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CHAPTER I
INTRODUCTION

Shallow water equations (SWE) are considered as system of hyperbolic conser-
vation equations which can be used to model many real flow problems such as
dam break flows, tsunami waves, open channel flows, flood simulations, etc, where
details are given in Chapter II.

There are numerous numerical methods for solving SWE, such as, finite differ-
ence methods (FDM) [14], finite element methods (FEM) [43, 49], the finite volume
methods (FVM) [23, 25, 29, 31|, and the discontinuous Galerkin methods (DG)
[15, 37]. The FDM and the FEM can be used to solve these equations but the
schemes require to use very large number of nodes in order to obtain high accuracy,
especially, for discontinuous solutions, which usually take massive computational
time. In addition, these methods usually do not preserve conservation property.
Thus, in this work, we use numerical schemes that satisfy the conservation prop-
erty and are more efficient to deal with discontinuous solution, the DG method
and the FVM. The DG method has several advantages, namely, it can be used to
handle complex geometries, and in the same time, adaptive strategies are easily
applied. The accuracy of numerical solutions can be improved by increasing the
polynomial degree of approximating polynomial. The FVM is a special case of the
DG method that the approximate solution is averaged in any cell.

By the concept of DG method and FVM, numerical solutions need not to be
continuous at cell interfaces, where an efficient flux approximation is required,
known as a numerical flux. Generally, there are several types of approximations.
The Harten-Lax-van Leer (HLL) flux [37, 40, 41|, proposed by Harten, Lax and
van Leer, is the one extensively used for the SWE. The modified version of this nu-
merical flux for two-dimensional problems is Harten-Lax-van Leer contact (HLLC)

[2]. To obtain more accurate approximations, the weighted average flux (WAF)



has been introduced, see [2, 6, 29, 38, 39, 41, 42].

Hyperbolic conservation equations have steady state solutions in which the
flux gradient is required to be balanced with the bottom slope source term. The
numerical schemes without balancing these quantities usually exhibit spurious os-
cillations in the numerical solutions. A numerical scheme that is able to balance
these quantities at the steady state is considered to be a well-balanced scheme.
The property of a well-balanced scheme was first introduced by Bermudez and
Vazquez [5], where the solution from the numerical scheme is exact when applied
to the still water stationary solution. Many well-balanced schemes for the SWE
have been developed in literature, see (2, 3, 11, 17, 18, 31, 47|.

In this dissertation, a well-balanced scheme with total variation diminish-
ing Runge-Kutta discontinuous Galerkin (TVD-RK-DG) method for solving one-
dimensional SWE is developed. From previous literature, the WAF has been
successfully applied to solve various kinds of problems, especially, in the FVM
[2, 6, 11, 29, 38, 39]. However, it is rarely applied in the DG method. Thus, we
develop the TVD-RK-DG using the WAF approximation and show that the pre-
sented scheme is consistent with the WAF approximation. Various kinds of flows
have been simulated to check the accuracy of the modified scheme, where detail is
described in Chapter III.

The previous developed scheme assume that every cross-sectional area is equal
in the entire domain. If we consider the one-dimensional flow in realistic problem,
such as flows in a natural river, where the cross-sectional areas are not equal in
the entire domain, we should use SWE in the other form for more realistic re-
sults. Thus, we consider the one-dimensional SWE for arbitrary cross-sectional
areas instead of the previous equations. In order to reduce complexity of calcula-
tion in DG method, the finite volume method is applied. A difficult part of the
approximation is even occur when the numerical scheme deal with the dry area.
Thus, we also improve the efficiency and stability of the numerical scheme to deal
with the wet/dry problem by applied the reconstruction and bottom modification
techniques. Various numerical experiments have been performed to check the ef-

ficiency and accuracy of the developed numerical scheme. The detail of this work



is presented in Chapter IV.

In addition, in order to consider the flow in two-dimension when applying the
SWE to real world applications and to reduce complexity of calculation in DG
method for higher dimensional problem, a well-balanced FVM for solving two-
dimensional SWE with WAF approximation is developed to simulate real world
problems such as dam break or flood, especially, the great flood in Thailand, 2011.
A wet/dry cell tracking technique is also presented to reduce computational time.
The accuracy of the developed scheme is investigated by applying to some well-
studied cases. For practical purposes, it is also applied to simulate the flooding of
the Chao Phraya river from Chai Nat to Sing Buri provinces in Thailand during
October 13-17, 2011. The detail of this work is given in Chapter V, and the

conclusion is given in Chapter VI.



CHAPTER II
SHALLOW WATER EQUATIONS

The shallow water equations (SWE) are considered as a system of hyperbolic par-
tial differential equations which simplified from the Navier—Stokes equations, in
the case that the horizontal length scale is much greater than the vertical length
scale. These equations can be used to model many real flow problems such as dam

break flows, tsunami waves, open channel flows, flood simulations, etc.

2.1 The one-dimensional SWE

For flow in one-dimension in the x-direction, we consider the control volume with

uniform cross-sectional area from x to z + Az as shown in Figure 2.1,

Figure 2.1: One-dimensional control volume.

where h is the water depth, u is the flow velocity in the z-direction, ¢ is the
acceleration due to gravity, z is the bottom elevation, and Sy is the friction term.

We will derive SWE in one-dimension by considering the net flow rate in this
control volume using principles of conservation of mass and momentum with the

assumptions that the fluid is assumed to be incompressible and inviscid, and the



pressure distribution is assumed to be hydrostatic.

Conservation of mass

The conservation of mass states that

The rate of mass =| Mass flux entering |—| Mass flux leaving

increase within the the control volume the control volume

control volume

First, we consider the mass flux entering the control volume at the left boundary

of control volume (x,t), which is

phu, (2.1)

where p is the density of the fluid, A (z,t) and u (z,t) are the fluid depth and flow
velocity in the z-direction, respectively.
Next, the mass flux leaving the control volume at the right boundary of control

volume (z + Az, t) is

phu + Ax(% (phu) . (2.2)

Thus, the net rate of mass flux entering the control volume is

0 0
phu — | phu + Ax% (phu)| = —Ax% (

The rate of mass increase within the control volume is

phu) . (2.3)

0
Az (ph). (24)

Hence, from (2.3) and (2.4) with the law of conservation of mass, we have

Am% (ph) = —Ax% (phu) . (2.5)



Since, Az is a constant and the assumption of SWE states that the fluid is

incompressible, thus, the density of fluid p is a constant. Then, we obtain

oh 0
— =——(h 2.
ot Ox (hu) (2:6)
or
oh 0
=4 = =0. 2.
5% T o (hu) (2.7)
Equation (2.7) is the conservation of mass for the one-dimensional shallow water
equations.

Conservation of momentum

The principle of conservation of momentum states that

The rate of change of

momentum in the control

volume

The net rate of momentum
flux entering the control

volume

_|_

Sum of force
acting on the

control volume

First, we consider the rate of change of the momentum in the control volume,

which is

Axg (puh) .

ot

(2.8)

Next, the rate of momentum entering the control volume at the left boundary

of control volume (z,t) is the product of the mass flux and the velocity

pu’h,

(2.9)

and the momentum leaving the control volume at the right boundary of control

volume (z + Az, t) is

0
puPh + Ax— (puzh) .

ox

(2.10)




Thus, the net rate of the momentum entering the control volume is

0 0
puh — | pu*h + Ax(‘?_x (quh) = _Axﬁ_x (

In addition, there are three forces acting on the control volume, which are the

pu’h) . (2.11)

gravity force, the pressure force, and the frictional force described as following

(1) The gravity force F, is the weight of the fluid within the control volume
acting in the x-direction,
0z

F, = —pghAx%, (2.12)

0z
where ¢ is a gravity and 9 is the bottom slope.
x
(2) The pressure force F), is assumed to be the hydrostatic pressure on the
vertical section of control volume and water depth h at the boundary (x,t), that
is

h

1

Byl = / pg (h—y)dy = 5pgh® (2.13)
0

and the pressure force at the boundary (z + Az, ) is

1 0
Folovae = §P9h2 + Aw@ (

Thus, net of pressure force on two vertical sides is

1
§pgh2> : (2.14)

1 Az 0

1 0 (1
- 2_ |2 2 = 2 _ _ =Y 2
2pgh [2pgh + Axax (2pgh )1 wr (pgh ) . (2.15)

(3) The frictional force F; acting on the bottom assumed to be

F; = pghAxSy, (2.16)

nu |ul

s and n denoting the Manning’s

where Sy is the friction term define by Sy = —

roughness coefficient.



From the conservation of momentum, combining (2.8), (2.11), (2.12), (2.15),
and (2.16), we obtain

9, _ a , 0z g . O0(ph?)
Axa (puh) = Axg (pu’h) + ghpAx ( e + Sf) §Ax o (2.17)
Since p and Ax are non-zero constants,
9, 0, 0z g Oh?
It can be rewritten as
9] o ( o,  gh*\ 0z
a9t (uh) + or (u h + T) = —gh% + ghSy. (2.19)

If quantity uh is expressed by the discharge @, then (2.7) and (2.19) can be

rewritten as

hy +Q, =0, (2.20)
2 h2

known as the SWE.

The SWE can be expressed in the one-dimension hyperbolic conservation form

as
U+ F(U),=5(), (2.22)
where
U h F(U) < d S(U) 0
= ; = 2 2 |, an =
Q % + % —ghz, + ghS;
(2.23)

The vectors U, F, and S represent the vector of primitive variables, the flux

function, and the source term, respectively.



2.2 The one-dimensional SWE in arbitrary cross-sectional

area

In the previous section, SWE in (2.20)-(2.21) are obtained under the assumption
that the cross-sectional area is uniform. In order to obtain SWE for more real-
istic case such as flows in a natural river, where the cross-sectional area is not
uniform in the entire domain. We have to consider the one-dimensional SWE in
arbitrary cross-sectional area. The resulting equations are called the Saint Venant
equations. These equations are also derived from the conservation of mass and the
conservation of momentum, but the cross section is arbitrary as shown in Figures

2.2 and 2.3,

Figure 2.2: Cross-section of channel.

Figure 2.3: One-dimensional control volume for arbitrary cross-sectional area in

channel.
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where A is the wetted cross-sectional area, Z = h + z is the water surface level, h
is the water height, z is the bottom function, B is the width of the cross-section
at the water surface, [}, is the pressure force, I} is the gravity force, and F} is the

friction force.

Derivation of the one-dimensional SWE in arbitrary cross-sectional area

Conservation of mass

The mass flux entering the control volume for an arbitrary cross-sectional area at

the left boundary (z,t) of control volume = to x + Az showing in Figure 2.3 is

pAu, (2.24)
where p is the density of fluid, A (x,t) and u (x,t) are the wetted cross-sectional
area and flow velocity in the x-direction, respectively.

Next, the mass flux leaving the control volume at the right boundary (x + Ax, )
is

0
A Az— (pAu) . 2.2
pAu+ Av— (pAu) (2.25)

Thus, the net rate of mass flux entering the control volume is

0 0
pAu — | pAu+ Ax% (pAu)| = _A$% (pAu). (2.26)

The rate of mass increases within the control volume is

A:z:% (pA). (2.27)

Hence, from (2.26) and (2.27) with the conservation of mass, we have

0 0
Axa (pA) = —Aw% (pAu) . (2.28)

Since Az is non-zero constant and the assumption of SWE states that the fluid

is incompressible, thus, p is a constant, then we obtain
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0A 0
or
0A 0
E + a—x (Au) = 0. (2.30)

Equation (2.30) is the conservation of mass for the one-dimensional shallow

water equations for arbitrary cross-sectional area.

Conservation of momentum

First, we consider the rate of change of the momentum in the control volume,

which is

0
Axa (puA). (2.31)

Next, the rate of momentum entering the control volume at the left boundary

(x,t) is the product of mass flux and velocity

pu*A (2.32)

and the momentum leaving the control volume at the right boundary (x + Az, t)

is

pu®A + Ax((% (pu*A). (2.33)

Thus, the net rate of the momentum enters in the control volume is

0 2 A9
p (pu*A) | = Amax (pu*A). (2.34)

puA — | pulA + Ax
In the case of arbitrary cross-sectional area, there are four forces acting on the
control volume, which are the hydrostatic pressure force, the pressure force due

to a change in width, the gravity force, and the frictional force described as follows:
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(1) The hydrostatic pressure force F), that acts at the boundary (z,t) is

Fple = gply, (2.35)

where

h
I = / (h(x) — ) p () i, (2.36)

g is a gravity, n is a depth integration variable, and p (z,7n) is the width of the
cross-section at 1 such that p (z,n) = B(x) at the water surface level (n = h).
The pressure force at the boundary (x + Az, t) is

ol
Fylesas = gph + gpAa——. (2.37)

Thus, the net of pressure force on two vertical sides in the z-direction is

oL oL
Fyle = Fplaras = gply — gpli — gpAa—o— = —gpAz——. (2.38)

(2) The pressure force due to a change in width F,, for a given cross-section

is expressed by

F, = gpAzls, (2.39)

where

h
L= [ (i) =) 25y (2.40)

(3) The gravity force F, the weight of fluid within the control volume acting in
the z-direction,

F, = —pgAAx (2.41)

%)
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0z
where — is the bottom slope.

ox

(4) The frictional force F; acting on the bottom and the sides of the channel is

Fy = pgAAxSy, (2.42)

where Sy is the friction term expressed by

n*Q Q)
 RY/3 A2

n is a Manning’s roughness coefficient, @) is a discharge, R = A/P is the hydraulic

Sy =

radius, and P is the wetted perimeter of the channel.
From the conservation of momentum, combining (2.31), (2.34), (2.38), (2.39),
(2.41), and (2.42), we obtain

0 0 ol
Axa (puA) = — Afba (pu*A) — gpr% + gpAzxl,
— pgAAx% + pgAAxS;. (2.43)
Since p and Ax are non-zero constants, we have
0 0 ol 0z
It can be rewritten as
0 0 0z

Equation (2.45) is the conservation of momentum for the one-dimensional shallow
water equations for arbitrary cross-sectional area.

