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(Z, +,0,7) is infinite when m >0, [Hom(Z,, +,°,; )| = when (m, n)>1 and the
equality holds if (m, n) is a prime power.
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INTRODUCTION

The concept of homomorphism has been introduced and studied in every
algebraic structure. We know that the concept of ring plays a crucial role in
algebra. There are many kinds of hyperrings defined in the area of algebraic
hyperstructures. However, all of them are nice generalizations of rings. Hyper-
ring homomorphisms are defined naturally and generalize ring homomorphisms.
Hyperrings of our interest are multiplicative hyperrings ([1], p.177), Krasner hy-
perrings ([1], p.167) and P-hyperrings ([1], p.179). M. Krasner introduced Krasner
hyperrings in 1966 at a conference. They may be called a simple hyperring. In
1982, R. Rota [9] initiated the study of multiplicative hyperrings. V-S-hyperrings
were studied by T. Vougiouklis, L. Konguetsof and S. Spartalis ([1], p.179). By the
definitions, V-S-hyperrings are generalizations of both multiplicative hyperrings
and Krasner hyperrings. P-hyperrings are V-S-hyperrings of a special type. Note
that the addition of a Krasner hyperring and the multiplication of a multiplicative
hyperring are hyperoperations while both the addition and the multiplication of
a V-S-hyperring are hyperoperations.

We denote by Hom(A, @, 0) the set of all homomorphisms of a V-S-hyperring
(A, @, o) into itself.

D.M. Olson and V.K. Ward [6] gave a nice result concerning when a strongly
distributive multiplicative hyperring becomes a ring as follows: A strongly dis-
tributive multiplicative hyperring (A, +, o) is a ring if and only if there exist a,b
in A such that a o b contains exactly one element. If (R,+,-) is a ring and I is
an ideal of R, let (R, +, o) be the multiplicative hyperring where x o; y = zy + [
([1], p.177). A necessary and sufficient condition for the multiplicative hyperring
(Zy,+,0mz,) to be regular was given in [8]. In [5], the authors character-
ized the elements of Hom(Z, +, 0,,7) and Hom(Z,,, +, 0,2, ) where m is a prime
number. The cardinalities of these two sets were also given. Some results on homo-
morphisms of some other multiplicative hyperrings were studied in [7]. In Chapter

I1, we characterize when Hom(Z, +, 0,,z) = Hom(Z, +) and Hom(Z,,, +, o;nz,) =



Hom(Z,,+) hold. In addition, we also show that Hom(Z,+,0,,7) is infinite

when m > 0, |[Hom(Z,,+,0mz,)|> —= when (m,n) > 1 and the equality holds

(m;n)

if (m,n) is a prime power.

Semigroups admitting ring structure have long been studied. Since the mul-
tiplicative structure of a Krasner hyperring is a semigroup, it is reasonable to
study semigroups admitting Krasner hyperring structure. In [4], the author
characterized multiplicative interval semigroups on R which admit a Krasner
hyperring structure. We also know that every group admits a Krasner hyper-
ring structure. Chapter III deals with homomorphisms of some Krasner hyper-
rings. We characterize the elements of Hom(G°, @1, ) and Hom(G°, ®,, -) where
(G°, ®1,-) and (G, @, ) are the Krasner hyperrings defined from a group (G, -)
by G° =GU{0}, 00,0={0}, 20,0 =0®, 2 = {z}, 2 B2 = G°~ {z} for all
x€G, x®1y={x,y} for all distinct z,y € G, 0, 0={0}, 2B0=0Fx =
{z}, 2@z = {z,0} for all x € G, xdey = G~ {z,y} for all distinct z,y € G and
2-0=0-2=0forall z € G° ([1], p.170 and [3], p.76). For the Krasner hyperring
(G°, @y, +), the condition that |G| > 3 must be assumed. The Krasner hyperring
(R/p, ®, *) is defined from a commutative ring (R, +, -) as follows: zpy <=z =y
orz = —y, xp®yp ={(x+y)p, (x—y)p} and zpxyp = (xy)p for all 2,y € R ([3],
p.75). We characterize the elements of Hom(Z/p, @, *) and f € Hom(Z,/p, ®, *)
with f(0p) = Op and f(1p) = 1p. The Krasner hyperring ([0, 00), e, -) defined
in [4] is also considered in this chapter, i.e., x & x = [0, 2] for all z € [0,00) and
@y = {max{x,y}} for all distinct z,y € [0, 00). We give necessary and sufficient
conditions for f : [0,00) — [0,00) to be an element of Hom([0, c0), @, ) and show
that Hom([0, 00), @, -) must be an uncountable set.

In the last chapter, we study homomorphisms of some P-hyperrings. Let
(R, ®p,,0p,) denote the P-hyperring defined from a ring (R, +, ) and nonempty
subsets Py, P, of R,ie., PP,R U RP,P, C P, x®py=x+y+ P, and xop,y =
xPyy for all z,y € R ([1], p.179). For integers [ and m, the set Hom(Z,+) N
Hom(Z, @7, omz) is investigated. We also determine when Hom(Z,,, +) is a subset

of Hom(Z,,, ®iz,,, omz, ). We also show that the sets Hom(Z, ®;z, 0,z ) ~Hom(Z, +)



and Hom(Z,, @z, , omz, ) NHom(Z,, +) are nonempty for certain [, m.
The definitions and quoted results used in this research are provided in Chap-

ter L.



CHAPTER I
PRELIMINARIES

The cardinality of a set X is denoted by | X|.

The set of all integers, the set of all rational numbers and the set of all real
numbers are denoted by Z, Q and R, respectively. Let Z* = {x € Z | x > 0}. For
x,y € Z and x # 0, z |y stands for “x divides y”. Recall that a positive integer
n is said to be square-free if there is no integer a > 1 such that a® |n. Then n is
square-free if and only if either n = 1 or n is a product of distinct primes. For a
positive integer n, let Z, be the set of integers modulo n. The equivalence class

of x € Z modulo n is denoted by . Then

Zn: {E|I'GZ}:{6’T7'“7”_1}’ |Z”| =n

and (Z,,+,-) is aring where T+y =z +y and T -y = Ty for all x,y € Z. For
a € 7, define g, : Z — 7 and hg : Z,, — Z,, by

go(r) = ax and hgz(T) =azx for all x € Z.

If G is a group, let Hom(G) denote the set of all homomorphisms f : G — G.
Then

Hom(Z,+) = {g. | a € Z} and Hom(Z,,,+) = {ha | a € Z}.

Since g, # gy if a # b and hg # hg if @ # b, it follows that |Hom (Z,+)| = Ng
and |Hom(Z,, +)| = n. For a,b € Z, not both 0, let (a,b) be the g.c.d. of a and
b. Tt is clearly seen that if n is square-free, then (a,n) = (a*,n) for all a,k € Z
with £ > 0.

We know that for I C Z, I is an ideal of the ring (Z, +, -) if and only if I = mZ
for some m € Z. Since x — T is an epimorphism from the ring (Z, +,-) onto the

ring (Zn, +, ), it follows that for J C Z,,, J is an ideal of the ring (Z,,, +, -) if and



only if J = mZ, for some m € Z where mZ,, = {mz | v € Z} = {mz | x € Z}.
Notice that mZ = (—m)Z and mZ,, = (—m)Z,, = ML, = Z,m = Zm. We have
that

mZ,, = ml, = 7,

mZy = (m,n)Z, = {0, (m,n), ..., ((m’fn) —1)(m,n) }, |mZ,| = 2,
m—1 (m,n)fl
Z=\JG+mz) ifm>0 and Z,= |J (i+(m,n)Z,)
=0 i=0

which are disjoint unions. We shall verify that the last statement holds. Since

(m,n)Z, is a subgroup of the group (Z,,+) and |(m|Zn’S|Z = —i— = (m,n), it
bl n (m,n>

follows that the index of (m,n)Z, in the group (Z,,+) is (m,n). Next, let i,j €
{0,1,2,...,(m,n) — 1} be such that i + (m,n)Z, = j + (m,n)Z,. Then i — j =
(m,n)s for some s € Z. Thus i — j — (m,n)s = nt for some t € Z, so i —j =
(m,n)s + nt. Since (m,n) | ((m,n)s + nt), we have that (m,n) | (i — j). It follows
that ¢ — 7 = 0, so ¢ = j. Hence the desired result follows.

A hyperoperation on a nonempty set H is a function o : H x H — P(H)~ {2}
where P(H) is the power set of H. The value of (z,y) € H x H under the
hyperoperation o is denoted by x oy. The system (H, o) is called a hypergroupoid.
For nonempty subsets A, B of H and an element x of H, let

AoB= Uaob,on:Ao{x} and o A = {x} o A.

acA
beB

A hypergroupoid (H, o) is called a semihypergroup if
xo(yoz)=(rxoy)oz forall z,y,z € H.
A semihypergroup (H, o) is called a hypergroup if
Hox=xo0H =H forall z € H.
Then semihypergroups and hypergroups generalize semigroups and groups,

respectively.

A multiplicative hyperring is a system (A, +, o) such that



1) (A, +) is an abelian group,

(
2) (A, o) is a semihypergroup,

(1)
(2)
(3) forall z,y,2 € A,xo(y+z2)Caxoy+xozand (y+z2)ox Cyox+zouz,
(4) fi

orallz,y€ A, zo(—y)=(—x)oy=—(xoy).

