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CHAPTER |
INTRODUCTION

1.1 Motivation

Long-wave phenomena are commonly exist in nature such as wave run-up,
tsunami and solute transport in blood vessel, etc. One way to model these
phenomena is to use the so - called shallow water equations (SWEs). The SWEs are a
set of hyperbolic partial differential equations that describes the flow with the
horizontal length scale is much greater than the water depth. Moreover, the
conservation laws make them powerful and efficient to simulate long-wave flow
phenomena. Many research have demonstrated how to solve the problem described
by shallow water equations using conventional numerical methods — such as the finite
difference method (FDM), the finite element method (FEM) and the finite volume
method (FVM) — and to simulate those problems with complex topography. Nowadays,
the results of the shallow water flow problem with any traditional method are
somewhat good but the calculation of these methods is quite complicated and can
cause many mistakes. By this reason, if there is a new method that is not complicated
and is easy for program coding, this new method will be interesting in numerical field.

The new numerical method called lattice Boltzmann method (LBM) was
developed and introduced in recent decades based on kinetic model [2], [3] and [4]. The
LBM is the mesoscopic method with simple arithmetic of just one parameter, the
distribution function which is the function that describes the fluids particles. Lattice
Boltzmann equation is the key equation of this method consisting of two crucial steps, the
collision step and the streaming step. In this equation the distribution function of the
previous time is needed to calculating the distribution function of the present time. The
link between the distribution function and the unknown variables which describe the real

phenomena like the water velocity and the water depth is efficient. Because we solve this



problem with one variable, the distribution function, instead two or three variable

depended on the number of dimension. These give a better way to manage the code.

The shallow water flow problems with the wet — dry interface are the troublesome
for all numerical methods. Also this problem can cause difficulty to the standard LBM. In
order to overcome this drawback, the Taylor expansion and Chapman-Enskog procedure
are considered to handle the distribution function without any artificial assumption.
This new scheme was first introduced by Liu and Zhou in [1]. Moreover, the source

terms, i.e. the bed slope and the bed friction, are included in the problem.

We study both the SWEs and LBM, then applying the lattice Boltzmann method to
solve the shallow water flow problem with the wet - dry interface, which is considered by
the new scheme for it. Moreover, we apply this method to solve the example of the
shallow water flow problem. The benefit of the thesis is to study the new method that is

easier to cope with our problem.

1.2 Literature Reviews

Fluid flow problems governed by SWEs are studied by well — known numerical
methods such as FEM, FDM, FVM etc. These method were used many times for these
kind of problems. They were applied and modified to handle special fluid flow
problems such as flows with complex geography. The numerical results from these
methods perform quite well in general when compared with exact solutions and
experiments. However, implementing with these methods is quite difficult for
beginners, which may introduce mistakes in coding due to complexity of the methods.
To overcome this, the LBM is the method that is not complex but can handle fluid
flow problems under some assumptions. Because LBM was introduced in recent years,
researchers have been trying to apply the method to handle many problems.

The following are some advantages of LBM. Firstly, the programing is simple
because LBM comprises easy calculations in two main steps. Secondary, the single
variable is used instead of two or three unknown variables of SWEs in the calculation.
Thirdly, it can easily be modified to apply parallel computing for faster computation.

Lastly, the method can easily handle complex boundary conditions.



There are many results in literatures of the lattice Boltzmann method for shallow
water flows. In 2013 Rakwongwan & Maleewong solved the dam - break problem
described by shallow water equations using LBM without the source terms such as bed
slope and bed friction [5]. The study can handle the dam break problem and gives
numerical results that agree with the exact solution. However, this result does not
include the problem with source terms and the result diverges, when the two levels
of fluid surface are far enough (see experiment 1, Chapter 4). Zhou (2002) [6] presented
the simulation of LBM for shallow water flow by including some simple source terms
such as linear bed slope with small slope. However, for the source term with high
order differential term, the numerical result does not agree well with the exact
solution. In 2011, Zhou [7] overcame this difficulty by using the LBM for shallow water
problem with the complex source terms by employing the idea of centered scheme
to manage the order of the accuracy of the source term in, but only for problem of
wet area. For the problem with the wet - dry interface, the standard LBM does not
work in general in the calculation. However, some researches use artificial assumptions
such as that from a thin film to extrapolation of unknown variables [8]. Eventually in
2014, Liu & Zhou [1] introduced the approach to solve this problem with wet - dry
interface by using the Taylor expansion and Chapman - Enskog procedure.

In this thesis as proposed in early 2014, the research was planned to extend
the result of [5], which was for wet-wet problem without source terms, to handle more
general cases for having source terms and with wet-dry interface. Since the idea of
wet-dry interface was introduced during the time in [1] , the research is therefore
focusing on implementation based on [1] by including additional techniques such as

wet-dry tracking, which is illustrated with some numerical experiments.



1.3 Overview

In this thesis, we study and present the derivation of the SWEs by considering the
flow through the fixed control volume. Then the LBM and its important mathematical
aspects are expressed. These two mathematical topics are the important mathematical
background of this research and presented in CHAPTER II. LBM for the shallow water flow
problem with wet - dry transition is exhibited in CHAPTER Ill. The numerical results are

shown in the CHAPTER IV. Finally, the conclusion is given in CHAPTER V.



CHAPTER Il
MATHEMATICAL KNOWLEDGE

This chapter composes of two important mathematical knowledge for this
research. Firstly, we describe and present the derivation of the shallow water equations
(SWEs). The shallow water equations are the set of equations that describe the long -

wave flow phenomena. Secondly, we introduce the lattice Boltzmann method (LBM).

2.1. Shallow Water Equations

Shallow water equations (SWEs) consist of a set of partial differential equations
that describe some kind of fluid flow problems. The word “shallow” doesn’t mean
the fluid need to be shallow, but this word presents the relation between the depth
of fluid and the wave length. The fluid flow phenomena described by SWEs should
have long wave length compared with its depth. This property allows us to assume
that the vertical effects can be neglected when it is compared to horizontal effects.
There are many phenomena that can be described by SWEs such as the flow in river,
the flow in estuaries, the coastal areas phenomena like wave run — up and wave run
— down, tsunami prediction, atmosphere flows, storm surge, solute transport in blood

vessel, flows through porous media, etc [7].



Herein we derive the two — dimensional shallow water equations based on

three important assumptions:

a) The fluid is incompressible, this implies that the fluid density does not

change in time.

b) The hydrostatic pressure — the pressure due to the force of gravity - is

included in this model.
c) This fluid flows without turbulence.

