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CHAPTER I 
INTRODUCTION 

 
 
1.1 Motivation  
 Long-wave phenomena are commonly exist in nature such as wave run-up, 
tsunami and solute transport in blood vessel, etc. One way to model these 
phenomena is to use the so - called shallow water equations (SWEs). The SWEs are a 
set of hyperbolic partial differential equations that describes the flow with the 
horizontal length scale is much greater than the water depth. Moreover, the 
conservation laws make them powerful and efficient to simulate long-wave flow 
phenomena. Many research have demonstrated how to solve the problem described 
by shallow water equations using conventional numerical methods – such as the finite 
difference method (FDM), the finite element method (FEM) and the finite volume 
method (FVM) – and to simulate those problems with complex topography. Nowadays, 
the results of the shallow water flow problem with any traditional method are 
somewhat good but the calculation of these methods is quite complicated and can 
cause many mistakes. By this reason, if there is a new method that is not complicated 
and is easy for program coding, this new method will be interesting in numerical field. 

The new numerical method called lattice Boltzmann method (LBM) was 
developed and introduced in recent decades based on kinetic model [2], [3] and [4]. The 
LBM is the mesoscopic method with simple arithmetic of just one parameter, the 
distribution function which is the function that describes the fluids particles. Lattice 
Boltzmann equation is the key equation of this method consisting of two crucial steps, the 
collision step and the streaming step. In this equation the distribution function of the 
previous time is needed to calculating the distribution function of the present time. The 
link between the distribution function and the unknown variables which describe the real 
phenomena like the water velocity and the water depth is efficient. Because we solve this 
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problem with one variable, the distribution function, instead two or three variable 
depended on the number of dimension. These give a better way to manage the code.  

The shallow water flow problems with the wet – dry interface are the troublesome 
for all numerical methods.  Also this problem can cause difficulty to the standard LBM. In 
order to overcome this drawback, the Taylor expansion and Chapman-Enskog procedure 
are considered to handle the distribution function without any artificial assumption. 
This new scheme was first introduced by Liu and Zhou in [1].  Moreover, the source 
terms, i.e. the bed slope and the bed friction, are included in the problem. 

  We study both the SWEs and LBM, then applying the lattice Boltzmann method to 
solve the shallow water flow problem with the wet - dry interface, which is considered by 
the new scheme for it.  Moreover, we apply this method to solve the example of the 
shallow water flow problem. The benefit of the thesis is to study the new method that is 
easier to cope with our problem. 

1.2 Literature Reviews  
 Fluid flow problems governed by SWEs are studied by well – known numerical 
methods such as FEM, FDM, FVM etc. These method were used many times for these 
kind of problems. They were applied and modified to handle special fluid flow 
problems such as flows with complex geography. The numerical results from these 
methods perform quite well in general when compared with exact solutions and 
experiments. However, implementing with these methods is quite difficult for 
beginners, which may introduce mistakes in coding due to complexity of the methods. 
To overcome this, the LBM is the method that is not complex but can handle fluid 
flow problems under some assumptions. Because LBM was introduced in recent years, 
researchers have been trying to apply the method to handle many problems. 
 The following are some advantages of LBM. Firstly, the programing is simple 
because LBM comprises easy calculations in two main steps. Secondary, the single 
variable is used instead of two or three unknown variables of SWEs in the calculation. 
Thirdly, it can easily be modified to apply parallel computing for faster computation. 
Lastly, the method can easily handle complex boundary conditions. 
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 There are many results in literatures of the lattice Boltzmann method for shallow 
water flows. In 2013 Rakwongwan & Maleewong solved the dam – break problem 
described by shallow water equations using LBM without the source terms such as bed 
slope and bed friction [5]. The study can handle the dam break problem and gives 
numerical results that agree with the exact solution. However, this result does not 
include the problem with source terms and the result diverges, when the two levels 
of fluid surface are far enough (see experiment 1, Chapter 4). Zhou (2002) [6] presented 
the simulation of LBM for shallow water flow by including some simple source terms 
such as linear bed slope with small slope. However, for the source term with high 
order differential term, the numerical result does not agree well with the exact 
solution. In 2011, Zhou [7]  overcame this difficulty by using the LBM for shallow water 
problem with the complex source terms by employing the idea of centered scheme 
to manage the order of the accuracy of the source term in, but only for problem of 
wet area. For the problem with the wet – dry interface, the standard LBM does not 
work in general in the calculation. However, some researches use artificial assumptions 
such as that from a thin film to extrapolation of unknown variables [8]. Eventually in 
2014, Liu & Zhou [1] introduced the approach to solve this problem with wet – dry 
interface by using the Taylor expansion and Chapman – Enskog procedure. 
  In this thesis as proposed in early 2014, the research was planned to extend 
the result of [5], which was for wet-wet problem without source terms, to handle more 
general cases for having source terms and with wet-dry interface. Since the idea of 
wet-dry interface was introduced during the time in [1] , the research is therefore 
focusing on implementation based on [1] by including additional techniques such as 
wet-dry tracking, which is illustrated with some numerical experiments. 
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1.3 Overview  
In this thesis, we study and present the derivation of the SWEs by considering the 

flow through the fixed control volume. Then the LBM and its important mathematical 
aspects are expressed. These two mathematical topics are the important mathematical 
background of this research and presented in CHAPTER II. LBM for the shallow water flow 
problem with wet - dry transition is exhibited in CHAPTER III. The numerical results are 
shown in the CHAPTER IV. Finally, the conclusion is given in CHAPTER V.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 

CHAPTER II  
MATHEMATICAL KNOWLEDGE 

 

 This chapter composes of two important mathematical knowledge for this 

research. Firstly, we describe and present the derivation of the shallow water equations 

(SWEs). The shallow water equations are the set of equations that describe the long – 

wave flow phenomena. Secondly, we introduce the lattice Boltzmann method (LBM).  

 

2.1. Shallow Water Equations  
 Shallow water equations (SWEs) consist of a set of partial differential equations 

that describe some kind of fluid flow problems. The word “shallow” doesn’t mean 

the fluid need to be shallow, but this word presents the relation between the depth 

of fluid and the wave length. The fluid flow phenomena described by SWEs should 

have long wave length compared with its depth. This property allows us to assume 

that the vertical effects can be neglected when it is compared to horizontal effects. 

