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A subring Q of aring 4 is called a quasi-ideal of A if AQ N QA4 < QO where AQ
[ OA4 ] denotes the set of all finite sums of the form X a,q; [ 2qia; ] where a; € 4 and g; €
0. Quasi-ideals are a generalization of left ideals and right ideals. Quasi-ideals in rings
have long been studied and a lot of interesting theorems relating to quasi-ideals in rings
have been provided.

A hyperoperation on a nonempty set H is a function o : H x H — P*(H) where
P(H) is the power set of H and P*(H) = P(H) \ {@}. In this case, (H,o) is called a
hypergroupoid and for nonempty subsets X and Y of /A, let Xo Y denote the union of all
sets xoy where x and y run over X and Y, respectively. A semihypergroup is a
hypergroupoid (H,o) such that (xcy)oz=xo(yeoz)forallx,y,z € H.

A multiplicative hyperring is a system (A4, +, o) such that

(1) (4, +) is an abelian group,

(i1) (4,¢) is a semihypergroup,

(iil) xo (y+z) € xoy+xo0z and(y+z)ox < yox+zox forallx,y,z € 4,

(1v) (x)oy=xo0(-y) = —(xoy) for allx,y € 4.

If both containments in (iil) are equalities we say that (4, +,0) is strongly distributive.
Subhyperrings, left [right] hyperideals, hyperideals and quasi-hyperideals of multiplica-
tive hyperrings are similar in definitions to subrings, left [right] ideals, ideals and quasi-
ideals of rings, respectively. We also have that quasi-hyperideals generalize left hyper-
ideals and right hyperideals. Especially, quasi-hyperideals in multiplicative hyperrings
and quasi-hyperideals in strongly distributive multiplicative hyperrings generalize quasi-
ideals in rings.

In this research, many well-known theorems on quasi-ideals in rings are
generalized to theorems on quasi-hyperideals in multiplicative hyperrings or strongly
distributive multiplicative hyperrings. Then those well-known facts in rings become our
special cases.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Let N, Z and R denote respectively the set of natural numbers (positive inte-
gers), the set of integers and the set of real numbers.

For a nonempty set X of an abelian group (A, +), let ZX denote the set of
all finite sums of the form > k;x; where k; € Z and x; € X. For x € A, let Zx
denote Z{z}. Note that ZX is the subgroup of (A, +) generated by X.

For nonempty subsets X and YV of a ring A = (A, +,-), let XY denote the
set of all finite sums of the form > x;4; where z; € X and y; € Y. If X consists
of a single element x, we write zY for XY. Similarly, if Y = {y}, we write Xy
for XY. For a nonempty subset X of A and z € A, the notations ZX and Zzx
are defined as those in the abelian group (A, +). A quasi-ideal of a ring A is a
subring ) of A such that AQ N QA C (). Every one-sided ideal of a ring A is
clearly a quasi-ideal . The notion of quasi-ideal in rings was first introduced by O.
Steinfeld [10] in 1953. Note that if A is commutative, then the quasi-ideals and

the ideals of A coincide.

Example 1.1. Let R be a division ring, n € N and M, (R) the ring of all n x n
matrices over R under the usual addition and multiplication of matrices. For
A € M,(R), let A;; denote the entry of A in the i*" row and the j™ column. For
k,l € {1,2,...,n}, let QF(R) be the subset of M, (R) consisting of all matrices

A € M,(R) such that



Then for k,l € {1,2,...,n}, Q¥ (R) is a subring of M,(R),

l
!
( [ N A
0O ... 00z 0 ... 0
M,(R)Q*(R) = . &M . T1,%2,...,Tn € R
0 O/ f 1, \\0 0
I J J
and
( I \ \
0 0 0
0w 0 0
ﬁl(R)Mn(R): K= Vomd s ey, Ty, T, ..., Ty € R 3
0 0 0
\ i 0 O 0 | )

which implies that M, (R)Q*(R)N Q¥ (R)M,(R) = QF(R), so Q¥ (R) is a quasi-
ideal of M,(R). Moreover, if n > 1, then for all k,1 € {1,2,...,n}, Q¥ (R) is

neither a left ideal nor a right ideal of M, (R).

Example 1.1 shows that quasi-ideals of rings are a generalization of one-sided
ideals.

It is well-known in ring theory that if a ring A is not a zero ring, then A is a
division ring if and only if A and {0} are the only left [right] ideals of A. This is

also true if the word “left [right] ideals” is replaced by “quasi-ideals”.



Proposition 1.2. ([11], page 6). Let A be a ring such that A% # {0}. Then A is

a division ring if and only if A and {0} are the only quasi-ideals of A.
We also have

Proposition 1.3. ([11], page 10 and 12). Let A be a ring. Then the intersection

of a set of quasi-ideals of A is a quasi-ideal of A.

For a subset X of a ring A, let (X), denote the intersection of all quasi-ideals of
A containing X. Then for X C A, (X), is the smallest quasi-ideal of A containing

X.

Proposition 1.4. (H.J. Wilnert [13]). For a nonempty subset X of a ring A,
(X)y=ZX +(AX NXA).

A ring A is said to be a (Von Neumann) regular ring if for every x € A, x = zyx

for some y € A. These two facts are known.

Proposition 1.5. ([11], page 69). Let A be a ring . Then A is reqular if and only

if QAQ = Q for every quasi-ideal ) of A.

Proposition 1.6. ([11], page 69). Let A be a ring . Then Avis reqular if and only

if RL=ROL for all right-ideal R and left ideal L of A.

It is clearly seen that the intersection of a left ideal and a right ideal of a ring
A is a quasi-ideal. However, a quasi-ideal of A may not be obtained in this way.
See [11], page 8 , [6], [1] and [4] for examples. A quasi-ideal @ of A is said to
have the intersection property if Q = L N R for some left ideal L and right ideal
R of A, and we say that A has the intersection property of quasi-ideals if every
quasi-ideal of A has the intersection property.

It is known that every ring with a one-sided identity and every regular ring



has the intersection property of quasi-ideals. This is a special case of the following

proposition.

Proposition 1.7. ([11], page 9). Let Q be a quasi-ideal of a ring A. If Q C QA
or Q C AQ), then

Q= (Q+AQ)N(Q +QA).
In this case, @ has the intersection property (since Q + AQ and Q + QA are a

left ideal and right ideal of A, respectively.)

H.J. Wilnert [13] and Z. Moucheng and etec. [6] characterized quasi-ideals of rings

having the intersection property as follows:

Proposition 1.8. (H.J. Wilnert [13]). Let Q be a quasi-ideal of a ring A. Then
the following statements are equivalent.

(i) @ has the intersection property.

(i) (Q+AQ)N(Q+QA)=Q.

(ili) AQN(Q+QA) CQ.

(iv) QAN(Q+A4Q) € Q.

Proposition 1.9. (Z. Moucheng and etc. [6]). Let X be a nonempty subset of a
ring A. Then the following statements are equivalent.

(i) (X), has the intersection property.

(i) (ZX +AX)N(ZX + XA) = (X),.

(i) AXN(ZX +XA) C (X),.
(

iv) XAN(ZX + AX) C (X),.

Z. Moucheng and etc. [6] also characterized rings having the intersection property

of quasi-ideals.

Proposition 1.10. (Z. Moucheng and etc. [6]). The following statements for a

ring A are equivalent.



(i) A has the intersection property of quasi-ideals.

(ii) For any finite nonempty subset X of A, we have
AXN(ZX + XA) CZX + (AXNXA) (= (X),) .

(iii) For any finite subset X = {xq,&9,...,an} of A and ay,as,...,a, € A, if

n

Z(aixi + ]{le’l == ﬂ?la;) = 0,

="

for some a, € A and k; € Z, then Zaixi € (X)g-
i=1

We call a nonzero quasi-ideal @) of a ring A a minimal quasi-ideal of A if Q)
does not properly contain a nonzero quasi-ideal of A. The following fact is clearly

true.

Proposition 1.11. A nonzero quasi-ideal Q) of a ring A is a minimal quasi-ideal

of A if and only if (), = Q for all z € Q\{0}.

Recall that for an element = of a ring A, the principal left [right] ideal of
A generated by @« is Zz + Ax [Zxz + xA] which is denoted by (x); [(x),]. P. N.
Stewart [12] gave a necessary and sufficient condition for a quasi-ideal of a ring to

be minimal interms of principal left ideals and principal right ideals as follows:

Proposition 1.12. (P. N. Stewart [12]). A quasi-ideal Q) of a ring A is a minimal

quasi-ideal of A if and only if for any two nonzero elements x and y of Q,

()= (y)i and (x), = (y)r.

