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CHAPTER I

INTRODUCTION

1.1 Introduction to Droplet Motion

As we know that all things on the Earth suffer from the Earth’s gravitational

force which gives the same amount of the acceleration on them. Similarly, the

droplet on the vertical plane suffers as well. However, the small droplet is some-

times stuck on the window glass. This is because there exists the fluid-solid at-

tractive interaction (called adhesion) between the droplet and the vertical wall

that holds the droplet from sliding down through the wall. For the small droplet,

the adhesive interaction force beats the gravitational force, making the droplet is

hanged on the wall. Whereas the mass of the droplet increases, the gravitational

force acting on the droplet also increases, and finally the gravitational force beats

the adhesion and the droplet falls under the gravitational force.

If we look closely into the droplet, we can find out that the droplet is similar to

a spherical shape. This phenomenon is caused by fluid-fluid attractive interaction

(which is called cohesion) which is relatively small compared to other interaction

such as gravitational force or pressure force in and usually neglected in a macro-

scaled case. However the droplet motion problem is grouped into micro-scaled

problem, we must also consider the existence of the cohesion in our problem.

Both cohesion and adhesion properties of the fluid are caused by the surface

tension force of the fluid. In most cases, surface tension force is neglected as it is

relatively small compared to other governing forces on the fluid. But in the droplet

motion problem, surface tension force must be considered and implemented into

the problem. Later, we will explain about the equations govern the fluid motion

in Chapter 2.
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1.2 Objective of This Work

Droplet motion problem is an interesting case to be considered as it occurs

commonly in our daily life, for example, a condensation drop occurs in the heat

exchanger on many appliances such as air-conditioner and refrigerator [20]. In

this work, we consider the droplet adhere to a wall under the gravitational force

and surface tension. To keep the shape of droplet, the surface tension plays an

important role. The droplet motion is governed by the Navier-Stokes equation

which surface tension is added, alongside the mass conservation. Our goal is to

simulate the droplet motion on vertical plane in 2- and 3-dimensional systems via

Smoothed Particle Hydrodynamics (SPH) method combined with surface tension

model and find the appropriate parameters providing the results as close as the

realistic.

g

droplet

wall

Figure 1.1: The droplet profile of our problem

1.3 Proposed Method

Smoothed Particle Hydrodynamics (SPH), a numerical meshfree method is

applied here to solve the governing equations. Nowadays, it is one of the most
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popular techniques used in simulating various types of the fluid flow problems. Its

strategy is discretizing the fluid into a set of particles, which each particle carries

its physical quantities, e.g. density, pressure, position, and velocity. The SPH

approximation scheme is applied on governing equations. The particle total forces

are calculated. Then, the particle velocity commonly comes out as a solution of

Navier-Stokes equation via using the leapfrog integration scheme, and it is also

used to update the particle position from the information of obtained particle ve-

locity. Later, the explanation of the SPH and leapfrog integration scheme that

used to solve this problem can be found in the Chapter 3. The below block dia-

gram shows our proposed method.

..Start. Particles

initialization
.

Update

particle

density

.

Update

particle

pressure

.

Calculate

total forces

.

Update

particle

velocity

.

Update

particle

position

.

while

t < tmax

.

Stop

.

yes

.

no

Figure 1.2: Diagram of procedure for solving governing equations

The outcome position is plotted on 2- and 3-dimensions. The status, reced-

ing and advancing angles of the droplet are measured and compared with the

experimental data [20].
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1.4 Literature Review

Review on droplet motion on vertical plane

The profile of static droplet on vertical surface was studied by Merte and

Yamali [10] using variational calculus technique to obtain the equation of surface

of the droplet as the function of advancing angle, θA, by minimizing total energy.

The departure size of droplet, where surface tension can no longer support the

gravitational force is determined as well.

Milinazzo and Shinbrot [11] presented the dimensionless number called Bond

number, Bo, which is a ratio of the gravitational force to the surface tension force

on their numerical study

Bo =
ρgD2

σ
,

where ρ is density of the fluid, g is acceleration of gravity, D is the drop’s diame-

ter, and σ is the surface tension of liquid-gas interface. They assumed the droplet

has a fixed area while the Bond number is increasing from zero. They found that

increasing the Bond number is related to an increase in the inclination angle of

the plane.

The volume of fluid-continuous surface force (VOF-CSF) model with the con-

tact angles [20] is used to predict the droplet motion on vertical surface under

gravity, surface tension and airflow force in tube-finned heat exchangers and to

optimize the fin surface as well. The outcome is verified by the experimental data

in term of receding angle. In the experiment, certain quantity droplets are given

from micro-liter syringe, then the high-speed camera is used to capture the pro-

file of droplet. After that the contact angle is measured by the image processing

software.

Review on surface tension model combined with SPH method

Nugent and Posch [17] applied the cohesive pressure of Van der Waal (VdW)

equation of state giving the force acting between particles to model the surface

tension in 2-dimensional SPH simulation. But it was necessary to increase the
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support domain of kernel function twice for rising force. That caused an increase

of the computational time from range of computational domain is increasing.

Morris [16] and Das and Das [4] have integrated the continuum surface force

(CSF) [2] into SPH scheme. In CSF method, the surface tension force is calculated

from the interfacial curvature of the fluids. The curvature is defined as how fast

the tangential vector which corresponds to the normal vector, n, rotates through

the arc length. Brackbill et. al. [2] proposed the approximation of the curvature,

κ, by using the divergence of normal vector expressed by

κ = −∇ · n.

This method provides an accurate approximation for the surface tension. How-

ever, it involves complex calculation which leads to inefficient computational time.

Tartakovsky and Meakin [19] simulated the surface tension by pairwise fluid-

fluid fluid-solid particle-particle interactions along with standard SPH equations.

