a Jd o
E‘Tllﬂﬁlflf\‘l‘WQﬂ%HLLUULﬂHL%uWNLﬁﬂﬂ

UNAI0IUBI 5177

a

a a J 9}c:»’ 1 % (% a % a
’J‘ﬂfJTLl‘W‘L!‘ﬁﬁ!ﬂUﬁ’luﬁﬁ\i"U’ENﬂ'l'iﬁﬂ‘]el'l@]'IiJ“H’aﬂq&s‘]iﬂifoU'l’)T]fJ'lﬁ']f’f@]ﬁJ‘l"i'ﬁJﬂl"ﬂ@]

g 9

MUMIFATAMAAST  NMAIFIATAAAS AL INGINMTAOUNUADS
AMZINGINEAS NAINTBIUNIING1AY
Umsdnun 2555

4

AvAndvesyinasnisiuminede



ALTERNATIVE JENSEN TYPE FUNCTIONAL EQUATION

Miss Arnisa Rasri

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2012

Copyright of Chulalongkorn University



Thesis Title ALTERNATIVE JENSEN TYPE FUNCTIONAL EQUATION

By Miss Arnisa Rasri
Field of Study Mathematics
Thesis Advisor Associate Professor Paisan Nakmahachalasint, Ph.D.

Thesis Co-advisor  Associate Professor Patanee Udomkavanich, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Master Degree

....................................... Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

....................................... Chairman

(Assistant Professor Nataphan Kitisin, Ph.D.)

....................................... Thesis Advisor

( Associate Professor Paisan Nakmahachalasint, Ph.D.)

....................................... Thesis Co-advisor

(Associate Professor Patanee Udomkavanich, Ph.D.)

....................................... Examiner

....................................... External Examiner

(Charinthip Hengkrawit, Ph.D.)



P11 3193 AUMIFIHINFULVVDUEUNIUADN (ALTERNATIVE JENSEN TYPE
FUNCTIONAL EQUATION) 8.71Saxaneniinusvan : se. a3. lnaa wiaumi-

a 4 A (= a a o 1 v A a 9
TAIAUT, 2.1UTNHIIMNAUNUTTIN : 5A. AF. Wil 2ANNSIUY, 20 ©U.

W X waz Y WulSpidadumileilad F ool F=Q,R 3o C uazly
f:X oY duiladdulan dmualdmned peR #1 p 0,1 mfigoiieumsids
HleanFunuunuaumaden
pf (x)+(@—p) F(y) == f(px+(1-p)y)
auyanuaumsFilsiFunuun e
pf () +@A-p) F(y) = f(px+(1-p)y)
wennnilsiguiiwamasiliide peQ fo f(x)= A(X)+c Taoii A: X - Y iilu

o o
Wensumsuin a ceY

[
=

1179 Adlaean; Meio¥e 9. NUSNEINITINUTHAD

-

A A

= =2 A (R a a J
Unsfne 2555 Aede¥e 0.NUTNEIINGIUNUTI IV



4 # 5472162623 : MAJOR MATHEMATICS

KEYWORDS : ALTERNATIVE FUNCTIONAL EQUATION / ALTERNATIVE

JENSEN’S FUNCTIONAL EQUATION
ARNISA RASRI : ALTERNATIVE JENSEN TYPE FUNCTIONAL
EQUATION. ADVISOR : ASSOC. PROF. PAISAN NAKMAHACHA-
LASINT, Ph.D., CO-ADVISOR : ASSOC. PROF. PATANEE UDOM-
KAVANICH, Ph.D., 20 pp.

Let X and Y be linear spaces over a field F where F = Q,R or C and let
f : X — Y be arbitrary function. Given a constant p € R such that p # 0,1, we

prove that the alternative Jensen type functional equation

pf(z)+ (1 —=p)fly) = £f(px+ (1 -p)y)

is equivalent to the Jensen type functional equation

pf(x)+ (1 —=p)fly) = f(pr + (1 —py).