These equations consist of two crucial parts which are the conservation of mass
and the conservation of momentum. Before we begin to derive them, we have to

define one thing, the control volume.

__ Water surface

Zp

Datum

Figure 2. 1 The domain and its control volume (V).

From fisure 2.1, we
subdivide the domain of fluid flow problem into small boxes with their fixed volume
(V). These small boxes are as tall as their domain where they rest on. Their horizontal
cross section has side of lengths AZ and Ay for x direction and ¥ direction,

respectively, where Az and Ay are sufficiently small.



When we observe the control volume from the top side as figure 2.2, there are

the velocity u(m(t),y(t)) in the X direction and U(x(t),y(t)) in the Y

direction, in which t is time. Now, we could begin to derive the governing equation of

shallow water flow problem, which composes of the two vital conservation laws.

y + Ay ‘

x+Ax

Figure 2. 2 The velocity through the control volume in each direction.

2.1.1 Conservation of Mass

From figure 2.2, we states that the rate of mass increasing within the control
volume (V) is equal to the net rate of mass flux entering the volume V' . To consider

this statement, we have to investigate for each direction of velocity.

In the X direction, we can observe that mass flux entering into the control

volume (V) is the product of the fluid density (,O) the fluid velocity in the &

direction (u) and the face area Ayh resulting in

(mass flux in) = puhAy (2.1)

The mass leaving at the outlet have a little bit change of the fluid density o, the fluid
depth h and the fluid velocity in the x direction u due to the fluid passed through

the volume. This gives



(rnass flux out) = —p(x + Az, y)u(m + Az, y)h(a: + Aa:,y)Ay (2.2)

x

By the Taylor series expansion, the equations (2.2) is expanded and truncated up to

the 1St order in term of Az, ie., O(AZL‘)

—p(x + Ax,y)u(x + A:E,y)h(a: + Ax,y)Ay

o\ puh (2.3)
= —| puhAy + u AzAy |.
ox
Similarly, in the Y direction, we obtain
(mass flux in) = pvhAx (2.0)
y

o(pvh)

(mass flux out) = —| pvhAz + p AyAz (2.5)
y (Y

The summation of equations (2.1), (2.3), (2.4) and (2.5) - the net rate of mass
flux entering the control volume (V) - must equal to the retained mass in the
volume AZISAyh The accumulated mass can be written as

M AzAy (2.6)
ot



Therefore, we obtain

o(eh) AzAy = puhAy + pohAz - [ puhAy + o(put) A:L’AyJ
ot ox
- { pUhAz + a(g;;h) AyA:z:] @7)
Simplifying the equation (2.7) leads to
@AxAy - —WA@M - a(g ;h) AyAz 29

Dividing the equation (2.8) by the area AZI?Ay yields

o(ph) i o(puh) x o(pvh) ~ 0 2.9)
ot ox oy

For the incompressible flow, the fluid density O is constant. Then the conservation

of mass can be written as

oh + 6(Uh) - 6(vh) =0 (2.10)

ot ox oy
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2.1.2 Conservation of Momentum

Because the collision among the fluid particles always occur in the fluid flow
phenomena, thus the momentum should be considered for these phenomena. When
particles collide each other, the momentum before the collision should absolutely be
equal to after collision. This is called the law of conservation of momentum.
Momentum is a vector quantity which is product of mass and velocity. This means
that, for two — dimensional problem, we have to derive them into the X direction and

the Y directions.

In the T direction, we can observe that the rate of change of momentum

within the control volume can be expressed as

AxA (2.11)
ot i

The momentum flux entering into each face of the control volume is the product of
the mass flux and the velocity in the X direction. The momentum flux in x direction

written as

puuhAy + puvhAz (2.12)

The momentum flux for opposite side is

0 ( puvh)

—8 ('OUUh) o Ay |Ax. (2.13)
Yy

—| puuh + Az |Ay —| puvh +

By the fact that the rate of change of the momentum within the control

volume is equal to the net momentum flux entering the control volume plus with the

sum of the force acting against on the control volume (Z Fx ) This gives



11

o( puh 0\ puuh
M AzxAy = puuhAy + puvhAz —| puuh + M Az |Ay
0 h
—| puvh + ('Z—W)Ay Az + ZFx (2.14)
Yy

By simplifying the above equation (2.14) resulting in

o(puh) o(puuh) o(puvh
). Ae) Ay -5r,

Similarly in the Y direction, we obtain

o\ pvh) Ofpuvh) O\ pvvh
(6:)_'_ (6ZU)+ (67:}) AiUAy:ZF;/ (2.16)

in which ZFy is the sum of force acting on the control volume in the Y direction.

Now let’s consider the force acting against the control volume. There are three

crucial force acting on the control volume V' the gravity due to the bed slope (Fg )

, friction (F} ), and hydrostatic pressure force (Fp ) Those forces acting against on

the control volume in T direction as in figure 2.3.
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y + A4y E
Frx
prlx pr|x+Ax
% %
—) —_—
B
_—_—
%
[
y
X I x + Ax

Figure 2. 3 The forces acting against on the control volume in X direction.

In figure 2.3, ng and fo are the gravitational force due to the bed
slope and the friction force in the I direction, respectively. Their directions are

depicted on the figure. prlf’i’? and F are the hydrostatic pressure forces,

pr|r+Ax

their directions point into the control volume as in the figure.

a) Gravitational force due to the bed slope

The gravity force due to the bed slope in T direction, ng, can be

expressed as
ng = mgsin @ = pghAxAysin 6, (2.17)

where M is the fluid mass, @ is the gravitational acceleration and 0 is the angle of

the tangent of the bed slope which can be seen in the figure 2.4 .
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—_Watersurface

1 ___ Flowin

— -

Datum

Figure 2. 4 The bed slope in & — Z plane.

