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มณีนาถ แกวเนียม : สาทิสสัณฐานของไฮเพอรริงบางชนิด (HOMOMORPHISMS OF SOME

HYPERRINGS) อ. ที่ปรึกษาวิทยานิพนธหลัก : ศ. ดร. ยุพาภรณ เข็มประสิทธ์ิ, 48 หนา.

สาทิสสัณฐานของก่ึงไฮเพอรกรุป ( , )H  คือ ฟงกชัน :f H H ซ่ึง ( )f x y 
( ) ( )f x f y  สําหรับทุก ,x y H สาทิสสัณฐานของไฮเพอรริง ( , , )A     คือฟงกชัน f : A  A

ซ่ึง f เป นสาทิสสัณฐานของทั้ง ( , )A   และ ( , )A   เราให สัญลักษณ Hom ( , , )A     แทนเซตของ

สาทิสสัณฐานทั้งหมดของ ( , , )A    ไปยังตัวเอง

ถา ( , , )R    เป นริง  และ I  เป นไอดีลของ R เราให  ( , , )IR   แทนไฮเพอรริงการคูณ

โดยที่ Ix y x y I  สําหรับทุก ,x y R วัตถุประสงค แรกคือการให ลักษณะเฉพาะวาเมื่อใดที่

Hom ( , , )m   = Hom ( , ) และ Hom ( , , )
nn m   Hom ( , )n  เป นจริง เราแสดงด วยวา

Hom ( , , )m   เป นเซตอนันต เมื่อ 0,m  | Hom ( , , )|
nn m    2

( , )
n

m n เมือ่ ( , ) 1m n  และ

การเท ากันเป นจริง ถา ( , )m n  เป นเลขยกกําลังที่มีฐานเป นจํานวนเฉพาะ

เราพิจารณาคราสเนอรไฮเพอรริง 0
1( , , )G   และ 0

2( , , )G    ที่นิยามจากกรุป ( , )G  โดย
0 {0},G G  10 0 {0},  1 10 0x x   { },x 0

1 \ { }x x G x   สําหรับทุก ,x G

1 { , }x y x y  สําหรับทุก ,x y G  ที่แตกตางกัน 20 0 {0},  2 0x  20 x  { },x

2 { , 0}x x x  สําหรับทุก ,x G 2x y  \ { , }G x y   สําหรับทุก ,x y G  ที่แตกตางกัน และ

0 0 0x x     สําหรับทุก 0x G เราตองกําหนดวา | | 3G   สําหรับคราสเนอรไฮเพอรริง
0

2( , , )G   วัตถุประสงค ท ี่สองคือการให ลักษณะเฉพาะของสมาชิกของ Hom 0
1( , , )G   และ Hom

0
2( , , )G   เราพิจารณาคราสเนอรไฮเพอรริง ( , , )R    โดยที่ ( , , )R    เป นริงสลับที่, x y

ก็ตอเมื่อ x y หรือ ,x y  x y   {( ) , ( ) }x y x y    และ x y   ( )xy 

สําหรับทุก ,x y R เราให ลักษณะเฉพาะของสมาชิกของ Hom ( , , )   และของ f  Hom

( , , )n    ซ่ึง (0 ) 0f   และ (1 ) 1f   ยิ่งไปกวานั้น เราให ลักษณะเฉพาะของ

สมาชิกของ Hom ([0, ), , )    โดยที่ [0, ]x x x  สําหรับทุก [0, )x  และ x y  {ค าสูงสุด

ของ x และ y} สําหรับทุก , [0, )x y   ที่แตกตางกัน

              ให 
1 2

( , , )P PR    เป น P-ไฮเพอรริง ของริง ( , , )R   ที่เกิดจากเซตยอย 1 2,P P ของ R ที่ไม
เป นเซตวาง วัตถุประสงค ท ี่สามคือ หา Hom ( , )  Hom ( , , )l m    และบอกวาเมื่อใด Hom

( , )n  จึงจะเป นเซตยอยของ Hom ( , , )n l mn n    เราแสดงด วยวาเซต Hom ( , , )l m   

\ Hom ( , )  และ Hom ( , , ) \n l mn n    Hom ( , )n  ไมเป นเซตวางสําหรับบางค าของ ,l m
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:f A A such that f is a homomorphism of both ( , )A  and ( , )A  . Denote by Hom
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( , , )m   is infinite when 0,m  | Hom ( , , )|
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( , )
n
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1

INTRODUCTION

The concept of homomorphism has been introduced and studied in every

algebraic structure. We know that the concept of ring plays a crucial role in

algebra. There are many kinds of hyperrings defined in the area of algebraic

hyperstructures. However, all of them are nice generalizations of rings. Hyper-

ring homomorphisms are defined naturally and generalize ring homomorphisms.

Hyperrings of our interest are multiplicative hyperrings ([1], p.177), Krasner hy-

perrings ([1], p.167) and P-hyperrings ([1], p.179). M. Krasner introduced Krasner

hyperrings in 1966 at a conference. They may be called a simple hyperring. In

1982, R. Rota [9] initiated the study of multiplicative hyperrings. V-S-hyperrings

were studied by T. Vougiouklis, L. Konguetsof and S. Spartalis ([1], p.179). By the

definitions, V-S-hyperrings are generalizations of both multiplicative hyperrings

and Krasner hyperrings. P-hyperrings are V-S-hyperrings of a special type. Note

that the addition of a Krasner hyperring and the multiplication of a multiplicative

hyperring are hyperoperations while both the addition and the multiplication of

a V-S-hyperring are hyperoperations.

We denote by Hom(A,⊕, ◦) the set of all homomorphisms of a V-S-hyperring

(A,⊕, ◦) into itself.

D.M. Olson and V.K. Ward [6] gave a nice result concerning when a strongly

distributive multiplicative hyperring becomes a ring as follows: A strongly dis-

tributive multiplicative hyperring (A,+, ◦) is a ring if and only if there exist a, b

in A such that a ◦ b contains exactly one element. If (R,+, ·) is a ring and I is

an ideal of R, let (R,+, ◦I) be the multiplicative hyperring where x ◦I y = xy+ I

([1], p.177). A necessary and sufficient condition for the multiplicative hyperring

(Zn,+, ◦mZn) to be regular was given in [8]. In [5], the authors character-

ized the elements of Hom(Z,+, ◦mZ) and Hom(Zn,+, ◦mZn) where m is a prime

number. The cardinalities of these two sets were also given. Some results on homo-

morphisms of some other multiplicative hyperrings were studied in [7]. In Chapter

II, we characterize when Hom(Z,+, ◦mZ) = Hom(Z,+) and Hom(Zn,+, ◦mZn) =
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Hom(Zn,+) hold. In addition, we also show that Hom(Z,+, ◦mZ) is infinite

when m > 0, |Hom(Zn,+, ◦mZn)|≥ 2n
(m,n)

when (m,n) > 1 and the equality holds

if (m,n) is a prime power.

Semigroups admitting ring structure have long been studied. Since the mul-

tiplicative structure of a Krasner hyperring is a semigroup, it is reasonable to

study semigroups admitting Krasner hyperring structure. In [4], the author

characterized multiplicative interval semigroups on R which admit a Krasner

hyperring structure. We also know that every group admits a Krasner hyper-

ring structure. Chapter III deals with homomorphisms of some Krasner hyper-

rings. We characterize the elements of Hom(G0,⊕1, ·) and Hom(G0,⊕2, ·) where

(G0,⊕1, ·) and (G0,⊕2, ·) are the Krasner hyperrings defined from a group (G, ·)

by G0 = G∪ {0}, 0⊕1 0 = {0}, x⊕1 0 = 0⊕1 x = {x}, x⊕1 x = G0 r {x} for all

x ∈ G, x⊕1 y = {x, y} for all distinct x, y ∈ G, 0⊕2 0 = {0}, x⊕2 0 = 0⊕2 x =

{x}, x⊕2x = {x, 0} for all x ∈ G, x⊕2y = Gr{x, y} for all distinct x, y ∈ G and

x ·0 = 0 ·x = 0 for all x ∈ G0 ([1], p.170 and [3], p.76). For the Krasner hyperring

(G0,⊕2, ·), the condition that |G| > 3 must be assumed. The Krasner hyperring

(R/ρ,⊕, ∗) is defined from a commutative ring (R,+, ·) as follows: xρy ⇐⇒ x = y

or x = −y, xρ⊕yρ = {(x+y)ρ, (x−y)ρ} and xρ∗yρ = (xy)ρ for all x, y ∈ R ([3],

p.75). We characterize the elements of Hom(Z/ρ,⊕, ∗) and f ∈ Hom(Zn/ρ,⊕, ∗)

with f(0̄ρ) = 0̄ρ and f(1̄ρ) = 1̄ρ. The Krasner hyperring ([0,∞),⊕, ·) defined

in [4] is also considered in this chapter, i.e., x ⊕ x = [0, x] for all x ∈ [0,∞) and

x⊕y = {max{x, y}} for all distinct x, y ∈ [0,∞). We give necessary and sufficient

conditions for f : [0,∞)→ [0,∞) to be an element of Hom([0,∞),⊕, ·) and show

that Hom([0,∞),⊕, ·) must be an uncountable set.

In the last chapter, we study homomorphisms of some P-hyperrings. Let

(R,⊕P1 , ◦P2) denote the P-hyperring defined from a ring (R,+, ·) and nonempty

subsets P1, P2 of R, i.e., P1P2R ∪ RP2P1 ⊆ P1, x⊕P1 y = x+y+P1 and x◦P2 y =

xP2y for all x, y ∈ R ([1], p.179). For integers l and m, the set Hom(Z,+) ∩

Hom(Z,⊕lZ, ◦mZ) is investigated. We also determine when Hom(Zn,+) is a subset

of Hom(Zn,⊕lZn , ◦mZn). We also show that the sets Hom(Z,⊕lZ, ◦mZ)rHom(Z,+)
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and Hom(Zn,⊕lZn , ◦mZn)rHom(Zn,+) are nonempty for certain l,m.

The definitions and quoted results used in this research are provided in Chap-

ter I.



CHAPTER I

PRELIMINARIES

The cardinality of a set X is denoted by |X|.

The set of all integers, the set of all rational numbers and the set of all real

numbers are denoted by Z, Q and R, respectively. Let Z+ = {x ∈ Z | x > 0}. For

x, y ∈ Z and x 6= 0, x | y stands for “x divides y”. Recall that a positive integer

n is said to be square-free if there is no integer a > 1 such that a2 |n. Then n is

square-free if and only if either n = 1 or n is a product of distinct primes. For a

positive integer n, let Zn be the set of integers modulo n. The equivalence class

of x ∈ Z modulo n is denoted by x. Then

Zn = {x | x ∈ Z} = {0, 1, ..., n− 1}, |Zn| = n

and (Zn,+, ·) is a ring where x + y = x+ y and x · y = xy for all x, y ∈ Z. For

a ∈ Z, define ga : Z→ Z and ha : Zn → Zn by

ga(x) = ax and ha(x) = ax for all x ∈ Z.

If G is a group, let Hom(G) denote the set of all homomorphisms f : G → G.

Then

Hom(Z,+) = {ga | a ∈ Z} and Hom(Zn,+) = {ha | a ∈ Z}.

Since ga 6= gb if a 6= b and ha 6= hb if a 6= b, it follows that |Hom (Z,+)| = ℵ0

and |Hom(Zn,+)| = n. For a, b ∈ Z, not both 0, let (a, b) be the g.c.d. of a and

b. It is clearly seen that if n is square-free, then (a, n) = (ak, n) for all a, k ∈ Z

with k > 0.

We know that for I ⊆ Z, I is an ideal of the ring (Z,+, ·) if and only if I = mZ

for some m ∈ Z. Since x 7→ x is an epimorphism from the ring (Z,+, ·) onto the

ring (Zn,+, ·), it follows that for J ⊆ Zn, J is an ideal of the ring (Zn,+, ·) if and
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only if J = mZn for some m ∈ Z where mZn = {mx | x ∈ Z} = {mx | x ∈ Z}.

