and CR2, G1[Y

α′1
1 /G′

3] is in D. Thus

G′
3 satisfies the conditions of the hypothesis. Hence ⊕(Y

α′1
1 .G1, Y

α′2
2 .G2, µ1G

′
3) is

in D by the subsidiary induction hypothesis.

Thus we have Claim 2.

By the main induction hypothesis, Gα1 [x/t][P/T ][X/K] is in Cα1[x/t][P/C].

Since F1 is in Cα1[x/t][P/C] ⊃ D, F1(Y
α′1
1 ) and F1(Y

α′1
1 )[Y

α′1
1 /Gα1 [x/t][P/T ][X/K]]
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(i.e. F1(G
α1 [x/t][P/T ][X/K])) are in D. Since F2 is in Cα2[x/t][P/C] ⊃ D, F2(Y

α′2
2 )

is in D. Hence, by the claim, ⊕(Y
α′1
1 .F1(Y

α′1
1 ), Y

α′2
2 .F2(Y

α′2
2 ),M) is in D. Thus M

is in Cα1[x/t][P/C] ∨ Cα2[x/t][P/C] i.e. Cα[x/t][P/C].

Similarly for the case F α = (µ2G
α2)α1∨α2 .

(∨ Elim) Fα = ⊕(Y β1

1 .Fα
1 , Y β2

2 .F α
2 , Gβ1∨β2):

Since Cα[x/t][P/C] is closed under equivalence of terms, we may assume that Fi

has no free term variable Y σ
i such that σ 6≡ βi for all i = 1, 2, and both Y

β′1
1 and

Y
β′2
2 are not equivalent to any free term variables in X or K. We want to show

that M = ⊕(Y
β′1
1 .F α

1 [x/t][P/T ][X/K], Y
β′2
2 .Fα

2 [x/t][P/T ][X/K],

Gβ1∨β2 [x/t][P/T ][X/K]) is in Cα[x/t][P/C]. Since M is neutral, it is enough to

show that all its immediate reducts are in Cα[x/t][P/C]. We will show this by

induction on N(Fα
1 [x/t][P/T ][X/K]) + N(Fα

2 [x/t][P/T ][X/K]) +

N(Gβ1∨β2 [x/t][P/T ][X/K]). If an immediate reduct of M is obtained by reducing

Fα
1 [x/t][P/T ][X/K], Fα

2 [x/t][P/T ][X/K], or Gβ1∨β2 [x/t][P/T ][X/K], then it is

in Cα[x/t][P/C] by the subsidiary induction hypothesis.

The remaining case is obtained when Gβ1∨β2 [x/t][P/T ][X/K] is of the form

µ1H or µ2H. Suppose Gβ1∨β2 [x/t][P/T ][X/K] = µ1H
β∗ , where β∗ ≡ β′1. Then

the immediate reduct is Fα
1 [x/t][P/T ][X/K][Y

β′1
1 /H].

By the main induction hypothesis, µ1H is in C(β1∨β2)[x/t][P/C] i.e.

Cβ1[x/t][P/C] ∨ Cβ2[x/t][P/C]. By Lemma 4.2.4, H is in Cβ1[x/t][P/C].

Hence, by the main induction hypothesis, Fα
1 [x/t][P/T ][X/K, Y

β′1
1 /H] is in

Cα[x/t][P/C]. By Lemma 3.2.21, Fα
1 [x/t][P/T ][X/K][Y

β′1
1 /H] ≡

Fα
1 [x/t][P/T ][X/K, Y

β′1
1 /H]. Hence Fα

1 [x/t][P/T ][X/K][Y
β′1
1 /H] is in Cα[x/t][P/C]

by CR0.

Similarly if Gβ1∨β2 [x/t][P/T ][X/K] = µ2H.
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(∃ Intro) Fα = I(u,Gβ(y/u))∃yβ:

We want to show that I(u[x/t],M), where M = Gβ(y/u)[x/t][P/T ][X/K], is in

C(∃yβ)[x/t][P/C].

As usual, we may assume that y 6∈ {x} ∪ fv(t).

By the induction hypothesis, M is in Cβ[y/u][x/t][P/C] which is

Cβ[x/t][y/u[x/t]][P/C] by Lemmas 2.13 and 4.2.10. If I(u[x/t],M) Â I(u[x/t],M ′),

M Â M ′, and so M ′ is in Cβ[x/t][y/u[x/t]][P/C] by CR2.

Let z be an individual variable such that z 6∈ fv(β[x/t]) − {y}, [γ] be a type

such that z 6∈ fv(γ), D be a CR of type [γ], H be a term of type [β[x/t][y/z][P/T ] ⊃
γ] such that for each individual term v, H[z/v] is in Cβ[x/t][y/v][P/C] ⊃ D, and z is

not free in the type superscript of any free term variable of H, and Y β[x/t][y/z][P/T ]

be a term variable which is not equivalent to any free term variable of H.

We want to show that ST (z.Y β[x/t][y/z][P/T ].H(Y β[x/t][y/z][P/T ]), I(u[x/t],M)) is

in D. Again, since D is closed under equivalence of terms, we may assume that

Y β[x/t][y/z][P/T ].H has no free term variable equivalent to Y β[x/t][y/z][P/T ][z/u[x/t]].

We first prove the following claim.

Claim 3. For any terms G1 and H1, if G1 is in Cβ[y/u][x/t][P/C], H1 is in D, z does

not occur free in the type superscript of any free term variable of Y β[x/t][y/z][P/T ].H1,

Y β[x/t][y/z][P/T ].H1 has no free term variable equivalent to Y β[x/t][y/z][P/T ][z/u[x/t]],

and H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1] is in D, then

ST (z.Y β[x/t][y/z][P/T ].H1, I(u[x/t], G1)) is in D.

Proof of Claim 3. Suppose G1 is in Cβ[y/u][x/t][P/C], H1 is in D, z does not

occur free in the type superscript of any free term variable of Y β[x/t][y/z][P/T ].H1,

Y β[x/t][y/z][P/T ].H1 has no free term variable equivalent to Y β[x/t][y/z][P/T ][z/u[x/t]],

and H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1] is in D. We will prove by induction
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on N(G1) + N(H1). Since ST (z.Y β[x/t][y/z][P/T ].H1, I(u[x/t], G1)) is neutral, to

show that it is in D, it is enough to show that all its immediate reducts are in D.

Every immediate reduct of ST (z.Y β[x/t][y/z][P/T ].H1, I(u[x/t], G1)) is of one of the

following forms.

(i) H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1].

This is in D by the assumption.

(ii) ST (z.Y β[x/t][y/z][P/T ].H ′
1, I(u[x/t], G1)) where H1 Â1 H ′

1.

By CR2, H ′
1 is in D. By Note (b) on page 91, z does not occur free in the type

superscript of any free term variable of Y β[x/t][y/z][P/T ].H ′
1 and Y β[x/t][y/z][P/T ].H ′

1

has no free term variable equivalent to Y β[x/t][y/z][P/T ][z/u[x/t]].

By Lemma 3.3.4, H1[z/u[x/t]] Â1 H∗ for some term H∗ such that H∗ ≡
H ′

1[z/u[x/t]] and H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1] Â1 H∗∗ for some term

H∗∗ such that H∗∗ ≡ H∗[Y β[x/t][y/z][P/T ][z/u[x/t]]/G1], so, by Lemma 3.2.26, H∗∗ ≡
H ′

1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1].

Since H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1] is in D, by CR0 and CR2,

H ′
1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1] is in D. Hence H ′

1 satisfies the conditions

of the hypothesis. Thus ST (z.Y β[x/t][y/z][P/T ].H ′
1, I(u[x/t], G1)) is in D by the

subsidiary induction hypothesis.

(iii) ST (z.Y β[x/t][y/z][P/T ].H1, I(u[x/t], G′
1)) where G1 Â1 G′

1.

By CR2, G′
1 is in Cβ[y/u][x/t][P/C]. By Lemma 3.3.5,

H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G′
1] is equivalent to some reduct of

H1[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/G1], so it is in D by CR0 and CR2. Hence G′
1

satisfies the conditions of the hypothesis. Thus

ST (z.Y β[x/t][y/z][P/T ].H1, I(u[x/t], G′
1)) is in D.

Hence we have Claim 3.

We have
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(1) M is in Cβ[y/u][x/t][P/C] by the induction hypothesis;

(2) H(Y β[x/t][y/z][P/T ]) is in D since H is in Cβ[x/t][y/z][P/C] ⊃ D;

(3) z does not occur free in the type superscript of any free term variable of

Y β[x/t][y/z][P/T ].H(Y β[x/t][y/z][P/T ]) and Y β[x/t][y/z][P/T ].H(Y β[x/t][y/z][P/T ]) has no free

term variable equivalent to Y β[x/t][y/z][P/T ][z/u[x/t]];

(4) H(Y β[x/t][y/z][P/T ])[z/u[x/t]][Y β[x/t][y/z][P/T ][z/u[x/t]]/M ] is in D, since it is

H[z/u[x/t]](M), where H[z/u[x/t]] is in Cβ[x/t][y/u[x/t]][P/C] ⊃ D and M is in

Cβ[y/u][x/t][P/C] i.e. Cβ[x/t][y/u[x/t]][P/C].

Thus, by (1)-(4) and the claim,

ST (z.Y β[x/t][y/z][P/T ].H(Y β[x/t][y/z][P/T ]), I(u[x/t],M)) is in D. Hence I(u[x/t],M)

is in C∃yβ[x/t][P/C] i.e. Cα[x/t][P/C].

(∃2 Intro) Fα = I(U,Gβ(Q/U))∃2Qqβ:

We want to show that I(U [P/T ],M), where M = Gβ(Q/U)[x/t][P/T ][X/K], is

in C∃2Qβ[x/t][P/C].

As usual, we may assume that Q 6∈ {P} ∪ FV (T ).

By the induction hypothesis, M is in Cβ[Q/U ][x/t][P/C]. By Lemmas 2.15,

4.2.10, and 4.2.11, Cβ[Q/U ][x/t][P/C] = Cβ[x/t][Q/U ][P/C] = Cβ[x/t][P/C, Q/D] for

some collection of CRs D corresponding to U [P/T ]. Hence M is in

Cβ[x/t][P/C, Q/D]. If I(U [P/T ],M) Â I(U [P/T ], M ′), M Â M ′, so M ′ is in

Cβ[x/t][P/C, Q/D] by CR2.

Let R be a q-ary predicate variable such that R 6∈ FV (β[x/t][P/T ]) − {Q},
[γ] be a type such that R 6∈ FV (γ), D be a CR of type [γ], H be a term of type

[β[x/t][Q/R,P/T ] ⊃ γ] such that for each abstraction term V = λy1, . . . , yqσ and

all collections of CRs E corresponding to V , H[R/V ] is in Cβ[x/t][P/C, Q/E ] ⊃ D

and R is not free in the type superscript of any free term variable of H, and
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Y β[x/t][Q/R,P/T ] be a term variable which is not equivalent to any free term variable

of H.

We want to show that ST (R.Y β[x/t][Q/R,P/T ].H(Y β[x/t][Q/R,P/T ]), I(U [P/T ],M))

is in D. Again, since D is closed under equivalence of terms, we may assume that

Y β[x/t][Q/R,P/T ].H has no free term variable equivalent to Y β[x/t][Q/R,P/T ][R/U [P/T ]].

We first need the following claim which can be proved in the same way as

Claim 3.

Claim 4. For any terms G1 and H1, if G1 is in Cβ[Q/U ][x/t][P/C], H1 is in

D, R does not occur free in the type superscript of any free term variable of

Y β[x/t][Q/R,P/T ].H1, Y β[x/t][Q/R,P/T ].H1 has no free term variable equivalent to

Y β[x/t][Q/R,P/T ][R/U [P/T ]], and H1[R/U [P/T ]][Y β[x/t][Q/R,P/T ][R/U [P/T ]]/G1] is in D,

then ST (R.Y β[x/t][Q/R,P/T ].H1, I(U [P/T ], G1)) is in D.

We have

(1) M is in Cβ[Q/U ][x/t][P/C] by the induction hypothesis;

(2) H(Y β[x/t][Q/R,P/T ]) is in D since H is in Cβ[x/t][P/C, Q/ER] ⊃ D, where ER

is a collection of CRs corresponding to λy1, . . . , yqR(y1, . . . , yq) and Y β[x/t][Q/R,P/T ]

is in Cβ[x/t][P/C, Q/ER];

(3) R does not occur free in the type superscript of any free term variable

of Y β[x/t][Q/R,P/T ].H(Y β[x/t][Q/R,P/T ]) and Y β[x/t][Q/R,P/T ].H(Y β[x/t][Q/R,P/T ]) has no

free term variable equivalent to Y β[x/t][Q/R,P/T ][R/U [P/T ]];

(4) H(Y β[x/t][Q/R,P/T ])[R/U [P/T ]][Y β[x/t][Q/R,P/T ][R/U [P/T ]]/M ] is in D, since

it is H[R/U [P/T ]](M), where H[R/U [P/T ]] is in Cβ[x/t][P/C, Q/E ] ⊃ D and,

by Lemma 4.2.11, M is in Cβ[Q/U ][x/t][P/C] i.e. Cβ[x/t][P/C, Q/E ], where U =

λz1, . . . , zqσ, z = z1, . . . , zq, and E =

{Cσ[z/v][P/C] | v = v1, . . . , vq are individual terms.}.
Thus, by (1)-(4) and the claim,
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ST (R.Y β[x/t][Q/R,P/T ].H(Y β[x/t][Q/R,P/T ]), I(U [P/T ],M)) is in D, and so

I(U [P/T ],M) is in C∃2Qβ[x/t][P/C] i.e. Cα[x/t][P/C].

(∃ Elim) Fα = ST (y.Y β.Gα, H∃yβ):

As usual, we may assume that y 6∈ {x} ∪ fv(t) ∪ fv(K), Gα has no free term

variable Y σ such that σ 6≡ β, and Y β′ is not equivalent to any free term variable

in X or K.

We will show that M = ST (y.Y β′ .Gα[x/t][P/T ][X/K], H∃yβ[x/t][P/T ][X/K])

is in Cα[x/t][P/C] by induction on N(Gα[x/t][P/T ][X/K]) +

N(H∃yβ[x/t][P/T ][X/K]). Since M is neutral, it is enough to show that all its

immediate reducts are in Cα[x/t][P/C].

If an immediate reduct of M is obtained by reducing Gα[x/t][P/T ][X/K]

or H∃yβ[x/t][P/T ][X/K], then it is in Cα[x/t][P/C] by the subsidiary induction

hypothesis.

The remaining case is when H∃yβ[x/t][P/T ][X/K] = I(u,H1) and the imme-

diate reduct is Gα[x/t][P/T ][X/K][y/u][Y β′[y/u]/H1].

