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CHAPTER |
INTRODUCTION

1.1 Background

In the present, there is a development in population, technology,
communication and logistics. Inescapably, for these factors make demand from using
national resources increase dramatically, especially, restrictly national resources such
as petroleum. Certainly, the more using this resource, the less having petroleum
reserves in the reservoir.

For supporting the demand from increasingly using petroleum, nowadays, there
is a high technology called “Hydraulic Fracturing” which is a new method for directly
producing natural gas from source rock or generally known as shale. By injection high
pressured fluid into the rock brings about the new fractures. The natural gas located
along that fracture can lead out to the production well. On the contrary, using this
technology makes the new fractures beneath the earth surface. Accordingly, we cannot
see and estimate the characteristic and behavior of those fractures.

For better understanding and new knowledge about fractures development in
high pressure under the earth surface of shale lead to this research in order to simulate
the newly develop fracture occurring in the rock. Including, the quality, direction and
distribution of the fractures are investigated in this research as well. Moreover, natural
gas production by Hydraulic Fracturing is not widely studied in Thailand. So, this

research can apply to produce petroleum in Thailand.

1.2 Literature Review

Wang et al., 2003 had been developing a new apparatus which is called the
deformation-DIA (D-DIA) (Figure 1.1) for high temperature condition and triaxial
deformation to pressures up to 15 GPa, based on the widely used cubic-anvil

apparatus, DIA.



This study used D-DIA apparatus which has 6 anvils made from Tungsten
Carbide, this material is high resistant to deformation by an applied force and
temperature, compressing the sample directly in 6 directions to pressures up to 240
MPa and heat sample up to 100 °C so as to simulate shale formation beneath surface.
Between anvils and sample, we used pressure transmitting medium which can slowly
transmit pressure from anvils to sample and protect crashing between those anvils.
There is a tiny space between each anvil for passing of incoming x-ray and diffracted
x-ray to investigate mineralogy during the compression. Moreover, we can measure
strains by x-ray radiographic imaging of the sample from diffracted x-ray during the

compression.

Figure 1.1 the left side illustrates the apparatus (Wang et al., 2003) and the right side shows the

real D-DIA, pressure transmitting media, and sample.

To investigate minerals composition, preferred orientation, and differential
stress of each mineral during the compression, diffraction images from the synchrotron
x-ray diffraction (SYN-XRD) technique were used in this study (Figure 1.2) and those
images (Figure 1.3, 1.4) were analyzed by Material Analysis Using Diffraction (MAUD)
based on the Rietveld refinement (Lutterotti et al., 2013, Wenk et al., 2014).
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Figure 1.2 illustrates the procedure of synchrotron x-ray diffraction technique. The source of

incident beam is from synchrotron and each lattice plane of each mineral diffracts a Debye-Scherrer

rings (http://pd.chem.ucl.ac.uk).

Figure 1.3 shows diffraction image composing of Debye-Scherrer rings (Wenk et al., 2003).



Figure 1.4 3D representation of an unrolled image from diffraction image in Figure 1.3 (Wenk et al.,

2003).

Moreover, to determine physical characteristics and to understand fracture
development especially their distribution and volumes of pore, kerogen, and fracture,
the Synchrotron X-ray Micro-tomography (SYN-MCT) technique (Figure 1.5, 1.6) was
used to reconstruct three-dimensional data (Kanitpanyacharoen et al., 2013) before

and after compression based on their x-ray absorption values (Figure 1.7).



Figure 1.5 shows schematic diagram of the Synchrotron X-ray Micro-tomography

(Kanitpanyacharoen et al., 2012).

Figure 1.6. shows a workflow of data reconstruction (Kanitpanyacharoen et al., 2012).

Figure 1.7 (a) shows 2D reconstructed image and (b) shows grayscale values of Figure 1.7a which
is selected threshold of each material based on its absorption value

(Kanitpanyacharoen et al., 2012).



1.3 Objective

To investigate compositional variation and fracture behavior of shale
especially their morphology, distribution, and volumes under simulated high pressure

and high temperature conditions.



CHAPTER I
GEOLOGY OF STUDY AREA

The corrected sample used in this study is from the Barnett Shale in Bend arch
— Fort Worth Basin located in the north-central Texas, USA. This basin is the first place
which has the achievement in unconventional petroleum producing in the world. And
this basin is also the most significant oil and gas producing in this state.

The Barnett Shale is the primary source rock in the Mississippian age for oil and
gas produced from Paleozoic reservoir rocks. Petroleum geochemistry and well logs
data support that the Barnett Shale is organic-rich and thermally mature for

hydrocarbon generation over most of this basin.

2.1 Structural evolution and general stratigraphy of the Fort Worth Basin

The Fort Worth Basin located in the north-central Texas which is estimated
area about 38,000 km’. The basin is a wedge-shaped, elongates in north-south trend
and deeply depresses in northward (Figure 2.1). It is a foreland basins formed during
the late Paleozoic Ouachita orogeny (Walper, 1982; Thompson, 1988).

The general structure in this basin is associated to the Ellenburger Group
structure contour map (Figure 2.1). The northern and north-eastern most basin is
bounded by the Red River and Muenster arches formed by reactivation of basement
faults during Ouachita compression (Walper 1977, 1982) then southward to almost
parallel the Ouachita thrust front which is the eastern boundary of the basin.