The idea is similar to Nugent and Porch [17] but need not to expand the compu-

tational domain. We have employed the Tartakovsky and Meakin’s model [19] as

the burdensome of evaluation of curvature is lacking.

1.5 Outline of the Thesis

This thesis is divided into 5 chapters structured as follows. Chapter 1 is an

introduction of this work including the objectives, literature reviews, method used

in this work and the outline of this thesis. Chapter 2 discussed about the governing

equations that explain this phenomenon and its derivation briefly. Chapter 3

presents the details on the Smoothed Particle Hydrodynamics (SPH) which is

the main method used and its implementation on the governing equations. Some

numerical aspects and computational strategies on neighbor searching algorithm

are discussed. Chapter 4 provides the simulation results in 2- and 3-dimensional

systems with validation by comparing the numerical results with the experimental

data given by Zhuang et. al. [20]. Chapter 5, the last chapter, gives the conclusions

of this work and the plan for future works.



CHAPTER II

GOVERNING EQUATIONS

In this chapter, we explain the derivation of governing equations which describe

the motion of the droplet. To describe the fluid motion, there are 2 approaches

commonly used. One is the Eulerian description that focusing the fluid motion on

specific location which the fluid moves through it as time passes. Another is the

Lagrangian description that observing the infinitesimal fluid element as it moves

through space and time. Even a way of consideration is different, both of them

can lead to the equations that follow the laws of physics. Since the SPH method,

which the particles carry the physical quantities and move with the motion of

fluid is similar to a way of Lagrangian description. The governing equations will

be derived in Lagrangian form.

Eulerian frame

Lagrangian frame

Figure 2.1: Concept of Eulerian and Lagragian description
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2.1 Material Derivative

It is sometimes called substantial derivative, representing the time rate of

change of some physical quantity of the infinitesimal fluid element. It can serve

as a link between Eulerian description and Lagrangian description. Its operator

can be expressed by
D

Dt
=

∂

∂t
+ (v · ∇),

where v = (u, v, w) is the velocity field in x-, y-, and z- directions respectively. It

consists of two parts: ∂
∂t

is called the local derivative, which is physically a time

rate of change at a fixed point, and (v · ∇) is the convective derivative which is

physically a change due to the movement of the fluid element from one location

to another. A material derivative is a total derivative of any function ψ of space

and time

d

dt
ψ(x, y, z, t) =

∂ψ

∂t
+
∂ψ

∂x

dx

dt
+
∂ψ

∂y

dy

dt
+
∂ψ

∂z

dz

dt

=
∂ψ

∂t
+ u

∂ψ

∂x
+ v

∂ψ

∂y
+ w

∂ψ

∂z

=

(
∂

∂t
+ v · ∇

)
ψ

=
Dψ

Dt
.

One useful expression ∇ · v which is the time rate of change of the volume of an

infinitesimal moving fluid element per unit volume is expressed by [8]

∇ · v =
1

δV

D(δV )

Dt
, (2.1)

where δV is the volume of an infinitesimal moving fluid element.

2.2 Continuity Equation

For an infinitesimal fluid element with a volume δV , the relation between a

volume and a mass δm is given by

δm = ρδV.
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Since the continuity equation is based on the law of conservation of mass, the

time rate of change is zero. We get

0 =
D(δm)

Dt

=
D(ρδV )

Dt

= (δV )
Dρ

Dt
+ ρ

D(δV )

Dt

=
Dρ

Dt
+ ρ

(
1

δV

D(δV )

Dt

)
.

Since ∇ · v =
1

δV

D(δV )

Dt
from (2.1), the continuity equation in Lagrangian form

is obtained as
Dρ

Dt
= −ρ (∇ · v) (2.2)

2.3 Momentum Equation

The momentum equation follows the Newton’s second law. When applied to an

infinitesimal fluid element, the net force equals to its mass times the acceleration

of the element. In an inviscid fluid case, the total forces acting on the element

are only pressure force and body force. Figure 2.2 explains how the pressure force

x

y

z

Figure 2.2: The pressure forces acting on an infinitesimal fluid element in x-axis

acts on the element in the x-axis. Consider the pressure force acting on the left
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and right faces of the element, the force P δyδz and
(
P + ∂P

∂x
δx
)
δyδz press inward

on the element in the x and −x directions, respectively. Given the volume of the

element is δV = δxδyδz. Let us denoted the body force by FB = ρ(δxδyδz)f,

where f = (f1, f2, f3) is a body force per unit mass. The total forces acting on an

infinitesimal fluid element on x-axis are

Fx =

(
P −

(
P +

∂P

∂x
δx

))
δyδz + ρ(δxδyδz)f1,

δmax = −∂P
∂x

δxδyδz + ρf1δxδyδz,

ρ(δxδyδz) ax =

(
−∂P
∂x

+ ρf1

)
(δxδyδz),

ρax = −∂P
∂x

+ ρf1.

Recalling that we are following a moving element, ax is given by the material

derivative Du
Dt

. Following the same procedure for y- and z-axes. Hence, we obtain

ρ
Du

Dt
= −∂P

∂x
+ ρf1,

ρ
Dv

Dt
= −∂P

∂y
+ ρf2,

ρ
Dw

Dt
= −∂P

∂z
+ ρf3.

Finally, the momentum equation in the Lagrangian form is arrived as

ρ
Dv
Dt

= −∇P + ρf. (2.3)

2.4 Surface Tension

We can see in a practical life that the effect of surface tension such as small

insects can walk on the water and the needle can be floated on the water, even

using the detergents for washing is also the effect of the surface tension. In fluid

dynamics, there exists a dimensionless number which represents the importance

of surface tension force compared to body force which is usually the gravity called

Bond number, Bo, that is defined by

Bo =
ρgD2

σ
,
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where ρ is density of the fluid, g is acceleration of gravity, D is the drop’s diame-

ter, and σ is the surface tension of liquid-gas interface. Higher the Bond number,

less the effect of surface tension. This means the gravity has more influence. A

low number (normally, less than 1) illustrates that the surface tension force is

governed.