The angle @ is small, this implies sin @ =~ tan @ which is the bed

0z
slope. From the bed topography 2, , it is easy to find that the bed slope is 8_b and
X
0z
— inthe T and Y directions, respectively. We obtain
0y
F = poh Tt Aza
= T 2.18
g = PIh— - ATAY, (2.18)
Similarly in the ¥ direction
0z,
F = pgh—= AzAy, (2.19)
9y ay

where, ng is the bed slope in the Y direction.
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b) Frictional force

In the X direction, frictional force,Ffm, can be expressed as
fo = —pghS 1 ATAY, (2.20)

in which, Sfx is the bed friction in the I direction which is obtained from the

Manning’s equation, given as

_ un2\/u2 +’U2

S, = 221
Jr RA/3 ’ (2.21)
where, T is the Manning’s roughness coefficient.
It is similar for the frictional force in the ¥ direction
= 2.22
ny pghS fyA:I:Ay, (2.22)
in which, Sfy is the bed friction in the Y direction, given as
vn2 \/ u2 + U2
SP— : (2.23)

fisn p4/3
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¢) Hydrostatic pressure force

Firstly, we begin to consider the pressure force in the T direction. We

assume that P is the hydrostatic pressure, A is the area where the hydrostatic

pressure force acting against, /i is the net depth of fluid (h = hs — Zb) in which hs
is the height of the water surface. The pressure force acting on the inlet in the ¥

direction can be written as
j PdA

= IO pg(h—n)Aydn

pz\fﬁ

0
= Aypyg i 77)2
2
h
52
= Ay,og? (2.24)

Therefore, the net hydrostatic pressure force on the I direction can be

calculated as

- pgh® | . pgh’ pg o’
pzlz pr\:mAx Ay 9 Ay +AyAzx or I
2
= —-AyAx '02 g %h (2.25)
i
In the Y direction, the pressure force is
2
pr|y — prly Ay —AyAr — pg oh . (2.26)
2 83/
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Substituting all of the force terms in the I direction - the equation (2.18),
(2.20) and (2.25) - into the conservation of momentum equation in the I direction,

the equation (2.15). This gives

o(puh) o(puuh) o(puvh)

+ + AzAy =
ot ox oy
Oz 2
pgh—L % AzAy — pghS, ArAy — AyAz == pg o . (227)
ox 2 or
Dividing by AZEA’y and O vyields
oluh) OJluuh) OJluvh 2 0
( )+ ( )+ ( ): 98h+h % - S (2.28)
ot ox dy 2 Ox ox

This is called the conservation of momentum in the I direction.

Similarly in the Y direction, substituting the equation (2.19), (2.22) and
(2.26) into the equation (2.16). We obtain the conservation of momentum in the Y

direction as

o\vh) Oluvh) O\vvh 2
(;)Jr (;L;))Jr (;’;’):_g%Jrgh Z_?—Sfy. (229)
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Finally we obtain the shallow water equations for 2 - dimensional
problem as in equations (2.10), (2.28) and (2.29). Moreover the SWEs for 1-dimensional

problem can be written as

ol hu
ot ox
o(hu 2 9% (hu B |
( )+u8u:_g8h +v ( )—ghﬁ—i, (2.31)
ot ox 2 Ox ox> or p
in which V is the kinematic viscosity define by
9 1
v=CAL 7- 2| (2.32)

and Cs is sound speed in a lattice and T is the relaxation time'.

The bed shear stress?, sz" demonstrates as

7, = pCu, U (2.33)

where Cb is the bed friction coefficient.

1 . . . .
The time required for a viscous substance to recover from shearing stress after flow
has ceased.

* The way in which waves (or currents) transfer energy to the sea bed.
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2.2. Lattice Boltzmann Method
2.2.1 Introduction

Shallow water flow problems have been being research numerously by
the well - known methods such as the finite different method (FDM), the finite
element method (FEM) and the finite volume method (FVM), etc. These methods
somewhat work very well and give their good results but the way to manage these
codes is quite complicated, and this may allow some mistakes to occur by the time

we provide our code.

Lattice Boltzmann method (LBM) was developed and introduced in
recent decades based on kinetic model in order to overcome the drawback of its
ancestor method, the cellular automata [2]. Lattice Boltzmann method is the
mesoscopic method, i.e. the method that consider both the microscopic world

(molecular world) and the macroscopic world (real world). This method includes the

simple arithmetic of just one parameter, the distribution function fa , where X is
index depending on the lattice model. The distribution function is the probability

function that describes the behavior of the fluid particles.

This section will present the important concepts of the LBM. Firstly,
lattice Boltzmann equation which is the key equation of this method consisting of two
crucial steps — the collision step and the streaming step — would be explained. In this
equation, the distribution function of the previous time is needed for calculating the
distribution function at the present time. For each problem which is solved by lattice

Boltzmann method, the process is almost the same except the equilibrium distribution

function. The local equilibrium distribution function f;q is the vital parameter that
distinguishes the difference of problems. For the boundary condition, we can easily
set them by simple method. It is no longer complicated like the conventional method.

However, we have to provide the new scheme for the boundary condition of the



19

shallow water flow problem with the wet — dry front in the CHAPTER Ill. Finally, the

algorithm is introduced there.

In this work, this method is applied to solve the phenomena which is
described by shallow water problem. Their domain must be subdivided into small
square lattices. For the one — dimensional problem, D1Q3 (1 dimension and 3 nodes
of particles) lattice model (see figure 2.5) is used and D2Q9 lattice model (see figure

2.6) is used for the two — dimensional problem.

f2 fo f
@< @ @
e, e e,

Figure 2. 5 The D1Q3 lattice model.

fa f3 1>

fe f7 fs

Figure 2. 6 The D2Q9 lattice model.
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2.2.2 Lattice Boltzmann equation

As introduced by A. A. Mohummad [9] , the distribution function

f(?", €,t) is the number of the molecule at time ¢ located between the distance

7 and T + dr which have velocities between € and € + de. There may be an
external force F' acting on a fluid particle of unit mass and that would change the
velocity and position of the particle. When the force F' acting on it, the particle will
change its velocity from € to € + Fdt and changes its position from 77 to
r+edt.

When collisions come about between the fluid particles in the interval

drde. The number of particles in that interval would change. The rate of change of

the distribution function is called the collision operator Q(f) We obtain

f(r+edte+ Fdt,t +dt) - f(r.e,t) = Q(f) drdedt.c50

When dt approaches 0, this gives

2—]; = Q(f) (2.35)

Because f is a function of T,€ and ¢, the total differential and total

derivative can be expressed and simplified as

df = Vfedr + af-ale + 8fodif,

oe ot
df _ g dr Of de  Of
dt dt Oe dt Ot
= Vfoe + foa + 6—f7 (2.36)
e ot

in which @ is the acceleration.
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By the Newton’s second law of motion,a = —, where M is the mass, the
m

Boltzmann transport equation is written as

g+Vf-6+E.af :Q(f). (2.37)

ot m Oe

For the problem without an external force, the particles move based on the Newton’s
first law. This means that the acceleration is zero. The equation could be expressed

as
Z_J;Jr@.vfzg(f), (2.38)

where € and Vf are vectors.