The Bend arch is a north-plunging positive subsurface structure located
extended northward from the Llano uplift (Figure 2.2). The domal Llano uplift exposes
Precambrian — Pennsylvanian rocks and bounds the basin in the south. Moreover, there
is the Lampasas arch which is a secondary structural feature of the basin (Figure 2.2B).

An important structural feature, the Mineral Wells fault trending in northeast-
southwest, cuts across the Newark East field which is a potential petroleum production

area and locates in the north-eastern part of the basin (Figure 2.2). The fault system



may be called as the Mineral Wells — Newark East fault system. Its origin has been
poorly understood because it is associated with neither the fault blocks of the

Muenster and Red River arches nor the Ouachita thrusting.

Figure 2.1 Generalized structure contour map, top of Ellenburger Group, Bend arch - Fort Worth
Basin area of north-central Texas. Data interpreting from subsurface log and IHS well-history

database (IHS Energy, 2003)



Figure 2.2 (A) Maps shows area of U.S. Geological Survey (USGS) province 45 (termed the “Bend
arch — Fort Worth Basin province”), geographic extent of the Mississippian Barnett Shale, major
structural features, and Newark East and Boonsville fields. (B) Map shows boundary of Barnett-
Paleozoic total petroleum system and major structure elements in the Bend arch - Fort Worth

Basin province (Pollastro et al., 2007).

The previous studies suggested that the Mineral Wells - Newark East fault
system has a significant factor in (1) the deposition of Bend Group conglomerates
(Thompson, 1982); (2) effecting depositional patterns and thermal history of the
Barnett Shale (Bowker, 2003; Pollastor et al., 2004a; Montgomery et al., 2006); (3)
controlling migration and distribution of oil-associated gas at Boonville field in the
northern Fort Worth Basin (Jarvie et al., 2003, 2004b, 2005; Pollastro et al., 2004a); and
(4) inhibiting gas production from Barnett Shale where the Mineral Wells fault zone
and associated fractures intersect Newark East field (Bowker, 2003; Pollastro, 2003).

A maximum thickness of sedimentary rocks in the Fort Worth Basin reach about

3660 m adjacent to the Muenster arch deposited over Precambrian granite and diorite
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basement (Figure 2.3). The subsurface stratigraphic section of this basin composes of
(1) 1220-1524 m of Ordovician — Mississippian carbonates and shales, (2) 1829-2134 m
of Pennsylvanian clastics and carbonates, and (3) a thin Cretaceous rock, in the eastern
part of the basin (Flawn et al., 1961; Henry, 1982; Lahti and Huber, 1982; Thomson,
1988).

From the Cambrian to the Mississippian, this basin was a part of a stable
cratonic shelf, with deposition dominated by carbonates (Turner, 1957; Burgess, 1976).
Sloss (1976) and Kerans (1988) suggested that, during the Early Ordovician, the
Ellenburger Group carbonate rock is interpreted as a broad epeiric carbonate platform
covering all of Texas. At the end of Ellenburger deposition had a dropping sea level
event resulting in platform exposure which brings about extensive karst feature in the
upper part of the carbonate sequence. Henry (1982) also reported that there is a major
erosion event, unconformity, removing any Silurian and Devonian rocks that may have
been present in that area. After erosion event, there was a rising sea level event, in
the Mississippian age, the shallow marine black Chappel Limestone and the organic-
rich Barnett Shale had been depositing over most of the basin, respectively (Figure
2.3).

In the Pennsylvanian age, the Marble Falls Limestone deposited over the
Barnett Shale following with clastic and mixed carbonate rocks representing a range of
westward-prograding fluvial-deltaic deposits (Cleaves, 1982; Thompson, 1988).
Terrigenous clastics originated mainly from uplifts of the Muenster arch in the north
and the Ouachita fold and thrust belt in the east.

Permian rocks have been found in some parts of the Fort Worth Basin, but
there is neither Triassic nor Jurassic rocks have been identified, maybe because of

erosion event in pre-Cretaceous.
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2.2 Barnett Shale deposition

The Barnett Shale spreadly slowly deposited under reducing conditions over a
large part of north-central Texas during the late Mississippian on a shelf in the Fort
Worth Basin (Figure 2.5) (Mapel et al., 1979). The eastward thickening of the Barnett
Shale (Figure 2.4) can interpret a source to east or northeast. The Hardeman Basin, the
northern most basin of the Fort Worth Basin, presents the Barnett Shale which is an
oil — prone Barnett Shale petroleum system (Pollastro et al., 2004a, b). And the
Midland, Delawere, and Polo Duro basins in the west also present the Barnett Shale.
But along the Eastern shelf, the Barnett Shale is generally absent due to erosion and
facies change into limestone to the northwest along the Chappel Shelf (Figure 2.5).
Figure 2.4 updated from Pollastro (2003) shows a isopach map of the total Barnett
Shale in the Bend arch - Fort Worth Basin. The Red River and Muenster arches and the
Ouachita trust front control the geographic extent of this formation (Figure 2.1). Based
on well-log interpretations of Figure 2.6, the thickness of the Barnett Shale is showed
in constructed stratigraphic cross sections (Figure 2.7, 2.8). In the northern part of the
basin, the thickness of Barnett Shale averages about 76 m whereas the thickest part is
more than 305 m in the deepest part of the basin adjacent to the Muenster arch
(Figure 2.4), where it is interbedded with limestone units which have a cumulative
thickness of as much as 122 m (Mapel et al,, 1979; Henry, 1982; Bowker, 2003;
Pollastro, 2003; Texas Railroad Commission, 2003). These limestones thin dramatically
to the south and west away from the Muenster arch (Figure 2.9). The Barnett Shale
rapidly thins to the west to only a few 3 m over the Mississippian Chappel shelf and
along the Llano uplift (Figure 2.4, 2.8). Pollastro et al., 2007 concluded that the Barnett
Shale is absent in areas (1) where eroded along the Red River arch and Muenster arches
to the north and northeast; (2) along the Llano uplift to the south; and (3) to the west,