Moreover, we prove that the general solution when p € Q is f(z) = A(z) + ¢

where A : X — Y is an additive function and ¢ € Y.

Department ¢ 2o S R R R Student’s Signature ...............
Field of Study : Mathematics . Advisor’s Signature ...............

Academic Year : 2012 Co-advisor’s Signature ..........



vi

ACKNOWLEDGEMENTS

I would like to express my special thanks of gratitude to my thesis advisor,
Associate Professor Dr. Paisan Nakmahachalasint, and my thesis co-advisor, As-
sociate Professor Dr. Patanee Udomkavanich, for their exemplary guidance and
constant encouragement throughout this thesis. I am most grateful for their
teaching and advice, not only the research methodologies but also many other
methodologies in life. Besides my advisor, I would like to thank to my thesis
committee, Assistant Professor Dr. Nataphan Kitisin, Dr. Keng Wiboonton and
Dr. Charinthip Hengkrawit, for all of comment and good suggestion. Moreover,
I am grateful for all of my teachers who have taught me for my knowledge and
skills.

In addition, I would like to thank the Development and Promotion of Science
and Technology Talents Project (DPST) for financial support throughout my
undergraduate and graduate study.

Finally, My graduation would not be acheived without best wish from my
parents and my friends for all their support and encouragement throughout this

thesis.



CONTENTS

page

ABSTRACT IN THATL ..o e iv

ABSTRACT IN ENGLISH .. ... e v

ACKNOWLEDGEMENTS ... vi

CONTEN TS L vii
CHAPTER

I INTRODUCGCTION .. e 1

1.1 Functional Equations .............. i 1

1.2 Alternative Functional Equations .................................. 3

1.3 Proposed Problem ......... ... ... 6

II ALTERNATIVE JENSEN’S FUNCTIONAL EQUATION ............... 7

IIT ALTERNATIVE JENSEN TYPE FUNCTIONAL EQUATION ........ 11

3.1 Jensen Type Functional Equation .................. ... ... ....... 11

3.2 Alternative Jensen Type Functional Equation ..................... 13

REFERENCES . 19



CHAPTER I
INTRODUCTION

In this chapter, first we present a brief introduction to a functional equation
and give some examples of functional equations. Then we treat an alternative
functional equation and its literature. Furthermore we refer to the motivation of

our proposed problem.

1.1 Functional Equations

A functional equation is an equation which unknown variables are func-
tion. M. Kuczma [8] said that “On several occasions in investigations of functional
equations it has been observed that the family of the solutions of the equation in
question depends quite essentially on the domain in which the validity of the equa-
tion is postulated.” The following example demonstrates how to solve functional

equation problems.

Example 1.1. Find all functions f : R — R satisfying the functional equation

fl+y) + flo—y)+ fly) =22+y (1.1)

for all x,y € R.
Solution: Assume that there is a function f : R — R satisfying (1.1).
Setting y = 0 into (1.1) yields

2f(x) = 2x— f(0);

flx) = x— @ for all z € R. (1.2)

Replacing (z,y) = (0,0) into (1.1) yields

£(0) =0,



Substituting f(0) = 0 into (1.2), we obtain
flz)==z for all z € R.

On the other hand, if a function is defined by f(z) = z for all x € R, then we

have
fl@ty) +flx—y) +fly) =2x+y.

Therefore, all solutions of the equation (1.1) are of the form f(x) = z. O

In general, a functional equation may not necessarily have a solution. The

following example shows that a functional equation has no solution.