If in the condition (3), the equalities are valid, then the multiplicative hyperring
(A, +,0) is called strongly distributive.

Example 1.1. ([1], p.177) Let (R,+,-) be a ring, I an ideal of R and o; the
hyperoperation defined on R by

xory=xzy-+1 forall z,y € R.

Then (R, 4+, 0;) is a strongly distributive multiplicative hyperring.

Example 1.2. ([7]) Let (R, +,-) be a ring and @ # P C R. Define
rxpy=axPy forall z,y € R.

Then (R, +,*p) is a multiplicative hyperring which is not necessarily strongly

distributive.

A Krasner hyperring is a system (A, ®, -) where

(1) (A, ®) is a hypergroup such that

Drxoy=ydxforalxyecA,

.2) there is an element 0 € A such that z & 0 = {z} for all x € A,

1.3) for every element x € A, there exists a unique element —x € A such
that 0 € z & (—x),
(14) for z,y,2 € A, xeydz=yecrd(—2),

(2) (A4,-) is a semigroup having 0 in (1.2) as its zero,

(3) forall z,y,z€ A, z-(y®z)=z-y®zr-zand (ydz) -z =y-cdz-x.

The element 0 of A may be called the zero of the Krasner hyperring (A, &, ).
Example 1.3. ([4]) Define the hyperoperation & on [0, 00) by

[0, ] if z=y,

{max{z,y}} if ©#y.

rTDyYy =



Then (]0,00), ®, -) is Krasner hyperring.

From Example 1.3, we have that the multiplicative semigroup [0,00) admits a

Krasner hyperring structure.

Example 1.4. ([1], p.170 and [3], p.76) Let (G,-) be a group and G° = G U {0}
where 0 is a symbol not representing any element of G.
(1) Let the hyperoperation @; be defined on G° by
rPH0=0® 2 = {z} for all = € G°,
{z,y} if z,ye G and x #y,
rTD1y =
G° ~\ {z} if v,y€ G and z=y.

Define
z-0=0-z=0 forall x € G

Then (G, @y, -) is a Krasner hyperring.

(2) Assume that |G| > 3. Define the hyperoperation @&, on G as follows:
TP 0=0@yx={r} forallz e G

r@ox ={x,0} forallzed,

T By =G~ {x,y} for all distinct x,y € G.

Define
x-0=0-2=0 forall z e G

Then (G, @®s, ) is a Krasner hyperring.

We can see from Example 1.4 that every group admits a Krasner hyperring struc-

ture.

Example 1.5. ([3], p.75) Let R be a commutative ring and p the equivalence
relation on R defined by

TPY <= T =Y Oor T = —Y.



Then zp = {x,—x} for all z € R. Define the hyperoperation & and the operation
x on R/p by

zp®yp = {(z+y)p,(x —y)p},

xpxyp = (zy)p for all z,y € R.

It follows that (R/p, ®, *) is a Krasner hyperring.
A V-S-hyperring is a triple (A, &, o) where

(1) (A, ) is a hypergroup,
(2) (A, o) is a semihypergroup,
(3) forall x,y,z € A, zo(ydz)CrxoyProzand (yPz)ox Cyoxrdzoux.

Notice that multiplicative hyperrings and Krasner hyperrings are also V-S-

hyperrings.

Example 1.6. ([1], p.179) Let P, and P> be nonempty subsets of a ring R such
that RP, Py C Py, and P P,R C P,. Define the hyperoperations @&p, and op, on R
by
r®py=c+y+ P and vop, y =Py forall x,y € R.

Then (R, ®p,,0p,) is a V-S-hyperring.
Notice that Example 1.2 is a special case of Example 1.6 with P, = {0} and
P=P

The V-S-hyperring defined in Example 1.6 is called a P-hyperring. Hence if
l,m € Z, then (Z,®z,0mz) and (Z,, Bz, , °mz,) are P-hyperrings defined from
the rings (Z,+,-) and (Z,, +, -), respectively.

A homomorphism of a semihypergroup (H,o) is a function f : H — H such

that
f(zoy) C f(x)o f(y) for all z,y € H.

([1], p-12). Denote by Hom(H, o) the set of all homomorphisms of (H,0). By a
homomorphism of a V-S-hyperring (A, ®, o) we mean a function f: A — A such

that f is a homomorphism of both the hypergroup (A, @) and the semihypergroup



(A,0). The set of all homomorphisms of the hyperring (A, ®, o) is denoted by
Hom(A, &, 0). Notice that Hom(A, @, 0) = Hom(A,®) N Hom(A, o), i.e.,
Hom(A,®,0) ={f: A— Al flz@y) C f(z) ® f(y) and f(zoy) C
f(z)o f(y) for all x,y € A}.

In particular, for a multiplicative hyperring (A, +, o),

Hom(A, +,0) ={f: A= A| f(x+y) = f(z) + f(y) and f(zoy) C
f(x)o f(y) for all z,y € A}

and for a Krasner hyperring (A, @, -),

Hom(A, @, ) ={f: A=Al flz®y) C f(z)® f(y) and f(z-y) =
f(z)- f(y) for all z,y € A}.

If G is a group, then Hom(G) is clearly a semigroup under composition. In
fact, Hom(A, @, o) is also a semigroup under composition. The identity mapping
on A is clearly an element of Hom(A, @, 0). For f, g € Hom(A, ®,0) and z,y € A,

we have that

(gf)z@y)=g(fz@y)) Cg(f(z)® fly)
Co(f(x)®g(f(y))
= (9f)(x) ® (9f)(v)

and

(gf)(@oy)=g(f(xoy)) Cg(f(z)o f(y))
Cg(f(z))og(f(y))
= (9f)(z) o (9f)(y),

so gf € Hom(A, &, 0). Since F'(A) is a semigroup under composition where F'(A)
is the set of all functions from A into itself, it follows that Hom(A, ®,0) is a
subsemigroup of F'(A).

Recall that a monomorphism of a group G is a 1 —1 homomorphism of G. We
let Mono(G) denote the set of all monomorphisms of G. Then Mono(G) is clearly

a subsemigroup of the semigroup Hom(G) under composition.
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Let ¢ denote the Euler-phi function, i.e., for a positive integer n, ¢(n) is the

number of x € {1,2,3,...,n} relatively prime to n. Then
o(n)=[{zx|ze{l1,2,3,....,n} and (z,n) = 1}|.

It is well-known that for a € Z, a is a generator of the group(Z,, +) if and only if
(a,n) =1, i.e., for a € Z,Za = Z, if and only if (a,n) = 1. Then the number of
all generators of (Z,,+) is ¢(n).

An element a of a semigroup S is called an idempotent if a> = a. If f: S — 5
is a semigroup homomorphism and «a is an idempotent of S, then f(a) is clearly
an idempotent of 5.

Note that in the Krasner hyperring (R/p, @, %) in Example 1.5, 0p is an idem-
potent of the semigroup (R/p, *). If R has an identity 1, then 1p is also an idem-
potent of (R/p,*). From the definition of p, we can check that in the Krasner
hyperring (Zg/p, ®, *), every element of Zg/p is an idempotent of the semigroup

(Zﬁ/pv *)



CHAPTER I1
HOMOMORPHISMS OF MULTIPLICATIVE
HYPERRINGS

This chapter is concerned with the strongly distributive multiplicative hyper-
rings (Z,+, omz) and (Z,,, +, omz, ) defined as in Example 1.1. By the definitions,
Hom(Z,+, 0,z) € Hom(Z,+) and Hom(Z,,+,0mz,) € Hom(Z,,+). Our pur-
pose is to give characterizations determining when Hom(Z, +, o,,,) = Hom(Z, +)

and Hom(Z,,, +, oyz,) = Hom(Z,, +) hold. We show that Hom(Z, +, 0,,z) is an

infinite set if m > 0, |Hom(Z,, +, omz, )|> (nz?n) when (m,n) > 1 and the equality
holds if (m,n) is a prime power.

Notice that (—m)Z = mZ, (—m)Z, = mZLyn, (Z,+,00z) = (Z,+,-) and
L, +,00z,) = (Zn,+,-). We know that Hom(Z,+,-) = {go,91}. Hence Hom
Z,+,00z) # Hom(Z,+). We have that, Hom(Z,,+,-) = {hs | a € Z and
a = a*}. To see this, let f € Hom(Z,,+,). Then f € Hom(Z,,+), so f = hg for

some a € {0,1,2,....,n — 1}. Thus

—~ o~

ha(zy) = a(zy) = a*(zy) = (a7)(ay) = ha(7)ha(y).
Thus hs € Hom(Z,,, +, ). Hence we have
Hom(Z,,+,") ={ha |a € Z and a= a*}.

We can see that 2 # 22 in Z, for all n > 3. It is evident that if n = 1 or n = 2,

then Hom(Z,,, +, 0oz,) = Hom(Z,,+). Consequently,
Hom(Z,,+,0z,) = Hom(Z,,+) <= n=1orn=2.

Throughout this chapter, let m be a positive integer. In fact, the results

obtained in Section 2.2 are valid when m = 0 since (0,n) =n > 0.
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2.1 Multiplicative Hyperrings Defined from the Ring
(Z,+,-) and Its Ideals

In this section, we deal with the homomorphisms of the multiplicative hyperring
(Z,+,0mz). Recall that x 0,7 vy = xy + mZ for all z,y € Z.

