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CHAPTER 1

PROLOGUE

1.1 Introduction

The study of ring-theoretic graphs has become an exciting research topic in the last
two decades. This includes unitary Cayley graphs, integral circulant graphs, zero-
divisor graphs and gcd-graphs. Mostly, the work is on determining its eigenvalues
(which are real) and computing the sum of absolute values of the eigenvalues,
called the energy of a graph. The energy is a graph parameter introduced by
Gutman (see [17] and [11] for a good survey) arising from the Hiickel molecular
orbital approximation for the total m-electron energy. Nowadays, the energy of
graph is studied for purely mathematical interest.

In Chapter II, we define the restricted unitary Cayley graph induced from
the square mapping by Hr = Cay(R,Tg), where T = Kr(R*)®, the prod-
uct of Kp and (R*)® which are subgroups of R*, (R*)® = {a® : a € R*}
and Kr = {a € R* : a®* = 1}. The motivation of this graph comes from the
quadratic unitary Cayley graph Cay(Z,,+(Z>)®) introduced by Beaudrap [6].
He bounded the diameter of such graphs and characterized the conditions on n
for Cay(Z,, +(Z>)?) to be perfect, i.e., the chromatic number of every induced

subgraph equals the size of the largest clique of that subgraph. When n = p*, p



a prime and s € N, his graph and our graph coincide. The main purpose of the
chapter is to obtain the eigenvalues and energy of the graphs. This is a joint work
with Meemark and has been published in ScienceAsia [28].

In chapter III, we study the unitary Cayley signed graph defined to be an
ordered pair Sg = (Gg,0), where Gp is the unitary Cayley graph over R with

signature o : E(Gr) — {1, —1} given by

1, ifae R*orbe R*,
o({a,b}) =

—1, otherwise.
We give a criterion on R for Sk to be balanced (every cycle in Sg is positive)
and a criterion for its line graph L(Sg) to be balanced. Moreover, we characterize
all finite commutative rings with the property that the marked sigraph (Sg), is
canonically consistent. We also give a characterization of all finite commutative
rings where Sg, 1n(Sg) and L(Sg) are hyperenergetic balanced. This result has
been published in Journal of Algebra and Its Applications [29].

Finally, we consider the ged-graph on a quotient ring of a unique factorization
domain (UFD) introduced in [23] generalizes a gcd-graph or an integral circu-
lant graph (i.e., its adjacency matrix is circulant and all eigenvalues are integers)
defined over Z,,n > 2, (see [24, 40]). An integral circulant graph can also be
considered as an extension of a unitary Cayley graph. This graph has been widely
studied in many literatures, e.g., [5, 12, 17, 18, 21, 22, 34].

We determine the spectrum and obtain the energy of a Cayley graph over a
finite chain ring in Chapter IV. This extends the idea of integral circulant graphs

with prime power order presented in [34] in which they compute the energy via a



sum of Ramanujan sums as studied in [24]. Our approach here is to examine all
eigenvalues with multiplicities and then obtain the sum of their absolute values
directly similar to [23]. We also show that the graph defined over a finite chain ring
is indeed an integral circulant graph. The final section presents some applications
of the energy found in Section 4.1. We gives further results on a ged graph on
a quotient ring of a unique factorization domain using a tensor product and a
non-complete extended p-sum.

Some background knowledges and basic terminologies in algebraic graph the-
ory are recalled in the following three sections. This includes results on the energy
of a graph and properties of a unitary Cayley graph which we shall repeatedly use

throughout this dissertation.

1.2 Terminologies in Graph Theory

A graph G is an ordered pair (V(G), E(G)), where V(G) is a finite set of objects
called vertices and F(G) is a set of 2-element subsets of V(G), called edges. We
will refer to V' (G) as the vertex set of G and to E(G) as the edge set of G. The
order of G is |V(G)].

If e = {u,v} is an edge of a graph G, we say that u and v are the endvertices
of e and that u and v are adjacent. In this case, we also say that u and e
are incident, as are v and e. Furthermore, if e; and ey are distinct edges of G
incident with a common vertex, then e; and e; are adjacent edges. The degree
of a vertex v in a graph G, denoted by deguv, is the number of edges in G that

are incident with v.



A graph G is regular of degree r if degv = r for each vertex v of G. Such
graphs are called r-regular. A graph is complete if every two of its vertices are
adjacent. A complete graph of order n is therefore (n — 1)-regular and has size
(’;) We denote this graph by K,,.

An isomorphism from a graph G to a graph H is a bijection f : V(G) —
V(H) such that {u,v} € E(G) if and only if {f(u), f(v)} € E(H). We say G is
isomorphic to H, written G = H, if there is an isomorphism from G to H.

A cycle is a graph with an equal number of vertices and edges whose vertices
can be placed around a circle so that two vertices are adjacent if and only if they
appear consecutively along the circle. The number of edges in a cycle is called its
length.

A k-regular graph G with v vertices is said to be strongly regular with

parameters (v, k, A\, i) if there are integers A and p such that
(i) every two adjacent vertices have A common neighbors, and
(ii) every two non-adjacent vertices have p common neighbors.

Suppose (H,+) is a group and S C H. The Cayley graph Cay(H,S) is a

graph whose vertex set is H and the edge set {{a,b} :a,b € H and b —a € S}.



1.3 Energy of Graphs

For a graph G with vertex set {vy,...,v,}, the adjacency matrix of GG, denoted

by A(GRr), is the n x n matrix [a;;], where

1, if v; and v; are adjacent,
Clij =

0, otherwise,

foralli,j € {1,2,...,n}. The eigenvalues of G is defined to be the eigenvalues of

the adjacency matrix of GG. The set of all eigenvalues of G is called the spectrum

of G. Asis standard, if Ay, ..., Ay are distinct eigenvalues of a graph G of respec-
Al A

tive multiplicities mq, ..., ms, we use the notation Spec G = to
my ... M

describe the spectrum of G. We can explicitly determine the eigenvalues of a

strongly regular graph (Section 10.2 of [15]) in the following lemma.

Lemma 1.3.1. [15] A strongly regular graph with parameters (v, k, A\, i) has ex-

actly three eigenvalues:

1. k whose multiplicity is 1,

2. %[O\ — )+ \/(A — ) +4(k — u)] whose multiplicity is

[(U . 1) 2kt (v=1)(A—p) ]’ and

vV A=p)2+4(k—p)

(A= 1) = /(A= )2 + 4(k — p)] whose multiplicity is

N

o
N

[(U— 1)+ 2k+(v—1)(A—p) ]

vV (A=p)2+4(k—p)

N

The sum of absolute values of all eigenvalues of a graph G is called the en-

ergy of G and denoted by £(G), i.e., E(G) = > my|Ai|. The energy is a graph



parameter stemming from the Hiickel molecular orbital approximation for the to-
tal m-electron energy (for survey on molecular graph energy see e.g., [17]). This
concept was introduced by Gutman [16]. Later, the energy of graph was studied
intensively in many literatures (see e.g., [31], [41], [43] and [23]).

For two graphs G and H, their tensor product G ® H is the graph with
vertex set V(G) x V(H), where (u,v) is adjacent to (v',v') if and only if w is
adjacent to v/ in G and v is adjacent to v' in H. The adjacency matrix of G ® H

is the Kronecker product of A(G) and A(H), i.e., A(G® H) = A(G) ® A(H).

Proposition 1.3.2. [/2] Let G and H be graphs. Suppose that Ay, ..., \, are the
eigenvalues of G and py, . .., py, are the eigenvalues of H (repetition is possible).
Then the eigenvalues of G @ H are A\, where 1 < i < n and 1 < j < m.

Moreover, E(G®@ H) = E(G)E(H).

The complement of a graph G, denoted by G, is the graph with the same
vertex set as G such that two vertices of G are adjacent if and only if they are

not adjacent in G.

Proposition 1.3.3. [15, 42] If a graph G with n vertices is k-reqular, then G and
G have the same eigenvectors. The eigenvalue associated with n-vector 1,, whose
entry are all 1, is k for G andn —k — 1 for G. If T # 1, is an eigenvector of G

for eigenvalue X of G, then its associated eigenvalue in G is —1 — .



1.4 Unitary Cayley Graphs

Throughout this dissertation, every ring has the identity 1 # 0. Let R be a finite
commutative ring. The unitary Cayley graph of R, denoted by G, is the
graph whose vertex set is R and the edge set {{a,b} : a,b € Rand a — b € R*}.
We use R* to denote the group of units of R. It is clear that G is regular of
degree |R*|. We can also write G as Cay(R, R*).

A local ring is a commutative ring which has a unique maximal ideal. For
a local ring R, we denote its unit group by R* and it is straightforward that its
unique maximal ideal M = R~ R* consists of all non-unit elements. We also call

the field R/M the residue field of R.