For discharge @ = Au, (2.30) and (2.45) can be rewritten as

0A  0Q

5t o =0, (2.46)

0Q 0 [Q? B 0z
5+ oo (7 + 911> =gl +gA (—g + Sf> : (2.47)
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oI
Applying the Leibnitz’s rule for 8_1 we obtain
x

o, o [
=i [ @ =mutemdy

T h(x)

= () = o)) o+ [T () = )
hiz) x x

= [ e = P ) P

h(z) X h(z) T
:/0 (h(x) —n) O ’n>dn+/0 u(fc,n)am >d77

ox ox
B Oh(x) h(z)
=L+ ax/o 1 (x,m) dn
:1_2+A8h(:c).
ox

Thus, the equation (2.47) becomes

9Q 9 [Q*\ 07
E + % (7) = —QA% + gASf, (248)

where Z = h + z. The hydrostatic pressure term and the pressure force due to a
change in width are combined.

Hence, the SWE in arbitrary cross-sectional area are written by
A+ Q. =0, (2.49)

Q2
Qi+ (7) = —gAZ, + gAS;. (2.50)

These equations can be written in hyperbolic conservation form (2.22) with vectors

v ) ro 9 d SU) 0 (2.51)
— s = s an = . .
Q ¢ —gAZ, + gAS;

In the particular case when the channel is rectangular with constant width,

(2.49) and (2.50) reduce to (2.20) and (2.21), respectively.
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2.3 The two-dimensional SWE

In order to consider the flow in two-dimension, the control volume must be consid-
ered in two-dimensions as shown in Figure 2.4. Derivation of the two-dimensional
SWE is similar to the one-dimensional SWE, but the flow in the y-direction is
also considered. The conservation of mass and the conservation of momentum

equations in the z- and the y-directions are written as

hi + (hu), + (hv), = 0, (2.52)
1
(hu); + (hu2 + §gh2> + (huv)y = —ghz, + Sta, (2.53)
1
(hv); + (huv), + (hv2 + Egh2> = —ghz, + Sy, (2.54)

Yy
where u and v are the flow velocities in the x- and y-directions, respectively,

Sty = —Cuvu? +0? and Sy, = —CvvVu? + v? are the friction terms in the z-
and y-directions, respectively, with C' = gn?/h'/? and n is a Manning’s rough-
ness coefficient. These equations can be written in two-dimensional hyperbolic

conservation form as

Ui+ F(U), +G(U),=5(U), (2.55)

where F' and G represent the flux functions in the x- and y-directions, respectively.

Thus, (2.52)-(2.54) can be written in the form of (2.55) with

h hu hv
U= hu |, FU)=| h?+igh® |, GU)= huv (2.56)
hv huv hv? 4 gh?
and
0
SWU)=| —ghzy + S |- (2.57)

—ghz, + Sy,
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Equation (2.52)-(2.54) are called the two-dimensional shallow water equations.
We will develop a finite volume method to solve these equations in Chapter V. The
applications of simulating these equations to the great flood in Thailand, 2011 are

shown in the same Chapter.

Figure 2.4: Control volume for two-dimensional problem, side view (left) and top

view (right).



CHAPTER III
WELL-BALANCED DISCONTINUOUS GALERKIN
METHOD WITH WEIGHTED AVERAGE FLUX FOR
ONE-DIMENSIONAL SHALLOW WATER EQUATIONS

A well-balanced scheme with total variation diminishing Runge-Kutta discontinu-
ous Galerkin (TVD-RK DG) method with weighted average flux (WAF) for solving
SWE is presented in this Chapter. Generally, the flux function at cell interface in
the TVD-RK DG scheme for SWE is approximated by using the Harten-Lax-van
Leer (HLL) method. Here, we apply WAF, a higher order approximation, instead
of using the HLL in the TVD-RK DG method. Moreover, the consistency prop-
erty is shown and the modified well-balanced technique for flux gradient and source

terms under the WAF approximations is developed.

3.1 Discontinuous Galerkin method (DG) for one-dimensional

shallow water equations

Counsider the one-dimensional SWE

U+F(U),=5(), (3.1)

where
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in which A is the water depth, @) = uh is the discharge, u is the flow velocity in the
x-direction, g is the acceleration due to gravity, z is the bottom elevation, and S
is the friction term define by S; = —(n?u|ul)/h*? with n denoting the Manning’s
roughness coefficient.

The DG method for one-dimensional conservation equation is started by di-
viding the computational domain (0, L) into K cells. We denote the i-th cell by

— X;_1.

=3

I; = [xifévxz#%] , fori=1,23,... K, with uniform cell size Ax = Tiy 1

The cell center is x; = <:1:i+% + xi%) /2, where T 1 and Tiy 1 are the left and the
right boundaries, respectively. Approximate solution is denoted by U}, = (hy, Qh)T.

Multiplying (3.1) by a test function vy, () € P¥ (I;), where PV (I;) is the
polynomial space of degree N on the interval [;, replacing U by U, and taking the

integration by parts over I;, we obtain the weak form of the numerical scheme,

a(Uh) / - — -
/Ii 5 vp(x)dz —/I F (Up) 'y (z)dz + Eiyiop (IH_%) —F_1up (x:r_l)

i

:/S(Uh)vh(x)dx, (3.3)

I;

~

where the flux function F' at the cell interfaces is approximated by F; 11 as a

function of Uy and U, at .1, defined by

~

Py = F (U (U0 - (3.4)

Here, (Un),, 1 and (Up)/ 1 denote the approximate solutions at the left and the

1
2

right of cell boundaries, respectively. If we apply the Legendre polynomials as local

basis functions, the approximate solution U}, can be written by

Un(,) = 3 U (1) g () (3.5)

where U™ (t) is called the temporal coefficient and the basis function ¢, (z) is the

Legendre polynomial P, ([—1,1]).
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The test function vy, (z) is typically chosen to be the basis function, vy, (z) €
{¢ (:B)}f\;o After applying the Legendre’s properties, the equation (3.3) is simpli-
fied to

dUl (t) 20+1 20+ 1 P ~
7 — / —1 . — F.
dt Ax /fiF(Uh)(pl(x)dij Ax {( ) Fic FZ*E}

+ /1 S (Up) vp(z)de, (3.6)

fori=1,2,3,....,K,and 1 =0,1,2,..., N,

The conservation form (3.1) is reduced to a system of ordinary differential

equations in time for unknown U!. The time derivative term in (3.6) can be
approximated by applying the high-order total variation diminishing Runge-Kutta
(TVD-RK) method |7, 15, 36].

3.1.1 Numerical flux

In this dissertation, we use two types of numerical flux functions, the Harten-Lax-

van Leer flux and the weighted average flux, to approximate flux at interfaces,

Harten-Lax-van Leer flux (HLL)

Harten, Lax and van Leer [14] presented approximate Riemann Solver for the
numerical flux which is called HLL flux [35, 37, 40, 41|. The HLL flux, ]ilfiL, at
2

the interface z; 11 s defined by

F(Us,) i 0<sy;
i (U, 2

1 .
Z+§ Z+%’

U:&-%) =\ if Sp <0< Sg; (3.7)

F(l/ 1> if 0>SR,
’L+§
where FZ* , is defined by

2

SwF (U5, ) = SuF (U ) + Suse (U, ULy )

*

L1 =
i+35 SR_SL
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The wave speeds Sy, and S at the cell interface are chosen under the assumption

of two-rarefaction waves in the star region,

S = min <u;+%—1/gh;+%,u*—\/ﬁ), (3.9)

Sp = min <1ﬁr Ly Jght o ut 4 gh*) , (3.10)
i+3 i+3

with

1
2 2

1
® — + — T
"7 (UH% +ui+%> + V th% \V th%. (3.12)

The expressions for the wave speeds are obtained by assuming the wet bed

o () ). o

condition, i.e., hi ; > 0. For the dry bed on the right side of the cell interface,
2

ie., h:;; = 0 and hz’_+l > (, the wave speeds are approximated by
2 2

and for the dry bed on the left side of the cell interface, i.e., hi_+ = 0 and h:;; > 0,

1
2

SL:u;;%—Q gh;;%, SR:uL%—i-,/ghii%. (3.14)

The diagram for the HLL flux corresponding to the Riemann problem is shown

in Figure 3.1.
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Figure 3.1: The diagram for HLL flux corresponding to the Riemann problem at
interface i+1/2.

Weighted average flux (WAF)

The WAF was first introduced by Toro, see [40, 41]. The WAF approximation is
second-order accurate in both space and time in statistical sense, [40].
The weighted average flux, ﬁ;VIfF , at the interface z; 1 is defined by the integral
2

average of a flux function F'(U) at the half-time step,

Az
2

3 1 At
T2

Figure 3.2: The diagram for WAF corresponding to the Riemann problem at
interface i+1/2.

It can be written in the summation of wave structure form as,
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Ne+1

R =S 210
k=1

where N, is the number of wave solutions in the Riemann problem and Fl(j:)% is the
k™™ flux of the Riemann problem. For one-dimensional shallow water flows, one has
N, = 2, with Fl(i)% =F (U;Q, Fl(jj)% =F (U;%), and the flux component Fl(j)%
is obtained from the HLL approach [40]. The weighted wy, are defined by wy, =
%(ck — ¢g—1), where ¢ = SpAt/Ax is the Courant number of wave k, ¢g = —1,
cn,+1 = 1, and Si is the speed of wave k with S; = Sy and S, = Sk which defined
in the same manner as the HLL flux. The diagram for WAF corresponding to the
Riemann problem is shown in Figure 3.2.

To avoid spurious oscillations near a shock front, the WAF method is modified

by enforcing a total variation diminishing (TVD) scheme [6, 11, 29, 40, 41]. The
TVD-WAF version becomes

~ B 1 B 1 k k
FVArmve - (P (U, )+ F (UL)) = 5 2osen(e) oL AFY, . (317)
k=1
where
(k) _ p(k+1) (k)
AR, = FEY - FY. (3.18)

Here, qﬁ(k)l is a WAF limiter function. There are various choices for qﬁ(k)l,
'L+§ Z+§

details in [6, 11, 29, 40, 41]. In this work, we employ the minmod slope limiter

see more

1 rk) <0,

Y

A 1Y) = §1- (1 fal)r®, 0<s® <1, (3.19)

‘Ck‘a r(k) > 17
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where 7®) is defined by

(AR, By
= 2 2 if ¢ >0,
Anf, RO
F0) — (3.20)
Ahipy b - Hly
2 = 2 . if ¢, <0
AR 0 = g
\ T it its i+3

with Ah(,k)l , Ah(,k)l and Ah( g are the jumps of h across the wave k in the solutions
2
U1, Uis and U, i3 of the Rlemann problem, respectively.
Actually, WAF has a consistency property which can be shown by the following

Lemma.

Lemma 1 TVD-WAF is a consistent numerical flux for smooth flow problem.

Proof Consider a smooth solution at interface i+1/2, it is sufficient to show that

TVD-WAF is a consistent numerical flux if ]:;ZFED —war (U;r L Ul : > =F (Ui 11 )
The TVD-WAF is defined by

1
TVD-WAF (77— + )t - +
) %,%>_2<F<UH%>+F<%>>
2

for smooth flow problem, U;r% = UZ.:% =U_1,then FU = F (U;1> =F <Ui+%>,

H—?

2

FO = F(U},) = F (Usy), FO = F (Usy ), and AR, = 0. Thus,

FTVD- WAF<U 1,U+>=Ai;< o1, )
i+3 2 +3

z+2
2

:%(F(U ) +F(Uy)) - ;ngn(ck)ﬁb AR

k=1

(3.22)
This shows that the TVD-WAF is consistent for smooth flow. O
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3.1.2 Total Variation Diminishing Runge Kutta (TVD-RK)

After discretizing conservation equations in spatial space by the DG method, we
obtain a system of ODEs with respect to the time derivative as in (3.6), which
can be approximated by applying the high-order TVD-RK method [7, 15, 36],
introduced by Chi-Wang Shu [36].

The system (3.6) can be written in the form

dUy, (t
O L ). (3.23)
dt
where ¢ € (0,7 with initial condition
Uh (l’, 0) = U(]h (3.24)

and Ly, (Up,t) represents the right hand side of equation (3.6).
Let {t"}* be a partition of [0,7] into M intervals with At® = "1 — ¢ for

n=0,...,M — 1. The time marching algorithm can be summarized as follows.
1. Set U}? = U0h~

2. Forn=0,..,M — 1 compute U,’ZH from U;' as following steps 2.1-2.3;
2.1 set d9 =Up,

2.2 for m =1,...,k + 1 compute the intermediate functions:

m—1
d™ = {Z (e + Bg A" Ly, (d, t>>} |

s=0
where «,,,s and [3,,s are parameters of the TVD-RK.

2.3 set U = dk+1)

For example, the TVD-RK of orders 2 and 3 are as follows
TVD-RK order 2

dV = UP + AtL, (UP, ), (3.25)
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1
Uptt = d® = S (U7 +d + AtL, (A0, 1" + At)). (3.26)
TVD-RK order 3
A = U + AtL, (UP ), (3.27)
1
d? — T (38U +dM + AtL, (dV, " + AL)), (3.28)
Ut = d® = % (U;; +2d? + 2AtL, (d@), "+ %At)) : (3.29)

By these setting, the TVD-RK has some useful stability properties, where details
are given in |7, 15].

Note that when the polynomial of degree N is applied for DG, the TVD-RK
method of order at least N+1 is required to obtain the accuracy of order O(Az™N+1)

for smooth flows problem.

3.1.3 Monotonic Upstream-Centered Scheme for Conserva-

tion Laws (MUSCL) slope limiter

The TVD-RK DG method can be used to simulate shallow water flows with moving
shocks. Unphysically oscillate behaviours are usually produced near the shock
fronts. The slope limiter techniques can be applied to remove the oscillations. In
this work, we apply the Monotonic Upstream-Centered Scheme for Conservation
Laws (MUSCL) limiter [7, 15, 25, 40] in the TVD-RK DG method. This approach
limits the present solution slope by comparing with neighbor cells.

In the case of piecewise linear approximation, Uy|;, = U + Ulx, the slope

limiter function of Uy|y, is
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_ | T T, U, T,
AT (U]1,) = T + (x — ;) minmod (U oot Bt ) (3.30)

fori=1,.... K.
In (3.30), U; is the mean value in the i-th cell, U,; = U}! and the minmod

)

function is defined by

sgn (ay) min |a;], if sgn(ay) =...=sgn(ay) ,
minmod (ay, az, ..., a,) = 1<i<n

0, otherwise .

This is the well-known slope limiter of the MUSCL schemes introduced by van
Leer |44, 45].