The following three lemmas are needed.

Lemma 2.1.1. For a € Z, g, € Hom(Z, +, 0,,z) if and only if m|(a* — a).

Proof. Assume that g, € Hom(Z, +,0,,z). Then g,(1 0,2 1) C ga(1) 0z ga(1),
SO
a+ amZ = a(l +mZ)

=a(l-14+mZ)

= ga(l omz 1)

C ga(1) omz ga(1)

=aonza

=a* +mZ.
This implies that a = a® + mt for some t € Z. Thus m |(a® — a).

Conversely, assume that m |(a® — a). Then a®> — a = mt for some t € Z, so

a = a®> —mt. Thus for all z,y € Z,
9a(® omz Y) = ga(xy + mZ)
= a(xy + mZ)
= axy + amZ
= (a* — mt)zy + amZ
C a*xy + mZ + amZ
= a*ry +mZ
= (az)(ay) + mZ
= 9a(2)9a(y) + mZ
= 9a(2) omz Ga(y)-

Hence g, € Hom(Z, +, 0,,7), as desired. H
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Lemma 2.1.2. {g, |a € mZ U (mZ+ 1)} C Hom(Z, +, 0,,,2).

Proof. If a € mZ U (mZ+1), then m|a or m|(a —1), so m|(a* —a). By Lemma
2.1.1, the result follows. [

Lemma 2.1.3. If m > 2, then{ g, | a € mZ~+2} C Hom(Z, +)~Hom(Z, +, 0,,7)-

Proof. Assume that m > 2 and let ¢« € mZ + 2. Then a = mk + 2 for some
k € Z. But

a? —a =m2k?*+ 3mk + 2,

so m1t (a* —a). By Lemma 2.1.1, g, ¢ Hom(Z, +, 0,,z). Hence the desired result
follows. o

Theorem 2.1.4. The following statements hold.

(i) Hom(Z,+,0mz) is infinite.

(i) Hom(Z,+, opmz) = Hom(Z, +) if and only if m < 2.

(iii) If m > 2, then Hom(Z, +) ~ Hom(Z, +, 0,,z) is infinite.
(iv) If m is a prime power, then

Hom(Z,+,0mz) = {ga | a € MZ U (MZ + 1)}.

Proof. (i) Since g, # g if a # b in Z, (i) follows from Lemma 2.1.2.

(ii) If m > 2, then by Lemma 2.1.3, Hom(Z,+) ~ Hom(Z, +, 0,,z) # @, so
Hom(Z, +, 0,nz) # Hom(Z,+). This shows that if Hom(Z, +, 0,,z) = Hom(Z, +),
then m < 2.

Assume that m < 2. Then mZU (mZ+1) = Z. It follows that { g, | a € mZU
(mZ + 1)} = Hom(Z, +). Hence by Lemma 2.1.2, Hom(Z, +) € Hom(Z, +, 0,,z).
But Hom(Z, +, 0,,z) € Hom(Z, +), so Hom(Z, +, 0,,z) = Hom(Z, +).

(iii) follows directly from Lemma 2.1.3.

(iv) Assume that m is a prime power. Let a € Z be such that g, €
Hom(Z, +,0,,z). By Lemma 2.1.1, m| (a* —a). Since a*> —a = a(a—1), and a and

a — 1 are relatively prime, we have that m |a or m | (a — 1). Therefore a € mZ or
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a—1€ mZ. Hence a € mZ U (mZ+ 1). This shows that Hom(Z, +, 0,,2) € { g |
a € mZU (mZ + 1)}. This implies by Lemma 2.1.2 that Hom(Z, 4, 0,,2) = { 9. |
a€mZU(mZ+1)}. O

Remark 2.1.5. Since Hom(Z, +, 0,,z) € Hom(Z, +), Hom(Z, +, 0,,7) is infinite
by Theorem 2.1.4(i) and |Hom(Z, +)| = R, it follows that |[Hom(Z, 4, 0,,z)| = No.

Example 2.1.6. By Theorem 2.1.4(iv),

Hom(Z,+,047) ={ 9. | a € 4Z U (4Z + 1)}
and hence

Hom(Z,+) ~ Hom(Z, +,04z) = { 9o | a € (4Z +2) U (4Z + 3)}.

2.2 Multiplicative Hyperrings Defined from the Ring
(Zyn,+,-) and Its Ideals

In this section, the homomorphisms of the multiplicative hyperring (Z,,, +, oz, )
are considered. Let us recall that ¥ o,,z, y = xy + m#Z, for all z,y € Z.

First, the following three lemmas are provided.

Lemma 2.2.1. Fora € Z, h; € Hom(Z, ,+,0mz,) if and only if (m,n)]

(a* —a).

Proof. Assume that h; € Hom(Z,, +, 0,,7,). Then
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so a— a’ = (m,n)s for some s € Z. Hence a — a®> — (m,n)s = nt for some t € Z.
Thus a — a® = (m,n)s + nt. But (m,n)|((m,n)s + nt), so (m,n)|(a®> — a).

For the converse, assume that (m,n) | (a®>—a). Then a* —a = (m,n)s for some

s€Z,s0oa=a®>—(m,n)s. If z,y € Z, then

h&(i OmZn g) = ha(@ + mZn)
= a(Ty + mZy,)

= axy + ami,

(a? — (m,n)s)zy + amZy,

= a’xy — (m,n)szy + am,
C a?zy + (m,n)Z, + amZ,
= a2—aty + mZ,, + am.,,

= az_xy + my,

=ar ay + miy,

= ha(2)ha(y) + mZy,

= ha(7) omz, ha(y).

Hence h; € Hom(Zy,, +,0mz,)- O

Lemma 2.2.2. {h; |a € (m,n)ZU ((m,n)Z+ 1)} C Hom(Z,, +, omz,,)-

Proof. If a € (m,n)Z U ((m,n)Z + 1), then (m,n)|a or (m,n)|(a — 1), thus

(m,n) | (a® — a). Hence by Lemma 2.2.1, the result follows. O

Lemma 2.2.3. If (m,n) > 2, then {hs | a € (m,n)Z + 2} C Hom(Z,,+) ~
Hom(Z,, +, omz,,)-

Proof. If (m,n) > 2 and a € (m,n)Z + 2, then a = (m,n)k + 2 for some k € Z,

SO

a’> —a = (m,n)?k? + 3(m,n)k + 2
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which is not divisible by (m,n), so by Lemma 2.2.1, h; ¢ Hom(Z,, +, oz, ), i.e.,
ha € Hom(Z,,,+) ~ Hom(Z,,, +, 0,7, ), so the result follows. O

Theorem 2.2.4. The following statements hold.

(i)
(i) Hom(Z,,+,omz,) = Hom(Z,,+) if and only if (m,n) < 2.
: >

If (m,n) > 1, then [Hom(Z,, +, oz, )| > -2

(mn)’

(iii) If (m,n) > 2, then [Hom(Zy, +) \ Hom(Zy, +, oz, )| = 555
(iv)

iv) If (m,n) is a prime power, then

Hom(Z,,, +,0mz,) = {ha|a € (m,n)ZU ((m,n)Z+ 1)}

and hence |Hom(Zy,, +, oz, )| = (Tr21nn)'

Proof. (i) Assume that (m,n) > 1. Then |(m,n)Z,| = 55 < n. This implies

that (m,n)Z, N ((m,n)Z, + 1) = @. Since hy # hy for all distinct a@,b € Z,, it
follows that

|Hom(Z,,, +,0mz,)| = { ha | a € (m,n)Z U ((m,n)Z + 1)}|
= hala€Z and a € (m,n)Z,U ((m,n)Z, +1)}|
= |(m,n)Z,| + |(m,n)Z, + 1|

n n 2n

(m,n)  (m,n) (m,n)

(ii) If (m,n) > 2, then by Lemma 2.2.3, Hom(Z,,, +) ~ Hom(Z,,, +, oz, ) # 2,
so Hom(Z,, +, ommz,) # Hom(Z,,+). Hence if Hom(Z,, +, o,,z,) = Hom(Z,, +),
then (m,n) < 2.

Assume that (m,n) < 2. Then (m,n)ZU((m,n)Z~+1) = Z. This implies that
{hala € (m,n)Z U ((m,n)Z + 1)} = Hom(Z,,, +). Therefore by Lemma 2.2.2, we
have that Hom(Z,,, +, oz, ) = Hom(Z,,, +).

(iii) Assume that (m,n) > 2. Then
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|HOH1(Z»,“ ‘I’) N Hom(Z’m +, omZn)|
> [{hala € (m,n)Z+ 2}| by Lemma 2.2.3
= |{hala € Z and a € (m,n)Z, + 2}|

= |(m,n)Z, + 2|
n

= |(m,n)Z,| = )

(iv) Let (m, n) be a prime power and a € Z such that h; € Hom(Z,,, +, oz, ).
By Lemma 2.2.1, (m,n)|(a®* —a). But a* —a=a(a—1) and (a,a —1) =1, so
(m,n)|a or (m,n)|(a—1). Thus a € (m,n)Z U ((m,n)Z + 1). This shows that
Hom(Z,,+,0omz,) C{ha|a € (m,n)ZJ((m,n)Z+1)}. Hence by Lemma 2.2.2,
we have that Hom(Z,,+,0,z,) = {ha|a € (m,n)ZU ((m,n)Z + 1)}. O

Remark 2.2.5. If (m,n) = 1, then by Theorem 2.2.4(ii), |[Hom(Z,, +, oz, )| =
n < (WQL—"n) Therefore the condition that (m,n) > 1 in Theorem 2.2.4(i) can not be

omitted.