By the main induction hypothesis, I(u,H1) is in C(∃yβ)[x/t][P/C]. Hence H1 is

in Cβ[x/t][y/u][P/C] i.e. Cβ[x/t,y/u][P/C] by Lemmas 2.13 and 4.2.10.

Since y 6∈ {x} ∪ fv(K), y 6∈ fv(δi) and so Cδi[x/t,y/u][P/C] = Cδi[x/t][P/C] for

all 1 ≤ i ≤ l.

Hence, by the main induction hypothesis, Gα[x/t, y/u][P/T ][X/K, Y β′[y/u]/H1]

is in Cα[x/t,y/u][P/C] which is Cα[x/t][P/C] since y 6∈ fv(α).

By Lemmas 3.2.19, 3.2.21, 3.2.22, 3.2.23, 3.2.25, and 3.2.26,

Gα[x/t][P/T ][X/K][y/u][Y β′[y/u]/H1] ≡ Gα[x/t, y/u][P/T ][X/K, Y β′[y/u]/H1].

Hence, by CR0, Gα[x/t][P/T ][X/K][y/u][Y β′[y/u]/H1] is in Cα[x/t][P/C].
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(∃2 Elim) F α = ST (Q.Y β.Gα, H∃2Qβ):

As usual, we may assume that Q 6∈ {P} ∪ FV (T ) ∪ FV (K), Gα has no free

term variable Y σ such that σ 6≡ β, and Y β′ is not equivalent to any free term

variable in X or K.

We will show that M =

ST (Q.Y β′ .Gα[x/t][P/T ][X/K], H∃2Qβ[x/t][P/T ][X/K]) is in Cα[x/t][P/C] by in-

duction on N(Gα[x/t][P/T ][X/K]) + N(H∃2Qβ[x/t][P/T ][X/K]). Since M is

neutral, it is enough to show that all its immediate reducts are in Cα[x/t][P/C].

If an immediate reduct of M is obtained by reducing Gα[x/t][P/T ][X/K] or

H∃2Qβ[x/t][P/T ][X/K], then it is in Cα[x/t][P/C] by the subsidiary induction hy-

pothesis.

The remaining case is when H∃2Qβ[x/t][P/T ][X/K] = I(U,H1) and the im-

mediate reduct is Gα[x/t][P/T ][X/K][Q/U ][Y β′[Q/U ]/H1].

By the main induction hypothesis, I(U,H1) is in C(∃2Qβ)[x/t][P/C]. Hence H1

is in Cβ[x/t][P/C, Q/D] for some collection of CRs D corresponding to U .

Since Q 6∈ {P} ∪ FV (K), Q 6∈ FV (δi[x/t]) and so Cδi[x/t][P/C, Q/D] =

Cδi[x/t][P/C] for all 1 ≤ i ≤ l. Hence, by the main induction hypothesis,

Gα[x/t][P/T ,Q/U ][X/K, Y β′[Q/U ]/H1] is in Cα[x/t][P/C, Q/D] which is

Cα[x/t][P/C] since Q 6∈ FV (α).

By Lemmas 3.2.21, 3.2.22, 3.2.23, and 3.2.26,

Gα[x/t][P/T ][X/K][Q/U ][Y β′[Q/U ]/H1] ≡ Gα[x/t][P/T ,Q/U ][X/K, Y β′[Q/U ]/H1].

Hence, by CR0, Gα[x/t][P/T ][X/K][Q/U ][Y β′[Q/U ]/H1] is in Cα[x/t][P/C].

(⊥ Elim) Fα = G⊥(α):

By the main induction hypothesis, G⊥[x/t][P/T ][X/K] is in C⊥[P/C]. We

will show that M = G⊥[x/t][P/T ][X/K](α′) is in Cα[x/t][P/C] by induction on
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N(G⊥[x/t][P/T ][X/K]).

N(G⊥[x/t][P/T ][X/K]) = 0:

Then G⊥[x/t][P/T ][X/K] is normal and so is M . Since M is neutral, by CR4,

M is in Cα[x/t][P/C].

N(G⊥[x/t][P/T ][X/K]) > 0:

Since M is neutral, we will show that all its immediate reducts are in

Cα[x/t][P/C].

Suppose G∗ is an immediate reduct of M . Then G∗ = G′(α′) for some term

G′ such that G⊥[x/t][P/T ][X/K] Â1 G′. Hence G∗ is in Cα[x/t][P/C] by the

subsidiary induction hypothesis.

Theorem 4.2.13. Each Curry-Howard term is strongly normalizable.

Proof. Let Fα be a Curry-Howard term, x = x1, . . . , xn be distinct individual

variables, P = Pm1
1 , . . . , Pmk

k be distinct predicate variables, C = C1, . . . , Ck be

collections of CRs where each Ci is corresponding to λzi
1, . . . , z

i
mi

Pi(z
i
1, . . . , z

i
mi

),

X = Xδ1
1 , . . . , Xδl

l be inequivalent term variables such that every free term variable

of Fα is equivalent to some Xδi
i in X.

By the above lemma, Fα[x/x][P/P ][X/X] is in Cα[x/x][P/C] i.e. Fα is in

Cα[P/C]. Hence Fα is strongly normalizable by CR1.

We have shown that every Curry-Howard term for second-order logic is strongly

normalizable. This means that we can then take proofs in second-order logic and

directly produce programs from them.



CHAPTER V

TEMPLATES

In carrying out mathematical proofs the same patterns frequently recur. What

we want to do is to characterize what a pattern, or template, is and then add

new rules to the formal system NJ2. We then define new Curry-Howard terms

formation rules corresponding to the new rules as well as new reduction rules

corresponding to reductions of proofs. After these additions, the Curry-Howard

terms will still satisfy all the basic properties including the strong normalization

theorem. Therefore we can use such patterns in the formal system properly.

In this chapter, we introduce two kinds of templates namely induction tem-

plates and abbreviation templates which can be used for different purposes. The

details will be presented in the following sections.

5.1 Induction templates

We often use induction in ordinary mathematical proofs. Now, we will add induc-

tion to the formal system NJ2. We want the new induction to be more versatile

so that it does not have to be used only on natural numbers but on predicates

that are defined inductively from finite numbers of basic constants. We need to

add axioms and rules to NJ2 as follows.

Let

φ be a unary predicate symbol;
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a1, . . . , an be constant symbols;

f1, . . . , fm be function symbols with arities p1 + q1, . . . , pm + qm, respectively,

where pi ≥ 1 and qi ≥ 0 for all 1 ≤ i ≤ m;

ψr1 , . . . , ψrl
be unary predicate symbols, where r1, . . . , rl is the sublist of 1, . . . , m

consisting of all i’s such that qi 6= 0.

Note.

a. The sequence ψr1 , . . . , ψrl
may be empty.

b. Some parentheses will be omitted by using association to the left.

Axioms:

φ(a1), . . . , φ(an),

∀x1 . . .∀xpi
∀y1 . . . ∀yqi

(φ(x1) ∧ . . . ∧ φ(xpi
) ∧ ψi(y1) ∧ . . . ∧ ψi(yqi

)

⊃ φ(fi(x1, . . . , xpi
, y1, . . . , yqi

))), where qi 6= 0, 1 ≤ i ≤ m,

∀x1 . . .∀xpi
(φ(x1)∧ . . .∧φ(xpi

) ⊃ φ(fi(x1, . . . , xpi
))), where qi = 0, 1 ≤ i ≤ m.

Rule:
...

...
...

...

α(x/a1) . . . α(x/an) α1 . . . αm

∀x(φ(x) ⊃ α)
(Induction)

where α is any formula and for all 1 ≤ i ≤ m, αi denotes

∀x1 . . . ∀xpi
∀y1 . . . ∀yqi

(φ(x1) ∧ . . . ∧ φ(xpi
) ∧ ψi(y1) ∧ . . . ∧ ψi(yqi

)

⊃ (α(x/x1) ∧ . . . ∧ α(x/xpi
) ⊃ α(x/fi(x1, . . . , xpi

, y1, . . . , yqi
)))),

where qi 6= 0 and fv(α) ∩ {x1, . . . , xpi
, y1, . . . , yqi

} = ∅, or

∀x1 . . . ∀xpi
(φ(x1)∧. . .∧φ(xpi

) ⊃ (α(x/x1)∧. . .∧α(x/xpi
) ⊃ α(x/fi(x1, . . . , xpi

))),

where qi = 0 and fv(α) ∩ {x1, . . . , xpi
} = ∅.

Notation. Throughout this section, when a formula α is given, we will use the

notations αi, 1 ≤ i ≤ m, as above.
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Examples.

I. Let L = 〈S, 0〉 be a language for natural numbers.

We extend L to L′ = 〈N,S, 0〉, where N is a unary predicate symbol.

We introduce the following axioms.

(i) N(0);

(ii) ∀x(N(x) ⊃ N(S(x))).

We have the following induction rule.

...
...

α(x/0) ∀x(N(x) ⊃ (α ⊃ α(x/S(x))))

∀x(N(x) ⊃ α)

Next, we extend L′ to L′′ = 〈N, S, List, con, 0, [ ]〉, where

List is a unary predicate symbol;

con is a binary function symbol; and

[ ] is a constant symbol.

We add the following axioms.

(i) List([ ]);

(ii) ∀x∀y(List(x) ∧N(y) ⊃ List(con(x, y))).

We have the list induction rule as follows.

...
...

α(z/[ ]) ∀x∀y(List(x) ∧N(y) ⊃ (α(z/x) ⊃ α(z/con(x, y))))

∀z(List(z) ⊃ α)

II. We consider a finitely generated algebraic system. For definiteness, we

consider a group which is finitely generated by a1 . . . , an.

Let 〈G, inv, ∗, a1, . . . , an〉 be a language, where

G is a unary predicate symbol;

inv is a unary function symbol;
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∗ is a binary function symbol; and

a1, . . . , an are constant symbols.

We include the following axioms.

(i) G(a1), . . . , G(an);

(ii) ∀x(G(x) ⊃ G(inv(x)));

(iii) ∀x∀y(G(x) ∧G(y) ⊃ G(∗(x, y))).

Then we have the following rule.

...
...

...

α(z/a1) . . . α(z/an) ∀x(G(x) ⊃ (α(z/x) ⊃ α(z/inv(x))))

∀x∀y(G(x) ∧G(y) ⊃ (α(z/x) ∧ α(z/y) ⊃ α(z/ ∗ (x, y))))

∀z(G(z) ⊃ α)

In the following, we will define new Curry-Howard terms, called constant terms,

which correspond to some formulae that are obtained from the axioms.

For each axiom α, let Aα be a constant term and then introduce reduction

rules and new constant terms as follows.

For each 1 ≤ i ≤ m such that qi 6= 0,

A∀x1...∀xpi∀y1...∀yqi (φ(x1)∧...∧φ(xpi )∧ψi(y1)∧...∧ψi(yqi )⊃φ(fi(x1,...,xpi ,y1,...,yqi )))(t1)

Â A∀x2...∀xpi∀y1...∀yqi (φ(t1)∧φ(x2)∧...∧φ(xpi )∧ψi(y1)∧...∧ψi(yqi )⊃φ(fi(t1,x2,...,xpi ,y1,...,yqi )));

...

A∀yqi (φ(t1)∧...∧φ(tpi )∧ψi(u1)∧...∧ψi(uqi−1)∧ψi(yqi )⊃φ(fi(t1,...,tpi ,u1,...,uqi−1,yqi )))(uqi
)

Â Aφ(t1)∧...∧φ(tpi )∧ψi(u1)∧...∧ψi(uqi )⊃φ(fi(t1,...,tpi ,u1,...,uqi )),

where t1, . . . , tpi
, u1, . . . , uqi

are closed individual terms.
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For each 1 ≤ i ≤ m such that qi = 0,

A∀x1...∀xpi (φ(x1)∧...∧φ(xpi )⊃φ(fi(x1,...,xpi )))(t1)

Â A∀x2...∀xpi (φ(t1)∧φ(x2)∧...∧φ(xpi )⊃φ(fi(t1,x2,...,xpi )));

...

A∀xpi (φ(t1)∧...∧φ(tpi−1)∧φ(xpi )⊃φ(fi(t1,...,tpi−1,xpi )))(tpi
) Â Aφ(t1)∧...∧φ(tpi )⊃φ(fi(t1,...,tpi )),

where t1, . . . , tpi
are closed individual terms.

Note. For every constant term Aα, α is a closed formula.

We define a term formation rule corresponding to the induction rule as follows.

(Induction) If F
α(x/a1)
1 , . . . , F

α(x/an)
n , Gα1

1 , . . . , Gαm
m are terms of types [α(x/a1)],

. . . , [α(x/an)], [α1], . . . , [αm], respectively, then ρ([F1, . . . , Fn], [G1, . . . , Gm]) is a

term of type [∀x(φ(x) ⊃ α)].

We introduce reduction rules as follows.

For each 1 ≤ j ≤ n,

ρ([F1, . . . , Fn], [G1, . . . , Gm])(aj)(H
φ(aj)) Â F

α(x/aj)
j ,

where Hφ(aj) contains no free term variable.

For each 1 ≤ i ≤ m such that qi 6= 0,

ρ([F1, . . . , Fn], [G1, . . . , Gm])(fi(t1, . . . , tpi
, u1, . . . , uqi

))

(H((J
φ(t1)
1 , . . . , J

φ(tpi )
pi , K

ψ(u1)
1 , . . . , K

ψ(uqi )
qi )))

Â Gi(t1) . . . (tpi
)(u1) . . . (uqi

)((J1, . . . , Jpi
, K1, . . . , Kqi

))

((ρ([F1, . . . , Fn], [G1, . . . , Gm])(t1)(J1), . . . , ρ([F1, . . . , Fn], [G1, . . . , Gm])(tpi
)(Jpi

))),

where H is a constant term of type [φ(t1) ∧ . . . ∧ φ(tpi
) ∧ ψi(u1) ∧ . . . ∧ ψi(uqi

) ⊃
φ(fi(t1, . . . , tpi

, u1, . . . , uqi
))] and J1, . . . , Jpi

, K1, . . . , Kqi
contain no free term vari-

able.
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For each 1 ≤ i ≤ m such that qi = 0,

ρ([F1, . . . , Fn], [G1, . . . , Gm])(fi(t1, . . . , tpi
))(H((J

φ(t1)
1 , . . . , J

φ(tpi )
pi )))

Â Gi(t1) . . . (tpi
)((J1, . . . , Jpi

))

((ρ([F1, . . . , Fn], [G1, . . . , Gm])(t1)(J1), . . . , ρ([F1, . . . , Fn], [G1, . . . , Gm])(tpi
)(Jpi

))),

where H is a constant term of type [φ(t1) ∧ . . . ∧ φ(tpi
) ⊃ φ(fi(t1, . . . , tpi

))] and

J1, . . . , Jpi
contain no free term variable.