In the case that the approximate solution is a polynomial of degree N > 2,

N

Unlr, (z,1) = > UL () ¢ (x) -

1=0
We defined the degree one of Uy, denoted by U} as

Unlr, (. 8) = Y Ul () o1 () -

The slope limiter procedure in this case, denoted by AITY, is obtained as follows

(1) Compute 0;1 and U}, from
2 2

(7;_1 = UI + minmod (U;_l - UZ', Uz — Uz'_l, Ui+1 - Uz) s (331)
U;:l = Ul — minmod <[7@ — U;:l7 Uz — Uifl, l7i+1 — Ul> . (332)
2 2

Ii) = Uh

I

2

(3) Otherwise, take Uy|;, equals to AIL} (UL|r,).

(2) It (7;1 =U, , and U', =U",, then set AII} (U,
2 2 2
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3.2 Consistency of WAF with TVD-RK DG method

The HLL flux is usually used in the TVD-RK DG method. Another choice but
higher order is the WAF. This approximation has been extensively applied in the
FVM, but it is rarely used in the TVD-RK DG method. Thus, the main objective
of this work is to modify the WAF in the TVD-RK DG method. The consistency
of the WAF in the TVD-RK DG scheme without source term is described below.

Lemma 2 The TVD-RK DG method is consistent with the WAF for smooth

flows problem.
Proof Considering the weak form of DG method for the conservation law

/Ii <%U> v(x)de — /I F(U)v (2)dx + F (UH%) v (%15)

_F (UZ._ ) v <:1cj_%> —0.  (3.33)

M

Exact solution U is approximated by Uj, the test function v is estimated by

vp, and flux function, F', at cell interfaces are approximated in terms of numerical

~

flux, Fii%, the DG method becomes

/Ii (%U;’f) vp(z)dx — /1 F (U)o (2)dz

+ 13@+% ((UZ);ré ’ (U;);Q vh <x;+%>

~ By (U W e (2,) =T, (339)

[N

where T is a total truncation error of the scheme.

By using Gauss-Lobatto quadrature N + 1 points, the integrals terms in (3.34)
give the exact value for polynomials degree N. Then, the truncation error, 7', is
composed of the numerical flux error, the approximate solution in space, and the

approximate solution in time which are denoted by T}, T5, and T3, respectively.
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Consider interface 7+1/2, when the solution is smooth, it is continuous at x; 1
thus, (U,"L‘)L% = (U;:)Z;% = (UZ)H%. From Lemma 1, the TVD-WAF is consistent,
thus, the numerical flux, ]/5”%, becomes an exact flux, F ((UZ)HL)' It can be

2
considered similarly for interface ¢ — 1/2. This makes 73 = 0 for smooth flow
problem.

For the TVD-RK DG method, the approximate solution U; in (3.34) is defined
by

Uy (z,t) = > Un(t)r(x),

where () is the Legendre polynomial degree k. Since the considering solution
is smooth, Theorem 3.1 in [7]| gives that the truncation error term 75 due to

approximating polynomial is in the form

Ty i= U = Upll o) < O (AaVH) , for N >0, (3.35)

After substituting the approximate solution into the numerical scheme (3.34),

we obtain an ODE system

d

dt

The TVD-RK scheme is applied for integrating in time. The order of accuracy
for time integration depends on the TVD-RK order, |7, 15, 36], since the TVD-RK

order N + 1 is applied, thus, a truncation error term 73 is O (AtN H).

Up = L(U}).

Combining all of the truncation error terms, the total truncation error term of

the TVD-RK DG with WAF is

T=T\+T,+T3<O (Agﬂ“é, AtN“) . (3.36)

This shows that the total truncation error term approaches zero as Ax — 0 and

At — 0. Hence, the TVD-RK DG with the WAF method is consistent. n
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Remark If we apply consistent numerical scheme to approximate source terms,
the TVD-RK DG with the WAF method is consistent in the case of the scheme

with source term.

3.3 Well-balanced TVD-RK DG with WAF scheme

For the SWE with the source term, the steady solutions of (3.1) is obtained by
setting

1
hu = constant and §u2 + g (h + z) = constant. (3.37)

Since the flux gradient is nonzero, it must be balanced with the bottom gradient.
Usually, numerical schemes without balancing these two quantities produce oscil-
late steady solution, hence, balancing numerical scheme is needed. In this case
the scheme is called the well-balanced scheme. As suggested by Bermudez and
Vazquez [5], a numerical scheme is said to be well-balanced if it satisfies the exact
C-property, i.e., the numerical solution must satisty still water condition at steady

state

u=0 and h+ z= constant. (3.38)

Therefore, one can obtain a well-balanced scheme by designing the method that
its steady solutions satisfy (3.38). Note that we consider only the bottom slope
in the source terms at steady state because the friction term does not affect still
water solutions.

In this section, we develop a well-balanced scheme for the TVD-RK DG based
on the WAF method. The main purpose is to present a modified scheme for solving
the SWE with source term that also preserves exactly stationary solution when

bottom slope exists. Consider the standard TVD-RK DG method
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~ E_u (;c; l) — [ GU) vn(x)dx (3.39)
2
with initial condition

/ Up (2,0) v (2)dz = /I olwyune)d. (3.40)

I;

where F 11 are the WAFs defined in (3.17), and the source term

G = G (U, ) _ 0
Gy (U, x) —ghz,
We derive a well-balanced scheme based on [47] by using the WAF in the
TVD-RK DG instead of the Lax-Friedrichs (LF) flux. The main modification is
the treatment of the source terms in the WAF method by writing the source terms

as a summation

Gp(U,z) = Z sm(a(U,)) t, (z), p=1,2, (3.41)

m=1
where s,, and t,, are functions to be determined later and prime, ’, denote the
derivative with respect to x.

If the solution at steady state is stationary, then a (U,z) in (3.41) can be
decomposed into a; (U, x) and ay (U, x), such that

a1 = h+ z=-constant and ay=u=0.

Since (77 is zero, we consider only G,

1
Gy (U,x) = —ghzy, = —g(h+ 2) 2z, + 59 (2’2>x (3.42)

which is the same as having

1
s1=s1(a1)=—g(h+2), s2= 59 ti(r) = z, and ty(z) = 2
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for p = 21in (3.42). To balance the flux gradient and the source term approximation

at steady state, it is required that

% (F(U(w)) > sm(a(U, a:))tm(a:)> =0 (3.43)
= sm(a(U, 2))tm(x) = a, (3.44)

where « and a(U, x) are constants.

The integration of source term in (3.39) can be approximated by

[ o (U, x) () = / X sl (et

—Z[ (o (500,597 1) 0 (000,502))]
[ tator <>dx]
CE L fotoh o ocn)
+ s (0 (Un, @), l) ) }t(@yvn(@)de ]

5 [ o o0 #0012
SRR
- [ tate <>dx}
CE [ oot o o)
+ 5 (a(Uh,x);%) )}t:n(x)vh(x)dx], m=1,2. (3.45)

Functions a (Up,x) and t,,(x) on the RHS of (3.45) can be approximated by
an(Un,z) and (t,,), (z), where ay(Up,z), (t), (x) € PV (I;). Then, we obtain
(t1), (¥) = z, and (t2), () = z7. Thus,
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F(Un(2)) = ) sm(a(Up, ) (tm),, () = a (3.46)

m

and

/I' Go (Up, x) vp(x)de = Z B (sm (ah (Un, )] . > + Sm (&h (Uny2) ;1 ))]
)y o () = )y o (54
_ /1 (t)y ()0} ()| + 3 [/1 {sun (@ (U, )

m i

Lo (o 01.124) #50 (01723) )

(3.47)
where (fm)m 1 and ( )h il are approximations of t,, ( Z_%> and t,, (a:H%),
respectively. To satisfy the WAF in (3.16), (tm)

, is modified as
2

hyit
N¢q+1
(Fadnirs = D @ity s (3.48)

and if the TVD version in (3.17) is applied, then we use

Ne+1
hz+ Z sgn (¢ + Ezz)+2 ' (3.49)

Note that w;, are weights in the WAF approximations and gb(k)

(kl.) i is defined similar to F(Jrl Jo-

, is the WAF limiter
2
function, it can be seen that ¢

For one-dimensional problem, we have N, = 2, tEL ) i+l = =ty (x;%>, t?i’% =

th (xj+ ) and t( L1 in the intermediate region is obtained via the HLL approach,
2



33

(v, ) it S, >0,
2 Sgrt, (CL’Z_ l) — Sty (l’:- 1)+SRSL <th (:Ej_ l) — 1y <ZL’Z_ l))
bpivy = i ‘3 - *3 2/ i Sp <0< Sp,
R — XL
th<x:;l>, if Sp<o0,
\ 2

where Sy, and Sgi are the wave speed in the Riemann problem.
At steady state, the solution is assumed to be stationary, i.e., h + z = ¢, where

c is a constant and v = 0. From (3.46), we have

1

F(Ub) =D sm(an(U, 2))tm(z) = Sg(hn)* - %gz;‘i — g(hn + 21)2n

m

1
= 59(hn +2n)"

L,
—égc =a.

This shows that the choices of a(Uy,x) and t,, are suitable in the TVD-RK DG
with the WAF.

The following result shows that the TVD-RK DG with the WAF method pre-

serves the well-balanced property.

Proposition The TVD-RK DG with the WAF scheme preserves exactly station-

ary solutions at steady state.

Proof To show that the TVD-RK DG with the WAF scheme preserves exactly
stationary solutions at steady state, it is sufficient to show that T'= 0 where T is
a total truncation error of the scheme at steady state.

Since ay,(Uy, x) and ay(Up, x);% are equal to the same constant ¢ at each point

over cell I; at steady state, thus,
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> UI {sm (an (Up,z)) — % (m (an @) ) + 50 (e U 20,0 ))} (tm),h(x)vh(:c)d:c} ~0.

m K3

From (3.34), the total truncation error when considering the source term is

T—/IF(Uh(x,t))vh( )d:U—FWAF’Uh( )+FWAF m;r +Z[ (Sm(ah<Uh’ )+1>

i i~1

) )] [ 52~ o)
- /l (b () ()]

Using FWAF (3.16), (fm), .1 in (3.48), and ay (Uh,:c)ij;l = ¢, we have
) B 2

T :/I‘ F(Un(x,t)) Zsm(C)(tm)h(m)] vy, (z)dz — [Zka(f:)é Z () (Zwkth +§) ]
i)+ [t = S (Ll )| et
. ]W’d“ [Zwk (ﬂfz—zwcﬂm)]

un(y, 1) +

1
2

F(Un(x,1) = D sm(€) (tm)n()
(k) Z

m
3
j : k
(.Uk F 1
T3
k=1

After applying condition (3.46) and rearranging terms, yields

T=a«a [vh(:v;é) — vp(x %)} — awvp(z 2) + awp(z;” %) =0.
Thus, the TVD-RK DG with the WAF scheme preserves exactly the stationary
solution at steady state, this satisfies the exact C-property, hence, it is a well-
balanced scheme. Since the weights in the TVD-WAF are not affect to the total
truncation error, thus, the TVD-RK DG with the TVD-WAF scheme is also a

well-balanced scheme. O
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Remark One can show that the developed well-balanced TVD-RK DG with WAF
scheme in the case of existing source term is consistent by showing that the ap-

proximation of the source term is also consistent.

3.4 Numerical results

In this section, various experiments have been investigated to demonstrate the

accuracy of the modified scheme for both steady and unsteady flows.

3.4.1 Dam break flow

It has been shown in the previous section that the WAF is consistent with the
TVD-RK DG method. In this section, we apply this modified scheme for solving
the SWE without source terms. The accuracy of numerical solutions is presented
and compared with results from the standard TVD-RK DG with the HLL flux.

The experiment is set up as follow.

The computational domain is —5 < x < 5 with the initial water depth

1, if <0,
h(z,0) = (3.50)
0.6, if x>0,

The initial velocity is assumed to be zero and the boundary conditions are consid-
ered as transmissive boundaries. We perform 50, 100, and 200 cells in the numerical
experiments. Polynomials of degree zero, one, and two are applied for local basis
in the TVD-RK DG method. The root mean squared errors (RMS) of simulated
results using WAF compared with those using HLL flux at ¢ = 2s and At = 0.005s

for various N and K are shown in Table 3.1.



N Numerical Flux | K =50 | K =100 | K = 200
N =0 HLL 0.0280 | 0.0215 0.0165
WAF 0.0182 | 0.0127 0.0094
HLL 0.0130 | 0.0102 0.0072
M=t WAF 0.0107 | 0.0093 0.0067
N9 HLL 0.0103 | 0.0079 0.0053
WAF 0.0100 | 0.0076 0.0052
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Table 3.1: RMS errors when N =0, N =1 and N = 2 for K =50, 100 and 200

for WAF and HLL.

The results show that the accuracy of numerical solution obtained from the

WAF is higher than those obtained from the HLL method, the RMS error de-

creases as K increases and the RMS error decreases as the polynomial of degree

N increases.

The water depth profiles comparing between HLL and WAF at t = 2sfor N = 1

and K = 100 are shown in Figure 3.3 and Figure 3.4, respectively. The moving
shock fronts are well captured for both HLL and WAF, however, WAF is slightly

better for rarefraction wave. This experiment shows the accuracy of the TVD-RK

DG with WAF, as an extension of the FVM [15].

N =1K =100 HLL

solution at time = 2
T T T

T T T
—exact solution
o approximate solution |

L L L L
5 -4 3 -2 -1

Figure 3.3: Exact solution and water depth profile obtained by the TVD-RK DG

with HLL flux.
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N =1K =100 WAF
solqt1011 at‘time = 2

—exact solution
o approximate solution |

1
($2)
|
A
I
w
U
N
I
N
so
-
N
w
N
(8,

Figure 3.4: Exact solution and water depth profile obtained by the TVD-RK DG
with WAF flux.

3.4.2 Flow over irregular bed

This experiment is set up on the uniform channel of length 1500 m with irregular
bottom as shown in Figure 3.5. The problem is proposed by Lai and Bouchut [20]
for testing the accuracy of numerical schemes at stationary state. The boundary
conditions are transmissive with the initial water depth A + z = 16 m and zero

initial velocity. The simulation runs until ¢ = 100s with At = 0.01s.