There are many phenomena that can be described by SWEs such as the flow in river, 

the flow in estuaries, the coastal areas phenomena like wave run – up and wave run 

– down, tsunami prediction, atmosphere flows, storm surge, solute transport in blood 

vessel, flows through porous media, etc [7]. 
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Herein we derive the two – dimensional shallow water equations based on 

three important assumptions:  

a) The fluid is incompressible, this implies that the fluid density does not 

change in time.  

b) The hydrostatic pressure – the pressure due to the force of gravity – is 

included in this model.  

c) This fluid flows without turbulence.  

These equations consist of two crucial parts which are the conservation of mass 

and the conservation of momentum. Before we begin to derive them, we have to 

define one thing, the control volume.  

 

From figure 2.1, we 

subdivide the domain of fluid flow problem into small boxes with their fixed volume 

(V). These small boxes are as tall as their domain where they rest on. Their horizontal 

cross section has side of lengths x  and y   for x  direction and y  direction, 

respectively, where x  and y  are sufficiently small. 

Figure 2. 1 The domain and its control volume (𝑉). 
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When we observe the control volume from the top side as figure 2.2, there are 

the velocity     ,u x t y t  in the x  direction and     ,v x t y t  in the y  

direction, in which t  is time. Now, we could begin to derive the governing equation of 

shallow water flow problem, which composes of the two vital conservation laws.  

 

 

 

 

 

 

 

 

2.1.1 Conservation of Mass 
 From figure 2.2, we states that the rate of mass increasing within the control 

volume ( )V  is equal to the net rate of mass flux entering the volume V . To consider 

this statement, we have to investigate for each direction of velocity.  

 In the x  direction, we can observe that mass flux entering into the control 

volume ( )V  is the product of the fluid density ( ) , the fluid velocity in the x  

direction  u  and the face area yh , resulting in 

 mass flux in
x

uh y               (2.1) 

The mass leaving at the outlet have a little bit change of the fluid density  , the fluid 

depth h  and the fluid velocity in the x  direction u  due to the fluid passed through 

the volume. This gives 

Figure 2. 2 The velocity through the control volume in each direction. 
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(2.2)

  

By the Taylor series expansion, the equations (2.2) is expanded and truncated up to 

the 1st  order in term of x , i.e.,   O x ,    

     
 

, y ,y ,y

.

x x u x x h x x y

uh
uh y x y

x






       

 
      
 
 

   (2.3) 

Similarly, in the y  direction, we obtain  

     mass flux in
y

vh x                        (2.4)  

            
 

mass flux out
y

vh
vh x y x

y



 
      
 
 

           (2.5) 

The summation of equations (2.1), (2.3), (2.4) and (2.5) – the net rate of mass 

flux entering the control volume  ( )V  – must equal to the retained mass in the 

volume x yh  . The accumulated mass can be written as  

                                                        
 h

x y
t


 


                                (2.6) 

 

 

 

       mass flux out ,y ,y ,y
x

x x u x x h x x y        
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Therefore, we obtain  

   h uh
x y uh y vh x uh y x y

t x

 
  

  
           
  
 

 

                                    
 vh

vh x y x
y



 
     
 
 

             (2.7) 

Simplifying the equation (2.7) leads to   

            
     h uh vh

x y x y y x
t x y

    
        

  
         (2.8) 

Dividing the equation (2.8) by the area x y   yields 

                               
     

0
h uh vh

t x y

    
  

  
                     (2.9) 

For the incompressible flow, the fluid density   is constant. Then the conservation 

of mass can be written as 

                                      
   

0
uh vhh

t x y

 
  

  
            (2.10) 
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2.1.2 Conservation of Momentum 
 Because the collision among the fluid particles always occur in the fluid flow 

phenomena, thus the momentum should be considered for these phenomena. When 

particles collide each other, the momentum before the collision should absolutely be 

equal to after collision. This is called the law of conservation of momentum. 

Momentum is a vector quantity which is product of mass and velocity. This means 

that, for two – dimensional problem, we have to derive them into the x  direction and 

the y  directions.  

 In the x  direction, we can observe that the rate of change of momentum 

within the control volume can be expressed as  

                                                
 uh

x y
t


 


                                    (2.11) 

The momentum flux entering into each face of the control volume is the product of 

the mass flux and the velocity in the x  direction. The momentum flux in x direction 

written as 

                        uuh y uvh x                                    (2.12)

  

The momentum flux for opposite side is  

   
.

uuh uvh
uuh x y uvh y x

x y

 
 
    
          
    
   

         (2.13) 

 By the fact that the rate of change of the momentum within the control 

volume is equal to the net momentum flux entering the control volume plus with the 

sum of the force acting against on the control volume  xF . This gives 
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   uh uuh
x y uuh y uvh x uuh x y

t x

 
  

  
          
  
 

  

          
 

x

uvh
uvh y x F

y



 
     
 
 

               (2.14) 

By simplifying the above equation (2.14) resulting in 

            
     

x

uh uuh uvh
x y F

t x y

     
     
   
 

        (2.15) 

Similarly in the y  direction, we obtain 

 
     

.y
vh uvh vvh

x y F
t x y

     
     
   
 

         (2.16) 

in which yF is the sum of force acting on the control volume in the y  direction. 

  

 Now let’s consider the force acting against the control volume. There are three 

crucial force acting on the control volume V ; the gravity due to the bed slope   gF
, friction  ,fF  and hydrostatic pressure force  pF . Those forces acting against on 

the control volume in x  direction as in figure 2.3. 
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 In figure 2.3, gxF  and fxF  are the gravitational force due to the bed 

slope and the friction force in the x  direction, respectively. Their directions are 

depicted on the figure. |px xF  and |px x xF


 are the hydrostatic pressure forces, 

their directions point into the control volume as in the figure. 

 

 a) Gravitational force due to the bed slope  

 The gravity force due to the bed slope in x  direction, gxF , can be 

expressed as 

         sin sin ,gxF mg gh x y               (2.17) 

where  m  is the fluid mass, g  is the gravitational acceleration and   is the angle of 

the tangent of the bed slope which can be seen in the figure 2.4 . 

 

Figure 2. 3 The forces acting against on the control volume in x  direction. 
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 The angle   is small, this implies sin tan   which is the bed 

slope. From the bed topography bz , it is easy to find that the bed slope is bz

x




 and 

bz

y




 in the x  and y  directions, respectively. We obtain 

             ,b
gx

z
F gh x y

x



  


                     (2.18) 

Similarly in the y  direction 

    ,b
gy

z
F gh x y

y



  


                     (2.19) 

where, gyF  is the bed slope in the y  direction. 

