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To reduce the increase in switching losses caused by PWM operations at 

both the input and output stages of three-level back-to-back (3L-BTB) converters, 

two novel topologies of 3L-BTB converters, which are three-level indirect matrix 

converter (3L-IMC) and the symmetrical three-level back-to-back (S3L-BTB) 

converter, together with a new modulation strategy are developed. The proposed 

3L-BTB converters are based on the double-carrier-based dipolar PWM theory of 

the matrix converters, and are comprised of a fundamental-frequency switching 

rectifier and a PWM inverter. The slow-switching rectifier is employed to generate 

the required max-mid-min dc links for the PWM inverter stage. The switching 

losses and EMI at the input are significantly reduced as compared to those of the 

conventional PWM rectifier. Moreover, the topology of the S3L-BTB converter 

allows the rectifier to be operated in the usual PWM mode and becomes the 

conventional PWM 3L-BTB converter if required. Simulations are conducted, and 

the results confirm the performances of the proposed converters as AC/AC 

converters and their benefit in loss reduction. The laboratory prototype of the S3L-

BTB converter is also constructed and tested. The experimental results are in good 

agreement with the theoretical results. 
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converters, especially in the medium and high power applications. As such, the NPC 

structure can be said to be mature and reliable enough to be considered as one of the 

basic power electronic building blocks. Although the NPC three-level back-to-back 

converter can fulfill the aforementioned requirements for the back-to-back converters 

and benefits from the properties of the three-level structure, its major problems are 

high switching losses and electromagnetic interference (EMI) noises. This is because 

one has to use the PWM technique both at the rectifier and the inverter stages. To 

retain the advantages of three-level structure and to alleviate the switching losses and 

EMI problems, new topologies for the three-level back-to-back converters need to be 

devised. 

The matrix converters are other converter topologies that can control the 

output voltages and the input currents at the same time. They perform a direct 

conversion from AC to AC without energy storage elements. Matrix converters are 

divided into the direct and indirect types as shown in Figure 1.1. Though the direct 

matrix converter shows some promising benefits, it has not been well accepted in real 

applications because of the need of four-quadrant switches and also the limited range 

of output voltages. On the other hand, the indirect matrix converter which functions as 

a AC-DC-AC converter is in principle a back-to-back converter without energy 

storage elements. Control strategies for the indirect matrix converters have been 

developed by decomposing the modulation process into the rectifier and inverter 

stages. The rectifier generates the required virtual dc-link voltage, while the inverter 

utilizes that dc-link voltage to construct the output PWM voltages. Several topologies 

for indirect matrix converters have thereafter been proposed, whose modulation 

strategies are mostly based on the space vector PWM. One of the main differences 

between the indirect matrix converters and the back-to-back converters is how the 

PWM modulation is performed. The front-end rectifier and the back-end inverter of 

the indirect matrix converters must always cooperate to control the output voltage and 

the input current simultaneously, while those of the back-to-back converters usually 

works independently. Although this flexibility of the back-to-back converters enables 

the rectifier and the inverter to be switched independently without any concern on the 

commutation constraint, the possibility to operate the rectifier and the inverter in a 

cooperation manner to achieve preferable performances has been neglected in the past 
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researches. In addition, the viewpoint to consider the matrix converter as a 3-to-1-to-3 

or AC-DC-AC converter has introduced a limit in the structure of the indirect matrix 

converters. It allows one to consider only the two-level rectifier as the candidate for 

the back-to-back structure of the indirect matrix converters. Accordingly, the indirect 

matrix converters proposed until now are mostly not of the three-level back-to-back 

structure. As a result, several fruitful results of the indirect matrix converters achieved 

in the literature cannot be applied directly to the three-level back-to-back converters. 

To overcome this obstacle, one needs to develop a new viewpoint to consider the 

matrix converter as a 3-to-3-to-3 AC-DC-AC converter instead. 

In this work, new topologies for the three-level back-to-back converters and a 

new PWM strategy shall be proposed to alleviate the switching losses and EMI 

problems based on the switching cooperation between the rectifier and inverter stages. 

To give some background on the current status of the development concerning 

the back-to-back converters and matrix converters, a brief review of modern AC-AC 

converters is presented in the following [1].  

1.1 Conventional Three-Level Back-to-Back Converters 

 

 

Figure 1.2 Conventional three-level back-to-back converter topology. 

The popular circuit topology for the three-level back-to-back converters is 

based on the NPC structure as shown in Figure 1.2. This topology consists of two 

stages: the rectifier and inverter stages. The two stages are connected together in a 

back-to-back way through an intermediate dc link. Two capacitors are used as energy 

DC
C

DC
C
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storage elements in the dc link, and it is a usual perception that the dc link of this 

converter is a kind of symmetrical two-phase circuit. The converter converts the input 

AC voltages into two DC voltages at the dc link, and subsequently the DC voltages 

are converted into the output AC voltages. Thus, the conversion is AC-DC-AC. 

Despite the plentiful merits of this topology such as low distortions in the 

output voltages and input currents as well as less voltage stresses across a switch, the 

main drawbacks are that switching losses and EMI noises are considerably increased 

due to the PWM technique used both at the rectifier and the inverter stages. 

1.2 Matrix Converters 

Another type of PWM AC-AC converters is the matrix converter. The matrix 

converter generates the output voltages directly from the input voltages using PWM 

method. In contrast to the conventional back-to-back converter, the conversion of the 

matrix converter is a direct AC-AC one without any energy storage elements. The 

matrix converters can be categorized further as a conventional type or direct type and 

an indirect type as shown in Figure 1.1.   

Since the indirect-type matrix converter is of a back-to-back topology, it may 

be adopted as a good starting framework to develop novel topologies for three-level 

back-to-back converters with reduced switching losses and EMI noises. Therefore, 

some indirect-type topologies of the matrix converters will be reviewed in this Section 

[3]. 
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1.2.1 Indirect Matrix Converters (IMC) 

 

Figure 1.3 The indirect matrix converter topology 

The indirect matrix converter has the topology of a two-level back-to-back 

structure without any energy storage elements as depicted in Figure 1.3. The inverter 

stage is a two-level voltage-source inverter, whereas the rectifier stage is a two-level 

current-source inverter. This topology originated from physical realization of the 

conventional indirect modulation method which views the ‘fictitious dc link’ as a two-

level link [1], [4] , [5]. Due to this structural difference, any characteristics or research 

results belonging to the conventional IMC cannot be directly applied to the three-level 

back-to-back converters. 

1.2.2 The Indirect Matrix Converter with Three-Level Output 

Stage  

 

Figure 1.4 The indirect matrix converter with three-level output stage topology. 

n

p
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The indirect matrix converter with three-level output stage topology in Figure 

1.4 replaces the two-level inverter stage in the IMC with a three-level NPC inverter. 

This indirect matrix converter and its modulation method were proposed in [6] and 

[7], respectively. However, the rectifier remains a two-level one with the neutral point 

established using a capacitor network. The two-level rectifier still impedes further 

development for the three-level back-to-back converter topology. 

1.2.3 Three-Level Unidirectional Indirect Matrix Converters 

(USMC3) 

 

 

Figure 1.5 The three-level unidirectional indirect matrix converter (USMC3) topology 

In [1], a brief discussion of a three-level unidirectional indirect matrix 

converter topology in Figure 1.5 was given. This topology has the actual three-level 

structure both at the rectifier and inverter stages: the Vienna rectifier as the front-end 

rectifier and the three-level NPC structure as the inverter. Moreover, the Vienna 

rectifier in this topology switches at the fundamental or power-line frequency leading 

to reduction of switching losses and EMI noises. However, its modulation method to 

achieve both the output voltage and input current controls has not been clarified. 

Another drawback of this topology is the operation limits on both the input and output 

power factors. 

From the past literature review regarding researches on the indirect-type 

matrix converters, none of them has the structure of a three-level back-to-back 

topology, except for the USMC3 topology. But the USMC3 topology is not 
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acceptable due to its limits on input and output power factor and its unclear control 

strategy.  

1.3 Objective of Research 

The main purpose of this work is to develop novel topologies for three-level 

back-to-back converters together with their modulation strategies based on the matrix 

converter theory, aiming to reduce switching losses and EMI noises at the rectifier 

stage and to fulfill the fundamental requirements of AC-AC converters. 

1.4 Scope of Research 

The scope of this research is to develop novel topologies for three-level back-

to-back converters together with their modulation strategies. An operational prototype 

will be built and the performances of the proposed back-to-back converters will be 

verified by simulation and experiment. 

1.5 Research Methodology 

1. Study the background knowledge of the conventional three-level back-to-

back converters and their problems. 

2. Review the past literature relevant to matrix converters which have the 

back-to-back topology. 

3. Study the unified PWM method for conventional matrix converters and its 

carrier-based realization. 

4. Propose the new topologies for three-level back-to-back converters aiming 

to reduce switching losses and EMI. 

5. Validate the proposed concepts with simulations.  

6. Design and build an operational prototype of the proposed three-level 

back-to-back converter. 

7. Verify and evaluate performances of the prototyped converter. 

8. Analyze the experimental results. 

9. Draw a conclusion, and write the thesis. 
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1.6 Expected Contribution 

1. Novel topologies for three-level back-to-back converters with reduced 

switching losses and EMI noises at the rectifier stage. 

2. Novel PWM strategy which efficiently coordinates the modulation of the 

rectifier and the inverter of the back-to-back converters. 

3. Derivation of new topologies for the indirect matrix converters which are 

truly equivalent to the conventional matrix converters. 

1.7 Organization of the Thesis 

In Chapter II, fundamental PWM theory of the conventional matrix converters 

will be reviewed to provide a basic framework to develop the new three-level back-to-

back converters. The PWM theory explained in Chapter II differs very much from the 

conventional PWM theory which is normally adopted as the basics for development 

of the indirect-type topologies of the matrix converter todays. The PWM theory in 

Chapter II is based on double-carrier-based dipolar PWM which fits well with the 

three-level back-to-back topology, making it the perfect tool necessary for the 

development of new topologies for the three-level back-to-back converters. The 

double-carrier-based dipolar PWM will be revised and a three-level indirect 

modulation strategy will be introduced.  

Subsequently in Chapter III, the three-level indirect modulation will be 

applied to establish two novel topologies for three-level back-to-back converters. The 

first topology is called the three-level indirect matrix converter (3L-IMC), and the 

second one is the symmetrical three-level back-to-back converter (S3L-BTB 

converter). Their PWM modulation technique which is based on the cooperation 

between the switching of the rectifier and that of the inverter will also be derived in 

Chapter III. 