N=1, K=200
solution at time = 100
18 T T
........... x
16¢ . T ——
14r
121
w10r
+
= 8r
6 i
i ° Well-balanced DG| |
4 -=:DG
2r —bottom
0 | .
0 500 1000 1500

T

Figure 3.5: Stationary flows over irregular bottom produced by well-balanced and

non well-balanced TVD-RK DG with WAF.

Figure 3.5 shows that the well-balanced scheme (dot) gives exactly the station-
ary solution, while the non well-balanced scheme (dash line) gives solution with

high error, especially in the area where the bottom has high gradient.
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3.4.3 Steady flow over a bump

In this experiment, we consider the shallow water flows over a bump in a rectan-

gular channel of length 25 m. The bump elevation is

0.2 —0.05(x —10)*, if 8<uz <12,

z(x) = (3.51)

0, otherwise.

At steady state, classical flows are characterized by subcritical flow, transcritical
flow with shock, or transcritical flow without shock. The TVD-RK DG with WAF
is performed for this problem. The accuracy of numerical result is investigated by

comparing with the existing analytical solutions, see [10].
Subcritical flow over a bump

The upstream boundary is imposed by @Q = 4.42 m?/s and the downstream
boundary h = 2 m with initial water depth h + 2z = 2 m and zero initial velocity.
The simulation of the TVD-RK DG with N=1 is obtained using At = 0.01s. The
comparison of RMS errors from HLL and WAF for various K is shown in Table

3.2, showing that WAF is slightly better than HLL.

K =50 K =100 K =200 K =400
HLL | 1.6954e-03 | 4.5563e-04 | 1.2546e-04 | 3.5900e-05
WAF | 1.5816e-03 | 4.1648e-04 | 1.1474e-04 | 3.3019e-05

Table 3.2: RMS errors when N = 1 for subcritical flow over a bump for K=50,

100, 200 and 400.

The water depth and bump profiles are shown in Figure 3.6, displaying the

agreement between the simulated result and the analytical solution.
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N=1 K =200
solution at time = 200
25 T T
e
151
0
+
<
1
05- —exact solution |
' © approximate solution
=—hottom
0 PN ‘ ‘
0 10 15 20 25

x

Figure 3.6: Water depth and bump profiles for subcritical flow.

Transcritical flow with shock over a bump

The upstream boundary is imposed by @ = 0.18 m?/s and the downstream
boundary h = 0.33 m with the initial water depth h + z = 0.33 m. The com-
parison of water surfaces is shown in Figure 3.7, showing the agreement between
the numerical result and the analytical result. This shows the accuracy of the

well-balanced scheme by capturing the shock front without any oscillations.

N =1, K =400

solution at time = 200
T T

0.4F
0.35f

0.3r
N 0.25¢
+

0.15f
0.1r
0.05f

—exact solution

=——bhottom

o approximate solution | |

0, 15 20

25

Figure 3.7: Transcritical flow with shock over a bump.

Transcritical flow without shock over a bump

The upstream boundary is imposed by @ = 1.53 m?/s and the downstream

boundary is not specified, with initial water depth A + 2z = 0.4 m and zero initial
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velocity.

N=1, K =400
solution at time = 200
T T

—exact solution
1 ° approximate solution | 1
=——bhottom

0.2r /\
0 L I
10

l’

15 20 25

Figure 3.8: Transcritical flow without shock over a bump.

The comparison of the water depth profiles are shown in Figure 3.8, showing
the agreement between the numerical result and the analytical solution. Therefore,

the well-balanced scheme is accurate for transcritical flow problem.

3.4.4 Small perturbation of steady state water

This experiment was first proposed by [23, 24, 25| to study the capability of nu-
merical schemes for small perturbation in shallow water flows. In this experiment,

the bottom topography is

0.25(cos (107 (x — 1.5)) + 1), if 14 <z < 1.6,
2(z) = (3.52)

0. otherwise.

The initial conditions are specified by

1—2z(z)+e if 1l<az<1.2,
q(z,0) =0 and h(z,0)= (3.53)

1 — z(z), otherwise,
where € is a non-zero perturbation constant. The boundary conditions are trans-
missive boundaries. In this work, we consider the cases of € = 0.2 and 0.01. The

disturbance of initial water depth from small € splits the initial wave into two
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waves, the left and the right waves with characteristic speed ++/gh at the early
stage. A standard non well-balanced scheme usually has difficulty to capture the

wave speed correctly.

N =1, K =400, ¢ =0.01
soluti‘on at ti‘me = q.?

1.006[ o approximate solution
—LeVeque

1.004

1.002-

0.9981

0.996 I I I I I I I I I

Figure 3.9: Quasi-stationary flow for e = 0.01.

The simulation result is produced using 400 uniform grid cells for the TVD-RK
DG degree one with WAF and run for ¢t = 0.7s.

The comparison of water depths between the simulated results and the Lev-
eque’s solutions [24] is shown in Figures 3.9 and 3.10 for ¢ = 0.01 and 0.2, respec-

tively, which are in good agreement in terms of the amplitude and wave speed.

N=1, K=400,e=0.2
solution at time = (.7
T T T

112 T T T
o approximate solution

11 —LeVeque
1.08F
1.06F
+1.04r

1.02)

0.98-

Figure 3.10: Quasi-stationary flow for e = 0.2.
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This experiment is carried out based on result in [39], to study the ability of

numerical schemes for unsteady flows over topography. The experiment is set on

the uniform channel of length 30 m with bottom elevation

0, if 0<uz< 10,
2(x) =4 0.1(x—10), if 10 <z < 20,
1, if 20 <z < 30,

and initial water depth

4, if 0< <5,

2, if 5<x<30.

(3.54)

(3.55)

The simulation is obtained by using At = 0.01s on 200 uniform grid cells for

polynomial degree one with transmissive boundaries.

The comparison of simulated results with the Toro’s solutions [39] at ¢ = 1s

and 4s are shown in Figure 3.11 and 3.12, respectively, showing the agreement of

both results in term of the wave speed and shock profiles.

N=1,K =200
solution at time = 1

4 T T T T

3.5 © approximate solution | |
—Toro
3r =——bhottom
2,51
N
+ 2

Figure 3.11: Flows over non-horizontal bed at time 1s.

30
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N=1,K=200
solution at time = 4

3.5r

2,51 q
o
0
+ 2 L—>

1.5r

© approximate solution
| |—Toro

1
= bottom
0.5r
L L L L

0 5 10 115 20 25 30

Figure 3.12: Flows over non-horizontal bed at time 4s.

3.5 Conclusions

In this Chapter, we present the TVD-RK DG method for solving nonlinear SWE.
Most of the TVD-RK DG methods in the literature usually approximate flux at
cell interfaces by applying the HLL method, here, another approach called the
WAPF is applied. The consistent property of the TVD-RK DG with the WAF ap-
proximation is shown in Section 3.2, then the well-balanced TVD-RK DG scheme
with the WAF approximation is developed. It is used to simulate various experi-
ments for steady and unsteady flows. The high accuracy of developed numerical
scheme is demonstrated by various test cases such as flow over irregular bed, steady
flow over a bump, quasi-stationary, and flow over non-horizontal bed. The well-
balanced TVD-RK DG with the WAF method can be used to solve all the kinds
of these problems. Due to its advantages of numerical accuracy, simplicity and
well-balanced property, the presented scheme can be modified and extended to
simulate two-dimensional problems. However, depending on the types of elements,
e.g., triangles or rectangles, it is not trivial to extend for two-dimensional problems
due to the polynomial basis functions and the WAF fluxes at cell interfaces, and

is not considered in this work.



CHAPTER IV
FINITE VOLUME METHOD FOR ONE-DIMENSIONAL
SHALLOW WATER EQUATIONS IN ARBITRARY
CROSS-SECTIONAL AREA

In this Chapter, the reconstruction and bottom modification techniques for open
channel flow in arbitrary cross-sectional area is presented. We applied finite volume
method (FVM) with HLL flux to approximate SWE in arbitrary cross-sectional
area, where the difficulty usually occurs when dealing with wet/dry areas. To
improve the efficiency and stability of the numerical scheme when dealing with
wet /dry problem, we apply the reconstruction and bottom modification techniques.
Various numerical experiments are presented to show good agreement with results
in literature, which confirm the accuracy of the proposed scheme. Moreover, it
also preserves the still water stationary solution and the conservation of mass.
In addition, the proposed scheme is applied to simulate water flow in Yom river,

Phrae province, where the results agree very well with the measured data.

4.1 Finite volume method for one-dimensional shallow wa-

ter equations in arbitrary cross-sectional area

Consider the one-dimensional SWE in arbitrary cross-sectional area

U+ F(U), =8 (U), (4.1)
where
A Q 0
U= , F(U) = Q? |- and S(U) = n2Q|Q)| . (4.2)
Q Z _gAZz - g R4/3A
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This equation is sometimes called the Saint Venant equations. The first and t};e
second component of the flux function in (4.2) are denoted by f; = @ and fy, = %,
respectively, where A is a wetted cross-sectional area, () = Au is a discharge, u is
a velocity, g is a acceleration due to gravity, Z = h+ z is a water surface level, z is
a bottom elevation, h is a water depth, n is the Manning’s roughness coefficient,
R = A/P is the hydraulic radius, and P is the wetted perimeter of the channel. A
prototype cross-section of a channel is shown in Figure 4.1, where B is the channel

width measured at the water surface.

Figure 4.1: Cross-section of a channel.

The computational domain of length L is partitioned into K cells with uniform

cell size Az = x;,1 —x;_1, where ;_1 and x, 1 are the left and the right interfaces
2 2 2 2

of the cell, respectively, and cell 7 is denoted by I; = [wi_%, xHé], fori=1,...,K.

In the FVM, the discretized form of (4.1) is

yrtt —pyr - —/—
! o Ax

where At = ¢"T1 —¢" U is the cell average of U over cells I; at time t" defined by

At [Br, —Fr ] + sy, (4.3)

_—
+5

1
ur

Here, }/7\’1.”_ and ]:i’jrl are the numerical fluxes at the left and the right interfaces of

2
the cell at time t", respectively, the numerical fluxes for f; and f; components at i+

D=
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~\n ~\ "N
1/2 are denoted by ( fl) and ( f2> _» respectively, and 5" is the approximation
i+l i+3
of the source terms at time ¢". ’

4.1.1 Harten-Lax-van Leer flux (HLL flux)

We approximate fluxes Ei 1 at the left and the right interfaces in (4.3) by the
HLL approximate Riemann solver [19, 21, 22, 40, 41, 50, 51] as first proposed by
Harten, Lax and van Leer [13]. For instance, the HLL flux at interface i + 1/2 of

the Saint Venant equations at arbitrary time is given by

FUg), if Sp >0,
FI (U Un) = (Fz,, i S1<0< Sk (4.5)

F(Ug), if Sp<0,
where Uy, = U;, Uz = U;;; which are the limits of the solution from the left and
right of the interface, F(U) = F(U;), F(Ug) = F(U;11), and S, and Sk are the
left and the right wave speeds defined below. As proposed by Ying and Wang

50, 51], in the case of arbitrary cross-sectional area, F" , = (f7, )", where
2

o SrBiy1(f1)i = StBi(f1)is1 + SBiSrBiy1(Ziy1 — Z;) (4.6)
! SrBit1 — S1B; ’ '

. Sr(f2)i = Sc(fa)iv1 + SpSr(Qiy1 — Qy)
i = o . (4.7

For wet bed problem, the left and the right wave speeds can be estimated by

S; = min <ul — \/ﬁ, ut — \/ﬁ) , (4.8)

Sk = max <ui+1 + 1/ ghisy, v + gh_*> : (4.9)

see [21, 22, 41, 50, 51|, where h; = A;/B; and h;y; = A;y1/B;;1 are the averages

of water depths, the velocity in the intermediate region u* is approximated by

1 — —
ut = é(uz + ui+1) + ghz - ghi+1 (410)
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and

\/ﬁ = % (@4— \/ghiﬂ) + %l(ul — Uiy1). (4.11)

For the wet/dry problem, when the right cell is dry, the wave speed can be esti-
mated by

For the left dry bed problem, they can be estimated by

SL = Uj41 — 2 gﬁi—i-l and SR = Uj+1 + gl_zi“. (413)

Thus, the HLL fluxes ﬁfiﬁL can be calculated at each time step t" and substi-
2
tuted into (4.3). The diagram for the HLL corresponding to the Riemann problem

at interface ¢ + 1/2 is shown in Figure 4.2.

Figure 4.2: The wave structure diagram for HLL corresponding to the Riemann

problem.

4.1.2 An approximation of the source term

We follow the idea proposed in [50, 51| to approximate the source terms S/ in
(4.3), which includes of the water surface gradient and the friction term. First,
the water surface gradient for cell ¢ is approximated using the central difference

scheme
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(Z )n _ Zzn—‘rl - Zin—l.

_ 4.14
Tit1 — Ti—1 ( )

The friction term is approximated using a splitting scheme in which we obtain

the solution A and @) at the next time step as follows

ATt = A7 - 2—; {(ﬁ);l - (ﬁ)j_l} , (4.15)
- -5 (), - (B) ] -z,
Q= Q- A (g—”(g)/'i’) - (4.17)

where Q7" is the intermediate value of @ obtained from (4.16).

4.2 Reconstruction and bottom modification techniques for

wet /dry problems

In order to improve the stability and efficiency of handling the wet/dry problem,
we extend the idea in [3| from uniform to arbitrary cross-sectional areas. There

are 2 steps as follows

Step 1 Reconstruction for non-negativity of the water depth
We consider only the interface i+ 1/2 of cell i for arbitrary time, thus, we omit
superscript n. If the interface is detected as a wet/dry interface, we reconstruct

the left and the right limits of water depths to be the following new values

h;% = max <O,hi+zi—zi+%> , (4.18)
hﬁ% = max <0, hi+1 + Ziy1 — ’Zi+%) . (419)
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Here, we set Zipl = max (2, zix1). Then, the water surface at interface ¢ + 1/2

_l’_

ure 4.3 is a conceptual sketch showing the reconstruction Varlables hil' Similar
2

can be computed directly as Z_, = h; , + 2,1 and ZJr = h;:Ll + 2,1, Fig-
2 2

reconstructions are applied at the interface i — 1/2 of cell i.

Figure 4.3: The limits from the left and the right of the variable h for cell ¢ at
interface ¢ — 1/2 and ¢ + 1/2.