If (m,n) is a prime power, then by Theorem 2.2.4(iv), |Hom(Z,, +, omz, )| =

(ri"n). This shows that (1721—”71) is the most suitable number for the inequality in

Theorem 2.2.4(i).

2
Example 2.2.6. By Theorem 2.2.4(iv), [Hom(Zag, +, 04z, )| = =10 and

HOHl(ZQ(), -+, 04220) = {ha | a €47 U (4Z -+ 1)}
={ha|a€Zand ae€ 47y U (4Z2 + 1)}

= { h’(_)v hé_la hg? h’ﬁa hﬁa hia h57 hS_)a hﬁ? h‘ﬁ}
Thus
HOIH(ZQ(), +) N Hom(ZQOa +7 04220) = {hﬁa hga hé) h?a hﬁ? hﬁ7 hﬁv hﬁ’ hﬁ? hﬁ}

It follows from Theorem 2.2.4(i) and (iii) that

2 x 18 B
(6,18)

|Hom(Zl87 +7 06218)| Z 6
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and
18

(6,18) 5

|H0m(Zlg, +) AN HOIH(ZI& =+, OGZ1S)| 2

From Lemma 2.2.2 and Lemma 2.2.3, we have respectively that

Hom(Zs, +, 96z,5) 2 { ha | a € 6ZU (6Z + 1)}
={ha|a€Zand a € 6Z;3U(6Z15+ 1)}

= { h(]’ hév hﬁa hiv h77 hﬁ}a

Hom(Z1g, +) ~ Hom(Zis, +, 06z,5) 2 { ha | a € 6Z + 2}
:{ha|aEZandEL€6218+?}

= { ha, hg, b1z }-
Let us consider h; where a € (6Z + 3) U (6Z +4) U (6Z +5). If k € Z, then
6| (6k + 3)* — (6k + 3),6| (6k + 4)*> — (6k +4) and 6 1 (6k + 5)% — (6k + 5),
so by Lemma 2.2.1,

{ha|ae(6Z+3)U(6Z+4)} CHom(Zs,+,96z,5)
and

{h@ ’ a € 67 + 5} Q HOm(Zlg, +) AN HOI’H(Zlg, +, 06218)‘
Consequently,

Hom(Zs, +, 967,5) = { ha | a € 6ZU (6Z + 1)U (6Z + 3) U (6Z + 4)}
= {h()a hév hﬁa hia h77 hﬁ7 h37h§7 hﬁ? th, hﬁa hﬁ}7

’Hom<Z187 =+, 06Z18)| = 127

HOIIl(Zlg, +) ~N HOHI(le, +, 06218) = {h@ | a e (GZ + 2) U (6Z + 5)}
= {h§7 hg? hﬁ? h’57 hﬁ? hﬁ}7

|Hom(Z1s, +) ~ Hom(Zs, +, 067,5)| = 6.



CHAPTER III
HOMOMORPHISMS OF KRASNER HYPERRINGS

In this chapter we deal with homomorphisms of the Krasner hyperrings defined
in Example 1.3, Example 1.4 and in Example 1.5 when R = (Z,+,-) and R =
(Zy,,+,-). Notice that the zero mapping on a Krasner hyperring (A, @, -) is clearly
a homomorphism of (A, &, -). We characterize the elements of Hom(G", ¢y, -) and
Hom(G°, @5, -) where the Krasner hyperrings (G, ®1,-) and (G°, @&, ) defined
from a group (G,-) in Example 1.4(1) and Example 1.4(2), respectively. The
elements of Hom(Z/p, ®, *) and the elements of Hom(Z, /p, @, *) fixing 0p and 1p
are characterized where (Z/p,®,*) and (Z,/p,®, ) are the Krasner hyperrings
defined as in Example 1.5. Finally we give necessary and sufficient conditions
for f:[0,00) — [0,00) to be an element of Hom([0,00), ®, ) and show that the
set Hom([0, 00), @, ) is uncountable where ([0, 00), @, -) is the Krasner hyperring
defined in Example 1.3.

3.1 Krasner Hyperrings Defined from Groups

Let G be a group and recall the definitions of the Krasner hyperrings (G°, &, -)
and (G, @s, -) as follows:

@ 0=002 = {z} for all x € G°,

TPy = {z,y} if xv,ye G and z #y,

G\ {zx} if x,y € G and x =y,

TP 0=00yz={r} forall ze G,
T @y x = {x,0} for all z € G,

r@ey =G~ {zx,y} for all distinct z,y € G
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and
x-0=0-2=0 forall z € G°.

Let e be the identity of the group G.
To characterize the elements of Hom(G°, @4, ), we first show that every ele-

ment of Hom(GY, @1, -) fixes the element 0.
Lemma 3.1.1. If f € Hom(G°, &1, ), then f(0) = 0.

Proof. Assume that f € Hom(G°, @y,-). Suppose that f(0) # 0. Then f(0) € G,

SO

{£(0)} = f({0}) = f(0©10) € f(0) &1 f(0) = G~ {f(0)}

which is a contradiction. Thus f(0) = 0. O

Theorem 3.1.2. For f: G° — G°, f € Hom(G°, @1,") if and only if either
(i) f is the zero mapping on (G°, @1, ) or
(i) fle € Mono(G) and f(0) = 0.
Proof. Assume that f € Hom(G°, @y, ). From Lemma 3.1.1, f(0) = 0.
Case 1: f(a) =0 for some a € G. Then

F(GO\Aa}) = fla@®ra) C f(a) @1 fla) =0&1 0= {0}.
Thus f(z) =0 for all x € G, i.e., f satisfies (i).

Case 2: f(a) # 0 for all a € G. Then f(G) C G. Since f € Hom(G?,-), it
follows that f|s € Hom(G). Next, to show that f is 1-1, let x,y € G be such that
x # y. Suppose that f(x) = f(y). Then

{f(@)} ={f(@), fW)} = f{z,y}) = flz @1y)  fx) D1 f(y) = G~ {f(2)},
a contradiction. Thus f(x) # f(y). Hence f € Mono(G), so f satisfies (ii).

Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then f €
Hom(GY, &1, -). Next, assume that f satisfies (ii). Since f(0) = 0 and f|g €
Hom(G), it is clear that f € Hom(G?,-). Next we show that f € Hom(G°, ®;).
We have that
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f(0®10) = f({0}) = {0} =01 0 = f(0) &1 f(0)
and for every x € G,
flz@10) = f({z}) ={f(z)} = f(z) &1 0 = f(z) &1 f(0).

Since f(G) C G, f(0) =0 and fis 1 — 1, it follows that for z € G,

flz@ra) = f(G°\A{z}) = {f(t) | t € G"~ {x}}
C G~ A{f(=)}
= f(x) b1 f(x)

It remains to show that for distinct z,y € G, f(x®1y) C f(x) Py f(y). f 2,y € G
are distinct, then f(z) # f(y) since fis 1 — 1, so

fleery) = f{xy}) = {f(2), fy)} = f(x) &1 fy).

This shows that f € Hom(G°, @), so f € Hom(G°, @y, -), as desired.
The proof is thereby complete. O

For each f € Hom(G), let f: G° — G° be defined by
f(0) =0 and f(z) = f(x) for all x € G.
The following corollary is a direct consequence of Theorem 3.1.2.
Corollary 3.1.3. Hom(G° @,,-) = {f | f € Mono(G)} U {the zero mapping on
(GO> D1, )}
Example 3.1.4. (1) For each odd positive integer n, let f,, : R — R be defined
by
fulz) = 2™ for all x € R.

Then f,|r 0} € Mono(R \ {0},-) and f,(0) = 0 for every odd positive integer n.
It follows that

{fn | n is an odd positive integer } C Hom(R, $1, ).
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Here we let (R~ {0})° = R. This implies that Hom(R, &1, -) is an infinite set. We
obtain similarly that Hom(F, @1, ) is an infinite set for every subfield F' of R.

(2) Let 6 be a symbol not representing any element of Z and define

r+0=0+x=40 forallz € ZU{6}.
We can see that
Mono(Z,+) = {g. | a € Z ~ {0}}.
Let u: ZU{0} — ZU{0} be defined by u(x) = 0 for all x € ZU{0}. By Corollary
3.1.3, we have that
Hom(Z U {0}, ®1,+) ={ga | a € Z~{0}} U {p},
and hence [Hom(Z U {0}, ®1,+)| = Ny.
(3) Define
T+0=0+z=40 forall z €Z,U{0}
where 6 is a symbol not representing any element of Z,, and define \ : Z,, U{6} —
Z, U{0} by \(z) =0 for all z € Z,, U {0}. We have that
Mono(Z,,+) = {ha | a € Z and h; is 1 — 1}
={ha | a € Z and h;(Z,) = Z,}
={ha|a € Z and aZ, = Z,}
={ha|a €Z and Za = Z,}
={hz | a € Z and (a,n) = 1}.
It follows from Corollary 3.1.3 that
Hom(Z, U{0},&1,+) = {ha | a € Z and (a,n) = 1} U{A}.
Hence
For example,

Hom(Z15 U {9}, @1, +) = {hi, hz, hz, hig, /\}.