A minimal left [right] ideal of a ring A is a nonzero left [right] ideal of A which does
not properly contain a nonzero left [right] ideal of A. There is a relationship among

minimal quasi-ideals, minimal left ideals and minimal right ideals as follows:



Proposition 1.13. ([11], page 34). If L and R are a minimal left ideal and a
minimal right ideal of a ring A, then either LN R = {0} or LN R is a minimal

quasi-ideal of A.
A sufficient condition for a quasi-ideal of a ring A to be minimal are as follows:

Proposition 1.14. ([11], pages 37). Let @ be a quasi-ideal of a ring A. If Q is

a division subring of A, then Q) is a minimal quasi-ideal of A.

Next, we shall give the definitions of a multiplicative hyperring and their sub-
hyperrings, left [right] hyperideals, hyperideals quasi-hyperideals accordingly as
those in rings.

For a set X, let P(X) denote the power set of X and let P*(X) = P(X)\{@}.

A hyperoperation on a nonempty set H is a mapping of H x H into P*(H).
A hypergroupoid is a system (H, o) consisting of a nonempty set H and a hyper-
operation o on H.

Let (H, o) be a hypergroupoid. For nonempty subsets X and Y of H, let

XoY = U(:L‘oy)

and let X ox = X o{x}and let 2 0o X ={z} o X for all '€ H. An element e of
H is called an identity of (H,o) if x € (xoe)N(eox) for all z € H. An element e
of H is'called a scalaridentity of (H, o) if zoe = eox = {x} for all z € H. Then
(H,o) has at most one scalar identity.

A semihypergroup is a hypergroupoid (H, o) such that (zoy)oz = zo(yoz) for
all x,y,z € H. A subsemihypergroup of a semihypergroup (H,o) is a nonempty
subset H; of H which forms a semihypergroup under the hyperoperation o of H
restricted to Hy. It is clear that the intersection of a set of subsemihypergroups
of (H, o) is a subsemihypergroup of (H, o) if it is nonempty.

The following example of a semihypergroup is known.



Proposition 1.15. ([2], page 11). Let P be a nonempty subset of a semigroup S.

Define a hyperoperation o on S by
xoy=xPy forall z,y € S.
Then (S, 0) is a semihypergroup.

R. Rota [8] first introduced the notion of multiplicative hyperrings in 1982 as
follows:

A multiplicative hyperring is a triple (A, +, o) such that
(i) (A,+) is an abelian group,
(ii) (A,o) is a semihypergroup,
(ili) zo(y+2) Cxoy+zozand (y+2)ox Cyox+zox forall z,y,z € A,
(iv) (—x)oy=xo(—y)=— (xzoy) forall z,ye A.
The operation + and the hyperoperation o of a multiplicative hyperring (A, +, o)
are called the addition and the multiplication of (A,+,0), respectively. If both
containments in (iii) are equalities, we say that (A, +,0) is strongly distributive.
That is, a strongly distributive multiplicative hyperring is a triple (A, +, o) such
that
(i) (A,+) is an abelian group,
(ii) (A;o0) is a semihypergroup;
(ili) zo(y+z2)=xoy+zozand (y+z2)ox =yox+zox forall z,y,ze€ A,
(iv) (—x)oy=xo(—y)=— (zoy) foral z,yc A.

A multiplicative hyperring (A, +, o) is said to be commutative if roy =youx
for all z,y € A. A wunitary multiplicative hyperring is a multiplicative hyperring
(A, 4+, 0) such that (A, o) has a scalar identity which is called the unitary element

of (A,+,0) and it is usually denoted by u. A wunitary multiplicative hyperring

is a multiplicative hyperring with a unitary element. Multiplicative hyperrings



are clearly a generalization of rings. By the definitions, strongly distributive
multiplicative hyperrings give a closer generalization of rings.
For a nonempty subset X of a multiplicative hypering (A, +,0) and x € A, we

use the notations ZX and Zx in the same meaning as those in a ring, that is,

Z.X = the set of all finite sums of the form Z kix;
where k; € Z and z; € X,

Lz =2z},

so Zx = {nzx | n € Z}. If (A, +, o) is a multiplicative hyperring, then for a, b, ¢, d €
A, aob and cod are nonempty subsets of A and aobocod = (aob)o(cod) which

is the set U (s ot), not the union of all finite sums of the form > s; o ¢; where

s€aob
tecod

s; €aoband t; € cod. Because of this fact, we cannot use the notation X oY
in the similar meaning as that in rings where X and Y are nonempty subsets of
a multiplicative hyperring. To distinguish between the following two subsets of a

multiplicative hyperring (A, +, o) : U x o y and the union of all finite sums of the

HASey
yey

form Y x;0y; where x; € X and y; € Y for nonempty subsets X, Y of A | we shall

let XoY and < X oY > denote the first set and the second one, respectively,

that is,

XoVY = U(xoy), <XoY > = U (Iloy1+x20y2+"'+xnoyn)-
reX IEZ'GX,yiEY
yey neN

Because of the associative law of the hyperoperation o of (A, +, o), it follows that

if X1, Xs,...,X, are nonempty subsets of (4, +,0), then

XloXQO-.-oXn: U (gjloaj2o...oxn)7

T1EX1,. ., xn€Xn



< Xi0Xy0---0X, > = the union of all finite sums of the form

Zazgl) oxP o0zl where 2V € X,

% i

xl@) € Xo,... ,x(n) € X,.

7

Fora € Aand @ # X C A, let X oa and a o X denote X o {a} and {a} o X,
respectively. For elements a and b of A and m € N, we shall let n(a o b) and

(—n)(a o b) denote
aob+aob+4:--+aob (n copies) and
(—=(aob)) +(—(aob)) +---4+(—(aob)) (n copies),
respectively. The following facts are obvious.

Proposition 1.16. If (A,+,0) is a strongly distributive multiplicative hyperring,

then for a,b € A,

<Aoa>= U(xoa):Aoa, <aoA>= U(aox):aoA,

TEA rEA

<aoAob>= U(aoxob) =aoAob.
€A
The following three propositions are known.
Proposition 1.17. (R. Rota [8]). In'a multiplicative hyperring (A,+,0),
(a+b)o(c+d) Caoct+aod+boc+bod forallab,cde A
In particular, if (A, +,0) is strongly distributive, then

(a+b)o(c+d)=aoc+aod+boc+bod foralla,b,cdecA.

The following proposition will be useful and we omit its easy proof.
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Proposition 1.18. Let (A, +,0) is a multiplicative hyperring. Then the following
statements hold.
1. Forz,zy€e Aandn €Z, xo(ny) Cn(xoy) and (nx)oy Cn(xoy).

2. For nonempty subsets X, Y and Z of A,

<K X>=xX>=<X>4 <X >,
<XoY >=<< X >o0<Y >> (from Proposition 1.17),

<Xo<YoZ>>=< XoYoZ>=<< XoY >0/ >.

3. If Ay is a subgroup of (A, +) then ZA, = A;.

4. For nonempty subsets X, Y, Z and V of A, < X+Y > o< Z4+V >C< XoZ >
+<XoV>+<YoZ>+<YoV> (from Proposition 1.17).

5. For nonempty subsets X and'¥ of A, < X o (ZY') >CZ(X oY) and
<(ZX)oY >C Z(X oY) (from (1)).

6. For nonempty subsets X and Y of A, Z(Ao X)=<AoX > Z(XoA) =
<XoA>andZ(XoAoY)=<XoAoY >.

If (A, +,0) is strongly distributive, then “ C” in 1. and 5. can be replaced by

“=" as follows:

7. Forz,y€ Aandn €N, zo(ny) =n(zoy)=(nx)oy .

8. Fornonempty subsets X andY of A, < Xo(ZY) >=7Z(XoY ) =< (ZX)oY >.

Proposition 1.19. (R. Rota [8]). In a strongly distributive multiplicative hyper-

ring (A,+,0), 0 € ao0 and 0 € 0o a for every a € A.
Some examples of multiplicative hyperrings are as follows:

Example 1.20. (R. Rota [8]). Let I be an ideal of a ring (R, +,). Define a

hyperoperation o on R by

xoy=uxy+1 forall z,y € R.
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Then (R, +,0) is a strongly distributive multiplicative hyperring. If [I| > 1, then

it is not unitary.

Example 1.21. (R. Rota [8]). Let V be a vector space over a field F'. Define a

hyperoperation o on V' by
u o v = the subspace of V' generated by u and v for all u,v € V,

that is,

uov = Fu+ Fv for all u,v € V.
Then (V,+,0) is a commutative multiplicative hyperring where + is the addition
onV,0 € 0owu for every u € V but it is not strongly distributive if dim V' > 1.

Moreover, it is not unitary if dim V' > 0.

Example 1.22. ([7], page 79). Let (R,+,) be a ring. Define a hyperoperation
oon R by

aob={ab,2ab,3ab, ...} for all a,b € R.

Then (R, +, o) is a multiplicative hyperring but it need not be strongly distribu-

tive and it need not be unitary. Moreover, ao0 = {0} =0oa for all a € R.