where there are an erosional limit and facies change to limestone.
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Figure 2.3 Generalized subsurface stratigraphic section of the Bend arch - Fort Worth Basin province
showing distribution of source rocks, reservoir rocks, and seal rocks of the Barnett-Paleozoic total

petroleum system (Pollastro et al., 2007).
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Figure 2.4 Map showing regional extent of Barnett Shale, thickness of Barnett Shale, isopachs of
Barnett Shale, and lines of well-log cross sections AA’ of Figure 2.7 and BB’ of Figure 2.8. Contour
intervals are 50 ft (15 m) for thicknesses from 0 to 300 ft (0 to 91 m) and 100 ft
(30 m) for thicknesses from 300 to 1000 ft (91 to 305 m) (Pollastro et al., 2007).
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Figure 2.5 Paleogeographic maps of north Texas and southwestern Oklahoma during the
Mississippian. (A) The Osagean showing incipient subduction zone and consequent uplift adjacent
to present-day Fort Worth Basin and areas of deposition of the lower part of the Barnett Shale
(dark shading), position of the Chappel shelf and bioherm deposition. Emergent areas are lightly
shaded. (B) The Chesterian showing major structural features and area of upper Barnett Shale, or

equivalent, deposition (dark shading). Emergent areas are light shaded (Pollastro et al., 2007).
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Figure 2.6 Typical well-log stratigraphic section showing gamma-ray and resistivity logs through the

Barnett Shale and overlying and underlying units. Depth in feet (Pollastro et al., 2007).
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Figure 2.9 Isopach maps of limestone units in Barnett Shale. (A) Lime wash units within the Barnett
Shale, Fort Worth Basin, Texas. Contour interval equals 25 ft (8 m). (B) Forestburg limestone within
the Barnett Shale, Fort Worth Basin, Texas. Contour interval equals 25 ft (8 m) (Pollastro et al.,

2007).
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In Newark East field area, the Barnett Shale is informally into lower and upper
formations which are separated by a carbonate rock unit known as the ‘Forestburg
limestone’ (Henry, 1982) (Figure 2.6, 2.7). In the area adjacent to the Muenster arch,
there is the thickest part of the Forestburg Limestone exceeding 61 m, but thins rapidly
to absent to south- and westward of the field (Figure 2.7, 2.9B), whereas the upper
Barnett Shale can be found farther westward (Figure 2.7, 2.10). Where the Forestburg
limestone is absent, upper and lower Barnett Shale are undifferentiated on well logs

and maps (Figure 2.7).

Figure 2.10 Isopach map of the upper Barnett Shale unit, Fort Worth Basin, Texas (Pollastro et al.,
2007).
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2.3 Petroleum geochemistry and Thermal history of Barnett Shale

Oil and gas produced from Bend arch — Fort Worth Basin were generated mostly
from the Barnett Shale (Pollastro et al., 2007). Figure 2.2A shows mean TOC values of
Barnett Shale which are averaged from multiple well and cutting samples taken at
various depths ranging about 3-5 wt.% and consisted mostly of oil-prone type I
kerogen. Vertical movement along the fault systems in the basin and any associated
high heat flow could have caused thickening of thinning of the Barnett Shale section
and elevated mean R, (Figure 2.11), respectively, along this east-west trend.

Secondary significant potential source rocks in the Bend arch — Fort Worth Basin
are from organic - rich carbonate rocks and shales in the Pensylvanian age (Figure 2.3,
2.13). Oil and associated gas were initially generated from the decomposition of
kerogen at moderate thermal maturities (R, = 0.6-1.1 %), whereas non-associated gas
in the Newark East field area are formed at higher thermal maturities (R, > 1.1%) (Figure
2.12). Variable thermal maturities, as determined from Vvitrinite reflectance
measurements, indicate that heat-flow regimes possibly emanating from the Ouachita
thrust front and the Mineral Wells — Newark East fault system and migrating along fault

systems, locally influenced the thermal history of the Barnett Shale.
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Figure 2.11 shows lines of equal thermal maturity map as determined from mean vitrinite
reflectance (R,) of Barnett Shale. Areas of probable high hydrothermal heating and anomalously

high R, are also indicated (arrows) (Pollastro et al., 2007).
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Figure 2.12 shows relation between oil and gas production from Barnett Shale in Fort Worth Basin
versus oil- and gas-generation windows as determined from mean vitrinite reflectance (R,) (See

Figure 2.11) (Pollastro et al., 2007).
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CHAPTER Il
METHODOLOGY

In this study are separated into 2 phases; (1) Laboratory phase, and (2) Data
analysis phase. In the laboratory phase, The Deformation-DIA (D-DIA) apparatus is used
to increase pressure and temperature to the sample reaching over 200 Ma, 100 °C.
Moreover, Synchrontron X-ray Micro-tomography (SYN-MCT) and Synchrotron X-ray
Diffraction (SYN-XRD) techniques are used in this study so as to correct the data for
data analysis phase. In the data analysis phase, Material Analysis using Diffraction
(MAUD) is used to investigate; (1) mineral compositions, (2) preferred orientation, and
(3) elastic property of composed minerals. Furthermore, segmentation program had
been used to reconstruct 3D images of studied rock for; (1) investigate distribution of
pore and kerogen (before compression), and fracture (after compression), and (2)

calculate volumes of those pores, kerogen, and fractures.