Now, we have new forms of Curry-Howard terms as well as new reduction

rules. In the following, we will add the new cases to some definitions in Chapter

III. All lemmas in Chapter III, which can be proved in the same way as the old

ones by straightforwardly following the definitions for the new cases, still hold

after these additions.

Definitions 3.2.2 and 3.2.3.

fv(Aα) = fv(α);

fv(ρ([F1, . . . , Fn], [G1, . . . , Gm])) =
n⋃

j=1

fv(Fj) ∪
m⋃

i=1

fv(Gi).

Similarly for FV (Aα) and FV (ρ([F1, . . . , Fn], [G1, . . . , Gm])).

Note. fv(Aα) = FV (Aα) = ∅.

Definition 3.2.4.

Constant terms Aα and Aα′ are equivalent , denoted by Aα ≡ Aα′, if α ≡ α′.

Definition 3.2.6.

x is replaceable by t in Aα;

x is replaceable by t in ρ([F1, . . . , Fn], [G1, . . . , Gm]) if x is replaceable by t

in Fj for all 1 ≤ j ≤ n and Gi for all 1 ≤ i ≤ m.

Similarly for replaceability of P by T .
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Definitions 3.2.10 and 3.2.11.

Aα[x/t] = Aα[x/t];

ρ([F1, . . . , Fn], [G1, . . . , Gm])[x/t] = ρ([F1[x/t], . . . , Fn[x/t]], [G1[x/t], . . . , Gm[x/t]]).

Similarly for Aα[P/T ] and ρ([F1, . . . , Fn], [G1, . . . , Gm])[P/T ].

Note. Aα[x/t] = Aα[P/T ] = Aα.

Definition 3.2.12.

Aα[X/K] = Aα;

ρ([F1, . . . , Fn], [G1, . . . , Gm])[X/K]

= ρ([F1[X/K], . . . , Fn[X/K]], [G1[X/K], . . . , Gm[X/K]]).

Next, we will show that the new Curry-Howard terms satisfy the strong nor-

malization theorem. All lemmas in Chapter IV still hold after the additions. We

will give only the proof for the additional cases of Lemma 4.2.12 and omit the

others of which proofs are similar to the old ones. First, we will extend the defi-

nition of neutral terms in Chapter IV as follows.

Definition 4.1.2. A constant term Aα is neutral if α is φ(t) for some (closed)

individual term t, otherwise Aα is not neutral.

A term of the form ρ([F1, . . . , Fn], [G1, . . . , Gm]) is not neutral.

Lemma 4.2.12.

Fα[x/t][P/T ][X/K] is in Cα[x/t][P/C].

Proof. (Term constant) Fα = Aα:

We have Aα[x/t][P/T ][X/K] = Aα since α is a closed formula.

We will prove by induction on the number s of all occurrences of the symbol

∀ in α.

s = 0:

Case 1. α = φ(u) for some (closed) individual term u:
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Then Aα is neutral and normal, and so it is in Cα[x/t][P/C] by CR4.

Case 2. α = φ(u1)∧. . .∧φ(upi
)∧ψi(v1)∧. . .∧ψi(vqi

) ⊃ φ(fi(u1, . . . , upi
, v1, . . . ,

vqi
)) for some 1 ≤ i ≤ m and some (closed) individual terms u1, . . . , upi

, v1, . . . , vqi
:

Let G be in Cφ(u1)∧...∧φ(upi )∧ψi(v1)∧...∧ψi(vqi )
[P/C]. We will prove that Aα(G) is in

Cφ(fi(u1,...,upi ,v1,...,vqi ))
[P/C] by induction on N(G). Since Aα(G) is neutral, we will

show that all its immediate reducts are in Cφ(fi(u1,...,upi ,v1,...,vqi ))
[P/C]. It follows

by the subsidiary induction hypothesis since every immediate reduct is obtained

by reducing G.

Similarly if α = φ(u1) ∧ . . . ∧ φ(upi
) ⊃ φ(fi(u1, . . . , upi

)) for some 1 ≤ i ≤ m

and some (closed) individual terms u1, . . . , upi
.

s > 0: Then α is of the form ∀yγ. Note that fv(γ) ⊆ {y} since α is closed. As

usual, we may assume that y 6∈ {x}∪fv(t). Let u be an individual term. We want

to show that Aα(u) is in Cγ[x/t][y/u][P/C]. Since the only immediate reduct of Aα(u)

is Aγ[y/u] which is in Cγ[y/u][P/C] i.e. Cγ[x/t][y/u][P/C] by the subsidiary induction

hypothesis, Aα(u) is in Cγ[x/t][y/u][P/C] by CR3. Thus Aα is in C∀yγ[x/t][P/C] i.e.

Cα[x/t][P/C].

(Induction) Fα = ρ([F1, . . . , Fn], [G1, . . . , Gm])∀y(φ(y)⊃β):

As usual, we may assume that y is not in {x} ∪ fv(t).

Then Fα[x/t][P/T ][X/K] = ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]],

[G1[x/t][P/T ][X/K], . . . , Gm[x/t][P/T ][X/K]])∀y(φ(y)⊃β[x/t][P/T ]).

Let u be an individual term. We have to show that Fα[x/t][P/T ][X/K](u) is

in Cφ(u)⊃β[x/t][y/u][P/C].

Let H be in Cφ(u)[P/C]. We will prove that Fα[x/t][P/T ][X/K](u)(H) is in

Cβ[x/t][y/u][P/C] by induction on
n∑

j=1

N(Fj[x/t][P/T ][X/K]) +

m∑
i=1

N(Gi[x/t][P/T ][X/K]) + N(H). We will show that all its immediate reducts
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are in Cβ[x/t][y/u][P/C]. It follows by the subsidiary induction hypothesis if an

immediate reduct is obtained by reducing Fj[x/t][P/T ][X/K] for some 1 ≤ j ≤ n,

Gi[x/t][P/T ][X/K] for some 1 ≤ i ≤ m, or H. For the remaining cases, which

are obtained when F α[x/t][P/T ][X/K](u)(H) is the redex being reduced, we will

prove by induction on u.

u = aj for some 1 ≤ j ≤ n:

Then the immediate reduct is Fj[x/t][P/T ][X/K] which is in Cβ[x/t][y/u][P/C]

by the main induction hypothesis.

u = fi(u1, . . . , upi
, v1, . . . , vqi

) for some 1 ≤ i ≤ m and some individual terms

u1, . . . , upi
, v1, . . . , vqi

and H = H∗((J
φ(u1)
1 , . . . , J

φ(upi )
pi , K

ψi(v1)
1 , . . . , K

ψi(vqi )
qi )), where

H∗ is a constant term of type [φ(u1) ∧ . . . ∧ φ(upi
) ∧ ψi(v1) ∧ . . . ∧ ψi(vqi

) ⊃
φ(fi(u1, . . . , upi

, v1, . . . , vqi
))]:

Then the immediate reduct is M =

Gi[x/t][P/T ][X/K](u1) . . . (upi
)(v1) . . . (vqi

)((J1, . . . , Jpi
, K1, . . . , Kqi

))

((ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]], [G1[x/t][P/T ][X/K], . . . ,

Gm[x/t][P/T ][X/K]])(u1)(J1), . . . , ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]],

[G1[x/t][P/T ][X/K], . . . , Gm[x/t][P/T ][X/K]])(upi
)(Jpi

))).

It can be easily checked by induction on h that if H1, . . . , Hh are terms in

CR C1, . . . , Ch, respectively, then (H1, . . . , Hh) is in C1 ∧ . . . ∧ Ch. Since for all

1 ≤ j ≤ pi, Jj is a subterm of H which is in Cφ(u)[P/C] i.e. SNφ(u), Jj is in

SNφ(uj) i.e. Cφ(uj)[P/C] for all 1 ≤ j ≤ pi and similarly, for all 1 ≤ j ≤ qi, Kj is in

Cψ(vj)[P/C]. Hence (J1, . . . , Jpi
, K1, . . . , Kqi

) is in Cφ(u1)[P/C]∧ . . .∧Cφ(upi )
[P/C]∧

Cψi(v1)[P/C] ∧ . . . ∧ Cψi(vqi )
[P/C] i.e. Cφ(u1)∧...∧φ(upi )∧ψi(v1)∧...∧ψi(vqi )

[P/C].

By the main induction hypothesis, Gi[x/t][P/T ][X/K] is in Cβi[x/t][P/C] (see

page 141 for the notation of βi). Hence Gi[x/t][P/T ][X/K](u1) . . . (upi
)(v1) . . . (vqi

)

is in Cφ(u1)∧...∧φ(upi )∧ψi(v1)∧...∧ψi(vqi )⊃(β[x/t](y/u1)∧...∧β[x/t](y/upi )⊃β[x/t](y/fi(u1,...,upi ,v1,...,vqi )))
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[P/C]. Thus Gi[x/t][P/T ][X/K](u1) . . . (upi
)(v1) . . . (vqi

)((J1, . . . , Jpi
, K1, . . . , Kqi

))

is in Cβ[x/t](y/u1)∧...∧β[x/t](y/upi )⊃β[x/t](y/fi(u1,...,upi ,v1,...,vqi ))
[P/C].

By the induction hypothesis (on u),

ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]], [G1[x/t][P/T ][X/K], . . . ,

Gm[x/t][P/T ][X/K]])(uj)(Jj) is in Cβ[x/t][y/uj ][P/C] for all 1 ≤ j ≤ pi. Hence

(ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]], [G1[x/t][P/T ][X/K], . . . ,

Gm[x/t][P/T ][X/K]])(u1)(J1), . . . , ρ([F1[x/t][P/T ][X/K], . . . , Fn[x/t][P/T ][X/K]],

[G1[x/t][P/T ][X/K], . . . , Gm[x/t][P/T ][X/K]])(upi
)(Jpi

)) is in

Cβ[x/t](y/u1)∧...∧β[x/t](y/upi )
[P/C]. Thus M is in Cβ[x/t](y/fi(u1,...,upi ,v1,...,vqi ))

[P/C] i.e.

Cβ[x/t][y/u][P/C].

u = fi(u1, . . . , upi
) for some 1 ≤ i ≤ m and some individual terms u1, . . . , upi

and

H = H∗((J
φ(u1)
1 , . . . , J

φ(upi )
pi )), where H∗ is a constant term of type [φ(u1) ∧ . . . ∧

φ(upi
) ⊃ φ(fi(u1, . . . , upi

))]:

This case can be proved as the above case.

5.2 Abbreviation templates

In ordinary mathematics, we often abbreviate a formula by a predicate. We will

introduce Abbreviation Introduction and Abbreviation Elimination rules to NJ2

which will allow us to use such abbreviations in the formal system.

For each formula α with fv(α) = {x1, . . . , xnα}, nα ≥ 1, and FV (α) = ∅,

let Pα be a new nα-ary predicate symbol corresponding to α. We call these new

predicate symbols abbreviation predicates.

Notes.

a. For each Pα, α does not contain any abbreviation predicates.

b. We restrict the definition of abstraction terms T = λx1, . . . , xnα so that α
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does not contain any abbreviation predicates.

c. We define β[P/Pα] and β(P/Pα) in the same way as substitutions by pred-

icate variables in Definition 2.5 and Part B of Definition 2.18, respectively.

Every lemma that holds for substitutions by predicate variables also holds for

substitutions by abbreviation predicates and the proof is similar.

Since we do not allow abstraction terms to contain abbreviation predicates,

we will modify some lemmas in Chapter II for substitutions by abbreviation pred-

icates as follows.

Note. In the following R is an r-ary predicate variable and Pσ is an r-ary abbre-

viation predicate.

Lemma 2.16 If R 6∈ {P} ∪ FV (T ), then α[P/T ][R/Pσ] ≡ α[R/Pσ][P/T ].

Lemma 2.24 If R 6∈ {P} ∪ FV (T ), then {α(P/T )(R/Pσ)} = {α(R/Pσ)(P/T )}.
Proofs of both lemmas are similar to the original ones.

We introduce the following rules.

(Abbr Intro)
...

β(P/T )

β(P/Pα)

(Abbr Elim)

[β(P/T )]

...
...

β(P/Pα) γ

γ

where P is an n-ary predicate variable and T = λx1, . . . , xnα with FV (α) = ∅.
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We define the corresponding term formation rules as follows.

(Abbr Intro) If F β(P/T ) is a term of type [β(P/T )], where T = λx1, . . . , xnα

with FV (α) = ∅, then abbr(Pα, F β(P/T )) is a term of type [β(P/Pα)].

(Abbr Elim) If F β(P/Pα) is a term of type [β(P/Pα)], Gγ is a term of type [γ],

and Xβ(P/T ) is a term variable of type [β(P/T )], where T = λx1, . . . , xnα, then

unabbr(Xβ(P/T ).Gγ, F β(P/Pα)) is a term of type [γ].

Note. Every occurrence of Xσ, where [σ] = [β(P/T )], in Xβ(P/T ).Gγ is bound.

We add reduction rules as follows.

Note. In the following, T = λx1, . . . , xnα where FV (α) = ∅.

(Abbr Intro, Abbr Elim)

unabbr(Xβ(P/T ).Gγ, abbr(Pα, F β(P/T ))) Â G[Xβ(P/T )/F β(P/T )],

provided P ∈ FV (β); and

unabbr(Xβ.Gγ, F β) Â G[Xβ/F β];

abbr(Pα, F β)β Â F β.

Note. The above two reduction rules are obtained from the trivial case i.e. when

P 6∈ FV (β).

(Abbr Intro, ∧ Elim)

πi(abbr(Pα, F (β1∧β2)(P/T ))) Â abbr(Pα, πiF ), i = 1, 2.

(Abbr Intro, ⊃ Elim)

(abbr(Pα, F (β1⊃β2)(P/T )))(Gβ1(P/Pα)) Â abbr(Pα, F (unabbr(Xβ1(P/T ).Xβ1(P/T ), G))),

where Xβ1(P/T ) is the first term variable of type [β1(P/T )].

(Abbr Intro, ∨ Elim)

⊕(X
β1(P/Pα)
1 .G

β1(P/Pα)⊃γ
1 (X

β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G

β2(P/Pα)⊃γ
2 (X

β2(P/Pα)
2 ),

abbr(Pα, F (β1∨β2)(P/T ))) Â ⊕(Y
β1(P/T )
1 .unabbr(Y

β1(P/T )⊃γ
1 .Y

β1(P/T )⊃γ
1 , G1)(Y

β1(P/T )
1 ),

Y
β2(P/T )
2 .unabbr(Y

β2(P/T )⊃γ
2 .Y

β2(P/T )⊃γ
2 , G2)(Y

β2(P/T )
2 ), F ),
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where X
βi(P/Pα)
i is not equivalent to any free term variable of Gi and Y

βi(P/T )
i is

the first term variable of type [βi(P/T )] which is not equivalent to any free term

variable of Gi, i = 1, 2.

(Abbr Intro, ∀ Elim)

abbr(Pα, F (∀xγ)(P/T ))(t) Â abbr(Pα, F (t)).