In 1954, Bhatnagar, Gross and Krook (BGK) and Welender introduced in [10]

the collision operator as follow
e/
Q(f)z— I (2.39)
(4

where T is the relaxation time and feq is the equilibrium distribution function.

The lattice Boltzmann equation (2.38) with the BGKW approximation can

be discretized as,

L, (wt+At) = £, (zt) L, o (z+ Azt + At) = f, (2.t + At)
At “ Az

= ——[fa (:Iz,t) — fa (x,t)}. (2.40)
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We know that Ax = eaAt, then we obtain

£, (3: + Az, t + At) - £, (a;,t) = —ﬂ[fa (x,t) — e (x,t)}. (2.41)
T

Including with the source term, the lattice Boltzmann equation can be written as

[ (e + et AL)= £, () = [ £, (.0) = £ (.1)]

T
At (2.42)
tw,—e I (x,t),
2 “ai i
C

in which €, is the vector of the particle velocity at Oldirection,em. is the

component of €,
w, is the weighing factor constant;

F; is source term in ¢ direction:
T is the relaxation time which can be determined from (2.32).

In the procedure, we calculate the distribution function at the next time
step by using the lattice Boltzmann equation. The lattice Boltzmann equation is

separated into two steps of calculation as follow:
a) The collision step

The collision step is the calculation which represents the behavior of the
fluid particles when they collide with each other. This action can affect the fluid

particles, and then change their distribution function. This step can be stated as

Falet) = £ ()= [£(mt) - £ (1)) e

T
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b) The streaming step

The streaming step is the reaction after the collision of the fluid particles.
The fluid particles move in their new velocity direction. For the lattice Boltzmann
method, this means that the distribution functions move to nearby neighboring lattices

on their directions as shown in figure 2.7. This step is controlled by

fa(33+6aAt,t+At)=fa(x,t)+wa£e P’Z(a:,t) (2.40)

2f0 fll
o —0—0—o

S

10#

Before streaming

o 06— — 0 —0 0

After streaming

Figure 2. 7 The streaming step.

2.2.3 Derivation of the Local Equilibrium Distribution Function

Lattice Boltzmann method could be applied to solve many kinds of fluid
problem such as diffusion problem, fluid transport problem, porous media problem,
shallow water flow problem, etc. The procedure of the calculation for each problems
are rarely different. But the key thing that distinguishes each different problem is the
local equilibrium distribution function. This means that different problems might use

theirs specified equilibrium distribution function.
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The equilibrium distribution function f;q was initially derived from the

normalized Maxwell’s distribution function

3, 2
S (u) = 2—;)6_2(6_U) (2.45)

It is the function of the velocity U in which 0 is the density and C is the sound

speed. By the Taylor expansion and the truncation at the order up to 2nd order in

2
the velocity, i.e. O (u ) we obtain

f9=A +Be u+Ce e uu +D uu, (246
a a a“ai i aai aj i ] a1

in which Aa’Ba’Oa and Da are constants, & is the index of the direction in a

lattice.

Firstly, we consider the equilibrium distribution function for the one -

dimensional problem or f;q for D1Q3 lattice model. Because of the symmetry of the

lattice model, we are able to suppose that
A1:A2:A, BlzBQZB’
C =C,=0C, D, =D, =D,

where A, B,C and D are also constants. Therefore, f;q for the shallow water

flows in D1Q3 lattice model can be stated as

A, + Dyuu,, a =0,
[t = 0 (2.47)
o A+Be u. +Ce e uu. +Duu, oa=12,
il ai aj g i

where 1, 7 is the Einstein’s summation convention.
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For the shallow water equations, the fluid motion is governed by the three
crucial conservation laws [5], these are the conservation of mass, the conservation of

momentum and the conservation of energy, which are expressed as

Zf;q (:z:,t) = h(:c,t), (2.48)
Zemf;q (x,t) = h(:c,t)uz. (l’,t), (2.49)
X eaarl (v t) = gb? (), + b, (1.0, (1)

By substituting the equation (2.47) in the equations (2.48), (2.49) and (2.50),

then by the comparison of the coefficient of % and h . We obtain

o R Y b
2¢> ‘ e
2
Azﬂ,B—%,CzO,Dz%.
4¢° 2e 2e

2 2
gh®  hu B
e e 0T
2 2
feq:<gh +hu +hu, a=1, (2.51)
“ 4 20 2
2 2
gh”  hu” hu
- , = 27
4¢*  2e*  2e

for the D1Q3 lattice model.
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For two — dimensional problem, we use the D2Q9 model. Its equilibrium

distribution function can be derived in the same way. This gives

2
2
h—5gh ——h”, a =0,
6> 3e
h? h h h
[t = g_2 et e e, ut — ——uu, a =135, 7, (2.52)
6e 3e 2e 6e

2
I + Leaiui + Leaiea ;= ——uu, o =24,6,8.
24¢?  12¢? get U T 94e?

2.2.4 The relation between the LBM and macroscopic properties

In the lattice Boltzmann method, all conservation laws absolutely holds true.

Both conservation of mass and conservation of momentum still govern flows. Based
n [11] and [9] , the law of conservation of mass is considered. It is true that the net
mass at time ¢ and time ¢ + At equal each other. We can calculate the net mass
by summing all of the distribution function at time ¢ and time ¢ + At. By the

conservation of mass, this gives

Zfa (m +e At,t + At) = Zfa (@1&), (2.53)

(24

Substituting the equation (2.53) into the lattice Boltzmann equations (2.42), results in

Zfa (x,t) = Zf;q (513,75)- (2.54)

Therefore,

h(x,t) = Zf;q (x,t) = Zfa (:U,t). (2.55)

[24 [24
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By conservation of momentum, multiplying € into the equation (2.54), we

obtain
1 ) 1

2.2.5 Boundary Conditions

The fluid flow problem have one more thing that is significant point to govern
themselves. They are the boundary conditions. This section discusses all about the
suitable boundary conditions which is satisfied for the problem in this thesis and how
to provide the suitable boundary conditions for each border of a problem. Similar to
the lattice Boltzmann equation, the boundary conditions are presented in the form of
the local distribution functions related to the frontier of the problem domain. Such
boundary conditions are derived from the conservation law in order to preserve their

real behavior.

Firstly, the boundary conditions for the solid wall, which includes both the slip
boundary conditions and the no - slip boundary conditions would be shown in the

following, then the inlet and outlet boundary condition are presented.