The next theorem characterizes the homomorphisms of the Krasner hyperring

(Gov@% )



23

Theorem 3.1.5. For f : G° — G°, f € Hom(G°, ®»,) if and only if one of the
following statements hold.

(i)
(i)

f is the zero mapping on (G°, s, -).
() =e forall x € G°.

(iii) f(0) =0 and f(x) =€ forallx € G.
(iv) fle € Mono(G) and f(0) = 0.

f
i) f
Proof. Assume that f € Hom(G°, &, ).
Case 1: 0 € f(G). Then f(a) =0 for some a € G. Since
{0} = F({a}) = fla®20) C f(a) @2 f(0) =02 f(0) = {f(0)},
we have that f(0) = 0. To show that f is the zero mapping on (G, ®s,-), let
x € G\ {a}. Since

fla@yz) = f(G~Aa,x}) = {f(1) |t € G~ Ha, 2},

fla) @2 fz) = 0@ f(x) = {f(x)}

and

fla®yz) C fla) D2 f(2),

it follows that f(G ~ {a}) = {f(2)}. If y € G\ {e}, then ay € G \ {a}, so

f(z) = flay) = f(a)f(y) =0 f(y) = 0.
This shows that f(t) = 0 for all t € G°, so f satisfies (i).

Case 2: 0 ¢ f(G°). Then f(0) € G. If x € G, then

e = f(0)7"F(0) = f(0) " f(0 - x) = f(0) ' f(0)f(x) = f(x).
This shows that f satisfies (ii).
Case 3: 0 ¢ f(G) and 0 € f(G°). Then f(0) = 0 and f(G) C G. Thus
fle € Hom(G), so f(e) =e. If f|gis 1 — 1, then f satisfies (iv). Next, assume

that f|g is not 1—1. Then there exists an element a € G~ {e} such that f(a) = e.

Since

fle@aa) = f(G~Aea}) = {f(t) [t € G~ Aea}},
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f(e) @2 f(a) = e®se = {e,0}

and

fle®za) C f(e) @2 f(a),

it follows that f(G~{a}) C {e,0}. But f(G) C G, so f(G~{a}) ={e} ={f(a)}.
Hence f(z) = e for all z € G, so f satisfies (iii).

Conversely, assume that f satisfies (i), (ii), (iii) or (iv). If f satisfies (i), then
f € Hom(GY, @s, -). Assume that f satisfies (ii). Then for z,y € G°,

fx@2y) ={e} C{e,0} =edre= f(z) D2 f(y),
flzy) =e=rce= f(x)f(y).

Thus f € Hom(G°, @, -).
Next, assume that f satisfies (iii), i.e., f(0) = 0 and f(G) = {e}. We have
that
F0®20) = f({0}) = {0} = 0®2 0 = f(0) 2 f(0)

and for all z € G,

flz®20) = f({z}) ={f(z)} = f(2) ©20 = f(z) @2 [(0)
and

fla @) = f({z,0}) = {f(2), f(0)} = {f(2),0} = f(z) B2 f(2).
If x,y € G are distinct, then

[ ®2y) = F(G~Ax,y}) = {e} S{e,0} =e@re = [f(z) @2 f(y).
This proves that f € Hom(G°, ®,). It is clear that f € Hom(GY,-). Hence f €
Hom(G°, @, -).
Finally, assume that f satisfies (iv), i.e., f|¢ € Mono(G) and f(0) = 0. Since
fle € Hom(G) and f(0) = 0, it follows that f € Hom(G",-). We have that

f(0®20) = f({0}) = {0} =0®2 0= f(0) B2 f(0)
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and for all z € G,

[z ®20) = f({z}) = {f(2)} = f(z) D20 = f(z) B2 [(0)
and
fl@ @ z) = f({z,0}) = {f(2), f(0)} = {f(2),0} = f(z) &2 f(2).
Let 2,y € G be distinct. Since f|q is 1-1, we have that
f@®2y) = F(G~Aa,y}) ={f(t) | t € G~ A{=z,y}}
= f(G)~A{f(), f(y)}

C G~ Af(x), f(y)}
= f(z) @2 f(y).

Hence f € Hom(GY, @, ).
Therefore the proof is complete. m

3.2 The Krasner Hyperring Defined from the Ring (Z, +, )

and an Equivalence Relation

The elements of Hom(Z/p, @, %) are investigated in this section. Recall that

Tpy = r=yorzr=—y,

zp©yp = {(x+y)p, (v —y)p},

xpxyp = (zy)p for all x,y € Z.
First, we give the following series of lemmas.
Lemma 3.2.1. If f € Hom(Z/p, @), then f(0p) = Op.

Proof. Assume that f € Hom(Z/p,®). Let f(0p) = ap for some a € Z. Since

f(Op@0p) = f({0+0)p, (0 —0)p})
= f({0p})
= {ap},
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we have that
ap € f(0p @ 0p) € f(0p) © f{0p)
=ap®dap
= {(a+a)p,(a—a)p}
= {(2a)p, 0p}.
Then ap = (2a)p or ap = 0p. If ap = (2a)p, then a = 2a or a = —2a which implies

that a = 0, so the desired result follows. O

Lemma 3.2.2. If f € Hom(Z/p, %), then f(1p) = 0p or f(1p) = 1p.
Proof. Let f(1p) = bp for some b € Z. Then

bp= f(1p) = f(1p* 1p) = f(1p) * [(1p) = bp* bp = bp.
Thus b = b*> or b = —(b*), so b = 0 or 1 or —1. Since 1p = —1p, we have that
f(1p) =0por f(1p) = 1p. O
Lemma 3.2.3. If f € Hom(Z/p,*) and f(1p) = Op, then f is the zero mapping
on (Z/p, &, *).
Proof. If x € 7Z, then

flxp) = f((x-1)p) = flxp*1p) = f(zp) x f(1p) = f(xp) * 0p = Op.

Hence f(zp) = 0p for all z € Z, i.e., f is the zero mapping on (Z/p, ®, ). O

Lemma 3.2.4. If f € Hom(Z/p, ®,*) and f(1p) = 1p, then either

(i) f is the identity mapping on Z/p or

~ 0p if x is even,
(i) f(zp) =
1p if x is odd.

Proof. 1t follows from the assumption that

f(2p) € f(lp@ 1p) C f(1p) @ f(1p) = 1p D 1p = {2p, 0p}.

Case 1: f(2p) = 0p. Then for x € Z,
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fQzp) = f(2p*xp) = f(2p) * f(xp) = 0p* f(zxp) = 0p
and
f((2z +1)p) € f(2zp @ 1p) C f(2xp) ® f(1p) = 0p® 1p = {1p}.
Op  if xis even,

Hence f(zp) =
1p if x is odd,

so f satisfies (ii).
Case 2: f(2p) = 2p. Since
fBp) € f(2p@1p) C [(2p) & f(1p) =2p & 1p = {3p, 1p},

we have that either f(3p) = 3p or f(3p) = 1p. We also have that

f(4p) = [(2p=2p) = f(2p) * f(2p) = 2p*2p = 4p.
To show that f(3p) = 3p, suppose that f(3p) = 1p. Then we have

4p = f(4p) € f3p® 1p) C f(3p) @ f(1p) = 1p® 1p = {2p,0p}

which is a contradiction since f(4p) = 4p. Thus f(3p) = 3p.

Assume that k > 4 and f(zp) = xp for all z € {0,1,2,...,k}.

Subcase 2.1: £+ 1 is even. Then k + 1 = 2a for some a € ZT. Thus a < k.
Then f(ap) = ap. Hence

f((k+1)p) = [((2a)p) = f(2pxap) = [(2p) = f(ap) = 2p*xap = (2a)p = (k+1)p.

Subcase 2.2: k£ +1is odd. Then (k+ 1)+ 1 is even, so (k+ 1) + 1 = 2b for
some b € ZT. Thus b < k, so f(bp) = bp. Tt follows that

f(((k+1)+1)p) = f((2b)p) = f(2p  bp)
= f(2p) = f(bp)
= 2pxbp
= 2bp

=((k+1)+1)p.
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Since
f((k+1)p) € f(kp® 1p) C f(kp) & f(1p)
=kpd 1p
={(k+1)p, (k= 1)p},

we have that f((k+1)p) = (k+ 1)p or f((k +1)p) = (k — 1)p. Suppose that
f((k+1)p) = (k —1)p. Then

(E+1)+1)p=f(((k+1)+1)p) € f((k+1)p&1p)
C f(k+1)p)@ f(1p)
=(k—=1)palp
= {kp, (k= 2)p}
which is a contradiction. Thus f((k+ 1)p) = (k + 1)p.

Hence f(xp) = xzp for all x € ZTU{0}. Since xp = —xp for all x € Z, f(xp) =
xp for all © € Z, so f satisfies (i). ]

Lemma 3.2.5. Let f : Z/p — Z/p be defined by

0p if x is even,
flzp) =
1p if x is odd.

Then f € Hom(Z/p, ®, *).

Proof. By the definition of p, f is well-defined. Let z,y € Z. Then

flzp@yp) = f{(x+y)p, (x —y)p}) = {f((x+y)p), f((x —y)p)}

and

flzp*yp) = f((zy)p).