(Abbr Intro, ∀2 Elim)

abbr(Pα, F (∀2Qγ)(P/T ))(U) Â abbr(Pα, F (U)).

(Abbr Intro, ∃ Elim)

ST (x.Xσ(P/Pα).Gσ(P/Pα)⊃γ(Xσ(P/Pα)), abbr(Pα, F ∃xσ(P/T )))

Â ST (x.Y σ(P/T ).unabbr(Y σ(P/T )⊃γ.Y σ(P/T )⊃γ, G)(Y σ(P/T )), F ),

where Xσ(P/Pα) is not equivalent to any free term variable of G and Y σ(P/T ) is

the first term variable of type [σ(P/T )] which is not equivalent to any free term

variable of G.

(Abbr Intro, ∃2 Elim)

ST (Q.Xσ(P/Pα).Gσ(P/Pα)⊃γ(Xσ(P/Pα)), abbr(Pα, F ∃2Qσ(P/T )))

Â ST (Q.Y σ(P/T ).unabbr(Y σ(P/T )⊃γ.Y σ(P/T )⊃γ, G)(Y σ(P/T )), F ),

where Xσ(P/Pα) is not equivalent to any free term variable of G and Y σ(P/T ) is

the first term variable of type [σ(P/T )] which is not equivalent to any free term

variable of G.

Now, we have new forms of Curry-Howard terms as well as new reduction

rules. In the following, we will add the new cases to some definitions in Chapter

III. All lemmas in Chapter III still hold after these additions. The proofs for the

additional cases of all lemmas in Section 3.2 are similar to those in the section.

For Section 3.3, we will prove Lemmas 3.3.2 and 3.3.4 for the new cases and omit

the proof of Lemma 3.3.5 since it is similar to the original one.
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Definitions 3.2.2 and 3.2.3.

fv(abbr(Pα, F β(P/T ))) = fv(F β(P/T ));

fv(unabbr(Xβ(P/T ).Gγ, F β(P/Pα))) = fv(Xβ(P/T ).Gγ) ∪ fv(F β(P/Pα)).

Similarly for FV (abbr(Pα, F β(P/T ))) and FV (unabbr(Xβ(P/T ).Gγ, F β(P/Pα))).

Definition 3.2.6.

x is replaceable by t in abbr(Pα, F β(P/T )) if x is replaceable by t in F β(P/T );

x is replaceable by t in unabbr(Xβ(P/T ).Gγ, F β(P/Pα)) if x is replaceable by t

in Xβ(P/T ).Gγ and F β(P/Pα).

Similarly for replaceability of P by T

Definitions 3.2.10, 3.2.11, and 3.2.12.

abbr(Pα, F β(P/T ))[x/t] = abbr(Pα, F β(P/T )[x/t]);

unabbr(Xβ(P/T ).Gγ, F β(P/Pα))[x/t] = unabbr((Xβ(P/T ).Gγ)[x/t], F β(P/Pα)[x/t]).

Similarly for abbr(Pα, F β(P/T ))[P/T ], unabbr(Xβ(P/T ).Gγ, F β(P/Pα))[P/T ],

abbr(Pα, F β(P/T ))[X/K], and unabbr(Xβ(P/T ).Gγ, F β(P/Pα))[X/K].

Lemma 3.3.2. If F ≡ F ′ and F Â1 G, then F ′ Â1 G′ for some C-H term G′

such that G ≡ G′.

Proof. If F is not the redex which is reduced to G, the proof is as in Chapter

III. Suppose F is the redex which is reduced to G. As shown in Chapter III, we

may assume that F ′ is obtained from F by a single legitimate change of bound

variable.

(i) F = unabbr(Xβ(P/T ).Kγ, abbr(Pα, Hβ(P/T ))), where P ∈ FV (β).

Then G = K[Xβ(P/T )/H].

Case 1. F ′ = unabbr(Xβ(P/T ).K ′, abbr(Pα, H ′)) for some terms H ′ and K ′ such

that H ′ ≡ H and K ′ ≡ K.

Then F ′ Â1 K ′[Xβ(P/T )/H ′] ≡ G by Lemma 3.2.26.
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Case 2. F ′ = unabbr(Y β(P/T ).Kγ[Xβ(P/T )/Y β(P/T )], abbr(Pα, H)) where Y β(P/T )

is free for Xβ(P/T ) and is not equivalent to any free term variable in K.

Then F ′ Â1 K[Xβ(P/T )/Y β(P/T )][Y β(P/T )/H] ≡ G by Lemma 3.2.21.

Similarly for the case F = unabbr(Xβ.Kγ, Hβ).

(ii) F = ⊕(X
β1(P/Pα)
1 .G

β1(P/Pα)⊃γ
1 (X

β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G

β2(P/Pα)⊃γ
2 (X

β2(P/Pα)
2 ),

abbr(Pα, H(β1∨β2)(P/T ))), where X
βi(P/Pα)
i is not equivalent to any free term variable

of Gi, i = 1, 2.

Then G = ⊕(Y
β1(P/T )
1 .unabbr(Y

β1(P/T )⊃γ
1 .Y

β1(P/T )⊃γ
1 , G1)(Y

β1(P/T )
1 ),

Y
β2(P/T )
2 .unabbr(Y

β2(P/T )⊃γ
2 .Y

β2(P/T )⊃γ
2 , G2)(Y

β2(P/T )
2 ), H), where Y

βi(P/T )
i is the

first term variable of type [βi(P/T )] which is not equivalent to any free term

variable of Gi, i = 1, 2.

Case 1. F ′ = ⊕(X
β1(P/Pα)
1 .G′

1(X
β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G′

2(X
β2(P/Pα)
2 ), abbr(Pα, H ′)),

where G′
i ≡ Gi, i = 1, 2, and H ′ ≡ H.

Since G′
i ≡ Gi, Y

βi(P/T )
i is also the first term variable of type [βi(P/T )] which

is not equivalent to any free term variable of G′
i, i = 1, 2. Hence

F ′ Â1 ⊕(Y
β1(P/T )
1 .unabbr(Y

β1(P/T )⊃γ
1 .Y

β1(P/T )⊃γ
1 , G′

1)(Y
β1(P/T )
1 ),

Y
β2(P/T )
2 .unabbr(Y

β2(P/T )⊃γ
2 .Y

β2(P/T )⊃γ
2 , G′

2)(Y
β2(P/T )
2 ), H ′) ≡ G.

Case 2. F ′ = ⊕(Z
β1(P/Pα)
1 .G1(Z

β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G2(X

β2(P/Pα)
2 ), abbr(Pα, H)),

where Z
β1(P/Pα)
1 is free for X

β1(P/Pα)
1 and is not equivalent to any free term variable

in G1(X
β1(P/Pα)
1 ).

Then F ′ Â1 G.

Similarly if the changed bound term variable in F is X
β2(P/Pα)
2 .

(iii) F = ST (x.Xσ(P/Pα).Kσ(P/Pα)⊃γ(Xσ(P/Pα)), abbr(Pα, H(∃xσ)(P/T ))), where

Xσ(P/Pα) is not equivalent to any free term variable of K.

Then G = ST (x.Y σ(P/T ).unabbr(Y σ(P/T )⊃γ.Y σ(P/T )⊃γ, K)(Y σ(P/T )), H), where

Y σ(P/T ) is the first term variable of type [σ(P/T )] which is not equivalent to any
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free term variable of K.

Every case can be proved in the same way as in (ii) except the case F ′ =

ST (y.Xσ(P/Pα)[x/y].K[x/y](Xσ(P/Pα)[x/y]), abbr(Pα, H)), where x is replaceable by

y, y is free for x, and y does not occur free in Xσ(P/Pα).K(Xσ(P/Pα)). We have

F ′ Â1 ST (y.Zσ(P/T )[x/y].unabbr(Z(σ(P/T )⊃γ)[x/y].Z(σ(P/T )⊃γ)[x/y], K[x/y])

(Zσ(P/T )[x/y]), H)

≡ ST (x.Zσ(P/T ).unabbr(Z(σ(P/T )⊃γ).Z(σ(P/T )⊃γ), K)(Zσ(P/T )), H)

≡ G,

where Zσ(P/T )[x/y] is the first term variable of type [σ(P/T )[x/y]] which is not

equivalent to any free term variable of K[x/y], so Zσ(P/T ) is not equivalent to any

free term variable of K.

Similarly for ST (Q.Xσ(P/Pα).Kσ(P/Pα)⊃γ(Xσ(P/Pα)), abbr(Pα, H(∃2Qσ)(P/T ))).

(iv) F = π1(abbr(Pα, H(β1∧β2)(P/T ))).

Then G = abbr(Pα, π1H) and F ′ = π1(abbr(Pα, H ′)) for some term H ′ such

that H ′ ≡ H. Hence F ′ Â1 abbr(Pα, π1H
′) ≡ G.

Similarly for the remaining cases.

Lemma 3.3.4. If F Â1 G, then

a. F [x/t] Â1 H for some term H such that H ≡ G[x/t];

b. F [R/U ] Â1 H for some term H such that H ≡ G[R/U ];

c. F [Xδ/Kδ′ ] Â1 H for some term H such that H ≡ G[Xδ/Kδ′ ].

Note. For (b), we use R and U instead of P and T , respectively, in Chapter III

to avoid confusion with P and T in the type superscripts of new terms.

Proof. If F is not the redex which is reduced to G, the proof is as in Chapter III.

Suppose F is the redex which is reduced to G. As in the original proof, we will
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omit the proof of (b) since it is similar to (a) and for (a) we assume that x is

replaceable by t and t is free for x in F and for (c) Kδ′ is free for Xδ in F .

(i) F = unabbr(Y β(P/T ).Jγ, abbr(Pα, Hβ(P/T ))), where P ∈ FV (β).

Then G = J [Y β(P/T )/H].

a: By Lemma 3.2.23, we have

F [x/t] = unabbr(Y β(P/T )[x/t].J [x/t], abbr(Pα, H[x/t]))

Â1 J [x/t][Y β(P/T )[x/t]/H[x/t]]

≡ G[x/t].

c: Suppose Xδ is equivalent to some free term variable of Y β(P/T ).J . The proof

of the other case can be easily modified from this proof.

By Lemma 3.2.21,

F [Xδ/K] = unabbr(Y β(P/T ).J [Xδ/K], abbr(Pα, H[Xδ/K]))

Â1 J [Xδ/K][Y β(P/T )/H[Xδ/K]]

≡ G[Xδ/K].

Similarly for the case F = unabbr(Y β.Jγ, Hβ).

(ii) F = ⊕(X
β1(P/Pα)
1 .G

β1(P/Pα)⊃γ
1 (X

β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G

β2(P/Pα)⊃γ
2 (X

β2(P/Pα)
2 ),

abbr(Pα, H(β1∨β2)(P/T ))), where X
βi(P/Pα)
i is not equivalent to any free term variable

of Gi, i = 1, 2.

Then G = ⊕(Y
β1(P/T )
1 .unabbr(Y

β1(P/T )⊃γ
1 .Y

β1(P/T )⊃γ
1 , G1)(Y

β1(P/T )
1 ), Y

β2(P/T )
2 .

unabbr(Y
β2(P/T )⊃γ
2 .Y

β2(P/T )⊃γ
2 , G2)(Y

β2(P/T )
2 ), H), where Y

βi(P/T )
i is the first term

variable of type [βi(P/T )] which is not equivalent to any free term variable of Gi,

i = 1, 2.

a: We have

G[x/t] = ⊕(Y
β1(P/T )[x/t]
3 .unabbr(Y

β1(P/T )[x/t]⊃γ[x/t]
1 .Y

β1(P/T )[x/t]⊃γ[x/t]
1 , G1[x/t])
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(Y
β1(P/T )[x/t]
3 ), Y

β2(P/T )[x/t]
4 .unabbr(Y

β2(P/T )[x/t]⊃γ[x/t]
2 .Y

β2(P/T )[x/t]⊃γ[x/t]
2 , G2[x/t])

(Y
β2[x/t](P/T )
4 ), H[x/t]), where Y

βi(P/T )
i+2 is Y

βi(P/T )
i if Gi has no free term variable

Y σ
i such that σ 6≡ βi(P/T ) but σ[x/t] ≡ βi(P/T )[x/t], otherwise Y

βi(P/T )
i+2 is the

first term variable such that Gi has no free term variable Y σ
i+2 where σ 6≡ βi(P/T )

but σ[x/t] ≡ βi(P/T )[x/t], i = 1, 2, and

F [x/t] = ⊕(X
β1(P/Pα)[x/t]
1 .G1[x/t](X

β1(P/Pα)[x/t]
1 ), X

β2(P/Pα)[x/t]
2 .G2[x/t]

(X
β2(P/Pα)[x/t]
2 ), abbr(Pα, H[x/t]))

Â1 ⊕(Z
β1[x/t](P/T )
1 .unabbr(Z

β1[x/t](P/T )⊃γ[x/t]
1 .Z

β1[x/t](P/T )⊃γ[x/t]
1 , G1[x/t])

(Z
β1[x/t](P/T )
1 ), unabbr(Z

β2[x/t](P/T )⊃γ[x/t]
2 .Z

β2[x/t](P/T )⊃γ[x/t]
2 , G2[x/t])

(Z
β2[x/t](P/T )
2 ), H[x/t])

≡ G[x/t],

where Z
βi[x/t](P/T )
i is the first term variable of type [βi[x/t](P/T )] which is not

equivalent to any free term variable of Gi[x/t], i = 1, 2.

c: Suppose Xδ is equivalent to some free term variables of G1 and G2. Proofs

of other cases can be easily modified from this proof. We have

G[Xδ/K] = ⊕(Y
β1(P/T )
3 .unabbr(Y

β1(P/T )⊃γ
1 .Y

β1(P/T )⊃γ
1 , G1[X

δ/K])(Y
β1(P/T )
3 ),

Y
β2(P/T )
4 .unabbr(Y

β2(P/T )⊃γ
2 .Y

β2(P/T )⊃γ
2 , G2[X

δ/K])(Y
β2(P/T )
4 ), H[Xδ/K]), where

Y
βi(P/T )
i+2 is Y

βi(P/T )
i if Y

βi(P/T )
i is not equivalent to any free term variable of K,

otherwise Y
βi(P/T )
i+2 is the first term variable which is not equivalent to any free

term variable in K or Gi, i = 1, 2, and
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F [Xδ/K] = ⊕(X
β1(P/Pα)
1 .G1[X

δ/K](X
β1(P/Pα)
1 ), X

β2(P/Pα)
2 .G2[X

δ/K]

(X
β2(P/Pα)
2 ), abbr(Pα, H[Xδ/K]))

Â1 ⊕(Z
β1(P/T )
1 .unabbr(Z

β1(P/T )⊃γ
1 .Z

β1(P/T )⊃γ
1 , G1[X

δ/K])

(Z
β1(P/T )
1 ), unabbr(Z

β2(P/T )⊃γ
2 .Z

β2(P/T )⊃γ
2 , G2[X

δ/K])

(Z
β2(P/T )
2 ), H[Xδ/K])

≡ G[Xδ/K],

where Z
βi(P/T )
i is the first term variable of type [βi(P/T )] which is not equivalent

to any free term variable of Gi[X
δ/K], i = 1, 2.