Chapter IV presents and discusses the simulation results to verify the 

performances of the proposed topologies. Moreover, the semiconductor losses of the 

proposed S3L-BTB converter are numerically evaluated and compared to those of the 

conventional back-to-back converters to point out a remarking reduction of switching 

losses at the rectifier stage. 
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In Chapter V, a laboratory prototype development of the S3L-BTB converter 

will be discussed. The functional diagram of the prototype which is implemented on a 

single FPGA as a purely digital controller and the overall experimental setup will be 

explained. Experimental results will then be shown and analyzed. The power losses of 

the rectifier and the inverter stage will also be measured and discussed. 

Conclusion and suggestions for future work are summarized in Chapter VI. 

Finally, a method used for calculating the semiconductor losses in Chapter IV are 

given in the Appendix. 
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voltages ( max midv v ) and ( mid minv v ). This kind of representation makes it easier to 

understand how the double-carrier based PWM works. However, for hardware or 

software implementation, it often requires that the amplitudes of the carriers be unity.   

This can be easily done by normalizing the upper and lower parts of the figure 

separately with the corresponding dc-link voltages. From (2.11), the normalized 

double-carrier based PWM is obtained as shown on the right, wherein it is clear that 

the two references after normalization become just the duty cycles or the elements of 

the modulation matrix. Figure 2.4(b) gives an example of the output PWM voltage 

when the triangular signals are used as the two carrier waveforms. Figure 2.5 shows 

the conceptual diagram of the inverter stage with the sorted unidirectional dc-link 

voltages and the resultant output PWM voltages. It is seen that the envelopes of the 

PWM waveforms follow the three-level dc-link voltages of Figure 2.3 as expected.  

 

 

 

 

 

 

 

 

 

Figure 2.4 Double-carrier-based PWM for matrix converters. (a) two reference 

voltages and their normalization (b) switching signal for one phase. 

 

 

 

 

 

 

Figure 2.5 Conceptual diagram of the inverter stage with the unidirectional   

dc-link voltages and its generated output PWM voltages 
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rectifier in the conventional indirect modulation views the fictitious dc link as a two-

level dc link, and it switches at a very high frequency by the PWM method. 

Accordingly, the output PWM voltages generated by each modulation strategy are 

significantly different. Owing to the existence of the three-level dc link, the three-

level indirect modulation can employ any of the three input voltages to construct the 

output voltage at any instant within a switching period, which is equivalent to the 

direct modulation. On the other hands, the conventional indirect modulation is limited 

to employ only two of the three input voltages at any instant in a switching period. To 

overcome this limitation, the rectifier stage has to generate two different dc-link 

voltages during one PWM period so that one can regain the utilization of all the three 

input voltages. However, there is still one problem left by this approach. The three 

input voltages cannot be used simultaneously at any instant within the switching 

period to generate the output voltages, making the conventional indirect modulation 

only a subset of the direct modulation. 

In summary, it can be concluded that the three-level indirect modulation 

introduced in the thesis is truly equivalent to the direct modulation of the CMC. In 

other words, the indirect modulation for the CMC should be a three-level indirect 

modulation whose rectifier and inverter stages function as a 3-to-3-to-3-phase 

conversion rather than a 3-to-1-to-3-phase conversion of the conventional indirect 

modulation. All of these conclusions are quite natural because the CMC’s topology is 

inherently a kind of three-level converter as depicted in Figure 2.1. 

Furthermore, with the aforementioned insight, it becomes soon clear that a 

serious consequence if one adopts the conventional indirect modulation is that it does 

not allow one to apply such an indirect modulation technique of the CMC to a three-

level back-to-back converter which functions as a 3-to-3-to-3-phase conversion. 

However, this is possible and straightforward with the proposed three-level indirect 

modulation, and this will be the main topic of the following chapter.  

 

 

 

 

 



CHAPTER 3                                                         

NOVEL TOPOLOGIES FOR THREE-LEVEL                  

BACK-TO-BACK CONVERTERS 

The conventional three-level back-to-back converters allow one to 

simultaneously generate any commanded output voltages and control the input 

currents for power factor correction requirement. The output voltage generation task 

is the responsibility of the back-end inverter, while the input current control is taken 

care of by the frond-end rectifier of the conventional converter. Normally, the rectifier 

and inverter operate independently in the PWM mode using the dc link as an 

intermediate buffer. However, as pointed out in Chapter I, the conventional three-

level back-to-back converter has some disadvantages regarding switching losses and 

EMI. This is mainly due to the PWM operation of the frond-end rectifier which is 

introduced to replace the conventional diode rectifier for power factor correction. To 

solve these problems, two novel topologies for three-level back-to-back converts will 

be proposed in this Chapter.  

The main idea newly proposed in this thesis is that the switching behaviors of 

the rectifier and the inverter should be cooperated or combined to reduce switching 

losses and EMI [11] [12]. This could be achieved without loss of the input current and 

output voltage controllability by using the three-level indirect modulation explained in 

the previous Chapter. The structure of the three-level converters used in this thesis is 

the well-known neutral-point-clamped (NPC) structure. All the theoretical results 

derived in this thesis are however not only limited to the NPC structure, but also are 

valid for all structures of three-level converters. 

III
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Figure 1.2 which is usually treated as a 3-to-2-to-3 conversion. The dc link of the 

conventional back-to-back converter is thus normally considered as a two-phase 

circuit. This significant change of viewpoint will be utilized to further the 

development of the back-to-back converter in Section 3.2.2. 

As explained in Section 2.3, from the fact that the back-end inverter of the  

3L-IMC topology can use all three input voltages simultaneously to generate the 

PWM output voltages within a switching period, the 3L-IMC is perfectly equivalent 

to the CMC.  Therefore, the 3L-IMC possesses all the input-output characteristics of 

the conventional (direct) matrix converter. 

The main features of this 3L-IMC topology can be summarized as follows:  

1) The rectifier operates at the fundamental (power-line) frequency in order 

to produce the max-mid-min links illustrated in Figure 2.3. 

2) The dc link is thus not a constant voltage source as in the conventional 

three-level inverter. 

3) The inverter operates in the PWM mode by applying the double-carrier 

dipolar modulation technique with the max-mid-min dc links 

4) The inverter controls both the output voltages and input currents 

simultaneously with the help of the rectifier. 

 The aforementioned features contribute to the following merits of the 3L-

IMC: 

1) The output voltages are generated as commanded with sinusoidal input 

currents similar to those achieved by the matrix converter. 

2) Switching losses at the rectifier stage are lower compared to those of the 

conventional 3L-BTB converter which operates in the PWM mode. 

3) The voltage waveforms at the input of the rectifier are sinusoidal with only 

small switching ripples. Therefore, compared to the conventional PWM 

rectifier in Figure 1.2, the 3L-IMC has less EMI problems, and smaller 

EMI filters at the input can be used. 

Nevertheless, the output voltage range of the 3L-IMC is limited to 87% of the 

input voltage, which is the inherent characteristic of the matrix converter. In addition, 

commutation timing must be carefully considered so as not to cause open-circuit 

conditions at the load or short-circuit conditions at the source.  
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converter can operate as the latter, but the reverse is not possible. It should be 

underlined that the conventional 3L-BTB converter in Figure 1.2 can be simply 

modified to be the S3L-BTB converter by adding just one capacitor between the 

positive and negative buses. Nevertheless, the capacitors can also be connected as 

wye in the     S3L-BTB converter. The S3L-BTB converter enjoys the same low 

losses and low EMI properties of the 3L-IMC with the following additional merits. 

1) The front-end rectifier and the back-end inverter are able to switch 

independently without any constraint on the commutation timing. This is 

owing to the existence of the capacitors at the dc link. The rectifier and the 

inverter still however cooperate to control both the output voltages and the 

input currents as is done in the 3L-IMC. This kind of cooperation is not 

possible with the conventional 3L-BTB converter because of the 

unsymmetrical three-phase circuit at the dc link. 

2) The input currents flowing through the front-end rectifier becomes 

piecewise sinusoidal waveforms without any impulsive spikes from the 

PWM operation of the back-end inverter. The PWM current ripples will be 

by-passed by the capacitors at the dc link. This property is very important 

for simplification of the circuit topology in the case of unidirectional 

power flow [14]. 

3) The output voltage range can be extended beyond 87% of the input voltage 

if necessary by changing the operation of the rectifier from the 

fundamental frequency switching to the PWM mode, with which the dc-

link voltages can be boosted up. This is possible because as pointed earlier 

the S3L-BTB converter can work as the conventional 3L-BTB converter. 

The switching losses and EMI merits are lost by this changing of 

operation, however. 

4) The capacitors at the dc link can be designed to help buffer the energy 

during voltage dips. For this purpose, large capacitors will be required to 

store the energy and may lead to unwanted leading power factor at the 

input. If only the filtering function is expected, the dc-link capacitors shall 

be small. This merit is however not available in the CMC. 
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modulation matrix M in (3.4) must be as expressed in (2.3)-(2.7). The generalized 

modulation matrix is repeated here for clarity.  

 U I N 0i rM M M = M M M M      (3.5) 

First, considering that the function of the rectifier is to sort the three input 

voltages into the three dc-link voltages  Tdc max mid minv v vv   in a descending order, 

the rectifier modulation matrix rM can be determined for each sector of the input 

voltages as shown in Table 3.2.  

 

Table 3.2 Rectifier modulation matrix for each sector of the input voltages 

No. of 

Sector 

n 

dc-link voltages Rectifier 

Modulation Matrix 

rM  

Geometric 

Transformation 

category 
maxv  midv  minv  

1 R  S  T  

1 0 0

0 1 0

0 0 1

 
 
 
  

 Rotation 

2 S  R  T  

0 1 0

1 0 0

0 0 1

 
 
 
  

 Reflection 

3 S  T  R  

0 1 0

0 0 1

1 0 0

 
 
 
  

 Rotation 

4 T  S  R  

0 0 1

0 1 0

1 0 0

 
 
 
  

 Reflection 

5 T  R  S  

0 0 1

1 0 0

0 1 0

 
 
 
  

 Rotation 

6 R  T  S  

1 0 0

0 0 1

0 1 0

 
 
 
  

 Reflection 
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Using (2.3) and the rectifier modulation matrix given in Table 3.2, the inverter 

modulation matrix iM is determined by (3.6). 

 1 1
U I N 0( )i r rM MM M M M M M       (3.6) 

Substituting (2.4) – (2.7) into (3.6) yields 

 1 1 1 1
0

( ) ( )T T T
o i o i o i

i r r r r

i i i

* *

2 2 2

v v i Jv Ji Jv
M M M M M M

v v v
       . (3.7) 

Because the rectifier modulation matrix rM  is a kind of basic geometric 

transformation as indicated in Table 3.2, from the geometric viewpoint the following 

relations (3.8) - (3.10) for the nth sector of the input voltages can be obtained. 