3.1 Laboratory phase
3.2.1. Sample preparation

Once we corrected the sample from conventional core from the
Barnett Shale, we prepared it following these steps.

(1) sharpened in cylindrical shape with 4 mm for diameter and
4 mm for axis.

(2) contained sample by placing its bedding plane in horizontal
direction into Pressure Transmitting Medium. In this case, Pressure
Transmitting Medium is cubic shape made from alloy materials. The
reasons we used Pressure-transmitting Medium are for (1) gently
increasing pressure from anvils to sample, and (2) protecting collision

of those anvils.
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3.2.2. Before compression

Once the sample was contained in Pressure-transmitting
Medium. We used SYN-MCT to investigate distribution and quantity of

pores, kerogen and fractures.

3.2.3. During compression

This study is in situ experiment started from ambient condition
(Time period 001). Then, it was increased temperature and pressure for
simulating the subsurface condition (Start at time period 002). During
the compression, SYN-XRD was used for collecting diffraction images
and radiographic images. In some cases, anvils were released to
investigate elastic property of minerals and fractures development of
this sample (Table 3.1). In data analysis phase, the diffraction images in
these steps were used in MAUD and the radiographic images were used

for strain calculation.

Time periods  Temperature (°C)  Pressure (ton) Anvils status
001 25 0 -
002 100 11 Compress with hydrostatic stress
003 100 11 Compress with uniaxial stress
004 100 11 Compress with uniaxial stress
005 100 11 Compress with uniaxial stress
006 100 11 Release anvils
007 100 11 Release anvils
008 100 11 Compress with uniaxial stress
009 100 4 Release anvils
010 100 0 Release anvils

Table 3.1 shows state conditions and anvils status of the samples
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3.2.4. After compression

The SYN-MCT was used again to investigate distribution and

quantity of pores, kerogen, and fractures.

3.2 Data analysis phase
3.2.1. Material Analysis Using Diffraction (MAUD)

Once we got 10 diffraction images from laboratory phase, we
had to centralize those images one by one via Image) by
(1) Change Image Properties. Use these parameters; Unit of
length in mm, Pixel width 0.079, Pixel height 0.079, and
Voxel depth 0.079 (Figure 3.1).

Figure 3.1 shows values of parameters in image properties.

(2) Transform image. Rotate images 90° counter-clockwise.
(3) Centralize and Integrate Debye-Scherrer Rings. Drag a

Square, Select Multi-Spectra from normal
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transmission/reflection image in Plugins, MAUD Plugins.
Then, Choose the integration lines. In this study use these
parameters; Sample — Detector distance (mm) 414, Center X
(mm) 80.92, Center Y (mm) 81.06, Trader circle radiation
(deg2Theta) 50, Start Angle (in deg) 0, Final Angle (in deg)
360, Number of Spectra 36, Omega angle (in deg) 0, Chiangle
(in deg) 0, and Phi angle (in deg) 0. Then, export esg files
(Figure 3.2).

Figure 3.2 shows values of parameters in Centralize and Intergrate

Debye-Scherrer Rings.

The refinement of their parameters in MAUD based on Rietveld
refinement is quite complex due to their texture of composed minerals
and stresses. We need to refine those parameters one by one following
these steps. We try as much as possible to avoid refining unnecessary

parameters.
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Import esg file. Start with time period 001. Then, remove 18

integrated angle because it lacks data (Figure 3.3).

Figure 3.3 shows plot 2D of time period 001 lacking data in 18

intergrated angle.

Select Computation range. In this study is investigated from

0.9 to 7.5 (Figure 3.4).

Figure 3.4 shows Computation range.

Import quartz CIF file. In order that refinement in the next
step.

Diffraction Instrument. In this calibration, there are many
parameters need to refine: (1) Intensity Calibration choose
none cal. (2) Angular calibration choose Flat Image

Transmission. Starting with 414 mm for Detector Distance.
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Then, refine this parameter. Fix the rests. (3) Geometry select
Image 2D. (4) Measurement choose 2Theta. (5) Source is
from Synchrotron with 0.309950 Angstrom for Wavelength
and 1.0 for Weigth. Fix both. (6) Detector is Scintillation. And
(7) Instrument Broadening select Caglioti PV. Then launch
refinement. After that, refine center X error and center Y
error in Angular calibration (Flat Image Transmission). Launch
refinement. Following with refine tilting error X and tilting
error Y. Launch refinement. End with fix all parameters in
this calibration. Export this instrumental file. All time periods
are used the same (this) instrumental calibration (Figure 3.5,

3.6, 3.7).