Notice that mZ = (−m)Z and mZn = (−m)Zn = mZn = Znm = Zm. We have

that

mZn = mZn = Zm,

mZn = (m,n)Zn =
{

0, (m,n), ...,
(

n
(m,n)

− 1
)
(m,n)

}
, |mZn| = n

(m,n)
,

Z =
m−1⋃
i=0

(i+mZ) if m > 0 and Zn =

(m,n)−1⋃
i=0

(̄i+ (m,n)Zn)

which are disjoint unions. We shall verify that the last statement holds. Since

(m,n)Zn is a subgroup of the group (Zn,+) and |Zn|
|(m,n)Zn| = n

n
(m,n)

= (m,n), it

follows that the index of (m,n)Zn in the group (Zn,+) is (m,n). Next, let i, j ∈

{0, 1, 2, ..., (m,n) − 1} be such that ī + (m,n)Zn = j̄ + (m,n)Zn. Then ī − j̄ =

(m,n)s̄ for some s ∈ Z. Thus i − j − (m,n)s = nt for some t ∈ Z, so i − j =

(m,n)s+ nt. Since (m,n) | ((m,n)s+ nt), we have that (m,n) | (i− j). It follows

that i− j = 0, so i = j. Hence the desired result follows.

A hyperoperation on a nonempty set H is a function ◦ : H×H → P(H)r{∅}

where P(H) is the power set of H. The value of (x, y) ∈ H × H under the

hyperoperation ◦ is denoted by x◦ y. The system (H, ◦) is called a hypergroupoid.

For nonempty subsets A,B of H and an element x of H, let

A ◦B =
⋃
a∈A
b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦ A = {x} ◦ A.

A hypergroupoid (H, ◦) is called a semihypergroup if

x ◦ (y ◦ z) = (x ◦ y) ◦ z for all x, y, z ∈ H.

A semihypergroup (H, ◦) is called a hypergroup if

H ◦ x = x ◦H = H for all x ∈ H.

Then semihypergroups and hypergroups generalize semigroups and groups,

respectively.

A multiplicative hyperring is a system (A,+, ◦) such that
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(1) (A,+) is an abelian group,

(2) (A, ◦) is a semihypergroup,

(3) for all x, y, z ∈ A, x ◦ (y + z) ⊆ x ◦ y + x ◦ z and (y + z) ◦ x ⊆ y ◦ x+ z ◦ x,

(4) for all x, y ∈ A, x ◦ (−y) = (−x) ◦ y = −(x ◦ y).

If in the condition (3), the equalities are valid, then the multiplicative hyperring

(A,+, ◦) is called strongly distributive.

Example 1.1. ([1], p.177) Let (R,+, ·) be a ring, I an ideal of R and ◦I the

hyperoperation defined on R by

x ◦I y = xy + I for all x, y ∈ R.

Then (R,+, ◦I) is a strongly distributive multiplicative hyperring.

Example 1.2. ([7]) Let (R,+, ·) be a ring and ∅ 6= P ⊆ R. Define

x ∗P y = xPy for all x, y ∈ R.

Then (R,+, ∗P ) is a multiplicative hyperring which is not necessarily strongly

distributive.

A Krasner hyperring is a system (A,⊕, ·) where

(1) (A,⊕) is a hypergroup such that

(1.1) x⊕ y = y ⊕ x for all x, y ∈ A,

(1.2) there is an element 0 ∈ A such that x⊕ 0 = {x} for all x ∈ A,

(1.3) for every element x ∈ A, there exists a unique element −x ∈ A such

that 0 ∈ x⊕ (−x),

(1.4) for x, y, z ∈ A, x ∈ y ⊕ z ⇒ y ∈ x⊕ (−z),

(2) (A, ·) is a semigroup having 0 in (1.2) as its zero,

(3) for all x, y, z ∈ A, x · (y ⊕ z) = x · y ⊕ x · z and (y ⊕ z) · x = y · x⊕ z · x.

The element 0 of A may be called the zero of the Krasner hyperring (A,⊕, ·).

Example 1.3. ([4]) Define the hyperoperation ⊕ on [0,∞) by

x⊕ y =

[0, x] if x = y,

{max{x, y}} if x 6= y.
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Then ([0,∞),⊕, ·) is Krasner hyperring.

From Example 1.3, we have that the multiplicative semigroup [0,∞) admits a

Krasner hyperring structure.

Example 1.4. ([1], p.170 and [3], p.76) Let (G, ·) be a group and G0 = G∪ {0}

where 0 is a symbol not representing any element of G.

(1) Let the hyperoperation ⊕1 be defined on G0 by

x⊕1 0 = 0⊕1 x = {x} for all x ∈ G0,

x⊕1 y =

{x, y} if x, y ∈ G and x 6= y,

G0 r {x} if x, y ∈ G and x = y.

Define

x · 0 = 0 · x = 0 for all x ∈ G0.

Then (G0,⊕1, ·) is a Krasner hyperring.

(2) Assume that |G| > 3. Define the hyperoperation ⊕2 on G0 as follows:

x⊕2 0 = 0⊕2 x = {x} for all x ∈ G0,

x⊕2 x = {x, 0} for all x ∈ G,

x⊕2 y = Gr {x, y} for all distinct x, y ∈ G.

Define

x · 0 = 0 · x = 0 for all x ∈ G0.

Then (G0,⊕2, ·) is a Krasner hyperring.

We can see from Example 1.4 that every group admits a Krasner hyperring struc-

ture.

Example 1.5. ([3], p.75) Let R be a commutative ring and ρ the equivalence

relation on R defined by

xρy ⇐⇒ x = y or x = −y.
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Then xρ = {x,−x} for all x ∈ R. Define the hyperoperation ⊕ and the operation

∗ on R/ρ by

xρ⊕ yρ = {(x+ y)ρ, (x− y)ρ},

xρ ∗ yρ = (xy)ρ for all x, y ∈ R.

It follows that (R/ρ,⊕, ∗) is a Krasner hyperring.

A V-S-hyperring is a triple (A,⊕, ◦) where

(1) (A,⊕) is a hypergroup,

(2) (A, ◦) is a semihypergroup,

(3) for all x, y, z ∈ A, x ◦ (y ⊕ z) ⊆ x ◦ y ⊕ x ◦ z and (y ⊕ z) ◦ x ⊆ y ◦ x⊕ z ◦ x.

Notice that multiplicative hyperrings and Krasner hyperrings are also V-S-

hyperrings.

Example 1.6. ([1], p.179) Let P1 and P2 be nonempty subsets of a ring R such

that RP2P1 ⊆ P1 and P1P2R ⊆ P1. Define the hyperoperations ⊕P1 and ◦P2 on R

by

x⊕P1 y = x+ y + P1 and x ◦P2 y = xP2y for all x, y ∈ R.

Then (R,⊕P1 , ◦P2) is a V-S-hyperring.

Notice that Example 1.2 is a special case of Example 1.6 with P1 = {0} and

P2 = P.

The V-S-hyperring defined in Example 1.6 is called a P-hyperring. Hence if

l,m ∈ Z, then (Z,⊕lZ, ◦mZ) and (Zn,⊕lZn , ◦mZn) are P-hyperrings defined from

the rings (Z,+, ·) and (Zn,+, ·), respectively.

A homomorphism of a semihypergroup (H, ◦) is a function f : H → H such

that

f(x ◦ y) ⊆ f(x) ◦ f(y) for all x, y ∈ H.

([1], p.12). Denote by Hom(H, ◦) the set of all homomorphisms of (H, ◦). By a

homomorphism of a V-S-hyperring (A,⊕, ◦) we mean a function f : A→ A such

that f is a homomorphism of both the hypergroup (A,⊕) and the semihypergroup
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(A, ◦). The set of all homomorphisms of the hyperring (A,⊕, ◦) is denoted by

Hom(A,⊕, ◦). Notice that Hom(A,⊕, ◦) = Hom(A,⊕) ∩ Hom(A, ◦), i.e.,

Hom(A,⊕, ◦) = {f : A→ A | f(x⊕ y) ⊆ f(x)⊕ f(y) and f(x ◦ y) ⊆

f(x) ◦ f(y) for all x, y ∈ A}.

In particular, for a multiplicative hyperring (A,+, ◦),

Hom(A,+, ◦) = {f : A→ A | f(x+ y) = f(x) + f(y) and f(x ◦ y) ⊆

f(x) ◦ f(y) for all x, y ∈ A}

and for a Krasner hyperring (A,⊕, ·),

Hom(A,⊕, ·) = {f : A→ A | f(x⊕ y) ⊆ f(x)⊕ f(y) and f(x · y) =

f(x) · f(y) for all x, y ∈ A}.

If G is a group, then Hom(G) is clearly a semigroup under composition. In

fact, Hom(A,⊕, ◦) is also a semigroup under composition. The identity mapping

on A is clearly an element of Hom(A,⊕, ◦). For f, g ∈ Hom(A,⊕, ◦) and x, y ∈ A,

we have that

(gf)(x⊕ y) = g(f(x⊕ y)) ⊆ g(f(x)⊕ f(y))

⊆ g(f(x))⊕ g(f(y))

= (gf)(x)⊕ (gf)(y)

and

(gf)(x ◦ y) = g(f(x ◦ y)) ⊆ g(f(x) ◦ f(y))

⊆ g(f(x)) ◦ g(f(y))

= (gf)(x) ◦ (gf)(y),

so gf ∈ Hom(A,⊕, ◦). Since F (A) is a semigroup under composition where F (A)

is the set of all functions from A into itself, it follows that Hom(A,⊕, ◦) is a

subsemigroup of F (A).

Recall that a monomorphism of a group G is a 1−1 homomorphism of G. We

let Mono(G) denote the set of all monomorphisms of G. Then Mono(G) is clearly

a subsemigroup of the semigroup Hom(G) under composition.
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Let φ denote the Euler-phi function, i.e., for a positive integer n, φ(n) is the

number of x ∈ {1, 2, 3, ..., n} relatively prime to n. Then

φ(n) = |{x | x ∈ {1, 2, 3, ..., n} and (x, n) = 1}|.

It is well-known that for a ∈ Z, ā is a generator of the group(Zn,+) if and only if

(a, n) = 1, i.e., for a ∈ Z,Zā = Zn if and only if (a, n) = 1. Then the number of

all generators of (Zn,+) is φ(n).

An element a of a semigroup S is called an idempotent if a2 = a. If f : S → S
′

is a semigroup homomorphism and a is an idempotent of S, then f(a) is clearly

an idempotent of S
′
.

Note that in the Krasner hyperring (R/ρ,⊕, ∗) in Example 1.5, 0ρ is an idem-

potent of the semigroup (R/ρ, ∗). If R has an identity 1, then 1ρ is also an idem-

potent of (R/ρ, ∗). From the definition of ρ, we can check that in the Krasner

hyperring (Z6/ρ,⊕, ∗), every element of Z6/ρ is an idempotent of the semigroup

(Z6/ρ, ∗).



CHAPTER II

HOMOMORPHISMS OF MULTIPLICATIVE

HYPERRINGS

This chapter is concerned with the strongly distributive multiplicative hyper-

rings (Z,+, ◦mZ) and (Zn,+, ◦mZn) defined as in Example 1.1. By the definitions,

Hom(Z,+, ◦mZ) ⊆ Hom(Z,+) and Hom(Zn,+, ◦mZn) ⊆ Hom(Zn,+). Our pur-

pose is to give characterizations determining when Hom(Z,+, ◦mZ) = Hom(Z,+)

and Hom(Zn,+, ◦mZn) = Hom(Zn,+) hold. We show that Hom(Z,+, ◦mZ) is an

infinite set if m > 0, |Hom(Zn,+, ◦mZn)|≥ 2n
(m,n)

when (m,n) > 1 and the equality

holds if (m,n) is a prime power.