 1 T
r rM M   (3.8) 

 1 1 1( ) ( 1) ( ) ( 1) ( )T n T n T
i r r i dcJv M JM v Jv       (3.9) 

 i dcv v  (3.10) 

Using the relations (3.1), (3.2), (3.6)-(3.10), the general form of the inverter 

modulation matrix iM  is finally derived as: 

 1 1
U I N 0( 1) ( 1)  n n

iM M M M M           (3.11) 

where 

 
 

U 2 2 2

1
max mid min

To
dc

max mid mindc

u v v v

v
v v v

w







 
         

*

2

v
M v

v
 (3.12) 

 
 

1 1
II 2 2 2

( )
3

u mid min min max max mid
T

o dc v

max mid mindc
w

i v v v v v v
k k

i
v v v

i
2M i Jv

v

   
         

 

  (3.13)

   

 
 

2 2
N 2 2 2

( )
3

v w mid min min max max mid
T

o dc w u

max mid mindc
u v

i i v v v v v v
k k

i i
v v v

i i
2M Ji Jv

v

    
         

  

       (3.14) 
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 
0

1

1

1

x y z   
    
  

M

     

;      0 , , 1x y z     1x y z     .             (3.15) 

It should be noticed that the inverter modulation matrix iM  is very similar to 

the modulation matrix M of the CMC. Each component of the modulation matrix iM  

can be obtained by replacing iv  in (2.4)–(2.7) with dcv  , except for the sign change 

which takes place every time the sector of the input voltages changes. Moreover, the 

functions of each component and of the free parameters in the modulation matrix iM  

are still the same.  The component matrix UM  produces the required output voltages 

and the active component of the input current ii , while IM  controls the reactive 

component through the free parameter 1k  without affecting the output voltages, and 

NM  adjusts the switching pattern through the free parameter 2k . 

In summary, the rectifier modulation matrix rM  and the inverter modulation 

matrix iM can be directly calculated from the instantaneous values of the commanded 

output voltages, the input or dc-link voltages, the output currents, and the zero voltage 

(which is determined by the zero-voltage matrix). The output PWM signals for the 

inverter can then be straightforwardly generated using the double-carrier-based PWM 

discussed in Section 2.3.2. To exemplify this process, the equation (3.2) will be 

rewritten in full form as: 

 

 
( ) ( ) ( )
11 12 13
( ) (2) ( )
21 22 23
( ) ( ) ( )
31 32 33

i

i i i
max

i i
mid

i i i
min

o i

u m m m v

v m m m v

w m m m v

M vv

    
         
        



 (3.16) 

Here the element ( )i
jkm  represents the duty cycle which each output phase {u,v,w} is 

connected to each dc link {vmax,vmid,vmin} during a  switching period. The duty cycles 

must satisfy the following constraints:  

( )0 1i
jkm   and    

3
( )

1

1,  1, 2,3 , 1, 2,3i
jk

k

jm k


   . 
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The double-carrier-based PWM can be straightforwardly employed by taking the  

mid-phase voltage midv  as the reference. As a result, the output voltage will be 

generated from the two dc-link voltages: the upper dc-link voltage ( max midv v ) and 

the lower one ( mid minv v ). This process can be written mathematically in (3.17). 

 

( ) ( )
11 13
( ) ( )
21 23
( ) ( )
31 33

( ) ( )

i i
mid

i i
mid max mid mid min

i i
mid

u v m m

v v m v v m v v

w v m m

     
             
          

 (3.17) 

As demonstrated in Figure 2.4,  when the two normalized triangular carriers 

are used, only the first and the third columns of the inverter modulation matrix iM  

will become the references whose the general forms are expressed as shown in (3.18)-

(3.21). The flow chart of the whole steps is drawn in Figure 3.6.  

 

( ) ( )
11 11
( ) ( )
21 21
( ) ( )
31 31

i i

i i

i i

m m x

m m x

m m x

    
        
       

  (3.18) 

 

( ) ( )
13 13
( ) ( )
23 23
( ) ( )
33 33

i i

i i

i i

m m z

m m z

m m z

    
        
       

  (3.19) 

where 

   

   

   

1 1
( )

11
( )

21 2 2 2
( )

31 1 2

1
3

1

1
3

u
n

max mid min vi

wi

i max mid min v w
n

mid min w u

u v

u i
k

v v v v i
m

w i
m

v v v i im k
v v i i

i i









    
                                       
    

  (3.20) 
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3L-IMC,  the relations among the input, output, and dc-link currents of the 3L-IMC in 

Figure 3.7 can be written as shown in (3.22)-(3.24).  

 

maxv

( ) ,  ( )i ip t q t ( ) ,  ( )o op t q t

midi

mini

maxi

midvii oi

minv

iv ov

 

Figure 3.7 Definitions of variables in the 3L-IMC topology. 

Rectifier stage: T
i r dci M i   (3.22) 

Inverter stage: T
dc i oi M i   (3.23) 

where  , ,dc max mid mini i ii   

 ( )T T T
i r i o i r oi M M i M M i    (3.24) 

From (3.4) and (2.3)-(2.7), then the input current finally becomes 
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 
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2

i M i

v i
v Jv i i Jv Ji i

v v v

v Jv i
v v

  

 

  (3.25) 

where *( ) T T
o o o o op t  v i v i  is the instantaneous output power. 

From (3.25), it can be seen that the input current ii  has a unique active 

component (in phase with the input voltage iv ), which is determined by the output 

power at that instant. Also, the input current can have a reactive component 

(perpendicular to the input voltage), which is controlled by the free parameter 1k . This 
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characteristic is consistent with the input-output current equation of the CMC in (2.2) 

derived in [8], which confirms the equivalence between the 3L-IMC and the CMC. 

We can therefore control the reactive power or the power factor at the input side of 

the converter by adjusting the free parameter 1k  so long as no overmodulation occurs. 

The instantaneous input active power ( )ip t  and reactive power ( )iq t at the converter 

terminals are then given by (3.26) and (3.27), respectively. 

 
( )

( )

T
i i i

o

p t

p t

v i


  (3.26) 

 
 

2

1

( )

( )

T

i i i

o

q t

k t

Jv i

i

 

 
  (3.27) 

It should be note that the reactive power in (3.27) does not include the reactive power 

generated by the filter capacitors. 

Case II) Symmetrical Three-Level Back-to-Back 

Converters 

maxv

midv

minv

( )r

maxi

( )i

maxi

( )i

midi

( ) ,  ( )i ip t q t ( ) ,  ( )o op t q t

( )i

mini

( )r

midi

( )r

mini

oiii

oviv

Ci( ) ,  ( )C Cp t q t

C

 

Figure 3.8 Definitions of variables in the S3L-BTB converter topology. 

For the S3L-BTB converter shown in Figure 3.8, due to the existing of the 

capacitor network at the dc link, we have to distinguish the dc-link currents at the 
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rectifier side  ( ) ( ) ( ) ( ), ,r r r r
dc max mid mini i ii   from those at the inverter side  ( ) ( ) ( ) ( ), ,i i i i

dc max mid mini i ii  . In 

this case, under the same rectifier and inverter modulation matrices, the relations 

among all the currents in the converter become (3.28) - (3.30). 

Rectifier stage: ( )T r
i r dci M i   (3.28) 

Inverter stage: ( )i T
dc i oi M i   (3.29) 

with ( ) ( )r i
dc dc Ci i i    (3.30) 

where  ( ) ( ) ( ) ( ), ,r r r r
dc max mid mini i ii   is the dc-link current at the rectifier side after filtered by 

the capacitor–network,  

 ( ) ( ) ( ) ( ), ,i i i i
dc max mid mini i ii   is the dc-link current at the inverter side generated by the 

inverter stage, and 

           3 dc
C

d
C

dt
v

i  is the current flowing through the capacitor network. 

Considering that the rectifier modulation matrix is constant almost everywhere 

except at the switching instant (i.e.

 

/ 0rd dt M ) and that the currents flowing 

through the input inductors must be continuous, the input current of the S3L-BTB 

converter can be derived with the relation (3.8) as shown below. 
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According to (3.31), while the first two terms on the right-hand side is the 

same as the input current of the 3L-IMC in (3.25), the last term is caused by the 

charging/discharging current of the capacitor network which is moved into the dc 

link. This additional-term current can be proved to be equal to the capacitor current of 

the filter in the 3L-IMC topology. Therefore, the input current of the S3L-BTB 

converter is exactly equal to the input current of the 3L-IMC taking into account the 

filter current. The power factor controllability of the two converters is thus the same. 

We can therefore control the reactive power or the power factor at the input side of 

the proposed converters by adjusting the free parameter 1k  so long as no 

overmodulation occurs.  

The instantaneous input active power ( )ip t  and reactive power ( )iq t  for this 

topology can be calculated as follows. 

 ( ) ( )T T T
i i i o i r Cp t p tv i v M i     (3.32) 

  ( )
T

o r i Cp t  M v i    

Substituting (3.1) into (3.32) yields 

 
( )

( ) ( ) T
i o dc C

Cp t

p t p t v i  .  (3.33) 

Eq. (3.33) reveals that the amount of instantaneous input power is equal to the output 

power plus the net charging/discharging power of the dc-link capacitors.  And under 

the balanced conditions where the net charging/discharging power is zero, 

   ( ) ( )i op t p t        

is obtained. 

On the other hand, from (3.27) the input reactive power ( )iq t  can be obtained 

as: 

    2

1

( )

( ) ( )
T T T

i i i o i r C

Cq t

q t k tJv i i Jv M i     


.  (3.34) 

Considering the second term on the right-hand side, 

    ( ) 3
T TT i

C i r C i

d
q t C

dt
      
 

v
Jv M i Jv   (3.35) 
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which is the same reactive power required as when the capacitor network is connected  

in front of the converter of the 3L-IMC.  

For the normal case which the input line-to-line voltages are sinusoidal, the 

reactive power consumed by the capacitor network can be calculated as  

 
2 23 3

( )
2

i i
C

C C

V
q t

X X
 

   
v

  (3.36) 

where iV  is the rms value of the line-to-line voltages. As a conclusion, taking the 

capacitor network into consideration the total reactive power ( )iq t  consumed by the 

3L-IMC or the S3L-BTB converter is given by 

 
2

2

1

3
( ) ( ) i

i o
C

V
q t k t

X
i



   .  (3.37) 

The input power factor can therefore be controlled through the free parameter 1k so 

long as there is no overmodulation. However, if U 0M = M M  1 2( 0)k k   is 

selected, the input reactive power will always be 
23

( ) i

C

V
q t

X


   causing the input 

current to be leading. Nevertheless, the effect of this reactive current generated from 

the capacitor network can be compensated by adjusting the free parameter 1k  to make 

( ) 0iq t  (unity power factor). In such a case, 
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 i   (3.38) 
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  (3.39) 

 

In summary, from the input-output viewpoint, the proposed 3L-BTB 

converters which use the modulation matrices rM  in Table 3.2 and iM  in (3.11) 

behave exactly like the CMC. This perfect equivalence cannot be obtained with other 

conventional indirect-type matrix converters, which are constructed based on the   

two-level BTB converters, due to the topological difference between the three-level 

and two-level dc links. 