Figure 3.5 shows parameters in Diffraction Instrument.



Figure 3.6 shows parameters in Flat Image in transmission/reflection

angular calibration.

Figure 3.7 shows parameters in Source from Synchrotron.

Background peak fitting. In this study, we add 3 terms
following Background peak from 2D plot which are 0, 170
and 340 for Position (eta). And in Plot, the first highest peak
of background is about 0.91 degrees put in Position. Fix
those parameters. The refined parameters are (1) Height
(100,000) (2) HWHW (0.05) (3) HWHM (eta) (40). Launch
refinement. After they are almost perfectly fit, fix all

parameters in this calibration (Figure 3.8, 3.9, 3.10).

30
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Figure 3.8 shows parameters in Background peaks at position 0 eta.

Figure 3.9 shows parameters in Background peaks at position 170

eta.



32

Figure 3.10 shows parameters in Background peaks at position 340

eta.

Import the rest mineral CIF files. In this study, there are
illite-mica, illite-smectite, kaolinite, and pyrite. We know
because of their highest peak from Plot graph. In this study,
we have to change space group of illite-mica to be C2/C:C1.
In addition, Pressure Tansmitting Medium also effects to the
diffraction image. So, we have to simulate CIF file of this

material (Figure 3.11, 3.12).
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Figure 3.11 shows mineral and Pressure Transmitting Medium CIF

files used in this study.

Figure 3.12 shows changed space group of illite-mica.

(7) Cell Parameter. First of all, we have to set Biso factor at 1.
Then, Free scale pars and Bound B factors. After that, refine
cell parameters of those phases by illite-mica, illite-
smectite, and pyrite are refined only a, kaolinite is refined

only ¢ ,and quartz is refined a and c. These refinements bring
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about to shift of the peaks. After those peaks place on right
position. We will refine Microstructure. Then, (1) assume that
these minerals Size-Strain model of minerals are Isotropic (2)
set Crystallite size (A) and R.m.s. microstain following these
values: illite-mica (500, 0.001), illite-smectite (300, 0.01),
kaolinite (500, 0.001), quartz and pyrite (1000, 6.0E-4). Then,
launch refinement. After they are perfectly fit, fix all
parameters.

Stress model. The Sinusoidal variations in peak position with
azimuthal angles are due to elastic strain in response to
differential stress which is defined as t. And differential or

deviatoric (D) components are defined as;

—t/3 0 0
0 0 2t/3

In this study, Moment pole stress model (Matthies et al.,
2001; Wenk et al., 2014) is used to investigate differential
components (macrostresses) from variations in peak position
by using the BulkPathGeo stress/strain averaging model
(Matthies et al., 2001) depending on their elastic coefficient
or stiffness (C;) of minerals. Due to equation above, we refine
only macrostressy; and fix macrostress,, equal to 1 time of
macrostress;; and macrostresss; equal to -2 times of
macrostress;;, the rest are zero. So, we can calculate t from
macrostress,;. (For time period 001 skip this process because
there is no stress/strain on these ones.) For C; of minerals
using following these values (Table 3.2) (Vasin et al., 2013;
Heyliger et al., 2003);
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Stiffness (C;) illite-mica illite-smectite kaolinite quartz
Cy 60.14 25.15 187.42 87.26
Ci, 2555 5.89 70.41 6.57
Cis 2397 2.43 4.84 11.95
Cia - - - -17.18
Cy 184.36 170.58 179.70 87.26
Cos 52.93 27.87 5.89 11.95
Cos - - - 17.18
Css 170.00 188.50 83.91 105.8
Caa 70.42 60.34 13.52 57.15
Css 18.48 5.46 16.04 57.15
Css - - - -17.18
Ces 22.15 17.49 61.08 40.35

Table 3.2 shows stiffness of illite-mica, illite-smectite, kaolinite, and quartz.

(9) Texture. We use E-WIMV method for illite-mica, illite-

smectite, and kaolinite because they are clay minerals

following these parameters; Iterations number 10, Generate

symmetry fiber, and ODF resolution in degrees 10. And

quartz, we use arbitrary tex because there is no texture in

this mineral (Figure 3.13).

Figure 3.13 shows parameters in E-WIMV method for illite-mica,

illite-smectite, and kaolinite.
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3.2.2. Segmentation program

Once we got reconstructed images from SYN-MCT, before

segmentation process we have to import those images into

segmentation program.

3.2.2.1. Before compression’s images

(1)

(2)
(3)

(4)

(5)

(6)

()

(8)

Import images. Before compression we have 1501 images
starting with 0 to 1500. But there is only image number 300
to 1299 which have perfect data. So, we use only 1000
images.

Set Voxel size. The voxel size of this experiment is 0.72 um
Crop studied area. In this study, we crop studied area from
950 to 1549 in x axis, 950 to 1549 in y axis. So, the studied
3D image will be in the 600 x 600 x 1000 voxels.

Normalize Grayscale. In this function will normalize color of
image in to grayscale value from 0 to 255.

Medlan Filter. To reduce artifacts and noise by replacing the
grayscale value of each voxel with a median of its
neighborhood within 3 x 3 x 3 voxel window.