Next, let (A, +,0) be a multiplicative hyperring. For a nonempty subset B
of A, one says that B is a subhyperring of (A, +,0) if B is itself a multiplicative
hyperring under the operation 4+ and the hyperoperation o on A restricted to
B. A subhyperring B of (A, +,0) is called a left [right] hyperideal of (A, +,o0) if
AoB C B [BoA C BJ. If Bis both a left and a right hyperideal of (A, +, o), then
it is called a (two-sided)hyperideal of (A,+,0). A subhyperring @ of (A, +,0) is
called a quasi-hyperideal of (A, +,0)if < Ao@Q >N < QoA >C Q. Then quasi-
hyperideals are also a generalization of left hyperideals and right hyperideals. Es-

pecially, quasi-hyperideals in a multiplicative hyperrings generalize quasi-ideals in
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rings. Note that if (A, +, o) is commutative, then quasi-hyperideals, left [right] hy-
perideals and hyperideals of (A, +, o) coincide.

For a multiplicative hyperring (A, +,0) and a hyperideal I of (A, +,0), R.
Rota [8] constructed a multiplicative hypering from (A, +,0) by I which may be

called the quotient multiplicative hyperring of (A,+,0) by I as follows:

Example 1.23. (R. Rota [8]). Let (A, +,0) be a multiplicative hyperring and /

a hyperideal of (A, +, o). Define a hyperoperation * on A/I by
(a+D)«(b+I)={c+I|c€aob} forallabe A.

Then (A/I,®, ) is a multiplicative hyperring where (A/1, @) is the quotient group
of (A, +) relative to I. Moreover (A/I, @, *) is strongly distributive if (A, +,0)

is. If [7] > 1, then it is not unitary.

An element o of a -multiplicative hyperring (A, +,0) is said to be reqular if
a € aoxoa for some r € A and we call (A,+,0) is a regular multiplicative
hyperring if every element of A is regular in (A, +, o).

The intersection of a left hyperideal and a right hyperideal of a multiplicative
hyperring (A, +,0) is clearly a quasi-hyperideal. However, a quasi-hyperideal
may not be obtained in this way. A quasi-hyperideal of a multiplicative hyperring
(A, +,0) is said to have the intersection property if it is the intersection of a left
hyperideal and a right hyperideal of (A, +,0) and we say that (A, +,0) has the
intersection property of quasi-hyperideals if every quasi-hyperideal of A has the
intersection property.

A nonzero left hyperideal L of a multiplicative hyperring (A, +, o) is said to
be minimal if L does not properly contain a nonzero left hyperideal of (A, +, o).

A minimal right [two-sided, quasi- | hyperideal of (A, 4, o) is defined similarly.
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In Chapter II, Proposition 1.2 to Proposition 1.6 are generalized to quasi-
hyperideals in multiplicative hyperrings. In this chapter, we construct a multi-
plicative hyperring from a ring by using Proposition 1.15 and some of its quasi-
hyperideals are provided.

We generalize Proposition 1.7 — Proposition 1.10 to quasi-hyperideals in mult-
tiplicative hyperrings in Chapter III.

Finally, minimal quasi-hyperideals of multiplicative hyperrings are studied to
generalize Proposition 1.11 — Proposition 1.14 in Chapter IV. The study of mini-
mal quasi-ideals of rings of strictly upper triangular n xn matrices by Y. Kemprasit
and P. Juntarakhajorn in [5] motivates us to investigate minimal quasi-hyperideals
of the multiplicative hyperrings of upper triangular n x n matrices with a hyper-
operation defined as in Proposition 1.15. Many nice results relating to minimal

quasi-hyperideals of these multiplicative hyperrings are given in this chapter.



CHAPTER II

GENERAL PROPERTIES AND EXAMPLES

In this chapter, we first generalize Proposition 1.2 — Proposition 1.6 of Chapter 1.
Then a multiplicative hyperring defined from a ring is provided and we show
that every quasi-ideal of the given ring is a quasi-hyperideal of the constructed
multiplicative hyperring.

To generalize Proposition 1.2, the following three lemmas are required.

Lemma 2.1. Let (A, +,0) be a multiplicative hyperring. Then the following state-

ments hold.

(i) The intersection of a collection of subhyperrings of (A, +,0) is a subhyperring
of (A,+,0)

(ii) The intersection of a collection of left [right] hyperideals of (A,+,0) is a
left [right] hyperideal of (A, +,0).

Proof. Let {Cy | av€ A} be aset of subhyperrings of (A, +,0). Then ﬂ C, is a
a€cl
subgroup ‘of (A, +). Hence ﬂ C, is a subhyperring (see page 6). If each C,, is a

€A
left hyperideal of (A, +,0), we have that for every 5 € A,

Ao ([)Ca) CA0Cs C Cy

aEA

which implies that, A o (ﬂ C,) C ﬂ C,. Hence ﬂ C, is a left hyperideal of
acl a€EA a€EA
(A,+,0). Dually, if each C, is a right hyperideal of (A,+,0), then ﬂ C, is a

acA
right hyperideal of (A, +,0). Hence the lemma is proved. m
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Lemma 2.2. Let (A,+,0) be a multiplicative hyperring and & # X C A. Then

the following statements hold.

(i) 0e< Ao X >and0e< X oA >.

(i) < Ao X > and < X o A > are a left hyperideal and a right hyperideal of
(A, +,0), respectively.

(i) ZX+ < Ao X > and ZX+ < X o A > are respectively a left hyperideal and

a right hyperideal of (A, +,0) containing X.

Proof. (i) Leta € Aandxz € X. Ify € aox, then —y € —(aox) = (—a)ox C Ao X

which implies that
O=y—y€aoxr+(—a)ox C<AoX >.

We can show similarly that 0 e< X o A >.
(ii) By Proposition 1.18(2), < Ao X > + < Ao X >=< Ao X >. By (i),

De<AoX >. Letae< Ao X >. ThenaGZrioxi for some r; € A, x; € X

=1
n n n

and n € N. Since —a € —(Z T 0%;) = Z(—(m ox;)) = Z(—ri) o x;, we have
that —a €< Ao X >. Theri121< Ao X > iis:; subgroup of (Zl—i—). By Proposition
1.18(2), Ao < Ao X >C< Ao < Ao X >>=<Ao0AoX >C< Ao X >. Hence
< Ao X > is a left hyperideal of (A,+,0).

Similarly, < X o A > is a right hyperideal of (A, +, o).

(iii) Since 0 €< Ao X > from (i) and X C ZX , it follows that X C ZX+
< Ao X >. We know that ZX is a subgroup of (A,+) and by (ii), < Ao X >
is a subgroup of (A, +). It then follows that ZX+ < Ao X > is a subgroup of

(A, +). We also have

Ao(ZX+ <AoX >)CAo(ZX)+Ao< Ao X >

C<Ao(ZX)>+ <Ao< Ao X >>
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C<Z(AoX)>+<Ao0AoX >

from Proposition 1.18(2) and (5)

C<<AoX>>4+<AoX > from Proposition 1.18(6)
C<AoX > from Proposition 1.18(2)
CZX+<AoX > since 0 € ZX.

Hence ZX+ < Ao X >is a left hyperideal of (A,+,0) containing X. We can
obtain similarly that ZX+ < X oA > is a right hyperideal of (A4, +, o) containing

X. [l

Let (A, +,0) be a multiplicative hyperring. Then by Lemma 2.1, the inter-
section of a collection of left [right] hyperideals of (A,+,0) is also a left [right]
hyperideal of (A,+,0). For @ #4 X C A let (X);[(X),] denote the intersection
of all left [right] hyperideals of (A, +,0) containing X. Therefore, (X);[(X),] is
the smallest left [right] hyperideal of (A, +,0) containing X and it is called the
left [right] hyperideal of (A,+,0) generated by X. Fora € A, let (a); [(a),] de-
note ({a}); [({a}),] which is called the principal left [right] hyperideal of (A,+,0)

generated by a.
Lemma 2.3. In a multiplicative hyperring (A, +,0),
(X)=ZX+ < Ao X > cand (X),=ZX+ < XoA>
for every nonempty subset X of A. In particular, for a € A,
(a)=Za+ < Aoa> and (a),=Za+ <aoA>.

Proof. From Lemma 2.2 (iii), (X); € ZX+ < Ao X >. Since (X); is a subgroup
of (A, +) containing X, we have that ZX C (X),; and < Ao X >C< Ao (X)), >C
< (X); >= (X);. Hence ZX+ < Ao X >C (X);. Therefore we deduce that

(X) =ZX+ < AoX >. We can show similarly that (X), = ZX+ < XoA >. [
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Theorem 2.4. Let (A,+,0) be a multiplicative hyperring such that Ao A # {0}.
Then < Aox >=A=<xz0A> forall x € A\{0} if and only if (A,+,0) has no

proper nonzero quasi-hyperideals.

Proof. Assume that for every z € A\{0}, < Aox >= A=< x0A >. Let Q
be a nonzero quasi-hyperideal of (A, +,0). Then there exists k € Q\{0}. By
assumption, A =< Aok >=< koA > so A=<koA>N<Aok>C<QoA>
N<AoQ >C Q. Thus A = @. This prove that (A, +, o) has no proper nonzero
quasi-hyperideals.