 

 

Figure 2. 4 The bed slope in x z  plane. 
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 b) Frictional force 

 In the x  direction, frictional force, fxF , can be expressed as 

    ,fx fxF ghS x y                 (2.20) 

in which, fxS  is the bed friction in the x  direction which is obtained from the 

Manning’s equation, given as  

    
2 2 2

4/3
,fx

un u v
S

h


             (2.21) 

where, n  is the Manning’s roughness coefficient. 

It is similar for the frictional force in the  y  direction 

    ,fy fyF ghS x y                 (2.22) 

in which, fyS  is the bed friction in the y  direction, given as 

    
2 2 2

4/3
.fy

vn u v
S

h


                      (2.23) 
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 c) Hydrostatic pressure force  

 Firstly, we begin to consider the pressure force in the x  direction. We 

assume that P  is the hydrostatic pressure, A is the area where the hydrostatic 

pressure force acting against, h  is the net depth of fluid ( s bh h z  ) in which sh  

is the height of the water surface. The pressure force acting on the inlet in the x  

direction can be written as 

     

 

|

0
0

2

2

px x
h

h

F PdA

g h yd

h
y g

  






  


 



            

    
2

2

h
y g             (2.24) 

 Therefore, the net hydrostatic pressure force on the x  direction can be 

calculated as 

2 2 2

| | ,
2 2 2px x px x x

gh gh g h
F F y y y x

x

  


 
        

  

   

             
2

.
2

g h
y x

x

 
  


           (2.25) 

In the y  direction, the pressure force is  

      
2

| | .
2py y py y y

g h
F F y x

y





   


          (2.26) 
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 Substituting all of the force terms in the x  direction – the equation (2.18), 

(2.20) and (2.25) – into the conservation of momentum equation in the x  direction, 

the equation (2.15). This gives  

       
     uh uuh uvh

x y
t x y

     
     
   
 

 

 
2

.
2

b
fx

z g h
gh x y ghS x y y x
x x


 

 
       

 
    (2.27) 

  

Dividing by x y   and    yields   

      2

.
2

b
fx

uh uuh uvh zg h
gh S

t x y x x

    
            

      (2.28) 

This is called the conservation of momentum in the x  direction. 

 Similarly in the y  direction, substituting the equation (2.19), (2.22) and 

(2.26) into the equation (2.16). We obtain the conservation of momentum in the y  

direction as

 

      2

.
2

b
fy

vh uvh vvh zg h
gh S

t x y y y

    
            

       (2.29) 
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 Finally we obtain the shallow water equations for 2 – dimensional 

problem as in equations (2.10), (2.28) and (2.29). Moreover the SWEs for 1–dimensional 

problem can be written as  

                  
 

0,
huh

t x


 

 
                     (2.30) 

   22

2
,

2
b bi

hu hu zu g h
u gh

t x x xx






   
     

   
             (2.31)

  

in which   is the kinematic viscosity define by  

              2 1
,

2sC t 
 

   
 

            (2.32) 

and  sC  is sound speed in a lattice and  is the relaxation time1. 

 The bed shear stress2, bi , demonstrates as 

     ,bi b i j jC u u u             (2.33) 

where  bC  is the bed friction coefficient. 

 

 
 
  
 
 

                                           
1 The time required for a viscous substance to recover from shearing stress after flow 
has ceased. 
2 The way in which waves (or currents) transfer energy to the sea bed. 



 

 

18 

2.2. Lattice Boltzmann Method 
2.2.1 Introduction  
 Shallow water flow problems have been being research numerously by 

the well – known methods such as the finite different method (FDM), the finite 

element method (FEM) and the finite volume method (FVM), etc. These methods 

somewhat work very well and give their good results but the way to manage these 

codes is quite complicated, and this may allow some mistakes to occur by the time 

we provide our code. 

 Lattice Boltzmann method (LBM) was developed and introduced in 

recent decades based on kinetic model in order to overcome the drawback of its 

ancestor method, the cellular automata [2]. Lattice Boltzmann method is the 

mesoscopic method, i.e. the method that consider both the microscopic world 

(molecular world) and the macroscopic world (real world). This method includes the 

simple arithmetic of just one parameter, the distribution function  f


 , where   is 

index depending on the lattice model. The distribution function is the probability 

function that describes the behavior of the fluid particles. 

 This section will present the important concepts of the LBM. Firstly, 

lattice Boltzmann equation which is the key equation of this method consisting of two 

crucial steps – the collision step and the streaming step – would be explained. In this 

equation, the distribution function of the previous time is needed for calculating the 

distribution function at the present time. For each problem which is solved by lattice 

Boltzmann method, the process is almost the same except the equilibrium distribution 

function. The local equilibrium distribution function eqf


 is the vital parameter that 

distinguishes the difference of problems. For the boundary condition, we can easily 

set them by simple method. It is no longer complicated like the conventional method. 

However, we have to provide the new scheme for the boundary condition of the 
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shallow water flow problem with the wet – dry front in the CHAPTER III.  Finally, the 

algorithm is introduced there. 

 In this work, this method is applied to solve the phenomena which is 

described by shallow water problem. Their domain must be subdivided into small 

square lattices. For the one – dimensional problem, D1Q3 (1 dimension and 3 nodes 

of particles) lattice model (see figure 2.5) is used and D2Q9 lattice model (see figure 

2.6) is used for the two – dimensional problem. 

 

  

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 2. 5 The D1Q3 lattice model. 

Figure 2. 6 The D2Q9 lattice model. 
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2.2.2 Lattice Boltzmann equation 
 As introduced by A. A. Mohummad [9] , the distribution function 

 , ,f r e t  is the number of the molecule at time t  located between the distance 

r  and r dr  which have velocities between e  and e de . There may be an 

external force F  acting on a fluid particle of unit mass and that would change the 

velocity and position of the particle. When the force F  acting on it, the particle will 

change its velocity from  e  to e Fdt  and changes its position from  r   to  

r edt . 

 When collisions come about between the fluid particles in the interval 

drde . The number of particles in that interval would change. The rate of change of 

the distribution function is called the collision operator  f . We obtain 

                   , , , , .f r edt e Fdt t dt f r e t f drdedt      (2.34) 

When dt  approaches 0 , this gives 

              
df

f
dt

              (2.35) 

 Because f  is a function of ,r e  and t , the total differential and total 

derivative can be expressed and simplified as 

    ,
f f

df f dr de dt
e t

 
   

 
  

    ,
df dr f de f

f
dt dt e dt t

 
   

 
  

               ,
f f

f e a
e t

 
   

 
                   (2.36) 

in which  a  is the acceleration. 
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By the Newton’s second law of motion,
F

a
m

 , where m  is the mass, the 

Boltzmann transport equation is written as 

     .
f F f

f e f
t m e

 
    

 
         (2.37) 

For the problem without an external force, the particles move based on the Newton’s 

first law. This means that the acceleration is zero. The equation could be expressed 

as 

      ,
f
e f f

t


   


                     (2.38) 

where e  and f   are vectors. 