Segmentation Grayscale. Different components segmented
by the thresholding method by assigning a label to every
voxel and effectively distinquishing between low- and high-
absorbing phases. The highly absorbing particles (white) are
pyrite. While the low-absorbing feature (dark gray) represent
low-density which is kerogen. The lowest-absorbing phases
(black) are pore and fractures.

Dilation. This function dilates segmented features in all
direction so as to make it connect each other.

Erosion. Once it is connected, we have to erode those
segmented features which are not connected each other to

normalize them into the right size.
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(9) Axis Connectivity. This function will calculate connectivity of
feature especially pore and fractures to determine
permeability in x, y, and z axis in the next step. But before
compression’s data, there is no output in this step that

means there is no connectivity all of those directions.

3.2.2.2. After compression’s images

(1) Import images. After compression we have 888 images
starting with 0 to 887. But there is only image number 171
to 710 which have perfect data. So, we use only 540 images.

(2) Set Voxel size. The voxel size of this experiment is 0.69 pm

(3) Crop studied area. In this study, we crop studied area from
801 to 1600 in x axis, 801 to 1600 in y axis. So, the studied
3D image will be in the 800 x 800 x 540 voxels.

(4) Normalize Grayscale.

(5) Median Filter.

(6) Segmentation Grayscale.

(7) Dilation.

(8) Erosion.

(9) Axis Connectivity. There are output only in x and vy
directions.

(10) Absolute Permeability Experiment Simulation. Using for
calculating permeability and generating streamlines. In this
study, we input these parameters; input pressure 130000 Pa,

output pressure 100000 Pa, and Fluid Viscosity 0.001 Pa.s.
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CHAPTER IV
RESULTS

This study is investigated mineral composition, preferred orientation and elastic
property of constituent minerals using Synchrotron X-ray Diffraction (SYN-XRD)
analyzed by Material Analysis Using Diffraction (MAUD) based on the Rietveld
refinement. Moreover, it is also studied quantity and distribution of pores, kerogen and
fractures before compression and quantity and distribution of fractures after
compression using Synchrotron X-ray Micro-Tomography (SYN-MCT) by segmentation

program.

4.1 Radiograph images

The radiograph images from SYN-XRD in Table 4.1 on detector screen represent
strain of sample variated anvils status. In some cases of releasing stress from the anvils,
it brings about fractures development within the samples.

Strain of samples have been increased and decreased because there are

pulling and pushing states of anvils.

Time Periods Radiographic Images

002




39

003

004

005

006
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007

008

009

010

Table 4.1 shows radiographic images upon time periods.

We calculate %Strain using this equation;

Original length — Final length

%Strain =
foStrain Original length

X 100



those parameters in above equation are defined in Figure 4.1.

Figure 4.1 shows parameters used for calculating %Strain.

And here are results for %strain calculation (Table 4.2) and can plot %strain

versus time periods showing compressional state (Figure 4.2).

Time periods %Strain

002 0

003 5

004 17
005 30
006 27
007 15
008 30
009 15
010 12

Table 4.2 shows %Strain of each time period.



Figure 4.2 shows graph of compressional strate and %Strain versus time periods.
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4.2 Plot and Plot 2D

The results from MAUD software show 1D X-ray diffraction pattern and 2D Plot
of time period 001 show in Figure 4.3.

illite-smectite (100) A

quartz (100)

quartz (011) + (101)
illite-mica (200)
(

/ kaolinite (001)

Figure 4.3 shows 1D X-ray diffraction pattermn (A) and 2D Plot (B) of time period 001.
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4.3 Mineralogy

The major phases in this study are; (1) illite-mica, (2) illite-smectite, and (3)

Quartz. Kaolinite and Pyrite are minor phases. See more detail in Table 4.3.

Time periods %Strain illite-mica  illite-smectite  kaolinite  quartz  pyrite
001 0 27.73 25.46 2.80 34.57 9.44
002 0 37.44 22.05 3.41 32.29 4.80
003 5 35.61 21.00 4.82 31.58 6.97
004 17 43.27 20.63 3.92 25.44 6.74
005 30 38.65 21.97 3.62 29.95 5.81
006 27 43.27 19.92 3.85 21.52 11.44
007 15 45.74 18.64 4.16 23.15 8.31
008 30 43.70 17.25 4.27 29.20 5.57
009 15 36.93 14.86 3.43 36.10 8.68
010 12 47.21 11.81 3.58 31.78 5.61

Table 4.3 The detail of phase volume and weight fraction of those samples.
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Because compression condition made changing of cell parameter following

Table 4.4.

illite-mica illite-smectite kaolinite quartz pyrite
Time periods  %Strain

a (°A) a (°A) c(CA)  a(®A) c(°A) a(°A)

001 0 20.226 11.047 7.391 4.907 5406 5.420
002 0 20.236 10.967 7.394 4905 5405 5412
003 5 20.215 10.927 7.388 4906 5402 5418
004 17 20.220 10.971 7.388 4.907 5395 5419
005 30 20.157 10.883 7.386 4907 5390 5.418
006 27 20.292 11.012 7.410 4914 5397 5421
007 15 20.997 11.012 7.410 4912 5400 5421
008 30 20.223 10.975 7.385 4892 5404 5419
009 15 20.363 10.955 7.385 4913 5416 5.423
010 30 20.368 10.955 7.412 4915 5394 5419

Table 4.4 shows parameters of cell parameter.