Example 1.4.1. If p is a prime, then Z,s, s € N, is a local ring with the maximal
ideal pZ,s and residue field Z,: /pZ,- isomorphic to Z,. Moreover, every field is a

local ring with maximal ideal {0}.
We also use the following well known fact of a finite commutative ring.

Theorem 1.4.2. [10] A finite commutative ring R can be expressed as a direct

product of local ring, i.e.,
R= Ry X Ry X -+ X Ry,
where k € N, R; is a local ring for 1 < i < k. Consequently,
R*= R X Ry x--- X R},

The following theorem is Proposition 2.1 and Theorem 2.4 of [23]. It gives the

eigenvalues and the energy of unitary Cayley graph of R.



Theorem 1.4.3. [23] Let R be a finite commutative ring.

1. If R is a local ring with mazimal tdeal M, then

|R*| —|M| 0
SpecGg =
L =1 M-
|[R*| —[M] 0
_ i
R LNy

and E(Gr) = 2|R*|. In particular, if F is the field with q elements, then F'

is a local ring with the mazimal ideal {0}. So |M| = [{0}| =1 and hence

g—1 -1 ¥ -1
Spec Gp =

1 qg-—1 1 |F
and E(Gp) =2(q —1).
2. If R= Ry X Ry X -+ X Ry and R; is a local ring for all i € {1,2,... k},
then

GRgGR1®GR2®'®GRk

and hence

E(GR) =E(GR,)E(GR,)...E(GR,)
=2|R{[- 2[Ry [- ... - 2|R]
=2"|R} x RY x -+ x RY|

= 2% R¥|.



CHAPTER 11
EIGENVALUES AND ENERGY OF RESTRICTED
UNITARY CAYLEY GRAPHS INDUCED FROM THE

SQUARE MAPPING

2.1 Paley Graphs

Let R be a finite commutative ring. Consider the exact sequence of groups
1 — Kp — R* -5 (R)® — 1,

where 0 : a — a? is the square mapping on R* with kernel Kz = {a € R* : a*> =
1} and (R*)® = {a® : a € R*}. Note that Ky consists of the identity and all
elements of order two in R*. Let T = Kz(R*)®, the product of K and (R*)?
which are subgroups of R*. Define the subgraph Hg of the unitary Cayley graphs
Gr = Cay(R, R*) by Hg = Cay(R,Tr), in which two vertices are adjacent if and
only if their difference is in Tx. Since —1 € Tg, the graph Hpg is undirected. In
addition, we observe that if |R*| is odd, then Kz = {1} and R* = (R*)®?, so
Hi = Gg. All finite rings R with group of units R* having an odd number of
elements are completely determined by Dolzan [13].

The motivation of the graph defined above comes from the quadratic unitary

Cayley graph Cay(Z,, =(Z>)®) introduced by Beaudrap [6]. He bounded the di-
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ameter of such graphs and characterized the conditions on n for Cay(Z,,, £(Z>)®)
to be perfect. When n = p°, p a prime and s € N, his graph and our graph Hg
coincide. The main purpose here is to obtain the eigenvalues and energy of the
graphs using an approach similar to [23].

Now, we give an example. Let ¢ be a prime power such that ¢ = 1 mod 4.
The Paley graph is the graph whose vertex set is the finite field F, with ¢
clements and edge set is {{a,b} : a,b € Fyand a — b € (F)?}. Since F, is a
field, Ky, = {£1}. The congruence condition on ¢ implies that —1 is a square in
F, and hence Ty, = (Fy)®. Thus, the Paley graph is H, .

It is well known that the Paley graph is strongly regular as we are recalling
in the next lemma ([15] p.221). Therefore, we obtain its eigenvalues from Lemma

1.3.1.

Lemma 2.1.1. [15] Let q be a prime power such that ¢ =1 mod 4. The Paley

Y

qg—1 g—5 q—l)
4 0 4

graph over the finite field F, is strongly regular with parameters (g,

M|

and
=1 4=l Vil
2 2 2
Spec Hy, =
g—1 q—1
1 2 2

The next lemma is obvious.

Lemma 2.1.2. If q is a prime power congruent to 1 modulo 4, then £(Hy,) =
SHL+ Va).

In what follows, we shall study the the energy of Hr when R is the ring of
integers modulo n or R is the quotient ring of polynomials over a finite field. We

prove the main theorem on the spectrum and energy of Hg in the next section.
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The final section provides some computational examples using elementary number

theory.

2.2 Energy of Hp

Let R be a finite commutative ring. Then R can be expressed as a direct sum of
local rings, that is, R = Ry X Ry X --- X Ry, where R; is a local ring. Note that

R 2= Ry X Ry X --+ X Ry induces the isomorphisms
R*= R x Ry x---x R and

(RX)@ ~ (RIX)@) > (R;)(2) VTR (R,j)@).

In addition, Kr = Kg, x K, X--- X Kpg,. This proves the following decomposition

theorem.

Theorem 2.2.1. Let R be a finite commutative ring. If R = Ry X Ry X --- X Ry,

and R; is a local ring for each i € {1,2,... k}, then
Hr=Hp ® Hp, ®---® Hp,.

The above theorem tells us that we can concentrate only on Hr when R is a
local ring.

Let R be a finite local ring with unique maximal ideal M. Then R* = R~ M
and |R| = p! for some [ > 1 and p is a prime number. Note that the kernel of
the homomorphism ¢ : R* — (R/M)* mapping a to a + M is 1 + M. Thus, we
have the isomorphism R*/(1+ M) = (R/M)*. Recall that R/M is a field and

(R/M)* is cyclic. Since |R*| = |R|—|M| = |M|(|R|/|M|—1), |M| = p™ for some
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m <l and |M| = |1+ M|, we have 1+ M is the Sylow p-subgroup of R*. Hence,
RX = (R/M)* x (14 M).

Assume that p is an odd prime. The above observation gives Kr = {£1} and
leads us to distinguish two cases. If —1 is not a square in R, then Kp(R*)® = R*
and Hr = Gp.

Next, we suppose that —1 is a square in R. Since |1 + M| = p™ and p is an
odd prime, we have (1+ M)® =1+ M so that (R*)® = ((R/M)*)® x (1+ M).
Write R/M = {ry + M,ro + M,...,ry-m + M}. Then for each a € R, there
is a unique ¢ and m, € M such that a — r; = m,. This yields the bijection
T:R— R/M xMbyrTt:aw— (r;+ M,m,) for all « € R. Thus, for all a,b € R,
(a —b) € (R*)® if and only if 7(a — b) € ((R/M)*)® x M. Hence, 7 induces
an isomorphism Hp = Hp/y ® Kjprj, where Ky is the [M|-complete graph with
a loop on each vertex. Note that Hp/y is the Payley graph mentioned in Section
1. Furthermore, we know that the adjacency matrix of the |M|-complete graph

with a loop on each vertex, K|y, is the [M] x | M| matrix of all 1s, so

[M[ 0
Spec Ky =
1 |M-1
and £(Ku) = |M|. Therefore, Lemma 2.1.2, Theorem 1.4.3 and Theorem 1.3.2

complete our main conclusions.

Theorem 2.2.2. Let R be a finite local ring with unique mazimal ideal M of

characteristic odd prime p.

1. If —1 is not a square in R, then Hgr = Gr and E(Hg) = E(GRr) = 2|R*|.
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2. If =1 is a square in R, then Hp = Hp/; @ Kja, where Ky is the | M|-

complete graph with a loop on each vertex. Moreover, if |R/M| = p', then

|RX|  [M|(p*/?-1)  |M|(—p'/2-1) 0
2 2 D)
Spec Hg =
t*l tfl
! ’ 2 5 2 || - p'

_ RN + 1)

and E(Hpg) 5

2.3 Examples

In this section, we provide two computational examples of Theorem 2.2.2 using
elementary number theory. We present the results when R = Z,, the ring of
integers modulo n and R = A/fA, where A =TF,[z], ¢ = p® an odd prime power,

s > 1, and f is a non-constant polynomial in A.

2.3.1 Quadratic residues of n

Let n > 1 be a positive integer. We write G,, = Gy,, K,, = Ky,, T,, = Ty, and
H, = Hy,. We study the structure of the graph H,, and obtain its energy using
the results discussed in the previous sections.

As usual, our work will start with the case when n is a prime power p®. For
p = 2,if s = 1, it is immediate that Hy = G. If s = 2, we have ZJ, = {£1} = Ky
and (Z;)® = {1}, and thus Tp: = {1} and Hy = G4 If s = 3, we have
Z3 = {+1,+3} = Ky and (Z};)® = {1}, so Tys = Z}, and Hg = Gs. Finally,
let s > 4. We recall the fact that Z, = Zy X Zgs—2. Since (Z)?) = Zy.-s and

Kas = Zy x 7y, we have Kys(Z5)® = Zg X Zys-s. Thus, Tys = +(Z5)@. It
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follows from Lemma 2 of [6] that Hos = Hg ® Kys-s. Hence, we have proved the

next theorem.