Conversely, assume that (A, 4, o) has no proper nonzero quasi-hyperideals. Let
a € A\{0}. Since (a); is the principal left hyperideal of (A, +, o) generated by «,

(a); is a nonzero quasi-hyperideal of (A, 4, 0). By assumption, (a), = A. Hence

<Aoa>C< Ao (a) >
C<Ao(Za+ <Aoa>) > by Lemma 2.3
C< Ao (Za)+ Ao < Aoa >>
C<Z(Aoa)+ <AoAoa>> by Proposition 1.18(2) and (5)
C<<Aoa>+<Aoa>> by Proposition 1.18(6)

=< Aoa> by Proposition 1.18(2)

which implies that' < Aoa >=< Ao (a); >=< Ao A >#{0}. But < Aoa > is
a left hyperideal of (A, +,0) by Lemma 2.2(ii), so < Aoa > is a nonzero quasi-
hyperideal of (A, +,0). It then follows from the assumption that < Aoa >= A.

Similarly, we obtain that < ao A >= A. Therefore < Aoca >= A=< aoA >. [

We know that for a ring A with |A| > 1, A is a division ring if and only if
Ax = A= zA for all z € A\{0}. Then Proposition 1.2 is a corollary of the above

theorem.
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Corollary 2.5. Let A be a ring such that A* # {0}. Then A is a division ring if

and only if A and {0} are the only quasi-ideals of A.
We also have

Theorem 2.6. Let (A, +,0) be a multiplicative hyperring. Then the intersection

of a set of quasi-hyperideals of (A, +,0) is a quasi-hyperideal of (A, +,0).

Proof. Let Q, (o € A) be a set of quasi-hyperideals of (A, +,0). Then ﬂQa is
a€A
a subgroup of (A, +) since each @, is a subgroup of (A, +). We have that for

every 3 € A,

<Ao([Qa) >N < ([ Qu)oA>C<A0Qs>N<Qzo0A>C Qp.

a€A ach
Consequently, < A o (ﬂQa) > (ﬂ Qa) oA >C ﬂ Q.. Hence ﬂQa is a
acl aEN aEA aEA
quasi-hyperideal of (A, +,0). O

Proposition 1.3 is an immediate consequence of the-above theorem.

Corollary 2.7. Let A be a ring. Then the intersection of a set of quasi-ideals of

A is a quasi-ideal of A.

Let (A, +,0) be a multiplicative hyperring. For X C A, the quasi-hyperideal
of (A,+,0) generated by X is the intersection of all quasi-hyperideals of (A, +, o)
containing X which is denoted by (X),. Then for X C A, (X), is the smallest
quasi-hyperideal of (A, +,0) containing X. For a € A, let (a), denote ({a}), and

it is called the principal quasi-hyperideal of (A, +,0) generated by a .

Theorem 2.8. For a nonempty subset X of a multiplicative hyperring (A, +,0),

(X)g=ZX+ (<Aoo X >N<XoA>).
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In particular, for a € A,
(a)g=Za+ (< Aoca>N<aoA>).

Proof. First, we show that ZX + (< Ao X >N < X o A >) is a quasi-hyperideal
of (A,+,0) containing X. Since X C ZX and 0 e< Ao X >N < XoA >
(from Lemma 2.2(1)), X C ZX+ (< Ao X >N < X oA >). By Lemma 2.2(ii),
< Ao X > and < X oA > are subgroups of (A,+) . Then (< Ao X >nN
< X 0 A >) is a subgroup of (A, +). Since ZX is a subgroup of (A, +), we have

that ZX 4+ (< Ao X >N < X 0 A >) is a subgroup of (A4, +). Since

<Ao(ZX + (< Ao X >N<XoA>)) >

C<Ao(ZX+ <Aoo X >) >
C<Ao(ZX)+ Ao < Ao X >>
C<Z(AoX)+ <AoAoX >>

by Proposition 1.18(2) and (5)
C<< Ao X >+ <Aoo X >>

by Proposition 1.18(6)
C<<AoX >>C< Ao X >

from Proposition 1.18(2)
and

<(ZX+(<AoX>N<XoA>))oA>
C<(ZX+<Xo0A>)oA>
C<(ZX)oA+<XoA>o0A>
C<Z(Xo0A)+<XoAoA>>

by Proposition 1.18(2) and (5)



20

C<< XoA>+<XoA>>
by Proposition 1.18(6)
C<< Xo0A>>C< XoA>

by Proposition 1.18(2)
it follows that

<Ao(ZX +(<AoX>N<Xo0A>))>N<(ZX+(<AoX>N<Xo0A>))oA>
C<AocX>N<XoA>
CZX +(<AoX>N<XoA>)

from Lemma 2.2(i).

Hence ZX 4+ (< AoX > N < XoA >) is a quasi-hyperideal of (A, +, o) containing
X. Then we deduce that (X), CZX + (< Ao X >N < XoA>).

Since ((X)y, +) is a subgroup of (A, +) containing X, ZX C (X),. We also
have < Ao X >N < Xo0A>C< Ao(X), >N < (X),04 >C (X), which implies
that ZX+ (K Ao X >N< XoA>)C (X), Therefore (X), = (< Ao X >

N<XoA>). O
Proposition 1.4 becomes a consequence of Theorem 2.8.

Corollary 2.9. For a nonempty subset X of a ring A,
(X)y=ZX+ (AXNXA).

Theorem 2.10. Let (A, +,0) be a multiplicative hyperring.
(i) If (A, +,0) is regular, then Q@ = Q o Ao Q for every quasi-hyperideal QQ of
(A, +,0).

(ii) The converse of (i) holds if (A,+,0) is strongly distributive.
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Proof. (i) Assume that (A, +,0) is regular and let () be a quasi-hyperideal of
(A,+,0). Thenforx € Q,z € xroAox C Qo AoQ. That means Q C Qo Ao Q.
But Qo AoQ = (QoA)oQC AoQand QoAoQ =Qo(A0Q) C Qo A, so
we have

QRQoAoQC(AoQ)N(QoA) C<AoQ>N<QoA>CQ.
Hence Q@ = Qo Ao Q.

(ii) Assume that(A,+, o) is strongly distributive and Q) 0 Ao @Q = @ for every
quasi-hyperideal @ of (4, +, o). To show that (A, +, o) is regular, let a € A. Then
(a); N (a), is a quasi-hyperideal of (A, +,0). It thus follows that

a € (a) N (a),
= ((a);N(a),) o Ao ((a), N (a),) by assumption
C (a), o Ao(a),
=(Za+aoA)oAo (Za+Aoca)
from Proposition 1.16 and Lemma 2.3
C (Za)o Ao (Za)+ (Za) o Ao (Ao a)
+ (@0 A) o Ao (Za)+(aoA)oAo(Aoca)
from Proposition 1.18(4)
CZ(aoAoa)+Z(aoAoAoca)+Z(ao Ao Aoa)
+(aoAoca)
from Proposition 1.18(5)
CZ(aoAoca)+Z(aoAoa)+Z(ao Aoa)
+Z(ao Aoa)
=aoAoa+aoAocat+aoAoca+aoAoa

from Proposition 1.16 and Proposition 1.18(6)
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=aoAoa from Proposition 1.16 and Proposition 1.18(2).

This implies that a is a regular element of (A, +,0). Hence (ii) is proved. ]
From Theorem 2.10, we have the following corollary which is Proposition 1.5.

Corollary 2.11. A ring A s reqular if and only if QAQ = Q for every quasi-ideal
Q of A.

Theorem 2.12. Let (A, +,0) be a multiplicative hyperring.
(i) If (A, +,0) is reqular, then Ro L = RN L for every right hyperideal R and for
every left hyperideal L of (A, +,0).

(ii) The converse of (i) holds if (A,+,0) is strongly distributive.

Proof. (i) Assume that (A, +, o) is regular. Let R and L be a right hyperideal
and a left hyperideal of (A, +, o), respectively. Then RoL C RNL. Let a € RN L.
Since (A, +,0) is regular, a € aoyoa for some y € A. Since a € R and yoa C L,
a€aoyoaC RolL. Hence RN L C Ro L, and consequently, RoL = RN L.
(ii) Assume that (A, +, o) is strongly distributive and Ro L = RN L for every
right hyperideal R and left hyperideal L of (A;+,0). To show that (A, +,0) is
regular, let a € A. By Proposition'1.16 and Lemma 2.2(ii), a 0 A and Ao a are a

right hyperideal and a left-hyperideal of (A,+;0); respectively. Therefore

= (a)r o (a); by assumption
C(a)yoA
=(Za+aoA)o A by Proposition 1.16 and Lemma 2.3

C(Za)oA+ (aoA)o A

CZ(aoA)+aoA by Proposition 1.18(5)
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=aoA+aoA by Proposition 1.16 and Proposition 1.18(6)

=aoA by Proposition 1.16 and Proposition 1.18(2)
and similarly, a € A o a. Hence

acaoANAoa
=(aoA)o(Aoa) by assumption, Proposition 1.16 and Lemma 2.2(ii)

CaoAoa,
so a is a regular element of (A, 4, o). Therefore (ii) is proved. O

As a consequence of Theorem 2.12, we have

Corollary 2.13. Let A be a ring. Then A is reqular if and only if RL = RN L

for every right ideal R and for every left ideal L of A.