Notice that (−m)Z = mZ, (−m)Zn = mZn, (Z,+, ◦0Z) = (Z,+, ·) and

(Zn,+, ◦0Zn) = (Zn,+, ·). We know that Hom(Z,+, ·) = {g0, g1}. Hence Hom

(Z,+, ◦0Z) 6= Hom(Z,+). We have that, Hom(Zn,+, ·) = {hā | a ∈ Z and

ā = ā2}. To see this, let f ∈ Hom(Zn,+, ·). Then f ∈ Hom(Zn,+), so f = hā for

some a ∈ {0, 1, 2, ..., n− 1}. Thus

ā = hā(1̄) = hā(1̄ · 1̄) = hā(1̄)hā(1̄) = āā = ā2.

If a ∈ {0, 1, 2, ..., n− 1} such that ā = ā2, then for all x, y ∈ Z,

hā(x̄ȳ) = ā(x̄ȳ) = ā2(x̄ȳ) = (āx̄)(āȳ) = hā(x̄)hā(ȳ).

Thus hā ∈ Hom(Zn,+, ·). Hence we have

Hom(Zn,+, ·) = {hā | a ∈ Z and ā = ā2}.

We can see that 2̄ 6= 2̄2 in Zn for all n ≥ 3. It is evident that if n = 1 or n = 2,

then Hom(Zn,+, ◦0Zn) = Hom(Zn,+). Consequently,

Hom(Zn,+, ◦0Zn) = Hom(Zn,+)⇐⇒ n = 1 or n = 2.

Throughout this chapter, let m be a positive integer. In fact, the results

obtained in Section 2.2 are valid when m = 0 since (0, n) = n > 0.
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2.1 Multiplicative Hyperrings Defined from the Ring

(Z,+, ·) and Its Ideals

In this section, we deal with the homomorphisms of the multiplicative hyperring

(Z,+, ◦mZ). Recall that x ◦mZ y = xy +mZ for all x, y ∈ Z.

The following three lemmas are needed.

Lemma 2.1.1. For a ∈ Z, ga ∈ Hom(Z,+, ◦mZ) if and only if m |(a2 − a).

Proof. Assume that ga ∈ Hom(Z,+, ◦mZ). Then ga(1 ◦mZ 1) ⊆ ga(1) ◦mZ ga(1),

so

a+ amZ = a(1 +mZ)

= a(1 · 1 +mZ)

= ga(1 ◦mZ 1)

⊆ ga(1) ◦mZ ga(1)

= a ◦mZ a

= a2 +mZ.

This implies that a = a2 +mt for some t ∈ Z. Thus m |(a2 − a).

Conversely, assume that m |(a2 − a). Then a2 − a = mt for some t ∈ Z, so

a = a2 −mt. Thus for all x, y ∈ Z,

ga(x ◦mZ y) = ga(xy +mZ)

= a(xy +mZ)

= axy + amZ

= (a2 −mt)xy + amZ

⊆ a2xy +mZ + amZ

= a2xy +mZ

= (ax)(ay) +mZ

= ga(x)ga(y) +mZ

= ga(x) ◦mZ ga(y).

Hence ga ∈ Hom(Z,+, ◦mZ), as desired.
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Lemma 2.1.2. { ga | a ∈ mZ ∪ (mZ + 1)} ⊆ Hom(Z,+, ◦mZ).

Proof. If a ∈ mZ∪ (mZ + 1), then m | a or m |(a− 1), so m |(a2− a). By Lemma

2.1.1, the result follows.

Lemma 2.1.3. If m > 2, then { ga | a ∈ mZ+2} ⊆ Hom(Z,+)rHom(Z,+, ◦mZ).

Proof. Assume that m > 2 and let a ∈ mZ + 2. Then a = mk + 2 for some

k ∈ Z. But

a2 − a = m2k2 + 3mk + 2,

so m - (a2 − a). By Lemma 2.1.1, ga /∈ Hom(Z,+, ◦mZ). Hence the desired result

follows.

Theorem 2.1.4. The following statements hold.

(i) Hom(Z,+, ◦mZ) is infinite.

(ii) Hom(Z,+, ◦mZ) = Hom(Z,+) if and only if m ≤ 2.

(iii) If m > 2, then Hom(Z,+) r Hom(Z,+, ◦mZ) is infinite.

(iv) If m is a prime power, then

Hom(Z,+, ◦mZ) = { ga | a ∈ mZ ∪ (mZ + 1)}.

Proof. (i) Since ga 6= gb if a 6= b in Z, (i) follows from Lemma 2.1.2.

(ii) If m > 2, then by Lemma 2.1.3, Hom(Z,+) r Hom(Z,+, ◦mZ) 6= ∅, so

Hom(Z,+, ◦mZ) 6= Hom(Z,+). This shows that if Hom(Z,+, ◦mZ) = Hom(Z,+),

then m ≤ 2.

Assume that m ≤ 2. Then mZ∪ (mZ+1) = Z. It follows that { ga | a ∈ mZ∪

(mZ + 1)} = Hom(Z,+). Hence by Lemma 2.1.2, Hom(Z,+) ⊆ Hom(Z,+, ◦mZ).

But Hom(Z,+, ◦mZ) ⊆ Hom(Z,+), so Hom(Z,+, ◦mZ) = Hom(Z,+).

(iii) follows directly from Lemma 2.1.3.

(iv) Assume that m is a prime power. Let a ∈ Z be such that ga ∈

Hom(Z,+, ◦mZ). By Lemma 2.1.1, m | (a2−a). Since a2−a = a(a−1), and a and

a− 1 are relatively prime, we have that m | a or m | (a− 1). Therefore a ∈ mZ or



14

a− 1 ∈ mZ. Hence a ∈ mZ∪ (mZ + 1). This shows that Hom(Z,+, ◦mZ) ⊆ { ga |

a ∈ mZ ∪ (mZ + 1)}. This implies by Lemma 2.1.2 that Hom(Z,+, ◦mZ) = { ga |

a ∈ mZ ∪ (mZ + 1)}.

Remark 2.1.5. Since Hom(Z,+, ◦mZ) ⊆ Hom(Z,+), Hom(Z,+, ◦mZ) is infinite

by Theorem 2.1.4(i) and |Hom(Z,+)| = ℵ0, it follows that |Hom(Z,+, ◦mZ)| = ℵ0.

Example 2.1.6. By Theorem 2.1.4(iv),

Hom(Z,+, ◦4Z) = { ga | a ∈ 4Z ∪ (4Z + 1)}

and hence

Hom(Z,+) r Hom(Z,+, ◦4Z) = { ga | a ∈ (4Z + 2) ∪ (4Z + 3)}.

2.2 Multiplicative Hyperrings Defined from the Ring

(Zn,+, ·) and Its Ideals

In this section, the homomorphisms of the multiplicative hyperring (Zn,+, ◦mZn)

are considered. Let us recall that x̄ ◦mZn ȳ = x̄ȳ +mZn for all x, y ∈ Z.

First, the following three lemmas are provided.

Lemma 2.2.1. For a ∈ Z, hā ∈ Hom (Zn ,+ , ◦mZn) if and only if (m,n)|

(a2 − a).

Proof. Assume that hā ∈ Hom(Zn,+, ◦mZn). Then

ā+ amZn = ā(1̄ · 1̄ +mZn)

= ā(1̄ ◦mZn 1̄)

= hā(1̄ ◦mZn 1̄)

⊆ hā(1̄) ◦mZn hā(1̄)

= ā ◦mZn ā

= ā2 +mZn

= ā2 + (m,n)Zn,
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so ā− ā2 = (m,n)s̄ for some s ∈ Z. Hence a− a2 − (m,n)s = nt for some t ∈ Z.

Thus a− a2 = (m,n)s+ nt. But (m,n) | ((m,n)s+ nt), so (m,n) | (a2 − a).

For the converse, assume that (m,n) | (a2−a). Then a2−a = (m,n)s for some

s ∈ Z, so a = a2 − (m,n)s. If x, y ∈ Z, then

hā(x̄ ◦mZn ȳ) = hā(xy +mZn)

= ā(xy +mZn)

= axy + amZn

= (a2 − (m,n)s)xy + amZn

= a2xy − (m,n)sxy + amZn

⊆ a2xy + (m,n)Zn + amZn

= a2xy +mZn + amZn

= a2xy +mZn

= ax ay +mZn

= hā(x̄)hā(ȳ) +mZn

= hā(x̄) ◦mZn hā(ȳ).

Hence hā ∈ Hom(Zn,+, ◦mZn).

Lemma 2.2.2. {hā | a ∈ (m,n)Z ∪ ((m,n)Z + 1)} ⊆ Hom(Zn,+, ◦mZn).

Proof. If a ∈ (m,n)Z ∪ ((m,n)Z + 1), then (m,n) | a or (m,n) | (a − 1), thus

(m,n) | (a2 − a). Hence by Lemma 2.2.1, the result follows.

Lemma 2.2.3. If (m,n) > 2, then {hā | a ∈ (m,n)Z + 2} ⊆ Hom(Zn,+) r

Hom(Zn,+, ◦mZn).

Proof. If (m,n) > 2 and a ∈ (m,n)Z + 2, then a = (m,n)k + 2 for some k ∈ Z,

so

a2 − a = (m,n)2k2 + 3(m,n)k + 2



16

which is not divisible by (m,n), so by Lemma 2.2.1, hā /∈ Hom(Zn,+, ◦mZn), i.e.,

hā ∈ Hom(Zn,+) r Hom(Zn,+, ◦mZn), so the result follows.

Theorem 2.2.4. The following statements hold.

(i) If (m,n) > 1, then |Hom(Zn,+, ◦mZn)| ≥ 2n
(m,n)

.

(ii) Hom(Zn,+, ◦mZn) = Hom(Zn,+) if and only if (m,n) ≤ 2.

(iii) If (m,n) > 2, then |Hom(Zn,+) r Hom(Zn,+, ◦mZn)| ≥ n
(m,n)

.

(iv) If (m,n) is a prime power, then

Hom(Zn,+, ◦mZn) = {hā | a ∈ (m,n)Z ∪ ((m,n)Z + 1)}

and hence |Hom(Zn,+, ◦mZn)| = 2n
(m,n)

.

Proof. (i) Assume that (m,n) > 1. Then |(m,n)Zn| = n
(m,n)

< n. This implies

that (m,n)Zn ∩ ((m,n)Zn + 1) = ∅. Since hā 6= hb̄ for all distinct ā, b̄ ∈ Zn, it

follows that

|Hom(Zn,+, ◦mZn)| ≥ |{hā | a ∈ (m,n)Z ∪ ((m,n)Z + 1)}|

= |{hā | a ∈ Z and ā ∈ (m,n)Zn ∪ ((m,n)Zn + 1̄)}|

= |(m,n)Zn|+ |(m,n)Zn + 1̄|

=
n

(m,n)
+

n

(m,n)
=

2n

(m,n)
.

(ii) If (m,n) > 2, then by Lemma 2.2.3, Hom(Zn,+)rHom(Zn,+, ◦mZn) 6= ∅,

so Hom(Zn,+, ◦mZn) 6= Hom(Zn,+). Hence if Hom(Zn,+, ◦mZn) = Hom(Zn,+),

then (m,n) ≤ 2.

Assume that (m,n) ≤ 2. Then (m,n)Z∪ ((m,n)Z+ 1) = Z. This implies that

{hā| a ∈ (m,n)Z ∪ ((m,n)Z + 1)} = Hom(Zn,+). Therefore by Lemma 2.2.2, we

have that Hom(Zn,+, ◦mZn) = Hom(Zn,+).

(iii) Assume that (m,n) > 2. Then
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|Hom(Zn,+) r Hom(Zn,+, ◦mZn)|

≥ |{hā| a ∈ (m,n)Z + 2}| by Lemma 2.2.3

= |{hā| a ∈ Z and ā ∈ (m,n)Zn + 2̄}|

= |(m,n)Zn + 2̄|

= |(m,n)Zn| =
n

(m,n)
.

(iv) Let (m,n) be a prime power and a ∈ Z such that hā ∈ Hom(Zn, +, ◦mZn).