Case 1: x and y are even. Then = + y, x — y and xy are even, so

flzpDyp) ={0p} =0p @ 0p = f(zp) © f(yp)

and



29

f(xp*yp) =0p=0p*0p= f(xp)* f(yp).
Case 2: z and y are odd. Then x + y and = — y are even, and zy is odd. Thus
f(xp@yp) ={0p} C{2p,0p} =1p® 1p= f(xp) ® f(yp)
and
f(xpxyp) =1p=1px1p= f(zp)* f(yp).

Case 3: z is even and y is odd. Then x + y and x — y are odd, and zy is even.

Thus

flepDyp) ={1p} =0p @ 1p = f(zp) & f(yp)
and

f(xpxyp) =0p=0p*1p= f(zp)* f(yp).

Case 4: z is odd and y is even. We can show similary to Case 3 that f(zp®yp) C
f(xp) ® f(yp) and f(zpxyp) = f(zp) = f(yp).

Hence we have that f € Hom(Z/p, @, %), as desired. H

It is evident that the zero mapping and the identity mapping on (Z/p, @, *)
are homomorphisms. The following theorem is directly obtained from Lemma

3.2.2, Lemma 3.2.3, Lemma 3.2.4 and Lemma 3.2.5.

Theorem 3.2.6. Assume that f :Z/p — Z/p. Then f € Hom(Z/p,®,*) if and

only if one of the following statements holds.

(i) f is the zero mapping on (Z/p, ®, *).
(ii) f is the identity mapping on Z/p.
Op if s even,

(ii) () =
1p if x is odd.
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3.3 The Krasner Hyperring Defined from the Ring
(Zy,, +, -) and an Equivalence Relation

This section deals with the Krasner hyperring (Z, /p, @, *) defined from the ring

(Zy,,+,-) and the equivalence relation p (see Example 1.5), i.e.,

Ipy < T=Yyorr=—y,

Tp®ygp = {(x +y)p, (v —y)p},

zpxyp = (zvy)p forall x,y € Z.

Notice that for z € Z,zp = {z,—z} = {Z,n —z}. If n is even, then Z,/p =

{0p,1p,....(%)p} and |Z, /p| = 2+1.If nis odd, then Z,/p = {0p, 1p, ..., (*5)p}
and |Z,/p| = "5
The following remark shows the possibilities of f(0p) where f € Hom(Z, /p, ®).

Remark 3.3.1. The following statements hold.

(i) If f € Hom(Z,/p,®), then

_ Op if 3fn,

0p or (%)p if 3|n.

(i) If3|nand f:Z,/p— Zn/p is defined by f(zp) = (5)p for all x € Z, then
f € Hom(Z,/p, ®).

Proof. (i) Let f(0p) =ap for some a € {0,1,2,...,n — 1}. Then

ap = f(0p) € f(0p @ 0p) C f(0p) ® f(Op) = ap ® ap = {(2a)p, 0p},
soap = (2a)p or ap = 0p. Assume that ap = (2a)p. Then @ = 2a or a = —(2a)
which implies that n | @ or n | 3a. If n | a, then a = 0, so ap = 0p. Next, assume

that n | 3a.
Case 1: 3t n. Since n | 3a, it follows that n | a, so a =0, i.e., ap = Op.

Case 2: 3 | n. Since n | 3a, we have that % | a. But @ € {0,1,2,...,n — 1}, so

n

a=0,% or 2. Since (%) = —(%), it follows that (2)p = (3*)p. Hence ap = 0p or
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(5)p-

(ii) Since —% = 2 it follows that @p = (&)p. If 2,y € Z, then

Fap @ 5) = (Do € (D00} = {000}
= Gpe (S
= f(zp) @ f(yp),
so we have that f € Hom(Z,/p,®), as desired. O

To obtain the main theorems of this section, the following lemmas are needed.

Lemma 3.3.2. Let n be even and f : Z,/p — Zy,/p defined by

Op if T is even,

1p if x is odd.

Then f € Hom(Z,/p, ®, *).

Proof. To show that f is well-defined, let x,y € Z be such that zp = yp. Then

T=gyorz=—y,son|(x—y)orn| (z+y). Since n is even, it follows that v —y
or x + y is even which implies that either x and y are even or x and y are odd.

The remainder of the proof is given similarly to that of Lemma 3.2.5 ]

Lemma 3.3.3. Assume that n is even. If f € Hom(Z,/p,®,*) is such that
f(0p) =0p and f(1p) = 1p, then either
(i) f is the identity mapping on Z,/p or

0p if x 1s even,

(i) f(zp) =

1p if x is odd.

Proof. Recall that Z,/p = {0p, 1p, 2p, ..., @p} and |Z,/p| = 5+ 1. Let A =
{0,1,2,..., 2}. Then Z, /p = {Zp | x € A}. If n = 2, by assumption, we are done.

Assume that n > 4. Since
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f@2p) e f(Ip@1p) C f(1p) @ f(1p) = 1p@ 1p = {2p,0p},
we have that f(2p) = 2p or f(2p) = 0p.
Case 1: f(2p) = 2p. Claim that f is the identity mapping on Z, /p, i.e., claim that
f(zp) =xp for all x € A. Note that f(0p) = 0p, f(1p) = 1p and f(2p) = 2p.
Assume that £ € A, kK > 2, k+1 € Aand f(Zp) = zp for all x €
{0,1,2,...,k}. Then

F((E+1)p) € f(kp@1p) C f(kp) @ f(1p) =kp®T1p={(k+1)p,(k —1)p}.

Subcase 1.1 : k41 is even. Then k+1 = 2a for some a € A, so a < k. Thus

f((k+1)p) = f((2a)p) = f2p*ap) = f(2p) * f(ap)
:Qp*ap

= (2a)p

=(k+1)p.

Subcase 1.2 : k+1isodd and £+ 1 < % Then k+2iseven and k+2 € A.

Let £+ 2 =2b for some b € A. Then b < k, and hence

F((k+2)p) = f((20)p) = f(2p  bp) = [(2p) = f(bp)
= 2pxbp

= (2b)p
= (k+2)p.

To show that f((k + 1)p) = (k + 1)p, suppose not. Since f((k+ 1)p) € {(k + 1)p,
(k —1)p}, we have that f((k+ 1)p) = (k — 1)p. It follows that

which is a contradiction since k —2,k,k+2 € A. Thus f((k+1)p) = (k + 1)p.
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Subcase 1.3 : k + 1 is odd and k41 = 3. Then n > 6. Since f((k +1)p) €
{(E+1)p, (k—1)p}, we have that f((k+1)p) € {(k+1)p, (5 —2)p}. Suppose
that f((k+1)p) = (5 — 2)p. Then

which is a contradiction since n > 6. Therefore f((k+ 1)p) = (k+ 1)p.

Hence we have the claim, i.e., f satisfies (i).

Case 2: f(2p) = 0p. Then for k € Z,

F(2k)p) = f(2pxkp) = f(2p)  f(kp) = 0p* f(kp) = Op
and so

F(2k+1)p) € f(2k)p @ 1p) C f((2k)p) @ f(1p) = 0p @ 1p = {1p}.

Hence f satisfies (ii).

Therefore the proof of the lemma is complete. n

Lemma 3.3.4. Assume that n is odd. If f € Hom(Z,/p,®,*) is such that
f(0p) =0p and f(1p) = 1p, then f is the identity mapping on Z,,/p.

Proof. Recall that Z,/p = {0p, 1p, 2p, ..., (%5%)p} and |Z,/p| = . Let
A ={0,1,2,.., %2} If n = 1 or 3, then we are done. Assume that n > 5.
We can see from the proof of Lemma 3.3.3 that f(2p) € {2p,0p}. Suppose that
f(2p) = 0p. From the proof of Lemma 3.3.3 for Case 2, we have that for k € Z,

[(@R)p) = Op and f((Zk + Dp) = Ip.

It follows that

e =1 {0p} if 2 is even,

5 )p) @ f(( 5 )p) =

I o
{2p, 0p} if 251 is odd
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and

bp) = FUE=T)p,0p}) = £({1p,0p})
= {f(1p), f(Op)}
= {1p,0p}.
Since n > 5, we deduce that f((*z1)p @ (*z1)p) ¢ F(*F)p) ® F(("55)p), a

contradiction. Hence f(2p) = 2p.
Assume that £ > 2, k+ 1€ A and f(Zp) = zp for all z € {0,1,2,.... k}.

Case 1: k+ 1 is even. We can see from the proof of Lemma 3.3.3 for Subcase 1.1

that f((k+1)p) = (k + 1)p.

Case 2: k+1isodd and k+1 < "T_l We can see from the proof of Lemma 3.3.3
for Subcase 1.2 that f((k+1)p) = (k+ 1)p.

Case 3: k+ 1is odd and k + 1 = %51, Since —(251) = %21 1 1 it follows that

(k+1)p = (k+2)p. Since k + 2 is even, it can be seen from the proof of Lemma
3.3.3 for Subcase 1.2 that f((k+ 2)p) = (k+ 2)p. Hence

f((k+1Dp) = F((k+2)p) = (k+2)p = (k+ Dp.

Therefore we have that f(Zp) = Tp for all x € A, i.e., f is the identity mapping
on Zy/p. O

The following theorem is directly obtained from Lemma 3.3.2 and Lemma

3.3.3, and the next theorem is obtained from Lemma 3.3.4.