Similarly for the cases ST (y.Y σ(P/Pα).Jσ(P/Pα)⊃γ(Y σ(P/Pα)), abbr(Pα,

F (∃yσ)(P/T ))) and ST (Q.Y σ(P/Pα).Jσ(P/Pα)⊃γ(Y σ(P/Pα)), abbr(Pα, H(∃2Qσ)(P/T ))).

The remaining cases follow straightforwardly by the induction hypothesis.

The aim of the rest of this section is to show that the new Curry-Howard terms

satisfy the strong normalization theorem. In order to do this, we will extend the

definitions of CR to CR+ as well as Cα[P/C] to C+
α [P/C] and use these new

definitions instead of the old ones in proving the theorem. First, we will extend

the definition of neutral terms in Chapter IV for the new forms of Curry-Howard

terms as follows.

Definition 4.1.2. A term of the form unabbr(Xβ(P/T ).Gγ, F β(P/Pα)) is neutral

while a term of the form abbr(Pα, F β(P/T )) is not.

Definition 5.2.1. A candidate for reducibility CR C of type [α] is a CR+ of type

[α] if it satisfies the following.

If Fα is in C, so is abbr(Pβ, F α)α for every abbreviation predicate Pβ.

Note. It can be easily checked that if Fα is in a CR (also CR+) C, then so is

unabbr(Xα.Xα, Fα) for every term variable Xα.
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In the following, we will state and prove lemmas for CR+ which correspond

to those for CR in Chapter IV.

Lemma 5.2.2. The set of all strongly normalizable terms of type [α] is a CR+ of

type [α].

Proof. By Lemma 4.2.2, SNα is a CR.

Suppose F α is strongly normalizable. Since for all Pβ, every reduction se-

quence beginning with abbr(Pβ, Fα)α gives a reduction sequence beginning with

Fα, abbr(Pβ, Fα)α is also strongly normalizable for all Pβ. Hence SNα is a

CR+.

Lemma 5.2.3. Let C1 and C2 be CR+s of types [α1] and [α2], respectively.

Then C1 ∧ C2 and C1 ⊃ C2 are CR+s.

Proof. By Lemma 4.2.5, C1 ∧ C2 and C1 ⊃ C2 are CRs.

C1∧C2: It remains to show that if F α1∧α2 is in C1∧C2, then so is abbr(Pβ, F )α1∧α2

for every Pβ.

Let Pβ be given and suppose Fα1∧α2 is in C1 ∧ C2.

First, we will show that π1abbr(Pβ, F ) is in C1 by induction on N(F ).

Since π1abbr(Pβ, F ) is neutral, we will show that all its immediate reducts are

in C1. It follows by the subsidiary induction hypothesis if an immediate reduct is

obtained by reducing F . The other immediate reducts are as follows.

(i) π1F .

It is in C1 since F is in C1 ∧ C2.

(ii) abbr(Pβ, π1F ).

Since π1F is in C1 which is a CR+, abbr(Pβ, π1F ) is also in C1.

Hence π1abbr(Pβ, F ) is in C1.
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Similarly, we can show that π2abbr(Pβ, F ) is in C2. Thus abbr(Pβ, F ) is in

C1 ∧ C2.

C1 ⊃ C2: It remains to show that if Fα1⊃α2 is in C1 ⊃ C2, then so is abbr(Pβ, F )α1⊃α2

for every Pβ.

Let Pβ be given and suppose Fα1⊃α2 is in C1 ⊃ C2.

Let G be in C1. We will prove that abbr(Pβ, F )(G) is in C2 by induction on

N(F )+N(G). As above, we will show that all its immediate reducts are in C2. It

follows by the subsidiary induction hypothesis if an immediate reduct is obtained

by reducing F or G. The other immediate reducts are as follows.

(i) F (G).

It is in C2 since F is in C1 ⊃ C2.

(ii) abbr(Pβ, F (unabbr(Xα1 .Xα1 , Gα1))).

By Note on page 158, unabbr(Xα1 .Xα1 , Gα1) is in C1.

Since F is in C1 ⊃ C2, F (unabbr(Xα1 .Xα1 , G)) is in C2 which is a CR+. Hence

abbr(Pβ, F (unabbr(Xα1 .Xα1 , G))) is in C2.

Definition 5.2.4. Let T = λx1, . . . , xnδ be an abstraction term. For each se-

quence of individual terms t = t1, . . . , tn, let Ct be a CR+ of type [δ[x/t]], where

x = x1, . . . , xn.

We call the set C = {Ct | t = t1, . . . , tn are individual terms.} a collection of

CR+s corresponding to T .

The following definition is needed for defining a set C+
α [P/C] later.

Definition 5.2.5. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate

variables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction

terms, and C = C1, . . . , Cn be collections of CR+s corresponding to T1, . . . , Tn,

respectively.
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We define a set C ′
α[P1/C1, . . . , Pn/Cn], which can be written as C ′

α[P/C], of

terms of type [α[P/T ]] in the same way as Cα[P/C] in Definition 4.2.7 (by re-

placing every CR and Cσ[P/C] by CR+ and C ′
σ[P/C], respectively) except for the

existence cases below.

C ′
∃xβ[P/C] is the set of all terms F which satisfy the conditions for the cor-

responding existence case in Definition 4.2.7 (with the replacements of every CR

and Cσ[P/C] by CR+ and C ′
σ[P/C], respectively); and

if β contains some abbreviation predicates and

F Â abbr(Pσ1 , abbr(. . . , abbr(Pσk
, I(u,H)∃xβ∗[P/T ])))∃xβ[P/T ], k ≥ 1, for some for-

mula β∗, then abbr(Pσ1 , abbr(. . . , abbr(Pσk
, H))) is in C ′

β[x/u][P/C].

C ′
∃2Qβ[P/C] is the set of all terms F which satisfy the conditions for the cor-

responding existence case in Definition 4.2.7 (with the replacements of every CR

and Cσ[P/C] by CR+ and C ′
σ[P/C], respectively); and

if β contains some abbreviation predicates and

F Â abbr(Pσ1 , abbr(. . . , abbr(Pσk
, I(U,H)(∃2Qβ∗)[P/T ])))(∃2Qβ)[P/T ], k ≥ 1, for some

formula β∗, then abbr(Pσ1 , abbr(. . . , abbr(Pσk
, H))) is in C ′

β[P ∗/C∗, Q/D] for some

collection of CR+s D corresponding to U , where P ∗ is the sublist of P consisting

of all Pi’s which are in FV (∃2Qβ) and C∗ is the corresponding sublist of C.

Lemma 5.2.6. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate vari-

ables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms,

and C = C1, . . . , Cn be collections of CR+s corresponding to T1, . . . , Tn, respec-

tively.

Then C ′
α[P/C] is a CR+ of type [α[P/T ]].

Proof. We will prove by induction on α. It follows by Lemma 5.2.2 if α is atomic.

It follows by Lemma 5.2.3 and the induction hypothesis if α is α1∧α2 or α1 ⊃ α2.

It can be proved in the same way as Lemma 4.2.8, that C ′
α[P/C] is a CR. For
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the remaining cases, it remains to show that if Fα[P/T ] is in C ′
α[P/C], then so is

abbr(Pβ, F )α[P/T ] for every Pβ.

Let Pβ be given and suppose Fα[P/T ] is in C ′
α[P/C].

α = α1 ∨ α2:

Let [γ] be a type, C be a CR+ of type [γ], F1 and F2 be terms in C ′
α1

[P/C] ⊃ C

and C ′
α2

[P/C] ⊃ C, respectively, and X
α1[P/T ]
1 and X

α2[P/T ]
2 be term variables

which are not equivalent to any free term variables of F1 and F2, respectively.

We will prove that⊕(X
α1[P/T ]
1 .F1(X

α1[P/T ]
1 ), X

α2[P/T ]
2 .F2(X

α2[P/T ]
2 ), abbr(Pβ, F ))

is in C by induction on N(F1(X
α1[P/T ]
1 )) + N(F2(X

α2[P/T ]
2 )) + N(F ). As usual,

we will show that all its immediate reducts are in C. If an immediate reduct

is obtained by reducing F1(X
α1[P/T ]
1 ), F2(X

α2[P/T ]
2 ), or F , then it is in C by the

subsidiary induction hypothesis. The other immediate reducts are as follows.

(i) ⊕(X
α1[P/T ]
1 .F1(X

α1[P/T ]
1 ), X

α2[P/T ]
2 .F2(X

α2[P/T ]
2 ), F ).

It is in C since F is in C ′
α1∨α2

[P/C].

(ii) ⊕(Y
α1[P/T ]
1 .unabbr(Y

α1[P/T ]⊃γ
1 .Y

α1[P/T ]⊃γ
1 , F1)(Y

α1[P/T ]
1 ), Y

α2[P/T ]
2 .

unabbr(Y
α2[P/T ]⊃γ
2 .Y

α2[P/T ]⊃γ
2 , F2)(Y

α2[P/T ]
2 ), F ), where Y αi

i is the first term vari-

able which is not equivalent to any free term variable of Fi, i = 1, 2.

By Lemma 5.2.3 and the induction hypothesis, C ′
αi

[P/C] ⊃ C is a CR+ for

all i = 1, 2. By Note on page 158, unabbr(Y
αi[P/T ]⊃γ
i .Y

αi[P/T ]⊃γ
i , F

αi[P/T ]⊃γ
i ) is in

C ′
αi

[P/C] ⊃ C for all i = 1, 2.

Since F is in C ′
α1∨α2

[P/C], ⊕(Y
α1[P/T ]
1 .unabbr(Y

α1[P/T ]⊃γ
1 .Y

α1[P/T ]⊃γ
1 , F1)

(Y
α1[P/T ]
1 ), Y

α2[P/T ]
2 .unabbr(Y

α2[P/T ]⊃γ
2 .Y

α2[P/T ]⊃γ
2 , F2)(Y

α2[P/T ]
2 ), F ) is in C.

α = ∀xσ:

Let t be an individual term. We will prove by induction on N(F ) that

abbr(Pβ, F )(t) is in C ′
σ[x/t][P/C], which is a CR+ by the induction hypothesis.

We will show that all its immediate reducts are in C ′
σ[x/t][P/C]. If an immedi-
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ate reduct is obtained by reducing F , then it is in C ′
σ[x/t][P/C] by the subsidiary

induction hypothesis. The other immediate reducts are as follows.

(i) F (t).

It is in C ′
σ[x/t][P/C] since F is in C ′

∀xσ[P/C].

(ii) abbr(Pβ, F (t)).

It is in C ′
σ[x/t][P/C] since F (t) is in C ′

σ[x/t][P/C].

Similarly for C ′
∀2Qσ[P/C].

α = ∃xσ:

Let y be an individual variable such that y 6∈ fv(σ)− {x}, [γ] be a type with

y 6∈ fv(γ), D be a CR+ of type [γ], G be a term of type [σ[x/y][P/T ] ⊃ γ] such

that for each individual term t, G[y/t] is in C ′
σ[x/t][P/C] ⊃ D, and y is not free

in the type superscript of any free term variable of G, and Xσ[x/y][P/T ] be a term

variable which is not equivalent to any free term variable of G.

We will prove that ST (y.Xσ[x/y][P/T ].G(Xσ[x/y][P/T ]), abbr(Pβ, F )) is in D by

induction on N(G(Xσ[x/y][P/T ])) + N(F ). We will show that all its immediate

reducts are in D. If an immediate reduct is obtained by reducing G(Xσ[x/y][P/T ])

or F , then it is in D by the subsidiary induction hypothesis. The other immediate

reducts are as follows.

(i) ST (y.Xσ[x/y][P/T ].G(Xσ[x/y][P/T ]), F ).

It is in D since F is in C ′
∃xσ[P/C].

(ii) ST (y.Y σ[x/y][P/T ].unabbr(Y σ[x/y][P/T ]⊃γ.Y σ[x/y][P/T ]⊃γ, G)(Y σ[x/y][P/T ]), F ),

where Y σ[x/y][P/T ] is the first term variable which is not equivalent to any free term

variable of G.

Let t be an individual term. By the main induction hypothesis, C ′
σ[x/t][P/C] is a

CR+ and so is C ′
σ[x/t][P/C] ⊃ D by Lemma 5.2.3. Since G[y/t] is in C ′

σ[x/t][P/C] ⊃
D, by Note on page 158, unabbr(Y σ[x/y][P/T ]⊃γ.Y σ[x/y][P/T ]⊃γ, G)[y/t] i.e.
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unabbr(Y σ[x/t][P/T ]⊃γ.Y σ[x/t][P/T ]⊃γ, G[y/t]) is in C ′
σ[x/t][P/C] ⊃ D.

Since F is in C ′
∃xσ[P/C], ST (y.Y σ[x/y][P/T ].unabbr(Y σ[x/y][P/T ]⊃γ.Y σ[x/y][P/T ]⊃γ,

G)(Y σ[x/y][P/T ]), F ) is in D.

Next, suppose abbr(Pβ, F ) Â I(u,K). Then there is a finite reduction se-

quence from abbr(Pβ, F ) to I(u, K) with length r ≥ 1. We will show that K is in

C ′
σ[x/u][P/C] by induction on r.

r = 1: Since abbr(Pβ, F ) and I(u,K) are of different forms, abbr(Pβ, F ) must be

the redex which is reduced to I(u,K). Hence abbr(Pβ, F ) Â1 F = I(u,K). Since

F is in C ′
∃xσ[P/C], K is in C ′

σ[x/u][P/C].

r > 1: Suppose F ∗ is the immediate reduct in the reduction sequence.

Case 1. F ∗ = abbr(Pβ, F ′) where F Â1 F ′.

By CR2, F ′ is in C ′
∃xσ[P/C]. Since abbr(Pβ, F ′) Â I(u,K) with length < r, by

the subsidiary induction hypothesis, K is in C ′
σ[x/u][P/C].

Case 2. F ∗ = F .

Then F Â I(u,K). Hence K is in C ′
σ[x/u][P/C] since F is in C ′

∃xσ[P/C].

Now, suppose abbr(Pβ, F ) Â abbr(Pβ1 , abbr(. . . , abbr(Pβk
, I(u,K)∃xσ∗))). Then

there is a finite reduction sequence from abbr(Pβ, F ) to abbr(Pβ1 , abbr(. . . , abbr(Pβk
,

I(u,K)∃xσ∗))) with length r ≥ 0. We will show that abbr(Pβ1 , abbr(. . . , abbr(Pβk
,

K))) is in C ′
σ[x/u][P/C] by induction on r.

r = 0: Then β1 = β and F = abbr(Pβ2 , abbr(. . . , abbr(Pβk
, I(u,K))))∃xσ[P/T ].