Theorem 2.3.1. The graphs Hy = G5, Hy = G4, Hg = Gg and for s > 4, we
have

H2s g H8 ® K23—3’

where Kqs—s is the 2°73-complete graph with a loop on each vertex. Moreover,

1 -1 2 =20 22 22 0
Spec Hy = , Spec Hy = , Spec Hg = , and
1 1 1 1 2 1 1 6
2571 _2571 0
Spec Hys = for all s > 4. Furthermore, £(Hys) = 2° for
1 1 2% — 2
all s > 1.

Next, let p be an odd prime and s > 1. Recall that —1 is a square in Z,s if

and only if p =1 mod 4. Theorem 2.2.2 directly gives the following results.
Theorem 2.3.2. Let p be an odd prime and s > 1.
1. If p=3 mod 4, then Hys = Gps and E(Hys) = E(Gps) = 2(p* — p*7h).

2. If p=1 mod 4, then Hy = H, ® Kys-1, where Kys-1 is the p*~'-complete

graph with a loop on each vertex. Moreover,

e Y ] O/ ot VS i GV it Y B
2 2 2

Spec H,s =

71 71 s

L 5 Bop

1

and E(Hy:) = E2—(,/p+ 1).
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2.3.2 Quadratic residues of f

Let F, be the finite field with ¢ = p® elements of characteristic odd prime p. Let
A =T,4[T], and let f € A be a non-constant polynomial. We write Gy = G(a/14)
and Hy = Hayya).

Let P € A be an irreducible polynomial and e > 1. Write | P| for ¢%¢f. We

recall Theorem 1.10 of [33] for d = 2 in the next theorem.

Theorem 2.3.3. [33] Leta € A and e > 1. Then the congruence x> = a mod P*

has a solution if and only if a5 =1 mod P in A.

This theorem gives the following criteria to determine if —1 is a square modulo
Pe.
Corollary 2.3.4. Let IF, be the finite field with ¢ = p°® elements of characteristic

odd prime p. Let P € F,[T] be an irreducible polynomial and e > 1.

1. =1 is a quadratic non-residue of P¢ if and only if (p =3 mod 4 and sdeg P

is odd).

2. —1 is a quadratic residue of P¢ if and only if (p = 1 mod 4) or (p = 3

mod 4 and sdeg P is even).

Theorem 2.2.2 gives eigenvalues and energy of the graph Hpe for all e > 1 as

follows.

Theorem 2.3.5. Let Fy be the finite field with ¢ = p* elements of characteristic

odd prime p. Let P € F,[T] be an irreducible polynomial and e > 1.
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1. If (p = 3 mod 4 and sdeg P is odd), then Hpe = Gpe and E(Hpe) =

2(1Pfe = [P,

2.If (p =1 mod4) or (p = 3 mod 4 and sdeg P is even), then Hpe =
Hp @ K|pje-1, where Kpje-1 is the | P|*~'-complete graph with a loop on each

vertex. Moreover,

Ple—|Ple=t [P G/IPIED [P (/1P 0
2 2

2

Spec Hpe =

P|-1 P|-1 e
1 L - |P|c — | P|

and &(Hpe) = PP (/TP + 1),



CHAPTER I11
BALANCED UNITARY CAYLEY SIGRAPHS OVER

FINITE COMMUTATIVE RINGS

3.1 Signed Graphs

A signed graph (or sigraph in short) is an ordered pair § = (S*, o), where S“
is a graph (V| F), called the underlying graph of S and o is a function from the
edge set F of S* into the set {1, —1}, called a signature (or sign in short) of S.

A sigraph is all-positive (respectively, all-negative) if all its edges are pos-
itive (negative). A sigraph is said to be homogeneous if it is either all-positive
or all-negative and heterogeneous otherwise. Denote d(v) the degree of vertex
v and d~(v) the negative degree of a vertex v is the number of negative edges
incident at v. A cycle in a sigraph § is said to be positive if it contains an even
number of negative edges. A sigraph S is balanced if every cycle in S is positive.

We define the unitary Cayley signed graph (or unitary Cayley sigraph
in short) to be an ordered pair Sg = (Gg, o), where Gg is the unitary Cayley

graph over R and o : E(Gg) — {1, —1} given by

1 ifa€ R“orbe R*,

Y

o({a,b}) =

—1, otherwise.

When R = Z,, n > 1, Sg = S, is the graph studied in [39] as we shall
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remark their results throughout the chapter. However, we obtain more general
characterizations of R for the canonical consistent of the marked sigraph (Sg),, in
the next section (Theorem 3.3.4). Furthermore, hyperenergetic balanced sigraphs

are studied in the final section.

3.2 Balanced Unitary Cayley Sigraphs

In this section, we work on conditions on R in which Sg to be balanced (Theorem
3.2.2) and the ones in which its line graph L(Sg) to be balanced (Theorem 3.2.8).
Recall that for a graph G with vertex set {vq,...,v,}, the adjacency matrix

of G, denoted by A(G), is the n x n matrix [a;;], where

1, if v; and v; are adjacent,

aij =

0, otherwise,

for all 4,j € {1,2,...,n}. The adjacency matrix of a signed graph is gener-

alized the ordinary adjacency matrix by defining

o({vi,v;}), if v; and v; are adjacent,
aij =

0, otherwise,
for all 4,5 € {1,2,...,n}.

We begin with the following lemma.

Lemma 3.2.1. Let R be a finite local commutative ring with 1 # 0. Then the
unitary Cayley sigraph Sg is an all-positive sigraph. Consequently, A(Ggr) =

A(SR).
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Proof. Let R be a local ring with maximal ideal M. Suppose Si has a negative
edge {a,b}. Then a and b are in M, so a —b € M. This contradicts the fact that

a and b are adjacent. Hence, Sp is all-positive. O

For a finite commutative ring R with identity 1z, we have R = R; X Ry X
.-+ X Ry, where R; is a local ring with maximal ideal M;. Each R; has the identity
1, and we denote n - 1; and n - 1g by n. Recall Proposition 2.2 of [4] that if R
is a local ring with maximal ideal M, then G is a complete multipartite graph
whose partite sets are the cosets of M in R. A criterion for Sg to be balanced is

as follows.

Theorem 3.2.2. Let R be a finite commutative ring with 1 # 0. The unitary
Cayley sigraph Sg is balanced if and only if R is local or |R;| = 2|M;| for some

ie{1,2,... k).

Proof. If R is local, then by Lemma 3.2.1 we have Sg is all-positive, and hence
balanced. Next, assume that R = Ry X Ry X --- X Ry such that |R;| = 2|M;|
for some ¢ and we may assume ¢ = k. Then G is bipartite with one partite set
projects to M), and another set projects to R; . Then every cycle in Sg has an

even number of edge and of the form

O — (m17T17m27r27 ... Jml7rl7m1)'

Any negative edge occurs when some r; ¢ R* and this makes negative edge occur
as an even number.
Next, suppose that R = Ry X --- X Ry, where k > 1, R; is a local ring and

|R;/M;| > 2 for each i € {1,2,...,k}. Then each Gg, is a complete multipartite
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graph with |R;/M;| > 2 partite sets. Thus, each Gg, has a cycle (1;,0;,a;, 1;),
which mean a; — 0 € R and a; — 1 € R for all i € {1,2...,k}. Consider the
element 7y = (01, 12, 13,...,1x), T2 = (11,02,03,...,0;) and @3 = (ay,as, ..., ax)
of R = Ry x -+ X Ry, we have a cycle (7, ¥, ¥3, 71) in Sg with one negative edge

{#1Z>}. Thus, Sk in not balanced. O

Recall that if n > 1, we have the decomposition
L, = prln X Zp;2 X e X Zka,

where p; < po < --- < pi are primes and aq, as,...,a; € N. If p; = 2, then M; =
2Z9a, and |Zga| = 2|My|. If p; > 2, then M; = piZ,ei and \qui/]\/[i\ =p; > 2
for all i. Hence, Theorem 3.2.2 yields Theorem 4 of [4]. We record it in the next

corollary.

Corollary 3.2.3. If n > 1 and R = Z,,, then we write Sg = S,, and S,, is balanced

if and only if n is even or n = p" for some odd prime p and r € N.

Remark. The condition “|R;| = 2|M;| for some i € {1,2,...,k}” in Theo-
rem 3.2.2 is stronger than the one that “|R| is even”. For example, let Fy =
{0,1,a1,as} be the field with 4 elements and R = F, x Zs. Then |R| is even
but does not satisfy the criterion of Theorem 3.2.2. Consider the triangle C' =
((1,0),(a1,1),(0,2)) in sigraph Sg. The edge {(0,2),(1,0)} is the only negative

edge in C' and thus Sg is not balanced.