46

4.5 Preferred orientation

Generally, clay minerals are sheet silicate. They always have preferred
orientation of their own seeing in pole figure with unit of multiples of a random
distribution (m.r.d.). For illite-smectite and illite-mica, their strongly pole figure is (100).
Kaolinite’s pole figure is (001). Pyrite and quartz have a random orientation distribution.

See more detail in Table 4.5.

Time illite-mica illite-smectite kaolinite
periods Min Max Min Max Min Max
001 0.135 6.177 0.531 3.440 0.337 8.554
002 0.546 4.968 0.415 2.942 0.125 8.319
003 0.494 4.907 0.455 2.526 0.496 7.080
004 0.579 4.432 0.286 2.609 0.422 7.522
005 0.526 4.668 0.502 2.433 0.441 7.687
006 0.503 4.466 0.467 2.234 0.345 6.602
007 0.519 3.565 0.407 2.174 0.309 5.063
008 0.526 4.197 0.429 2.048 0.494 6.814
009 0.522 3519 0.545 2.365 0.372 5.472
010 0.560 3.394 0.580 2.150 0.496 5.152

Table 4.5 shows Pole densities for (100) pole figures of illite-mica and illite-smectite and (001)

pole figure of kaolinite (m.r.d.)

4.6 Macrostress and differential stress

The Sinusoidal variations in peak position with azimuthal angles are result from
differential stress which is defined as differential value of maximum stress and
minimum stress, but they also are depended on mineral’s elastic coefficients which
are input in the refinement.

We investigate differential stress of each mineral from the sinusoidal variations
using Moment pole stress method (Matthies et al., 2001; Wenk et al., 2014). we can

calculate differential stress (t) from macrostress;; following this equation.
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t = (—3) X macrostress,,

So, differential stress of each mineral on each time period can be calculated.
But in this study we did not investigate differential stress of pyrite because there is few

proportion. See more detail in Table 4.6.

illite-mica illite-smectite kaolinite quartz

Time periods
Dy, (GPa) t(GPa) Dy;(GPa) t(GPa) D,;(GPa) t(GPa) D, (GPa) t(GPa)

002 -0.068 0.203 -0.470 1.411 0.006 -0.019 0.049 -0.146
003 -0.084 0.252 -0.628 1.884 0.007 -0.020 0.147 -0.441
004 -0.103 0.310 -0.878 2.634 0.010 -0.029 0.163 -0.503
005 -0.111 0.334 -0.771 2313 0.033 -0.099 0.182 -0.546
006 -0.133 0.400 -0.818 2.454 -0.025 0.074 0.038 -0.115
007 -0.030 0.091 -0.926 2778 -0.039 0.117 0.011 -0.033
008 -0.092 0.277 -0.819 2.456 -0.004 0.012 0.136 -0.408
009 -0.058 0.175 -0.947 2.842 -0.190 0.569 0.035 -0.105
010 -0.132 0.397 -1.010 3.031 0.002 -0.007 0.050 -0.150

Table 4.6 shows differential stress of minerals upon time periods.
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4.7 Elastic property

So, we can plot stress-strain diagram of each mineral by plot a graph between

differential stress (Y axis) and %Strain (X axis) (Figure 4.4).

Differential stress of minerals

3.5
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° @ illite-mica

=
&
@

o illite-smectite

Differential stress (GPa)

0.5 ° ” kaolinite
° e
°® ® )
0 quartz
-0.5
-1
0 5 10 15 20 25 30
%Strain

Figure 4.4 shows graph plotted values between differential stress (GPa) and %Strain.
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4.8 Three-dimensional microstructure

From segmentation program, here are 2D segmented images showing their

microstructures and textures before (Figure 4.5) and after (Figure 4.6) compression.

Pore

\ / Pyrite
/

Kerogen

Figure 4.5 shows microstructures and textures before compression composing of pores, kerogen,

and pyrite.

Pyrite

/

Fracture

Figure 4.6 shows microstructures and textures after compression composing of fractures and pyrite.
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And here are 3D mathematic simulation microstructure models before (Figure

4.7) and after (Figure 4.8) compression.

Figure 4.7 shows 3D microstructure model before compression which composes of scattered

pores.

Figure 4.8 shows 3D microstructure model after compression which composes of huge fractures

(Pores are not shown in this picture).
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Moreover, from the segmentation program can also calculate proportion of
pores, fractures, and kerogen. Before compression, there are pores 3.29% which are
mostly rounded and scattered in the sample, fractures less than 0.1%, and kerogen
14.81% which is mostly aligned parallel with pores. After compression, there are
decreasing of pores to 0.24%, increasing of fractures 1.27%. But we cannot determine
exact volume of kerogen due to our sample is heated for a long time. So, kerogen is

pyrolysis. See more detail in Figure 4.9.

Composition Variation

16 14.81
14
12
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L ! M Pore
- 8
0
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: 3.29 | g
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<0.10 0.24 -
O I
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Figure 4.9 shows composition variation before and after compression.

4.9. Permeability from 3D mathematic simulation microstructure model

After we applied axis connectivity and absolute permeability experiment
simulation functions in segmentation program to after compression’s data, we got

permeability values of x and y axis (Table 4.7).