 

 

CHAPTER 4                                                         

SIMULATION RESULTS 

After deriving the novel topologies for 3L-BTB converters in conjunction with 

the corresponding modulation strategies in Chapter III, this Chapter will confirm the 

performances of them as AC/AC converters by simulation using MATLAB/Simulink. 

The performances of the conventional and the proposed 3L-BTB converters shown in 

Figure 4.1 are tested under several different conditions according to Table 4.1. 

Table 4.1 List of simulation conditions for performance testing of the conventional 

and the proposed 3L-BTB converters. 

 
 Testing conditions 

Case Objectives 

Modulation 
index

 

Output 
frequency 

(Hz) 

 
Load 

1 
Comparison with the conventional 

3L-BTB converter 
0.5 50  

 
series RL 

load  
R = 24Ω 

L = 33.3 
        mH 

2 
Output voltage variation 

0.3 50 

3 0.86 50 

4 
Output frequency variation 

0.86 25 

5 0.86 100 

6 

Input power 
factor 

compensation 

No compensation 0.7 50 

7 Unity power factor 0.7 50 

8 
Lagging 

compensation 
0.7 50 

9 
Leading 

compensation 
0.7 50 

10 
Regenerative 

operation 

No compensation 0.7 25 

series RL 
with back-
EMF 

R = 5 Ω 
L = 33.3 

         mH 
11 Unity power factor 0.7 25 

 O

i

V
V

IV
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Figure 4.1 Three-level BTB converter topologies. (a) conventional 3L-BTB converter 

(b) 3L-IMC (c) S3L-BTB converter 
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voltages. Consequently, the input terminal voltage of the converter, R, is no longer of 

PWM waveform like that of the conventional 3L-BTB converter shown in Figure 

4.3(a), but becomes sinusoidal instead. This confirms the low losses and low EMI 

properties of the proposed converters compared to the conventional converter which 

employs PWM operation at the rectifier stage to achieve two constant dc-link 

voltages.  

Considering the dc-link current at the ‘max’ link of the 3L-IMC in Figure 

4.3(b), the impulsive PWM current maxi  at the dc link is generated by the back-end 

inverter, and is then rearranged by the action of the rectifier to become the PWM 

input current ( )r
Ri .  The PWM input current is finally filtered to be a sinusoidal supply 

current Ri .  

For the S3L-BTB converter, due to the effect of the capacitor network in the 

dc link, the impulsive PWM current resulting from the back-end inverter ( )i
maxi  is 

filtered at the dc-link to be a smooth current ( )r
maxi . The rectifier-side dc-link current 

( )r
maxi  flows through the anti-parallel diodes which connect the maximum input phase 

to the ‘max’ link, and its waveform is a portion of a sinusoidal function. The phase 

shift of the rectifier-side dc-link current ( )r
maxi  relative to the max-link voltage maxv  

can be observed. Similar results occur in the ‘mid’ and ‘min’ links as well. The three 

rectifier-side dc-link currents are then recombined by the rectifier to yield the 

sinusoidal supply current Ri . It is concluded then that the symmetrical dc-link 

capacitors together with the line reactors in the S3L-BTB converter still act as the 

low-pass filter similar to that of the 3L-IMC topology. This same filtering function is 

not possible for the conventional 3L-BTB converter topology because the dc link 

lacks the three-phase symmetry, i.e. it is only a symmetrical two-phase circuit. In 

other words, the conventional back-to-back converter cannot achieve sinusoidal 

supply currents without PWM operation at the front-end rectifier. 

It should be pointed out that the phase leading of the supply current Ri  in both 

proposed converters is due to the capacitive currents. This effect can be alleviated by 

appropriately utilizing the free parameter 1k  for the input reactive power 

compensation as shown later in Section 4.4. 



 

 

Rv Sv Tv

Ri Si Ti

u

v

w

ui vi wi

Rv Sv Tv Rv Sv Tv

Ri Si Ti Ri Si Ti

u

v

w

u

v

w

ui vi wi ui vi wi

                                       (a)                                                                   (b)                                                                   (c) 

Figure 4.2 Simulated input-output waveforms of the 3L-BTB converters working under condition 1 (M = 0.5, fo = 50 Hz)             

(a) conventional 3L-BTB converter (b) 3L-IMC (c) S3L-BTB converter 40 
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Figure 4.3 External and internal waveforms of the 3L-BTB converters working under condition 1 (M = 0.5, fo = 50 Hz)                

(a) conventional 3L-BTB converter (b) 3L-IMC (c) S3L-BTB converter 41 
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   (a)                                                                    (b) 

 

Figure 4.4 Simulated input-output waveforms of the proposed 3L-BTB converters 

under output voltage variation (M = 0.3, fo = 50 Hz) (a) 3L-IMC (b) S3L-BTB 

converter 
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                   (a)                                                                   (b) 

 

Figure 4.5 External and internal waveforms of the proposed 3L-BTB converters under 

output voltage variation (M = 0.3, fo = 50 Hz)  (a) 3L-IMC (b) S3L-BTB converter 
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 (a)                                                                    (b) 

 

Figure 4.6 Simulated input-output waveforms of the proposed 3L-BTB converters 

under output voltage variation (M = 0.86, fo = 50Hz) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.7 External and internal waveforms of the proposed 3L-BTB converters under 

output voltage variation (M = 0.86, fo = 50 Hz) (a) 3L-IMC (b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.8 Simulated input-output waveforms of the proposed 3L-BTB converters 

under output frequency variation (M = 0.86, fo = 25 Hz) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.9 External and internal waveforms of the proposed 3L-BTB converters under 

output frequency variation (M = 0.86, fo = 25 Hz) (a) 3L-IMC (b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.10 Simulated input-output waveforms of the proposed 3L-BTB converters 

under output frequency variation (M = 0.86, fo = 100 Hz) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.11 External and internal waveforms of the proposed 3L-BTB converters 

under output frequency variation (M = 0.86, fo = 100 Hz)  (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.12 Simulated input-output waveforms of the proposed 3L-BTB converters 

without input power factor compensation (M = 0.7, fo = 50 Hz, 1 0k  ) (a) 3L-IMC           

(b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.13 External and internal waveforms of the proposed 3L-BTB converters 

without input power factor compensation (M = 0.7, fo = 50 Hz, 1 0k  ) (a) 3L-IMC 

(b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.14 Simulated input-output waveforms of the proposed 3L-BTB converters 

with unity input power factor (M = 0.7, fo = 50 Hz, 1 5k  ) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.15 External and internal waveforms of the proposed 3L-BTB converters with 

unity input power factor (M = 0.7, fo = 50 Hz, 1 5k  ) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.16 Simulated input-output waveforms of the proposed 3L-BTB converters 

with lagging input power factor (M = 0.7, fo = 50 Hz, 1 15k  ) (a) 3L-IMC (b) S3L-

BTB converter 
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(a)                                                                   (b) 

 

Figure 4.17 External and internal waveforms of the proposed 3L-BTB converters with 

lagging input power factor (M = 0.7, fo = 50 Hz, 1 15k  ) (a) 3L-IMC (b) S3L-BTB 

converter 
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(a)                                                                   (b) 

 

Figure 4.18 Simulated input-output waveforms of the proposed 3L-BTB converters 

with leading input power factor (M = 0.7, fo = 50 Hz, 1 3.3k   ) (a) 3L-IMC            

(b) S3L-BTB converter                                     
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(a)                                                                   (b) 

 

Figure 4.19 External and internal waveforms of the proposed 3L-BTB converters with 

leading input power factor (M = 0.7, fo = 50 Hz, 1 3.3k   ) (a) 3L-IMC (b) S3L-BTB 

converter 
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Figure 4.20  Simulated dc-link currents of the proposed 3L-BTB converters without 

input power factor compensation under condition (M = 0.7, fo = 50 Hz, 1 0k  )  
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Figure 4.21 Simulated dc-link currents of the proposed 3L-BTB converters with unity 

input power factor under condition (M = 0.7, fo = 50 Hz, 1 5k  ) 
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Figure 4.22 Simulated dc-link currents of the proposed 3L-BTB converters with 

lagging input power factor under condition (M = 0.7, fo = 50 Hz, 1 15k  )  

( ) ,i
max maxi i

( ) ,i
mid midi i

( ) ,i
min mini i

( )r
maxi

( )r
midi

( )r
mini

 

Figure 4.23 Simulated dc-link currents of the proposed 3L-BTB converters with 

leading input power factor under condition (M = 0.7, fo = 50 Hz, 1 3.3k   ) 
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(a)                                                                   (b) 

 

Figure 4.24 Simulated input-output waveforms of the proposed 3L-BTB converters 

operating under regenerative mode (M = 0.7, fo = 25 Hz, 1 0k  ) (a) 3L-IMC           

(b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.25 External and internal waveforms of the proposed 3L-BTB converters 

operating under regenerative mode (M = 0.7, fo = 25 Hz, 1 0k  ) (a) 3L-IMC            

(b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.26 Simulated input-output waveforms of the proposed 3L-BTB converters 

operating at unity input power factor under regenerative mode (M = 0.7, fo = 25 Hz, 

1 12k  )  (a) 3L-IMC (b) S3L-BTB converter 
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(a)                                                                   (b) 

 

Figure 4.27 External and internal waveforms of the proposed 3L-BTB converters 

operating at unity input power factor under regenerative mode (M = 0.7, fo = 25 Hz, 

1 12k  ) (a) 3L-IMC (b) S3L-BTB converter 
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Figure 4.28 Simulated dc-link currents of the proposed 3L-BTB converters operating 

under regenerative mode at (M = 0.7, fo = 25 Hz, 1 0k  )     
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Figure 4.29 Simulated dc-link currents of the proposed 3L-BTB converters operating 

at unity input power factor under regenerative mode at (M = 0.7, fo = 25 Hz, 1 12k  )  
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IGBTs, T2 and T3, whereas the others do not because they switches at the instant the 

input voltage sector changes, meaning that the voltage across the switches are zero. 

Moreover, although both the S3L-BTB and the conventional 3L-BTB converters 

employ PWM technique for the inverter operation, the switching losses in the inverter 

stage of the former one is less for the reason that the max-mid-min dc-link voltages 

are lower than those of the conventional one. The whole loss reduction contributes to 

the improvement of efficiency from 95.7% to 97%. 

The conduction losses are comparable for the S3L-BTB and the conventional 

converters both at the rectifier and inverter stages. It can be seen that conduction 

losses occurring at T1 and T4 in the rectifier stage of the S3L-BTB converter are zero. 