 In 1954, Bhatnagar, Gross and Krook (BGK) and Welender introduced in  [10]  

the collision operator as follow 

       1
,eqf f f


                        (2.39) 

where  is the relaxation time and eqf  is the equilibrium distribution function. 

 The lattice Boltzmann equation (2.38) with the BGKW approximation can 

be discretized as,  

       , , , ,f x t t f x t f x x t t f x t t
e

t x
   



         


 
  

       
1

, , .eqf x t f x t
 

   
 

         (2.40) 
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 We know that  x e t


   , then we obtain 

       , , , , .eqt
f x x t t f x t f x t f x t
   

         
 

  (2.41) 

Including with the source term, the lattice Boltzmann equation can be written as 

       

 2

1
t, , , ,

, ,

eq

i i
s

f x e t t f x t f x t f x t

t
w e F x t
C

    

 


       
 




      (2.42) 

in which   e


 is the vector of the particle velocity at  direction, ie  is the 

component of e


;  

 w


 is the weighing factor constant; 

 iF  is source term in i  direction; 

   is the relaxation time which can be determined from (2.32). 

 In the procedure, we calculate the distribution function at the next time 

step by using the lattice Boltzmann equation. The lattice Boltzmann equation is 

separated into two steps of calculation as follow: 

 a) The collision step 

 The collision step is the calculation which represents the behavior of the 

fluid particles when they collide with each other. This action can affect the fluid 

particles, and then change their distribution function. This step can be stated as 

  

        
1

, , , , .eqf x t f x t f x t f x t   
   
 

           (2.43) 
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 b) The streaming step 

 The streaming step is the reaction after the collision of the fluid particles. 

The fluid particles move in their new velocity direction. For the lattice Boltzmann 

method, this means that the distribution functions move to nearby neighboring lattices 

on their directions as shown in figure 2.7. This step is controlled by 

               2
t, , , .i i

s

t
f x e t t f x t w e F x t

C
   


         (2.44) 

 

 

 

 

 

 

 

 
 
2.2.3 Derivation of the Local Equilibrium Distribution Function 
 Lattice Boltzmann method could be applied to solve many kinds of fluid 

problem such as  diffusion problem, fluid transport problem, porous media problem, 

shallow water flow problem, etc. The procedure of the calculation for each problems 

are rarely different. But the key thing that distinguishes each different problem is the 

local equilibrium distribution function. This means that different problems might use 

theirs specified equilibrium distribution function. 

Figure 2. 7 The streaming step. 
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 The equilibrium distribution function eqf


 was initially derived from the 

normalized Maxwell’s distribution function 

        
 

23
23

2

c u
f u e





 

            (2.45) 

It is the function of the velocity  u  in which   is the density and c  is the sound 

speed. By the Taylor expansion and the truncation at the order up to 2nd  order in 

the velocity, i.e.  2O u , we obtain 

  ,eq
i i i j i j i if A B e u C e e u u D u u

       
          (2.46) 

in which A


,B


,C


 and D


 are constants,   is the index of the direction in a 

lattice. 

 Firstly, we consider the equilibrium distribution function for the one – 

dimensional problem or eqf


 for D1Q3 lattice model. Because of the symmetry of the 

lattice model, we are able to suppose that 

     1 2A A A  ,   1 2B B B  , 

    1 2C C C  ,  1 2 ,D D D    

where , ,A B C  and D  are also constants. Therefore, eqf


 for the shallow water 

flows in D1Q3 lattice model can be stated as 

  0 0 , 0,

, 1,2,
eq i i

i i i j i j i i

A D u u
f

A Be u Ce e u u Du u
  





  
 

   

         (2.47) 

where ,i j  is the Einstein’s summation convention. 
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 For the shallow water equations, the fluid motion is governed by the three 

crucial conservation laws [5], these are the conservation of mass, the conservation of 

momentum and the conservation of energy, which are expressed as 

      , , ,eqf x t h x t




                      (2.48) 

        , , , ,eq
i ie f x t h x t u x t

 


                    (2.49) 

         21
, , , , , .

2
eq

i j ij i je e f x t gh x t h x t u x t u x t
  



  (2.50) 

 By substituting the equation (2.47) in the equations (2.48), (2.49) and (2.50), 

then by the comparison of the coefficient of u  and h . We obtain 

   
2

0 2
,

2

gh
A h

e
   0 2

,
h

D
e

   

   
2

2
,

4

gh
A

e


2
,

2

h
B

e
 0,C 

2
.

2

h
D

e
   

 

 By substituting the above coefficients into equation (2.47), we acquire 

         

2 2

2 2

2 2

2 2

2 2

2 2

, 0,
2

, 1,
24 2

, 2,
24 2

eq

gh hu
h

e e
gh hu hu

f
ee e

gh hu hu

ee e










  




   



  


          (2.51) 

for the D1Q3 lattice model. 



 

 

26 

 For two – dimensional problem, we use the D2Q9 model. Its equilibrium 

distribution function can be derived in the same way. This gives 

      

2

2 2

2

2 2 4 2

2

2 2 4 2

5 2
, 0,

6 3

, 1,3,5,7,
6 3 2 6

, 2,4,6,8.
24 12 8 24

i i

eq
i i i j i j i i

i i i j i j i i

gh h
h u u

e e
gh h h h

f e u e e u u u u
e e e e
gh h h h

e u e e u u u u
e e e e

   

  








  




    



   


        (2.52) 

 

2.2.4 The relation between the LBM and macroscopic properties 
 In the lattice Boltzmann method, all conservation laws absolutely holds true. 