2.2.5.1 The solid wall boundary

e S S TR S e R S e e e

Solid wall

Figure 2. 8 The lattice at the solid wall.
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a) The slip boundary conditions

From figure 2.8, the lattice near solid wall have three unknown

distribution functions after the streaming steps. They are f2 ]% and f;l which can

be provided as

f=Ff f=F f=F (2.57)
b) The no - slip boundary conditions

For this case, the bounce back scheme is used. It is the efficient way
for the solid boundary. This makes lattice Boltzmann method competent to simulate
flows with complex geometries domain. The idea of this scheme is obtained by the

fact that the molecules which go towards the solids boundary would crash the wall
and bounce back into the fluid. From figure 2.8, the unknown variables f2, f;,) and

f4 can be represented by

L=l L=FL L=k (2.58)

Moreover, the sum of the momentum at the solid wall is zero. This

gives the velocity to be zero at the solid wall.
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2.2.5.2 The inflow and outflow boundary conditions

After streaming, the distribution functions fl’ f2 and f8 of the lattice along
the inlet border and the distribution functions ]il’ ]% and f6 of the lattice along the
outlet border are unknown variables (see figure 2.9). They need to be determined by

the appropriate boundary conditions.

fz fa f3 f2

Outlet

Domain

Figure 2. 9 The domain of the problem.

a) The zero gradient

For the inflow and the outflow boundaries whose depth and velocity
are not given, many research point out that using zero gradient of the local distribution

function along this boundary is the solution of this boundary. Thus the unknown

distribution functions fl fz and ]% at the inlet border can be computed by

f(Li)=1,(24), a=128. (259)

And the unknown distribution functions f4 f5 and f6’ at the outlet are

calculated by

f (anj) =/, (LSU - 1,j), a=4,5,6, (2.60)

where L is the total number of lattice node in the & direction.
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b) Inlet and outlet boundary conditions with known depth and

velocity

For one — dimensional problem, the distribution function fl of the

lattice at the inlet boundary and the distribution function f2 of the lattice node at
the outlet boundary are unknown variables (see figure 2.10). We have to calculate

them from the relation in equations (2.55) and (2.56).

InIetv\ |f2 £, f1' |f2 fo fl Outlefc

‘ & ;‘ ------------------- ‘ : 1‘=-*

—— —_—
I I |

Figure 2. 10 The boundary for one — dimensional problem.

From the relation between microscopic and macroscopic variables in
equations (2.55) and (2.56), we obtain subsequent relations for the one —

dimensional problem of the inlet boundary condition

ot h+th=ho e —ef,=nhu,

then
hu + ef2
L=h—fy—f oo Jj=—"=. (2.61)
(&
For the outlet boundary condition, we obtain
ef. —hu
f2=h—f6—f1 or f2:fl— (2.62)
(&

We can choose one of them to calculate the inlet or outlet boundary

condition. These two choices always give the same result.
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For two —dimensional problem, the unknown variable is as same as the
case in 2.2.5.1. We introduce the derivation of their formula of the inlet boundary
condition. We derive the desired formula from the relation in the previous section, the

equations (2.55) and (2.56). We suppose the fluid depth i and the fluid velocity

and U (where © = Ul + ’Uj) are given.

At the inlet boundary condition, the unknown distribution functions are fl’ ]; and

fé (see figure 2.11). Our aim is to find the formulas for those unknown distribution

functions by using the method which is introduced by Zou and He in [12].

ﬁ& f3 f2

| 3 ® ®
Inlet \

‘ fo . f,

) ® 9

fe f7 fo

Figure 2. 11 The lattice at the inlet boundary.

From the equation (2.55), it can be rewritten as

ﬂ+é+@=h—(%+é+@+g+é+ﬂ). (2.63)

Also, the equation (2.56) can be separated into the ' component and the

component of vector € _ result in
P
a

é—fg=%—f3—]§l+f6+f7, (2.64)

and
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hu
f1+f2+f8=?+f4+f5+f6. (2.65)

Equations (2.63) and (2.65), gives

eu[f0+f3+f7+2(j;1+j%+f6)]. (2.66)

6 J—
This equation would be useful, if we did not know the water depth h.

Next, we will determine the unknown distribution functions fl’ fQ and fS But we
have just 2 linear equations for 3 unknown variables. Certainly, it is impossible to find
the exact values of these three unknown variables without other assumption. Zhou
and He [12] suggested that using the bounce - back rule for the non - equilibrium part

of the particle distribution [13] will work well. That is

H etk Y, (2.67)

Thus,

L=f-E"+ 17 (2.68)

Then, substituting the equilibrium distribution function fleq and f;q into equation

(2.68) results in

h=Jk-

= f5 +—. (2.69)
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Substituting equation (2.69) into equation (2.65), gives

hu
f2+fg=§—ﬁl+f6 (2.70)

Solve the equation (2.64) and equation (2.70) to get

hu  hv A
=—+—+f —f +—= (2.71)
f2 be 2e f6 f4 2
and
fé:h—u_@——ﬁ_é- (2.72)
be 2e 2

Therefore, the inlet boundary condition at the left side nodes
of a lattice are the equations (2.69), (2.71) and (2.72). For the other sides, we can

derive it by the same idea.
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Set U and h;

Set the maximum iterations.

!

e
Calculate faq from (2.51) and (2.52);

Set fa = Zq.

»
»

)\ 4

timet < maximum iterations.

Collision step (2.43) and

streaming step (2.44).

Calculate U and R from (2.55) and (2.56);

Boundary conditions;

Calculate f Zq.

END

Figure 2. 12 Algorithm of the standard LBM.
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CHAPTER IlI
THE SCHEME FOR
THE PROBLEM WITH WET - DRY INTERFACE

3.1 One - Dimensional Problem

For the one — dimensional shallow water problems with the wet — dry interface,
the common lattice Boltzmann method can cause difficulty, which are not based on
conservation laws. In order to overcome this drawback, we have to modify something
about the distribution function at the wet — dry front by some scheme. In 2014, Liu
and Zhou introduced their scheme, which derived by using the Taylor expansion and
the Chapman - Enskog procedure, for solving the shallow water flow problem with
the wet — dry interface. Next, the derivation of this new scheme is explained.

Firstly, we set At = & and use the Taylor series to expand the left hand
side of the lattice Boltzmann equation (2.42). This leads to

5 2
gl 2o f+e P, e O f +O(52)
ot %oz )* 2\ot %ox) ¢
1 &
— —;(fa — fOSO)) + geaF, (3.1)

in which 0(50) = f;q.