Since F is in C ′
∃xσ[P/C], abbr(Pβ2 , abbr(. . . , abbr(Pβk

, K)))σ[x/u][P/T ] is in

C ′
σ[x/u][P/C] which is a CR+ by the induction hypothesis. Hence

abbr(Pβ1 , abbr(. . . , abbr(Pβk
, K)))σ[x/u][P/T ] is in C ′

σ[x/u][P/C].

r > 0: Suppose F ∗ is the immediate reduct in the reduction sequence.

Case 1. F ∗ = abbr(Pβ, F ′) where F Â1 F ′.

This case follows by the subsidiary induction hypothesis.
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Case 2. F ∗ = F .

Then F Â abbr(Pβ1 , abbr(. . . , abbr(Pβk
, I(u,K)))) and so this case follows by

the fact that F is in C ′
∃xσ[P/C].

Thus we can conclude that abbr(Pβ, F ) is in C ′
∃xσ[P/C].

Similarly for C ′
∃2Qσ[P/C].

Definition 5.2.7. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate

variables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction

terms, and C = C1, . . . , Cn be collections of CR+s corresponding to T1, . . . , Tn,

respectively.

We define a set C+
α [P1/C1, . . . , Pn/Cn], which can be written as C+

α [P/C], of

terms of type [α[P/T ]] inductively as follows.

α is an atomic formula:

If α is Pσ(t) for some abbreviation predicate Pσ and some individual terms t,

C+
α [P/C] is the set of all terms F in SNPσ(t) such that if F Â abbr(Pσ, G

σ[x/t])Pσ(t),

where fv(σ) = {x}, then G is in C ′
σ[x/t][P/C];

otherwise C+
α [P/C] = C ′

α[P/C].

α is not an atomic formula:

C+
α [P/C] is defined in the same way as C ′

α[P/C] in Definition 5.2.5 (by replac-

ing every C ′
σ[P/C] by C+

σ [P/C]).

Note. It can be easily checked by induction on α that if α does not contain any

abbreviation predicates, then C+
α [P/C] = C ′

α[P/C].

From the above definition, we can see that we need the set C ′
σ[x/t][P/C] in

defining C+
Pσ(t)[P/C]. Actually, we want to use the set C+

σ[x/t][P/C] in the definition

but we cannot do that since we use it in the basic case of an inductive definition,

so the set must already exist. By the restriction that every formula which can be
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abbreviated must not contain any abbreviation predicates and the above Note,

ultimately, we have what we want.

Lemma 5.2.8. Let α be a formula, P = Pm1
1 , . . . , Pmn

n be distinct predicate vari-

ables, T = T1, . . . , Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms,

and C = C1, . . . , Cn be collections of CR+s corresponding to T1, . . . , Tn, respec-

tively.

Then C+
α [P/C] is a CR+ of type [α[P/T ]].

Proof. We will prove by induction on α. It follows by Lemma 5.2.3 and the

induction hypothesis if α is α1 ∧ α2 or α1 ⊃ α2. If α is α1 ∨ α2, ∀xσ, ∃xσ, ∀2Qσ,

or ∃2Qσ, the proof is similar to the proof of Lemma 5.2.6.

Suppose α is an atomic formula. It follows by Lemma 5.2.6 if α is not of the

form Pσ(t).

Suppose α = Pσ(t), where fv(σ) = {x}.
For the proofs of CR0, CR1, and CR2, we suppose F is in C+

Pσ(t)[P/C], so F is

strongly normalizable and if F Â abbr(Pσ, G
σ[x/t])Pσ(t), then G is in C ′

σ[x/t][P/C].

CR0: Suppose F ′ ≡ F . Since F is strongly normalizable, so is F ′ by Lemma

3.3.2. Suppose F ′ Â abbr(Pσ, G
σ[x/t])Pσ(t). By Corollary 3.3.3, F Â abbr(Pσ, G

′)

for some term G′ such that G′ ≡ G. Then G′ is in C ′
σ[x/t][P/C], which is a CR+

by Lemma 5.2.6, and so is G by CR0. Thus F ′ is in C+
Pσ(t)[P/C].

CR1: It is clear from the definition.

CR2: Suppose F Â1 F ′. Since F is strongly normalizable, so is F ′. Sup-

pose F ′ Â abbr(Pσ, G
σ[x/t])Pσ(t). Then F Â abbr(Pσ, G

σ[x/t])Pσ(t). Hence G is in

C ′
σ[x/t][P/C]. Thus F ′ is in C+

Pσ(t)[P/C].

CR3: Suppose F is neutral and all its immediate reducts are in C+
Pσ(t)[P/C].

Then every immediate reduct of F is strongly normalizable, and so is F . Suppose

F Â abbr(Pσ, G
σ[x/t])Pσ(t). Since F is neutral, F and abbr(Pσ, G) are not of the
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same form, so there is a finite reduction sequence from F to abbr(Pσ, G
σ[x/t])Pσ(t)

with length ≥ 1. Suppose F ′ is the immediate reduct of F in the sequence. Then

F ′ Â abbr(Pσ, G
σ[x/t])Pσ(t). Since F ′ is in C+

Pσ(t)[P/C], G is in C ′
σ[x/t][P/C]. Thus

F is in C+
Pσ(t)[P/C].

We have shown that C+
Pσ(t)[P/C] is a CR. Now, suppose F Pσ(t) is in C+

Pσ(t)[P/C]

and let Pβ be given. It remains to show that abbr(Pβ, F Pσ(t))Pσ(t) is in C+
Pσ(t)[P/C].

Since F is strongly normalizable and every reduction sequence beginning with

abbr(Pβ, F ) gives a reduction sequence beginning with F , abbr(Pβ, F ) is also

strongly normalizable. Suppose abbr(Pβ, F Pσ(t)) Â abbr(Pσ, H
σ[x/t])Pσ(t). Then

there is a finite reduction sequence from abbr(Pβ, F ) to abbr(Pσ, H) with length

r ≥ 1. We will show that H is in C ′
σ[x/t][P/C] by induction on r.

r = 1: Then abbr(Pσ, H) is an immediate reduct of abbr(Pβ, F ). Since F Pσ(t) and

Hσ[x/t] are not of the same type, H is not a reduct of F . Hence abbr(Pβ, F ) Â1

F = abbr(Pσ, H). Since F is in C+
Pσ(t)[P/C], H is in C ′

σ[x/t][P/C].

r > 1: Suppose F ∗ is the immediate reduct of F in the sequence.

Case 1. F ∗ = abbr(Pβ, F ′) where F Â1 F ′.

This case follows by the subsidiary induction hypothesis.

Case 2. F ∗ = F .

Then F Â abbr(Pσ, H). Since F is in C+
Pσ(t)[P/C], H is in C ′

σ[x/t][P/C].

Hence abbr(Pβ, F ) is in C+
Pσ(t)[P/C].

Thus we can conclude that C+
Pσ(t)[P/C] is a CR+.

Lemmas 4.2.4, 4.2.9, 4.2.10, and 4.2.11 also hold if we replace every CR by

CR+ and every Cα[P/C] by C+
α [P/C] and the proofs are similar.

The following lemma is a new lemma which is needed for the proof of the

strong normalization theorem.
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Lemma 5.2.9. Let P = Pm1
1 , . . . , Pmn

n be distinct predicate variables, T = T1, . . . ,

Tn, where Ti = λzi
1, . . . , z

i
mi

δi, 1 ≤ i ≤ n, be abstraction terms, C = C1, . . . , Cn

be collections of CR+s corresponding to T1, . . . , Tn, respectively, F β[P/T ](R/U) be a

term of type [β[P/T ](R/U)], where R is an r-ary predicate variable which is not

in {P} ∪ FV (T ) and U = λz1, . . . , zrα is an abstraction term with FV (α) = ∅.

Then F β[P/T ](R/U) is in C+
β(R/U)[P/C] if and only if abbr(Pα, F )β[P/T ](R/Pα) is

in C+
β(R/Pα)[P/C].

Proof. We will prove by induction on β.

Suppose R 6∈ FV (β). Then [β[P/T ](R/U)] = [β[P/T ](R/Pα)] = [β[P/T ]].

If F β[P/T ] is in C+
β [P/C], which is a CR+ by Lemma 5.2.8, then

abbr(Pα, F β[P/T ])β[P/T ] is in C+
β [P/C].

If abbr(Pα, F β[P/T ])β[P/T ] is in C+
β [P/C], then, by CR2, so is F since abbr(Pα, F )

Â1 F .

Now, suppose R ∈ FV (β).

β = R(t):

Suppose F β[P/T ](R/U) is in C+
β(R/U)[P/C] i.e. Fα[z/t] is in C+

α[z/t][P/C] (=

C ′
α[z/t][P/C] by Note on page 165). Then F is strongly normalizable. Since every

reduction sequence beginning with abbr(Pα, F ) gives a reduction sequence begin-

ning with F , abbr(Pα, F ) is also strongly normalizable.

Suppose abbr(Pα, F ) Â abbr(Pα, F ′α[z/t]). Then F Â F ′. Since F is in

C ′
α[z/t][P/C], so is F ′.

Thus abbr(Pα, F ) is in C+
Pα(t)[P/C].

The converse follows straightforwardly by the definition and Note on page 165.

β = β1 ∧ β2:

Suppose F β[P/T ](R/U) is in C+
β(R/U)[P/C]. We will show that π1abbr(Pα, F )

is in C+
β1(R/Pα)[P/C] by induction on N(F ). Since π1abbr(Pα, F ) is neutral, we
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will show that all its immediate reducts are in C+
β1(R/Pα)[P/C]. It follows by the

subsidiary induction hypothesis if an immediate reduct is obtained by reducing

F .

The other immediate reduct is abbr(Pα, π1F ). Since F is in C+
β(R/U)[P/C],

π1F is in C+
β1(R/U)[P/C]. By the main induction hypothesis, abbr(Pα, π1F ) is in

C+
β1(R/Pα)[P/C].

Similarly, we can show that π2abbr(Pα, F ) is in C+
β2(R/Pα)[P/C]. Thus

abbr(Pα, F ) is in C+
β(R/Pα)[P/C].

Now, suppose abbr(Pα, F ) is in C+
β(R/Pα)[P/C]. Then π1abbr(Pα, F ) is in

C+
β1(R/Pα)[P/C]. Since π1abbr(Pα, F ) Â1 abbr(Pα, π1F ), abbr(Pα, π1F ) is in

C+
β1(R/Pα)[P/C] by CR2. Hence π1F is in C+

β1(R/U)[P/C] by the induction hypoth-

esis. Similarly, π2F is in C+
β2(R/U)[P/C]. Hence F is in C+

β(R/U)[P/C].

β = β1 ⊃ β2:

Suppose F is in C+
β(R/U)[P/C]. We want to show that abbr(Pα, F ) is in

C+
(β1⊃β2)(R/Pα)[P/C].

Let G be in C+
β1(R/Pα)[P/C]. We will prove that abbr(Pα, F )(G) is in

C+
β2(R/Pα)[P/C] by induction on N(F ) + N(G). Since abbr(Pα, F )(G) is neutral,

we will show that all its immediate reducts are in C+
β2(R/Pα)[P/C]. It follows by the

subsidiary induction hypothesis if an immediate reduct is obtained by reducing F

or G. The other immediate reduct is abbr(Pα, F (unabbr(Xβ1[P/T ](R/U).

Xβ1[P/T ](R/U), G))).

First, we will prove that unabbr(Xβ1[P/T ](R/U).Xβ1[P/T ](R/U), G) is in

C+
β1(R/U)[P/C] by induction on N(G). It follows by Note on page 158 if R 6∈

FV (β1[P/T ]). Suppose R ∈ FV (β1[P/T ]). We will show that all its immediate

reducts are in C+
β1(R/U)[P/C]. It follows by the subsidiary induction hypothe-

sis if an immediate reduct is obtained by reducing G. The remaining case is
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when G = abbr(Pα, Hβ1[P/T ](R/U)) and the immediate reduct is H. Since G is in

C+
β1(R/Pα)[P/C], by the main induction hypothesis, H is in C+

β1(R/U)[P/C].

Thus we can conclude that unabbr(Xβ1[P/T ](R/U).Xβ1[P/T ](R/U), G) is in

C+
β1(R/U)[P/C].

Since F is in C+
(β1⊃β2)(R/U)[P/C], F (unabbr(Xβ1[P/T ](R/U).Xβ1[P/T ](R/U), G)) is

in C+
β2(R/U)[P/C]. Thus abbr(Pα, F (unabbr(Xβ1[P/T ](R/U).Xβ1[P/T ](R/U), G))) is in

C+
β2(R/Pα)[P/C] by the induction hypothesis.

Now, suppose abbr(Pα, F ) is in C+
(β1⊃β2)(R/Pα)[P/C]. We want to show that F

is in C+
(β1⊃β2)(R/U)[P/C]. Let G be in C+

β1(R/U)[P/C].

By the induction hypothesis, abbr(Pα, G) is in C+
β1(R/Pα)[P/C]. Hence

abbr(Pα, F )(abbr(Pα, G)) is in C+
β2(R/Pα)[P/C]. Since

abbr(Pα, F )(abbr(Pα, G))

Â1 abbr(Pα, F (unabbr(Xβ1[P/T ](R/U).Xβ1[P/T ](R/U), abbr(Pα, G))))

Â abbr(Pα, F (G)),

abbr(Pα, F (G)) is in C+
β2(R/Pα)[P/C]. By the induction hypothesis, F (G) is in

C+
β2(R/U)[P/C]. Thus F is in C+

β(R/U)[P/C].

β = β1 ∨ β2:

Suppose F is in C+
β(R/U)[P/C]. We want to show that abbr(Pα, F ) is in

C+
(β1∨β2)(R/Pα)[P/C].

Let [γ] be a type, C be a CR+ of type [γ], F1 and F2 be terms in C+
β1(R/Pα)[P/C]

⊃ C and C+
β2(R/Pα)[P/C] ⊃ C, respectively, and X

β1[P/T ](R/Pα)
1 and X

β2[P/T ](R/Pα)
2

be term variables which are not equivalent to any free term variables of F1 and

F2, respectively.

We will prove that ⊕(X
β1[P/T ](R/Pα)
1 .F1(X

β1[P/T ](R/Pα)
1 ), X

β2[P/T ](R/Pα)
2 .