Step 2 Bottom modification

To resolve the difference between the actual and modified water surface level
that occurrs in Step 1, we extend the idea developed in [26].

If the interface under consideration is dry on the left side, we modify the water

surface and bottom again by

- _ =gt
Zi+%_Z+2_AZ and Z ZH%—Az, (4.20)

where Az = max (0, Zipl — (hiy1 + ziﬂ)) and the water depths are kept at the

+ +
1 — h

same values, i.e.. h” , = h” , and A’
’ ! z—i—% z+% i+3 +2

The values of fl_ . and fﬁ . are obtained directly by using fz;l and ﬁ;rl, the
2 2

2 ~
A7 yu; and Q+ = Aiiluiﬂ, and we define the vector of mod-
2 2
- N T - . - T
- _ (i — + _ (it - :
ified variables by UH% = (Ai+%’Qi+l> and Ui+% = <Ai+%,Qi+%> , respectively.

2
For the case of dry bed on the right side of the interface, we calculate similarly, by

discharges Q

using Az = max (0, Zipr — (hi + zz))
In order to approximate the water surface gradient source term, all of the

modified variables are used as follows
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. (All +/~1f+;) . (AZ—_; Aj_l> i (ZZ;l +ZL;>
where AZ+% - 5 22 il = 2 2 AR p 5 2/
o (Z, 7))
and Z, 1 = 2 2
2 2

In our work, the numerical scheme with reconstruction (step 1-2) is referred
to as scheme II and the scheme without reconstruction is referred to as scheme I.

Similar work for scheme I can be seen in [50, 51].

Summary of algorithm for scheme I

1. Given the initial condition U?, i =1,2,..., K.

2. Compute the numerical flux ﬁi? and the water surface gradient source
2

term by using (4.5) and (4.14), respectively.

3. Update the solution for A7 and Q7' by using (4.15)-(4.17).

Summary of algorithm for scheme II

1. Given the initial solution U, i = 1,2,..., K.

2. Reconstruct and modify the variables h, z, Z, A, and @ using steps 1 and 2

in Section 4.2.

3. Use the reconstructed and modified variables to compute the numerical flux
fﬁﬁL and water surface gradient source term by using (4.5) and (4.21),

2
respectively.

4. Update the solution for A7 and Q" by using (4.15)-(4.17).

Note that when we obtain A’ we can solve for h?™' using the Newton’s

method.



o1

4.3 Numerical Results

In this section, we validate the proposed scheme II by running numerical ex-
periments using various open channel flow problems available in the literature

[4, 12, 17, 20, 21, 22, 30, 48].

4.3.1 Dam break in various channels

In this experiment, we consider the dam break flows in open channel with friction-
less, flat bottoms of different cross-sectional shapes, including parabolic, triangu-
lar, and trapezoidal. The numerical results are compared with the exact solutions

[21, 22] to assess the accuracy of the our presented scheme.

Dam break in parabolic channel

In this experiment, a 1000 m long parabolic channel with top width B = v/h and
wetted area A = %h?)/ 2 is considered. The cross-section of the parabolic channel is
shown in Figure 4.4(a). The wall of the dam is located at 500 m from upstream.

The initial velocity is zero, with the initial water depth

10, if 2 <500,
h(z,0) = (4.22)
1, if x> 500.
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(a) The parabolic channel. (b) The triangular channel.

L. 2h }]{ | }L 2h ﬁl

(c) The trapezoidal channel.

Figure 4.4: The cross-sectional areas of parabolic, triangular, and trapezoidal chan-

nel.

The simulation is run on uniform 400 grid cells for 20s with time step At =
0.05s . Figure 4.5 shows comparisons of the water depth and the discharge between
the approximate solutions and the exact solutions. The numerical scheme can
capture the shock and rarefraction well when compared with the exact solution
given in [22].

time is 20 time is 20

T 60,
=—exact solution
= = :approximate solution

10|

50

T
=—exact solution
= = :approximate solution
40t :

Q30

20

2r q 10

0 I I I I I I I I I L ! e | | | | ! "
0 100 200 300 400 5%0 600 700 800 900 1000 0 100 200 300 400 5%0 600 700 800 900 1000

(a) The water depth, h. (b) The discharge, Q.

Figure 4.5: Comparisons of the water depth (a) and the discharge (b) between the
exact solutions and the approximate solutions at 20s for dam break in a parabolic

channel (wet bed problem).
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The experiment for the dry bed case is performed similar to the wet bed case,
except that the water depth h = 0 for > 500 m. This case is simulated using
1000 uniform grid cells and At = 0.0001s. The approximate solutions of water
depth and discharge at final time 20s are shown in Figures 4.6(a) and (b), which

are in good agreement with the exact solutions shown in [22].

time is 20 time is 20
T T 60 T T

T
=—exact solution
= =+approximate solution

10

T
=—exact solution
= =+approximate solution

50r

40

Q& 30-

20r

101

I I I I I I I L *y 0 L L Lat L L I L L "
0 100 200 300 400 520 600 700 800 900 1000 0 100 200 300 400 520 600 700 800 900 1000

(a) The water depth, h. (b) The discharge, Q.

Figure 4.6: Comparisons of the water depth (a) and the discharge (b) between the
exact solutions and the approximate solutions at 20s for dam break in parabolic

channel (dry bed problem).

Dam break in triangular channel

Here, we consider a 1000 m long triangular channel with width B = 2h and wetted
area A = h?. The cross-sectional area of triangular channel is show in Figure

4.4(b). The initial water depth is set at

1, if =< 500,

h(z,0) = (4.23)

0.1, if x> 500,

with zero initial velocity. The simulation is performed using K = 400 and At =
0.125s. The simulation shows a rarefraction that moves to the left and a shock
that moves to the right. Figure 4.7 shows the water depth and the discharge at

80s, which agree very well with the exact solution provided in [21].
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(a) The water depth, h. (b) The discharge, Q.

Figure 4.7: Comparisons of the water depth (a) and the discharge (b) between
the approximate solutions and the exact solutions at 80s for dam break flow in

triangular channel (wet bed problem).

Dam break in trapezoidal channel

This experiment consider a 1000 m long trapezoidal channel, with width B = 14-4h
and wetted area A = h + 2h2. The cross-sectional area of the channel is shown in

Figure 4.4(c). We set the initial water depth as

1, if 2 <500,
h(x,0) = (4.24)

0.1, if x> 500.
The simulation is performed on 400 uniform grid cells with zero initial velocity
and At = 0.1s. Figure 4.8 shows the comparisons of the water depth and the

discharge between our approximate solutions and the exact solutions provided in

[21] at 103.1s, which agree well.
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time is 103.1 time is 103.1
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(a) The water depth, h. (b) The discharge, Q.

Figure 4.8: Comparisons of the water depth (a) and the discharge (b) between the
exact solutions and the approximate solutions for dam break flow in trapezoidal

channel.

4.3.2 Still water in parabolic channel

This experiment is designed to test the ability of the numerical scheme II to pre-
serve the still water solution in the parabolic channel described in section 4.3.1. The
computational domain is 1500 m with irregular bottom proposed in [20]. The simu-
lation is performed on 100 uniform grid cells with initial water surface, Z(z,0) = 16
and zero velocity. The numerical solution at ¢ = 100s is shown in Figure 4.9, illus-
trating that our numerical scheme preserves the still water solution exactly.

time is 100

: :
]f{emmmsmsssssssssssssssssssssssssssssssssssssssssEsssssssssssss -
141
12+

10r

N N o @
T T T T

= = =approximate solution
—bottom

I
1000 1500

2

Figure 4.9: The still water with irregular bed in parabolic channel.

To test the ability of the scheme to handle wet/dry still water stationary state,

an additional calculation is performed with initial conditions Z = max(z,6) and
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u(z,0) = 0. The numerical result at ¢ = 100s is presented in Figure 4.10, showing
that the scheme also preserves the still water stationary solution in the case of the

wet /dry problem.

time is 100

T
= = =approximate solution
—bottom

!
1000 1500

Figure 4.10: The wet/dry still water with irregular bed in parabolic channel.

To illustrate the capability of scheme II to converge to the steady state solution,
additional calculation are performed in the parabolic channel with irregular bottom
similar to still water experiments for both wet and wet/dry bed problems. The
initial water surface are Z = 18 for x < 200 and Z = 16 otherwise, for wet bed
problem, and Z = 8 for z < 200 and Z = max(z, 6) otherwise, for wet /dry problem
with zero initial velocity for both cases. The initial water surfaces are shown in

Figure 4.11.

time is 0 time is 0

------- T T T T P
H == initial water surface
e e —bottom
'
'

151

== initial water surface
—bottom

I
0 500 I 1000 1500

I
1000 1500

(a) The initial water surface for wet (b) The initial water surface for

bed problem. wet /dry bed problem.

Figure 4.11: The initial water surfaces for still water stationary solution problems.
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The simulations are performed on 100 uniform grid cells with reflective bound-
ary conditions on both sides, until the steady states are reached. The approximate
solutions for both cases are shown in Figure 4.12. These solutions converge to the

still water solution at steady state.

time is 20000 time is 2500

20, 10y T

151

N10F

= =approximate solution
= bottom
0!

= = +approximate solution
—bottom

I . I .
0 500 1‘ 1000 1500 0 500 - 1000

(a) The simulated water surface for (b) The simulated water surface for

wet bed problem. wet /dry bed problem.

Figure 4.12: The simulated water surfaces for still water stationary solution prob-

lems.

4.3.3 Riemann problem in non-prismatic channel

This experiment is similar to the one proposed by Murillo and Navarro [30]. We
consider dam break problem in a non-prismatic channel with a non flat bottom
to test the accuracy of numerical scheme II. The domain is defined as —10 <
x < 10. The channel width is B = v/Byh with the wetted area A = §h3/2. The
simulation is performed on 800 uniform cells with At = 0.001s. The bottom, z,
has a discontinuity at x = 0, where the initial conditions and bottom profile are

given as follows

1.5, if x<0, 1, if x<0,
h(z,0) = u(x,0) = (4.25)
1, if x>0, 0, if x>0

and

1500
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0, if =<0, 24, if x <0,
z(z) = By (x) = (4.26)
1, if x>0, 12, if = >0.

The simulation of water depth in this experiment consists of a shock wave
moving to the left and a rarefraction wave moving to the right. The comparisons
of water depth, wetted area and discharge between the approximate solutions and
the exact solutions provided in [30] at 1s are shown in Figure 4.13. This shows the
accuracy and capability of the numerical scheme II to handle flow in non-prismatic

channel over a non flat bottom.
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-4 -3 -2 -1 0 1 2 3 4 4 -3 -2 -1 0 1 2 3
z T
(a) The water surface Z. (b) The wetted area A.
timeis 1
“ .‘ ....... ‘......._‘ ‘ = =+initial discharge
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5 °) * approximate solution
o
4 o
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S
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»
ok 2 {
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(c) The discharge Q.

Figure 4.13: The comparisons of the water depth, the wetted area and the discharge
between the exact solutions and the approximate solutions for Riemann problem

in a non-prismatic channel.
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4.3.4 Oscillatory flow in a parabolic bowl without friction

effects

This experiment is performed to check the capability of the numerical scheme for

an oscillating flow in parabolic bowl with the bottom

z(z) = ho (z/a)”, (4.27)

where hg and a are constants. The simulation is performed with hg = 10 m and a =
3000 m on the computational domain —5000 < z < 5000 m in uniform rectangular
channel, as described in [17]|. In this experiment, the flow has wet/dry interfaces
that are oscillating up and down in the parabolic bowl. This is a challenging test
of the numerical scheme’s capability to handle wet/dry problems. The simulation
is performed on 400 uniform grid cells and simulated until ¢ = 2000s. The result
from the numerical scheme II is shown in Figure 4.14, which agree very well with

the exact solution given in [17].

time is 2000

30 T T T T

== exact solution

251 - -approximate solution
—bottom

201

N15-

10F

5F

1 1 1 1 L 1 1 1 1
—5%00 -4000 -3000 -2000 -1000 2 1000 2000 3000 4000 5000

Figure 4.14: The comparison of the water surface between the approximate solution
and the exact solution for oscillatory flow in a parabolic bowl without friction

effects.

When comparing between scheme I and II based on the largest Courant-Friedrichs-
Levy (CFL) number, the CFL numbers for schemes I and IT are 0.0991 and 0.3962,

respectively. This implies that scheme II is more efficient in term of stability than
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scheme I. If scheme I is applied with CFL=0.3962, the approximate solution is

oscillate as shown in Figure 4.15.

time is 240
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Figure 4.15: The comparison of the water surface between the approximate solution

from scheme [ with CFL=0.3962 and the exact solution.

4.3.5 Dam break flow over a discontinuous bottom

This experiment is performed to investigate the capability of the scheme to handle
the wet/dry problem for steady flow with a discontinuous bottom. The flow is
considered on a 25 m long trapezoidal channel similar to that described in section

4.3.1, with a frictionless discontinuous bottom defined by

0.5, if 8<a<12
z(x) = (4.28)

0, otherwise.

The initial water surface is

1, if z<3,
Z (z) = (4.29)

0, otherwise
with zero initial velocity and reflective boundary conditions on both boundaries.
The simulation is performed using 500 uniform grid cells with At = 0.001s until
the steady state is reached. The result of the water surface at steady state is shown

in Figure 4.16, illustrating that the approximate solution produced by scheme II
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converges to the still water steady state. We have also checked the conservation
of mass of the presented scheme by setting an initial mass in our simulation as
36, which remains the same as 36 for all running time ¢ = Os to ¢t = 500s. This

demonstrates that our scheme preserves mass during time integration.

time is 500
T

= = =approximate solution
0.6- — bottom

0.5

0.4

0.3F

0.21

0.1r

Figure 4.16: The steady state water surface of the dam break flow over a discon-

tinuous bottom simulated by scheme IT with At = 0.001s.