Both conservation of mass and conservation of momentum still govern flows. Based 

on [11] and [9] , the law of conservation of mass is considered. It is true that the net 

mass at time t  and time t t   equal each other. We can calculate the net mass 

by summing all of the distribution function at time t  and time t t  . By the 

conservation of mass, this gives 

         , , .f x e t t t f x t
  

 

                (2.53) 

Substituting the equation (2.53) into the lattice Boltzmann equations (2.42), results in 

      , , .eqf x t f x t
 

 

                 (2.54) 

Therefore,  

         , , , .eqh x t f x t f x t
 

 

              (2.55) 
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 By conservation of momentum, multiplying ie  into the equation (2.54), we 

obtain 

      
 

 
 

 
1 1

, , , .
, ,

eq
i i iu x t e f x t e f x t

h x t h x t   
 

    (2.56) 

2.2.5 Boundary Conditions 
 The fluid flow problem have one more thing that is significant point to govern 

themselves. They are the boundary conditions. This section discusses all about the 

suitable boundary conditions which is satisfied for the problem in this thesis and how 

to provide the suitable boundary conditions for each border of a problem. Similar to 

the lattice Boltzmann equation, the boundary conditions are presented in the form of 

the local distribution functions related to the frontier of the problem domain. Such 

boundary conditions are derived from the conservation law in order to preserve their 

real behavior.  

 Firstly, the boundary conditions for the solid wall, which includes both the slip 

boundary conditions and the no – slip boundary conditions would be shown in the 

following, then the inlet and outlet boundary condition are presented. 

 2.2.5.1 The solid wall boundary  
  

 

 

 

 

 

 
Figure 2. 8 The lattice at the solid wall. 
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  a) The slip boundary conditions 

   From figure 2.8, the lattice near solid wall have three unknown 

distribution functions after the streaming steps. They are 2f , 3f  and 4f , which can 

be provided as 

   2 8,f f   3 7,f f  4 6.f f              (2.57) 

  b) The no – slip boundary conditions 

For this case, the bounce back scheme is used. It is the efficient way 

for the solid boundary. This makes lattice Boltzmann method competent to simulate 

flows with complex geometries domain. The idea of this scheme is obtained by the 

fact that the molecules which go towards the solids boundary would crash the wall 

and bounce back into the fluid. From figure 2.8, the unknown variables 2f , 3f  and 

4f  can be represented by  

 2 6,f f    3 7,f f  4 8.f f           (2.58) 

  Moreover, the sum of the momentum at the solid wall is zero. This 

gives the velocity to be zero at the solid wall. 
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 2.2.5.2 The inflow and outflow boundary conditions 

 After streaming, the distribution functions 1f , 2f  and 8f  of the lattice along 

the inlet border and the distribution functions 4f , 5f  and 6f  of the lattice along the 

outlet border are unknown variables (see figure 2.9). They need to be determined by 

the appropriate boundary conditions. 

 

 

  a) The zero gradient 

  For the inflow and the outflow boundaries whose depth and velocity 

are not given, many research point out that using zero gradient of the local distribution 

function along this boundary is the solution of this boundary. Thus the unknown 

distribution functions 1f , 2f  and 8f  at the inlet border can be computed by 

      1, 2, ,   =1,2,8.f j f j
 

            (2.59) 

 And the unknown distribution functions 4f , 5f  and 6f  at the outlet are 

calculated by  

                               , 1, ,   =4,5,6,f Lx j f Lx j
 

            (2.60) 

where  Lx  is the total number of lattice node in the x  direction. 

Figure 2. 9 The domain of the problem. 
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  b) Inlet and outlet boundary conditions with known depth and 

velocity 

  For one – dimensional problem, the distribution function 1f  of the 

lattice at the inlet boundary and the distribution function 2f  of the lattice node at 

the outlet boundary are unknown variables (see figure 2.10). We have to calculate 

them from the relation in equations (2.55) and (2.56). 

 

 

   

 

From the relation between microscopic and macroscopic variables in 

equations (2.55) and (2.56), we obtain subsequent relations for the one – 

dimensional problem of the inlet boundary condition  

   0 1 2f f f h     or  1 2 ,ef ef hu   

then 

   1 0 2f h f f     or  2
1 .
hu ef

f
e


          (2.61) 

  For the outlet boundary condition,  we obtain 

   2 0 1f h f f     or  1
2 .
ef hu

f
e


          (2.62) 

  We can choose one of them to calculate the inlet or outlet boundary 

condition. These two choices always give the same result. 

Figure 2. 10 The boundary for one – dimensional problem. 
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  For two –dimensional problem, the unknown variable is as same as the 

case in 2.2.5.1. We introduce the derivation of their formula of the inlet boundary 

condition. We derive the desired formula from the relation in the previous section, the 

equations (2.55) and (2.56). We suppose the fluid depth h  and the fluid velocity  u  

and v   (where u ui vj  ) are given.  

At the inlet boundary condition, the unknown distribution functions are 1f , 2f  and 

8f  (see figure 2.11). Our aim is to find the formulas for those unknown distribution 

functions  by using the method which is introduced by Zou and He in [12]. 

 

 

 

 

 

 

 

 

From the equation (2.55), it can be rewritten as  

   1 2 8 0 3 4 5 6 7f f f h f f f f f f         .      (2.63) 

 Also, the equation (2.56) can be separated into the x  component and the 

y  component of vector e


 result in 

   2 8 3 4 6 7

hv
f f f f f f

e
      ,          (2.64)

and 

Figure 2. 11 The lattice at the inlet boundary. 
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    1 2 8 4 5 6

hu
f f f f f f

e
      .          (2.65) 

Equations (2.63) and (2.65), gives 

   0 3 7 4 5 62
e

h f f f f f f
e u

      
 

.         (2.66) 

  This equation would be useful, if we did not know the water depth h . 

Next, we will determine the unknown distribution functions 1f , 2f  and 8f . But we 

have just 2 linear equations for 3 unknown variables. Certainly, it is impossible to find 

the exact values of these three unknown variables without other assumption. Zhou 

and He [12] suggested that using the bounce - back rule for the non – equilibrium part 

of the particle distribution [13] will work well. That is 

    1 1 5 5 ,eq eqf f f f                       (2.67) 

Thus, 

    1 5 5 1 .eq eqf f f f                       (2.68) 

Then, substituting the equilibrium distribution function 1
eqf  and 5

eqf  into equation 

(2.68) results in  

 
   

2
2 2 2

1 5 2 2 4 2 26 3 2 6 6

h egh h h h
f f u e e u u v

e e e e e

 
        
 
 

 

            

   
2

2 2 2
2 2 4 2 2

,
6 3 2 6 6

gh he h h h
u e e u u v

e e e e e

 
       
 
 

  

          5

2
.

3

hu
f

e
                (2.69) 
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Substituting equation (2.69) into equation (2.65), gives  

   2 8 4 63

hu
f f f f

e
                         (2.70) 

Solve the equation (2.64) and equation (2.70) to get 

   7 3
2 6 4 ,

6 2 2

f fhu hv
f f f

e e


               (2.71) 

and 

   7 3
8 .