Example 1.2. Find all functions f : R — R satisfying the functional equation
fl—z)+ flx)=a+1 (1.3)

for all x € R.
Solution: Assume that there is a function f : R — R satisfying (1.3).
Plugging x = 0 into (1.3) yields

f()+£(0) =1. (1.4)

Putting = 1 into (1.3), we get

fO)+ /(1) =2 (1.5)

Then, from (1.4) and (1.5) we obtain 1 = 2 which is a contradiction. Therefore,

there is no function f : R — R satisfying the functional equation (1.3). O

One of the most well-known functional equations is the Cauchy functional
equation

flx+y) = f(z)+ f(y). (1.6)

In 1821, A.L. Cauchy [2] proved that the general continuous solution f : R — R
of the equation (1.6) is of the form f(x) = cx where ¢ is an arbitrary constant.
The general solution of the equation (1.6) is called an additive function. An

important properties of an additive function A : X — Y, where X and Y are



linear spaces over a field C, is that A(rx) = rA(z) for all r € Q, = € X (please
refer to [3] for more information). In 1905, G. Hamel [6] succeeded in constructing
a discontinuous solution of the equation (1.6) by using the axiom of choice. In
addition, Hamel proved that, for a discontinuous additive function A : R — R,
the graph G(A) = {(z, A(z)) : * € R} is dense in the plane R>.

Another well-known functional equation particularly associated with the Cauchy

functional equation is the Jensen’s functional equation

; (x;y) GEN0

. (1.7)

For a function f : R — R satisfying (1.7), by introducing f(z) = f(x) — f(0), it
can be shown that f satisfies (1.6). This means that the general solution of (1.7)
is of the form f(x) = A(x)+ c for some additive function A : R — R and ¢ = f(0).
The continuous solution of the equation (1.7) is given by f(x) = az + b where a

and b are arbitrary constants (please refer to [1] for details).

1.2 Alternative Functional Equations

To introduce an alternative functional equation, we start with the following func-

tional equation. We consider a function f: R — R satisfying

flx)+ fly) =xf(z+y) (1.8)

or equivalently

f@)+fly)=fle+y) or flx)+fly)=—flz+y).

for all z,y € R. In other words, for each x,y € R, f either satisfies f(x) + f(y) =
flx +y) or f(z) + fly) = —f(z + y). The functional equation (1.8) is called
an alternative Cauchy functional equation. It has been widely studied
or explored and was solved by several authors [4, 7, 9, 11, 12|, under various
hypotheses of the functions, domain and co-domain. In 1981, G.L. Forti and L.
Paganoni [5] have been studied another version of an alternative Cauchy functional

equation

f@)+ fly)=flx+y) or f(x)+fly)=flr+y) +a (1.9)



where XY are arbitrary abelian groups, a € Y and f : X — Y. They proved that
the functional equation (1.9) is also equivalent to the Cauchy functional equation
(1.6).

One approach of alternative functional equation problems is finding an alter-
native functional equation which is equivalent to the original functional equa-
tion. Next example shows that the alternative Cauchy functional equation (1.8)

is equivalent to the Cauchy functional equation (1.6).

Example 1.3. A function f: R — R satisfies
f@)+ fly) =xf(x+vy) for all z,y e R (1.10)
if and only if f satisfies

fx)+ fly) = fle+y) forall z,yeR. (1.11)

Proof. Since (1.11) certainly implies (1.10), it is sufficient to prove that (1.10)
implies (1.11). Assume that a functions f : R — R satisfies (1.10).
Putting (z,y) = (0,0) into (1.10), we obtain

2f(0) = f(0) or 2f(0) = —f(0).

Then
£(0) =0,

Replacing (z,y) = (x, —) into (1.10) gives
f@)+ f(=x) = f(0) or f(z)+ f(—z)=—f(0)
and so, by f(0) = 0, we have
f(=a) = —f(a). (1.12)

Next, we want to show that f satisfies (1.11) for all z,y € R. Suppose not, then
there exist a,b € R such that

fla)+ f(b) # fla+0b). (1.13)