Permeability of x axis (md) Permeability of y axis (md)

Before compression 0 0

After compression 9.31 6.38

Table 4.7 shows permeability of x and y axis.
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CHAPTER V
DISCUSSION AND CONCLUSIONS

5.1. Discussion
5.1.1. Proportion of illite-mica and illite-smectite

The transition series of illite-smectite to illite-mica occurs due to
increasing temperature. The transition process is known as illitization
which has been documented in low-temperature environments and is
generally associated with burial diagenesis, low-grade metamorphism,
contact metamorphism, and hydrothermal alteration (Bauluz, 2007).

Hower et al., 1976 suggest that the illitization process produces
loss of Si, Na, and H,O and gain of K and Al.

In this study, our sample had been heated for a long time, illite-
smectite which have water (H,0) in the chemical formula is dehydrated
and changed its phase to become illite-mica. The proportion of illite-mica
increases while the proportion of illite-smectite decreases over time

(Figure 5.1).

Figure 5.1 shows graph of vol.% of illite-mica and illite-smectite.



5.1.2.

5.1.3.
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Stiffness of minerals

Object is deformed when stresses act on it. But how much of its
deformations is depended on its stiffness.

First of all, stiffness can be defined as the resistance of an elastic
body to deformation by an applied force. It means that if there are 2
minerals; A and B. If we apply a force to mineral A, and it easily deforms
(high strain). The mineral A is less stiffness. On the other hand, if we apply
the same force to mineral B, and it hardly deforms (less strain). The
mineral B is high stiffness.

We use this concept to determine the stiffness of our composed
minerals following Figure 4.4.

We can conclude that illite-smectite is the least stiff. Whereas

quartz is the most stiff one.

Fracture development

The fracture development in this study can be explained by
radiographic images from SYN-XRD. We define fracture development into
4 state;

(1) Closure of existing cracks aligning parallel with bedding plane
and scattered pores in the initial state of compression (Figure 5.2). In this
state makes the proportion of pores decrease from 3.29 Vol.% before
compression to 0.24 Vol.% after compression (Figure 4.9).

(2) Growth of cracks oblique to the bedding plane in the middle
to late of compression (Figure 5.3)

(3) cracks connection from grown cracks in the second state in the
late of compression (Figure 5.4)

(4) fractures observed, permeability increases (Figure 5.5) due to
unloading of anvils, pressure is decreased. Remind that bedding plane is

aligned horizontally (light blue).



Figure 5.2 shows the first state of fracture development: Closure of existing cracks (dark blue).

Figure 5.3 shows the second state of fracture development: growth of cracks (red).

54



55

Figure 5.4 shows the third state of fracture development: cracks connection (red).

Figure 5.5 shows the third state of fracture development: fractures observed (red), permeability

increases.

Moreover, the proportion of kerogen after compression decreases
due to our sample had been heated for a long time thus kerogen is
pyrolysis. But we cannot determine exact volume because thermal
energy makes atoms vibrate. So, the contrast of absorption values
between kerogen and fracture are not much different due to their

vibration.
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5.1.4. Fracture angle

Once fractures are observed, we can measure angle between
fractures and bedding plane which aligns horizontally in the same
direction on the stress.

The Mohr-Coulomb criterion predicts a shear plane angle oblique
to the direction of the major principle stress of homogeneous rock which
have average about 33°.

Zhang (2015) also studied the stress-strain-permeability behaviour
of clay rock during damage and recompaction experimentally in triaxial
compression. He also measured angle of his compressed rock averaging

about 27°+4° (Figure 5.6).

Figure 5.6 shows angle between fractures and major principle stress (Zhang, 2015).

In this study, we also measured angle between fractures and
major principle stress which is as same as to the direction of bedding

plane. The average of angle is about 26°+3° (Figure 5.7).
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Figure 5.7 shows angle between fractures and major principle stress of this study.

Our averaged angle is smaller than the Mohr-Coulomb criterion and Zhang
(2015) due to our sample composes of clay minerals over 50% which are sheet silicate
mineral aligning horizontally with bedding plane. Thus, the fractures are easier to
develop parallel with bedding plane which is the weakest direction of the sample but

they are also controlled by the anvils of D-DIA.

5.2. Conclusions

Our shale sample from the Barnett Shale, Texas, USA composes of quartz (~35%),
illite-mica (~28%) illite-smectite (~25%), pyrite (~9%), and kaolinite (~3%). Upon
compressing sample, the volumes of illite-smectite decrease due to dehydration
whereas the volumes of illite-mica increase. Moreover, diffraction patterns from SYN-
XRD also suggest that illite-smectite is the least stiff mineral. On the other hand, quartz
is the most stiff one.

Before compression, there are scattered pores (~3%) all of the sample, fractures
(< 0.1%), and kerogen (~15%) aligning parallel with pores. Upon compressing sample,
pores decrease. After compression, there are pores (~0.2%), fractures (~1.3%), and

kerogen which is cannot determined exact volumes.



58

In this study can define development of fracture into 4 states which are;
(1) Closure of existing cracks and scattered pore.
(2) Growth of cracks
(3) Cracks connection
(4) Fractures observed, permeability increases
Newly develop fractures mostly intersect with the bedding plane at the average
of 26° due to the change of stress-strain state from unloading and they increase
permeability of the sample ranging from 6.4 to 9.3 mD.
The results from this study make knowledge in fractures behavior and their
development in extreme condition be better understood and can also apply for study

about fractures development of shale in the other basins in the future.
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