The negation 7n(S) of a sigraph S is the sigraph obtained from S by negating

the sign of every edge of S. Observe that if S is bipartite, then every cycle in
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S has an even length. Therefore, the negation of a balanced bipartite graph is

balanced.

Corollary 3.2.4. Let R = Ry X Ry X --- X Ry, where Ry, ..., Ry are finite local
commutative rings with 1 # 0. The negation sigraph n(Sgr) of the unitary Cayley

sigraph Sg is balanced if and only if |R;| = 2|M;| for some i € {1,2,... k}.

Proof. Suppose |R;/M;| > 2 for all i. Let 0= (0,0,...,0), 1= (1,1,...,1) and
x3 be as in the proof of Theorem 3.2.2. Consider the triangle C' = (6, I, x3) in Sg.
Then all it edges are positive, so we have a 3-cycle whose edges are negative in
n(Sr). Hence, n(Sg) is not balanced.

Conversely, if |R;| = 2|M;| for some i, then Sg is bipartite as shown in the

proof of Theorem 3.2.2. Also, Sg is balanced. Hence, n(Sg) is balanced. O

Following Behzad and Chartrand [7], for a sigraph S, we define its line si-
graph L(S) as the sigraph in which the edges of S are represented as vertices,
two of these vertices are adjacent whenever the corresponding edges in S have a
vertex in common, any such edge {a, b} in L(S) is defined to be negative whenever
both a and b are negative edges in S. A criterion for a balanced line sigraph is as

follows.

Theorem 3.2.5. [3] For a finite sigraph S, its line sigraph L(S) is balanced if

and only if the following conditions hold:
(i) for any cycle C in S,

(a) if C is all-negative, then C has even length;
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(b) if C is heterogeneous, then C' has even number of negative sections with

even length;

(ii) forv e S, if d(v) > 2, then there is at most one negative edge incident at v

mn S.

Recall that a unitary Cayley graph G over a finite commutative ring R is
regular of degree |R*|. For a local ring R with maximal ideal M, 1 + M C R*.
Then |M| < |R*|. If |R*| = 2, then |[M| = 1 or 2, and so |R| = 3 or 4.
Thus, |M| = 1 when R = Zs or |M| = 2 when (R = Z4 with M = {0,2})
or (R = Zs[z]/(2?) with M = {0,z}) [35]. Moreover, Sz, and Sz,;)/,2) are
isomorphic sigraphs.

Furthermore, we observe that if R is a finite product of Z,’s, then G is regular
of degree one and has no cycles. We shall need the following two lemmas in order

to develop our final theorem (Theorem 3.2.8).

Lemma 3.2.6. If R = Z™' x Zy and k > 2, then the sigraph Sg is a disjoint
union of 282 6-cycles with only one cycle is isomorphic to Sz, and other cycles

(if any) are all-negative.

Proof. Observe that G is regular of degree 2 and G7z,«z, is isomorphic to Gz,.
For each @ € ZE™', we have an associated 6-cycle given by Cy = ((@,0), (I —
a,1),(d,2),(1-a,0),(a1),(1-a,2)) = C;_.. Ifd # 0and I, then Cy = C; = Sg,.
If @ # 0 and I, then (d@,1),(a,2),(I — @, 1),(I — @2) are not units in R and

Cgz = Cy_; is all-negative. O
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Lemma 3.2.7. If R = Z5™' X Ry, k > 2 and Ry, = Zy or Zsy[z]/(2?), then the
sigraph Sg is a disjoint union of 2871 4-cycles with only one cycle is all-positive

and other cycles (if any) are all-negative.

Proof. Since 8z, and Sz,,)/(,2) are isomorphic sigraphs, it suffices to prove only for
Ry = Z4. Observe that G is regular of degree 2 and Gz, is 4-cycle (0,1,2,3,0).

For each @ € ZE™!, we have an associated 4-cycle given by C; = ((@,0), (I —

QU

a,1),(a2),(1—a,3),(d0)). Since (I,1),(1,3) € R*, Cj is all-positive. If @ # 0,

then (I —@,1), (1 — @,3) are not units in R and Cj is all-negative. O

Theorem 3.2.8. Let R be a finite commutative ring with 1 # 0 and let Sg be the
unitary Cayley sigraph. Then the line sigraph L(Sg) is balanced if and only if R

is local or R=75, k>2 or R=75" x Ry, k> 2, and Ry, = Zy or Zy[x]/(x?).

Proof. If R is a local ring, then all edges of Sg are positive, and hence all edges
of L(Sg) are positive. If R = Z& and k > 2, then L(Sg) has no edges and thus is
balanced. Finally, if R = Zi~! x Ry, k > 2 and Ry, = Z4 or Zy[x]/(z?), then by
Lemma 3.2.7 and Theorem 3.2.5, L(Sg) is balanced.

Assume that R = Ry X Ry X -+ X Ry is a product of local rings, where k > 2
and Ry # 7o, 74 or Zo[z]/(x?). Then |R*| > 2. If |R*| = 2, then R = Z5~" x Zs
and L(Sg) is not balanced by Lemma 3.2.6 and Theorem 3.2.5. Assume |R*| > 2.
Then Gy is regular of degree greater than 2. In addition, |R;| > 2. Consider
the vertex (1,1,...,1,0) which is adjacent to (0,0,...,0,1) and (0,0,...,0,a) for
some a € R and a # 1. Clearly, both edges are negative. Thus, L(Sg) is not

balanced by Theorem 3.2.5. O



24

Example 3.2.9. If n > 1, then Z, = szl X Zpgz X e X Zp;k, where p; < py <
-+» < pg are primes and 71,79, ..., € N, so Theorem 3.2.8 implies that L(Sz,)
is balanced if and only if n = p” for some prime number p and r € N. This result

is Corollary 7 of [39].

3.3 C(-Consistent Unitary Cayley Sigraphs

A marked sigraph is an ordered pair S, = (S, ), where S = (S%, 0) is a sigraph
and g : V(S*) — {+,—} is a function from vertex set V' (S*) of S* into the set
{+,—}, called a marking of S. A cycle C' in S, is said to be consistent if
it contains an even number of negative vertices. A marked sigraph S is said to
be consistent if every cycle is consistent. In particular, ¢ induces the natural

marking p, defined by

no(v) = I ote).

6€EU

where FE, is the set of edges incident at v in §. It is called the canonical marking
of S.

Now, if every vertex of a given sigraph S is canonically marked, then a cycle C'
in § is said to be canonically consistent or C-consistent if it contains an even
number of negative vertices and a sigraph S is said to be C-consistent if every
cycle is C-consistent, that is, every cycle contains an even number of negative
vertices.

Beineke and Harary [8, 9] were the first to pose the problem of characterizing

consistent marked graphs, which was subsequently settled by Acharya [1, 2|, Rao
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[32] and Hoede [19]. Sinha and Garg discussed consistency of several sigraphs in
(36, 37, 38, 39]. In this section, we obtain more general characterizations of R for

the C-consistent of the marked sigraph (Sg),.

Lemma 3.3.1. If R = Ry X --- X Ry, k > 1 and |M;| is even for some i €

{1,...,k}, then the marked sigraph (Sg),, is C-consistent.

Proof. Without loss of generality, we may assume that |M;| is even and let @ =
(ay,...,a;) be an element in R. If a; € R for all i or a; € M; for all i, then we
are done. If not, we consider the following two cases.
Case 1. a; € M. For b = (b1,bg,...,b) in R, {d, 5} is negative if and only if
G—be R b € Ry and b; € M; for some i € {2,...,k}. Hence, the number of
negative edges of @ is a multiple of |R|, which is even.
Case 2. a, € RY. Assume that b = (by,bs,...,b) and {@, b} is negative. If
b; € M; for some i € {2,...,k}, then the number of b is a multiple of |R| which
is even. Assume b; € R for all i € {2,...,k}. Then the number of b is a multiple
of | M| since a; € Ry.

Thus, d~(v) is even for all v € R, so every vertex is positively marked. Hence,

(Sk), is C-consistent. O

Lemma 3.3.2. Let R be a finite commutative ring with 1 # 0. If R = Ry X
- X Ry, where Ry,---, Ry are local rings, k > 1 and |R}| is even for each

i€ {l,...,k}, then the marked sigraph (Sg),, is C-consistent.

Proof. Let @ = (ay,...,ax) € Ry X --- X R, If @ € R*, then d has no negative

edges by definition. If a; € M; for all 7, @ also has no negative edges because any
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b= (b1,...,bx), which is adjacent to @, we must have b; — a; € R, and hence

7 7

b; € R for all i. Then a negative edge of @ occurs when some a; € R and
some a; € M;. Observe that d*(a) = [[, (|R;| — [My]) [, (|R}]) is even. Then

d~(d) = |R*|—d" (@) iseven for all @ € R. Hence, the graph Sg is C-consistent. [

Lemma 3.3.3. If R is a finite local commutative ring with 1 # 0 and |R*| is odd,

then R = For for somer > 1.