This is because the dc-link currents ( )r
maxi  and ( )r

mini  in Figure 4.9 are unidirectional and 

flow only through anti-parallel diodes D1 and D4; the IGBTs, T1 and T4, can thus 

switch under zero voltage without significant losses at that moment. 

 

Table 4.2 Comparison of the mean semiconductor losses between S3L-BTB and 

conventional 3L-BTB converters operating under non-regenerative mode at condition 

(M = 0.86, fo = 25 Hz)    

 

 

 

 

 

Stage Losses 
S3L-BTB converter 

(Watt) 

Conventional            

3L-BTB converter 

(Watt) 

Rectifier 
Conduction Losses 54.28 

54.32 
52.18 

91.29 
Switching Losses 0.039 39.11 

Inverter 
Conduction Losses 41.47 

75.89 
43.49 

90.35 
Switching Losses 34.42 46.86 

Total Losses 130.21 181.64 

Efficiency 97% 95.7% 
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Figure 4.31 Comparison of the mean semiconductor losses between S3L-BTB and 

conventional 3L-BTB converters operating under condition (M = 0.86, fo = 25 Hz)   

(a) rectifier stage (b) inverter stage  
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4.6.2 Regenerative Mode 

The semiconductor losses of the S3L-BTB converter are compared with those 

of the conventional 3L-BTB converter working at input unity power factor under 

regenerative mode in Table 4.3. The results are in good agreement with those of Table 

4.2. Since the input currents are in phase with the input voltage, the IGBTs, T2 and T3, 

in the rectifier stage of the S3L-BTB converter now change their states nearly under 

zero voltage switching at the same time as the input voltages change their sector. As a 

result, the switching losses in all of the devices in the rectifier stage are practically 

diminished to zero in this condition as depicted in Figure 4.32(a). Apart from the 

dramatic drop in the rectifier stage losses, the same reduction in the switching losses 

in the inverter stage can also be noticed. This leads to 96.9% in efficiency compared 

to 95.8% of the conventional one.  

The conduction losses in both converters are comparable. In contrast to the 

non-generative mode case, the dc-link currents ( )r
maxi  and ( )r

mini  in the S3L-BTB 

converter in Figure 4.29 now flow in the opposite direction of Figure 4.9 through the 

IGBTs. Therefore, the conduction losses in the rectifier stage distribute unevenly to 

the IGBTs, and the conduction losses in the anti-parallel diodes become zero.  

Table 4.3 Comparison of the mean semiconductor losses between S3L-BTB and 

conventional 3L-BTB converters operating under regenerative mode at condition     

(M = 0.7, fo = 25 Hz)    

Stage Losses 
S3L-BTB converter 

(Watt) 

Conventional            

3L-BTB converter 

(Watt) 

Rectifier 
Conduction Losses 11.59 

11.59 
12.29 

27.18 
Switching Losses 0 14.89 

Inverter 
Conduction Losses 32.84 

53.54 
32.02 

60.24 
Switching Losses 20.70 28.22 

Total Losses 65.13 87.32 

Efficiency 96.9% 95.8% 
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Figure 4.32 Comparison of the mean semiconductor losses between S3L-BTB and 

conventional 3L-BTB converters operating at unity input power factor under 

regenerative mode at condition (M = 0.7, fo = 25 Hz) (a) rectifier stage (b) inverter 

stage  
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In conclusion, the proper operation and the performances of the proposed 

novel topologies, 3L-IMC and S3L-BTB converters, are simulated and confirmed. 

They operate the three-level front-end rectifier at fundamental-frequency switching 

(non-PWM), and operate the three-level back-end inverter stage with PWM 

technique. Their capabilities to i) vary the output voltages and output frequency, ii) to 

obtain the sinusoidal supply currents together with adjustable input power factor, and 

iii) to work under regenerative mode are all verified. Also, the benefits of the        

S3L-BTB converter in losses reduction at the rectifier stage are numerically 

evaluated. 
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addition, the peak voltage between the ‘max’ and ‘min’ links is equal to the peak of 

the line-to-line input voltage shown in (5.2). 

     3

2max mid mid min ipeak peak
v v v v V     (5.1) 

   2max min ipeak
v v V    (5.2) 

Here iV  is the RMS value of the input line-to-line voltage. 
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Figure 5.1 Schematic of laboratory prototype including functional diagram of the controller implemented on a FPGA. 77
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(a) 

 

 (b) 

 

(c) 

Figure 5.2 Voltages in S3L-BTB converters displayed with their peaks value 

(a) input voltages (b) dc-link bus voltages (c) dc-link line-to-line voltages.  
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With the 380-Vrms (line-to-line) sinusoidal supply voltage used in the 

experiment, the input line voltage at the rectifier terminals will then be approximately 

equal to 380 V, or 380 ViV  . Therefore, 

     467 Vmax mid mid minpeak peak
v v v v     (5.3) 

   540 Vmax min peak
v v    (5.4) 

5.1.1.2 NPC Structure 

The three-level NPC structures used in the experiment are assembled from 

discrete semiconductor devices. The printed circuit board is designed to be a single-

phase NPC structure module consisting of four IGBTs together with four 

corresponding gate drivers. Accordingly, six boards in total are used to construct the 

whole three-level back-to-back circuit. To select the semiconductor devices, voltage 

and current stresses as well as switching frequency should be taken into consideration. 

From the characteristic of the three-level NPC structure that the voltage 

stresses on each semiconductor device is equal to the upper or lower half dc-link 

voltage, the rated voltage for the power devices must be at least 467 V according to 

(5.3). With some safety margin, the voltage rating for the chosen semiconductor 

devices are thus set at 1200 V.  

Without detailed analysis of the current flowing through each semiconductor 

devices, the current rating for the power devices can be figured out from the 5-kVA 

specification, which is approximately 7.6 A. The current rating of the selected devices 

is finally determined to be 15-20 A taking into account the current ripples and some 

additional margin. 

Apart from the component stresses, the switching frequency is also taken into 

consideration. Since the employed switching frequency of 12.2 kHz is moderately 

high, the fast-switching devices with low-losses available from several manufacturers 

are recommended. The chosen power devices are listed in Table 5.1. 
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Table 5.1 Discrete semiconductor devices used in three-level NPC structure. 

 

5.1.1.3 Gate Drive Circuits 

A single-channel optocoupler gate driver, HCPL-316J from AVAGO, is used 

for transmitting the PWM signals from the FPGA to turn on and off the IGBTs. The 

gate-drive output voltage is +15V for turn-on and -15V for turn-off. Figure 5.3 shows 

the schematic of the gate drive circuit. 
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Figure 5.3 Schematic of a gate drive circuit. 

The advantages of this gate driver are that it has optical-isolation property, 

relatively high switching speed, and fault protection features. Firstly, the optical 

isolation can make the FPGA to control the IGBTs without the physical connection 

 Part Number Manufacturer 
Rating 

Voltage 

Rating 

Current 

IGBT with 

anti-parallel 

diode 

IRG7PH35UD1PbF 
International 

Rectifier 
1200 V 20 A 

Clamping 

diode 

Hyperfast diode 

RHRP15120 

Fairchild 

Semiconductor 
1200 V 15 A 
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between the ground point of the FPGA board and the emitter pins of the IGBTs, 

otherwise that connection may result in a short circuit condition. Moreover, the 

electrical faults on the power circuit side will be impeded from damaging the 

controller if they are optically isolated.  Secondly, because the PWM frequency is at 

12.2 kHz and that the switching speed of gate drivers should be ensured to avoid a 

long delay in gate-drive signals, 900-ns switching speed of HCPL316J is applicable. 

Thirdly, this gate driver features good fault protection which can softly turn off the 

IGBT itself and feedback the fault-alarm signal to the controller to be handled when 

faults occur. 

Due to HCPL316J single channel input-output limitation, one IC is used per 

one IGBT, and in total 24 gate driver ICs are used for the whole system. Also, the 24 

isolated auxiliary +15/-15 power supplies from linear regulators are provided 

separately for each of gate driver ICs.  

5.1.1.4 Passive Elements 

Theoretically, the required passive elements in the S3L-BTB converter are line 

reactors and delta-connected capacitors which form an input low-pass filter. Since the 

S3L-BTB converter is truly equivalent to the matrix converter, it is well-known that 

the pure LC input low-pass filter in the matrix converter can result in oscillation and 

the stability problem as reported in [17] and [18]. The results of the research in [17] 

suggests the approach to improve the damping in the LC filter without causing 

excessive losses by paralleling each line reactor with the resistors as depicted in 

Figure 5.1. For parameter calculation, the guidelines are also given in [17]. 
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Figure 5.4 Simple per-phase equivalent circuit used for filter design 

As the S3L-BTB converter is composed of the symmetry three-phase balanced 

circuits and is equivalent to the 3L-IMC, a simple per-phase equivalent circuit of the 

S3L-BTB converter can be drawn as shown in Figure 5.4. The impulsive PWM 

currents generated by the inverter stage are therein represented by the current source, 

iI . It will flow through the LC low-pass filter and becomes the input supply current,

sI . To obtain a sinusoidal supply current with low distortion, the values of the line 

reactors and capacitors must be carefully selected. The transfer function from the 

output currents to the input currents is derived in (5.5), with the cut-off frequency, nf

, and the damping factor, , of the filter expressed in (5.6) and (5.7), respectively.   
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For 12.2-kHz PWM frequency, the cut-off frequency is designed to be around 

one-tenth of the PWM frequency. As a result, 12.5 μFYC   (or for delta-connected 

capacitors, 4.2 μFC  ), and 5 mHfL   are chosen for the cut-off frequency at      
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isolation amplifier with a voltage-divider circuit to the level that is suitable for the 

isolation amplifier as depicted in Figure 5.7. In addition, both input and output are of 

differential types which assist in rejection of common-mode noises. 

 

Figure 5.6 Schematic of the optical-isolation amplifier ACPL-C790C. 

 

Figure 5.7 Schematic of the line-to-line voltage sensing circuit. 

5.1.2.2 Load Current Measurement 

The current transducer HX10-NP from LEM is adopted for measuring two 

load currents as shown in Figure 5.1. This transducer works on the Hall effect 

principle, and thus the grounds of the measurement board and the power circuit are 

isolated. Also, the bandwidth of this current transducer is 50 kHz which is fairly high 

enough to sense the load currents with 12.2-kHz switching ripples. The rating current 

of the selected transducer is 10Arms, which is about twice as high as the rating current 

of the system. 
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its own superiority over the other in some aspects. In the constructed prototype 

system, the FPGA is preferable for the following reasons: 

 Many resources, e.g. PWM modules, required to operate the three-level 

back-to-back converter are not available in a single inexpensive DSP. 

 Although two DSPs may provide enough resources needed, using two 

DSPs for each rectifier and inverter stages is a complicated task. Because 

for the S3L-BTB the rectifier must cooperate with the inverter in generation 

of the PWM, so they cannot operate independently like in the conventional 

3L-BTB converter. For example, the inverter stage needs to know the 

current sector of the input voltages that the rectifier is working on. Using a 

single device will be much simpler than using two DSPs, otherwise 

cumbersome synchronization task is necessary.  