The surface tension is actually not a part of the governing equations, but it

plays a significant role to make the droplet keeps the shape and is able to be

hanged on the wall. A water molecule in the droplet share the cohesive forces

between itself and neighbor molecules, whereas the molecules at the surface do

not have the neighbor molecules all sides of them, resulting the net force is not

zero. The force acts normal to the surface in inward (to the fluid) direction, which

binds the fluid surface together and flatten the surface curvature by minimizing

the surface area. Thus, the droplet tends to evolve into a spherical shape ([6] and

[7]).

Unlike the cohesion, if a water molecule is attracted to other material, the force

called “adhesion” is occured. It provides water is attracted by other material. In

the small droplet that is hanged on the surface. Adhesive force acting between

water molecule and surface is strong enough to withstand the effect from gravi-

tatonal force. An example of cohesion and adhesion on water droplet in nature is

shown in Figure 2.3. The adhesion makes water droplets resting on the Hibiscus

flower in spherical shape by the effect of cohesion.
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Figure 2.3: An example in nature. The water droplets rest on the Hibiscus flower

[18]



CHAPTER III

SMOOTHED PARTICLE HYDRODYNAMICS

This chapter, we talk about the main method used to solve our main problem.

Smoothed Particle Hydrodynamics (SPH) is a meshfree numerical method which

was first introduced to solve an astrophysical simulation by Lucy [9] based on

Lagrangian formulation but nowadays it widely used to solve the hydrodynam-

ics problem. It is also preferable for free and moving surface, large deformation

and complex mesh generation problems which are difficult to apply in grid-based

method. With this method, the fluid is discretized into a set of points, referred

as “particle”, in which each particle carries its physical quantities, e.g. mass,

position, velocity etc.

3.1 SPH Formulation

In an idea of SPH approximation, a general field variable A is approximated

through integral interpolant over all the space Ω as in the following

A(r) =
∫
Ω

A(r ′) δ(r − r ′) dr ′, (3.1)

where r is a position vector in Ω, and δ is a Dirac delta function given by

δ(r) =

∞, r = r ′,

0, r ̸= r ′.

(3.2)

The SPH idea is using the weight function W (r − r′, h) (the details are in

Section 3.2) which is usually called kernel function or smoothing function, where h

is the smoothing length that stands for influence or support area of weight function

W to replace the Dirac delta function above. Hence, (3.1) becomes

A(r) =
∫
Ω

A(r ′)W (r − r ′, h) dr ′. (3.3)
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As for the first derivative of A at position r, denoted by ∇rA(r), substituting

∇rA(r) into (3.3), we have

∇rA(r) =
∫
Ω

[∇r′A(r ′)]W (r − r ′, h) dr ′. (3.4)

Using integration by parts on higher dimension, we obtain

∇rA(r) =

∫
S

A(r ′)W (r − r ′, h)n dS

−
∫
Ω

A(r ′)∇r′W (r − r ′, h) dr ′, (3.5)

where S is the surface of Ω and n is the unit outward surface normal to S. Since

the smoothing function W has a compact support (see Section 3.2), the value of W

on the surface S of Ω is zero, it gives the first term on RHS of (3.5) becomes zero.

Therefore, the approximation for derivative, the equation (3.4) can be written as

∇rA(r) = −
∫
Ω

A(r ′)∇r′W (r − r ′, h) dr ′. (3.6)

Moreover, we obtain

∇r · A(r) = −
∫
Ω

A(r ′) · ∇r′W (r − r ′, h) dr ′. (3.7)

In SPH, the fluid is represented as a finite number of particles. Then, we can

rewrite (3.3) into discretized form by replacing integral interpolant by a summation

interpolant and dr ′ by approximation of particle’s volume Vj = mj

ρj
, where mj and

ρj are the mass and density of particle j, respectively. The value of A at ri is as

follows

A(ri) =
∑
j

mj
Aj

ρj
Wij, (3.8)

where Wij = W (ri − rj, h) = W (|ri − rj|, h) and j is referred to all neighbour

particle of particle i. Thus, we obtain the approximation of any continuous field

variable. In the same procedure, the approximation of a derivative at position ri,

∇iA(ri), can be expressed as

∇iA(ri) = −
∑
j

mj
Aj

ρj
∇jWij, (3.9)

∇i · A(ri) = −
∑
j

mj
Aj

ρj
· ∇jWij. (3.10)
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Figure 3.1: The circular support domain of kernel function W with radius κh for

particle i (red) with neighbor particles (gray)

Noting that, the gradient ∇jWij in the above equation is taken with respect

to particle j. It should be noted that the negative sign is removed if we replace

∇jWij by ∇iWij. Let us denote ∇iWij =
ri−rj

|ri−rj |
∂Wij

∂|ri−rj | . Hence, (3.9) becomes

∇iA(ri) =
∑
j

mj
Aj

ρj
∇iWij, (3.11)

∇i · A(ri) =
∑
j

mj
Aj

ρj
· ∇iWij. (3.12)

Now, we have shown the discretized form of integral representation of a function

and also its derivative by using the summation over all particles in the support

domain of the kernel function which is a key factor influencing the accuracy of SPH

method. The next section describes about the kernel function and its properties.

3.2 Kernel Function

In the SPH method, the kernel function plays an important role to perform

the function approximation. It determines the interpolation pattern and also the

influencing area of the particle. The properties of kernel function are summarized

as follows:
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- (normalization condition or sometimes called unity condition) the integral of

W over the space is unity ∫
Ω

W (r − r ′, h) dr ′ = 1;

- (Dirac delta property) the limit for h approach to zero of W is the Dirac delta

function

lim
h→0

W (r − r ′, h) = δ(r − r ′);

- (compact condition)

W (r − r ′, h) = 0 when |r − r ′|> κh,

where κ is a constant determining the support domain of the smoothing func-

tion W . It can be called that the value of W is zero outside the support domain

of W ;

- (symmetric property) the smoothing function W should be an even function.