Theorem 2.14. Let (R, +,:)be a ring and & # P C R. Define a hyperoperation
oon R by

zoy={aty|teP} for all z,y € R.
Then (R, +,0) is a multiplicative hyperring.

Proof. From Proposition 1.15,(R;0) is a semihypergroup. Next, let z,y,z € R.

Then

rzo(y+z)={atly+z)|teP}
={asty+atz|teP}
C{aty|teP}+{atz|teP}

=zroy+xoz

and we obtain similarly that (y + z) o x C y o x + z o x. Moreover,

(—zx)oy={(-a)ty|[teP}
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={wt(=y)[teP}=wo(-y)
={-(aty) |t e P}

=—{aty|teP}=—(xoy).

This proves that (R, +,0) is a multiplicative hyperring, as required. O]

Lemma 2.15. Let (R,+.-) be a ring, P a nonempty subset of R and (R,+,0)

the multiplicative hyperring defined from (R, +,-) and P where

zoy={aty |t P } for all x,y € R.

If K1 and Ky are nonempty subsets of R, then

< Kjo0Ky>= K1PK27

that is, the set < Ky o Ky > in (R, +,0) is equal to K1PKy in (R,+,-) which is
the set of all finite sums of the form > a;p;b; where a; € Ky,p; € P and b; € K.
In particular,

<aob>=aPb for all a,b € R.

Proof. Let x €< K0 Ky >..'Then x € a; 0b; +as 0 by + <=+ + a,, o b, for some

ai,as,...,a, € K1 and by,bs,..., b, € K. It therefore follows that

T = ai1p1by + aopsbs + - + A Prbim for some p1,p2, ..., pm € P.

Consequently, x € K; PKs.
Conversely, if x € K1 PKs, then x = a1p1by + aspabs + - - - + ampmby, for some

a1,0Q2,...,0, € K1, p1,p2,...,pm € P and by, by, ..., b, € Ky. This implies that

reaob+asoby+---+anob, C< KioKy>.

Hence the lemma is proved. Il
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Theorem 2.16. Let (R, +,-) be a ring, P a nonempty subset of R and (R, +,0)

the multiplicative hyperring where o is the hyperoperation defined from P by
zoy={aty|teP} for all x,y € R.

If Q is a quasi-ideal of (R, +, ), then Q is a quasi-hyperideal of the multiplicative

hyperring (R, 4+, 0).
Proof. Recall that (R, +,0) is really a multiplicative hyperring by Theorem 2.14.
Let @ be a quasi-ideal of (R,+,-). Then @ is a subgroup of (A,+) and
RO NEQR C Q. It remains to show that < Ro @ >N < Qo R >C (. But
< RoQ >=RPQ by Lemma 2.15

= (RP)Q

€ RQ
and similarly < Qo R >C QR. It then follows that

<Ro@Q>N<QoR>CRONQR C Q.

This proves that @-is.a quasi-hyperideal of (R,+,0). as required. ]

The converse of Theorem 2.16 is not true in-general. If @) is-a subgroup of
(R, +) which is not a quasi-ideal of (R;+, -) (that is, RQNQR ¢ @) and P = {0},
then @ is clearly a quasi-hyperideal of (R, +,0). The following example is not a

trivial one.

Example 2.17. Let R be a ring with identity 1 # 0 and My(R) the ring of all

4 x 4 matrices over R. Let

Uy(R) = {A € My(R) | A is upper triangular}
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and
¢ n 3\

0 0 z y

000 =z
P = x,Y,2 € R

000 O

000 O

A=

Define a hyperoperation o on My(R) by
AoB={ACB | C € P} for all A, B € My(R).
Then Uy(R) is a subring of (My(R), +,:) and P is clearly an ideal of (Us(R), +,-).
Since Uy(R) contains the identity matrix of M,(R), we have
My(R)Uy(R) N Uy(R)My(R) = My(R) € Us(R).
Thus Uy(R) is not a quasi-ideal of (My(R),+, ). By Lemma 2.15,

< My(R) o Uy(R) > N < Uy(R) 6 My(R) >
— My(RYPU4(R) N Uy(R)PMy(R)
= My(R)(PUL(R)) N (Us(R)P)Ma(R)
C My(R)P N PM,(R) since P is an ideal of Uy(R).

But an element.of M,(R)P is of the form

0 0 z1
0 0 z2 w

0 0 z3 ys3

00.934?./4

and an element of PMy(R) is of the form

Tr1 T2 T3 X4

Y1 Y2 Y3 UYa
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so each element of M, (R)P N PM,(R) is of the form

OOIL’l.TQ

0 0 y1 ¥
00 0 O
IO 0P o0

which is upper triangular. Hence

< My(R) oUy(R) > N < Uy(R) 0o My(R) >C Uy(R)

which implies that Uy(R) is a quasi-hyperideal of (My(R), +, o).
Note that if “4”is replaced by “n”which is greater than 4, the above result is

still true.



CHAPTER III
MULTIPLICATIVE HYPERRINGS HAVING THE
INTERSECTION PROPERTY OF

QUASI-HYPERIDEALS

The main purpose of this chapter is to generalize Proposition 1.7 — Proposition
1.10 by characterizing when quasi-hyperideals of multiplicative hyperrings have
the intersection property and when multiplicative hyperrings have the intersection
property of quasi-hyperideals.

The first theorem of this chapter is a generalization of Proposition 1.7. We

first give a lemma which follows directly from Proposition 1.18(3) and Lemma

2.2(iii)

Lemma 3.1. If S is a subhyperring of a multiplicative hyperring (A, +,0), then
S+ <AoS>and S + < SoA> are respectively a left hyperideal and a right

hyperideal of (A,+,0) containing S.

Theorem 3.2. If Q s a quasi-hyperideal of a multiplicative hyperring (A, +,0),

and either Q C< Qo A > or Q C< Ao (Q >, then

Q=Q+<A0Q>)N(Q +<QoA>).

In this case, () has the intersection property.

Proof. Suppose that () is a quasi-hyperideal of (A, +,0). Let D = (Q + < QoA >)
N(Q + < Ao@ >). By Lemma 2.2(i), @ C D. Now assume that Q C< Ao Q >.

Then Q + < Ao @ >=< Ao @ > by Lemma 2.2(ii), and so D = (Q +
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< QoA >)N < Ao@Q >. Next, we will show that D C Q. Let d € D. Then
de@QQ +<@QoA>andde< Ao(Q >. Thus d = k + ¢ for some k € () and

c €< @QoA>. Then

c=d+ (-k)
eE<AoQ> +Q

=< Ao(@>

which implies that c €< Ao @ > N < Qo A >C @, and therefore d = k4 ¢ €
Q+Q C Q. Hence D C (). Similarly, @ €< @ o A > implies that D C ). We

then conclude that D = @. By Lemma 3.1, () has the intersection property. [
As a consequence of Theorem 3.2, we have

Corollary 3.3. Let Q be a quasi-ideal of a ring A. If Q C QA or Q C AQ), then

Q= (Q@+4Q)N(Q+QA).

In this case, @) has the intersection property (since QQ + AQ and Q + QA are a

left ideal and a right ideal of A, respectively.)

We note that if (A4, 4, 0) is a unitary multiplicative hyperring, then for every
quasi-hyperideal @ of (A, +,0), @ = Qou C Qo A C< Q o A > where u is
the unitary element of (A,+,0), so by Theorem 3.2, @ = (Q + < Ao Q >)
N(Q + < QoA >). We then deduce that every unitary multiplicative hyper-
ring has the intersection property of quasi-hyperideals. Moreover, if (A, +,0) is
a regular multiplicative hyperring, then for every quasi-hyperideal @ of (A, +, o),
QCQoAQCQRoAC<KRoA>350Q=(Q+<A0Q>N(Q+<QoA>)
by Theorem 3.2. Hence a regular multiplicative hyperring has the intersection

property of quasi-hyperideals.
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The following two theorems give some equivalent conditions for a quasi-hyperideal

of a multiplicative hyperring to have the intersection property.

Theorem 3.4. Let Q) be a quasi-hyperideal of a multiplicative hyperring (A, +,0).
Then the following statements are equivalent.

(i) @ has the intersection property.

i) (Q@Q+<AoQ>N(Q+<QoA>)=0Q.
(i) <AoQ>N(Q +<Qo0A>) Q.

(

iv) <QoA>N(Q+<A0@ >)CQ.