 For the S3L-BTB converter, the rectifier stage has to sample the input line-

to-line voltage as fast as possible to determine instantaneously the sector of 

the input voltages, and to generate the corresponding switching signals for 

the front-end rectifier, while the inverter stage operates on the PWM 

technique with a fixed and slower sampling frequency. Therefore, the 

rectifier stage and the inverter stage operate in parallel but at different 

system sampling rates. This nature is not suitable for implementation with a 

DSP. On the contrary, with the Hardware Description Language (HDL) an 

FPGA allows users to flexibly synthesize and implement any desired 

hardware modules which can work in parallel on their own sampling rate. 

Therefore, an inexpensive FPGA from Xilinx (Spartan-3 XC3S400) with    

400,000-gate resources is selected for implementation of the digital controller. The 

modulation strategy for the rectifier and inverter stages is divided into several 

hardware modules for synthesis as shown in Figure 5.8. The modules are developed 

with the very-high-speed integrated circuits Description Language (VHDL). It can be 

seen from Figure 5.8 that the rectifier control modules and the inverter control 

modules synthesized and implemented on the FPGA work in parallel with its own 

sampling system frequency. The base clock for the whole system is 25 MHz 

generated from an on-board oscillator.  Due to the different sampling rates, the 

cooperation between the two stages is done using a down-sampler as shown in Figure 



5.8. The in

line-to-line

 

SP

1st ord
Low-p

Comman
Voltage

Rectifi
(Sample

[ ],uv k v

( )[ ]R S i

Figur

 Th5.2.1

The

shown in  

the A/D co

two input l

rate used is

digital first

determinati

verter stage

 voltages de

I #1

er digital 
ass Filter

nded Output 
e Generator

Sampling rate 4

ier Operation
e rate 460 kHz)

[ ], [ ]v wv k v k 

],( )[ ]T S i

re 5.8 Hardw

e Rectifie

e modulatio

Figure 5.9. 

nverter on t

line-to-line 

s 460 kSa/s

t-order low-

ion of the in

e needs to k

etermined b

6 x Dead-Time

Sector De

Down S

460 kSa/s

Non-PWM

[ ]nov k

[ ]pov k

[ ]nov i
[ ]pov i

ware Modul

er Operat

on algorithm

An SPI mo

the voltage 

voltages de

. Two samp

-pass filter t

nput voltage

know the se

by the rectif

e Generator

etection

Sampler

Inverter Modula
calcula

1m

[ ]n i

12

12

M signals

C
1

[ ]kn

 

les synthesi

tion 

m for the re

module is sy

measureme

enoted as (R

pled input l

to reduce n

es.  

ector of the 

fier. 

6 x D

tion Functions     
ation

P

1 3[ ] ,  1 [i ik m k

Counter
11-bit

C

ized and imp

ectifier stag

nthesized a

ent board fo

 )R S k
 
a

line-to-line

noises so as 

input volta

Dead-Time Gener

   

12 x 11-bit       
PWM Generator 

Inverter
(Sample r

]k

12

12

PWM signals

[ ]v ki

Combinational Lo

6

plemented o

ge at the thk

and used to 

or acquiring

and ( )T S

voltages ar

to prevent 

ages and the

SPerator

    

Sa

C

r Operation
rate 12.2 kHz)

[ ],v wki i

] [ ], w ki

FP

ogic

on the FPG

th  sampling

communic

g the sample

 ) k . The s

re passed th

any error o

87 

e dc-link 

PI #2

SPI #3

ampling rate 12.2 

Clock 25 MHz

[ ]w k

PGA XC3S400

A.  

g time is 

ate with 

es of the 

ampling 

hrough a 

on sector 

kSa/s

DAC



88 

 

Calculate 

 

Sampling 

 

Sector 
Detection   

 
DC-Link Line 

Voltages 
Calculation 

,  
 

Generate 
switching 

signals 

Dead-Time Generation  

 

 

Low-
Pass 
Filter 

 Figure 5.9 Timing diagram of the rectifier operation implemented on the FPGA. (The 

length of the boxes does not represent the actual time interval being used.) 

 

5.2.1.1 Digital first-order low-pass filter 

For the continuous-time system, the transfer function between the output 

voltage and the input voltage of the first-order low pass filter can be written as (5.8).  

 ( ) 1
( ) 1

out

in
cutoff

V s

sV s





  (5.8) 

With the backward Euler method, the difference equation for simple digital 

IIR filter implementation is expressed in (5.9). 

 [ ] [ ] (1 ) [ 1]out in outv k av k a v k     (5.9) 

where cutoff

cutoff samplling

a
f







 .                                (5.10) 

To avoid a delay in the filtered output signal, the cut-off frequency is chosen 

at 5 kHz, and the sampling frequency is at 460 kHz. 
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5.2.1.2 Sector Detection 

In Figure 5.8, after the block ‘Sector Detection’ obtains the two line-to-line 

voltages from the low-pass filter block, the remaining line-to-line voltage  ( )R T i  

is calculated using a simple adder. Given three line-to-line voltages, the sector of the 

input voltages and two dc-link line-to-line voltages ( po max midv v v  and 

no min midv v v ) can then be determined. However, the delay caused by the low-pass 

filter must be taken into account. The effect will be explained in the following for the 

sinusoidal line-to-line voltage R-S in the continuous-time system for simplicity. 

Given 1 1 1( ) sin( )R S v t V t                                     (5.11) 

After passing through the low-pass filter, the output signal becomes 

 2 2 1( ) sin( )v t V t                                     (5.12) 

with 1
2 2

11
cutoff

V
V





   
 

                                  (5.13) 

and 1arctan
cutoff



 

   
 

.                                  (5.14) 

Since the sector transition occurs when R S  at 1 0, radt  , the filtered output 

signal at that timing is 

 ( ) sin( )o delay ov V V                                     (5.15) 

 (0) sin( )o delay ov V V     .                                  (5.16) 

For the supply frequency of 50 Hz and the cut-off frequency at 5 kHz, the delayed 

voltage delayV becomes 

 (309)sin(0.573 ) 3.09delayV       .                             (5.17) 

This indicates that the sector transition should be found by comparing the 

filtered output signal with delayV . Likewise, the same is true for the other two line-to-

line voltages T-S and R-T. The resultant conditions for sector and dc-link voltage 

determination are summarized in Table 5.2. After knowing the input voltage sector, 

the switching signals for the front-end rectifier are then generated. At the same time, 
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the dc-link line-to-line voltages pov  , nov  and the input voltage  sector n  stored in the 

registers mentioned in the rectifier operation are read as [ ]po kv  , [ ]no kv  and [ ]n k .  

Also, the balanced three-phase sinusoidal commanded output voltages [ ]u k , [ ]v k  

and [ ]w k  are generated from a look-up table.  

5.2.2.1 Modulation Function Calculation 

All the quantities obtained in the previous Sections are used to calculate the 

modulation functions for the double-carrier-based PWM. With the measured voltages 

and currents, the equations for the modulation functions given (3.18) and (3.19) in 

Chapter III are rewritten in (5.18)-(5.19).  

From                                                   

( ) ( )
11 11
( ) ( )
21 21
( ) ( )
31 31

i i

i i

i i

m m x

m m x

m m x

    
        
       

                      (5.18)      

and                                                      

( ) ( )
13 13
( ) ( )
23 23
( ) ( )
33 33

i i

i i

i i

m m z

m m z

m m z

    
        
       

                      (5.19) 

 

where                                                                   

             
 

   

   

1 1
( )

11
( )

12 2 2 2
( )

13 1 2

1
3

1

1
3

u
n

max mid min vi

wi

i max mid min v w
n

mid min w u

u v

u i
k

v v v v i
m

w i
m

v v v i im k
v v i i

i i









    
                                       
    

    (5.20)         
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 Figure 5.10 Timing diagram of the inverter operation implemented on the FPGA        

(The length of the boxes does not represent the actual time interval being used) 
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 (5.21) 

 

The measured line quantities,    ,  ,  ,  po no v wv v i i , can be expressed as phase 

quantities referred to a virtual neutral point as: 

                             
2

3
po no

max

v v
v


                                   (5.22) 
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3

po no
mid

v v
v


                                    (5.23) 

                             
2

3
no po

min

v v
v


                                   (5.24) 

with                              2 2 2 2 22

3max mid min po po no nov v v v v v v        (5.25) 

                              u v wi i i   .                                  (5.26) 

Substituting (5.22) - (5.26) into (5.20) and (5.21), the required modulation 

functions can be obtained in terms of line quantities as shown in (5.27) and (5.28). 

     

( )
11

( )
12 12 2

( )
13

( )
1

2 3 1
2

i
v w

ni
no po no v

i po po no no
w

m u i i

m v v v k v i
v v v v

m w i







       
                             

 (5.27) 

     

( )
13

( )
23 12 2
( )

33

( )
1

2 3 1
2

i
v w

ni
no po po v

i po po no no
w

m u i i

m v v v k v i
v v v v

m w i







       
                             

 (5.28) 

Note that since utilization of 2k  is out of scope of this thesis, 2k  then is set to zero for 

all experiments, and is not implemented at this time. 

The zero voltage components x’ and z’ remain the same as: 

  ( ) ( ) ( )
11 12 13min , ,i i ix m m m       (5.29) 

  ( ) ( ) ( )
13 23 33min , ,i i iz m m m     .  (5.30) 

 Consequently, calculation of (5.27)-(5.30) is synthesized based on fixed-point 

calculation with 14 fractional bits and 3 signed-integer bits. The digital signal 

processing tasks, such as multiplication and division, are carried out with built-in 

hardware multipliers and a single synthesized divisor.   

5.2.2.2 PWM Generator 

After the six modulation functions are calculated, they are normalized to      

11-bit numbers for comparing with the 11-bit counter. In the implementation of the 

double-carrier PWM, for simplicity only one counter is shared by both the upper and 

lower triangular carriers. Therefore, the 11-bit negative modulation functions
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Figure 5.12 Schematic of the experimental setup for testing of the S3L-BTB converter.  
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The system parameters of Figure 5.12 are summarized as follows:  

Supply voltage: balanced three-phase sinusoidal line-to-line voltage 380 Vrms 50 Hz 

Source frequency: 50 Hz 

PWM switching frequency: 12.2 kHz 

Delta-connected capacitor: C = 4.2 µF 

Input line reactance: Lf = 5 mH 

Damping resistor: Rf = 15 Ω 

Series RL load : RT = 24 Ω and LT = 33.3 mH. 

Table 5.3 Experimental conditions for performance testing of the prototyped         

S3L-BTB converter.  