F2(X
β2[P/T ](R/Pα)
2 ), abbr(Pα, F )) is in C by induction on N(F1(X

β1[P/T ](R/Pα)
1 )) +

N(F2(X
β2[P/T ](R/Pα)
2 )) + N(F ). As usual, we will show that all its immediate
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reducts are in C. It follows by the subsidiary induction hypothesis if an immediate

reduct is obtained by reducing F1(X
β1[P/T ](R/Pα)
1 ), F2(X

β2[P/T ](R/Pα)
2 ), or F . The

other immediate reduct is M = ⊕(Y
β1[P/T ](R/U)
1 .

unabbr(Y
β1[P/T ](R/U)⊃γ
1 .Y

β1[P/T ](R/U)⊃γ
1 , F1)(Y

β1[P/T ](R/U)
1 ), Y

β2[P/T ](R/U)
2 .

unabbr(Y
β2[P/T ](R/U)⊃γ
2 .Y

β2[P/T ](R/U)⊃γ
2 , F2)(Y

β2[P/T ](R/U)
2 ), F ), where Y

βi[P/T ](R/U)
i

is the first term variable which is not equivalent to any free term variable of Fi,

i = 1, 2.

First, we will prove by induction on N(F1) that unabbr(Y
β1[P/T ](R/U)⊃γ
1 .

Y
β1[P/T ](R/U)⊃γ
1 , F1) is in C+

β1(R/U)[P/C] ⊃ C, which is a CR+ by Lemmas 5.2.3 and

5.2.6. It follows by Note on page 158 if R 6∈ FV (β1). Suppose R ∈ FV (β1). We

will show that all its immediate reducts are in C+
β1(R/U)[P/C] ⊃ C. It follows by

the subsidiary induction hypothesis if an immediate reduct is obtained by reducing

F1. The remaining case is when F1 = abbr(Pα, Kβ1[P/T ](R/U)⊃γ) and the immediate

reduct is K. To show that K is in C+
β1(R/U)[P/C] ⊃ C, let H be in C+

β1(R/U)[P/C].

By the main induction hypothesis, abbr(Pα, H) is in C+
β1(R/Pα)[P/C]. Since F1 i.e.

abbr(Pα, K) is in C+
β1(R/Pα)[P/C] ⊃ C, abbr(Pα, K)(abbr(Pα, H)) is in C. Since

abbr(Pα, K)(abbr(Pα, H)) Â1 abbr(Pα, K(unabbr(Zβ1[P/T ](R/U).Zβ1[P/T ](R/U),

abbr(Pα, H))))

Â1 abbr(Pα, K(H)γ)γ

Â1 K(H),

where Zβ1[P/T ](R/U) is the first term variable of type [β1[P/T ](R/U)], K(H) is in

C. Hence K is in C+
β1(R/U)[P/C] ⊃ C. Thus we can conclude that

unabbr(Y
β1[P/T ](R/U)⊃γ
1 .Y

β1[P/T ](R/U)⊃γ
1 , F1) is in C+

β1(R/U)[P/C] ⊃ C.

Similarly, we can show that unabbr(Y
β2[P/T ](R/U)⊃γ
2 .Y

β2[P/T ](R/U)⊃γ
2 , F2) is in

C+
β2(R/U)[P/C] ⊃ C.
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Since F is in C+
β(R/U)[P/C], M is in C.

Now, suppose abbr(Pα, F ) is in C+
(β1∨β2)(R/Pα)[P/C].

Let [γ] be a type, C be a CR+ of type [γ], F1 and F2 be terms in C+
β1(R/U)[P/C]

⊃ C and C+
β2(R/U)[P/C] ⊃ C, respectively, and X

β1[P/T ](R/U)
1 and X

β2[P/T ](R/U)
2 be

term variables which are not equivalent to any free term variables of F1 and F2,

respectively.

We want to show that M = ⊕(X
β1[P/T ](R/U)
1 .F1(X

β1[P/T ](R/U)
1 ), X

β2[P/T ](R/U)
2 .

F2(X
β2[P/T ](R/U)
2 ), F ) is in C.

First, we will prove that abbr(Pα, F1) is in C+
β1(R/Pα)[P/C] ⊃ C. Let G be

in C+
β1(R/Pα)[P/C]. We will prove that abbr(Pα, F1)(G) is in C by induction on

N(F1)+N(G). We will show that all its immediate reducts are in C. It follows by

the subsidiary induction hypothesis if an immediate reduct is obtained by reducing

F1 or G. The other immediate reduct is abbr(Pα, F1(unabbr(Zβ1[P/T ](R/U).

Zβ1[P/T ](R/U), G)))γ.

As in the proof of the case β = β1 ⊃ β2 on page 169, we can prove by induction

on N(G) that unabbr(Zβ1[P/T ](R/U).Zβ1[P/T ](R/U), G) is in C+
β1(R/U)[P/C]. Since F1

is in C+
β1(R/U)[P/C] ⊃ C, F1(unabbr(Zβ1[P/T ](R/U).Zβ1[P/T ](R/U), G)) is in C, and so

is abbr(Pα, F1(unabbr(Zβ1[P/T ](R/U).Zβ1[P/T ](R/U), G))γ)γ since C is a CR+.

Thus abbr(Pα, F1)(G) is in C and so abbr(Pα, F1) is in C+
β1(R/Pα)[P/C] ⊃ C.

Similarly, we can show that abbr(Pα, F2) is in C+
β2(R/Pα)[P/C] ⊃ C.

Let Z
β1[P/T ](R/Pα)
1 and Z

β2[P/T ](R/Pα)
2 be term variables which are not equivalent

to any free term variables of F1 and F2, respectively. Since abbr(Pα, F ) is in

C+
(β1∨β2)(R/Pα)[P/C], N = ⊕(Z

β1[P/T ](R/Pα)
1 .abbr(Pα, F1)(Z

β1[P/T ](R/Pα)
1 ),

Z
β2[P/T ](R/Pα)
2 .abbr(Pα, F2)(Z

β2[P/T ](R/Pα)
2 ), abbr(Pα, F )) is in C. Since
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N Â1 ⊕(Y
β1[P/T ](R/U)
1 .unabbr(Y

β1[P/T ](R/U)⊃γ
1 .Y

β1[P/T ](R/U)⊃γ
1 , abbr(Pα, F1))

(Y
β1[P/T ](R/U)
1 ), Y

β2[P/T ](R/U)
2 .unabbr(Y

β1[P/T ](R/U)⊃γ
2 .Y

β2[P/T ](R/U)⊃γ
2 ,

abbr(Pα, F2))(Y
β2[P/T ](R/U)
2 ), F )

Â ⊕(Y
β1[P/T ](R/U)
1 .F1(Y

β1[P/T ](R/U)
1 ), Y

β2[P/T ](R/U)
2 .F2(Y

β2[P/T ](R/U)
2 ), F )

≡ M,

where Y
βi[P/T ](R/U)
i is the first term variable which is not equivalent to any free

term variable of Fi, i = 1, 2, by CR0 and CR2, M is in C.

β = ∀xσ:

Suppose F is in C+
β(R/U)[P/C]. We want to show that abbr(Pα, F ) is in

C+
∀xσ(R/Pα)[P/C]. Let t be an individual term. We will prove that abbr(Pα, F )(t) is

in C+
σ(R/Pα)[x/t][P/C] by induction on N(F ). We will show that all its immediate

reducts are in C+
σ(R/Pα)[x/t][P/C]. It follows by the subsidiary induction hypothesis

if an immediate reduct is obtained by reducing F .

The other immediate reduct is abbr(Pα, F (t)). Since F is in C+
∀xσ(R/U)[P/C],

F (t) is in C+
σ(R/U)[x/t][P/C] i.e. C+

σ[x/t](R/U)[P/C]. Hence, by the main induction

hypothesis, abbr(Pα, F (t)) is in C+
σ[x/t](R/Pα)[P/C] i.e. C+

σ(R/Pα)[x/t][P/C].

Now, suppose abbr(Pα, F ) is in C+
∀xσ(R/Pα)[P/C]. Let t be an individual term.

We want to show that F (t) is in C+
σ(R/U)[x/t][P/C]. Since abbr(Pα, F ) is in

C+
∀xσ(R/Pα)[P/C], abbr(Pα, F )(t) is in C+

σ(R/Pα)[x/t][P/C] i.e. C+
σ[x/t](R/Pα)[P/C], and

so is abbr(Pα, F (t)) since it is an immediate reduct of abbr(Pα, F )(t). By the

induction hypothesis, F (t) is in C+
σ[x/t](R/U)[P/C] i.e. C+

σ(R/U)[x/t][P/C].

Similarly for the case β = ∀2Qσ.

β = ∃xσ:

First, suppose F is in C+
∃xσ(R/U)[P/C]. We want to show that abbr(Pα, F ) is in
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C+
∃xσ(R/Pα)[P/C].

Note that since R ∈ FV (β), every reduct of abbr(Pα, F ) must be obtained by

reducing F , and so it must be of the same form as abbr(Pα, F ).

Suppose abbr(Pα, F ) Â abbr(Pα1 , abbr(. . . , abbr(Pαk
, I(u,H)∃xσ∗))). Then α =

α1 and F Â abbr(Pα2 , abbr(. . . , abbr(Pαk
, I(u,H)∃xσ∗))). Since F is in

C+
∃xσ(R/U)[P/C], abbr(Pα2 , abbr(. . . , abbr(Pαk

, H))) is in C+
σ(R/U)[x/u][P/C]. By the

induction hypothesis, abbr(Pα1 , abbr(. . . , abbr(Pαk
, H))) is in C+

σ(R/Pα)[x/u][P/C].

Let y be an individual variable such that y 6∈ fv(σ)− {x}, [γ] be a type with

y 6∈ fv(γ), D be a CR+ of type [γ], G be a term of type [σ(R/Pα)[x/y][P/T ] ⊃ γ]

such that for each individual term t, G[y/t] is in C+
σ(R/Pα)[x/t][P/C] ⊃ D, and y is

not free in the type superscript of any free term variable of G, and Xσ(R/Pα)[x/y][P/T ]

be a term variable which is not equivalent to any free term variable of G.

We will prove that M = ST (y.Xσ(R/Pα)[x/y][P/T ].G(Xσ(R/Pα)[x/y][P/T ]),

abbr(Pα, F )) is in D by induction on N(G(Xσ(R/Pα)[x/y][P/T ])) + N(F ). We will

show that all its immediate reducts are in D. It follows by the subsidiary induction

hypothesis if an immediate reduct is obtained by reducing G(Xσ(R/Pα)[x/y][P/T ]) or

F . The other immediate reduct is ST (y.Y σ(R/U)[x/y][P/T ].

unabbr(Y σ(R/U)[x/y][P/T ]⊃γ.Y σ(R/U)[x/y][P/T ]⊃γ, G)(Y σ(R/U)[x/y][P/T ]), F ), where

Y σ(R/U)[x/y][P/T ] is the first term variable which is not equivalent to any free term

variable of G.

As in the proof of the case β = β1 ∨ β2 on page 171, we can prove that for

every individual term t, unabbr(Y σ(R/U)[x/y][P/T ]⊃γ.Y σ(R/U)[x/y][P/T ]⊃γ, G)[y/t] is in

C+
σ(R/U)[x/t][P/C] ⊃ D by induction on N(G[y/t]).

Since F is in C+
∃xσ(R/U)[P/C], ST (y.Y σ(R/U)[x/y][P/T ].unabbr(Y σ(R/U)[x/y][P/T ]⊃γ.

Y σ(R/U)[x/y][P/T ]⊃γ, G)(Y σ(R/U)[x/y][P/T ]), F ) is in D. Thus M is in D.

Now, suppose abbr(Pα, F ) is in C+
∃xσ(R/Pα)[P/C]. We want to show that F is
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in C+
∃xσ(R/U)[P/C].

Suppose F Â I(u,Hσ(R/U)[x/u][P/T ]). Then abbr(Pα, F ) Â
abbr(Pα, I(u,H)∃xσ(R/U)[P/T ]). Since abbr(Pα, F ) is in C+

∃xσ(R/Pα)[P/C],

abbr(Pα, H) is in C+
σ(R/Pα)[x/u][P/C]. By the induction hypothesis, H is in

C+
σ(R/U)[x/u][P/C].

Now, suppose F Â abbr(Pα1 , abbr(. . . , abbr(Pαk
, I(u,H)∃xσ∗))). Then

abbr(Pα, F ) Â abbr(Pα, abbr(Pα1 , abbr(. . . , abbr(Pαk
, I(u,H))))). Since abbr(Pα, F )

is in C+
∃xσ(R/Pα)[P/C], abbr(Pα, abbr(Pα1 , abbr(. . . , abbr(Pαk

, H)))) is in

C+
σ(R/Pα)[x/u][P/C]. By the induction hypothesis, abbr(Pα1 , abbr(. . . , abbr(Pαk

, H)))

is in C+
σ(R/U)[x/u][P/C].

Next, let y be an individual variable such that y 6∈ fv(σ)− {x}, [γ] be a type

with y 6∈ fv(γ), D be a CR+ of type [γ], G be a term of type [σ(R/U)[x/y][P/T ] ⊃
γ] such that for each individual term t, G[y/t] is in C+

σ(R/U)[x/t][P/C] ⊃ D, and y is

not free in the type superscript of any free term variable of G, and Xσ(R/U)[x/y][P/T ]

be a term variable which is not equivalent to any free term variable of G.

We have to show that M = ST (y.Xσ(R/U)[x/y][P/T ].G(Xσ(R/U)[x/y][P/T ]), F ) is in

D.

As in the proof of the case β = β1∨β2 on page 172, we can prove by induction

on N(G[y/t]) + N(H) that for every individual term t, abbr(Pα, G)[y/t] is in

C+
σ(R/Pα)[x/t][P/C] ⊃ D.

Let Zσ(R/Pα)[x/y][P/T ] be a term variable which is not equivalent to any free

term variable of G.

Since abbr(Pα, F ) is in C+
∃xσ(R/Pα)[P/C], N = ST (y.Zσ(R/Pα)[x/y][P/T ],

abbr(Pα, G)(Zσ(R/Pα)[x/y][P/T ]), abbr(Pα, F )) is in D. Since
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N Â1 ST (y.Y σ(R/U)[x/y][P/T ], unabbr(Y σ(R/U)[x/y][P/T ]⊃γ.Y σ(R/U)[x/y][P/T ]⊃γ,

abbr(Pα, G))(Y σ(R/U)[x/y][P/T ]), F )

Â ST (y.Y σ(R/U)[x/y][P/T ], G(Y σ(R/U)[x/y][P/T ]), F )

≡ M,

where Y σ(R/U)[x/y][P/T ] is the first term variable which is not equivalent to any free

term of G, M is in D. Thus F is in C+
∃xσ(R/U)[P/C].

Similarly for the case β = ∃2Qσ.