As illustrating in Figure 4.17, the result obtained from the Scheme I does
not preserve the mass and the non-negativity of the water depth during the time
integration, even with smaller At. Figure 4.18 shows that the result at steady
state from scheme I with At = 0.0005s, displaying the negative water depth in
some areas. The comparison of the simulated water surfaces from schemes I and
IT with K = 500 in the area that water depth from scheme I is negative is shown
in Figure 4.19. These results show that scheme II is more robust than scheme I in

the case of wet/dry problems with a discontinuous bottom.
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Figure 4.17: The simulated water surface produced by scheme I with At = 0.001s.
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Figure 4.18: The simulated water surface produced by scheme I with smaller At =

0.0005s at steady state.
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4.3.6 Vacuum occurrence by a double rarefaction wave over

a step

This experiment is motivated by the results from the FVM with VFRoe using a
non-conservative variable (VFRoe-ncv) scheme given in [12] and from the FVM
weighted essentially non-oscillatory (WENO) scheme given in [48], and to illus-
trates the ability of the scheme to handle wet/dry problems over a discontinuous
bottom. The flow is considered on a 25 m long rectangular channel with discon-

tinuous bottom defined by

.25 2
17 it — S x S 5
z(x) = 3 2 (4.30)

0, otherwise

and frictionless. The initial water surface Z is 10 m and the initial discharge is

=350, if 0<z< @,
Q) = 3 (4.31)
350, otherwise.

The simulation is performed on 250 uniform grid cells with At = 0.001s and
the water surface and discharge are observed at t = 0.05, 0.25, 0.45, and 0.65s (see
Figure 4.20).
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The approximate solution at various times The approximate solution at various times
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(a) The water surface, Z. (b) The discharge, Q.

Figure 4.20: The approximate solution of the vacuum occurrence by a double

rarefaction wave over a step at various times.

The simulation results show that dry areas develop after the water flows out
of the domain as time passes. Figure 4.20 shows the numerical results for the
water surface and the discharge at various times, which show good agreement with
the results in [12, 48] (see Figure 4.21 for the result from [12]), illustrating that
the numerical scheme works well for the wet/dry problem with a discontinuous

bottom.

(a) The water surface, Z. (b) The discharge, Q.

Figure 4.21: The result of the vacuum occurrence by a double rarefaction wave

over a step at various times from [12].
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4.3.7 Unsteady dam break flow in adverse slope channel

This numerical experiment is designed to compare results with the laboratory
experiment by Aureli et al. [4]. The flow is considered on a 7 m long rectangular
channel with the dam located at 2.25 m from the left boundary. The initial water
depth is 0.292 m inside the dam and it is dry outside with zero initial velocity and

Manning’s roughness coefficient 0.025. The bottom elevation is

0, it 0<zx<3.5,
z(x) = (4.32)
0.1(x —3.5), if 35<z<7

and the simulation is performed for 30s by using K = 700 and At = 0.001s.
The water depths are observed at four different locations in the channel at 1.4,
2.25, 3.4, and 4.5 m, as shown in Figure 4.22, which also shows the laboratory
results from [4]. The numerical results are in good agreement with the laboratory
measurements at various locations, showing the accuracy of the numerical scheme

for flows with bottom slope and friction effects.
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(c) x=3.4 m. (d) z=4.5 m.

Figure 4.22: The comparisons between the simulated water depths and the labo-

ratory results from [4]| at various locations.

4.3.8 Simulation of the flow in the Yom river

In this experiment, the numerical scheme is applied to simulate water flow in the
Yom river located at Phrae province in Northern of Thailand from the gauging
stations Y20 to Y1C (see Figure 4.23). The data of the bottom elevation and the
cross- sectional areas of the river are obtained from [16] and [53]. The simulation
is performed using 45 different cross-sectional areas located along the river from
Y20 to Y1C with Az = 2000 m approximately and with the bottom elevation data
shown in Figure 4.24. The example of cross-sectional areas at Y20, Y1C and at

point 1, 2, 3, and 4 in Figure 4.24 are shown in Figure 4.25 and 4.26.
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Figure 4.23: The studied area of the Yom river from gauging stations Y20 to Y1C
(blue line).

Figure 4.24: The bottom elevation of the Yom river from Y20 to Y1C.
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(a) Y20 gauging stations. (b) Y1C gauging stations.

Figure 4.25: The cross-sectional areas of the gauging stations obtained from [53].
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(a) Point 1 in Figure 4.24. (b) Point 2 in Figure 4.24.
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(c) Point 3 in Figure 4.24. (d) Point 4 in Figure 4.24.

Figure 4.26: Examples of the cross-sectional areas at locations 1, 2, 3, and 4 in

Figure 4.24 obtained from [16].

The simulation of water flow in Yom river from Y20 to Y1C is performed for
two weeks, from August 27 to September 10, 2014. The initial data on August
27 is obtained by inputting the real data on August 26 for the water surface
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Z = 183.14 and the discharge () = 63.68, then calibrating until we obtain values
of Z and () that agree with the real data at Y1C on August 27. Figure 4.27 shows
the obtained results. This calibration of initial data also gives the value of the

Manning’s roughness coefficient of n=0.025 for our simulation.

190, T T T T T 250,
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(a) The initial water depth from sim- (b) The initial discharge from simu-

ulated result. lated result.

Figure 4.27: The numerical results for water depth and the discharge on August
27, 2014.

The water surface and discharge at Y20 from August 27 to September 10 used
in the simulation are set to be the measured data from [53] (see Figure 4.28). The
simulated discharge compared with the real data [53| from August 27 to September
10, 2014, at Y1C station is shown in Figure 4.29, showing that the simulated dis-
charge has variations very similar to the real measured data. It has small variation
from August 27 to 29, increasing rapidly from August 30 to September 4, decreas-
ing rapidly from September 4 to 6, and oscillating similarly from September 6 to
10. The result from the simulation shows good agreement with the measured data
in term of the discharge, which can capture the peaks of the discharge correctly. It
also show the efficiency and accuracy of the developed scheme to handle the flow
that cross-sectional and bottom have a lot of variation with friction effect. This
illustrates that our numerical scheme is applicable for simulating real water flows

in a river.
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Figure 4.28: The real measured data for the water surface and the discharge from

August 27 to September 10, 2014 at Y20 station.
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Figure 4.29: The comparison of the simulated discharge and the real measured

data from August 27 to September 10, 2014 at Y1C station.

4.4 Conclusions

In this work, we have presented the reconstruction and bottom modification tech-
niques to handle the shallow water equations for open channel flows in arbitrary
cross-sectional areas for wet /dry problems. The scheme preserves the mass during
time integration and it is also more efficient in term of stability when dealing with

wet /dry problems. As seen in Section 4.3, the scheme is capable of handling many
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flow situation and preserving the still water stationary state. In addition, the pre-
sented scheme is also applicable for simulating flows in the Yom river located at
Phrae province as described in Section 4.3.8, where the simulated results capture

the variation of the discharge very well when compared to the measured data of

the real flow.



CHAPTER V
WELL-BALANCED FINITE VOLUME METHOD WITH
WEIGHTED AVERAGE FLUX FOR
TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

A well-balanced FVM for solving two-dimensional SWE with WAF is developed
in this work to simulate flooding. Friction source terms are estimated with a semi-
implicit scheme resulting in an efficient numerical method for simulating shallow
water flows over irregular domains, for both wet and dry beds. A wet/dry cell
tracking technique is also presented for reducing computational time. The accuracy
of these methods are investigated by applying to well-studied cases. For practical
purposes, the developed scheme is applied to simulate the flooding of the Chao
Phraya river from Chai Nat to Sing Buri provinces in Thailand during October
13-17, 2011. The numerical simulations yield results that agree with the existing

data obtained from the satellite images.

5.1 Finite volume method (FVM) for two-dimensional shal-

low water equations

Consider the two-dimensional SWE

Ut—l—F(U)m—i—G(U)y:S(U), (5.1)
where
h hu hv
U=| hu |, FU) =] mwl+3igh* |, GU)= huv , (5.2)
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and

0
SWU)=| —ghze+ Spa | (5.3)
—ghzy + S¢,

h is the water depth, ¢ is a acceleration due to gravity, u and v are the flow
velocities in the z- and y-directions, respectively, Sy, = —Cuvu? + 02 and S fy =
—Cvv/u? + v? are the friction terms in the z- and y-directions, respectively with
C = gn?/h'/3 and n is a Manning’s roughness coefficient.

The FVM in two-dimensions begin by dividing the computational domain in z-
and y-direction into K'z and Ky cells, with uniform cell size Ax = x;,1/2 — 2i_1/2
and Ay = yjr12 —yj_1pfori=1,2,.. . Kz and j =1,2,..., Ky. x;_1/5 and ;11,2
are the left and the right interfaces of the cell in z-direction, and y;_1/2 and y;41/2
are the left and the right interfaces of the cell in y-direction, respectively. We
denote the ij" cell by I;; = (a:,-_l/Q, xi+1/2) X (yj_l/g, yj+1/2). The example of the

grid discretization in two-dimensions is shown in Figure 5.1.

Figure 5.1: The grid discretization in two-dimensions.

A discretized form of (5.1) is
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~ ~

dU;(t)  Fivijeg — Ficiyag @z J+1/2 — éij—l/?
i 9. 9 9 — SZ " 5.4
i Ar + Ay ; (54)
where Uj; is the approximation of U defined as the unknown average over cell I;;,
namely,
I / U (2, y.t) dad (5.5)
1] T Al’Ay I z,Y, zray. .

Here, S;; is the approximation of the source term at cell I;;, and F and G are
numerical fluxes in the z- and y-directions, respectively.

To ensure second-order accuracy in time, the second-order Runge-Kutta (RK2)
method is applied in our work. It is found in our simulations that this method

allows us to use time step sizes larger than those when using the first-order method.

5.1.1 Weighted average flux (WAF) for two-dimensional shal-

low water equations

Let’s first consider the approximation of numerical flux in the z-direction. The

FWAF

intercell flux with WAF at interface (x;y1/2,y;) is denoted by i which is

2

defined as an integral average of F(U) at the half-time step, namely,

FWAT — Ay/ T, Y, — At dxdy (5.6)
3.0 Aaz Ay "2 ’ '

where U, il is the solution of the R1emann problem with piecewise constant data

UZ I U + b1 which are the solutions from the left and the right limits at the

interface i + 1 /2. The details of derivations of WAF can be found in [6, 40, 41, 42].

Moreover, the wave structure form of WAF can be written as

Ne+1

FEWAF Z w F(kl P (5.7)

/L+27j

where N, is the number of waves in the solution of the Riemann problem and

F (f) is the value of flux in the region k of the solution of the Riemann problem,
27

see Figure 5.2.
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The WAF with Harten-Lax-van Leer-Contact (HLLC) version in two-dimensions
is proposed by [2, 28|. There are three flux components, where the first two com-
ponents are estimated by the weighted average values from the HLLC Riemann

solver,

(245), = Yo (1)), =12 5

while the third component is the Welghted average value of WAF,

WAF _ + WAF
(Frer) = (w4l ) (BT (5.9)

(1 _ - (3) _ + S
where <F;+§J>p = (F (Ui%’j))p, (F”évj)p (F <U+27J>>p' The flux in in-

termediate region (F;(i)éj)p is approximated by the HLL, see [28]. The weighted
values are w; = 3 (1+¢1), wa =2 (o — 1), w3 =3 (1 — ¢2), wi, = 3 (1 +¢*), and
Wo, = %(1 — c*), where ¢; = S At/Ax, ¢y = SpAt/Ax, and ¢* = S*At/Ax. Here,
St, Sg, and S* are wave speeds in the left, the right, and the intermediate regions,
respectively. Note that the flux for the first two components is calculated by using
only the S;, and the Sr waves in the Riemann problem, while the flux for the
third component is calculated by using only the S* wave. The diagram for WAF

corresponding to the Riemann problem is shown in Figure 5.2.

Figure 5.2: The diagram for WAF corresponding to the Riemann problem.

The wave speeds S;, and Sk for the wet bed case at the cell interface are

approximated by
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S, = min <u_

i+1.5

o + + * *
Sk = min (uH%’j + 4 /ghi+%7j,u +Vgh > : (5.11)

gh , u* — gh*) , (5.10)

Z+§7]

with

S L = - 1/ . B

* 1 —
ut =g (uH%] Z+ ]> \/gh — \/gh:‘r%,j' (5.13)

For the dry bed on the right side of the cell interface, the wave speeds are

approximated by

SLZU

and for the dry bed on the left side of the cell interface

The intermediate wave S* was proposed by Toro in [41] which calculated by
Suhf,y ( e SR> ~ Suh,, (u;l’. - SL>

hjﬂj( ) J—SR>—hl+ j( Y SL>

To avoid spurious oscillations near a shock front, the WAF method is modified

S* = (5.16)

by enforcing the TVD conditions [40, 41|, which can be written as

Nc+1
(P, =R a (), =12 6w
k=1

and

AF-TVD - — - + LWAF-TVD
FW: ) = (w V., .+ e V. ) <F i ) 5.18
( i+3. 5 Blirga T i) Uiga 1 (5.18)
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where the new weights are

=3 (1) o)) ) @ =14 (sen(e) 6, —sen(e) e}, ).
H(1—smn ()6, ). @ = 3 (1L+sm(e) o, ). and
Wy, =1 (1 — sgn (¢*) ¢Z(i)%]>

Here, ng o1 are the WAF limiters, [ = 1,2, %, where the minmod function is
2’

employed in this work, namely,

1’ T(l) S 0’
¢§2%,j () =q1-@—lahr®, 0<rO<1, (5.19)
lal r® > 1,
where () is defined by
(ARD. pE -
1_7 -] = 57] = 57] .
ife; >0
o . 0.~ '
Ah, i+1.j hz+2,j hi—o—%,j
r) = (5.20)
0] , 0,-
Ath’ hz+2,g hi+%’j .
= ife; <0
ARO, T p0F O T
1

\ Z+27] Z+27] Z+§?j

with Ah@ 1 Ah(l) g and Ah( being the jumps of h across the wave [ in the

+3 2]
solutions U i Ui and U, s 134

7,+§,j7
the numerlcal flux in the y-direction, GZ-JJF%, is obtained via (5.17)-(5.18). This

of the Riemann problem, respectively. Similarly,

concept can be applied at the interfaces i — 1/2,j and 4,7 — 1/2.

5.1.2 Linear reconstruction

Since approximating the solution by the cell average only gives first-order accuracy
in space, second-order accuracy can be obtained by applying linear reconstruction
[23, 25, 40]. For example, in the z-direction, the unknown variables are recon-

structed as
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Uitl/Z,j = Uij — UijAle', (521)

;_1/2’]» = Ul'j + O'Z'jA.T, (522)

where o;; is a slope limiter. In this work, we applied the minmod slope limiter,

0;; = minmod (UllJA; Ui’j, Ui _A;]iﬂ’j) ) (5.23)
where
a, if |a| <1b| andab > 0,
minmod (a,b) = ¢ b, if |b] < ]a| and ab > 0, (5.24)

0, if ab<0.