Theorem 3.3.5. Assume that n is even and f : Zn/p — Z,/p is such that
f(0p) =0p and f(1p) = 1p. Then f € Hom(Z,/p, ®, *) if and only if either
(i)  f is the identity mapping on Z,/p or

0p if x is even,

(i) f(zp) =

1p iof x 15 odd.

Theorem 3.3.6. Assume thatn is odd and f : Z,/p — Z,/p is such that f(0p) =
0p and f(1p) = 1p. Then f € Hom(Z,/p,®,*) if and only if f is the identity

mapping on L/ p.



35

Remark 3.3.7. Theorem 3.3.5 and Theorem 3.3.6 characterize the elements of
Hom(Z, /p, &, *) which fix the elements 0p and 1p of Z,,/p. In fact, the elements of

Hom(Z, /p, ®, *) need not have this property as shown by the following examples.
Let ap be an idempotent of the semigroup (Z,/p, *) and define kg, : Z,,/p —

Zn/p by
kap(Zp) = (Ta)p for all x € Z.

If x,y € Z, then

kap(Zp © Up) = kap({(x + y)p, (x —y)p})
= {kap((x +y)p), kap((x —y)p)}
={((z +y)a)p, ((x —y)a)p}

= {(wa +ya)p, (ra —ya)p}

= {(za+ya)p, (za —ya)p}
= (za)p ® (ya)p
= kap(Tp) ® kap(yp)

and

kap(fp * gﬂ) = kap(@)ﬁ = (I_?/a)/)

This proves that
{kap | ap is an idempotent of (Z,/p,*)} C Hom(Z,/p, ®, *).

We can sce that for distinct idempotents ap, bp of (Z,/p, ), kap # ks,

Next, assume that n is even. For an idempotent ap of (Z,/p,*), define
lap : Zn/p — Zn/p by
0p if x is even,

ap if x is odd.
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It can be seen from the proof of Lemma 3.3.2 that [;, is well-defined for every
idempotent ap of (Z,/p,*). From the proof of Lemma 3.2.5 and the fact that

ap * ap = ap, we can see that lz, € Hom(Z,/p, ®, *). Hence
{lay | ap is an idempotent of (Z,/p,*)} C Hom(Z,/p, @, *)

and we can see that lg, # I, if ap # bp.

Moreover, if 3 | n and (%)p is an idempotent of (Z,/p,*). The mapping
q:Zy/p— Zy,/p defined by

q(zp) = (3)p forallz € Z

belongs to Hom(Z,,/p, ®, *). By Remark 3.3.1(ii), ¢ € Hom(Z,/p, ®). If z,y € Z,
then

n n n

o(Tpx3p) = (3)p = (F)p* (3)p = a(@p) * a(7p).

Thus g € Hom(Z,,/p, ®, *), as desired. In particular, q : Zg¢/p — Zg/p defined by
q(Zp) = 2p for all z € Z is an element of Hom(Zg/p, ®, x). Hence ks, k3,, ls, and

I3, are elements of Hom(Zg/p, ®,*) which do not fix 1p and ¢ is an element of

Hom(Zg/p, @, *) not fixing 0p and 1p.

3.4 A Krasner Hyperring Defined from the Interval [0, )
with the Usual Multiplication

In this section, we characterize the homomorphisms of the Krasner hyperring

([0,00), ®, ) defined in Example 1.3, i.e.,

[0, ] if z=y,

{max{z,y}}  if £y,

rPDy =

and also show that the set Hom([0, 00), @, -) is uncountable.

We first provide the following lemmas.

Lemma 3.4.1. For f : [0,00) — [0,00), f € Hom([0,00),®) if and only if f is

INCreasing.
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Proof. Let f € Hom(]0,00),®) and let z,y € [0,00) be such that < y. Suppose
that f(x) > f(y) Then

f{y}) =flaay) C flz)® fly) = {f(2)}

which is a contradiction. Thus f(z) < f(y). This shows that f is increasing.
Conversely, assume that f is increasing. If z € [0,00), then f(0) < f(t) <
f(x), for all ¢t € [0, z], so

flz® ) = f([0,2]) S [£(0), f(2)] S [0, f(z)] = f(x) & [f(x).

If 2,y € [0,00) are such that x < y, then f(z) < f(y), so

flzey) = f{y}) ={f)}
c 0, f()] = f(x)® fly) if f(z)=f(y),
{f)} =fl@)o fly) if flz) < fly).

Therefore f € Hom([0,00), ®), as desired. O

Lemma 3.4.2. If f € Hom([0,00), ), then one of the following statements holds.

(i) f is the zero mapping on the semigroup ([0,00),-).
(i) f(x) =1 for all z € [0, 00).

(iii) f(0) =0 and f(o,0) € Hom((0,00),-).

Proof. Assume that f € Hom([0, c0),-).

Case 1: f(0) #0. If z € [0,00), then f(0) = f(0-x) = f(0) - f(z) which implies
that f(x) = 1. Therefore f satisfies (ii).

Case 2: f(0) =0 and f(a) = 0 for some a € (0,00). Then
f) = fla-a™) = f(a) - fa™") =0- f(a™") =0,
so for z € (0, 00),

f(2) = fa-1) = f(2) - f(1) = f(x)-0=0.
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Hence f satisfies (i).

Case 3: f(0) =0and f(a) # 0 for all @ € (0,00). Then f((0,00)) C (0, 00). This
implies that f|(,c0) € Hom((0,00),-). Therefore f satisfies (iii). O

We remark from Lemma 3.4.1 that every constant function from [0, c0) into
itself is an element of Hom([0, 00), ®).
The following theorem is directly obtained from the above remark, Lemma

3.4.1 and Lemma 3.4.2.

Theorem 3.4.3. For f : [0,00) — [0,00), f € Hom([0,00),®,") if and only if
one of the following statements holds.

(i) f is the zero mapping on the semigroup ([0,00), ).

(i) f(x) =1 for all z € [0, 0).

(iii) f(0) =0, fl(0,00) € Hom((0,00),-) and f is increasing.

Theorem 3.4.4. Hom([0,00),®, ) is an uncountable set.
Proof. For a € [0,00), define k, : [0,00) — [0, 00) by
ko(x) = 2 for all z € [0, 00).

Then it is clear that k, € Hom([0, 00),-) and k, is increasing on [0, co) for all a €
[0,00). By Lemma 3.4.1, k, € Hom([0, 00), ®) for all a € [0,00). If a,b € [0, 00) are
distinct, then k,(2) = 2% # 2° = ky(2), so k, # ky. Thus | {k, |a € [0,00)} | =
| [0,00) | and {k, | @ € [0,00)} € Hom([0, ), ®, -). But [0, 00) is an uncountable

set, so the set Hom([0, c0), @, -) is uncountable. O



CHAPTER IV
HOMOMORPHISMS OF P-HYPERRINGS

In this chapter, we are concerned with the homomorphisms of the P-hyperings
(Z, ®iz, omz) and (Z,, ®iz,, omz,) defined as in Example 1.6. First, we
determine the set Hom(Z, +) N Hom(Z, @z, o,z) and construct an element of

Hom(Z, @z, omz)~ Hom(Z, +) for certain [, m. It is shown that Hom(Z,, +) C

Hom(Z,,, @iz,, omz,) if and only if ﬁ is square-free. We also construct f €

Hom(Z,, ®iz,, omz,)~ Hom(Z,, +) for certain [, m.

4.1 P-hyperrings Defined from the Ring (Z, +, )

In this section, we determine Hom(Z, +) N Hom(Z, &z, 0,,z). Recall that
rPzy=x+y+I1Z and xo,zy=x(mZ)y forall z,y € Z.

The following two lemmas are needed.

Lemma 4.1.1. Hom(Z, +) C Hom(Z, ®z).
Proof. 1f a,x,y € 7Z, then

9a(x @iz y) = ga(x +y + IZ)
=alr+y+172)
=ar + ay + alZ
Cazr+ay+I7Z
= 9a(7) + galy) + 1Z

= go(x) D1z 9a(y)

which implies that g, € Hom(Z,®;z). But Hom(Z,+) = {g. | a € Z}, so
Hom(Z,+) C Hom(Z, ®z). O
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Lemma 4.1.2. The following statements hold.

(i) If m # 0, then for a € Z, g, € Hom(Z, 0,,7) if and only if a € {0,1,—1}.
(ii) If m =0, then Hom(Z,+) C Hom(Z,0,,,z).

Proof. (i) Assume that g, € Hom(Z, 0,,7). Then

amZ = a(mZ) = a(1(mZ)1)
= ga(l Omz 1)
= ga(1> Omz ga<1>
=a(mZ)a

= a’mZ

which implies that +am = a*m, so +a = a® Thusa € {0,1,—1}.
Conversely, assume that a € {0,1,—1}. If z,y € Z, then
Ja(T omz y) = ga(x(MZ)y) = axmZy
and
ga(x> Omz ga(y) = QT Opz QY = ax(mZ)ay.

2

Since ta = a*,axmZy = axrmZay. Thus g,(x 0z y) = go(T) omz 9.(y). Hence

9o € Hom(Z, 0,,7).
(ii) Assume that m = 0. Let a,z,y € Z. Then

9a(x omz y) = ga(2{0}y) = ga({0}) = a({0}) = {0}

and

9a() 0mz ga(y) = ax opz ay = ax({0})ay = {0}.
Thus go(Z 0z ¥) = ga(x) omz ga(y). Hence g, € Hom(Z, o,,7). Therefore Hom
(Z,+) C Hom(Z,o0,,7). ]

From Lemma 4.1.1 and Lemma 4.1.2, we have the following theorem.