Proof. Recall that for a local ring R with maximal ideal M we have |R| = p",
|M|=p™ and |R*| = |R| — |[M| =p" —p™ =p™(p"~™ — 1), where p is prime and
m < r. Since p™(p"~™ — 1) is odd, both p™ and p"~™ — 1 are odd, so m = 0 and

p = 2. Thus, R is a field of 2" elements. m

Theorem 3.3.4. Let R be a finite commutative ring with 1 # 0. Suppose that
R = Ry X Ry X --- X Ry, where each R; is a local ring with maximal ideal M,;.
Then the marked sigraph (Sg), is C-consistent if and only if R satisfies one of the

following conditions:
(i) k=1or(R=17Z% and k > 1),
(ii) k> 1 and |M;| is even for some j € {1,...,k},
(11i) k> 1 and |R}| is even for each i € {1,... ,k},
(i) k>1 and R =7 x Zs.

Proof. (Sg), is clearly C-consistent in the case (i). If R satisfies (iv), the result
can be directly verified. Finally, if R satisfies (ii) or (iii), then (Sg), is C-consistent

by Lemma 3.3.1 and Lemma 3.3.2, respectively.
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Next, we shall show that if R does not satisfy (i)-(iv), then (Sg), is not C-
consistent. Assume that R does not fulfill any conditions (i)—(iv) in the theorem.
Then k > 1. Let |R;| = p;* for all i € {1,2,...,k}, where py < py... < pg. If
p1 > 2, then |R| is even for all 4, and so (iii) is true. Thus, p; must be 2. Since
| M| is odd, Ry is a field of 2™ elements. Furthermore, Lemma 3.3.3 allows us to

write

R=TFgr X -+ XFors X Rgy1 X -++ X Ry,

where 1 < r; <r < ...<rg,s>1 |R| =p;forallie{s+1,...,k} and
2 < psi1 < psio < -+ < pg. The theorem will follow from the next series of

lemmas in which we construct a cycle with odd negative vertices. O]

Lemma 3.3.5. Let R be a finite commutative ring with 1 # 0. If s = k and

r1 > 1, then (Sg), is not C-consistent.

Proof. Since for each i € {1,2,...,k} we have |Fy

> 4, there exist distinct
elements 1 # a;,b; € F5,,. Let @y, = (0,...,0,1), @5 = (ay,...,a5-1,ax) and 5 =

(b1,...,bg_1,b). Then d~ (&) = [I52) |F.

is odd and d~(#) = d(Z3) = 0.

Thus, we have a cycle C' = (%, ¥s, T3, 1) with odd negative vertices. H

Lemma 3.3.6. Let R be a finite commutative ring with 1 # 0. If s = k and

ry =1, then (Sgr), is not C-consistent.

Proof. Since R # 7%, there exists smallest ¢t < k such that r,;; > 1. Similar to
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the proof of Lemma 3.3.5, we can choose elements

fl = (11, ceey 1t70t+1; B ,Ok) with d_(f1> = |F5<r1| X oo X |F;<ré , which is Odd,
fg = (01, . 70t7 1t+1; ceey 1k) with di(l_’é) = |RX‘ — d+(fz), which is Odd,
fg = (11, Cey 1t7 Aty - - - ,ak) with di(fg) =0 and

Ty = (01,...,04,be11,...,0) with d~(%4) = |R*| — d*(#,), which is odd.
Thus, we have a cycle (7, ¥, ¥3, 4, ¥1) with odd negative vertices. ]

Lemma 3.3.7. Let R be a finite commutative ring with 1 # 0. If s < k and

ry > 1, then (Sg), is not C-consistent.

Proof. Similar to the proof of Lemma 3.3.5, we have an element 1 # b; € F2;, for
all i € {1,2,...,s}. Since [R;| > 3 and |R;/M;| > 3, there exists 1 # a; € RS

such that a; —1 € R forall j € {s+1,...,k}. Choose

Ir = (01, . ,03, 1s+17 1S+2, ceey lk);
o= (b1,...,bs, G541, 0542, ...,a;) and

fS == (11, ey 15705+1;Os+27 e 70143)

Since

k s
a+@) = T (R~ M) [ 1F5, | and
j=1

1=s+1

k s
d* (@) = [[ IR 1= D),
j=1

1=s+1

we have d*(Z}) is odd and d*(¥3) is even. It follows that d— (%)) = |[R*| — d* (&)
is odd, d™(Z2) = 0 and d~(¥3) = |R*| — d™(¥3) is even. Thus, we have a cycle

C = (¥4, ¥y, ¥3,71) with odd negative vertices. ]



29

Lemma 3.3.8. Let R be a finite commutative ring with 1 # 0. If s <k, r; =1

and r; > 2 for some i € {2,...,s}, then (Sg), is not C-consistent.

Proof. Let t be the smallest number such that r,,; > 2. Similar to the proofs of

Lemmas 3.3.5 and 3.3.7, we can choose

Z1=(01,...,06,0p41,...,08 Lo, Logo, ..., 1),

Ty = (11,..., 14, bpr, oy bsy Gsit, Gspoy - oo QL)

T3 =(01,...,04 dp1, .., ds,0541,0542,...,0%)

and Ty = (11,..., Ly Legay oo oy s, Qspt, Gsgoy - ooy Qk)-
Then d= (%) = |R*| — d* (%) is odd, d~(Z3) = d~(#4) = 0 and d™ (Z3) = |R*| —
d*(¥3) is even. Thus, we have a cycle C' = (¥, ¥, ¥3, 74, 71) with odd negative

vertices. n

Lemma 3.3.9. Let R be a finite commutative ring with 1 # 0. If s < k, r; =1

foralli e {1,2,...,s} and R # Z3 x Zs, then (Sg),, is not C-consistent.

Proof. We distinguish two cases.

Case 1. k= s+ 1. Then |R;| > 3 and |Ry/Mj| > 3. Choose

Ty = (01, .., 0k—1, 1g), T2 = (11, ., Lpo, ak)

f3 — (01, . 7Ok7170]€) and f4 - (117 ey 1k717bk)

for some distinct elements 1 # ay, by, € R} such that ar, —1, by —1 € R;. Observe
that d*(71) = |R;| — |Mg| is odd. Then d~(Z;) = |R*| — d"(Z) is odd and
d~(Z9) = d~(¥3) = d (¥3) = 0. Thus, we have a cycle C' = (¥, ¥, T3, ¥y, Z1) with

only one negative vertex.
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Case 2. k > s+ 1. Similar to the proof of Lemma 3.3.7, we can choose

T = (01, . ,Os, 1S+1,CLS+2, . ,ak),l‘g = (11, e 1S,a5+1,08+2, . ,Ok>,

T3 = (01, . ,OS,OS+1,GS+2, c. ,ak) and Ty = (11, ceey 1S,CLS+1, 1s+27 ey 1k)

for some 1 # a; € R} such that a; —1 € R for all j € {s+1,...,k}. Observe
that d*(7,) = Hf:s—i—l (|R| — |M;]) is odd and d*(Z3) is a multiple of |R} 4],
which is even. It follows that d~(#) = |R*| — d*(#1) is odd, d~(Z2) = |R*|,
d~(Z3) = |R*|—d"(#3) and d~(Z4) = 0, which are all even. Thus, we have a cycle

C = (¥, %2, 73, T4, 1) with odd negative vertices.

Hence, we have this last lemma and complete the proof of Theorem 3.3.4. [

Corollary 3.3.10. Letn > 1. Then (Sz,), is C-consistent if and only if n is odd,

2, 6 or a multiple of 4.

Remark. Corollary 3.3.10 generalizes Theorem 20 of [39] without the restriction
on the numbers of prime factors of n. Moreover, we have the following result on
the negation of the sigraph Sg. Its proof is a routine application of Theorem 3.3.4

and similar to the proof of Corollary 21 of [39].

Corollary 3.3.11. Let R = Ry X Ry X - -+ X Ry, where each R; is a local ring with
mazximal ideal M;. Then the negation sigraph n(Sg) is C-consistent if and only if

R satisfies one of the following conditions:
(i) k=1 and R is not a finite field of characteristic 2,
(1) k > 1 and |M;| is even for some j € {1,...,k},

(11i) k> 1 and |R}| is even for each i € {1,...,k},
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(i) k> 1 and R =75 x Zs or Z&.

3.4 Hyperenergetic Balanced Sigraphs

Let § = (S*, o) be a sigraph. The eigenvalues of S“, resp. S, are the eigenvalues
of its adjacency matrix defined in Section 3.2. The set of all eigenvalues is called
the spectrum and sum of absolute values of all eigenvalues is called the energy
of a graph or a sigraph, denoted by £(S*) or £(S), respectively. A criterion for
a sigraph to be balanced using spectrum was given by Gill and Acharya [14] as

follows.