6 2 2

f fhu hv
f

e e


                   (2.72) 

 Therefore, the inlet boundary condition at the left side nodes 
of a lattice are the equations (2.69), (2.71) and (2.72). For the other sides, we can 
derive it by the same idea. 
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2.2.6 Algorithm of the standard LBM 
 

  

 

 

 

 

 

 

 

 

  

  
 
 
 
 
 
 
 
 
 
 
 
 

Yes  

Set 𝑢 and ℎ; 
Set the maximum iterations. 

Calculate 𝒇𝜶
𝒆𝒒 from (2.51) and (2.52); 

Set  𝒇𝜶 = 𝒇𝜶
𝒆𝒒. 

No  timet   maximum iterations. 

Collision step (2.43) and 
streaming step (2.44).  

END 

Calculate 𝒖 and 𝒉 from (2.55) and (2.56);  
Boundary conditions; 

Calculate 𝒇𝜶
𝒆𝒒. 

 

Figure 2. 12 Algorithm of the standard LBM. 
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CHAPTER III  
THE SCHEME FOR  

THE PROBLEM WITH WET – DRY INTERFACE 
 

3.1 One – Dimensional Problem 
 For the one – dimensional shallow water problems with the wet – dry interface, 
the common lattice Boltzmann method can cause difficulty, which are not based on 
conservation laws. In order to overcome this drawback, we have to modify something 
about the distribution function at the wet – dry front by some scheme. In 2014, Liu 
and Zhou introduced their scheme, which derived by using the Taylor expansion and 
the Chapman – Enskog procedure, for solving the shallow water flow problem with 
the wet – dry interface. Next, the derivation of this new scheme is explained. 
 Firstly, we set t     and use the Taylor series to expand the left hand 
side of the lattice Boltzmann equation (2.42). This leads to 
 

   
22

2

2
e f e f O

t x t x   


 
      

      
      

  

     (0)
2

1
,

2
f f e F

e
  




                (3.1) 

 

in which  0 .eqf f
 

  

 Moreover, by using the Chapman – Enskog procedure, the distribution function 

f


 is expanded around  0f


 up to order  2O  , we get 

 

         0 1 2 .f f f O
  

                          (3.2) 
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Substituting the equation (3.2) into the equation (3.1) results in 
 

       
22

0 1 0 1

2
e f f e f f

t x t x     


  
         

          
         

 

    
 1

2
.

2
f e F

e
 

 


                (3.3) 

The coefficient of order   in the equation (3.3) can be written as 

   
   0 1

2

1
.

2

e F
e f f

t x e


  

  
    

  
               (3.4) 

At the dry cell, the water depth and velocity should be zero, this gives 

      0 0.eqf f
 

                (3.5)   

at every time.  
So that  

       
 0

0.
f

t






             (3.6) 

 Now, the equation (3.4) can be rewritten as 

     
 0

1

2

1
.

2

f
f e F e

xe


  


 
  

 
 

            (3.7) 

 
 Substituting the equation (3.6), (3.7) and the source term F  into the equation 
(3.2), the distribution function at the dry cell can be demonstrated as 

       0 1 1
f f f f
   

      

        
 0

2

1

2
b b fz

e gh e
x xe


 






             

           (3.8) 
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 By the forward scheme, the terms bz

x




 and 

 0f

x





 can be approximated as 

   
   b bb
z x e t z xz

x e t




  


 
                    (3.9) 

and 
     

           
         

0 00

,
f x e t f xf

x e t
  



  


 
                (3.10) 

respectively. 
Substituting the equations (3.9) and (3.10) into the equation (3.8), yields 

          
    

       

2 2

0 0
2 2

, , .

b b b

gh t
f z x e t z x e C u u

e e

f x e t t f x t

  

  

 




     

 
    

 

      (3.11) 

 The equation (3.11) can be used to determine the unknown distribution 
function at the dry lattice next to the wet lattice at the wet – dry interface. 
 
 
 
 
 

 
 

  
 

Figure 3. 1 The unknown f


 at the wet - dry interface. 
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From figure 3.1, the calculation is in the wet lattices. At time t  before the 

streaming step, the exact value of the distribution function 2f  at the dry lattice 1d  is 

not determined. This will be the problem when the undetermined distribution function 

 2 1f d  slides to the neighboring wet lattice 2w  in the streaming step. Because the 

distribution function  2 1f d  is on the dry lattice. Therefore, the value of it can be 

calculated by the equation (3.12). Then the streaming step can occur and all the 
distribution functions slide to the nearby lattice in their directions. After the streaming 

step, the distribution function 0f  and 2f  at the dry lattice 1d  are the unknown 

distribution function. It is easy to calculate the distribution function  2 1f d  by using 

the equation (3.12) again. Also, the way to obtain the value of the distribution function 

 0 1f d  is not difficult. It can be calculated by averaging the same distribution 

function of the neighboring lattices, so that 

                  
   0 2 0 2

0 1 .
2

f d f w
f d


            (3.12) 

After summing all of the distribution functions for each lattice, we can calculate 

the water depth. Let’s consider the dry lattice 1d , the 1d  lattice is still dry if 0h   

and it changes to be wet when 0h  .These two equation (3.11) and (3.12) are very 
useful for the one – dimensional problem with the wet – dry interface. Moreover, 
these formulas help the standard lattice Boltzmann method to overcome the wet – 
dry problem.  
3.2 Two – Dimensional Problem 
 In this case, we extend the one – dimensional scheme to the two – dimensional 
problem on the area domain. Because the source term on the lattice Boltzmann 

equation include a first derivative of the bed topography term bz

x




. So that we have 

to modify this troublesome derivative term by the idea proposed in [7]  as follow: 
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 ,f x e t t t
 

     

 

           2

1
, , ,eq

b b
s

gh
f x t f x t f x t w z x e t z x

C
    

         

  
2

,i i
s

t
w e F
C

 


                                     (3.13) 

 

in which      , , / 2h h x e t t t h x t


      . 