Theorem 4.1.3. Hom(Z, +) N Hom(Z, @iz, omz) = {90, 91,9-1} if m # 0,

Hom(Z,4+) C Hom(Z,®z,0mz) if m = 0.
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Remark 4.1.4. We shall construct an element f € Hom(Z, ®;z, ogiz)~Hom(Z, +)
when k£ > 0 and kl > 1.

ki1
Assume that £ > 0 and kl > 1. We know that Z = U (1 + klZ) which is a
k-1 e
disjoint union. Since Z = U(z + kZ), it follows that IZ = U(zl + kIZ). Define
i=0 =0

f:7Z — Z by
fli+KIZ) = {i} forallie{0,1,2,... ki —1}.

To show that f € Hom(Z, ®z, onz), let z,y € Z. Thenx € i+klZ and y € j+klZ
for some i,7 € {0,1,...,kl—1} and for t € {0,1,2,...,k—1}, e +y+ti+klZ =
i+j+tl+KklZ = a; + KIZ for some a; € {0,1,...,kl —1}. Then

flx@izy) = flz+y+I1Z)
k-1

= fle+y+ ((JH +kiZ))
k—1 =
=f(Jz+y+t+kz)
o
= f(lJa + kiz)
t=0
k—1

= U{at}a

t=0

f@) @iz fly) =iDizj

=i+j+I1Z
k—1
=i+j+(|Jtl+kz)
t=0
k

= | J(i+j+tl+ kiZ)

|
—

I o~
(||
= O

= J(a + kiz),
t=0
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f(xonzy) = f(z(klZ)y)
(xyklZ)

f
C f(KIZ)
{0},
f(x) opz f(y) =ionuz j
= i(klZ)j
which imply that f(z@izy) C f(z) @iz f(y) and f(zopuzy) C f(z)omz f(y). Thus
f - HOID(Z, Dz, OklZn)~

Next, to show that f ¢ Hom(Z,+), suppose on the contrary thatf €
Hom(Z,+). Then f ={go,g1,9-1}.- Let x = kl +1. Then > 2, x € 1 + kIZ and

1= f(z) €{90(2), 91(2), g-1(2)} = {0, @, -z}
which is a contradiction. Hence f ¢ Hom(Z, +).

4.2 P-hyperrings Defined from the Ring (Z,, +, )

In this section, we characterize when Hom(Z,,+) C Hom(Z,,, ®iz,, 9mz,) holds.

Recall that
T®, y=T+Yy+1Z, and T oy, y=z(mZ,)y for all z,y € Z.

The following series of lemmas is needed.
Lemma 4.2.1. Hom(Z,,, +) € Hom(Z,,, ®;z, ).

Proof. If a,x,y € Z, then

ha(T @iz, Y) = ha(T + Y + 1Zy)
=a(T+y+1Z,)
=ar + ay + alZ,
Car + ay + Zy
= hz(T) + ha(y) + 1Z,

= ha(T) ©1z,, ha(y)
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which implies that h; € Hom(Z,, ®z,). But Hom(Z,,+) = {ha | a € Z}, so
HOIIl(Zn, +) Q HOIIl(Zn, @lZn)' ]

Lemma 4.2.2. Fora € Z, hy € Hom(Z,, 0z, ) if and only if (am,n) = (a*m,n).

Proof. Assume that hy; € Hom(Z,,, 0,7, ). Then

=TQOomz, G
=a(mZy,)a
= a’mZ,
= am(aZy,)
C amZ,,
so amZ, = a*mZ,. Thus (am,n)Z, = (a*m,n)Z,, and therefore oy =
|(am, n)Zy,| = |(a*m,n)Z,| = @+ Lhis implies that (am,n) = (a*m,n).
Conversely, assume that (am,n) = (a*m,n). Then amZ, = (am,n)Z, =
(a*m,n)Z, = a*mZ,. If v,y € Z, then
ha(T omz, §) = ha(T(mZy,)y)
= ha(xymZ,)
= axym.,,
= xyamy,
= zya*mZ,
= ax(mZy,)ay
= h4(T) omz, ha(y)
which implies that hz € Hom(Z,, 0,7, ). O

Since Hom(Z,,, ®iz,, omz,) = Hom(Z,, ®z,) N Hom(Z,, 0,7, ), from Lemma

4.2.1 and Lemma 4.2.2, we directly obtain the following lemma.
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Lemma 4.2.3. Hom(Z,,+) C Hom(Z,,®z,,9mz,) if and only if (am,n) =

(a*m,n) for all a € Z.

It is evident that for a € Z,(am,n) = (a(m,n),n) = (m,n)(a,(L

m,n)

) and

a’*m,n) = (a®>(m,n),n) = (m,n)(a®, —2=). Therefore from Lemma 4.2.2 and
(m,n)

Lemma 4.2.3, we have respectively that

Lemma 4.2.4. For a € Z,hz € Hom(Z,, ®iz,,mz,) if and only if (a, (

(0, G-

Lemma 4.2.5. Hom (Z,,+) € Hom(Z,, ®z,,omz,) if and only if (a a, s) =

a?, =2~ for all a € 7.
(m,n)

Theorem 4.2.6. Hom(Z,,, +) C Hom(Z,,, ®iz,, omz,) if and only zf is square-

free.

i ”n) is not square-free. Then there is an integer b > 1 such

t5) =b# 0 = (V*, ). By Lemma 4.2.4, we have that

? (m;n)

that b%| 5. Thus (b, 75
hy ¢ Hom(Zn,@lZn,omZn), so Hom(Z,,, +) ,Q_ Hom(Zn,@lZn,omZn) This proves

that Hom(Z,,, +) C Hom(Z,, @z, , omz, ) implies that ( ™) is square-free.
If 2~ (mn is square-free, then (a, ﬁ) = (a?, ﬁ) for all a € Z, so by Lemma

4.2.5, Hom(Z,, +) € Hom(Z, ®1z,, omz,)- =

Example 4.2.7. Since % = 6, by Theorem 4.2.6, Hom(Z;5,+) € Hom

(Z12, 17,5, 022,,) for everyl € Z. But since (31—12) 4, by Theorem 4.2.6, Hom

(Zy2,+) SZ Hom(Z12, ®iz,,, ©37,,) for every l € Z.
From Lemma 4.2.4, Hom(Z2, +) ~ Hom(Z13, ®1z,,, ©32,,) = {h3, hg, hig}-

Remark 4.2.8. We shall construct an element f € Hom(Z,,®z,, oz, ) N
Hom(Z,, +) when 1 < (kl,n) < n. This implies from this fact and Example

4.2.7 that HOHl(ZlQ, +) g I‘IOIIl(Zm7 @2Z127 02212).
(kly;n)—1
Assume that 1 < (kl,n) < n. Recall that Z,, = U (i + (kl,n)Z,) which is
i=0
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r—1

a disjoint union. Let r = ((kllf)). Then r € Z* and r|n, so Z, = U(E—F rZy). This
i=0

implies that

r—1

1Zy = (I,n)Zy = | J (il + 11Z,)

Define f : Z,, — 7Z, by
fGi+ (kl,n)Z,) = {i} forallie{0,1,...,(kl,n)—1}.

To show that f € Hom(Z,, ®iz,,ouz, ), let T,y € Z,. Then T € i + (ki,n)Z, and
y € j+ (kl,n)Z, for some i,j € {0,1,...,(kl,n) —1}. Thus z + (kl,n)Z, =i +
(kl,n)Zn, y+(kl,n)Zy, = j+(kl,n)Z, and for each t € {0,1,2,....r—1}, T+y+tl+
(kl,n)Zy, = i+j+tl+(kl,n)Z, = a;+(kl,n)Z, forsomea, € {0,1,...,(kl,n)—1}.

Therefore

f(@ @iz, y) = f(@ +y+1Zy)
= f(@+y+(,n)Zy,)

r—1

=f@+y+(Jt+ (kl,n)Zy))

t=0
r—1

=fJz+u+t+ (kl,n)Zy)
t=0

= 1 + (k. m)z)

t=0

= U f(dt + (kl, n)Zn)

= O{dt},
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which imply that f(z @z, v) C f(Z) Bz, f(y) and f(Z opz, ¥) € f(Z) oz, ().
Thus f € Hom(Z,,, ®iz, , oz, )-

Next, to show that f ¢ Hom(Z,,+), suppose on the contrary that f €
Hom(Z,,,+). Then f = h; for some a € Z. Since

{0} = F((k1,n)Z0) = ha((kl, n)Z0) = a(kl, n)Z,

and

{1} = f(A + (Kl,n)Zy) = ha(1 + (kl,n)Zy,) = a+ a(kl,n)Z,,

it follows that @ = 1 and (kl,n)Z, = {0}. This implies that (kl,n) = n or
(kl,n) = 0 which is a contradiction.
From Theorem 4.2.6 and this fact, we conclude that if (kl”—n) is square-free and

1< (l{?l, n) <n, then Hom(Zn, +) g HOI’H(Zn, EBlZn, OklZn)-
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