Moreover, by using the Chapman - Enskog procedure, the distribution function

0 2
fa is expanded around fo({ ) up to order 0, (6‘ ), we get

fo= 1 et vo(s2), 5
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Substituting the equation (3.2) into the equation (3.1) results in

0 0 0 1 (0 0 0 1
el —+e, — (fo(l ) +‘9fo(¢))+_ —te, — (fo({ ) +gf0(l)j
ot or 2\ 0t or
& 1 &
=—— OE ) +—e F. (3.3)
4 2¢”
The coefficient of order & in the equation (3.3) can be written as
0 0 e I’
— + g\ fo({)z——f() (3.4)
ot ox 2@2
At the dry cell, the water depth and velocity should be zero, this gives
0
fo(l AN £ =0. (3.5)
at every time.
So that
0
a0
= 0. (3.6)
ot
Now, the equation (3.4) can be rewritten as
(0)
1 1 0
fOE ) =7|—e F—e, Je (3.7)
262 ox

Substituting the equation (3.6), (3.7) and the source term F into the equation

(3.2), the distribution function at the dry cell can be demonstrated as
0 1 1
fo= 1) = of)
0)
1 0z, T 0 (
—er| —ec | —gh—t b |- afL
262 ox 1% ox



o of"
By the forward scheme, the terms — and
ox ox
azb g (x + eaAt) -z, (x)
or e At
a
and
0 0
afoEO) - fOE )(sc + eaAt) —fOE )(sc)
ox e At ’
respectively.

Substituting the equations (3.9) and (3.10) into the equation (3.8), yield

f, = _Ziez(zb (a: ¥ eaAt) =y (fv)) N %%Ch“‘“‘

S

~o (o +e,at8) - 1) ()

The equation (3.11) can be used to determine the unknown distribution

function at the dry lattice next to the wet lattice at the wet - dry interface.

< ) Pt ° » O O
| | | t+ At
I | |
/, 5 K
4—.—’:4- — —.—>|<' - () :; O
: : :
72 | Wy | d, | d,

Figure 3. 1 The unknown fa at the wet - dry interface.
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can be approximated as

(3.9)

(3.10)

(3.11)
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From figure 3.1, the calculation is in the wet lattices. At time ¢ before the
streaming step, the exact value of the distribution function f2 at the dry lattice d] is

not determined. This will be the problem when the undetermined distribution function

f2 (dl) slides to the neighboring wet lattice W\, in the streaming step. Because the

2
distribution function f2 (dl) is on the dry lattice. Therefore, the value of it can be

calculated by the equation (3.12). Then the streaming step can occur and all the

distribution functions slide to the nearby lattice in their directions. After the streaming

step, the distribution function fO and f2 at the dry lattice dl are the unknown

distribution function. It is easy to calculate the distribution function fQ (dl) by using

the equation (3.12) again. Also, the way to obtain the value of the distribution function

fO (dl) is not difficult. It can be calculated by averaging the same distribution

function of the neighboring lattices, so that

fo(d1)= fo(d2)gfo(w2). (3.12)

After summing all of the distribution functions for each lattice, we can calculate

the water depth. Let’s consider the dry lattice dl’ the dl lattice is still dry if h<0
and it changes to be wet when h > () These two equation (3.11) and (3.12) are very
useful for the one - dimensional problem with the wet - dry interface. Moreover,
these formulas help the standard lattice Boltzmann method to overcome the wet -
dry problem.
3.2 Two - Dimensional Problem

In this case, we extend the one — dimensional scheme to the two - dimensional

problem on the area domain. Because the source term on the lattice Boltzmann

0z

equation include a first derivative of the bed topography term 8_b So that we have
X

to modify this troublesome derivative term by the idea proposed in [7] as follow:
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I, (:1: +e At,t + At)

+w —e F (3.13)

i which b = (h(x +e At,t+ At) + h(x,t)) /2.

Supposing that At is small enough and & = At, by substituting & into the

equation (3.13), we obtain

(x—l—e 815—!—3)
Iy

(ast)——(f( t)- £ (:U,t))—wag—(zb(:v+ea8)—zb(x))

By the Taylor’s expansion of the left — hand side of the equation (3.14), we have

2
(%f}fﬁ[; af]f“)( ')
=)= ), Gl o))

“C

+w —e F. (3.15)
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Considering the Chapman - Enskog procedure once more for this case, fa is

0
expanded around fOE ) up to order 0(82), leads to

o= vefl 2P vo(#) o

The second term and the source term ]’7; on the right hand side of the

equation (3.14) can be expanded by the Taylor expansion as

o 2 o
w 9 h+£ @+e ﬁ ge .i+g—e e . % +0(6‘3) (3.17)
« Cf 2\ ot 8:1:j @ 61’]. 2 @A 63:1.83:].

and

oF OF’
F+8|Zige 2 +O(52),
‘2ot “* o,

where the source term P; is considered by the centred scheme [7].
Substituting the equation (3.16), (3.17) and (3.18) into (3.15), then the comparing with

the coefficients of each order as follow & is used.

At order 80, we obtain

f(o) = f, (3.19)

(24 (24

1 .
at order &£, we acquire

0 e F
[ﬁ+e 0 f(o):_lf(l)—w gh, %, Cw . (3.20)
ot *ox.|“* ¢ 02 Y ox. ‘02
J s J s

and at order 6‘2, we have

2
[%+e o fa(ll)+% %4—6 9 f(ﬁo)

@J 8:(:j @J 8xj

ge,,; (ah L. oh j 0z, gheye,; 3%

ot “ o, oz, ¢ 2032 T

L 2)

T “2c?
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eaz' aF; aF;
+w —— —+e_ . —|. (3.21)
“9c?| ot ¥ o,

S
Inserting the equation (3.20) into (3.21) and readjusting it, leads to

1 0 19, (1) 1 (2)
—— || =4 — S . (3.22)
27 )| Ot “aj 8x]. Je T Je -

Calculating Z((320) + £ X (322)) produces
a

%; fOEO) + % %:eaj fOEO) = 0. (3.23)

By the relation between the microscopic variables and macroscopic variables

in the equation (2.55), we can observe that the equation (3.24) is the conservation of

mass. Similarly, calculating 260”. ((3.20) + & X (3.22)), we can obtain
a

conservation of momentum in another form, ie,

05, 40 el -1 |2
EO AR S WRWEE (S Eo

=F —gh—=. (3.24)

The formula for the unknown distribution function at dry lattice of the two -

dimensional case is

h At
f, = _wac_ng(zb (:1: + eaAt) -2 (517)) - wac—;eaicbui Uit

S S

—T ( fOEO) (:1: + eaAt) — fOEO) (:c)) (3.25)
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Nevertheless, there may be other unknown distribution functions that are not
facing to the wet nodes in their moving ways (see the figure 3.2 (a)). The above formula
cannot be applied to these unknown distribution functions. However, they can be

acquired by averaging values of its neighboring lattice as.