Since f(a) + f(b) = £f(a + b), we are left with
fla)+ f(b) = —f(a+D) (1.14)
Setting (z,y) = (—a, a + b) into (1.10) yields
f(=a)+ fla+b) = f(b) or f(=a)+ fla+Db)=—f(b) (1.15)
Using (1.12) in (1.15), we have
—fla)+ fla+b)=f(b) or —fla)+ fla+b)=—f(b)
Since f(a)+ f(b) # f(a+b), we get
fla+0b) = f(a) — f(b). (1.16)

Comparing (1.16) and (1.14), we obtain

fla) =0. (1.17)

Similarly, plugging (z,y) = (a + b, —b) in (1.10) and using (1.12), we have
fla+b) = f(b)=fla) or fla+b)— f(b)=—f(a)

Since f(a) + f(b) # f(a +b), we have f(a+b) = —f(a) + f(b) and then solving
it with (1.14) implies

f(b) =0. (1.18)
Substituting f(a) and f(b) from (1.17) and (1.18), respectively, into (1.14), we

have

fla+b)=0 (1.19)

It follows from (1.17), (1.18) and (1.19) that f(a +b) = f(a) + f(b), which is a
contradiction to (1.13). Therefore f(z) + f(y) = f(x + y) for all z,y € R. ]

Another example of an alternative functional equation is the alternative

Jensen’s functional equation

f(af);rf(y) iy (fﬂTﬂ/) (1.20)



However, the alternative Jensen’s functional equation (1.20) has not been widely
investigated. In 2012, P. Nakmahachalasint [10] proved that the alternative
Jensen’s functional equation (1.20) where f is a function from a 2-divisible semi-
group to a divisible abelian group is equivalent to the Jensen’s functional equation

(1.7).

1.3 Proposed Problem

Throughout this thesis, let X and Y be linear spaces over a field F where
F=Q,RorCand f: X —Y bean arbitrary function.

In this thesis, we are interested in the functional equation

pf(x)+ (1 =p)fly) = fpr+ (1 —py) (1.21)

1
where p € R~ {0,1}. Note that, when p = Y it is the Jensen’s functional
equation. The equation (1.21) is then called a Jensen type functional equation.
The aim of this work is to prove that the alternative Jensen type functional

equation

pf(x) + (1 —=p)fly) =£f(pxr+ (1 —-p)y) forall z,yeX (1.22)

is equivalent to the Jensen type functional equation (1.21).



CHAPTER 11
ALTERNATIVE JENSEN’S FUNCTIONAL EQUATION

In this chapter, we investigate the alternative Jensen’s functional equation

)20y (210

By using different approach to P. Nakmahachalasint’s, we prove that the alterna-

tive Jensen’s functional equation is equivalent to the Jensen’s functional equation.

Theorem 2.1. A function f: X — Y satisfies

f(x) + fy) T +y
relsr (e

) forall z,ye X (2.1)

if and only if f satisfies

w = f (xT—i—y) for all x,y € X. (2.2)
Proof. Since (2.2) readily implies (2.1), it is sufficient to prove that (2.1) implies
(2.2). Assume that a functions f : X — Y satisfies (2.1). Now suppose that there

exist a,b € X such that

M0 10, g (20 (2.
Since M ==f (a —2{— b), we are left with
ML IO (220 0

b
It <a—2i_ > = 0, then (2.4) gives f(a) + f(b) = 0, which in turn implies that

fla)+fb) _ ,(athd
2 _f( 2

), a contradiction to (2.3). Therefore,

f(a;b)#o. (2.5)




b) into (2.1), we obtain

Putting (z,y) = (a, ot

fla)+ f <a;b> = tof <3a4+ b). (2.6)
Substituting (z,y) = (a i b, b) into (2.1), we have
f(a;b) +f(b) = £2f (az?’b). (2.7)

From (2.6) and (2.7), we obtain

o (557) 2 () = (oo (7)) = (1 (57 +m).