Similarly, the linear reconstruction in the y-direction can be obtained as in (5.21)-

(5.22).

5.2 Well-balanced scheme

A well-balanced scheme is designed for preserving the stationary solution at steady

state. For the two-dimensional problem, the still water stationary solution is

v=0, w=0, and h+ z= constant. (5.25)

In this work, the well-balanced scheme is obtained following the pioneering
work by Audusse [3]. We reconstruct h at the interfaces in the z- and y-directions

by
+x + +
hi+1/2’j = max (O, hz‘+1/2,j + Z1/0, zi+%7j), (5.26)

= . + +
R j1je = max <0> hjiye T 2 — Zz’,j+%>’ (5.27)

_ — + _ - +
where Zip 1, = max (Zi+1/2,j’ Zi+1/2,j> and Zjjy1 = max (zi7j+1/2, zi7j+1/2>.

These reconstructions ensure non-negativity of the water depth, [3].
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In this work, we have modified the conservative variables [3], to be
uts [N b '
z:|:1/2,] i+£1/2,50 "Yit1/2,5 111/237 i+1/2,5 z:|:1/2,]
and

U Rt o, b

T
+
ijE1/2 = (z]:l:l/2’ z]:tl/Qu,j:tl/2’ hz]:l:l/2v,]:|:1/2> :

The finite volume scheme becomes a well-balanced scheme and is expressed by

i o Al r
au;;(t) Fz+1/2,3 Fi71/2,j n G, ij+1/2 ~ Tij-1/2 g

i 5.28
dt * Ax Ay i ( )
where the numerical flux in the z-direction and the bottom slope terms are modified
as
0
P :ﬁ(U"* Ut >+g (h+ )2 (h+* )2 (5.29)
i3 =347 Tim59) 2 i=3 i3 ’ '
0
0
Fl, =F(U_% U™ J - Y (Y 5.30
o =R 0E) £ 5 | (ay,) - () | 620
0
and
0
g + - - +
Sews = | ~axz (g i) (= 200) |- (5:31)

__ 9 [+ -+
27y figoy F g (Zz;j% “ij-3
The linear reconstruction of the bottom elevation z in Sc;; is obtained from
the linear reconstruction of A+ z minus the linear reconstruction of h, as suggested

in [3], for example, 2, = (h+2), .1 —h_ .. When the linear reconstruction

Jt+a ij+3 i,j+3
is not applied, S¢; ; is zero, which is equivalent to the first-order method.
Similarly, the numerical flux in the y-direction, G" and G! can be obtained by

the decomposition of the bottom slopes in the third component.
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Note that the present scheme with WAF is second-order accurate in space
for smooth flow solution when applying the linear reconstruction, which does not

depend on the choices of the numerical fluxes, see proof in [3].

5.3 Friction term approximations

To obtain a stable FVM when dealing with a strong nonlinear friction term, we
use an implicit scheme to approximate the friction. Following the splitting implicit
technique presented in [17, 18|, we solve the SWE by considering the ordinary

differential equation

dUz n
dtj = (Spi (5.32)
In the z-direction, we have
d (hu),, "
which can be approximated by
(hu);™ = (hu), n  0(S);;

N = (Spa)ls + ) ((hu);j“ _ (/w);;) . (5.34)

This can be rewritten as

(Sfz)r
n+1l _ n ]
() = () + At (5.35)

where D, is an implicit coefficient defined by
2 ((hu)Z)z + ((hv)%>2
(h)” \/<(hu)g)2 + ((hv);;)Q

with C = gn?/ (h?j)l/ °. Note that although this scheme is called implicit, see

(5.36)

(Dg)i; = 1+ AtCy;

ij

(5.32), we can calculate it explicitly, see (5.35). The updated solutions are calcu-
lated twice for each step of the second-order Runge-Kutta method. The calculation

in the y-direction are considered similarly. Since the well-balanced scheme that we
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apply here has preserved the non-negativity of water depth, see [3|, it implies that
our numerical scheme with this friction term approximation also preserves the non-
negativity of water depth, because the RHS in the conservation of mass equation

18 zero.

5.4 Wet/dry tracking technique

The wet/dry tracking technique is employed in order to reduce the computational
time of the FVM. The key idea is to track only the updated cells, and then per-
form calculation only on these cells. To do this, we present the wet/dry tracking

algorithm in Figure 5.3 as follows

Figure 5.3: Flowchart of the wet/dry tracking algorithm.



82

The example of finding updated cells from the first to the second time step is
illustrated in Figure 5.4, where the wet cells are marked as crossed cells and the
neighboring cells are marked with black. The updated cells are the combination
of the wet cells and their neighboring cells.

By applying the wet/dry tracking algorithm, we can greatly reduce the com-
putational time for flow problems that have smaller wetted area, when compared
with the whole domain. Note that this algorithm is easy to implement in general,
since it will slightly enlarge the computational domain at each time step by adding
a few new neighboring cells to the domain without deleting cells that change from

wet to dry.

Figure 5.4: The change of the wet cells (cross) and the added neighboring cells
(black) from first time step (left) to the second time step (right).

5.5 Numerical results

In this section, we describe the numerical experiments for various test cases used to
check the accuracy of our scheme. For practical purposes, the developed numerical
scheme is applied to simulate the great flood in Thailand, 2011. The numerical
experiments in Sections 5.5.1-5.5.8 are performed by the developed scheme using
linear reconstruction. To save computational time for flood problem simulation,

we apply the numerical scheme without linear reconstruction in Section 5.5.9.

5.5.1 Rectangular dam break without friction

In this experiment, we consider the rectangular dam break flow without friction in

one-dimension. The numerical results are compared with the analytical solutions
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to check the accuracy of the scheme. The accuracy is checked for results of the
two different numerical fluxes, HLL and WAF, and for both wet and dry beds.
We compare the errors of the results for the schemes with and without the linear

reconstruction to check the accuracy of the solutions.

Wet bed

We consider the dam break flow in the domain —5 < x < 5 with initial condition

1, ifrx <0,
h(x,t) = (5.37)
0.6, ifz >0,

and zero initial velocity, and with transmissive boundary conditions. We perform
50, 100, and 200 uniform grid cells to investigate the errors. The final time is set
at 2s with time step At = 0.005s. The mean absolute errors (MAE) and the root
mean squared errors (RMSE) of the water depth h obtained from the HLL and
the WAF methods are shown in Table 5.1.

Scheme without the linear reconstruction

K =50 K =100 K =200

MAE RMSE MAE RMSE MAE RMSE
HLL 0.0163 0.0280 0.0108 0.0215 0.0069 0.0165
WAF 0.0083 0.0182 0.0047 0.0127 0.0027 0.0093

Scheme with the linear reconstruction

K =50 K =100 K =200

MAE RMSE MAE RMSE MAE RMSE
HLL 0.0078 0.0178 0.0043 0.0120 0.0023 0.0085
WAF 0.0053 0.0145 0.0028 0.0096 0.0015 0.0069

Table 5.1: The MAE and the RMSE for wet bed case.

The result from Table 5.1 shows that the MAE and the RMSE obtained from
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the WAF are less than those from the HLL for the scheme with and without the
linear reconstruction. In this case, the second-order accuracy of the approximate
solution is not obtained even though the scheme is applied with the linear recon-
struction because the solution is not smooth. However, we observe that the result
from the WAF scheme without the linear reconstruction is comparable to the HLL
with the linear reconstruction. This shows that the modified scheme with the WAF

is more accurate than that with HLL.

Dry bed

The dry bed experiment is performed on the same model problem as for the wet

bed, except with a different initial condition

1, ifz <0,
h(z,0) = (5.38)
0 ,ifz>0.

Scheme without the linear reconstruction

K =50 K =100 K =200

MAE RMSE MAE RMSE MAE RMSE
HLL 0.0164 0.0265 0.0113 0.0187 0.0077 0.0130
WAF 0.0081 0.0117 0.0048 0.0075 0.0029 0.0050

Scheme with the linear reconstruction

K =50 K =100 K =200

MAE RMSE MAE RMSE MAE RMSE
HLL 0.0100 0.0142 0.0052 0.0082 0.0026 0.0045
WAF 0.0061 0.0091 0.0030 0.0049 0.0015 0.0026

Table 5.2: The MAE and the RMSE for dry bed case.

Table 5.2 shows the errors of the water depth A for 50, 100, and 200 cells from
the WAF and HLL. Again, we observe that the result does not have second-order
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accuracy, but the result from WAF without the linear reconstruction is comparable
to the HLL with the linear reconstruction. This shows that the modified well-
balanced scheme with the WAF is more accurate than that with the HLL.

5.5.2 2D circular dam break

This numerical experiment is performed to check the accuracy of the developed
scheme for a two-dimensional problem without source term. We consider a circular
dam break flow in the domain 200 m x 200 m with flat and frictionless bottom.
The initial condition is a circular dam with 50 m radius, located at the center of
the domain as shown in Figure 5.5. The experiments are performed on both wet

and dry beds.

Figure 5.5: The domain of 2D circular dam break flow.

Circular dam break on wet bed

In this case, the initial water depths are set at 10 m inside the circular dam and
1 m outside the dam, and with zero initial velocity. The number of grid cells are

85 x 85 cells and the simulation time is t = 3s.
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Lo TR} time is 3

Figure 5.6: Water surface in 3D plot (left) and its contour plot (right) for wet bed
at t = 3s.

The circular dam wall is assumed to be removed completely and instantly at
the time of dam failure, thus, the wave front propagates outward from the center
of the domain. The water surface profile and its contour plot are shown in Figure
5.6, on the left and the right of the figure, respectively, which agree very well with
the results from [18].

Circular dam break on dry bed

In this case, the water depths are set at 10 m inside the circular dam and zero
outside the dam. The surface profile and its contour plot at ¢ = 3s are shown in
Figure 5.7. Again, the numerical results agree very well with the results reported
in [18]. These numerical investigations for both wet and dry beds show the validity

and accuracy of the developed scheme, as compared with [18].
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Lo L] timeis 3

Figure 5.7: Water surface in 3D plot (left) and its contour plot (right) for dry bed
at t = 3s.

In addition, the scheme with the wet/dry tracking technique reduces the com-
putational time from 37.61s to 25.15s, when compared with the scheme without

this technique.

5.5.3 Partial dam break

This experiment is considered on a 200 m x 200 m rectangular domain. The initial
water level is set at 10 m on the upstream side and zero on the downstream side.
The bottom is assumed to be flat and frictionless. The partial dam break is set at

middle of the domain, as shown in Figure 5.8.

Figure 5.8: Domain of the partial dam break problem.

The simulation is performed on 85 x 85 uniform grid cells and with final time

ok N ®w & o0 o ~ ® ©
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7.2s. The surface profile and its contour plot at t = 7.2s are shown in Figure 5.9.

The obtained simulation results agree closely with results in [1, 46].

tmanTh . timeis 7.2s

1601

1401

1201

=100-
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Figure 5.9: Water surface plot (left) and contour plot (right) of the partial dam
break problem.

5.5.4 Rectangular dam break with friction

In this experiment, we consider a rectangular dam break on the domain with 1000
m long and 100 m wide, with friction on flat bottom. The wall of the dam is located
at = 500 m The water height at initial time is 1 m inside the dam (z < 500
m) and zero outside the dam (x > 500 m), and with zero initial velocity. For the
friction, the Manning’s roughness coefficient is n = 0.02 m~'/3s. The simulation is

performed on 200 x 20 uniform grid cells with At = 0.5s and the final time 64s.

The solution at time 64 s
T T

= Sanders
® approximate solution

I I I I I I
200 300 400 500 600 700 800 900

Figure 5.10: The comparison of our numerical results with the results from [34].

The comparison of cross-sections along the flow direction between the numerical

results and the results from [34] is shown in Figure 5.10. The comparison shows

PN oW~ o ® ~ ® ©
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that the numerical results obtained from the developed scheme is as accurate as

the results from [34], in the case of shallow-water flows with friction effect.

5.5.5 Well-balanced test in two-dimensions

This experiment is performed to check the exact C-property of the present scheme.
To satisfy the exact C-property, the numerical solution should approach the still
water stationary solution at steady state, [31], i.e., having zero errors. In this
experiment, we consider a rectangular domain [0, 1]x [0, 1] with the bottom function

defined by

2 (z,y) = 0.8¢ (@05 +(u=05)%) (5.39)

The initial water height is h(x,y) = 1 — z(x,y) with zero initial discharges
hu (z,y) =0 and hv (z,y) = 0.

The simulation is run on 50 x 50 uniform cells for very large final time, in this
case we use t = 100s. The RMS errors for h, hu, and hv are 2.0974 x 10716, 7.7270 x
107, and 8.5070 x 10~ !4, respectively. The observed errors are approximately the
round-off errors of the machine, which implies that the obtained numerical solution
is exact. This shows that the developed scheme satisfies the exact C-property.

Figure 5.11 shows the water profile of the still water at ¢ = 100s.

time is 100

Figure 5.11: Water surface profile for very large time.
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5.5.6 Subcritical flows over a bump

This experiment illustrates the second-order accuracy of the developed scheme for
the smooth flow with the bottom slope source term. We consider a subcritical
shallow water flow over a bump in one-dimension. The rectangular channel is 25

m long. The bump elevation is defined by

0.2 —0.05(x —10)*, if8 <z <12,
2(z) = (5.40)

0, otherwise .