By Lemma 2.2.1, (m,n) | (a2 − a). But a2 − a = a(a− 1) and (a, a− 1) = 1, so

(m,n) | a or (m,n) | (a − 1). Thus a ∈ (m,n)Z ∪ ((m,n)Z + 1). This shows that

Hom(Zn,+, ◦mZn) ⊆ {hā | a ∈ (m,n)Z ∪((m,n)Z+1) }. Hence by Lemma 2.2.2,

we have that Hom(Zn,+, ◦mZn) = {hā | a ∈ (m,n)Z ∪ ((m,n)Z + 1)}.

Remark 2.2.5. If (m,n) = 1, then by Theorem 2.2.4(ii), |Hom(Zn,+, ◦mZn)| =

n < 2n
(m,n)

. Therefore the condition that (m,n) > 1 in Theorem 2.2.4(i) can not be

omitted.

If (m,n) is a prime power, then by Theorem 2.2.4(iv), |Hom(Zn,+, ◦mZn)| =

2n
(m,n)

. This shows that 2n
(m,n)

is the most suitable number for the inequality in

Theorem 2.2.4(i).

Example 2.2.6. By Theorem 2.2.4(iv), |Hom(Z20,+, ◦4Z20)| =
2× 20

(4, 20)
= 10 and

Hom(Z20,+, ◦4Z20) = {hā | a ∈ 4Z ∪ (4Z + 1)}

= {hā | a ∈ Z and ā ∈ 4Z20 ∪ (4Z20 + 1̄)}

= {h0̄, h4̄, h8̄, h12, h16, h1̄, h5̄, h9̄, h13, h17}.

Thus

Hom(Z20,+) r Hom(Z20,+, ◦4Z20) = {h2̄, h3̄, h6̄, h7̄, h10, h11, h14, h15, h18, h19}.

It follows from Theorem 2.2.4(i) and (iii) that

|Hom(Z18,+, ◦6Z18)| ≥
2× 18

(6, 18)
= 6
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and

|Hom(Z18,+) r Hom(Z18,+, ◦6Z18)| ≥
18

(6, 18)
= 3.

From Lemma 2.2.2 and Lemma 2.2.3, we have respectively that

Hom(Z18,+, ◦6Z18) ⊇ {hā | a ∈ 6Z ∪ (6Z + 1)}

= {hā | a ∈ Z and ā ∈ 6Z18 ∪ (6Z18 + 1̄)}

= {h0̄, h6̄, h12, h1̄, h7̄, h13 },

Hom(Z18,+) r Hom(Z18,+, ◦6Z18) ⊇ {hā | a ∈ 6Z + 2}

= {hā | a ∈ Z and ā ∈ 6Z18 + 2̄}

= {h2̄, h8̄, h14 }.

Let us consider hā where a ∈ (6Z + 3) ∪ (6Z + 4) ∪ (6Z + 5). If k ∈ Z, then

6 | (6k + 3)2 − (6k + 3), 6 | (6k + 4)2 − (6k + 4) and 6 - (6k + 5)2 − (6k + 5),

so by Lemma 2.2.1,

{hā | a ∈ (6Z + 3) ∪ (6Z + 4)} ⊆ Hom(Z18,+, ◦6Z18)

and

{hā | a ∈ 6Z + 5} ⊆ Hom(Z18,+) r Hom(Z18,+, ◦6Z18).

Consequently,

Hom(Z18,+, ◦6Z18) = {hā | a ∈ 6Z ∪ (6Z + 1) ∪ (6Z + 3) ∪ (6Z + 4)}

= {h0̄, h6̄, h12, h1̄, h7̄, h13, h3̄, h9̄, h15, h4̄, h10, h16},

|Hom(Z18,+, ◦6Z18)| = 12,

Hom(Z18,+) r Hom(Z18,+, ◦6Z18) = {hā | a ∈ (6Z + 2) ∪ (6Z + 5)}

= {h2̄, h8̄, h14, h5̄, h11, h17},

|Hom(Z18,+) r Hom(Z18,+, ◦6Z18)| = 6.



CHAPTER III

HOMOMORPHISMS OF KRASNER HYPERRINGS

In this chapter we deal with homomorphisms of the Krasner hyperrings defined

in Example 1.3, Example 1.4 and in Example 1.5 when R = (Z,+, ·) and R =

(Zn,+, ·). Notice that the zero mapping on a Krasner hyperring (A,⊕, ·) is clearly

a homomorphism of (A,⊕, ·). We characterize the elements of Hom(G0,⊕1, ·) and

Hom(G0,⊕2, ·) where the Krasner hyperrings (G0,⊕1, ·) and (G0,⊕2, ·) defined

from a group (G, ·) in Example 1.4(1) and Example 1.4(2), respectively. The

elements of Hom(Z/ρ,⊕, ∗) and the elements of Hom(Zn/ρ,⊕, ∗) fixing 0̄ρ and 1̄ρ

are characterized where (Z/ρ,⊕, ∗) and (Zn/ρ,⊕, ∗) are the Krasner hyperrings

defined as in Example 1.5. Finally we give necessary and sufficient conditions

for f : [0,∞) → [0,∞) to be an element of Hom([0,∞),⊕, ·) and show that the

set Hom([0,∞),⊕, ·) is uncountable where ([0,∞),⊕, ·) is the Krasner hyperring

defined in Example 1.3.

3.1 Krasner Hyperrings Defined from Groups

Let G be a group and recall the definitions of the Krasner hyperrings (G0,⊕1, ·)

and (G0,⊕2, ·) as follows:

x⊕1 0 = 0⊕1 x = {x} for all x ∈ G0,

x⊕1 y =

{x, y} if x, y ∈ G and x 6= y,

G0 r {x} if x, y ∈ G and x = y,

x⊕2 0 = 0⊕2 x = {x} for all x ∈ G0,

x⊕2 x = {x, 0} for all x ∈ G,

x⊕2 y = Gr {x, y} for all distinct x, y ∈ G
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and

x · 0 = 0 · x = 0 for all x ∈ G0.

Let e be the identity of the group G.

To characterize the elements of Hom(G0,⊕1, ·), we first show that every ele-

ment of Hom(G0,⊕1, ·) fixes the element 0.

Lemma 3.1.1. If f ∈ Hom(G0,⊕1, ·), then f(0) = 0.

Proof. Assume that f ∈ Hom(G0,⊕1, ·). Suppose that f(0) 6= 0. Then f(0) ∈ G,

so

{f(0)} = f({0}) = f(0⊕1 0) ⊆ f(0)⊕1 f(0) = G0 r {f(0)}

which is a contradiction. Thus f(0) = 0.

Theorem 3.1.2. For f : G0 → G0, f ∈ Hom(G0,⊕1, ·) if and only if either

(i) f is the zero mapping on (G0,⊕1, ·) or

(ii) f |G ∈ Mono(G) and f(0) = 0.

Proof. Assume that f ∈ Hom(G0,⊕1, ·). From Lemma 3.1.1, f(0) = 0.

Case 1: f(a) = 0 for some a ∈ G. Then

f(G0 r {a}) = f(a⊕1 a) ⊆ f(a)⊕1 f(a) = 0⊕1 0 = {0}.

Thus f(x) = 0 for all x ∈ G0, i.e., f satisfies (i).

Case 2: f(a) 6= 0 for all a ∈ G. Then f(G) ⊆ G. Since f ∈ Hom(G0, ·), it

follows that f |G ∈ Hom(G). Next, to show that f is 1-1, let x, y ∈ G be such that

x 6= y. Suppose that f(x) = f(y). Then

{f(x)} = {f(x), f(y)} = f({x, y}) = f(x⊕1 y) ⊆ f(x)⊕1 f(y) = G0 r {f(x)},

a contradiction. Thus f(x) 6= f(y). Hence f ∈ Mono(G), so f satisfies (ii).

Conversely, assume that f satisfies (i) or (ii). If f satisfies (i), then f ∈

Hom(G0,⊕1, ·). Next, assume that f satisfies (ii). Since f(0) = 0 and f |G ∈

Hom(G), it is clear that f ∈ Hom(G0, ·). Next we show that f ∈ Hom(G0,⊕1).

We have that
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f(0⊕1 0) = f({0}) = {0} = 0⊕1 0 = f(0)⊕1 f(0)

and for every x ∈ G,

f(x⊕1 0) = f({x}) = {f(x)} = f(x)⊕1 0 = f(x)⊕1 f(0).

Since f(G) ⊆ G, f(0) = 0 and f is 1− 1, it follows that for x ∈ G,

f(x⊕1 x) = f(G0 r {x}) = {f(t) | t ∈ G0 r {x}}

⊆ G0 r {f(x)}

= f(x)⊕1 f(x).

It remains to show that for distinct x, y ∈ G, f(x⊕1 y) ⊆ f(x)⊕1 f(y). If x, y ∈ G

are distinct, then f(x) 6= f(y) since f is 1− 1, so

f(x⊕1 y) = f({x, y}) = {f(x), f(y)} = f(x)⊕1 f(y).

This shows that f ∈ Hom(G0,⊕1), so f ∈ Hom(G0,⊕1, ·), as desired.

The proof is thereby complete.

For each f ∈ Hom(G), let f̄ : G0 → G0 be defined by

f̄(0) = 0 and f̄(x) = f(x) for all x ∈ G.

The following corollary is a direct consequence of Theorem 3.1.2.

Corollary 3.1.3. Hom(G0,⊕1, ·) = {f̄ | f ∈ Mono(G)} ∪ {the zero mapping on

(G0,⊕1, ·)}

Example 3.1.4. (1) For each odd positive integer n, let fn : R→ R be defined

by

fn(x) = xn for all x ∈ R.

Then fn|Rr{0} ∈ Mono(R r {0}, ·) and fn(0) = 0 for every odd positive integer n.

It follows that

{fn | n is an odd positive integer } ⊆ Hom(R,⊕1, ·).
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Here we let (Rr{0})0 = R. This implies that Hom(R,⊕1, ·) is an infinite set. We

obtain similarly that Hom(F,⊕1, ·) is an infinite set for every subfield F of R.

(2) Let θ be a symbol not representing any element of Z and define

x+ θ = θ + x = θ for all x ∈ Z ∪ {θ}.

We can see that

Mono(Z,+) = {ga | a ∈ Z r {0}}.

Let µ : Z∪{θ} → Z∪{θ} be defined by µ(x) = θ for all x ∈ Z∪{θ}. By Corollary

3.1.3, we have that

Hom(Z ∪ {θ},⊕1,+) = {ḡa | a ∈ Z r {0}} ∪ {µ},

and hence |Hom(Z ∪ {θ},⊕1,+)| = ℵ0.

(3) Define

x̄+ θ = θ + x̄ = θ for all x̄ ∈ Zn ∪ {θ}

where θ is a symbol not representing any element of Zn and define λ : Zn∪{θ} →

Zn ∪ {θ} by λ(x̄) = θ for all x̄ ∈ Zn ∪ {θ}. We have that

Mono(Zn,+) = {hā | a ∈ Z and hā is 1− 1}

= {hā | a ∈ Z and hā(Zn) = Zn}

= {hā | a ∈ Z and āZn = Zn}

= {hā | a ∈ Z and Zā = Zn}

= {hā | a ∈ Z and (a, n) = 1}.

It follows from Corollary 3.1.3 that

Hom(Zn ∪ {θ},⊕1,+) = {hā | a ∈ Z and (a, n) = 1} ∪ {λ}.

Hence

|Hom(Zn ∪ {θ},⊕1,+)| = φ(n) + 1.

For example,

Hom(Z12 ∪ {θ},⊕1,+) = {h1̄, h5̄, h7̄, h11, λ}.

The next theorem characterizes the homomorphisms of the Krasner hyperring

(G0,⊕2, ·).
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Theorem 3.1.5. For f : G0 → G0, f ∈ Hom(G0,⊕2, ·) if and only if one of the

following statements hold.