(2.8)
3a+b 3b
Replacing (z,y) = ( a;— , ot ) into (2.1), we have
3a+b a+ 3b a+b
==£2 . 2.9
P e () - () 29
b
Eliminating f (3@2— b) + f (a —23 ) from (2.8) and ( 2.9), we can see that

(f(a) T (“;b)) £ <f (“;b) +f<b>) _—y (‘“2”)) W)

First, suppose that the left-hand side of (2.10) takes the plus sign; that is

f(a) +2f (‘%b) T f() = +4f (‘2”)) |

b
Solving the above equation with (2.4) gives f (%) = 0, a contradiction to

(2.5). Back to (2.10), we are now left with

fla) — 1(b) = +4f (“;”) |

Case 1 First, consider the possibility where

- 10 =af (“57). (211)

a+b
2

£(b) = —3f (a;b). (2.12)

Substituting f(a) = —2f < ) — f(b) from (2.4) into (2.11) yields




Case 2

Replacment of f(b) from (2.12) into (2.11) shows that

r=1("37). (213
Putting (z,y) = <a —2|— b, —a;t Sb) into (2.1), we obtain
f(a;rb> +f(_a;3b) = £2£(b). (2.14)

Next, substituting f(b) from (2.12) into the right-hand side of (2.14) yields

f(—a2+3b) :5f<a42rb> Orf(—a2+3b> :_7f(a12Lb>' (2.15)

Setting (2, y) = (a, ——20) into (2.1, we get
f(a)Jrf(_a;_gb) — of (az%). (2.16)
Substituting f(a) from (2.13) and f (_a i 3b> from (2.15) into (2.16) yield
f(az?’b) = £3f (“;b) (2.17)
Replacement of £(b) from (2.12) into (2.7) shows that
f(az%) — (a;b). (2.18)

Comparing (2.17) and (2.18), we have

37 <a—2|—b> — (a;—b)7

a+b

which always leads to f ( ) = 0, a contradiction to (2.5).

Now consider the possibility where

@ - 1) = -1 (“37). (2.19)

a+b
2

f(b) Zf(a;rb). (2.20)

Substituting f(a) = —2f < ) — f(b) from (2.4) into (2.19) yields
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Replacing f(b) from (2.20) into (2.19) shows that

fla) = =3f (a;b) : (2.21)
Putting (z,1) = (3“2_ b At by ito (2.1), we get
f (3a2_ b) +f (a ; b) — +2f(a). (2.22)

Next, substituting f(a) from (2.21) into the right-hand side of (2.22) yields

f(3a2—b) :5f<a42—b> Orf(3a2—b> :_7f<a—2i—b>' 2.2

Setting (z,y) = (Sa —_ b, b) into (2.1), we obtain
f (Sa; b> 4 f(b) = £2f <3GI b) . (2.24)
I 3a—0b .
Substituting f(b) from (2.20) and f <T) from (2.23) into the left-hand
side of (2.24) yield
b b
f(3a+ )z:l:?)f (a+ ) (2.25)
4 2
Replacement of f(a) from (2.21) into (2.6) shows that
/ (?MZ b) ==+f (a;b) : (2.26)

Comparing (2.25) and (2.26), we have

3f (a;—b) — (CL~2H))7

a+b

which implies that f = 0, a contradiction to (2.5). From all of the
consideration above, the assumption (2.3) always leads to a contradiction.

Therefore,

M:f(x;y) for all z,y € X.



CHAPTER III
ALTERNATIVE JENSEN TYPE FUNCTIONAL
EQUATION

This chapter consist of two sections. In the first section, we determine the
general solution of the Jensen type functional equation in case of p € Q and in
the last section, we prove the equivalence of the alternative Jensen type functional

equation and the Jensen type functional equation.

3.1 Jensen Type Functional Equation

In this section, we extend the Jensen’s functional equation to the Jensen
type functional equation. The following theorem gives the general solution of

the Jensen type functional equation when p € Q.
Theorem 3.1. Given a rational number p # 0,1. A function f : X — Y satisfies
flpz+ (1 =ply) =pf(z) + (1 —p)f(y) (3.1)

for all x,y € X if and only if there exist an additive function A : X — Y and a

constant ¢ € Y such that

forallx € X.