Lemma 5.2.10. Let Fα be a Curry-Howard term, x = x1, . . . , xn be distinct indi-

vidual variables, t = t1, . . . , tn be individual terms, P = Pm1
1 , . . . , Pmk

k be distinct

predicate variables, T = T1, . . . , Tk, where Ti = λzi
1, . . . , z

i
mi

τi, 1 ≤ i ≤ k, be ab-

straction terms, C = C1, . . . , Ck be collections of CR+s corresponding to T1, . . . , Tk,

respectively, Xδ1
1 , . . . , Xδl

l be inequivalent term variables such that every free term

variable of F α is equivalent to Xδi
i for some 1 ≤ i ≤ l, and X = X

δ′1
1 , . . . , X

δ′l
l ,

where δ′i = δi[x/t][P/T ], 1 ≤ i ≤ l, are inequivalent term variables, and let

K = K
δ′1
1 , . . . , K

δ′l
l be Curry-Howard terms in C+

δ1[x/t][P/C], . . . , C+
δl[x/t][P/C], re-

spectively.

Then Fα[x/t][P/T ][X/K] is in C+
α[x/t][P/C].

Proof. We will prove by induction on Fα.

Notation. Throughout this proof, γ′ denotes γ[x/t][P/T ] for any formula γ.

Every case except the following can be proved in the same way as in Lemma

4.2.12.

For the cases (Abbr Intro) and (Abbr Elim), Q is a q-ary predicate variable

and U = λz1, . . . , zqσ where FV (σ) = ∅.
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(Abbr Intro) Fα = abbr(Pσ, G
β(Q/U))β(Q/Pσ):

By the induction hypothesis, G[x/t][P/T ][X/K] is in C+
β(Q/U)[x/t][P/C] i.e.

C+
β[x/t](Q/U)[P/C].

Note that since we can choose Q′ such that Q′ 6∈ {P} ∪ FV (T ) ∪ FV (β),

and so β(Q/Q′)(Q′/U) ≡ β(Q/U), we may assume that Q 6∈ {P} ∪ FV (T ).

Hence, by Lemma 5.2.9, abbr(Pσ, G[x/t][P/T ][X/K]) is in C+
β[x/t](Q/Pσ)[P/C] i.e.

F [x/t][P/T ][X/K] is in C+
α[x/t][P/C].

(Abbr Elim) Fα = unabbr(Zβ(Q/U).Gα, Hβ(Q/Pσ))α:

Since CR+ is closed under equivalence of terms, we may assume that x is

replaceable by t in Z.G, P is replaceable by T in (Z.G)[x/t], and Zβ′(Q/U) is not

equivalent any free term variable in X or K. As in the above case, we may assume

that Q 6∈ {P} ∪ FV (T ).

By the induction hypothesis, G[x/t][P/T ][X/K] and H[x/t][P/T ][X/K] are

in C+
α[x/t][P/C] and C+

β(Q/Pσ)[x/t][P/C], respectively.

We will prove that unabbr(Zβ′(Q/U).G[x/t][P/T ][X/K], H[x/t][P/T ][X/K]) is

in C+
α[x/t][P/C] by induction on N(G[x/t][P/T ][X/K]) + N(H[x/t][P/T ][X/K]).

We will show that all its immediate reducts are in C+
α[x/t][P/C]. It follows by the

subsidiary induction hypothesis if an immediate reduct is obtained by reducing

G[x/t][P/T ][X/K] or H[x/t][P/T ][X/K]. The remaining cases are as follows.

Case 1. Q 6∈ FV (β) and the immediate reduct is

G[x/t][P/T ][X/K][Zβ′(Q/U)/H[x/t][P/T ][X/K]].

By Lemma 3.2.21, G[x/t][P/T ][X/K][Zβ′(Q/U)/H[x/t][P/T ][X/K]] ≡
G[x/t][P/T ][X/K, Zβ′(Q/U)/H[x/t][P/T ][X/K]] which is in C+

α[x/t][P/C] by the

main induction hypothesis.

Case 2. Q ∈ FV (β), H[x/t][P/T ][X/K] = abbr(Pσ, J
β′(Q/U)), and the imme-
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diate reduct is G[x/t][P/T ][X/K][Zβ′(Q/U)/J ]

Since H[x/t][P/T ][X/K] is in C+
β(Q/Pσ)[x/t][P/C] i.e. abbr(Pσ, J

β′(Q/U)) is in

C+
β[x/t](Q/Pσ)[P/C], by Lemma 5.2.9, J is in C+

β[x/t](Q/U)[P/C] i.e. C+
β(Q/U)[x/t][P/C].

Hence, by the main induction hypothesis, G[x/t][P/T ][X/K,Zβ′(Q/U)/J ] is in

C+
α[x/t][P/C]. By Lemma 3.2.21, G[x/t][P/T ][X/K][Zβ′(Q/U)/J ] ≡

G[x/t][P/T ][X/K, Zβ′(Q/U)/J ]. Hence G[x/t][P/T ][X/K][Zβ′(Q/U)/J ] is in

C+
α[x/t][P/C] by CR0.

(∨ Elim) Fα = ⊕(Y β1

1 .Fα
1 , Y β2

2 .F α
2 , Gβ1∨β2):

As in the proof of Lemma 4.2.12, we assume that Fi has no free term vari-

able Y σ
i such that σ 6≡ βi for all i = 1, 2, and both Y

β′1
1 and Y

β′2
2 are not

equivalent to any free term variables in X or K. We will prove that M =

⊕(Y
β′1
1 .Fα

1 [x/t][P/T ][X/K], Y
β′2
2 .Fα

2 [x/t][P/T ][X/K], Gβ1∨β2 [x/t][P/T ][X/K]) is in

C+
α[x/t][P/C] by induction on N(F1[x/t][P/T ][X/K]) + N(F2[x/t][P/T ][X/K]) +

N(G[x/t][P/T ][X/K]). We will show that all its immediate reducts are in

C+
α[x/t][P/C]. The proof for every case except the following new one is as in the

proof of Lemma 4.2.12.

The new case is when M = ⊕(Y
β′1
1 .H

β′1⊃α′
1 (Y

β′1
1 ), Y

β′2
2 .H

β′2⊃α′
2 (Y

β′2
2 ),

abbr(Pσ, H
(β∗1∨β∗2 )(Q/U)[P/T ])(β∗1∨β∗2 )(Q/Pσ)[P/T ]), where βi[x/t] = β∗i (Q/Pσ), i = 1, 2,

Q 6∈ {P} ∪ FV (T ), U = λz1, . . . , zqσ, and the immediate reduct is N =

⊕ (Z
β∗1 [P/T ](Q/U)
1 .unabbr(Z

β∗1 [P/T ](Q/U)⊃α′
1 .Z

β∗1 [P/T ](Q/U)⊃α′
1 , H1)(Z

β∗1 [P/T ](Q/U)
1 ),

Z
β∗2 [P/T ](Q/U)
2 .unabbr(Z

β∗2 [P/T ](Q/U)⊃α′
2 .Z

β∗2 [P/T ](Q/U)⊃α′
2 , H2)(Z

β∗2 [P/T ](Q/U)
2 ), H),

where Z
β∗i [P/T ](Q/U)
i is the first term variable of type [β∗i [P/T ](Q/U)] which is not

equivalent to any free term variable of Hi, i = 1, 2.

By the assumption, Y
β′1
1 is not equivalent to any free term variable in K.

Hence, since Fα
1 [x/t][P/T ][X/K] = H

β′1⊃α′
1 (Y

β′1
1 ), F1 = Jβ1⊃α

1 (Y β1

1 ) for some term
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Jβ1⊃α
1 and H1 = J1[x/t][P/T ][X/K]. Hence, by the induction hypothesis, H1

is in C+
(β1⊃α)[x/t][P/C] i.e. C+

β1[x/t][P/C] ⊃ C+
α[x/t][P/C] i.e. C+

β∗1 (Q/Pσ)[P/C] ⊃
C+

α[x/t][P/C]. Similarly, H2 is in C+
β∗2 (Q/Pσ)[P/C] ⊃ C+

α[x/t][P/C].

Next, we will prove that unabbr(Z
β∗1 [P/T ](Q/U)⊃α′
1 .Z

β∗1 [P/T ](Q/U)⊃α′
1 , H1) is in

C+
β∗1 (Q/U)[P/C] ⊃ C+

α[x/t][P/C] by induction on N(H1). It follows by Note on page

158 if Q 6∈ FV (β∗1). Suppose Q ∈ FV (β∗1). We will show that all its immediate

reducts are in C+
β∗1 (Q/U)[P/C] ⊃ C+

α[x/t][P/C]. It follows by the subsidiary induction

hypothesis if an immediate reduct is obtained by reducing H1. The remaining case

is when H1 = abbr(Pσ, H
β∗1 [P/T ](Q/U)⊃α′
∗ ) and the immediate reduct is H∗. Since

H1 is in C+
β∗1 (Q/Pσ)⊃α[x/t][P/C], by Lemma 5.2.9, H∗ is in C+

β∗1 (Q/U)⊃α[x/t][P/C] i.e.

C+
β∗1 (Q/U)[P/C] ⊃ C+

α[x/t][P/C]. Thus

unabbr(Z
β∗1 [P/T ](Q/U)⊃α′
1 .Z

β∗1 [P/T ](Q/U)⊃α′
1 , H1) is in C+

β∗1 (Q/U)[P/C] ⊃ C+
α[x/t][P/C].

Similarly, we can show that unabbr(Z
β∗2 [P/T ](Q/U)⊃α′
2 .Z

β∗2 [P/T ](Q/U)⊃α′
2 , H2) is in

C+
β∗2 (Q/U)[P/C] ⊃ C+

α[x/t][P/C].

By the induction hypothesis, abbr(Pσ, H) i.e. Gβ1∨β2 [x/t][P/T ][X/K] is in

C+
(β1∨β2)[x/t][P/C] i.e. C+

(β∗1∨β∗2 )(Q/Pσ)[P/C]. By Lemma 5.2.9, H is in

C+
(β∗1∨β∗2 )(Q/U)[P/C]. Thus N is in C+

α[x/t][P/C].

(∃ Elim) Fα = ST (y.Y β.Gα, H∃yβ):

As in the proof of Lemma 4.2.12, we assume that y 6∈ {x}∪ fv(t)∪ fv(K), Gα

has no free term variable Y σ such that σ 6≡ β, and Y β′ is not equivalent to any

free term variable in X or K.

We will prove that M = ST (y.Y β′ .Gα[x/t][P/T ][X/K], H∃yβ[x/t][P/T ][X/K])

is in C+
α[x/t][P/C] by induction on N(G[x/t][P/T ][X/K])+N(H[x/t][P/T ][X/K]).

Since M is neutral, we will show that all its immediate reducts are in Cα[x/t][P/C].

The proof for every case except the following new one is as in the proof of Lemma
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4.2.12.

The new case is when M = ST (y.Y β′ .G∗(Y β′),

abbr(Pσ, J
∃yβ∗(Q/U)[P/T ])∃yβ∗(Q/Pσ)[P/T ]), where β[x/t] = β∗(Q/Pσ), Q 6∈ {P} ∪

FV (T ), U = λz1, . . . , zqσ, and the immediate reduct is N = ST (y.Zβ∗(Q/U)[P/T ].

unabbr(Zβ∗(Q/U)[P/T ]⊃α′ .Zβ∗(Q/U)[P/T ]⊃α′ , G∗)(Zβ∗(Q/U)[P/T ]), J).

Similar to the above case, we can show that unabbr(Zβ∗(Q/U)[P/T ]⊃α′ .

Zβ∗(Q/U)[P/T ]⊃α′ , G∗) is in C+
β∗(Q/U)[P/C] ⊃ C+

α[x/t][P/C] and J is in

C+
∃yβ∗(Q/U)[P/C]. Hence N is in C+

α[x/t][P/C].

Similarly for the case (∃2 Elim).

The strong normalization theorem for the new C-H terms follows by the above

lemma in the same way as Theorem 4.2.13 follows from Lemma 4.2.12 in Chapter

IV.



CHAPTER VI

CONCLUSIONS AND FURTHER WORK

We have extended the system of extracting programs from proofs in the language

of first-order predicate calculus (in [3]) to second-order logic. We have shown that

Curry-Howard terms produced in the new system still satisfy the strong normal-

ization theorem by extending Crossley and Shepherdson (see [3]) and adapting

Girard’s technique of parametric reducibility (see [7]). By using this technique,

we do not have to put any restrictions on formulae or abstraction terms. In [2],

Basin and Matthews extend a standard intuitionistic first-order sequent calcu-

lus to second-order and put the restriction on an abstracted formula (which is

an abstraction term in this thesis) λx1, . . . , xnα so that α does not contain any

second-order quantifiers. This restriction enables them to prove the second-order

cut elimination theorem by induction on the construction of a formula. In [16],

Takayama introduces the second-order constructive calculus QPC2 where second-

order formulae are restricted so that the second-order universal quantifier never

occurs inside a formula (only occurs at the head part of a formula) in order to

make the sequence of the second-order proof normalization simple. Our work here

goes further than theirs.

This new system is intended for templates to be added to but it is also useful on

its own since now programs can be obtained directly from proofs in second-order

logic in which a large part of mathematics is actually formulated (see [18]).

Finally, we have introduced two kinds of templates: induction templates and

abbreviation templates by adding new rules to the system and then defined the
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associated Curry-Howard terms as well as new reduction rules. For the induction

templates, everything is straightforward. We just add proofs for the new cases to

the proof of every lemma. We then get the strong normalization theorem for the

new Curry-Howard terms. On the contrary, for the abbreviation templates, the

proof of the strong normalization theorem seems to be much more complicated.

In order to have Lemma 5.2.9, which is the key to the strong normalization the-

orem, we have to extend CR to CR+ and Cα[P/C] to C+
α [P/C], where C ′

α[P/C]

is introduced in order to define C+
α [P/C]. We restrict abstraction terms not to

contain any abbreviation predicates. This restriction is needed for the proofs of

(∨ Elim), (∃ Elim), and (∃2 Elim) cases in Lemma 5.2.10. We also restrict the

formulae which can be abbreviated not to contain any abbreviation predicates or

free predicate variables. We make the latter restriction in order to make some

basic lemmas (e.g. Lemma 3.2.14) hold. The reason for the former restriction is

below the note on page 165 of which the result is needed for the proof of Lemma

5.2.9.

The induction templates allow us to use induction in formal proofs without

going through natural numbers. As a result of this, programs extracted from

proofs using induction in the new system would become shorter. The abbreviation

templates enable us to abbreviate formulae by predicates in formal proofs. We can

see that the new system takes us closer to the actual practice of mathematicians

and the way they write proofs.

Some of the things we have not done in this thesis are the following.

We did not prove the Church-Rosser theorem, which states that “if a Curry-

Howard term reduces to two terms, these two terms must have a common reduct”,

for the new Curry-Howard terms. This should be a straightforward extension from

the proof of this theorem for the first-order system in [3].
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We did not give a definition of verifier, which may be regarded as a variant of

Kleene’s notion of realizer (see [10]). Verifiers for the first-order system in [3] give

constructive evidence for the truth of a formula in a structure. Extending these

to the second-order system would be a good subject for further work.
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