Proof. (i)=-(ii) Assume that () has the intersection property. Then there exist
a left-hyperideal L and a right-hyperideal R of (A, +,0) such that Q@ = L N R.
Then Q@ € L and @ € Rand so < Ao(Q) >C < AoL >C< L >= L and
< QoA >C< RoA >C< R >= R. Then Q + < Ao @ >C L and Q+
< QoA >C R. Consequently, (Q + < AoQ >)N(Q + < QoA >)CLNR=0Q.
But @ C (Q + < Ao@Q >)N(Q + < QoA >)by Lemma 2.2(i), so (ii) holds.

(ii)=(i) This follows from Lemma 3.1.

(ii)=(iii) This is obvious since < Ao @ >C Q + < Ao >.

(iii)=-(ii) Assume that < Ao Q) >N (Q + < QoA >) C . By Lemma 2.2(i),
QC(Q+<A0Q >)N(Q + < @o A >). Toprove the reverse inclusion, let
1€ (Q+<A0Q >)N(Q+<QoA>) Thusz =t +cand 7 =ty +d
for some t1,t, € Q,c €< Ao @ > and d €< QQ o A >. Since @ is a subgroup of
(A,+) ,c=—-ti+x=—-t1+ta+d= (-t +t2) +d € Q + < QoA >. Now, we
have that c €< Ao @Q >N (Q + < Qo A >). By (iii), ¢ € @ . This implies that
x =t +c€ Q. Then (ii) holds.

Similarly, we can prove that (ii) < (iv). O

The following theorem strengthens Theorem 3.4.
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Theorem 3.5. Let X be a nonempty subset of a multiplicative hyperring (A, +,0).
Then the following statements are equivalent.

(i) (X), has the intersection property.

(i) (ZX+<AoX >N (ZX+ <XoA>)=(X),
(ili) <AoX >N (ZX+<Xo0A>)C (X),.

(

iv) <XoA>N(ZX+<AoX >)C (X)),

Proof. (i)=-(ii) Since (X ), has the intersection property, there exist a left-hyperideal
L and a right-hyperideal R of (A, 4, o) such that (X), = LNR. Then X C L and
soZX C Land < Ao X >C< AoL >C L. Thus ZX+ < Ao X >C L. Similarly,
we have ZX+ < X oA >C R. Therefore, (ZX+ < Ao X >)N(ZX+ < X oA >)
CLNR=(X), By Theorem 2.8, (X), =ZX + (< Ao X > N<XoA>), s0
(X)g=ZX+(< AoX > N < XoA >) C (ZX+ < AoX >) N (ZX+ < XoA >).
Then (ii) holds.

(ii)=-(i) It is true because of Lemma 2.2(iii).

(ii)=-(iii) This implication is clear.

(iii)=-(ii) Assume that < Ao X > N (ZX+ < X0 A >) C (X),. By The-
orem 2.8, (X), = ZX + (< AoX >N < XoA >). Then (X), C (ZX+
< Ao X >)MN(ZX+ < X oA >). By Theorem 2.8, we remain to show that
ZX + (<A X >N« X0l >) DUZX+ < Ao X >)NM(ZX+ <« X o A >).
Let t € (ZX+ < Ao X >)N(ZX+ < X oA >). Then t = t; + ¢ and
t = ty + qo for some ty,t9 € ZX,q4 € < AoX > and ¢ €< X o A >.
Then ¢ = —t1+t = —t1 + (ta + @) = (—t; +t3) + @@ € ZX+ < X 0 A >.
Hence ¢ €< Ao X > N (ZX+ < X oA >) C (X),. This implies that
t=t1+q € ZX + (X), = (X),. Therefore (ii) holds.

Similarly, we can prove that (ii) < (iv). O

Proposition 1.8 and Proposition 1.9 are special cases of Theorem 3.4 and The-
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orem 3.5, respectively .

Corollary 3.6. Let Q be a quasi-hyperideal of a ring A. Then the following
statements are equivalent.

(i) @ has the intersection property.
(i) (AQ+Q)N (RA+Q) =Q.
(iii) AQN (Q+QA) € Q.

(

iv) QAN (Q+AQ) C Q.

Corollary 3.7. Let X be a nonempty subset of a ring A. Then the following
statements are equivalent.

i) (X), has the intersection property.

(
(i) (ZX +AX)N (ZX + XA) = (X),.
(i) AXN (ZX + XA) € (X),.

(

iv) XAN (ZX + AX) C (X),.

The following theorem gives some equivalent conditions for a multiplicative

hyperring to have the intersection property of quasi-hyperideals.

Theorem 3.8. Let (A, +,0) be amultiplicative hyperring and let (i),(ii) and (iii)
be the statements given as follows.
(i) (A;4,0) has the intersection property-of quasi-hyperideals.

(ii) For any finite nonempty subset X of A,
<Aoo X >NZX+<Xo0A>)CZX+(<AoX>N<Xo0A>) (=(X)y)-
(iii) For a finite subset X = {x1,z9,...,2,} of A and ay,as,...a, € A, if
y € (iaioxi) N (ikixi—%ixioag)
i=1 i=1 i=1

for some a, € A and k; € Z, then y € (X),.

Then (i) < (ii) = (iii), and if (A, +,0) is strongly distributive, then (iii) =(ii).
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Proof. (i)=(ii) Suppose that (A, +,0) has the intersection property of quasi-
hyperideals and let X be a finite nonempty subset of A. Then (X), has the
intersection property. Therefore (ii) holds by Theorem 2.8 and Theorem 3.5.
(il)=(i) Assume that (ii) true. Let @ be any quasi-hyperideal of (A4, +,0). We
need to show that < Ao @ > N (Q+ <QoA>) CQ. Lety €< Ao (Q >

N(Q+ < QoA >). Then y € Zaloql and y € q+Zq]oa for some
=1 7=1

ai,a; € A,q,q;,q; € Q and m,n € N. Consider X = {q1,¢2,---,Gn, ¢, 415 G }-

Then X C @ and | X| < oo . By assumption, < Ao X >N (ZX+ < XoA>)C

ZX +(<AoX >N< XoA>), sowe have

YeE<AoX >N (ZX+ <X0A>)CZX+(<AoX>N<XoA>)
CR+A(<A0Q>N<QoA>)

CR+QCQ.

This shows that < Ao @ >N (Q+ < @ o A >) C Q. By Theorem 3.4, Q has the
intersection property. Hence (i) is proved.

(il)=-(iii) Assume (ii) holds. Let X = {xy,xs,...,2,} C Aand a1, a9, ...,a, €
Aand let y € (i a; o x;) N (i kix; + ixl oa;) for some a, € A, k; € Z. But

=1 =1 =1
n n n

O aiox) N (D kwi+ Y mioa) C<AoX >N (ZX+ < XoA>) C (X),
03 cQRIN TN T

(iii)=-(ii) Assume that (A,+, o) is strongly distributive and (iii) holds. Let X
be a finite nonempty subset of A, say X = {zy,29,...,2,} ,andy € < Ao X >
N (ZX+ < XoA>). Theny €< Ao X >andy € ZX+ < X oA >. Since
(A, 4+, 0) is strongly distributive, by Proposition 1.19, 0 € 0 o z; and 0 € x; 0 0 for

allie {1,2,...,n }. It then follows that

n n n
yEZaioxi and yEZlixi—i—Zajioafi
i=1 i=1 i—1
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for some a;,a, € Aand [; € Z fori € { 1,2,...,n }. Therefore

y € (iai ox;) N (ilﬂ?z +ixi o ay})
i—1 i—1 i—1

which implies that by (iii) that y € (X),. This proves that < Ao X >N (ZX+

<Xo0A>)CZX+(<AoX >N< XoA>). Hence (ii) holds. O
A direct consequence of Theorem 3.8 is Proposition 1.10.

Corollary 3.9. The following statements for a ring A are equivalent.
(i) FEwvery quasi-ideal of A has the intersection property.

(ii) For any finite nonempty subset X of A,
AX N(ZX +XA)CZX +(AX N XA) (= (X),).

(iii) For any finite subset X = {xy,x9,..., &} of A and ayi,as,...,a, € A, if

T

Z(aixi + ki + z305) =10,

i=1

for some a}, € A and k; € Z, then Zaixi € (X)g.
i=1



CHAPTER IV
MINIMAL QUASI-HYPERIDEALS OF

MULTIPLICATIVE HYPERRINGS

In the last chapter, minimal quasi-hyperideals of multiplicative hyperrings are
studied. The first aim is to generalize Proposition 1.11 to Proposition 1.14 by
considering minimal quasi-hyperideals of multiplicative hyperrings. The second
purpose is to investigate minimal quasi-ideals of the multiplicative hyperring de-
fined from the ring of all upper triangular n x n matrices over a division ring R
as in Theorem 2.14 by using P to be the set of all strictly upper triangular n x n

matrices over a division ring R.