Proof. Define function f: X — Y by

f(z) = f(z) — f(0) for all =z € X. (3.2)
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Since the sum of the coefficients of f(z) and f(y) in the right-hand side of (3.1)
is 1, f still satisfies (3.1). That is

Fflpx+ (1 —p)y) =pf(z) + (1 —p)f(y). (3.3)

Putting (z,y) = (E 0) into (3.3), and noting that f(0) = 0, we have

p’

Fo) =i (2). (3.4)
Plugging (v, 1) = (0, %p) into (3.3), and using f(0) = 0, we see that
for=a-nf (L) (35)
Setting (z,y) = (g, %p) into (3.3) gives
Fovn =of (2) +a-ni (72). (3.6)

Using (3.4) and (3.5) in (3.6), it follows that

fla+y) = fl@)+ f(y).
Hence, f is an additive function. That is there exists an additive function A :
X — Y such that f(z) = A(z). Since f(z) = f(z) — f(0), we conclude that
f(z) = A(x) + ¢ where c = f(0).
Conversely, suppose that there exist an additive function A : X — Y and a

constant ¢ € Y such that
f(x) =A(x)+c¢ forall zelX,
so that for each z,y € X,
fpr + (1 =p)y) = Alpr + (1 = p)y) + ¢ (3.7)
By the properties of the additive function A,
Alpr + (1 =ply) +c¢ = Alpr) + A((1 - ply) +c
= pA(x) + (1 - p)A(y) +c.

Note that pA(z) + (1 — p)A(y) + ¢ = p(A(z) + ¢) + (1 — p)(A(y) + ¢). Therefore
f(pr+ (1 —p)y) =pf(z)+ (1 —p)f(y). Hence, f satisfies (3.1) for all z,y € X.
This completes the proof. O
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3.2 Alternative Jensen Type Functional Equation

In this section, we apply the technique used in Theorem 2.1 to show that
the alternative Jensen type functional equation is equivalent to the Jensen type

functional equation.

Theorem 3.2. Given a constant p € R~ {0,1}. A function f: X — Y satisfies

pfx)+(L=p)fly) =xf(pr+ (1 —p)y)  foral v,yec X  (3.8)

if and only if f satisfies

pf(x)+(L=p)fly) = flpr+ (1 —p)y)  forall r,yeX. (3.9)

Proof. Since (3.9) evidently implies (3.8), it is sufficient to prove that (3.8) implies

(3.9). Assume that a functions f : X — Y satisfies (3.8). Theorem 2.1 takes care
1 1

the case p = 7 Now assume that p # 3 Suppose that there exist a,b € X such

that

pfla) + (1 —p)f(b) # f(c) (3.10)
where ¢ = pa + (1 — p)b. Since pf(a) + (1 —p)f(b) = £f(c), we are left with
pf(a)+ (1 =p)f(b) = —f(o). (3.11)
If pf(a)+ (1 —p)f(b) =0, then f(c) = 0, which in turn implies that pf(a)+ (1 —
p)f(b) = f(c), a contradiction to (3.10). Therefore,
pf(a) + (1 =p)f(b) # 0. (3.12)
Let
xr = pa+(1_p)c7
ry = pc+(1—p)
y = pb+(1-p
(1-p)

y2 = pc+(1—p
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In order to understand more, the following graph illustrates the position of

. 2
a,ri,To,C,Y2,Y1, b in case of p = 3

Setting (z,y) = (a,c), (¢,a), (b,c) and (c,b), respectively, in (3.8), we obtain

pfla) + (1 =p)fc) = £f(x1), (3.13)
pf(e) + (1 =p)fla) = £f(22), (3.14)
pf(b) + (1 =p)flc) = £ (), (3.15)
pf(e)+ (1 =p)f(b) = £/ (y2). (3.16)