Case Objectives 

Test conditions 
Modulation 

index

 

Output 
frequency 

(Hz) 
Figure

1 

Output voltage variation 

0.3 50  5.13 
5.14 

2 0.5 50 5.15 
5.16 

3 0.86 50 5.17 
5.18 

4 
Output frequency variation 

0.86 25 5.19 
5.20 

5 0.86 100 5.21 
5.22 

6 

Input power 
factor 

compensation

No 
Compensation

0.7 50 
5.23 
5.24 
5.31 

7 
Unity power 

factor 
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operation. All the results point out that the cooperation between the rectifier and the 

inverter operations is perfectly achieved with a single FPGA. 

Without input power factor compensation, the supply currents with leading 

phase can be observed because of the reactive current from the capacitor network at 

the dc link. The effect becomes more obvious in the condition of low modulation 

index under which the active power is low. 
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Figure 5.13 Measured input-output waveforms of the prototyped S3L-BTB converter 

under output voltage variation at (M = 0.3, fo = 50 Hz)         
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Figure 5.14 Measured waveforms of the prototyped S3L-BTB converter under output 

voltage variation at (M = 0.3, fo = 50 Hz)         
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Figure 5.15 Measured input-output waveforms of the prototyped S3L-BTB converter 

under output voltage variation at (M = 0.5, fo = 50 Hz)         
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Figure 5.16 Measured waveforms of the prototyped S3L-BTB converter under output 

voltage variation at (M = 0.5, fo = 50 Hz) 
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Figure 5.17 Measured input-output waveforms of the prototyped S3L-BTB converter 

under output voltage variation at (M = 0.86, fo = 50 Hz) 
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Figure 5.18 Measured waveforms of the prototyped S3L-BTB converter under output 

voltage variation at  (M = 0.86, fo = 50 Hz)         
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Figure 5.19 Measured input-output waveforms of the prototyped S3L-BTB converter 

under output frequency variation at  (M = 0.86, fo = 25 Hz) 
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Figure 5.20 Measured waveforms of the prototyped S3L-BTB converter under output 

frequency variation at (M = 0.86, fo = 25 Hz) 
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Figure 5.21 Measured input-output waveforms of the prototyped S3L-BTB converter 

under output frequency variation at (M = 0.86, fo = 100 Hz) 
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Figure 5.22 Measured waveforms of the prototyped S3L-BTB converter under output 

frequency variation at (M = 0.86, fo = 100 Hz) 
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which the recombined supply currents become lagging in Figure 5.27. However, some 

distortions appear in the filtered dc-link current as seen in ( )r
maxi  and in the resultant 

supply current Ri  in the vicinity of the discontinuities.  

The prototyped S3L-BTB converter can make the supply currents more 

leading by using a negative value for 1k . The experimental results of this 

phenomenon are shown in Figure 5.29, 5.30 and 5.34 for 1 3.3k   . The results are 

also consistent with the simulation ones. 

 

 

 

 



112 

R
i

S
i

T
i

u

v

w

ui vi wi

R
v

S
v

T
v

 

Figure 5.23 Measured input-output waveforms of the prototyped S3L-BTB converter 

without input power factor compensation at (M = 0.7, fo = 50 Hz, 1 0k  ) 
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Figure 5.24 Measured waveforms of the prototyped S3L-BTB converter without input 

power factor compensation at (M = 0.7, fo = 50 Hz, 1 0k  ) 
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Figure 5.25 Measured input-output waveforms of the prototyped S3L-BTB converter 

with unity input power factor compensation at (M = 0.7, fo = 50 Hz, 1 5k  ) 
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Figure 5.26 Measured waveforms of the prototype S3L-BTB converter with unity 

input power factor compensation at (M = 0.7, fo = 50 Hz, 1 5k  ) 
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Figure 5.27 Measured input-output waveforms of the prototyped S3L-BTB converter 

with lagging input power factor compensation at (M = 0.7, fo = 50 Hz, 1 15k  ) 

 



117 

maxv

mid
v

minv

RR
v

R
i

ui

u

( )i
maxi

( )r
maxi

11
( )im

13
( )im

 

 

Figure 5.28 Measured waveforms of the prototyped S3L-BTB converter with lagging 

input power factor compensation at (M = 0.7, fo = 50 Hz, 1 15k  ) 
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Figure 5.29 Measured input-output waveforms of the prototyped S3L-BTB converter 

with leading input power factor compensation at (M = 0.7, fo = 50 Hz, 1 3.3k   ) 
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Figure 5.30 Measured waveforms of the prototyped S3L-BTB converter with leading 

power factor compensation at (M = 0.7, fo = 50 Hz, 1 3.3k   ) 
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Figure 5.31 Measured dc-link current waveforms of the prototyped S3L-BTB 

converter without input power factor compensation at (M = 0.7, fo = 50 Hz, 1 0k  ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.32 Measured dc-link current waveforms of the prototyped S3L-BTB 

converter with unity input power factor compensation at (M = 0.7, fo = 50 Hz, 

1 3.3k   ) 
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Figure 5.33 Measured dc-link current waveforms of the prototyped S3L-BTB 

converter with lagging input power factor compensation at (M = 0.7, fo = 50 Hz, 

1 15k  ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34 Measured dc-link current waveforms of the prototyped S3L-BTB 

converter with leading input power factor compensation at (M = 0.7, fo = 50 Hz, 

1 3.3k   ) 
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significantly reduced due to the non-PWM operation. The losses of this stage 

contribute to only 23% and 32% of the total semiconductor losses of the system under 

the conditions 4 and 5, respectively. Consequently, the efficiency of the constructed 

system is at around 95.5%. 

 



CHAPTER 6                                                          

CONCLUSION AND FUTURE WORK 

 Conclusion 6.1

Based on the double-carrier PWM method for the CMC, This work firstly introduced 

three-level indirect modulation, of which the rectifier stage and the inverter stage are 

coupled together with the crucial characteristics of three-level fictitious dc-links. The 

rectifier stage sort the input voltages into the descending-order voltages. The inverter 

stage employs those voltages to generate the PWM output voltages with double-

carrier PWM method. In this work, the three-level indirect matrix converter (3L-IMC) 

is newly developed based on the three-level indirect modulation by applying the 

three-level NPC structure for both the rectifier and the inverter stages. Moreover, this 

work also presents the symmetrical three-level back-to-back converter (S3L-BTB 

converter) which is constructed by moving the filter capacitors into the dc-links. Also, 

the corresponding modulation strategies are proposed for either of them. The proper 

functions of them as AC/AC converters and the reduction in semiconductor losses are 

verified by the preliminary simulations and numerical calculation. The results prove 

that the proposed converters have the capability to vary output voltage, output 

frequency, to adjust the input power factor, and to work under regenerative mode. In 

addition, the laboratory prototype of the S3L-BTB converter is constructed using a 

single FPGA as a controller, and its performances are reconfirmed by the 

experiments; the experimental results appear to be in good agreement with the 

simulation results. Moreover, the measured efficiency of the constructed S3L-BTB 

converter excluding power losses in the filter is about 95.5%, and the semiconductor 

losses in the rectifier stage are only up to about 30% of the total semiconductor losses 

of the whole system.  

In conclusion, the significant merits of the proposed 3L-BTB converters are listed 

below. 

 Switching losses at the rectifier stage are nearly zero due to the non-PWM 

operation. 

VI 
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 Switching losses at the inverter stage tend to reduce because the dc-link 

voltages in the novel 3L-BTB converters are on the average lower than those 

of the conventional one. 

 Smaller input EMI filters can be used as PWM operation is not employed  

 Structural compatibility between the S3L-BTB converter and the 

conventional 3L-BTB converter allows the front-end rectifier stage of the 

S3L-BTB converter to operate in PWM mode to extend its output voltage 

range beyond that of the matrix converter, if necessary. 

 Unlike the conventional indirect matrix converter, the delta-connected 

capacitors at the dc link in the S3L-BTB converter can be designed to provide 

an energy buffer during voltage dips. 

 NPC structure is now a commercial building block in the industry, and is 

applicable to medium and high voltage applications, unlike CMCs.  

 Future Works 6.2

Although the concept of the novel 3L-BTB converters is verified and implemented, 

and the objectives of this thesis are accomplished, there are some issues left to 

advance as follows: 

 The utilization of the free parameter 2k  in the inverter modulation matrix to 

adjust the switching pattern of the PWM output voltages should be studied. 

 The regenerative capability of the S3L-BTB converter prototype should be 

demonstrated to reconfirm the simulation results. 

 The hardware implementation of the 3L-IMC should be done. The constraints 

commutation timing of the rectifier and the inverter stage will be imposed, so 

the corresponding modulation strategies for each stage must rely on the strict 

cooperation with each other.  

 The optional PWM feature of the rectifier stage of the S3L-BTB should be 

developed in the prototype so that the S3L-BTB converter can operate as the 

conventional PWM converter when modulation index exceeds 0.87. 

Moreover, the on-line change between non-PWM mode and PWM mode 

should be accomplished. 



 

 

References 

[1] J. Kolar, T. Friedli, J. Rodriguez and P. Wheeler. Review of Three-Phase PWM 

AC-AC Converter Topologies. IEEE Transactions on Industrial Electronics. 

58, 11 (Nov. 2011) : 4988-5006. 

[2] T. Friedli, J. W. Kolar, J. Rodriguez and P. W. Wheeler. Comparative Evaluation 

of Three-Phase AC-AC Matrix Converter and Voltage DC-Link Back-to-Back 

Converter Systems. IEEE Transactions on Industrial Electronics. 59, 12 (Dec. 

2012) : 4487-4510. 

[3] T. Friedli and J. W. Kolar. Milestones in Matrix Converter Research. IEEJ Journal 

of Industry Applications. 1, 1 (July 2011) : 2-14. 

[4] P. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham and A. Weinstein. Matrix 

Converters: A Technology Review. IEEE Transactions on Industrial 

Electronics. 49, 2 (April 2002) : 276-288. 

[5] L. Huber and D. Borojevic. Space vector modulated three-phase to three-phase 

matrix converter with input power factor correction. IEEE Transactions on 

Industry Applications. 31, 6 (Nov. 1995) : 4988-5006. 

[6] J. W. Kolar, F. Schafmeister, S. Round and H. Ertl. Novel three-phase AC-DC-AC 

sparse matrix converter. Proc. Applied Power Electronics Conference and 

Exposition, 777-791. 2002. 

[7] M. Y. Lee, P. Wheeler and C. Klumpner. A New Modulation Method for the  

Three-Level-Output-Stage Matrix Converter. Proc. Power Conversion 

Conference, 776-783. Nagoya: 2007. 

[8] P. Kiatsookkanatorn and S. Sangwongwanich. A Unified PWM Method for Matrix 

Converters and Its Carrier-Based Realization Using Dipolar Modulation 

Technique. IEEE Transactions on Industrial Electronics. 59, 1 (Jan. 2012) :  

80-92. 