Theorem 4.1. A nonzero quasi-hyperideal Q of a multiplicative hyperring (A, +, o)

is a minimal quasi-hyperideal if and only if (x), = Q for all x € Q\{0}.

Proof. Suppose-that ) is a -minimal quasi-hyperideal of (A,+,0) and let = €
Q\{0}. Since (z), is a nonzero quasi-hyperideal of (A, +,0) contained in @), by
the minimality of @), (x), = Q-

Conversely, assume that (), = @ for all x € Q\{0}. Let Q" be a nonzero
quasi-hyperideal of (A, +, o) contained in (). Then there exists a nonzero element
in @', say y, so (y), = Q. Thus Q = (y), C @'. Hence @ = @'. Therefore @ is a

minimal quasi-hyperideal of (A, +, o). [

We obtain that Proposition 1.11 is an immediate consequence of the above

theorem.
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Corollary 4.2. A nonzero quasi-ideal Q) of a ring A is a minimal quasi-ideal of

A if and only if (x), = Q for all x € Q\{0}.

Next, a necessary and sufficient condition for a quasi-hyperideal of a multiplica-
tive hyperring to be minimal in terms of principal left hyperideals and principal

right hyperideals are givens as follows:

Theorem 4.3. A quasi-hyperideal QQ of a multiplicative hypering (A, +,0) is min-

imal if and only if for any elements x,y € Q\{0},

(@) =(y)r and (x), = (y),-

Proof. Assume that @ is a minimal quasi-hyperideal of (A,+,0). Let x,y €
Q\{0}. Then by Lemma 2.6, (z); N @ is a nonzero quasi-hyperideal of (A, +,0)
contained in Q). By the minimality of @, we have that @ = (x); N Q. Then
Q@ C (x);, this implies that y € (z);. Therefore (y); C (z);. By a similar argument,
we obtain (x); C (y);. Henee (x); = (y);. Dually, we can show that (x), = (y),.
Conversely, assume that for all z,y € Q\{0}, (z); = (y); and (), = (y),. Let
@' be a nonzero quasi-hyperideal of (A, +,0) such that Q" C Q. Let x € Q\{0}.
Case 1: < Ao @ >N QO # {0} and < QoA >N # {0}. Let q €
(<Ao@ >NQ)\{0} and s € (< Q0 A >N Q)\{0}. By assumption, (x); = (¢);

and (), = (8),, so. ¢ € (¢); and = € (s),. Thus

r€(qi=2g+ < Aoq> by Lemma 2.3
CZL<AoQ@Q >+ <Ao< AoQ >> sinceqge<Ao@ >
=Z<AoQ >+ <AcAo0Q > by Proposition 1.18(2)
CZ<AoQ >+<A0Q >

C<AoQ >+ <A@ >
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by Lemma 2.2(ii) and Proposition 1.18(3)
=< AoQ >
and
re€(s)y=2Zs+<soA> by Lemma 2.3
CZ<QoA>+ <<QoA>0A> sincesec<@Q oA>
=7Z<QoA>+<Q oAocA> by Proposition 1.18(2)
CZ<QoA>+<@oA>

C<QoA>+<QoA>
by Lemma 2.2(ii) and Proposition 1.18(3)
=< Q' 0A>,

sor E<AoQ >N<Q o0 A>C Q.

Case 2: < Ao@' >N = {0}. Let y € @\{0}. Then y € Q\{0} and (z); = (v)i,
sox € (y)) =Zy + < Aoy >. Thus z = ny + ¢ for some t €< Aoy >, so

r—ny=te<Ao@ >nQ ={0}. Hence x —ny = 0. Thus z = ny € Q.

Case 3: <@ oA >N Q ={0}. Dually to Case 2, one can prove that = € ().

From the above three cases, we obtain Q = ). Therefore () is a minimal quasi-
hyperideal of (A, +,0). [
A consequence of Theorem 4.3 is Proposition 1.12.

Corollary 4.4. A quasi-ideal Q) of a ring A is a minimal quasi-ideal of A if and

only if any two nonzero elements x and y of @,

(@)= (yh and (), = (y)r
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There are some relationships among minimal quasi-hyperideals, minimal left

hyperideals and minimal right hyperideals as follows:

Theorem 4.5. The intersection of a minimal left hyperideal L and a minimal
right hyperideal R of a multiplicative hyperring (A, +, o) is either {0} or a minimal

quasi-hyperideal of (A, 4+, o).

Proof. We have that @ = RN L is a quasi-hyperideal of (A, +,0). Assume that
Q@ # {0}. We shall show that ) is minimal. Suppose that there exists a quasi-
hyperideal @’ of (A,+,0) such that {0} # Q' € Q. Then Q' C L,so < Ao Q' >
is a left hyperideal of (A, 4+, o) contained in L. But L is a minimal left hyperideal
of (A, +,0), so it follows that < Ao@" >= {0} or < Ao Q' >=L. If < Ao Q' >=
{0}, then @' is a left hyperideal of (A, +,0) such that {0} # @ < L which
contradicts the minimality of L. Then < A o ()’ >= L. Similarly, one can show
that < QoA >=R. Hence Q = RNL =< Q' 0o A>N<Ao@ >C (', which
contradicts that Q) C Q. We then deduce that ) is a minimal quasi-hyperideal

of (A,+,0). O
Proposition 1.13 is directly obtained from Theorem 4.5.

Corollary 4.6. If L and R are a minimal left ideal and a minimal right ideal of

a ring A, then either LN R =A{0} or LR is a minimal quasi-ideal of A.

Theorem 4.7. If a nonzero quasi-hyperideal Q) of a multiplicative hyperring (A, +, o)
such that < x o @Q >= Q =< Qox > for all z € Q\{0}, then Q is a minimal

quasi-hyperideal of (A, +,0).

Proof. Let @' be a nonzero quasi-hyperideal of (A, +,0) such that @ C @. This
implies that )" is a quasi-hyperideal of (). Since < Qox >= Q =< xo@ > for all

x € Q\{0}, we have < Qo Q' >=Q and < Q' o Q >= Q. Hence Q =< Q' o Q >
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N<QoQ >C<RQoA>N<AoQ >C Q. Then Q = Q. Therefore Q) is a

minimal quasi-hyperideal of (A, +, o). O

We have mentioned in Chapter II that for a ring A with |A| > 1, A is a division
ring if and only if Az = 2A = A for all x € A\{0}. Then the following result can

be considered as a consequence of Theorem 4.7.

Corollary 4.8. Let QQ be a quasi-ideal of a ring A. If Q is a division subring of

A, then Q) is a minimal quasi-ideal of A.

In the remainder, let R be a division ring, n € N and U,(R) = (U,(R),+, ")
the ring of all upper triangular n. x n matrices over R where 4+ and - are the usual
addition and the multiplication of matrices, respectively. Let SU,(R) be the set

of all strictly upper triangular n x n matrices over R. Define a hyperoperation o

on U,(R) by
Ao B={ACB | C € SULR)}  forall 4,B € Un(R) .
Since SU,(R) is a subring of (U,(R), +,-), we have
AoBy= ASU,(R)B for all' A, B.e U (R).

By Theorem 2.14, (U,(R),+,0) is a multiplicative hyperring which may be de-
noted by (U,(R),+,SU,(R)). Note that SU, (R) is an ideal of (U, (R),+, ).

The main purpose of this part is to prove the following results.
1) If char R = 0, then (U,(R),+, SU,(R)) has no minimal quasi-hyperieal.
2) Let char R = p > 0. Then the following statements hold.

2.1) For A € U,(R), if rank(A) = 1, then (A), is a minimal quasi-hyperideal

of (Un(R),+,SU,(R)).
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2.2) The converse of 2.1) holds if and only if n < 2.

We note that if char R = 0, then mlg # 0 for all m € Z\{0} where 1 is the

identity of R. Also, if char R = p > 0, then

Z1lg =10, 1g, 2(1g),.... (p—1)(1g) }

so for x € R,

Ze' =40, z, 2z,..., (p=1)z }

and |Zz| =p if x # 0.

Theorem 4.9. If char R = 0, then (U,(R),+, SU,(R)) has no minimal quasi-

hyperideal.

Proof. Let char R = 0. To prove that (U,(R),+, SU,(R)) has no minimal quasi-
hyperideal, by Theorem 4.1, it suffices to prove that for every A € U,(R)\{0},
there exists B € U,(R)\{0} such that (B), € (4), in (U,(R),+, SU,(R)).