Theorem 3.4.1. [14] For a finite sigraph S = (S*,0), S is balanced if and only
if S* and S have the same spectrum. In particular, a balanced signed graph has

the same spectrum as its underlying graph.

A graph G with n vertices is said to be hyperenergetic if its energy exceeds
the energy of the complete graph K, or equivalently if £(G) > 2n — 2. Hyperen-
ergetic unitary Cayley graphs were completely characterized in [23]. We record it

in the next theorem.

Theorem 3.4.2. [23] Let R be a finite commutative ring, where R = Ry X Ry X

<o+ X Ry and each R; is a local ring with maximal ideal M;. Assume that
|Ry/My| < |Rg/Ms| < -+ < |Ry /My
1. For k=1, Gr is not hyperenergetic.

2. Fork =2, Gg is hyperenergetic if and only if | R /M| > 3 and |Ry/M,| > 4.
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3. For k > 3, Ggr is hyperenergetic if and only if (|Rk—o/My_2| > 3) or

(|Rk_1/Mk_1| Z 3 cmd |Rk/Mk| Z 4)

Applying Theorem 3.2.2 with the above results, we obtain the following char-

acterization of a hyperenergetic balanced unitary Cayley sigraph.

Theorem 3.4.3. Let R be a finite commutative ring, where R = Ry X Ry X+ -+ X Ry,

and each R; is a local ring with maximal ideal M;. Assume that

|Ri /M| < |Ro/Ms| < -+ < |Ri/Myl.

Then Sg 1s a hyperenergetic balanced sigraph if and only if R satisfies one of the

following conditions:
(i) k>3, |Ri/Mi| =2 |Ry_1/My_1| > 3 and |Ry,/My| > 4,
(it) k >4, |Ri/M| = 2 and | Ry—s/Mj_o| > 3.

Recall that a unitary Cayley sigraph Sg and its negation 7(Sg) have the graph
Gr as their underlying graph. Corollary 3.2.4 and Theorem 3.4.2 also yield the

next corollary.

Corollary 3.4.4. Let R be a finite commutative ring, where R = Ri X Ry X+ - X Ry,

and each R; is a local ring with maximal ideal M;. Assume that

|R1/Mi| < [Ro/Ms| < -+ < Ry /Mg|.

Then the negation sigraph n(Sg) is a hyperenergetic balanced sigraph if and only

if R satisfies one of the following conditions:

1. k Z 3, |R1/M1‘ =2 ’kal/Mkfl‘ Z 3 and |Rk/Mk| Z 4,
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2. k > 4, |R1/M1‘ =2 and ‘Rk,Q/Mk,ﬂ > 3.

Liu and Zhou ([26], Corollary 20) gave a condition for line graphs of unitary
Cayley graphs L(Gg) to be balanced as follows. We formulate it in our set-up as

follows.

Theorem 3.4.5. [26] Let R be a finite commutative ring, where R = Ry X Ry X

<+« X Ry and each R; is a local ring with maximal ideal M;. Assume that
|Ri/My| < |[Ry/My| < -+ < | Ry /My
Then L(GR) is hyperenergetic if and only if one of the following conditions holds:
1. |R*| > 4,
2. k=1and |R| =2|M| >8,
3. k>2 2=|R/My|=---=|Rx/My| and |R*| > 2.

The above theorem and Theorem 3.2.8 directly give our final characterization

of hyperenergetic balanced line sigraphs.

Theorem 3.4.6. Let R be a finite commutative ring, where R = Ry X Ry X+ X Ry,

and each R; is a local ring with maximal ideal M;. Assume that
|Ri /M| < |Ro/Ms| < -+ - < |Ry /M.

Then the line sigraph L(Sg) is hyperenergetic balanced if and only if one of the

following conditions holds:
1. k=1 and |R| =2|M| > 8,

2. k>2 2=|R/M| =" =|Ri/My| and |R*| > 2.



CHAPTER IV
CAYLEY GRAPHS OVER A FINITE CHAIN RING

AND GCD-GRAPHS

Let D be a unique factorization domain (UFD) and ¢ € D a nonzero nonunit
element. Assume that the commutative ring D/(c) is finite. For a set C of proper
divisors of ¢, we define the ged-graph, D.(C), to be a graph whose vertex set is

the quotient ring D/(c) and edge set is

Hz + (¢),y+ (¢)} : 2,y € D and ged(x —y,c) € D*C}.

This ged-graph on a quotient ring of a unique factorization domain (UFD) intro-
duced in [23] generalizes a ged-graph or an integral circulant graph (i.e., its adja-
cency matrix is circulant and all eigenvalues are integers) defined over Z,,n > 2,
(see [24, 40]). An integral circulant graph can also be considered as an extension of
a unitary Cayley graph. This graph has been widely studied in many literatures,
e.g., [5, 12, 17, 18, 21, 22, 34].

Since the number of sets of divisors C of ¢ = pi*...p*

can be very large,
the energy of gcd-graph (over a D/(c) or Z,) still not thoroughly studied. As
usual, the common thing that ones would think of when they are working on a

UFD is prime powers. We shall give the energy of gcd-graphs with the divisor

set C, where C consists of certain prime powers, by studying the energy of the
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Cayley graph over the finite ring D/(p;"). When D = Z, this graph is the integral
circulant graph with prime power order studied by Sander and Sander in [34].
They derived a closed formula for its energy and worked on minimal and maximal
energies for a fixed prime power p® and varying divisor sets. While we have tried
to extend their results to a Cayley graph over finite commutative rings, we come
across a kind of rings which has a nice property on ideals, called a finite chain
ring. The structure of this ring has been well studied, see [27, 30]. It is a finite
local ring and generalizes the ring D/(p®) and the Galois ring Z,s[x]/(f(x)), where
f(z) is a monic polynomial in Z,:[r] and the canonical reduction f(x) in Z,[z] is

irreducible. This explains why we first focus our work on a finite chain ring.

4.1 Cayley Graphs over a Finite Chain Ring

A finite chain ring is a finite commutative ring such that for any two ideals I
and I of this ring, we have I; C I or I, C I;. It is easy to see that a finite chain

ring is a local ring. It also follows that:

Proposition 4.1.1. [27] If R is a finite chain ring then R is a finite local principal

ideal ring with mazimal ideal M generated by 0 € M ~ M?2.

Example 4.1.2. If p is a prime, then Z,:, s € N, is a finite chain ring. Every
ideals of Z,s are of the form p?Z,s where a € N. Moreover, p*Z,s C p*Z,s when

b > a.

Let R be a finite chain ring with unique maximal ideal M and residue field of

q elements. Let s be the nilpotency of R, that is, the least positive integer such
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that M* = {0}. It can be shown that we have the chain of ideals
ROM>D>M?*>---> M ={0}.

Write R = M. By Lemma 2.4 of [30], we also have |M‘| = ¢* " for all 0 < i < s,
and so

|M' /M =q
for all 0 < ¢ < s. Thus, |R| = ¢°. Moreover, M is principal generated by a

0 € M ~. M? and hence any element € R can be written as
T =094 010+ 20>+ - + 0,101,

where v; € V = {eg, e1,...,e,t_1}, a fixed set of representatives of cosets in R/M.
Let

C = (Ma1 N Ma1+1) U (Maz N Ma2+1) U---U (Mar ~ MarJrl)’

where 0 <a; <as <---<a, <s—1.

Consider the Cayley graph Cay(R,C) whose vertex set is R and z,y € R are
adjacent if and only if z—y € C. This graph generalizes the gcd-graph defined over
Z,s with the set D = {p™,p®*,...,p" } of proper divisors of p* where two vertices
a,b € Zys are adjacent if and only if ged(b — a,p®) = p* for some ¢ € {1,2,...,7}
studied in [20] and [23]. The adjacency condition can be stated in terms of ideals
as b — a belongs to the ideal p%Z but not in p%*'Z for some i € {1,2,...,r}.

For x,y € R of the forms

T =09+ 10+ 020° + - + v, 1057,

Y =g+ uf + 00 + -+ u, 1057
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for some v;, u; € V, we have

r—y € R~ M < vy # uy.

Then the adjacency matrix for Cay(R,C) is

€1+M €2+M €q+M
A, B . B,
B, A, . B,
AO = )
By B, . By
B, B, . A
where
Jqsflxqsfl lf R AN M g C
B, =
Oqsfl qufl lf R AN M g C,
and A is a ¢* ' X ¢°! submatrix depending on M’ i > 1. If By = Ops-1y4s-1,
then
Ay=1,0 4 (Process A)
and if By = Jys-1,4s-1, we have
Ag = (I, ® Ay). (Process B)

Here, J,,x, is the matrix whose all entries are 1s and X of an adjacency matrix X

of a graph GG denotes the adjacency matrix J — I — X of the complement graph



of G. Next, we consider z,y € M such that

T =010+ 00 + - v, 1057

Yy = u19 -+ U292 + -+ us,lesfl,

for some v;,u; € V. Then

x—yEM\MQ(:)vlséul.