(i) f is the zero mapping on (G0,⊕2, ·).

(ii) f(x) = e for all x ∈ G0.

(iii) f(0) = 0 and f(x) = e for all x ∈ G.

(iv) f |G ∈ Mono(G) and f(0) = 0.

Proof. Assume that f ∈ Hom(G0,⊕2, ·).

Case 1: 0 ∈ f(G). Then f(a) = 0 for some a ∈ G. Since

{0} = f({a}) = f(a⊕2 0) ⊆ f(a)⊕2 f(0) = 0⊕2 f(0) = {f(0)},

we have that f(0) = 0. To show that f is the zero mapping on (G0,⊕2, ·), let

x ∈ Gr {a}. Since

f(a⊕2 x) = f(Gr {a, x}) = {f(t) | t ∈ Gr {a, x}},

f(a)⊕2 f(x) = 0⊕2 f(x) = {f(x)}

and
f(a⊕2 x) ⊆ f(a)⊕2 f(x),

it follows that f(Gr {a}) = {f(x)}. If y ∈ Gr {e}, then ay ∈ Gr {a}, so

f(x) = f(ay) = f(a)f(y) = 0 · f(y) = 0.

This shows that f(t) = 0 for all t ∈ G0, so f satisfies (i).

Case 2: 0 /∈ f(G0). Then f(0) ∈ G. If x ∈ G0, then

e = f(0)−1f(0) = f(0)−1f(0 · x) = f(0)−1f(0)f(x) = f(x).

This shows that f satisfies (ii).

Case 3: 0 /∈ f(G) and 0 ∈ f(G0). Then f(0) = 0 and f(G) ⊆ G. Thus

f |G ∈ Hom(G), so f(e) = e. If f |G is 1 − 1, then f satisfies (iv). Next, assume

that f |G is not 1−1. Then there exists an element a ∈ Gr{e} such that f(a) = e.

Since

f(e⊕2 a) = f(Gr {e, a}) = {f(t) | t ∈ Gr {e, a}},
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f(e)⊕2 f(a) = e⊕2 e = {e, 0}

and
f(e⊕2 a) ⊆ f(e)⊕2 f(a),

it follows that f(Gr{a}) ⊆ {e, 0}. But f(G) ⊆ G, so f(Gr{a}) = {e} = {f(a)}.

Hence f(x) = e for all x ∈ G, so f satisfies (iii).

Conversely, assume that f satisfies (i), (ii), (iii) or (iv). If f satisfies (i), then

f ∈ Hom(G0,⊕2, ·). Assume that f satisfies (ii). Then for x, y ∈ G0,

f(x⊕2 y) = {e} ⊆ {e, 0} = e⊕2 e = f(x)⊕2 f(y),

f(xy) = e = ee = f(x)f(y).

Thus f ∈ Hom(G0,⊕2, ·).

Next, assume that f satisfies (iii), i.e., f(0) = 0 and f(G) = {e}. We have

that

f(0⊕2 0) = f({0}) = {0} = 0⊕2 0 = f(0)⊕2 f(0)

and for all x ∈ G,

f(x⊕2 0) = f({x}) = {f(x)} = f(x)⊕2 0 = f(x)⊕2 f(0)

and

f(x⊕2 x) = f({x, 0}) = {f(x), f(0)} = {f(x), 0} = f(x)⊕2 f(x).

If x, y ∈ G are distinct, then

f(x⊕2 y) = f(Gr {x, y}) = {e} ⊆ {e, 0} = e⊕2 e = f(x)⊕2 f(y).

This proves that f ∈ Hom(G0,⊕2). It is clear that f ∈ Hom(G0, ·). Hence f ∈

Hom(G0,⊕2, ·).

Finally, assume that f satisfies (iv), i.e., f |G ∈ Mono(G) and f(0) = 0. Since

f |G ∈ Hom(G) and f(0) = 0, it follows that f ∈ Hom(G0, ·). We have that

f(0⊕2 0) = f({0}) = {0} = 0⊕2 0 = f(0)⊕2 f(0)
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and for all x ∈ G,

f(x⊕2 0) = f({x}) = {f(x)} = f(x)⊕2 0 = f(x)⊕2 f(0)

and

f(x⊕2 x) = f({x, 0}) = {f(x), f(0)} = {f(x), 0} = f(x)⊕2 f(x).

Let x, y ∈ G be distinct. Since f |G is 1-1, we have that

f(x⊕2 y) = f(Gr {x, y}) = {f(t) | t ∈ Gr {x, y}}

= f(G) r {f(x), f(y)}

⊆ Gr {f(x), f(y)}

= f(x)⊕2 f(y).

Hence f ∈ Hom(G0,⊕2, ·).

Therefore the proof is complete.

3.2 The Krasner Hyperring Defined from the Ring (Z,+, ·)

and an Equivalence Relation

The elements of Hom(Z/ρ,⊕, ∗) are investigated in this section. Recall that

xρy ⇐⇒ x = y or x = −y,

xρ⊕ yρ = {(x+ y)ρ, (x− y)ρ},

xρ ∗ yρ = (xy)ρ for all x, y ∈ Z.

First, we give the following series of lemmas.

Lemma 3.2.1. If f ∈ Hom(Z/ρ,⊕), then f(0ρ) = 0ρ.

Proof. Assume that f ∈ Hom(Z/ρ,⊕). Let f(0ρ) = aρ for some a ∈ Z. Since

f(0ρ⊕ 0ρ) = f({0 + 0)ρ, (0− 0)ρ})

= f({0ρ})

= {aρ},
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we have that

aρ ∈ f(0ρ⊕ 0ρ) ⊆ f(0ρ)⊕ f{0ρ)

= aρ⊕ aρ

= {(a+ a)ρ, (a− a)ρ}

= {(2a)ρ, 0ρ}.

Then aρ = (2a)ρ or aρ = 0ρ. If aρ = (2a)ρ, then a = 2a or a = −2a which implies

that a = 0, so the desired result follows.

Lemma 3.2.2. If f ∈ Hom(Z/ρ, ∗), then f(1ρ) = 0ρ or f(1ρ) = 1ρ.

Proof. Let f(1ρ) = bρ for some b ∈ Z. Then

bρ = f(1ρ) = f(1ρ ∗ 1ρ) = f(1ρ) ∗ f(1ρ) = bρ ∗ bρ = b2ρ.

Thus b = b2 or b = −(b2), so b = 0 or 1 or −1. Since 1ρ = −1ρ, we have that

f(1ρ) = 0ρ or f(1ρ) = 1ρ.

Lemma 3.2.3. If f ∈ Hom(Z/ρ, ∗) and f(1ρ) = 0ρ, then f is the zero mapping

on (Z/ρ,⊕, ∗).

Proof. If x ∈ Z, then

f(xρ) = f((x · 1)ρ) = f(xρ ∗ 1ρ) = f(xρ) ∗ f(1ρ) = f(xρ) ∗ 0ρ = 0ρ.

Hence f(xρ) = 0ρ for all x ∈ Z, i.e., f is the zero mapping on (Z/ρ,⊕, ∗).

Lemma 3.2.4. If f ∈ Hom(Z/ρ,⊕, ∗) and f(1ρ) = 1ρ, then either

(i) f is the identity mapping on Z/ρ or

(ii) f(xρ) =

0ρ if x is even,

1ρ if x is odd.

Proof. It follows from the assumption that

f(2ρ) ∈ f(1ρ⊕ 1ρ) ⊆ f(1ρ)⊕ f(1ρ) = 1ρ⊕ 1ρ = {2ρ, 0ρ}.

Case 1: f(2ρ) = 0ρ. Then for x ∈ Z,
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f(2xρ) = f(2ρ ∗ xρ) = f(2ρ) ∗ f(xρ) = 0ρ ∗ f(xρ) = 0ρ

and

f((2x+ 1)ρ) ∈ f(2xρ⊕ 1ρ) ⊆ f(2xρ)⊕ f(1ρ) = 0ρ⊕ 1ρ = {1ρ}.

Hence f(xρ) =

0ρ if x is even,

1ρ if x is odd,

so f satisfies (ii).

Case 2: f(2ρ) = 2ρ. Since

f(3ρ) ∈ f(2ρ⊕ 1ρ) ⊆ f(2ρ)⊕ f(1ρ) = 2ρ⊕ 1ρ = {3ρ, 1ρ},

we have that either f(3ρ) = 3ρ or f(3ρ) = 1ρ. We also have that

f(4ρ) = f(2ρ ∗ 2ρ) = f(2ρ) ∗ f(2ρ) = 2ρ ∗ 2ρ = 4ρ.

To show that f(3ρ) = 3ρ, suppose that f(3ρ) = 1ρ. Then we have

4ρ = f(4ρ) ∈ f(3ρ⊕ 1ρ) ⊆ f(3ρ)⊕ f(1ρ) = 1ρ⊕ 1ρ = {2ρ, 0ρ}

which is a contradiction since f(4ρ) = 4ρ. Thus f(3ρ) = 3ρ.

Assume that k ≥ 4 and f(xρ) = xρ for all x ∈ {0, 1, 2, ..., k}.

Subcase 2.1: k + 1 is even. Then k + 1 = 2a for some a ∈ Z+. Thus a < k.

Then f(aρ) = aρ. Hence

f((k+ 1)ρ) = f((2a)ρ) = f(2ρ∗aρ) = f(2ρ)∗ f(aρ) = 2ρ∗aρ = (2a)ρ = (k+ 1)ρ.

Subcase 2.2: k + 1 is odd. Then (k + 1) + 1 is even, so (k + 1) + 1 = 2b for

some b ∈ Z+. Thus b < k, so f(bρ) = bρ. It follows that

f(((k + 1) + 1)ρ) = f((2b)ρ) = f(2ρ ∗ bρ)

= f(2ρ) ∗ f(bρ)

= 2ρ ∗ bρ

= 2bρ

= ((k + 1) + 1)ρ.
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Since

f((k + 1)ρ) ∈ f(kρ⊕ 1ρ) ⊆ f(kρ)⊕ f(1ρ)

= kρ⊕ 1ρ

= {(k + 1)ρ, (k − 1)ρ},

we have that f((k + 1)ρ) = (k + 1)ρ or f((k + 1)ρ) = (k − 1)ρ. Suppose that

f((k + 1)ρ) = (k − 1)ρ. Then

((k + 1) + 1)ρ = f(((k + 1) + 1)ρ) ∈ f((k + 1)ρ⊕ 1ρ)

⊆ f((k + 1)ρ)⊕ f(1ρ)

= (k − 1)ρ⊕ 1ρ

= {kρ, (k − 2)ρ}

which is a contradiction. Thus f((k + 1)ρ) = (k + 1)ρ.

Hence f(xρ) = xρ for all x ∈ Z+∪{0}. Since xρ = −xρ for all x ∈ Z, f(xρ) =

xρ for all x ∈ Z, so f satisfies (i).

Lemma 3.2.5. Let f : Z/ρ→ Z/ρ be defined by

f(xρ) =

0ρ if x is even,

1ρ if x is odd.

Then f ∈ Hom(Z/ρ,⊕, ∗).

Proof. By the definition of ρ, f is well-defined. Let x, y ∈ Z. Then

f(xρ⊕ yρ) = f({(x+ y)ρ, (x− y)ρ}) = {f((x+ y)ρ), f((x− y)ρ)}

and

f(xρ ∗ yρ) = f((xy)ρ).

Case 1: x and y are even. Then x+ y, x− y and xy are even, so

f(xρ⊕ yρ) = {0ρ} = 0ρ⊕ 0ρ = f(xρ)⊕ f(yρ)

and
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f(xρ ∗ yρ) = 0ρ = 0ρ ∗ 0ρ = f(xρ) ∗ f(yρ).

Case 2: x and y are odd. Then x+ y and x− y are even, and xy is odd. Thus

f(xρ⊕ yρ) = {0ρ} ⊆ {2ρ, 0ρ} = 1ρ⊕ 1ρ = f(xρ)⊕ f(yρ)

and

f(xρ ∗ yρ) = 1ρ = 1ρ ∗ 1ρ = f(xρ) ∗ f(yρ).