It means the particles from the same distance gives the equal effect on a given

particle

W (r − r ′, h) = W (|r − r ′|, h) = W (r ′ − r, h).

From the above properties, there are many kinds of kernel functions which

have been used in many papers on SPH. In [16], they found that a spline function

of at least fourth order presents an accurate result of free surfaces. We thus used

a quintic spline function as a kernel function in this work.

W (r, h) =



α

((
3− 3|r|

h

)5

− 6

(
2− 3|r|

h

)5

+ 15

(
1− 3|r|

h

)5
)
, 0 ≤ |r|< h

3
,

α

((
3− 3|r|

h

)5

− 6

(
2− 3|r|

h

)5
)
,

h

3
≤ |r|< 2h

3
,

α

((
3− 3|r|

h

)5
)
,

2h

3
≤ |r|< h,

0, |r|> h,

(3.13)

where α = 63/478πh2 and 9/40πh3 for the 2- and 3-spatial dimensions, respec-

tively.
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Figure 3.2: 2-D kernel used in this work

Figure 3.3: 3-D kernel used in this work



17

From Figure 3.2 - 3.3, it is obvious that this kernel function has sym-

metric property and compact condition with κ = 1. Also it is easy to see that

lim
h→0

W (r, h) = ∞ if |r|= 0 and lim
h→0

W (r, h) = 0 if |r|> 0. Then, it holds the

Dirac delta property. The last condition to be checked is unity condition. For

2-dimensional kernel function,∫
Ω

W (r, h) dΩ = α

2π∫
0

h∫
0

[(
3− 3|r|

h

)5
]

r dr dθ

+ α

2π∫
0

2h/3∫
0

[
−6

(
2− 3|r|

h

)5
]

r dr dθ

+ α

2π∫
0

h/3∫
0

[
15

(
1− 3|r|

h

)5
]

r dr dθ

= α

2π∫
0

(
81h2

14

)
dθ + α

2π∫
0

(
−128h2

63

)
dθ + α

2π∫
0

(
5h2

126

)
dθ

= α

(
81πh2

7

)
+ α

(
−256πh2

63

)
+ α

(
5πh2

63

)
= α

(
478πh2

63

)
= 1.

For 3-dimensional kernel function,∫
Ω

W (r, h) dΩ = α

2π∫
0

π∫
0

h∫
0

[(
3− 3|r|

h

)5
]

r2 sinϕ dr dϕ dθ

+ α

2π∫
0

π∫
0

2h/3∫
0

[
−6

(
2− 3|r|

h

)5
]

r2 sinϕ dr dϕ dθ

+ α

2π∫
0

π∫
0

h/3∫
0

[
15

(
1− 3|r|

h

)5
]

r2 sinϕ dr dϕ dθ

= α

2π∫
0

π∫
0

(
81h3

56
− 64h3

189
+

5h3

1512

)
sinϕ dϕ dθ

= α

(
81h3

8
− 256h3

189
+

5h3

378

)
= α

(
40πh3

9

)
= 1

This shows that the kernel function has a unity condition.
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3.3 SPH Scheme on Governing Equations

This section considers applying the SPH approximation that we have discussed

in the previous section to the governing equations to obtain the numerical scheme

for our problem.

3.3.1 Continuity Equation

To approximate the continuity equation, (2.2), using SPH approximation, we

rewrite (2.2) in the form of product rule of ρ (∇ · v)

Dρ

Dt
= v · (∇ρ)−∇ · (ρv).

Substituting v · (∇ρ) and ∇ · (ρv) into (3.11) and (3.12), we obtain

Dρi
Dt

=
∑
j

mjvi · ∇Wij −
∑
j

mjvj · ∇Wij

=
∑
j

mj(vi − vj) · ∇Wij. (3.14)

Another approximation of density of particle is to substitute ρ into (3.8), we have

ρi =
∑
j

mj
ρj
ρj
Wij =

∑
j

mjWij. (3.15)

For simplicity, in this work, we use (3.15) to approximate the density of the par-

ticle.

3.3.2 Momentum Equation

Considering the momentum equation, (2.3), with only the gravitational force

as the external forces, we have

Dv
Dt

= −1

ρ
∇P + g (3.16)

where g is the gravitation force per unit mass. There are many formulae

that can be used to approximate pressure gradient, ∇P . The simplest is directly

substituting the pressure gradient, ∇P , into (3.9), we get

Dvi

Dt
= − 1

ρi

∑
j

mj
Pj

ρj
∇Wij + g. (3.17)
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However, it is not a good approximation. Since considering any pairwise inter-

action between particle i and j, we see that the pressure force acting on particle

i is from the information of particle j, and vice versa. That means the amount of

force received by particle j due to particle i is not the same as the amount of force

received by particle i due to particle j. It provides the total system force is not

zero. Then, the scheme that fixed this disadvantage and conserved the momentum

is proposed by Monaghan [13]. Rewriting the pressure gradient term by

∇P
ρ

= ∇
(
P

ρ

)
+

P

ρ2
∇ρ.

Hence, the momentum equation, (3.16), becomes

Dvi

dt
= −

(∑
j

mj

ρj

(
Pj

ρj

)
∇Wij +

Pi

ρ2i

∑
j

mj
ρj
ρj

∇Wij

)
+ g

= −

(∑
j

mj

(
Pi

ρ2i
+

Pj

ρ2j

)
∇Wij

)
+ g (3.18)

and we used this scheme in this work. Anyhow, this is not the final scheme. The

artificial viscosity and the surface tension force will be added. Their details will

be discussed in the next section.