Similarly, we have submatrices

Jq572><q572 1f M AN M2 g C

By =
Oqs—Zqu—Q lf M AN M2 g C,

s

and A,, which is a ¢° 72 x ¢

Iq ® A2 lf BQ == Oqs—Qqu—Q

Alz

(I, ® Ay)  if By = Jys-2ygs2.

Continuing these processes yields the sets of submatrices {Aq,- -

{Bla e 7Bs—1}-
Lemma 4.1.3. Leti € {1,2,...,s — 1}. Assume that

)\1 )\2 . )\k
Spec A; =

my Mo ... M

with A1 s the largest eigenvalues. Then

S CHg=1)+N AN —¢ " A
Spec (I, ® A;) =

A

1 qg—1 g(my — 1) gqmgy

38

~2 submatrix depending on M for i > 2 such that

,As_1} and

Ak

qmyg
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In particular, if m; = 1, then

EEE— qs_i(q - 1) + >\1 )\1 - qs_i >\2 CRCIS )\k
Spec (I, ® A;) =

1 qg—1 qme ... qmy
Proof. Observe that size of A; = |[M?| = ¢°~" and the graph associated with A; is

regular. Then

_ qs—i_)\l_l —1—-X —1—=Xy ... —1-—X;
Spec A; =
1 my — 1 mo ce myg
which implies
B ¢Fr=M—1 —1—-XN —=1-=X ... —=1—=X\
Spec(l, ® A;) = ’
q qimi—1)  qmy qmy
and so

Spec (I, ® A;) =

1 qg—1
—1—(-1=X) —1—=(-1—-X\) —1—=(=1-=X)
q(my —1) qmz qmy
B T =T N M- A1 A2 Ak
1 g—1 q(mi—1) gma ... qmy
by Propositions 1.3.2 and 1.3.3. [

Repeatedly applying Process A, Process B and Lemma 4.1.3 yield the following

two lemmas.

Lemma 4.1.4. Let R be a finite chain ring with unique maximal ideal M, residue

field of q elements and of nilpotency s. Let

C = (Mal N Ma1+1) U (Maz N Ma2+1) U---U (MaT - Ma,rJrl)’
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with 0 < ap < as < -+ <a, <s—1. Ifa, = s — 1, then the eigenvalues of

Cay(R,C) are as follows:
1. (¢—1)>"0_ ¢! with multiplicity ¢™*,

2. —qtm w1l (g — 1) Y00 ¢F 4 with multiplicity ¢*-1(q — 1) for k =

2,...,7,
3. (q—1)>"0, ¢* %t with multiplicity ¢~ "=~ — g%t for k=2,...,r,
4. —1 with multiplicity ¢°~(q — 1).
Proof. Since a, = s—1, A,, = As_1 is an adjacency matrix of the complete graph
on |M%| = |M*™| = q vertices and so

Spec A,, = Spec As_1 =

It follows from Proposition 1.3.2 and Lemma 4.1.3 that any eigenvalues of A;
except A1 which is the regular degree remain the same after process A and process
B. So —1 is an eigenvalue of Cay(R,C) with multiplicity ¢ (¢ — 1). Next, we
consider the eigenvalue g —1 of A;_;. We apply Process A until it reaches a,_1 +1
which makes its multiplicity to be ¢*~%-1~! and follow by Process B. By Lemma

4.1.3, the eigenvalues of A,, , that induces from ¢ — 1 are
1. ¢ 17 q=1)+(¢—1) = ¢~ 417 (g—1)+¢* 1 (g—1) with multiplicity 1,
2. ¢ —1— ¢*~%17! with multiplicity ¢ — 1,

3. ¢ — 1 with multiplicity q(q* %171 —1).
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By the same reason, ¢ — 1 —¢*~%-1"! and ¢ — 1 are eigenvalues of Cay(R,C) with
multiplicity ¢*—'(¢ — 1) and g% (g¥ 4171 — 1) = ¢% — %" respectively.
Applying these processes to the eigenvalue ¢*~*-17!(¢—1)+ (¢ —1) until it reaches

a,_o yields eigenvalues
1. ¢ 2" q—1)+ ¢ 17 Yq—1) + (¢ — 1) with multiplicity 1,
2. ¢ 17 g —1)+ (¢ — 1) — ¢* %271 with multiplicity ¢ — 1,
3. ¢ 171 (g — 1) + (¢ — 1) with multiplicity g(¢®—'~%—2"1 —1).
Continuing this argument, we obtain the eigenvalues of Cay(R,C) as follows:
1. (¢—1)>_, ¢¢* ! with multiplicity ¢,

2. —gF 1l 4 (g — 1) 370, ¢ %! with multiplicity ¢*-1(¢ — 1) for k =

2,...,1,
3. (¢ —1)>27_, ¢ % with multiplicity ¢ — ¢*—1* for k =2,...,7r,
4. —1 with multiplicity ¢* (¢ — 1).
This completes the proof of the lemma. O

Lemma 4.1.5. Let R be a finite chain ring with unique maximal ideal M, residue

field of q elements and of nilpotency s. Let

C = (]\/[al AN Ma1+1) U (Maz N Maerl) U---U (MaT ~ Ma,rJrl)’

with 0 < a1 < ay < -+ <a, <s—1. Ifa, # s — 1, then the eigenvalues of

Cay(R,C) are as follows:
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1. (q—=1)>00 ¢t with multiplicity ™,

2. —qs =1l (g — 1) 30 ¢F 9 with multiplicity ¢*='(q — 1) for k =

2,...,r1,
3 (q—1)>70, ¢*~ % with multiplicity ¢* — q™—T for k=2,...r,
4. —q* Y with multiplicity ¢°(q — 1),
5. 0 with multiplicity ¢* (¢~ —1).

Proof. Since a, #5s—1, Ay 41 = 0, so A, 41 is an adjacency matrix the complete

graph on |[M% ! = g5~ =1 vertices. Then

. qs—ar—l -1 -1

Spec A, 11 = ;
1 qsfanl - 1
and hence
. qsfarfl -1 -1
Specl, ® Ay, 41 =
q q(¢#~ 1 =1)
and

Spec A,, = Spec (I, ® Aa, 1)

s—ar—1 _ s—ar—1 O

q

1 g—1 gl =1)
By Lemma 4.1.3, —¢*~%~! and 0 are eigenvalues of Cay(R,C) with multiplicity
s—ar—1 _

q“ (¢ — 1) and ¢*(¢**~! —1). In addition, the eigenvalue ¢* % — ¢

¢~ (g — 1) of A,, induces the eigenvalues of A,,_, as follows:

1. ¢ 17 Yq—1)+ ¢ (q — 1) with multiplicity 1,
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2. ¢ g —1) — ¢! with multiplicity ¢ — 1,
3. ¢~~(g — 1) with multiplicity q(¢g*—*—1~" — 1).

Similarly, ¢*~% 1 (qg—1) —¢*~% 1"t and ¢°~*~1(¢—1) are eigenvalues of Cay(R,C)
with multiplicity ¢*—'(¢—1) and g% 171 (g% ~%-171 1) respectively. Moreover, the
eigenvalues ¢* %171 (g—1)+¢* ¥ 1(q—1) of A,,_, gives the following eigenvalues

of A, _,:
Lo¢m 2" g—1)+ ¢ 1" Yqg— 1)+ ¢ ¥ (g — 1) with multiplicity 1,
2. ¢ 17 g — 1)+ ¢* (g — 1) — ¢*"—2~! with multiplicity ¢ — 1,
3. ¢*~ =17 (q— 1)+ ¢ (g — 1) with multiplicity q(q¥—17-2"1 —1).
Repeating this process, we finally obtain the eigenvalues of Cay(R,C):

L. (¢—1)>_, ¢¢“ ! with multiplicity ¢*,

2. —¢F w1l 4 (g — 1) >0, ¢! with multiplicity ¢*-1(¢ — 1) for k =

2,...,1,
3. (¢ —1)>"7_, ¢ % with multiplicity ¢ — ¢*—1*! for k =2,...,7r,
4. —q*~%~1 with multiplicity ¢ (q — 1),
5. 0 with multiplicity ¢* (g%~ —1)
as desired. O

Finally, we compute the energy of the graph Cay(R,C).
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Theorem 4.1.6. Let R be a finite chain ring with unique mazimal ideal M,

residue field of q elements and of nilpotency s. Let
C= (M~ MU (M=~ M=)y U (M~ M*H),
with0<a; <as <---<a,<s—1. Then
r—1 T
£(Cay(R,C)) =2(q — 1) (fflr —(g-1D>_ > qs“ﬁ““) -
k=1 i=k+1
Proof. Observe that the eigenvalues and multiplicities of items (1)—(3) in Lemmas
4.1.4 and 4.1.5 are identical. Moreover, the product of the eigenvalue and its

multiplicity in item (4) of Lemmas 4.1.4 and 4.1.5 are —¢*~*(¢ — 1). Then both

cases have the same energy which can be obtained by a direct computation. [

Remark. When R = Z,:, this result is Theorem 2.1 of [34].