 Supposing that t  is small enough and t   , by substituting   into the 
equation (3.13), we obtain  
 

 ,f x e t
 

    

           2

1
, , ,eq

b b
s

gh
f x t f x t f x t w z x e z x

C
    




       

 
2

.i i
s

w e F
C

 


                                                     (3.14) 

 
By the Taylor’s expansion of the left – hand side of the equation (3.14), we have 

 
2

2
2

2j j

e f e f O
t x t x   


 
      
      
      
   

 

          2

1
, ,eq

b b
s

gh
f x t f x t w z x e z x

C
   




       

         
2

.i i
s

w e F
C

 


                                (3.15) 
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Considering the Chapman – Enskog procedure once more for this case, f


 is 

expanded around  0f


 up to order  2O  , leads to  

       0 1 22 3 .f f f f O
   

               (3.16) 

 The second term and the source term iF  on the right hand side of the 

equation (3.14) can be expanded by the Taylor expansion as 

 
22

3
2 2 2

b b
j j i j

j j i js

z zg h h
w h e e e e O

t x x x xC
    

 
 

      
      

        
    

           (3.17) 

and 

 2

1 1
,

2 2

,
2

i i

i i
i

i

F F x e t

F F
F e O

t x





 




 
    

 
  

      

 (3.18) 

where the source term iF  is considered by the centred scheme [7]. 

Substituting the equation (3.16), (3.17) and (3.18) into (3.15), then the comparing with 
the coefficients of each order as follow   is used. 

At order 0,  we obtain 

      0 ,eqf f
 

             (3.19) 

at order  1 , we acquire 

    0 1

2 2

1
,j ib

j j
j js s

e Fzgh
e f f w e w

t x xC C


     

   
      
   
 

     (3.20) 

and at order 2 , we have 

    
2

1 01

2j j
j j

e f e f
t x t x   

      
     
      
   

 

  
2

2

2 2

1

2 2
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  
   

    
         
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2

.
2
i i i

j
is

e F F
w e

t xC


 

  
     

           (3.21) 

Inserting the equation (3.20) into (3.21) and readjusting it, leads to 

      1 21 1
1 .

2 j
j

e f f
t x   

    
         

       (3.22) 

Calculating     3.20 3.22


   produces  

   
   0 0

0.j
j

f e f
t x  

 

 
 

 
                      (3.23) 

 By the relation between the microscopic variables and macroscopic variables 
in the equation (2.55), we can observe that the equation (3.24) is the conservation of 

mass. Similarly, calculating     3.20 3.22 ,ie


   we can obtain 

conservation of momentum in another form, ie, 
 

      0 0 11
1

2i i j i j
j j

e f e e f e e f
t x x       

  




   
   

   
    

         .bi
i

z
F gh

x


 


                     (3.24) 

 The formula for the unknown distribution function at dry lattice of the two – 
dimensional case is 
 
 

    2 2b b i b i j j
s s

w gh w t
f z x e t z x e C u u u

C C
 

  

 
       

           
0 0

.f x e t f x
  

  
    

 
            (3.25) 
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 Nevertheless, there may be other unknown distribution functions that are not 
facing to the wet nodes in their moving ways (see the figure 3.2 (a)). The above formula 
cannot be applied to these unknown distribution functions. However, they can be 
acquired by averaging values of its neighboring lattice as. 
 

     
8

1

1
.

8
f f x e t
  



               (3.26) 

 The equation (3.25) and (3.26) are used in 2 cases: 4n   and 4n  , where 
n  is the number of the neighboring wet lattices of a dry lattice that is considering.  
 
 
 
  
 
 
 
 
 
 
 
 

3.3 Wet – dry tracking technique 
At the initial step, we set the variable w  in order to retain the value about the 

wet state or dry state. If the fluid depth at the lattice which is interested is more than 
zero, it would be a wet lattice and set 1w . Otherwise, if it is less than or equal to 
zero, it would be a dry lattice and set 0w . Moreover we have to set the variable 
that retain the position of the wet-dry interface. It was called _dry node . 

Figure 3. 2 The unknown f


 at the wet dry interface for the 2D problem from [1] . 
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After the streaming step, we get the new distribution function. We can some 

over them and get the new fluid depth at each lattice. The way to consider which 
lattice should be whether wet or dry is described as follow. 

If the depth 0.0001h , the lattice is wet. Otherwise, if the depth 0.0001h

, this is the dry lattice and we set 0h  . Therefore, the current interface is between 
wet lattice and day lattice. 
 
 
3.4 Algorithm for LBM with the new scheme 

1. Set the initial value of the fluid velocity u  and the water depth h . 

2. Calculate eqf


 from the equation (2.51) or (2.52), then set eqf f
 
 . 

3. If 0f

 , calculate f


 at dry cell from equations (3.11) and (3.12) for 1D 

problem or (3.25) and (3.26) for 2D problem. 

Otherwise, f f
 
 . 

4.  The collision step and the streaming step are computed and then f


 are 

updated. The wet-dry tracking technique is included in this step. 

5. Use step 3 one more time to fill the unknown f


 at t t   on dry lattice. 

6. Update u  and h  by (2.55) and (2.56). 

7. Repeat step 2 to step 6 until the results reach the desired point 

Figure 3. 3 The wet-dry interface. 
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Wet-dry 
tracking  
techniqu
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Figure 3. 4 Algorithm for LBM with the new scheme. 
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CHAPTER IV 
        NUMERICAL RESULTS 

 
 

4.1 Dam break on a wet domain without friction 
 
 This problem which is governed by SWEs without friction is studied by LBM in  
[5]. The initial water depth is given via the following Riemann problem. 
 
 
 
 
 
 
 

                        

  0

0

0.05 0 ,

0.025 ,
l

r

h for x x
h x

h for x x L

   
 

  

              (4.1) 

and the initial velocity ( ) 0u x   m/s,  20L   m and 0 10x   m. When 

0t   , the analytical solutions is proposed in [14]  as   
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   

   
 

2

0

2

,

4
,9 2( )

,

,

l A

l
A B

m

B C

r C

h if x x t

x x
gh if x t x x tg th x
c

if x t x x tg
h if x t x

 

  

    
  


  




        (4.2)        

and  

Figure 4. 1 Initial water levels. 
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       (4.3) 

 

where   0A lx t x t gh  ,    0 2 3B l mx t x t gh c    and  

 

 
 2

0 2

2 m l m

C
m r

c gh c
x t x t

c gh


 


  with m mc gh  being the solution of  

   

                          
2

2 2 28 0r m l m m r m rgh c gh c c gh c gh       . 
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The numerical results (water depths) at 60,200,400t   and 600 s. are 
compared with the exact solution as shown in Figure 4.2, showing the agreement 
between these results. This concludes that the developed scheme can handle the 
dam break problem on a wet domain quite well agree with the exact solution and the 
result in [5].   

  

  

  

  

 
 
 
 
 

(a) 60.0t   s 
 
(a)  s 

(b) 200.0t   s 
 
(b)  s 

(c) 400.0t   s 
 
(c)  s 

(d) 600.0t   s 
 
(d)  s Figure 4. 2  Comparisons between the numerical results (water depths) and the exact 

solution for the dam break on wet domain at various times. 
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Similarly, the velocity profiles obtained from the numerical simulation also 
agree with the exact solution, as shown in Figure 4.3.  
 