3.4 Numerical Aspects

3.4.1 Pressure

In the momentum equation, (2.3), the value of pressure is needed in order to

calculate the acceleration. The Tait’s equation of state [1] used in this thesis is

P = B

((
ρ

ρ0

)γ

− 1

)
, (3.19)

where ρ0 is a reference density (in the case of water, ρ0 = 1000 kg/m3 ), γ shall be

7 for water-like fluid case, and B is a constant standing for the relation between

the speed of sound, c, at a reference density [14]

B =
c2ρ0
γ
.
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3.4.2 Artificial Viscosity

The artificial viscosity is considered to be added to the momentum equation,

(3.18), to reduce the unphysical oscillations around the shocked regions which have

a large amount of difference of pressure and also to prevent unphysical particles’

penetration when approaching each other [8] and to improve the code stability.

The artificial viscosity scheme we used is one of the most popular in SPH simula-

tions proposed by [13] written as

Πij =


−αΠ c ϕij + βΠ ϕ

2
ij

ρ̄ij
, vij · rij < 0,

0, vij · rij ≥ 0.

(3.20)

and

ϕij =
hvij · rij

|rij|2 + 0.01h2
,

ρ̄ij =
1

2
(ρi + ρj), vij = vi − vj, rij = ri − rj,

where c is a speed of sound, αΠ and βΠ are constants usually set around 1 [12]

3.4.3 Surface Tension

As we know that surface tension force is an external force applying to the

surface of fluid which is normally the boundary condition of the Navier-Stokes

equation. In SPH, it can be considered that the surface tension force is acting

on the surface particles. However, to find the surface particles is quite more

complex and gives an increase in the computational time. Thereby, we employ

the Tartakovsky and Meakin model [19] which considers the surface tension force

as the partice-particle interactions added to momentum equation that we have

described above. Let us denote Fij be the force acting between particles i and j

written as

Fij =


sij cos

(
0.5π

h
|rj − ri|

)
rj − ri

|rj − ri|
, |rj − ri|≤ h,

0, |rj − ri|> h.

(3.21)
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where sij is the strength of the force acting between the particles i and j. The value

is different for fluid-fluid, fluid-wetted solid and fluid-not wetted solid interactions.

The total forces acting on any particle i can be expressed as

Fi =
∑
j

Fij.

We see that Fij = −Fji, hence, this kind of particle-particle interactions con-

serve the momentum. Although this added force is not only acting on the surface

particles, the total force acting on the particle is nonzero only near the fluid sur-

faces, fluid-solid interfaces. The risen force creates surface tension. Let us denote
Fi

mi
be the acceleration comes from the surface tension force and put it and also the

artificial viscosity Πij into the momentum equation, (3.18). We eventually obtain

the final scheme on momentum equation

Dvi

Dt
= −

(∑
j

mj

(
Pi

ρ2i
+
Pj

ρ2j
+ Πij

)
∇Wij

)
+ g +

Fi

mi

. (3.22)

3.4.4 Neighbor Searching Algorithm

In SPH method, the particles need to check their neighbor particles that inter-

act with itself at every time step which causes a great amount of computational

time. In the followings, two techniques will be introduced

All Particles Search

The simplest algorithm used to find the neighbor particles. To find out the

particles which are in the support domain of the current particle, it checks the

distance between itself and whole particles in the domain. This means that, if

the number of particles in the whole domain is N , the time complexity of this

algorithm is O(N2). The pseudo-code is presented below

for(int i=0; i<N ; i++)

for(int j=0; j<N ; j++)

checking_distance(i, j);.
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We see that the distance between particle i and j is symmetric, the value of

smoothing function W between couple of particles i and j are the same, (Wij =

Wji). Thus, no need to compute the value of smoothing function twice, we can

reduce the computational time by symmetrized the previous algorithm as follows

for(int i=0; i<N ; i++)

for(int j=i+1; j<N ; j++)

checking_distance(i, j);.

i

Figure 3.4: The scheme for all particles searching.

Linked-list Algorithm

Due to checking all the particles suffers a long computational time. To develop

the method, several techniques were proposed. One of them is called ‘linked-list

method’. The main idea is to overlay the cell on the whole domain which its

size equals to support radius of kernel function κh. Seeing that all particles are

assigned into a cell, then the neighbor particles of each particle are placed in the

same grid and its adjacent cells. It provides the cells to checked are only 3, 9 or

27 cells for 1-, 2- or 3-dimensions, respectively.
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i

Figure 3.5: The scheme for linked-list method. Overlaying the cell on the domain

and the particles are assigned into the cell

From data structure point of view, each cell can only save one particle or

no particle contained in that cell. Then, each particle saves the information of a

next particle arriving at its, same cell as a chain. Using this method, neighbor

searching algorithm can be work in O(kN), where k is proportional to the average

number of neighbors. That greatly improves the neighbor searching algorithm.

How to construct the linked-list of all particles is presented in pseudo-code below

for (int i=0; i<N ; i++){

int gn = finding_grid_number[i];

if (grid[gn] == -1)

grid[gn] = i;

else {

int j = grid[gn];

while (next[j] != -1){

j = next[j];
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}

next[j] = i

}

}.

The weak point of this method is when the smoothing length is not a constant,

the constructed cells may not be fine for every particle. Hence, the efficacy may

be less.

grid[134] = -1134

(a) Empty cell

grid[195] = 20

next[20] = 78

next[78] = 312

next[312] = 435

next[435] = -1

195
20

78

435

312

(b) Occupied cell

Figure 3.6: Example of the handling in empty cell (cell 134) and occupied cell

(cell 195 with particle 20, 78, 312 and 435) on allocation of the next particle (−1

is denoted that there is no next particle).