4.2 Integral Circulant Graphs

In this section, we shall show that our Cayley graph over a finite chain ring is
indeed an integral circulant graph. That is, it is isomorphic to a Cayley graph
over Zyo for some o € N which has a circulant adjacency matrix with integral
eigenvalues.

Let R be a finite chain ring R with unique maximal ideal M and residue field
of ¢ = p' elements. Assume that R is of nilpotency s and M is generated by

0 € M ~. M?. Then for each = € R,

T =10y 4010+ v20* 4+ +v,_105",
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where v; € V = {eg, €1,...,e,_1}, a fixed set of representatives of cosets in R/M,
and

Cr = (M™ N~ M™HY U (M= M=) U U (M M*H),

with 0 < a; < ay < --- < a, < s—1. Note that the ring Z;s = Z,s is a finite

chain ring with the chain
Zpts D prts D pQZpts D ce D pts_lzpts D ptsZpts = {O}

having

Zpts D pthts D pthpts D cc D p(s_l)thts D pSthts = {0}
as a subchain. This observation implies that each a € Z,s: can be expressed as
a=co+cp’ +ep™ -+ cep®,

where ¢; € {0,1,...,p" —1}. Let g : e; — i be a bijection from V onto
{0,1,...,p" —1}. Let Cy = {pmt, puttl . putti=l  port parttl o partri=iy
We shall show that the graphs Cay(R,C;) and Cay(Z,s) are isomorphic. Define

f:Cay(R,Cy) = Cay(Zys,Cy) by
o+ 010+ +v,_10°7Y) = g(vo) + g(v1)pt + g(va)p® + - - + g(ve_1)p® VL
Then f is a well-defined bijection. To see that f is an isomorphism, we let

T =1vg 4+ v10 +v20° 4+ - +v,_10°! and

Y=g+ w0+ usb? + -+ ug_ 16571

Suppose that z and y are adjacent in Cay(R,C;). Then x —y € M% ~ M%+!

for some a;. This means v; = u; for i < a; and v,, # u,,. Thus g(v;) = g(u;)
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for i < a; and g(va,) # 9(ua,), so f(z) — f(y) € p¥tZyst ~ p'%+TVZ . Then, as
elements of Z, ged(f(z) — f(y),p*) = p/ where a;t < j < (a; + 1)t and thus f(z)
and f(y) are adjacent in Cay(Zys,Cy). Conversely, assume that f(x) and f(y)
adjacent in Cay(Z,s,Cy). Then, as elements of Z, ged(f(x) — f(y), p*) = p’ where

a;t < j < (a; + 1)t for some a;. It follows that for

f(z) = g(vo) + g(vl)pt + g(vz)p2t N g(vs_ﬁp(sfl)t and

F) = g(uo) + g(ur)p" + g(uz)p™ + - -+ + glug1)p ",

we have g(v;) = g(u;) for i < a; and g(v,,) # g(ug,). Thus, z —y € M ~ M+

and hence they are adjacent in Cay(R,C;). Hence, we have shown:

Proposition 4.2.1. Let R be a finite chain ring with unique mazimal ideal M,

residue field of ¢ = p' elements and of nilpotency s. Let
Ci= (M~ M)y U (M~ M2t y... U (M~ M*th),
with0<a; <as <---<a, <s—1. Then

Cay(R, Cl) =~ Cay(Zpst , CQ),

art+t—1
"7p ""7p

_ ait art+1 art art+1 art+t—1
where Cy = {p™*, pt+t . Y 2P /e }-

4.3 GCD-graphs over a UFD

Let D be a unique factorization domain (UFD) and ¢ € D a nonzero nonunit
element. Assume that the commutative ring D/(c) is finite. Write ¢ = pi' ... p;*

as a product of irreducible elements. We now study the ged-graph D.(C). Suppose
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that for each i € {1,2,...,k}, there exists a set C; = {p&™, p¥2,...,p;, "}, with

1

0<an <ap<--<ay <s —1so that
C={pi" --p™ : t;e{1,2,...,r} forallic{1,2,...,k}}.
Then for z,y € D/(c),
x is adjacent to y < ged(z — y,¢) € D*C < ged(z — y, pi') € D*C; for all i.
This implies that
D(C) = Cay(D/(py'),C1) ® - -- @ Cay(D/(p;"), C),

where each factor on the right is the Cayley graph over the finite chain ring
D/(p;*) which we have already computed the energy in Section 4.1. Recall from
Proposition 1.3.2 that E(G® H) = £(G)E(H) for two graphs G and H. Therefore,

we have the following theorem.

Theorem 4.3.1. Let D be a UFD and a nonzero nonunit ¢ = pi*...pF € D
factored as a product of irreducible elements. Assume that D/(c) is finite and for
ecach i € {1,2,...,k}, there exists a set C; = {p¥*, p®=,... ,p;""}, with 0 < a; <

2

g < -+ < @i, < 5; — 1 such that
C={py" - pS™ : t;€{1,2,...,m} foralli€{1,2,... k}}.

Then

E(D.C)) = E(Dyn (1)) ... £(D, (Ci)).

Remark. Recall that if a matrix A has eigenvalues \q,...,\,, then the eigen-

values of A+ 1 are \y +1,..., A\, + 1. Hence, one can obtain the energy of the
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ged-graph in Theorem 4.3.1 when C; contains p;* using this fact and the eigenvalues

computed in Lemma 4.1.4 or 4.1.5.

Now, we study the case where some C; = {pj.j }. To compute the energy in
this case, we shall use the graph operation which more general than the tensor
product called a non-complete extended p-sum [25] defined as follows.

Given a set B C {0,1}* and graphs G1,..., Gy, the NEPS (non-complete
extended p-sum) of these graphs with respect to basis B, G = NEPS(GYy, ..., Gk
; B), has its vertex set as the Cartesian product of the vertex sets of the individual
graphs, i.e., V(G) = V(Gy) x -+ x V(Gg). Two distinct vertices x = (xy, ..., zx)
and y = (y1,...,yx) are adjacent in G if and only if there exists some k-tuple
(B1,...,8k) € B such that x; = y; whenever §; = 0 and z;, y; are distinct and

adjacent in G; whenever ; = 1. In particular, when B = {(1,1,...,1)},
NEPS(Gl,,Gk,B) :G1®G2®®Gk

The eigenvalues of the graph NEPS(GY, ..., G; B) is presented in the next theo-

re1.

Theorem 4.3.2. [12] Let Gy,...,Gy be graphs with ny, ..., n; vertices respec-
tively. Furthermore, for i € {1,...,k} let A, ..., \in, be the eigenvalues of G;.
Then, the spectrum of the graph G = NEPS(G1, ..., Gy; B) with respect to basis

B consists of all possible values

_ B B
,u’il ..... [ Z )\17:11 to Akfk

with 1 <4 <mny for1 <l <k.
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Next, we consider ¢ = pi’...p;* written as a product of irreducible ele-
ments. Suppose that [ < k and for each i € {1,2,...,1}, there exists a set

C; = {pf“,pf”,...,pj bowith 0 <aj < ape < -+ <ag, <s;—1so that

C={pi" o p € {1,2,. ., ) for all i € {1,2,...,1}}
Then

DC(C ) = NEPS(Dp-il (Cl), Dp;2 (Cg), e ,Dka (Ck), {(1, ceey 1, 0, ce ,O)}),

l k—l1

where Cj = {p;’} for [ < j < k. By Theorem 4.3.2, all eigenvalues of D,(C’) are

the eigenvalues of
Cay(D/(p1"),C1) @ - -- @ Cay(D/(p)"), C1)
each repeated H?:z 1 |D/(p;")] times. Hence, it follows from Theorem 4.3.1 that:

Theorem 4.3.3. Let D be a UFD and a nonzero nonunit ¢ = pi*...p* € D
factored as a product of irreducible elements. Assume that D/(c) is finite, | < k
and for each i € {1,2,...,1}, there exists a set C; = {p®",p®=, ... p;""}, with

(2

0<a; <ap<--<ay <s;—1 such that
C = {py" ..-p?“lpfjj-upzk‘ st € {1,2,...,m} foralli € {1,2,...,1}}.

Then
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