We can verify that pz; + (1 — p)y; = c and prs + (1 — p)ys = c.
Replacing (z,y) = (z1,41), (2, y2), respectively, in (3.8), we have

pf(x1) + (1 =p)f(y) = £f(c), (3.17)

pf(x2) + (L= p)f(y2) = £f(c), (3.18)

Substituting f(x;) from (3.13) and f(y;) from (3.15) into (3.17) yield
p(pf(a) + (1 =p)f(c)) £ (1 = p)(pf(b) + (1 =p)f(c) = £f(c). (3.19)
There are four possible cases in (3.19) which will be considered in detail as follows:

Case 1 p*f(a) +p(1 —p)f(b) + (1 —p)f(c) = f(c)
Substituting f(c) from (3.11) into the above equation, we have

p*fla) +p(1 —p)f(b) — p(—pfla) — (1L —p)f(b) = O
2p° f(a) +2p(1 —p) f(b) = 0.

Since p # 0, we have pf(a) + (1 — p) f(b) = 0, a contradiction to (3.12).
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Case 2 p*f(a) + p(1 = p)f(b) + (1 —p)f(c) = = f(c)
Substituting f(c) from (3.11) into the above equation, we obtain

p*fa) +p(1 —p)f(b) + (2 —p)(—pfla) — (L =p)f(b) = O0;
2p(p—1)f(a) +2(1 —p)(p—1)f(b) = 0.

Since p # 1, we get pf(a) + (1 — p) f(b) = 0, a contradiction to (3.12).

Case 3 p*f(a) = p(1 —p)f(b) + (=2p* + 3p — 1) f(c) = f(c)
Substituting f(c) from (3.11) into the above equation, we see that

p’fla) —p(1 —p)f(b) + (—2p" + 3p — 2)(—pf(a) — (1 — p) f(b)) = 0;
p(p* —p+1)f(a)+ (1 —p)*f(b) = 0. (3.20)

Case 4 p*f(a) = p(1 = p)f(b) + (=2p* +3p — 1) f(c) = = f(c)
Substituting f(c) from (3.11) into the above equation, it follows that

p°fa) —p(1 —p)f(b) + (—20° + 3p)(—pf(a) — (1 —p)f(b)) = O;
—2p*(1 —p)f(a) —2p(2—p) (1 —p)f(b) = 0.

Since p # 1 and p # 0, we have
pfla)+(2=p)f() =0. (3.21)
From all four cases, we conclude that

p(r* —p+1)f(a)+ (1 =p°f(b) =0 or pfla)+(2-p)f(b)=0. (3.22)

Similarly, substituting f(z2) from (3.14) and f(y2) from (3.16) into (3.18) yield
p(pf(c) + (1 =p)f(a)) £ (1 = p)(pf(c) + (1 —p)f(b)) = £f(c). (3.23)

There are four possible cases in (3.23) which will be considered in detail as follows:
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Case 1 p(L—p)f(a) + (1L =p)*f(b) + pf(c) = f(c)
Substituting f(c) from (3.11) into the above equation, it follows that

p(1 —p)f(a)+ (1 —p)*f(b) — (1 —p)(—pf(a) — (1 —p)f(b) = 0;
2p(1 —p)f(a) +2(1 —p)*f(b) = 0.

Since p # 1, we obtain pf(a) 4+ (1 — p)f(b) = 0, a contradiction to (3.12).

Case 2 p(L—p)f(a)+ (1 =p)*f(b) +pflc) = = f(c)
Substituting f(c) from (3.11) into the above equation, we have

p(L—p)fla)+ (1 —p)*f(b)+ (p+1)(=pfla) — (1L —p)f(b) = 0
—2p* f(a) = 2p(1 —p)f(b) = O.

Since p # 0, it follows that pf(a)+(1—p)f(b) = 0, a contradiction to (3.12).