3.4.5 Wall Boundary

In this work, the rigid boundary method was applied because of its simplicity

for implementing when we consider the wall boundary. We add the rigid bound-

ary particles on the boundary as a wall. The wall particles interact with another

particles same as the normal fluid particles. However, in the time integration step,

they will not be updated the position.

According to the force that acting between the fluid-solid interactions is differ-

ent for fluid-wetted particles and fluid-not wetted particles (as we have discussed

in section 3.4.3), the boundary particles will be detected whether it is wetted

or not wetted particles. As the by-product from linked-list method, we already

assigned the particles into the constructed cells, the boundary particles as well.

First, we impose all boundary particles to be not wetted. For each time step, if we

detect a particle placed in a cell that is contiguous with boundary cell, we assign
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the boundary particles in that contiguous cell to be wetted under the assumption

that the particles being wetted once, are always wet.

3.4.6 Numerical Time Integration

The particle accelereation is computed by (3.22). In order to update the new

particle velocity and position, we integrate the acceleration numerically. In this

research, we employ the leap-frog integration scheme which gives the better accu-

racy than Euler’s scheme and lack of complexity. To update the particle position

at a new time step, it uses the information of velocity at half time step. Whereas

the velocity at half time step is calculated from the information of an acceleration

at full time step.

v
(
t+

∆t

2

)
= v

(
t− ∆t

2

)
+ a (t)∆t, (3.23)

r (t+∆t) = r (t) + v
(
t+

∆t

2

)
∆t. (3.24)

By using (3.23) and (3.24), we obtain a new particle postition in a new time step.

For the first time step, the information of velocity at −∆t/2 can be obtained from

Euler backward method

v (−∆t/2) = v0 − 1

2
a0∆t,

where v0 = v(0) and a0 = a(0).

The time step (∆t) might be chosen carefully. In order to obtain the stable so-

lution, the time step should satisfy the Courant-Friedrichs-Levy stability condition

[16]. The condition due to the speed of sound, c,

∆t ≤ 0.25
h

c
,

due to the magnitude of individual particle acceleration ai

(
= Dvi

Dt

)
,

∆t ≤ 0.25min

(
h

|ai|

) 1
2

.
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3.5 Summary

We summarize our procedure for solving the governing equations in SPH

method in the following diagram

..Start.

Initialize particle mass (m),

position (r) and velocity (v)

.

Construct a linked list

(for neighbor searching and wet wall detection)

.

Update particle density (ρ) and Pressure (P )

via (3.15) and (3.19)

.

Update particle acceleration
(
Dv
Dt

)
via (3.22)

.

Update particle velocity (v) and position (r)
via leapfrog integration scheme

.

while

t < tmax

.

Stop

.

yes

.

no

Figure 3.7: Diagram of procedure for solving governing equations



CHAPTER IV

RESULTS AND DISCUSSIONS

In this chapter, the implementation of SPH method combined with surface

tension is applied to solve the system equations we have discussed in Chapter 2

and Chapter 3. The 2- and 3-dimensional numerical results of 10, 15, 20, 25, and

30 mg droplets will be shown and compared with experimental results from [20]

to verify that our model can describe the phenomenon well.

4.1 2-dimensional Simulation

We start with 2-dimensional system. The parameter used in 2-dimensional

simulation are shown in Table 4.1. The 10, 15, 20, 25 and 30 mg droplets are

initialized by 440, 576, 729, 840 and 930 particles, respectively in rectangular

shape under gravitational force and surface tension force with boundary particles

as a wall in order to validate the model via droplet status including retent or

moving on vertical plane. The drops fall down a bit for early time step because

they have not formed to be regular shape yet, After that, the drops which have a

big mass, including 25 and 30 mg droplets continue falling down but 10, 15 and 20

mg droplets stop moving and are hanged on the wall which gives a good agreement

with the experimental results. Moreover, the receding angles and advancing angles

are measured via Adobe Photoshop CS2 software and compared with experimental

results. Here are our model results at t = 0.5 s validated with experimental results.
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Figure 4.1: The experimental result (left) [20] and 2-dimensional numerical result

(right) of 10 mg droplet

Figure 4.2: The experimental result (left) [20] and 2-dimensional numerical result

(right) of 15 mg droplet
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Figure 4.3: The experimental result (left) [20] and 2-dimensional numerical result

(right) of 20 mg droplet

Figure 4.4: The experimental result (left) [20] and 2-dimensional numerical result

(right) of 25 mg droplet
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Figure 4.5: The experimental result (left) [20] and 2-dimensional numerical result

(right) of 30 mg droplet

Table 4.1: The parameters for 2-dimensional simulation

Parameter Value

Particle mass (m) 9.75693× 10−6 kg

Reference density (ρ0) 1000 kg/m3

Acceleration of gravity (g) 9.8 m/s2

Speed of sound (c) 15 m/s

Smoothing length (h) 0.0002 m

Time step (∆t) 0.000001 s

sij for fluid-fluid interaction 0.43

sij for fluid-wetted solid interaction 0.47

sij for fluid-not wetted solid interaction 0.32



31

Table 4.2: The status of droplet compared between experimental results and 2-

dimensional numerical results

Status

Mass (mg) Experimental Numerical

10 Retent Retent

15 Retent Retent

20 Retent Retent

25 Moving Moving

30 Moving Moving

From Table 4.2, we can illustrate that the numerical results give the good

agreement with the experimental results. The 10, 15, and 20 mg droplets are

hanged on the wall because the adhesion, fluid-solid attractive force beats the

gravitational force. However, as the droplet mass increases to 25 and 30 mg, the

gravitational force acting on the droplet increase as well, providing the adhesion

force cannot support the droplet anymore. Thus, the droplet falls down by influ-

ence of gravitational force.