[9] B. Velaerts, P. Mathys, E. Tatakis and G. Bingen. A novel approach to the 

generation and optimization of three-level PWM wave forms for induction 

motor inverters. Proc. Power Electronics Specialists Conference, 1255-1262 

vol.2. 1988. 

 



127 

[10] M.Y. Lee. Three-level Neutral-point-clamped Matrix Converter Topology.   

Ph.D. dissertation, Dept. Elect. Eng., The Univ. of Nottingham., England, 

2009. 

[11] K. Niyomsatian and S. Sangwongwanich. Novel  Topologies  for  Three-level  

Back-to-Back Converters Based on Matrix Converter  Theory. Proc. the 34th 

Electrical Engineering Conference (EECON 34), 441-444 vol.1 Thailand: 

2554. 

[12] S. Samermurn, K. Niyomsatian, S. Suwankawin and S. Sangwongwanich. Front-

End Power Factor Control of Novel Three-Level Back-to-Back Converters 

Based on Matrix Converter Theory. Proc. the 35th Electrical Engineering 

Conference (EECON 35), 401-404 vol.1 Thailand: 2555. 

[13] A. Nabae, I. Takahashi and H. Akagi. A New Neutral-Point-Clamped PWM 

Inverter. IEEE Transactions on Industry Applications. 17, 5 (Sept./Oct. 1981) : 

518-523. 

[14] K. Niyomsatian, S. Samermurn, S. Suwankawin and S. Sangwongwanich. Novel 

topologies for three-level back-to-back converters based on matrix converter 

theory. Proc. Annual Conference on IEEE Industrial Electronics Society, 

6099-6104. Montreal: 2012. 

[15] M. Bierhoff and F. Fuchs. Semiconductor losses in voltage source and current 

source IGBT converters based on analytical derivation. Proc. IEEE Annual 

Power Electronics Specialists Conference, 2836-2842 vol.4. Aachen: 2004. 

[16] M. Schweizer, T. Friedli and J. Kolar. Comparison and implementation of a 3-

level NPC voltage link back-to-back converter with SiC and Si diodes. Proc. 

25th Annual IEEE Applied Power Electronics Conference and Exposition , 

1527-1533. 2010. 

[17] H. She, H. Lin, X. Wang and L. Yue. Damped input filter design of matrix 

converter. Proc. International Conference on Power Electronics and Drive 

Systems, 672-677. 2009. 

[18] Q. Guan, P. Yang and X. Wang. Stability analysis of matrix converter with 

constant power loads and LC input filter. Proc. 7th International Power 

Electronics and Motion Control Conference (IPEMC), 900-904. 2012. 



128 

[19] A. Saengseethong, S. Sangwongwanich. A new modulation strategy for capacitor 

voltage balancing in three-level NPC inverters based on matrix converter 

theory. Proc. International Power Electronics Conference (IPEC), 2358-2365. 

2010. 

[20] P. Haaf, and J. Harper. Understanding Diode Reverse Recovery and its Effect on 

Switching Losses. Fairchild Power Seminar, 2007. 

 



 

 

 

 

 

 

 

 

APPENDIX 

 



130 

APPENDIX A                                              

NUMERICAL CALCULATION OF                  

SEMICONDUCTOR LOSSES 

The mean semiconductor losses of the S3L-BTB converter compared with the 

conventional PWM 3L-BTB converter are calculated based on the simplified 

semiconductor model in [15] and [16]. The calculation is done numerically because 

the analytical calculation for three-level converter is hard to derive and the solutions 

may be too complicated. Since the switching frequency is much higher than the 

fundamental frequency of the input and output currents as well as the dc-link voltages, 

they can be assumed constant during a switching cycle. For simplicity, the calculation 

for a single leg of the NPC structure is described, and the same principle can be 

applied further to the other legs. 

 

 
Figure A.1 A three-level neutral-point-clamped structure 

 Conduction Losses A.1

Conduction losses are the power losses occuring in the semiconductor devices 

which are in the conduction state. The devices having the conduction losses can be 

easily identified by the current path of the output current oi  for the given output 

connection as summarized in Table A.1 [16].    
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Table A.1 Conduction losses of the devices in the NPC structure [16]. 

 

Output connection Conduction losses 

0
o
i   

P

O

N

 
cond,T1 cond,T2

cond,D5 cond,T2

cond,D3 cond,D4

,
,
,

P P

P P

P P

 

0
o
i   

P

O

N

 
cond,D1 cond,D2

cond,T3 cond,D6

cond,T3 cond,T4

,
,
,

P P

P P

P P

 

 

To average the conduction losses over one switching period, the conduction 

period of each device must be known. These can be simply obtained by the 

calculation of the modulation matrix, which its element represents the duration of the 

connection between the input dc-links and the outputs. For the proposed 3L-BTB 

converters, the inverse of the rectifier modulation matrix 1
rM
  in Table 3.2 and the 

inverter modulation matrix iM  in (3.11) - (3.15) are used for the rectifier and the 

inverter stages, respectively. For the conventional PWM 3L-BTB converter, the 

corresponding modulation matrix are given in [19].  

Then the conduction losses averaged over one switching period swT  are 

weighted with the corresponding duty cycle of each device as seen in (A.1). 

 

 1 cond,T1 1 2 cond,T2 2 cond,D5 3 cond,D3 3 cond,D4
cond,avg

1 cond,D1 1 cond,D2 2 3 cond,T3 2 cond,D6 3 cond,T4

 , 0

( )  , 0
j j j j j j o

j j j j j j o

m P m m P m P m P m P i
P

m P m P m m P m P m P i

      
 

     

   

(A.1) 
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where 1 2 3, ,j j jm m m  represents the duty cycle which each output phase  jth is connected 

to each link {P,O,N} respectively during a switching period.  

According to (A.1), the averaged conduction losses over a switching period 

can be calculated if instantaneous conduction losses are known. To avoid the 

complexity of the non-linear characteristics of the semiconductor devices, the 

conduction losses of each IGBT Tk and each diode Dk in the single leg of the NPC 

structure depicted in Figure A.1 can be approximated linearly as (A.2) and (A.3) 

respectively. The expressions are the function of the current flowing through the 

devices, which can be easily known through the switching state of each device 

together with the instantaneous output current.  

 

 
k k k

2
cond,T f,T f,T( )P i V i r i      (A.2) 

 
k k k

2
cond,D f,D f,D( )P i V i r i      (A.3) 

 

Here, 
kf,TV  and 

kf,DV  are the threshold voltage of an IGBT and a diode respectively.   

          
kf,Tr  and 

kf,Dr  are the differential resistance an IGBT and a diode respectively.   

The mean conduction losses over a fundamental period, T, then can be found 

by numerical integration over the fundamental period as shown in (A.4). 

 

 cond cond,avg sw
1

P P T
T

    (A.4) 

 Switching Losses A.2

For the calculation of switching losses, similar approach is conducted and 

starts with the switching loss energy. The switching loss energy for each device 

depends on the current flowing through the device and the commutation voltage 

across the device, and is classified as turn-on loss energy and turn-off loss energy. 

The devices actually exhibiting the switching losses, however, must be determined 

from the measurement on a test setup in [16]. The results are summarized in Table 

A.2 for each switching transition and the direction of the output current. To avoid the 
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complicated models of semiconductor devices, the simplified switching loss models 

are given in (A.5) - (A.8). The amount of switching loss in a device is assumed to be 

proportional to the commutation voltage and current flowing through it. 

Table A.2 Switching losses of the devices in the NPC structure [16]. 

Switching Transition Loss energies 

0
O
i   

P N

P O

N P

N O

O P

O N






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
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T2,off D4,on,E E  
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O
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P O

N P

N O

O P

O N


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
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D1,off T3,on,E E  

D1,on D2,on T3,off T4,off, , ,E E E E  

T4,off D6,on,E E  

D1,on T3,off,E E  

T4,on D6,off,E E  
 

 k

k

T ,on,n
T ,on

n n

( , )
E

E v i v i
V I
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 k

k

T ,off,n
T ,off

n n
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E

E v i v i
V I

    (A.6) 

 k

k

D ,on,n
D ,on

n n
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E

E v i v i
V I

    (A.7) 

 k

k

D ,off,n
D ,off

n n

( , )
E

E v i v i
V I
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where 
kT ,on,nE ,

kT ,off,nE  are the turn-on loss energy and the turn-off loss energy given in  

                                    the device datasheet, measured at a given commutation voltage   

                                 nV  and current nI for each IGBT. 

          
kD ,on,nE ,

kD ,off,nE  are the turn-on loss energy and the turn-off loss energy given in  

                                    the device datasheet, measured at a given commutation voltage   

                                 nV  and current nI for each diode. 

It should be noted that turn-off loss energy in diodes is caused by the reverse 

recovery effect when diodes are forced to turn off. Still, the turn-on loss energy is 

small and is always neglected in the device datasheet [20].  

 For determined PWM switching patterns, the switching losses averaged over a 

switching period is expressed in (A.9). 

 

    k k k k

4 6

sw,avg T ,on T ,off D ,on D ,off
1 1

1
k ksw

P E E E E
T  

 
     

 
    (A.9)  

 

The mean conduction losses over a fundamental period, T, then can be found 

by numerical integration over the fundamental period as shown in (A.10). 

 

 cond sw,avg sw
1

P P T
T

    (A.10) 

 

Although the conduction loss and switching loss model described so far seem 

incomplete, the error of the results are not significant and are acceptable for 

demonstrating loss comparison between different power converter topologies as seen 

in many researches such as [15] and [16]. 

 Loss Parameter of the 3L-NPC module A.3

SKM20ML1066  

In Chapter IV, the semiconductor losses of the S3L-BTB converter and the 

conventional PWM 3L-BTB converters are calculated based on the 3L-NPC module 
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SKM20ML1066 with the above calculation approach. The required parameters of the 

power module are listed in Table A.3. 

 

Table A.3 Parameters of the 3L-NPC module SEMIKRON SKM20ML1066 

IGBTs 

kf,TV  = 0.9 V, 
kf,Tr = 27.5 mΩ,  

kT ,on,nE  = 0.4 mJ ,
kT ,off,nE  = 1.07 mJ  when  nV  = 300 V, nI = 20 A 

Anti-parallel diodes (k = 1,2,3,4) 

kf,DV  = 1 V, 
kf,Dr = 30 mΩ,  

kD ,off,n 0E  , 
kD ,off,nE  = 0.2 mJ  when  nV  = 300 V, nI = 20 A 

Clamping diodes (k = 5,6) 

kf,DV  = 1 V, 
kf,Dr = 20 mΩ,  

kD ,off,n 0E  ,
kD ,off,nE  = 0.2 mJ  when  nV  = 300 V, nI = 20 A 
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