Case 3: x is even and y is odd. Then x + y and x − y are odd, and xy is even.

Thus

f(xρ⊕ yρ) = {1ρ} = 0ρ⊕ 1ρ = f(xρ)⊕ f(yρ)

and

f(xρ ∗ yρ) = 0ρ = 0ρ ∗ 1ρ = f(xρ) ∗ f(yρ).

Case 4: x is odd and y is even. We can show similary to Case 3 that f(xρ⊕yρ) ⊆

f(xρ)⊕ f(yρ) and f(xρ ∗ yρ) = f(xρ) ∗ f(yρ).

Hence we have that f ∈ Hom(Z/ρ,⊕, ∗), as desired.

It is evident that the zero mapping and the identity mapping on (Z/ρ,⊕, ∗)

are homomorphisms. The following theorem is directly obtained from Lemma

3.2.2, Lemma 3.2.3, Lemma 3.2.4 and Lemma 3.2.5.

Theorem 3.2.6. Assume that f : Z/ρ→ Z/ρ. Then f ∈ Hom(Z/ρ,⊕, ∗) if and

only if one of the following statements holds.

(i) f is the zero mapping on (Z/ρ,⊕, ∗).

(ii) f is the identity mapping on Z/ρ.

(iii) f(xρ) =

0ρ if x is even,

1ρ if x is odd.
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3.3 The Krasner Hyperring Defined from the Ring

(Zn, +, ·) and an Equivalence Relation

This section deals with the Krasner hyperring (Zn/ρ,⊕, ∗) defined from the ring

(Zn,+, ·) and the equivalence relation ρ (see Example 1.5), i.e.,

x̄ρȳ ⇐⇒ x̄ = ȳ or x̄ = −ȳ,

x̄ρ⊕ ȳρ = {(x+ y)ρ, (x− y)ρ},

x̄ρ ∗ ȳρ = (xy)ρ for all x, y ∈ Z.

Notice that for x ∈ Z, x̄ρ = {x̄,−x̄} = {x̄, n− x}. If n is even, then Zn/ρ =

{0̄ρ, 1̄ρ, ..., (n
2
)ρ} and |Zn/ρ| = n

2
+1. If n is odd, then Zn/ρ = {0̄ρ, 1̄ρ, ..., (n−1

2
)ρ}

and |Zn/ρ| = n+1
2
.

The following remark shows the possibilities of f(0̄ρ) where f ∈ Hom(Zn/ρ,⊕).

Remark 3.3.1. The following statements hold.

(i) If f ∈ Hom(Zn/ρ,⊕), then

f(0̄ρ) =

0̄ρ if 3 - n,

0̄ρ or (n
3
)ρ if 3 | n.

(ii) If 3 | n and f : Zn/ρ→ Zn/ρ is defined by f(x̄ρ) = (n
3
)ρ for all x ∈ Z, then

f ∈ Hom(Zn/ρ,⊕).

Proof. (i) Let f(0̄ρ) = āρ for some a ∈ {0, 1, 2, ..., n− 1}. Then

āρ = f(0̄ρ) ∈ f(0̄ρ⊕ 0̄ρ) ⊆ f(0̄ρ)⊕ f(0̄ρ) = āρ⊕ āρ = {(2a)ρ, 0̄ρ},

so āρ = (2a)ρ or āρ = 0̄ρ. Assume that āρ = (2a)ρ. Then ā = 2a or ā = −(2a)

which implies that n | a or n | 3a. If n | a, then ā = 0̄, so āρ = 0̄ρ. Next, assume

that n | 3a.

Case 1: 3 - n. Since n | 3a, it follows that n | a, so ā = 0̄, i.e., āρ = 0̄ρ.

Case 2: 3 | n. Since n | 3a, we have that n
3
| a. But a ∈ {0, 1, 2, ..., n − 1}, so

a = 0, n
3

or 2n
3
. Since (n

3
) = −(2n

3
), it follows that (n

3
)ρ = (2n

3
)ρ. Hence āρ = 0̄ρ or
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(n
3
)ρ.

(ii) Since −n
3

= 2n
3
, it follows that

(
n
3

)
ρ = (2n

3
)ρ. If x, y ∈ Z, then

f(x̄ρ⊕ ȳρ) = {(n
3

)ρ} ⊆ {(n
3

)ρ, 0̄ρ} = {(2n

3
)ρ, 0̄ρ}

= (
n

3
)ρ⊕ (

n

3
)ρ

= f(x̄ρ)⊕ f(ȳρ),

so we have that f ∈ Hom(Zn/ρ,⊕), as desired.

To obtain the main theorems of this section, the following lemmas are needed.

Lemma 3.3.2. Let n be even and f : Zn/ρ→ Zn/ρ defined by

f(x̄ρ) =

0̄ρ if x is even,

1̄ρ if x is odd.

Then f ∈ Hom(Zn/ρ,⊕, ∗).

Proof. To show that f is well-defined, let x, y ∈ Z be such that x̄ρ = ȳρ. Then

x̄ = ȳ or x̄ = −ȳ, so n | (x− y) or n | (x+ y). Since n is even, it follows that x− y

or x + y is even which implies that either x and y are even or x and y are odd.

The remainder of the proof is given similarly to that of Lemma 3.2.5

Lemma 3.3.3. Assume that n is even. If f ∈ Hom(Zn/ρ,⊕, ∗) is such that

f(0̄ρ) = 0ρ and f(1̄ρ) = 1ρ, then either

(i) f is the identity mapping on Zn/ρ or

(ii) f(x̄ρ) =

0̄ρ if x is even,

1̄ρ if x is odd.

Proof. Recall that Zn/ρ = {0̄ρ, 1̄ρ, 2̄ρ, ..., (n
2
)ρ} and |Zn/ρ| = n

2
+ 1. Let A =

{0, 1, 2, ..., n
2
}. Then Zn/ρ = {x̄ρ | x ∈ A}. If n = 2, by assumption, we are done.

Assume that n ≥ 4. Since
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f(2̄ρ) ∈ f(1̄ρ⊕ 1̄ρ) ⊆ f(1̄ρ)⊕ f(1̄ρ) = 1̄ρ⊕ 1̄ρ = {2̄ρ, 0̄ρ},

we have that f(2̄ρ) = 2ρ or f(2̄ρ) = 0ρ.

Case 1: f(2̄ρ) = 2̄ρ. Claim that f is the identity mapping on Zn/ρ, i.e., claim that

f(x̄ρ) = x̄ρ for all x ∈ A. Note that f(0̄ρ) = 0ρ, f(1̄ρ) = 1ρ and f(2̄ρ) = 2ρ.

Assume that k ∈ A, k ≥ 2, k + 1 ∈ A and f(x̄ρ) = x̄ρ for all x ∈

{0, 1, 2, ..., k}. Then

f((k + 1)ρ) ∈ f(kρ⊕ 1ρ) ⊆ f(kρ)⊕ f(1ρ) = kρ⊕ 1ρ = {(k + 1)ρ, (k − 1)ρ}.

Subcase 1.1 : k+1 is even. Then k+1 = 2a for some a ∈ A, so a < k. Thus

f((k + 1)ρ) = f((2a)ρ) = f(2ρ ∗ aρ) = f(2ρ) ∗ f(aρ)

= 2ρ ∗ aρ

= (2a)ρ

= (k + 1)ρ.

Subcase 1.2 : k+ 1 is odd and k+ 1 < n
2
. Then k+ 2 is even and k+ 2 ∈ A.

Let k + 2 = 2b for some b ∈ A. Then b ≤ k, and hence

f((k + 2)ρ) = f((2b)ρ) = f(2ρ ∗ bρ) = f(2ρ) ∗ f(bρ)

= 2ρ ∗ bρ

= (2b)ρ

= (k + 2)ρ.

To show that f((k + 1)ρ) = (k + 1)ρ, suppose not. Since f((k + 1)ρ) ∈ {(k + 1)ρ,

(k − 1)ρ}, we have that f((k + 1)ρ) = (k − 1)ρ. It follows that

(k + 2)ρ = f((k + 2)ρ) ∈ f((k + 1)ρ⊕ 1ρ)

⊆ f((k + 1)ρ)⊕ f(1ρ)

= (k − 1)ρ⊕ 1ρ

= {kρ, (k − 2)ρ}

which is a contradiction since k − 2, k, k + 2 ∈ A. Thus f((k + 1)ρ) = (k + 1)ρ.
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Subcase 1.3 : k + 1 is odd and k + 1 = n
2
. Then n ≥ 6. Since f((k + 1)ρ) ∈

{(k + 1)ρ, (k − 1)ρ}, we have that f((k + 1)ρ) ∈ {(k + 1)ρ, (n
2
− 2)ρ}. Suppose

that f((k + 1)ρ) = (n
2
− 2)ρ. Then

0̄ρ = f(0ρ) = f(nρ) = f(2̄ρ ∗ (
n

2
)ρ)

= f(2̄ρ) ∗ f((
n

2
)ρ)

= f(2̄ρ) ∗ f((k + 1)ρ)

= 2ρ ∗ (
n

2
− 2)ρ

= (n− 4)ρ

which is a contradiction since n ≥ 6. Therefore f((k + 1)ρ) = (k + 1)ρ.

Hence we have the claim, i.e., f satisfies (i).

Case 2: f(2̄ρ) = 0̄ρ. Then for k ∈ Z,

f((2k)ρ) = f(2̄ρ ∗ k̄ρ) = f(2̄ρ) ∗ f(k̄ρ) = 0̄ρ ∗ f(k̄ρ) = 0̄ρ

and so

f((2k + 1)ρ) ∈ f((2k)ρ⊕ 1̄ρ) ⊆ f((2k)ρ)⊕ f(1̄ρ) = 0̄ρ⊕ 1̄ρ = {1̄ρ}.

Hence f satisfies (ii).

Therefore the proof of the lemma is complete.

Lemma 3.3.4. Assume that n is odd. If f ∈ Hom(Zn/ρ,⊕, ∗) is such that

f(0̄ρ) = 0ρ and f(1̄ρ) = 1ρ, then f is the identity mapping on Zn/ρ.

Proof. Recall that Zn/ρ = {0̄ρ, 1̄ρ, 2̄ρ, ..., (n−1
2

)ρ} and |Zn/ρ| = n+1
2
. Let

A = {0, 1, 2, ..., n−1
2
}. If n = 1 or 3, then we are done. Assume that n ≥ 5.

We can see from the proof of Lemma 3.3.3 that f(2̄ρ) ∈ {2̄ρ, 0̄ρ}. Suppose that

f(2̄ρ) = 0̄ρ. From the proof of Lemma 3.3.3 for Case 2, we have that for k ∈ Z,

f((2k)ρ) = 0̄ρ and f((2k + 1)ρ) = 1̄ρ.

It follows that

f((
n− 1

2
)ρ)⊕ f((

n− 1

2
)ρ) =

 {0̄ρ} if n−1
2

is even,

{2̄ρ, 0̄ρ} if n−1
2

is odd
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and

f((
n− 1

2
)ρ⊕ (

n− 1

2
)ρ) = f({(n− 1)ρ, 0̄ρ}) = f({1̄ρ, 0̄ρ})

= {f(1̄ρ), f(0̄ρ)}

= {1̄ρ, 0̄ρ}.

Since n ≥ 5, we deduce that f((n−1
2

)ρ ⊕ (n−1
2

)ρ) * f((n−1
2

)ρ) ⊕ f((n−1
2

)ρ), a

contradiction. Hence f(2̄ρ) = 2̄ρ.

Assume that k ≥ 2, k + 1 ∈ A and f(x̄ρ) = x̄ρ for all x ∈ {0, 1, 2, ..., k}.

Case 1: k+ 1 is even. We can see from the proof of Lemma 3.3.3 for Subcase 1.1

that f((k + 1)ρ) = (k + 1)ρ.