From Table 4.3-4.4 and Figure 4.1-4.7, we can infer that the average deviation

of receding angles between numerical results and experimental results is 3.15% and

the average deviation of advancing angles between numerical results and experi-

mental results is 5.45%. This shows that our model can describe the phenomenon.

The maximum deviation of receding angle is 7.48% from 15 mg droplet, it might

be caused from we let the droplet falling down before the droplet keeps the shape.

This drawback will be fixed in 3-dimensional simulation.
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Table 4.3: The receding angles compared between experimental results and 2-

dimensional numerical results

Receding angle Relative

Mass (mg) Experimental Numerical deviation, %

10 68°38′ 68°12′ 0.63

15 47°27′ 51°00′ 7.48

20 41°15′ 42°24′ 2.78

25 38°49′ 39°12′ 1.01

30 36°10′ 37°24′ 3.86
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Figure 4.6: The comparison of receding angles between experimental results and

2-dimensional numerical results
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Table 4.4: The advancing angles compared between experimental results and 2-

dimensional numerical results

Advancing angle Relative

Mass (mg) Experimental Numerical deviation, %

10 79°41′ 75°12′ 5.72

15 78°19′ 74°24′ 5.21

20 80°56′ 77°18′ 4.63

25 81°21′ 73°48′ 9.67

30 80°52′ 79°24′ 2.02
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Figure 4.7: The comparison of advancing angles between experimental results and

2-dimensional numerical results
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However, the big drawback is the 2-dimensional simulation does not present

the realistic droplet mass and volume because it presents only the cross-section

of the droplet not the whole droplet. The number of particles we used in 2-

dimensional simulation is just represented for the area of cross-section. Hence, we

advance our simulation to 3-dimensional system to get more realistic model.

4.2 3-dimensional Simulation

The 3-dimensional simulation is proposed here to improve the model realisti-

cally. In the following simulation, the number of particles used to simulate the

10, 15, 20, 25 and 30 mg droplets is 1320, 2016, 2730, 3360 and 4032 particles,

respectively in rectangular shape with boundary particles as a wall and the pa-

rameters are given in Table 4.5. For 3-dimensional simulation, we do not put the

acceleration of gravity, g, on the early time step (t = 0 - 0.05 s) for letting the

surface tension makes the droplet being the spherical shape. After that, the accel-

eration of gravity will be added into the domain. The statuses of the droplet are

compared with the experimental result. The receding and advancing angles are

compared with experimental results as well. Heres are the 3-dimensional results

at t = 0.15 s.
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Figure 4.8: The experimental result (left) [20] and 3-dimensional numerical result

(side view) (right) of 10 mg droplet

Figure 4.9: The experimental result (left) [20] and 3-dimensional numerical result

(side view) (right) of 15 mg droplet
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Figure 4.10: The experimental result (left) [20] and 3-dimensional numerical result

(side view) (right) of 20 mg droplet

Figure 4.11: The experimental result (left) [20] and 3-dimensional numerical result

(side view) (right) of 25 mg droplet
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Figure 4.12: The experimental result (left) [20] and 3-dimensional numerical result

(side view) (right) of 30 mg droplet

Table 4.5: The parameters for 3-dimensional simulation

Parameter Value

Particle mass (m) 7.65031× 10−9 kg

Reference density (ρ0) 1000 kg/m3

Acceleration of gravity (g) 9.8 m/s2

Speed of sound (c) 8 m/s

Smoothing length (h) 0.0004 m

Time step (∆t) 0.00001 s

sij for fluid-fluid interaction 0.0375

sij for fluid-wetted solid interaction 0.0375

sij for fluid-not wetted solid interaction 0.00005
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Table 4.6: The status of droplet compared between experimental results and 3-

dimensional numerical results

Status

Mass (mg) Experimental Numerical

10 Retent Retent

15 Retent Retent

20 Retent Retent

25 Moving Moving

30 Moving Moving

From Table 4.6, we see the numerical results also give a good agreement with

the experimental results on the status of droplet same as 2-dimensional simulation.

From 4.7-4.8 and Figure 4.8-4.14, we can illustrate that the average deviation of

receding angles between numerical results and experimental results is 5.11% and

the average deviation of advancing angles between numerical results and experi-

mental results is 2.16%. This means that our model in 3-dimensional system can

also depict the droplet motion on vertical plane. Moreover, we see that there is no

big jump error as it has happened in 2-dimensional simulation of 15 mg droplet

that its deviation is 7.48%, while the average deviation of receding angles of other

simulations is only 2.07%. The 3-dimensional simulation’s average deviation of

advancing angles is less than the 2-dimensional simulation’s. This shows that the

3-dimensional simulation gives better results. Although the 3-dimensional simula-

tion’s average deviation of receding angles is more than 2-dimensional simulation’s

average deviation, it can be seen that it looks more “uniform”.
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Table 4.7: The receding angles compared between experimental results and 3-

dimensional numerical results

Receding angle Relative

Mass (mg) Experimental Numerical deviation, %

10 68°38′ 66°06′ 3.69

15 47°27′ 49°42′ 4.74

20 41°15′ 43°48′ 6.18

25 38°49′ 40°48′ 4.61

30 36°10′ 38°18′ 6.34
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Figure 4.13: The comparison of receding angles between experimental results and

3-dimensional numerical results
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Table 4.8: The advancing angles compared between experimental results and 3-

dimensional numerical results

Advancing angle Relative

Mass (mg) Experimental Numerical deviation, %

10 79°41′ 78°42′ 1.36

15 78°19′ 81°06′ 3.55

20 80°56′ 43°30′ 4.41

25 81°21′ 80°48′ 0.92

30 80°52′ 80°24′ 0.58
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Figure 4.14: The comparison of advancing angles between experimental results

and 3-dimensional numerical results
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The drawback from 2-dimensional simulation that it cannot catch up the real

mass is fixed here. It can be seen that the 10 mg droplet is simulated by 1320

particles with 7.65031× 10−9 kg/particle. Hence, the simulated mass ≈ 10.098

mg. That provides close to real mass whereas the numerical results still can depict

the droplet behavior well. Therefore, we can say that our 3-dimensional simulation

can describe the real world phenomenon with real scale model.