Case 3 p(l—p)f(a) — (1 —-p)?f(0) +(2p* = p)f(c) = f(c)
Substituting f(c) from (3.11) into the above equation, we get

p(1=p)fla) = (1 =p)*f(b) + (20" —p — 1) (=pfla) = (1 =p)f(b)) = O;
2p(1 —p)(1+p)f(a) +2p(1 —p)*f(b) = 0.

Since p # 1 and p # 0, we have
(L+p)f(a)+ (1 —p)f(b) =0. (3.24)

Case 4  p(l—p)fla) — (1 —p)*f(0) + (2p* = p)f(c) = —f(c)
Substituting f(c) from (3.11) into the above equation, we obtain
p(1=p)fla) — (1 =p)*f(b) + (2p° —p+ 1)(=pf(a) — (L = p)f(b)) = O;
2 f(a) + 20— )1 +p—DIB) = 0

Then
p’fla)+ (1 =p)*—p+1)f(b) = 0. (3.25)
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From all four cases, we conclude that

(L+p)fla)+ (1 =p)f(b) =0 or p’f(a)+ (L —p)(p*—p+1)f(b)=0. (3.26)

Comparing (3.22) and (3.26), we have four cases to consider as follows:

Case 1

Case 2

Case 3

p(p* —=p+1)f(a) + (1 = p)*f(b) = 0 and (1 + p)f(a) + (1 —p)f(b) =0

Therefore, we obtain

p(p° —p+1)f(a)+(1—p)*f(b) = 0 and (1+p)(1—p)*f(a)+(1—p)’f(b) = 0.
(3.27)
Then

p(P® —p+1)fla) = 1+p)(1—p)fla);
(1=2p)f(a) = 0.

1
Since p # 5 We have f(a) = 0 and substituting the resulting in (3.27) shows
that f(b) = 0.

p(* —p+1)fla)+(1=p)*f(b) = 0and p*f(a)+ (1 —p)(p*—p+1)f(b) = 0

Thus, we see that

p’(p*—p+1) f(a)+p*(1—p)° f(b) = 0 and p* (p*—p+1) f (a)+(1—p) (p*—p+1)* f (b) = 0.
(3.28)
Then

P(L=pP°f) = (1=p)p*—p+1)*f);
PA=pPfb) = @ —p+1)°f(b);
(1—2p+2p*)f(b) = O.
Since p € R, we have 1 — 2p + 2p? # 0, so we obtain f(b) = 0. Replacing

f(b) =0 into (3.28), it follows that f(a) = 0.

pf(a)+ (2= p)f(B) = 0 and (1+p)f(a) + (1 —p)f(b) = 0

This means that

p(L+p)fla)+ (1 +p)(2—p)f(b) =0 and p(1+p)f(a)+p(1l—p)f(b) =0.
(3.29)
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Then
(1+p)2—=p)f0) = p(1—-p)fb);
2f(b) = 0.
Thus, we have f(b) = 0. Substituting f(b) = 0 into (3.29), we get f(a) = 0.

Cased  pf(a)+(2—p)f(b)=0and p’f(a) + (1L = p)(p* —p+1)f(b) =0
That is

p*f(a)+p*(2—p)f(b) = 0 and p*f(a) + (1 —p)(p* —p+1)f(b) = 0. (3.30)
Then
P2=p)f) = 1—=p)@*—p+1)f(b);
(1-2p)f(b) = o

1
Since p # 5 e have f(b) = 0. Replacement of f(b) = 0 into (3.30) shows
that f(a) = 0.

Hence from all four cases, we conclude that f(a) = 0 and f(b) = 0. Then
pf(a) + (1 —p)f(b) = 0, a contradiction to (3.12). From all of the consideration

above, the assumption (3.10) always leads to a contradiction. Therefore,

pf(x)+ (1 —p)fly) = f(pr+ (1 —p)y)  forall zyeX.
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