Case 2: k+ 1 is odd and k+ 1 < n−1
2
. We can see from the proof of Lemma 3.3.3

for Subcase 1.2 that f((k + 1)ρ) = (k + 1)ρ.

Case 3: k + 1 is odd and k + 1 = n−1
2
. Since −(n−1

2
) = n−1

2
+ 1̄, it follows that

(k + 1)ρ = (k + 2)ρ. Since k + 2 is even, it can be seen from the proof of Lemma

3.3.3 for Subcase 1.2 that f((k + 2)ρ) = (k + 2)ρ. Hence

f((k + 1)ρ) = f((k + 2)ρ) = (k + 2)ρ = (k + 1)ρ.

Therefore we have that f(xρ) = xρ for all x ∈ A, i.e., f is the identity mapping

on Zn/ρ.

The following theorem is directly obtained from Lemma 3.3.2 and Lemma

3.3.3, and the next theorem is obtained from Lemma 3.3.4.

Theorem 3.3.5. Assume that n is even and f : Zn/ρ → Zn/ρ is such that

f(0̄ρ) = 0ρ and f(1̄ρ) = 1ρ. Then f ∈ Hom(Zn/ρ,⊕, ∗) if and only if either

(i) f is the identity mapping on Zn/ρ or

(ii) f(x̄ρ) =

0̄ρ if x is even,

1̄ρ if x is odd.

Theorem 3.3.6. Assume that n is odd and f : Zn/ρ→ Zn/ρ is such that f(0̄ρ) =

0ρ and f(1̄ρ) = 1ρ. Then f ∈ Hom(Zn/ρ,⊕, ∗) if and only if f is the identity

mapping on Zn/ρ.
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Remark 3.3.7. Theorem 3.3.5 and Theorem 3.3.6 characterize the elements of

Hom(Zn/ρ,⊕, ∗) which fix the elements 0̄ρ and 1̄ρ of Zn/ρ. In fact, the elements of

Hom(Zn/ρ,⊕, ∗) need not have this property as shown by the following examples.

Let āρ be an idempotent of the semigroup (Zn/ρ, ∗) and define kāρ : Zn/ρ →

Zn/ρ by

kāρ(x̄ρ) = (xa)ρ for all x ∈ Z.

If x, y ∈ Z, then

kāρ(x̄ρ⊕ ȳρ) = kāρ({(x+ y)ρ, (x− y)ρ})

= {kāρ((x+ y)ρ), kāρ((x− y)ρ)}

= {((x+ y)a)ρ, ((x− y)a)ρ}

= {(xa+ ya)ρ, (xa− ya)ρ}

= {(xa+ ya)ρ, (xa− ya)ρ}

= (xa)ρ⊕ (ya)ρ

= kāρ(x̄ρ)⊕ kāρ(ȳρ)

and

kāρ(x̄ρ ∗ ȳρ) = kāρ(xy)ρ = (xya)ρ

= (xy)ρ ∗ aρ

= (xy)ρ ∗ aρ ∗ aρ

= (xa)ρ ∗ (ya)ρ

= kāρ(x̄ρ) ∗ kāρ(ȳρ).

This proves that

{kāρ | āρ is an idempotent of (Zn/ρ, ∗)} ⊆ Hom(Zn/ρ,⊕, ∗).

We can see that for distinct idempotents āρ, b̄ρ of (Zn/ρ, ∗), kāρ 6= kb̄ρ.

Next, assume that n is even. For an idempotent āρ of (Zn/ρ, ∗), define

lāρ : Zn/ρ→ Zn/ρ by

lāρ(x̄ρ) =


0̄ρ if x is even,

āρ if x is odd.
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It can be seen from the proof of Lemma 3.3.2 that lāρ is well-defined for every

idempotent āρ of (Zn/ρ, ∗). From the proof of Lemma 3.2.5 and the fact that

āρ ∗ āρ = āρ, we can see that lāρ ∈ Hom(Zn/ρ,⊕, ∗). Hence

{lāρ | āρ is an idempotent of (Zn/ρ, ∗)} ⊆ Hom(Zn/ρ,⊕, ∗)

and we can see that lāρ 6= lb̄ρ if āρ 6= b̄ρ.

Moreover, if 3 | n and (n
3
)ρ is an idempotent of (Zn/ρ, ∗). The mapping

q : Zn/ρ→ Zn/ρ defined by

q(x̄ρ) = (n
3
)ρ for all x ∈ Z

belongs to Hom(Zn/ρ,⊕, ∗). By Remark 3.3.1(ii), q ∈ Hom(Zn/ρ,⊕). If x, y ∈ Z,

then

q(x̄ρ ∗ ȳρ) = (
n

3
)ρ = (

n

3
)ρ ∗ (

n

3
)ρ = q(x̄ρ) ∗ q(ȳρ).

Thus q ∈ Hom(Zn/ρ,⊕, ∗), as desired. In particular, q : Z6/ρ→ Z6/ρ defined by

q(x̄ρ) = 2̄ρ for all x ∈ Z is an element of Hom(Z6/ρ,⊕, ∗). Hence k2̄ρ, k3̄ρ, l2̄ρ and

l3̄ρ are elements of Hom(Z6/ρ,⊕, ∗) which do not fix 1̄ρ and q is an element of

Hom(Z6/ρ,⊕, ∗) not fixing 0̄ρ and 1̄ρ.

3.4 A Krasner Hyperring Defined from the Interval [0,∞)

with the Usual Multiplication

In this section, we characterize the homomorphisms of the Krasner hyperring

([0,∞),⊕, ·) defined in Example 1.3, i.e.,

x⊕ y =

[0, x] if x = y,

{max{x, y}} if x 6= y,

and also show that the set Hom([0,∞),⊕, ·) is uncountable.

We first provide the following lemmas.

Lemma 3.4.1. For f : [0,∞) → [0,∞), f ∈ Hom([0,∞),⊕) if and only if f is

increasing.
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Proof. Let f ∈ Hom([0,∞),⊕) and let x, y ∈ [0,∞) be such that x < y. Suppose

that f(x) > f(y) Then

f({y}) = f(x⊕ y) ⊆ f(x)⊕ f(y) = {f(x)}

which is a contradiction. Thus f(x) ≤ f(y). This shows that f is increasing.

Conversely, assume that f is increasing. If x ∈ [0,∞), then f(0) ≤ f(t) ≤

f(x), for all t ∈ [0, x], so

f(x⊕ x) = f([0, x]) ⊆ [f(0), f(x)] ⊆ [0, f(x)] = f(x)⊕ f(x).

If x, y ∈ [0,∞) are such that x < y, then f(x) ≤ f(y), so

f(x⊕ y) = f({y}) = {f(y)}

⊆

[0, f(y)] = f(x)⊕ f(y) if f(x) = f(y),

{f(y)} = f(x)⊕ f(y) if f(x) < f(y).

Therefore f ∈ Hom([0,∞),⊕), as desired.

Lemma 3.4.2. If f ∈ Hom([0,∞), ·), then one of the following statements holds.

(i) f is the zero mapping on the semigroup ([0,∞), ·).

(ii) f(x) = 1 for all x ∈ [0,∞).

(iii) f(0) = 0 and f |(0,∞) ∈ Hom((0,∞), ·).

Proof. Assume that f ∈ Hom([0,∞), ·).

Case 1: f(0) 6= 0. If x ∈ [0,∞), then f(0) = f(0 · x) = f(0) · f(x) which implies

that f(x) = 1. Therefore f satisfies (ii).

Case 2: f(0) = 0 and f(a) = 0 for some a ∈ (0,∞). Then

f(1) = f(a · a−1) = f(a) · f(a−1) = 0 · f(a−1) = 0,

so for x ∈ (0,∞),

f(x) = f(x · 1) = f(x) · f(1) = f(x) · 0 = 0.
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Hence f satisfies (i).

Case 3: f(0) = 0 and f(a) 6= 0 for all a ∈ (0,∞). Then f((0,∞)) ⊆ (0,∞). This

implies that f |(0,∞) ∈ Hom((0,∞), ·). Therefore f satisfies (iii).

We remark from Lemma 3.4.1 that every constant function from [0,∞) into

itself is an element of Hom([0,∞),⊕).

The following theorem is directly obtained from the above remark, Lemma

3.4.1 and Lemma 3.4.2.

Theorem 3.4.3. For f : [0,∞) → [0,∞), f ∈ Hom([0,∞),⊕, ·) if and only if

one of the following statements holds.

(i) f is the zero mapping on the semigroup ([0,∞), ·).

(ii) f(x) = 1 for all x ∈ [0,∞).

(iii) f(0) = 0, f |(0,∞) ∈ Hom((0,∞), ·) and f is increasing.

Theorem 3.4.4. Hom([0,∞),⊕, ·) is an uncountable set.

Proof. For a ∈ [0,∞), define ka : [0,∞)→ [0,∞) by

ka(x) = xa for all x ∈ [0,∞).

Then it is clear that ka ∈ Hom([0,∞), ·) and ka is increasing on [0,∞) for all a ∈

[0,∞). By Lemma 3.4.1, ka ∈ Hom([0,∞),⊕) for all a ∈ [0,∞). If a, b ∈ [0,∞) are

distinct, then ka(2) = 2a 6= 2b = kb(2), so ka 6= kb. Thus | {ka | a ∈ [0,∞)} | =

| [0,∞) | and {ka | a ∈ [0,∞)} ⊆ Hom([0,∞),⊕, ·). But [0,∞) is an uncountable

set, so the set Hom([0,∞),⊕, ·) is uncountable.



CHAPTER IV

HOMOMORPHISMS OF P-HYPERRINGS

In this chapter, we are concerned with the homomorphisms of the P-hyperings

(Z, ⊕lZ, ◦mZ) and (Zn, ⊕lZn , ◦mZn) defined as in Example 1.6. First, we

determine the set Hom(Z, +) ∩ Hom(Z, ⊕lZ, ◦mZ) and construct an element of

Hom(Z, ⊕lZ, ◦mZ)r Hom(Z, +) for certain l,m. It is shown that Hom(Zn, +) ⊆

Hom(Zn, ⊕lZn , ◦mZn) if and only if n
(m,n)

is square-free. We also construct f ∈

Hom(Zn, ⊕lZn , ◦mZn)r Hom(Zn, +) for certain l,m.

4.1 P-hyperrings Defined from the Ring (Z,+, ·)

In this section, we determine Hom(Z,+) ∩ Hom(Z,⊕lZ, ◦mZ). Recall that

x⊕lZ y = x+ y + lZ and x ◦mZ y = x(mZ)y for all x, y ∈ Z.

The following two lemmas are needed.

Lemma 4.1.1. Hom(Z,+) ⊆ Hom(Z,⊕lZ).

Proof. If a, x, y ∈ Z, then

ga(x⊕lZ y) = ga(x+ y + lZ)

= a(x+ y + lZ)

= ax+ ay + alZ

⊆ ax+ ay + lZ

= ga(x) + ga(y) + lZ

= ga(x)⊕lZ ga(y)

which implies that ga ∈ Hom(Z,⊕lZ). But Hom(Z,+) = {ga | a ∈ Z}, so

Hom(Z,+) ⊆ Hom(Z,⊕lZ).
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Lemma 4.1.2. The following statements hold.

(i) If m 6= 0, then for a ∈ Z, ga ∈ Hom(Z, ◦mZ) if and only if a ∈ {0, 1,−1}.

(ii) If m = 0, then Hom(Z,+) ⊆ Hom(Z, ◦mZ).

Proof. (i) Assume that ga ∈ Hom(Z, ◦mZ). Then

amZ = a(mZ) = a(1(mZ)1)

= ga(1 ◦mZ 1)

= ga(1) ◦mZ ga(1)

= a ◦mZ a

= a(mZ)a

= a2mZ

which implies that ±am = a2m, so ± a = a2. Thus a ∈ {0, 1,−1}.

Conversely, assume that a ∈ {0, 1,−1}. If x, y ∈ Z, then

ga(x ◦mZ y) = ga(x(mZ)y) = axmZy
and

ga(x) ◦mZ ga(y) = ax ◦mZ ay = ax(mZ)ay.