[y = égf“ (x + €aAt)- (3.26)

The equation (3.25) and (3.26) are used in 2 cases: 2 < 4 and . = 4, where

T is the number of the neighboring wet lattices of a dry lattice that is considering.

@ 4 d " W d d L
o] o L] o o L
1 5,7
o o ° i ’—’ —/lp<—o— _[I) °
h o .C\\ 14l
. ;f','\
Y y
e L ] L c o f\ L]
L} X L}x
t t+ At
(b) . fi 2

,
oA
o} [LO
[ ] /
° L ]
U
N B
1:\
4
[ B
is
L] L ]

t t+ At

Figure 3. 2 The unknown fa at the wet dry interface for the 2D problem from [1] .
3.3 Wet - dry tracking technique
At the initial step, we set the variable W in order to retain the value about the
wet state or dry state. If the fluid depth at the lattice which is interested is more than
zero, it would be a wet lattice and set W=1. Otherwise, if it is less than or equal to
zero, it would be a dry lattice and set W=0. Moreover we have to set the variable

that retain the position of the wet-dry interface. It was called dry _node.
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Fluid surface

u a s
W=1is W= =1=W=0* W=0*" W=0
5 s u o u

Figure 3. 3 The wet-dry interface.

After the streaming step, we get the new distribution function. We can some

over them and get the new fluid depth at each lattice. The way to consider which

lattice should be whether wet or dry is described as follow.

If the depth h>0.0001, the lattice is wet. Otherwise, if the depth h <0.0001

, this is the dry lattice and we set h=0 . Therefore, the current interface is between

wet lattice and day lattice.

3.4 Algorithm for LBM with the new scheme

1.

Set the initial value of the fluid velocity % and the water depth h.

Calculate f;q from the equation (2.51) or (2.52), then set fa = f;q.

If f; > 0, calculate fa at dry cell from equations (3.11) and (3.12) for 1D
problem or (3.25) and (3.26) for 2D problem.

Otherwise, fa = f&

The collision step and the streaming step are computed and then fa are
updated. The wet-dry tracking technique is included in this step.

Use step 3 one more time to fill the unknown fa at t + At on dry lattice.
Update % and h by (2.55) and (2.56).

Repeat step 2 to step 6 until the results reach the desired point



aq

| Setu and h |

.

Calculate f;q from (2.51) or (2.52);

Set fo = ;q;

Set count = 0;

Compute f, = f&
at the dry cell.

A

Yes fz > O atthedry
cell next to wet cell
Compute f, at the dry cell .
Yes

y

Update f,, form (2.43) and (2.44);

Count=1.

Wet-dry

tracking

Calculate u and h from (2.55) and (2.56);

Calculate £ 4;

Reset count = 0.

Figure 3. 4 Algorithm for LBM with the new scheme.
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CHAPTER IV
NUMERICAL RESULTS

4.1 Dam break on a wet domain without friction

This problem which is governed by SWEs without friction is studied by LBM in

[5]. The initial water depth is given via the following Riemann problem.

Graphs of dam break on a wet domain without friction at time t = 0 5.

— Numenical Result
nnnnnnnnnnnnnn

L n L L L
2 4 6 [] 10
y-axis

Figure 4. 1 Initial water levels.

h(:):)z h,=0.05 jfor 0<uz<ux,

(@.1)
h =0.025 for z,<zx<1L,
2 0
and the initial velocity u(a:) =0 m/s, L =20 mand :130 =10 m. When
t > 0, the analytical solutions is proposed in [14] as
h, if x<uw, (t),
2
0. | VI~ if z,\t)<z<z,(t),
h(z) =199 2t Sl 5(1) a.2)

and
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The numerical results (water depths) at © = 60, 200, 400 and 600s. are
compared with the exact solution as shown in Figure 4.2, showing the agreement
between these results. This concludes that the developed scheme can handle the
dam break problem on a wet domain quite well agree with the exact solution and the
result in [5].

Graphs of dam break on a wet domain without friction at time t = 60 s. Graphs of dam break on a wet domain without friction at time t =200 s.
T T T T T T T T T T

0.06 T T T I 0.06 T T
— Numerical Result e Numerical Result
=== Exact Solution - Exact Solution
0.05 B 0.05 b
0.04f i 004|
J o
% 003} L § 003
* *
0.02} & 0021
001+ A 001
) ; 0 L L L L L L L L L
L L L L L L L
0 2 4 6 8 10 12 1 16 18 0 2 4 9 8 1Q 12 14 i i
y-axis
y-axis
@t =60.0s b ¢ =200.0 s
Graphs of dam break on a wet domain without friction at time t = 400 s. Graphs of dam break on 2 wet domain without friction at time t = 600 s
0.06 T T T T T ;i T 0.06 T T T T T T
m— Numerical Result
m= m= Exact Solution = Exact Solution
1 0.05 4
0.04+
2 -
s 3 003
* =
0.02} . 002t ]
001} g D01l |
0 L L L L L L " L L g i 5 A g 5 i §
0 2 4 6 8 10 12 14 16 18 0 4 6 8 10 12 14 16 18
y-axis y-axis

©t =400.0s

o) ¢ = 600.0 s

Figure 4. 2 Comparisons between the numerical results (water depths) and the exact

solution for the dam break on wet domain at various times.
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Similarly, the velocity profiles obtained from the numerical simulation also

agree with the exact solution, as shown in Figure 4.3.

@t =060.0s © t =200.0 s

©t =400.0 s @ t =600.0 s

Figure 4. 3 Comparisons between the numerical velocity profiles and their exact

solution for the dam break on wet domain at various times.
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4.2 Steady flow over a bump

In this example, a 1 — dimensional subcritical flow in a 25 m long channel with
a bump is simulated. This is a benchmark test case for dam break wave problems

simulate by numerical methods. This problem was used by [6].

The bump is defined by

o (2)= 0.2-0.05(z - 10)2 8 <1 <12

: (4.4)
0 otherwise;

The discharge per unit was specified at the inflow ¢ = 4.42m2 / S; the
flow height is h =2 m; € =15 m/s;and 7 = 1.5.