  

  

  

  

 
 
 
 
 
 
 
 
 

(a) 60.0t   s 
 
(a)  s 

(b) 200.0t   s 
 
(b)  s 

(c) 400.0t   s 
 
(c)  s 

(d) 600.0t   s 
 
(d)  s Figure 4. 3 Comparisons between the numerical velocity profiles and their exact 

solution for the dam break on wet domain at various times. 
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4.2 Steady flow over a bump 
 
 In this example, a 1 – dimensional subcritical flow in a 25 m long channel with 
a bump is simulated. This is a benchmark test case for dam break wave problems 
simulate by numerical methods. This problem was used by [6]. 
 The bump is defined by 

          
2 8 12;0.2 0.05 10

;0b

xx
z x

otherwise

    
 


             (4.4) 

The discharge per unit was specified at the inflow 24.42 /q m s ; the 
flow height is 2h   m; 15e   m/s; and 1.5  .  
 

The velocity at inflow is always generated relating to the discharge per unit. 
The water depth at outflow is fixed at 2 m high. The result is shown in Figure 4.1. When 
the subcritical flow flows over the curved bump, the surface is dropping above the 
bump. The numerical result agrees quite well with the exact solution in [14]. 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 4. 4 The steady state. 
. 
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4.3 Dam break flow over a spherical bump 
 
 This experiment is performed to check the developed scheme for a dam break 
problem in 2D with a bump under the water surface. The computation is performed 
on the domain having 100x100 nodes with lattice size 0.1x   , time step 

0.01t   , the kinetic viscosity 0.01  , and the spherical bump defined by  

          2 2, 0.005 15 56 12 35.75bz x y x x y y      .     (4.5) 

  The water surface profiles at 0,1,2,2.5,3t   and 4s  are shown in 
Figure 4.5 displaying the waves generated by the bump. 

  

  

  

  

  

  

 

(a) 0.0t   s 
 
(a)  s 

(b) 1.0t   s 
 
(b)  s 

(c) 2.0t   s 
 
(c)  s 

(d) 2.5t   s 
 
(d)  s 

(e) 3.0t   s 
 
(e)  s 

(f) 4.0t   s 
 
(f)  s 

Figure 4. 5 A set of numerical results. 
. 
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4.4 Tidal wave over a variable sloping bed 
 This problem was presented primarily by [15] and was introduced for LBM by  
[1]  with the purpose of studying the shoreline movement over a bed topography 
defined in Table 4.1. 
 The computational domain is 500 m long with the bed slope as shown in Figure 
4.6. The initial depth is the steady state fluid with the level of 1.75 m. The bounce 
back boundary condition is set at  0x   m and the inlet boundary at 500x   m 
is associated with the time – dependent water depth as, 

                                        
 
 
 
 
 
 
 
 
 

 

  0500, cos 2
t

h t h
T

 
 

   
 

,              (4.6) 

     
  
where 0 1h   , 0.75  , and 3600T  . 

  
 
 
 

Table 4. 1 Bed slopes 
 

The results of the water surface obtained from the numerical experiment are 
shown in Figure 4.7 (right) and compared with the results from [1] (left).  

 

 x m  0 - 100 100 - 200 200 - 500 

slope -0.001 -0.01 -0.001 

Figure 4. 6 Bed elevation and inlet boundary condition introduced by [1]. 
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Numerical results by [5] Our numerical results 
  

0t   min 0t   min 
  

12t   min 12t   min 
  

24t   min 24t   min 
  

36t   min 36t   min 

The results show agreement between our results and the results from [1].  This 
confirms that our developed scheme can handle wet dry problem quite well.  

Figure 4. 7 Comparisons between our numerical results  and the results from [1] at various times. 
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4.5 A 1D Wave run over a sloping bed 
 
 
 
 
 
 
 
 
 
 
 
 
 In this example, the fluid in two different levels is considered as a dam break 
problem with a sloping bed. The interface between the fluid and the dry bed node 
next to fluid is considered as a wet – dry boundary. The left and right boundaries are 
specified by bounce – back boundary.The channel is 20 m long with 200 lattices, the 
time step 0.1t s  , the initial fluid surface profiles are defined by 

         
0.03 0 5;

0.01 5.

x
h x

x

  
 



                       (4.7) 

The bed topography is defined by 

         
0.0 0 8;

0.0025( 8) 8.b

x
z x

x x

  
 

 

           (4.8) 

The kinematic viscosity 0.05  . 
 
 
 
 
 
 
 
 
 
 

Figure 4. 8 The initial profile. 
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The numerical results are shown in the following. 
 

  

(a) 10.0t   s (b) 20.0t   s 
  

(c) 40.0t   s (d) 60.0t   s 
  

(e) 80.0t   s (f) 120.0t   s 
 
 
 The different levels of fluid make it flows up to the sloping bed. Then it 
moves down. This phenomenon happens repeatedly until it reaches the steady state 
(see figure 4.10). We also check the volume of fluid at beginning and at the steady 
state. The volume a bit increases at the end. 
 
 
 
 
 
 

Figure 4. 9 Graphs of 1D-SWEs problem with wet –dry interface. 

Figure 4. 10 The steady state. 
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CHAPTER V  
CONCLUSION 

  
 The standard lattice Boltzmann method in general works quite well for the 
shallow water flow problem with the source terms such as the bed slope and the bed 
friction when the problem has no wet-dry interfaces. But when the problem has wet-
dry interfaces, there will be some mistakes from the formula in the calculation at the 
dry lattice; some equations consist of terms that are divided by the water depth, which 
are zeros at dry lattices. Therefore, the standard LBM is not capable for this wet-dry 
interfaces problem. This difficulty is overcome as the result developed by [1], based 
on some modification of the distribution function at the dry lattice using the Taylor 
expansion and Chapman – Enskog procedure. 
  This work extended the result introduce in [5]  for SWEs to handle wet-dry 
interface problems by employing the idea proposed by [1] . The work is focusing on 
the implementation of the LBM to handle wet-dry interfaces, by modifying the codes 
from [5] and combine with the idea of [1] to obtain distribution function at dry lattices, 
and together with wet-dry tracking technique in the calculation. The implemented 
program is tested with some numerical examples to validate the program, which show 
the results that agree well with exact solutions or results in literature in the 
experiments, see CHAPTER IV. 
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