Since ±a = a2, axmZy = axmZay. Thus ga(x ◦mZ y) = ga(x) ◦mZ ga(y). Hence

ga ∈ Hom(Z, ◦mZ).

(ii) Assume that m = 0. Let a, x, y ∈ Z. Then

ga(x ◦mZ y) = ga(x{0}y) = ga({0}) = a({0}) = {0}
and

ga(x) ◦mZ ga(y) = ax ◦mZ ay = ax({0})ay = {0}.

Thus ga(x ◦mZ y) = ga(x) ◦mZ ga(y). Hence ga ∈ Hom(Z, ◦mZ). Therefore Hom

(Z,+) ⊆ Hom(Z, ◦mZ).

From Lemma 4.1.1 and Lemma 4.1.2, we have the following theorem.

Theorem 4.1.3. Hom(Z,+) ∩ Hom(Z,⊕lZ, ◦mZ) = {g0, g1, g−1} if m 6= 0,

Hom(Z,+) ⊆ Hom(Z,⊕lZ, ◦mZ) if m = 0.
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Remark 4.1.4. We shall construct an element f ∈ Hom(Z,⊕lZ, ◦klZ)rHom(Z, +)

when k > 0 and kl > 1.

Assume that k > 0 and kl > 1. We know that Z =
kl−1⋃
i=0

(i + klZ) which is a

disjoint union. Since Z =
k−1⋃
i=0

(i + kZ), it follows that lZ =
k−1⋃
i=0

(il + klZ). Define

f : Z→ Z by

f(i+ klZ) = {i} for all i ∈ {0, 1, 2, . . . , kl − 1}.

To show that f ∈ Hom(Z,⊕lZ, ◦klZ), let x, y ∈ Z. Then x ∈ i+klZ and y ∈ j+klZ

for some i, j ∈ {0, 1, . . . , kl− 1} and for t ∈ {0, 1, 2, . . . , k− 1}, x+ y+ tl+ klZ =

i+ j + tl + klZ = at + klZ for some at ∈ {0, 1, . . . , kl − 1}. Then

f(x⊕lZ y) = f(x+ y + lZ)

= f(x+ y + (
k−1⋃
t=0

tl + klZ))

= f(
k−1⋃
t=0

x+ y + tl + klZ)

= f(
k−1⋃
t=0

at + klZ)

=
k−1⋃
t=0

{at},

f(x)⊕lZ f(y) = i⊕lZ j

= i+ j + lZ

= i+ j + (
k−1⋃
t=0

tl + klZ)

=
k−1⋃
t=0

(i+ j + tl + klZ)

=
k−1⋃
t=0

(at + klZ),
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f(x ◦klZ y) = f(x(klZ)y)

= f(xyklZ)

⊆ f(klZ)

= {0},

f(x) ◦klZ f(y) = i ◦klZ j

= i(klZ)j

which imply that f(x⊕lZ y) ⊆ f(x)⊕lZ f(y) and f(x◦klZ y) ⊆ f(x)◦klZ f(y). Thus

f ∈ Hom(Z,⊕lZ, ◦klZn).

Next, to show that f /∈ Hom(Z,+), suppose on the contrary that f ∈

Hom(Z,+). Then f = {g0, g1, g−1}. Let x = kl + 1. Then x > 2, x ∈ 1 + klZ and

1 = f(x) ∈ {g0(x), g1(x), g−1(x)} = {0, x,−x}

which is a contradiction. Hence f /∈ Hom(Z,+).

4.2 P-hyperrings Defined from the Ring (Zn,+, ·)

In this section, we characterize when Hom(Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn) holds.

Recall that

x̄⊕lZn ȳ = x+ y + lZn and x̄ ◦mZn ȳ = x̄(mZn)ȳ for all x, y ∈ Z.

The following series of lemmas is needed.

Lemma 4.2.1. Hom(Zn,+) ⊆ Hom(Zn,⊕lZn).

Proof. If a, x, y ∈ Z, then

ha(x⊕lZn y) = ha(x+ y + lZn)

= a(x+ y + lZn)

= ax+ ay + alZn

⊆ ax+ ay + lZn

= ha(x) + ha(y) + lZn

= ha(x)⊕lZn ha(y)
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which implies that ha ∈ Hom(Zn,⊕lZn). But Hom(Zn,+) = {ha | a ∈ Z}, so

Hom(Zn,+) ⊆ Hom(Zn,⊕lZn).

Lemma 4.2.2. For a ∈ Z, ha ∈ Hom(Zn, ◦mZn) if and only if (am, n) = (a2m,n).

Proof. Assume that ha ∈ Hom(Zn, ◦mZn). Then

amZn = a(1 mZn1)

= ha(1 ◦mZn 1)

⊆ ha(1) ◦mZn ha(1)

= a ◦mZn a

= a(mZn)a

= a2mZn

= am(aZn)

⊆ amZn,

so amZn = a2mZn. Thus (am, n)Zn = (a2m,n)Zn, and therefore n
(am,n)

=

|(am, n)Zn| = |(a2m,n)Zn| = n
(a2m,n)

. This implies that (am, n) = (a2m,n).

Conversely, assume that (am, n) = (a2m,n). Then amZn = (am, n)Zn =

(a2m,n)Zn = a2mZn. If x, y ∈ Z, then

ha(x ◦mZn y) = ha(x(mZn)y)

= ha(xymZn)

= axymZn

= xyamZn

= xya2mZn

= ax(mZn)ay

= ha(x) ◦mZn ha(y)

which implies that ha ∈ Hom(Zn, ◦mZn).

Since Hom(Zn,⊕lZn , ◦mZn) = Hom(Zn,⊕lZn) ∩ Hom(Zn, ◦mZn), from Lemma

4.2.1 and Lemma 4.2.2, we directly obtain the following lemma.



44

Lemma 4.2.3. Hom(Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn) if and only if (am, n) =

(a2m,n) for all a ∈ Z.

It is evident that for a ∈ Z, (am, n) = (a(m,n), n) = (m,n)(a, n
(m,n)

) and

(a2m,n) = (a2(m,n), n) = (m,n)(a2, n
(m,n)

). Therefore from Lemma 4.2.2 and

Lemma 4.2.3, we have respectively that

Lemma 4.2.4. For a ∈ Z, ha ∈ Hom(Zn,⊕lZn , ◦mZn) if and only if (a, n
(m,n)

) =

(a2, n
(m,n)

).

Lemma 4.2.5. Hom (Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn) if and only if (a, n
(m,n)

) =

(a2, n
(m,n)

) for all a ∈ Z.

Theorem 4.2.6. Hom(Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn) if and only if n
(m,n)

is square-

free.

Proof. Assume that n
(m,n)

is not square-free. Then there is an integer b > 1 such

that b2| n
(m,n)

. Thus (b, n
(m,n)

) = b 6= b2 = (b2, n
(m,n)

). By Lemma 4.2.4, we have that

hb /∈ Hom(Zn,⊕lZn , ◦mZn), so Hom(Zn,+) * Hom(Zn,⊕lZn , ◦mZn) This proves

that Hom(Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn) implies that n
(m,n)

is square-free.

If n
(m,n)

is square-free, then (a, n
(m,n)

) = (a2, n
(m,n)

) for all a ∈ Z, so by Lemma

4.2.5, Hom(Zn,+) ⊆ Hom(Zn,⊕lZn , ◦mZn).

Example 4.2.7. Since 12
(2,12)

= 6, by Theorem 4.2.6, Hom(Z12,+) ⊆ Hom

(Z12,⊕lZ12 , ◦2Z12) for every l ∈ Z. But since 12
(3,12)

= 4, by Theorem 4.2.6, Hom

(Z12,+) * Hom(Z12,⊕lZ12 , ◦3Z12) for every l ∈ Z.

From Lemma 4.2.4, Hom(Z12,+) r Hom(Z12,⊕lZ12 , ◦3Z12) = {h2, h6, h10}.

Remark 4.2.8. We shall construct an element f ∈ Hom(Zn,⊕lZn , ◦klZn) r

Hom(Zn, +) when 1 < (kl, n) < n. This implies from this fact and Example

4.2.7 that Hom(Z12,+) ( Hom(Z12,⊕2Z12 , ◦2Z12).

Assume that 1 < (kl, n) < n. Recall that Zn =

(kl,n)−1⋃
i=0

(̄i + (kl, n)Zn) which is
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a disjoint union. Let r = (kl,n)
(l,n)

. Then r ∈ Z+ and r|n, so Zn =
r−1⋃
i=0

(̄i+ rZn). This

implies that

lZn = (l, n)Zn =
r−1⋃
i=0

(il + rlZn)

=
r−1⋃
i=0

(il +
(kl, n)

(l, n)
(l, n)Zn)

=
r−1⋃
i=0

(il + (kl, n)Zn).

Define f : Zn → Zn by

f (̄i+ (kl, n)Zn) = {̄i} for all i ∈ {0, 1, . . . , (kl, n)− 1}.

To show that f ∈ Hom(Zn,⊕lZn , ◦klZn), let x̄, ȳ ∈ Zn. Then x̄ ∈ ī+ (kl, n)Zn and

ȳ ∈ j̄ + (kl, n)Zn for some i, j ∈ {0, 1, . . . , (kl, n) − 1}. Thus x̄ + (kl, n)Zn = ī +

(kl, n)Zn, ȳ+(kl, n)Zn = j̄+(kl, n)Zn and for each t ∈ {0, 1, 2, ..., r−1}, x̄+ȳ+tl+

(kl, n)Zn = ī+j̄+tl+(kl, n)Zn = āt+(kl, n)Zn for some at ∈ {0, 1, . . . , (kl, n)−1}.

Therefore

f(x̄⊕lZn ȳ) = f(x̄+ ȳ + lZn)

= f(x̄+ ȳ + (l, n)Zn)

= f(x̄+ ȳ + (
r−1⋃
t=0

tl + (kl, n)Zn))

= f(
r−1⋃
t=0

x̄+ ȳ + tl + (kl, n)Zn)

= f(
r−1⋃
t=0

āt + (kl, n)Zn)

=
r−1⋃
t=0

f(āt + (kl, n)Zn)

=
r−1⋃
t=0

{āt},
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f(x̄)⊕lZn f(ȳ) = ī⊕lZn j̄

= ī+ j̄ + lZn

= ī+ j̄ +
r−1⋃
t=0

(tl + (kl, n)Zn)

=
r−1⋃
t=0

(̄i+ j̄ + tl + (kl, n)Zn)

=
r−1⋃
t=0

(āt + (kl, n)Zn),

f(x̄ ◦klZn ȳ) = f(x̄(klZn)ȳ)

= f(xyklZn)

⊆ f(klZn)

= {0̄},

f(x̄) ◦klZn f(ȳ) = ī ◦klZn j̄

= ī(klZn)j̄

= ijklZn

which imply that f(x̄⊕lZn ȳ) ⊆ f(x̄)⊕lZn f(ȳ) and f(x̄ ◦klZn ȳ) ⊆ f(x̄) ◦klZn f(ȳ).

Thus f ∈ Hom(Zn,⊕lZn , ◦klZn).

Next, to show that f /∈ Hom(Zn,+), suppose on the contrary that f ∈

Hom(Zn,+). Then f = hā for some a ∈ Z. Since

{0̄} = f((kl, n)Zn) = hā((kl, n)Zn) = ā(kl, n)Zn

and

{1̄} = f(1̄ + (kl, n)Zn) = hā(1̄ + (kl, n)Zn) = ā+ ā(kl, n)Zn,

it follows that ā = 1̄ and (kl, n)Zn = {0̄}. This implies that (kl, n) = n or

(kl, n) = 0 which is a contradiction.

From Theorem 4.2.6 and this fact, we conclude that if n
(kl,n)

is square-free and

1 < (kl, n) < n, then Hom(Zn,+) ( Hom(Zn,⊕lZn , ◦klZn).
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