The velocity at inflow is always generated relating to the discharge per unit.
The water depth at outflow is fixed at 2 m high. The result is shown in Figure 4.1. When
the subcritical flow flows over the curved bump, the surface is dropping above the

bump. The numerical result agrees quite well with the exact solution in [14].

Graphs of Steady flow cver & bump at time t = 656 5.
T T

water surface

= Water surface

~—— Bed topography
I | Exact solution
5 10 15 2
x(m)

Figure 4. 4 The steady state.
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4.3 Dam break flow over a spherical bump

This experiment is performed to check the developed scheme for a dam break
problem in 2D with a bump under the water surface. The computation is performed
on the domain having 100x100 nodes with lattice size Az = 0.1 , time step
At = 0.01 , the kinetic viscosity ' = 0.01, and the spherical bump defined by

AOE 0.005(3;2 15z + 56)(y2 _12y + 35.75) )

The water surface profiles at T = O, 1, 2,2.5,3 and 48 are shown in
Figure 4.5 displaying the waves generated by the bump.

@t=0.0s t=1.05:

t=2.0: @dt=2.5;s

e t=3.0s nt=4.0:

Figure 4. 5 A set of numerical results.
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4.4 Tidal wave over a variable sloping bed

This problem was presented primarily by [15] and was introduced for LBM by
[1] with the purpose of studying the shoreline movement over a bed topography
defined in Table 4.1.

The computational domain is 500 m long with the bed slope as shown in Figure
4.6. The initial depth is the steady state fluid with the level of 1.75 m. The bounce
back boundary condition is set at £ = 0 m and the inlet boundary at £ = 500 m

is associated with the time — dependent water depth as,

20

h(500. 1) (m
W

1.0 F 0.5

2 (m)

10 20 30 40 50 60

1 (min)

L 1 1
100 200 300 400 500
v(m)

Figure 4. 6 Bed elevation and inlet boundary condition introduced by [1].

h(500,t) = h, + Acos 27[i , (4.6)
T
where hO =1 , A= 0.75, and 1" = 3600.
:L’(m) 0- 100 100 - 200 200 - 500
slope -0.001 -0.01 -0.001

Table 4. 1 Bed slopes

The results of the water surface obtained from the numerical experiment are

shown in Figure 4.7 (right) and compared with the results from [1] (left).
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Numerical results by [5] Our numerical results
(@) 5 0.6 7 I ————
18
é 1.5 —— Water surface 03 1.6
P — Bottom 1.4
s - - - Velocity ) 12
? ) S . T 0 ? 1
5 0.8
S 05 553 o2
= 0.4
0.2} —— Water surface
—0.6 o —— Bed topogﬁhﬁy‘\ ; p
100 200 300 400 500 280 200 I 200 400
t =0 min t =0 min
I Graphs of a problem with wet-dry interface at time t = 12.0008 mii
®) 50 0.6 2
. 18
h
" -1 16
1.5 Q“ i 0.3 g
5 == = s 1.2
4 -4
1.0 0 5 1
Sos
06
0.5 -0.3 o
0.2} —— Water surface
0 —0.6 = — Bed topography
O
100 200 300 400 500 2 R e
t =12 min t =12 min
((.) Graphs of a problem with wet-dry interface at time t = 24.0008 m
2.0 0.6 2
18
- S 16
815 o 0.3 . &
2 W . § e
B 10 -’ 0 E
o Zos
L‘; 0.5 -03 o0 1
S L 04 \
0.2} = Water surface
~— Bed topography
0 —0.6 ¥ ="
100 200 300 400 500 i 22N i
t =24 min t =24 min
I Graphs of a problem with wet-dry interface at time t = 36 min.
@50 0.6 2
1.8
16
1.5 03 5
rae. § 12
1.0f----- e \ 0 S
Zos
- S - 06
0.5 1-03 0.4
0.2} = Water surface
—0.¢ o ~— Bed topography
O 0
100 200 300 400 500 - = e e
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Figure 4. 7 Comparisons between our numerical results and the results from [1] at various times.

The results show agreement between our results and the results from [1]. This

confirms that our developed scheme can handle wet dry problem quite well.
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4.5 A 1D Wave run over a sloping bed

Graphs of a dam-brezk problem with wet.dry interface at time t =0 s

I | I "
0 2 4 6 8 1 12 14 15 18

Figure 4. 8 The initial profile.

In this example, the fluid in two different levels is considered as a dam break
problem with a sloping bed. The interface between the fluid and the dry bed node
next to fluid is considered as a wet — dry boundary. The left and right boundaries are
specified by bounce - back boundary.The channel is 20 m long with 200 lattices, the
time step At = 0.1s, the initial fluid surface profiles are defined by

0.03 O<z<b;
he) =001 w35 0
The bed topography is defined by
0.0 O<z<8§;
% (v)= 0.0025(z —8)  z>8. e

The kinematic viscosity V = 0.05.



54

The numerical results are shown in the following.

T T T ——T—
T T

L ————

ot =40.05 @t =60.0s
ims? /'/’// 2
\ ///
aowl- ’///,

@©t=280.0s o t=120.0;s

Figure 4. 9 Graphs of 1D-SWEs problem with wet —dry interface.

The different levels of fluid make it flows up to the sloping bed. Then it
moves down. This phenomenon happens repeatedly until it reaches the steady state
(see figure 4.10). We also check the volume of fluid at beginning and at the steady

state. The volume a bit increases at the end.

G o 8 s e i ey e = 10332

— Vit st

—

Figure 4. 10 The steady state.
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CHAPTER V
CONCLUSION

The standard lattice Boltzmann method in general works quite well for the
shallow water flow problem with the source terms such as the bed slope and the bed
friction when the problem has no wet-dry interfaces. But when the problem has wet-
dry interfaces, there will be some mistakes from the formula in the calculation at the
dry lattice; some equations consist of terms that are divided by the water depth, which
are zeros at dry lattices. Therefore, the standard LBM is not capable for this wet-dry
interfaces problem. This difficulty is overcome as the result developed by [1], based
on some modification of the distribution function at the dry lattice using the Taylor
expansion and Chapman - Enskog procedure.

This work extended the result introduce in [5] for SWEs to handle wet-dry
interface problems by employing the idea proposed by [1] . The work is focusing on
the implementation of the LBM to handle wet-dry interfaces, by modifying the codes
from [5] and combine with the idea of [1] to obtain distribution function at dry lattices,
and together with wet-dry tracking technique in the calculation. The implemented
program is tested with some numerical examples to validate the program, which show
the results that agree well with exact solutions or results in literature in the

experiments, see CHAPTER IV.
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