Let A € U,(R) and A # 0. Then 2A € U, (R). Since char R = 0 and A # 0,
we have 24 # 0.-Since (A), is a subgroup of (U,(R),+),2A € (A), which implies

that (24), C (A),. Suppose that (24), = (A4),. By Theorem 2.8 and Lemma 2.15,
(A)g = ZA+(<AU(R) > N <Un(R) oA >)

= ZA+ (ASU,(R)U,(R) N Un(R)SUL(R)A) (1)

(24), = Z(24) + ((2A)SU, (R)U,(R) N U,(R)SU,(R)(2A))

= 2(ZA + (ASU,(R)U,(R) N Un(R)SU,(R)A))

= Q(A)Q‘
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Since A € (A), = (24), = 2(A), and SU,(R) is an ideal of U,(R), we have form

(1) that there exist m € Z, B € U,(F') and C € SU,(F') such that
A=2(mA+CA) =2mA+2CA

which implies that
(1=2m)A =2CA. (2)
Since A is upper triangular, A;; =0 for all 4,7 € { 1, 2,..., n } and ¢ > j. Since

A#0,A;;#0forsomeie{1,2,....n}andje {4 i+1,..., n}. Let
k=max{ie {1l 2,...,n}|A;#0 forsomeje{i i+1,...,n}t} (3
and let [ € { k, k+1,..., n } be such that Ay # 0. From (2), we have

(1 =2m)A)p = (2CA)g.
It then follows that

(1 = 2m)Akl — 22 ijAjl'

7=

k n
=2) CriAu+2 > CijAy
j=1

j=k+1

k
=2) CiA; from(3). (4)
j=1

Since C'is strictly upper triangular, Cy; = Cyo = ... = Cgx = 0. Thus we have
from (4) that
(1 —2m)Ag = 0.
But char R = 0 and Ay # 0, s0 1—2m = 0. Thus 2m = 1 which is a contradiction.
Hence (24), € (A4),.
This proves that (U,(R),+, SU,(R)) has no minimal quasi-hyperideal, as re-

quired. Il
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Lemma 4.10. For A € U,(R), if rank(A) = 1, then
U,(R)SU,(R)A N ASU,(R)U,(R) = {0}.

Proof. Let A € U,(R) be such that rank(A) = 1. Then A # 0 and A;; = 0 for
alli,je {1, 2,...,n } withi>j,s0o A; #0forsomeiec {1, 2,..., n} and

je{i, i+1,...,n} Let
k=max{ie {1l 2,...,n}[A;#0 forsomeje {7 i+1,...,n}}

and

l=min{ je{k k+1,...., n}| Ay #0}.

It thus follows from the properties of &, [ and the fact that rank(A) = 1 that

0 c 0 LUlAkl xlAk,lH . xlAkn
0 s 0 $2Akl xQAkJ_’_l . o l’QAkm
A 0 ... 0 zp1Am 1Akt -0 Ti—1Ae
0 Cee 0 xkAkl l‘kAk,H—l c. {L‘kA]m
0O ... 0 0 0 .. 0
0 0 0 0 0
for some xy, w9,..., 1 € R where z, = 1. Let B €< Uy(R)o A > N

< Ao Uy(R) >. Since SU,(R) is an ideal of (U,(R),+,-), by Lemma 2.15, we

have B = CA = AD for some C, D € SU,(R). Then
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k k k 7
0 0 > (Cyz)An D> (Crjwj)Arin Y (G Ay
j=2 Jj=2 Jj=2
k k k
0 0 > (Coym)An D (Cojwj)Arina > (Cojy) Ay
o =3 j=3
0 ... 0 Cr14ZpAw Crcip®idigrn -0 Cro1 T Agn
o ... 0 0 0 . 0
0 0 0 0 0
Since A € Un<R) and D € SUn(R), Ail = Ai? —=%.. — Ai,l—l = (0 for all 7 €
-1
{ 1, 2, R 1 }, Dll = DH—l,l =, = Dnl = 0. Then (AD)” = Z(AitDtl> +
=1
> (AuDy) =0+0=0foralli€ {1, 2,...,n} But CA=AD, so (CA); =

t=l

(AD)y =0 foralli € { 1, 2,..., n }. Since Ay, # 0 and (CA); = 0 for all

i€ {1,2,...,n}, wehave from (1) that
k

Z(Cljl’j) =0
g
Z(Czjfj) =0

k
> (Croayzj) =0

j=k—1

Cr-1x0r = 0.

which implies by (1) that CA = 0. But B = C'A, so B = 0. This proves that

Un(R)SU,(R)AN ASU,(R)U,(R) = {0}, as desired. O
Corollary 4.11. For A € U,(R), if rank(A) = 1, then

(A)y=ZA in (Us(R),+,SU,(R)).
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Proof. Let A € U,(R) be such that rank(A) = 1. By Lemma 4.10, U,,(R)SU,(R)A

N ASU,(R)U,(R) = {0}. Then

(A)y =ZA+ (< Ao U,(R) >N <U,(R)o A >) by Theorem 2.8
=ZA+ (U,(R)SU,(R)AN ASU,(R)U,(R)) by Lemma 2.15
= ZA. by Lemma 4.10 [J

Lemma 4.12. Let char R = p > 0. Then for A € U,(R)\{0}, (A), = ZA in
(Un(R), +,SUn(R)), then (A)g = { 0, A, 24, ..., (p—1)A }, |(A),] = p and

(A), is a minimal quasi-hyperideal of (U,(R),+,SU,(R)).

Proof. Since char R = p,

Z1gp =4 0,1z, 2(1g),..., (p—1)(1r)},

and so

TA = (Z1)A =10, A, 24, ..., (p=1)A }

where 1p is the identity of R. Then (A), = {0, A, 24,..., (p —1)A }. Because
A # 0, Aj; # 0 for some i,j € {1,2,...,n}. Since char R = p and A;; # 0,
we have that 0, A;;, 24;;,..., (p— 1)A;; are all distinct. Hence |(A),| = p. Let
B e (A), and B # 0. Then (B), is an additive subgroup of (A4), and (B), # {0}.
But [(B),|{|(A4),l, so |(B),| =p. Hence (B), = (A),. Therefore (A), is a minimal

quasi-hyperideal of (U, (R),+, SU,(R)). O

The following theorem is obtained directly from Corollary 4.11 and Lemma

4.12.

Theorem 4.13. Let char R = p > 0 and A € U,(R). If rank(A) = 1, then in

(Un(R),+,SU,(R)), (A), is a minimal quasi-hyperideal.
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Theorem 4.14. Let char R = p > 0. Then the following statements are equiva-

lent.

(i) For A € U,(R), if (A), is a minimal quasi-hypereideal of (U, (R),+, SU.(R)),
then rank(A) = 1.

(ii) n<2.

Proof. To prove (i) implies (ii) by contrapositive, assume that n > 2. Let

0 O
0 RN N4
A=10 0 0 0

Then A € U, (R) and rank(A) = 2. To show that U,,(R)SU,,(R)ANASU, (R)U,(R)
= {0}, let B € U,(R)SU,(R)A N ASU,(R)U,(R). Since SU,(R) is an ideal of

(Un(R),+,), B=CA= AD for some C, D € SU,(R). But

(0 OO w0 0 0 1
ol WUa® 0 Vidd il @10 1p0 1 ¢
(e~ YN Q IG ™ Q.1 01 Y
0 0 0 Chin
o0 0 0 0 |[0 0 0 0 O]
K 0 Cu 0
0 0 0 0
=10 0 0 0]
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K 0 0 1]]o Dy, Dis Dy, |

0 0 1 0[]0 0 Dy Dy,
AD=10 ... 0 0 0

0 0 0 Dpin

0 0.0 0 0][0 0 0 © 0 |

0 00 0
0 /0 7.4%
=10 g f o—

0o 0 0 O 0

and B = CA = AD, so we have that B = 0. This proves that U, (R)SU,(R)AN
ASU,(R)U,(R) ={0}. By Theorem 2.8, Lemma 2.15 and Lemma 4.12, (A), is a
minimal quasi-hyperideal of (U,(R),+, SU,(R)).

Conversely, to prove that (ii) implies (i), assume that n < 2 and let A € U,(R)
be such that (A), is a minimal quasi-hyperideal of (U, (R),+,SU,(R)). Then
A#0. If n =1, then rank(A) = 1.

Next, assume that n = 2. To prove that rank(A4) = 1, suppose not. Since

a11 a2

A=

0 929

we have that a;; # 0 and agy # 0. Let

01
B—

0 0
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Because

0 1 1 0f |0 a2_21 aip  a19

0 0 0 0o (0 O 0 ax

ajp Q12 0 CLﬂl 0 0

0 a99 0 0 01

we have that B € Us(R)SUs(R)ANASUs(R)Us(R). But (A), = ZA+(Us(R)SUs(R) A
N ASUy(R)Us(R)) by Theorem 2.8 and Lemma 2.15, so B € (A), and hence

(B), C (A),. Since rank(B) = 1, by Corollary 4.11, (B), = ZB in (Us(R), +, SU2(R)),

0 m
(B)g = m € Z
0 0
Then A ¢ (B), since a; # 0 and asy # 0. Therefore {0} C (B), € (A4),. It is
a contradiction since (A), is a minimal quasi-hyperideal of (Uz(R),+, SUs(R)).

This proves that rank(A) = 1, as required. ]



[9]

[10]

[11]
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