The receding angles at each time step are measured here to observe the behavior

of the droplet. Starting from the time step t = 0.05 s, which is the time step we

put the acceleration of gravity, g, into the domain, to t = 0.15 s, which is the end

of our simulation. The results show that the receding angles of the 10 and 15 mg

droplets decrease slightly from the starting time step. For the 20, 25, and 30 mg

droplets, the receding angles decrease dramatically in the early step, then change

slightly because the droplets were falling down (the 20 mg droplet fell down a bit

and stop) from the effect of gravity. The results are shown in Figure 4.15 - 4.19.

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15
20

30

40

50

60

70

80

90

100

time (s)

re
ce

d
in

g
an

gl
e

(d
eg

re
e)

 

 

10 mg

Figure 4.15: The receding angles at each time step of 10 mg droplet
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Figure 4.16: The receding angles at each time step of 15 mg droplet
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Figure 4.17: The receding angles at each time step of 20 mg droplet
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Figure 4.18: The receding angles at each time step of 25 mg droplet
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Figure 4.19: The receding angles at each time step of 30 mg droplet
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The 12.5, 17.5, 22.5, and 27.5 mg droplets are simulated. The receding and

advancing angles are measured and appended to the Figure 4.13 and 4.14 to see

more apparent how the curve from the numerical results fit the curve from the

experimental results. The results are shown in Table 4.9 and Figure 4.20-4.25

Table 4.9: The receding and advancing angles of 3-dimensional numerical results

Mass (mg) Receding angle Advancing angle

12.5 56°00′ 84°36′

17.5 47°36′ 85°18′

22.5 42°48′ 78°18′

27.5 39°00′ 79°36′

Figure 4.20: The 3-dimensional simulation of 12.5 mg droplet
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Figure 4.21: The 3-dimensional simulation of 17.5 mg droplet

Figure 4.22: The 3-dimensional simulation of 22.5 mg droplet

Figure 4.23: The 3-dimensional simulation of 27.5 mg droplet
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Figure 4.24: The comparison of receding angles between experimental results and

3-dimensional numerical results with 12.5, 17.5, 22.5, and 27.5 mg appended
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Figure 4.25: The comparison of advancing angles between experimental results

and 3-dimensional numerical results with 12.5, 17.5, 22.5, and 27.5 mg appended



CHAPTER V

CONCLUSIONS

5.1 Conclusions of This Work

In this work, the 2- and 3-dimensional simulation of droplet motion on verti-

cal plane using Smoothed Particle Hydrodynamics (SPH) method combined with

surface tension has been introduced. The surface tension which modeled from a

particle-particle interaction can be integrated into standard SPH method.

We can conclude that SPH is a powerful tool used in fluid simulation as the

following benefits. Since we discretized the fluid into particles, SPH guarantees

conservation of mass automatically (if the particles do not fly away from our do-

main). The free surface is easy to track because the particles directly create the

fluid phase while the empty space stands for the air phase. Another benefit is

easy to implement, that is, we need not be related with mesh formulation, which

is practically difficult part in grid-based method at all.

From the numerical results we have presented in the previous chapter, we can

see that our simulations in both 2 and 3 dimensions successfully describe the

droplet profile and behavior. The receding and advancing angles of the 10, 15, 20,

25, and 30 mg droplets are measured and compared with the experiment from [20].

The model validations show that the receding and advancing angles obtained from

SPH simulation give a good agreement with those obtained from experiment. The

average deviations of receding angles are 3.15% and 5.11% for 2- and 3- dimen-

sional simulations, respectively, and the average deviation of advancing angles are

5.45% and 2.07% for 2- and 3- dimensional simulations, respectively. The status

of droplet is verified as well. In our simulations, for 10, 15, and 20 mg droplets,

their status are retent which are the same as the experiment and for 25 and 30

mg droplets their status are moving which are also the same as the experiment.
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The overall angle of the droplet at each time step are shown to observe how the

droplet’s angle change in time. For the droplet that is retent, the angle decreases

slightly but for the droplet that is moving, the angle decrease dramatically in early

step. The 12.5, 17.5, 22.5, and 27.5 mg droplets which are between 10, 15, 20, 25,

and 30 mg, are simulated to see the correspondence with the curve of receding

and advancing angles obtained from experiment. They give a good agreement as

well.

The disadvantage of 2-dimensional simulation is that it cannot give the real

droplet mass and volume. It only presented the area of droplet cross-section

area. For more realistic model, the 3-dimensional simulation can suppress this

disadvantage. The number of particles and particle mass used in 3-dimensional

simulation correspond to the real droplet mass as we have shown in the case of

10 mg droplet. Therefore, we can conclude that our simulation can model the

problem in real world scale.

5.2 Future Works

In this section, we propose the plan for the future works to improve the results

or extend the scope of the research. We list the plans as follows

1. To boost up the overall computing performance, the graphics processing

unit (GPU) will be used. It has been deployed widely over a last decade for

dramatic increasing the computing performance.

2. The neighbor particle searching in every time step costed a great computa-

tional time. It can be reduced if we can improve how to handle the neighbor

searching.

3. The wet detection which deals with the wall particles is not quite good.

The algorithm we used is presuming all particles in a cell that is contiguous

with fluid particle are wet. We need more specific method to improve the

wet detection algorithm. More accurate detecting the wet particle, more

accurate modeling the surface tension.
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4. Although the surface tension model that we have employed gave good results,

anyway, there are many techniques used to model the surface tension. Trying

another model may give a better result.
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