The upstream boundary is imposed by hu = 4.42 m?/s and the downstream
boundary is set in term of water surface, h = 2 m. The initial water depth in the
domain is h 4+ z = 2 m with zero initial discharge and the time step is At = 0.01s.
The approximate solution compared with the analytical solution from the WAF
with the linear reconstruction scheme is displayed in Figure 5.12. The numerical
accuracy is measured in terms of MAE and RMSE, when compared with existing
analytical solutions. Again, we compare the error of the results when the scheme
is performed with and without the linear reconstruction to check the accuracy of
the solutions. In addition, the accuracy is compared between the two numerical
fluxes, HLL and WAF. The comparison of errors in Table 5.3 and Table 5.4 shows
that the developed scheme with WAF is more accurate than that with HLL, for
the case of flow with bottom source term.

time is 200

0.5 = analytic solution
© approximate solution
—bottom

Figure 5.12: Subcritical flows over a bump from WAF with the linear reconstruc-

tion scheme when K = 100.
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Scheme without the linear reconstruction

K =25 K =50 K =100 order

RMSE RMSE RMSE RMSE

HLL 1.85x 1072 1.03x107% 540 x107%  0.89
WAF  1.46 x107* 5.60 x 107* 270 x 107*  1.22

Scheme with the linear reconstruction
K =25 K =50 K =100 order
RMSE RMSE RMSE RMSE

HLL 1.35x 1072 3.70x107® 1.00 x 10~*  1.88
WAF 122x107% 3.00x107% 7.44x10°* 2.02

Table 5.3: The RMSE errors for subcritical flows over a bump.

Scheme without the linear reconstruction

K =25 K =50 K =100 order

MAE MAE MAE MAE

HLL 1.01x1072 560x 1073 290x 1073 0.90
WAF 6.80 x 1072 2.60 x 107® 120 x 1073 1.25

Scheme with the linear reconstruction
K =25 K =50 K =100 order
MAE MAE MAE MAE

HLL 6.90 x 107* 1.80x107% 4.79 x 10~* 1.92
WAF 540 x 107% 1.20 x 107® 2.89 x 10~*  2.11

Table 5.4: The MAE errors for subcritical flows over a bump.
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The numerical results in Tables 5.3 and 5.4 also show that the numerical scheme
without the linear reconstruction are not second-order accurate in space for smooth
flow problem as discussed recently in Section 10.6 by Ata et al. [2]. To obtain a
higher order approximation in space, we apply the linear reconstruction (5.21)-
(5.24) to HLL and WAF schemes. The order of convergence is second-order mea-
sured by the MAE and RMSE errors.

5.5.7 Dam break flows over a trapezoidal bump

In this section, we run a numerical experiment of a dam break flow over a trape-
zoidal bump, and compare with the real experiment presented by Ozmen-Cagatay
and Kocaman [32|. The flow is considered on a rectangular domain of 8.9 m long
with the wall of the dam located at 4.65 m from the channel entrance, and the
trapezoidal bump with 0.075 m high and 1 m base length at 1.53 m from the wall
of the dam, see Figure 5.13. The reservoir is on the upstream side with 0.25 m of

water, while the downstream side is dry and with zero initial velocity.

Figure 5.13: Initial setup of dam break flows over a trapezoidal bump.

The simulation is performed on 200 uniform cells with time step At = 0.01s.
To compare the numerical results with the experimental data, we set hy and \/M
as the length scale and time scale, respectively. The dimensionless time is T =
tm. The comparisons at snapshot of times 7" = 11.9, 17.54, 20.67, 23.05,
29.69, and 41.84 are shown in Figure 5.14, showing that the numerical results

agree closely with the experimental data at various times.
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T=119 T =17.54s
1 T T 1 T T
= approximate solution| = approximate solution
® experiment ® experiment
— bottom —hottom

(h+ z)/ho
°

0 2 4 6 10 12 14 0 2 4 6 10 12 14
z/hy z/hy
T =20.6Ts T = 23.058
1 T T 1 T T
= approximate solution = approximate solution|
® experiment ® experiment
— bottom — bottom

(h+ 2)/ho

o

0 2 4 8 10 12 14 0 2 4 10 12 14
z/hy x/hg
N T =29.69s N T =41.84s
T T T T
= approximte solution| = approximate solution|
® experiment ® experiment
—bottom — bottom

o L L L I L L L L I L

6 6
z/hy z/hy

Figure 5.14: The comparisons between numerical results and experimental data
from [32| for dam break flows over a trapezoidal bump for various 7" = 11.9, 17.54,

20.67, 23.05, 29.69, and 41.84.

5.5.8 Dam break flows over three humps

In this experiment, we consider the dam break flows over three humps defined by
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z(z,y) = max {O, 1-— %\/(x —30)° + (y — 6)%,

1— %\/(1‘ —30)* + (y — 24)°, (5.41)

3 % (x—47.5)° + (y — 15)2},
on 75 m x 30 m rectangular domain. The dam is located at 16 m from the
upstream boundary with initial water depth h+ z = 1.875 m and with zero depth
on downstream boundary. The simulation is performed on 85 x 85 uniform grid
cells with the Manning coefficient 0.018. The water depth profile and its contour
plot at ¢ = 12s are shown in Figure 5.15. The obtained result agree closely with the
previous results presented by [18, 27|. This experiment has illustrated the ability
of the developed scheme for solving flows over dry bed with friction. As shown in
the Figure 5.15, the strong shock front that attacks the largest hump is detected
correctly. This demonstrates that the developed scheme is capable of simulating
flows that have both wet and dry beds, as well as the effect from a large bottom

slope. We have also found that the splitting implicit scheme enables us to use

larger time step size when comparing with direct calculation.

Figure 5.15: The water surface profile (left) and contour plot (right) of a dam

break flows over three humps at ¢t = 12s.

When simulating wet/dry flow interactions, numerical schemes can result in

non-conserved water mass. We have checked this by setting an initial mass in our
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simulation as 893.3824. After running to 100 simulation time, the water mass is
remains as 893.3824. This demonstration is numerical evidence that our scheme

can preserve mass during time integration. The result is shown in Figure 5.16.

Figure 5.16: Water surface profile of a dam break flows over three humps at ¢t =

100s.

5.5.9 Flood simulation in Thailand, 2011

The Chao Phraya river, Thailand, consists of several basins such as Ping, Wang,
Yom, Nan, Sakae Krang, Pa Sak, Tha Chin, and finally the Chao Phraya basin
itself. The lower part of this river goes through a region that is both the most
populous and of significant economic interest to Thailand. Occasional flooding of
this region has had deleterious impact on the country. In this experiment, we apply
the developed scheme to simulate the great flood near the Chao Phraya river in
2011. We check the performance of the simulation by comparing the results with
the real flood flow determined from the satellite images. The studied area is from
the latitude 15.000000°N to 15.190800°N and from the longitude 100.165800°E to
100.340800°E, known as the Chao Phraya river basin, from Chai Nat to Sing Buri
provinces (see Figure 5.17), with the gauging stations located at ¢13 in Chai Nat
province and c¢44 in Sing Buri province. The topography in this area is generally
low land next to the Chao Phraya river. The bottom elevation is obtained from
the NASA Shuttle Radar Topographic Mission (SRTM) in digital elevation data
(DEM) format with resolution 90 x 90 m [55|, while the Manning coefficient is
assumed to be 0.03. In this simulation, we have adjusted DEM in the Chao Phraya
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river to be lower approximately 10 meters from the original SRTM format [55].
This error can be measured from the measurement of water depth at c13 and c44

stations [54], while the DEM on the land area remains unchanged.

Figure 5.17: The studied area, the Chao Phraya river at Chai Nat to Sing Buri

provinces, Thailand.

Since the initial condition in our simulation is not trivial, we simulate two
different cases of initial conditions with the grid resolution Az = 90 m, Ay = 90 m
and time step At = 5s. For the first case, we assume the whole domain to be dry
and we allow the water flows along the Chao Phraya river using the water depth
and velocity at c13 station. For the second case, we assume the domain is already
flooded. By collecting the data from the satellite image on October 15, 2011 and
the water depth data on the same day at c13 and c44 stations, we can fill the water

depth to the land to be the same value as the measurement data.



13 Oct | 14 Oct | 150Oct | 16 Oct | 17 Oct

2011 2011 2011 2011 2011
water height (m) | 17.59 17.57 17.56 17.55 17.55
discharge (m?/s) | 3534.2 | 3522.6 | 35168 | 3511 3511
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Table 5.5: The measurement data of water heights and discharges average per day

at c13 station on October 13-17, 2011.

For the first case, the initial water depth is set to be dry for the whole domain.
Water is released from a source along the river where the water depth and its
discharge are set to be the same values as the data obtained from the c13 station
on October 13-17, 2011 [54]. Details are shown in table (see Table 5.5). Then,
we consider five days simulation on October 13-17. We compare the discrepancy
on the last day where the water distribution from the sattlelite image on October
17 is shown in Figure 5.18(a). The simulation result on the same day is shown in
Figure 5.18(b). The difference between real and simulation results on the lower
part of the river is shown in Figure 5.18(c). The comparison is only made on the
left of the river as specified by the pink-shaded area of Figure 5.18(c). The flood
simulation in this case is due to the massive source of water from the river that
flows over to the lower land area. The agreement between real and simulation
results is shown. It should be noted that the flooded area on the right or on the
top of the river appears. This situation is from the other sources of water over

the land that are not included initially in our simulations. Thus, we can see the

flooded area only on the lower part of the river.
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(a) (b) ()

Figure 5.18: The results on October 17, 2011 for the case of initially dry on the
whole domain. (a) The real data from satellite image on October 17, 2011. (b) The
simulation result on October 17, 2011. Initially assumed dry for the whole domain.
(c) The difference (pink-shed area) between the real data and the simulation result
on October 17, 2011. The comparison is only made on the lower part of the river

(inside yellow box).

We have also imposed an additional source of water along the top boundary
based on the water depth over the river at c13 station exceeding the maximum
water capacity by approximately 1 meter. The comparisons are shown in Figure
5.19. The difference is shown in the pink-shaded area. It is found that numerical

solutions agree well with the real data.
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(a) (b) ()

Figure 5.19: The results on October 17, 2011 for the case of initially dry on the
whole domain and specify water flow on the top boundary. (a) The real data from
satellite image on October 17. (b) The simulation result on October 17, initially
assumed dry for the whole domain, and specify source of water along the top
boundary. (c) The difference (pink-shed area) between real data from the satellite

image and the simulation result.

Next, we simulate using the second initial condition on October 15-17. In this
case, we assume the problem is already flooded, see Figure 5.20(a). Thus, we fill
the accumulated water distribution over the land using the water depth over the
terrain specified by the measurement of water depth recorded at the c13 and c44
gauging stations on October 15. It is found that the water depth over the river
at c13 and c44 station exceeds the maximum water capacity by approximately 1
meter. Thus, we apply this excess water depth value to fill the water over the
land, and hence, the land is assumed already flooded after filling the water, see
Figure 5.20(b). The difference between the initial water depth from the satellite
image and the assumed initial water distribution is shown in Figure 5.20(c). It
can be seen that the initial water depth is well specified by applying this criteria.
Another source of water from upstream at c13 station is also specified. Then, the

simulation is performed by the present scheme for two days, starting from October
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15 to 17, and is compared with the real data from the satellite image again on

October 17.

(a) (b) ()

Figure 5.20: The initial water distribution on October 15, 2011. (a) The real
data from satellite image on October 15, 2011. (b) The assumed initial water
distribution on October 15, 2011. (c¢) The difference (pink) between real data from

satellite image and the assumed initial water distribution.

The results from the numerical simulation (Figure 5.21(b)), the satellite image
on October 17 (Figure 5.21(a)) and the difference between the satellite image and
the numerical simulation (Figure 5.21(c)) show the agreement of the simulation
result and the real data. As seen in the simulation result, after 2 days, the distri-
bution of water area is enlarged similar to that from the satellite image. Some of
the water from the river has flowed to cover the lower land next to the river on
previously dry areas, this occurred in area indicated by the yellow frame in Figure
5.21(c).

The numerical simulation from the two cases of initial condition agree with the
real data from the satellite image as discussed above. These results from Figures
5.18, 5.19 and 5.21 show that the developed scheme is quite capable of simulating

real floods for this area, where the accuracy is quite reasonable.
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(a) (b) ()

Figure 5.21: The results on October 17, 2011. (a) The real data from satellite
image on October 17, 2011. (b) The simulation result on October 17, 2011. (c)
The difference (pink) between real data from satellite image and the simulation

result.

5.6 Conclusions

A well-balanced FVM with the WAF is developed in this work to simulate wa-
ter flows such as dam break and flood. Combining with semi-implicit scheme for
estimating friction source terms yields an efficient numerical method for simulat-
ing shallow water flows for both wet and dry beds. Importantly, we improve the
scheme to have the second-order accuracy for smooth flow by applying the linear
reconstruction. The wet/dry cell tracking technique is also employed to reduce
the computational time for problems with the less wetted area by calculating just
the updated wet cells. The accuracy of our numerical scheme is investigated by
various numerical experiments including one- and two-dimensional problems. The
scheme is shown to be well-balanced by demonstrating that is exhibits the exact
C-property as described in the numerical experiment 5.5.5. Moreover, the validity
and accuracy of the scheme is illustrated in the experiments 5.5.6-5.5.8 for flows

with friction and bottom slope, by comparison to other results in literature. It is
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also shown by numerical evidences that the present scheme can preserve mass and
non-negativity of the water depth during time integration. For real applications,
the developed scheme is applied to simulate the great flood which occurred in Thai-
land, 2011. The numerical simulations show results that agree with the existing
data obtained from satellite images. All of these experiments have demonstrated
that the presented scheme is capable of simulating various kinds of shallow water

problems with accuracy and efficiency.



CHAPTER VI
CONCLUSIONS

In this dissertation, we have developed three numerical schemes for solving the
SWE. The first scheme, see Chapter III, is the TVD-RK DG method with WAF
for one-dimensional SWE, which is shown to be consistent. In addition, the scheme
is modified to be well-balanced and used to simulate various steady and unsteady
flows.

The second scheme, see Chapter IV, is developed to obtain more realistic re-
sults for the one-dimensional flow, where the one-dimensional SWE is considered
for arbitrary cross-sectional areas, based on the FVM. In this scheme, the recon-
struction and bottom modification techniques is applied to handle the difficulty of
the dry area. The developed scheme is shown to be accurate when compared with
the known results in literature and preserve the still water stationary solution.
This scheme is also applied to simulate the real river flow for the Yom river in
Phrae province, Thailand, from August 27 to September 10, 2014.

The third scheme, see Chapter V, is developed to real world flows by consider-
ing the two-dimensional SWE, based on the well-balanced FVM with WAF. The
scheme is improved to be more efficient by combining with the splitting implicit
technique for estimating friction source term and applying the linear reconstruc-
tion to have second-order accuracy for smooth flows. In addition, the wet/dry
tracking technique is employed to reduce the computational time. The accuracy
of the scheme is confirmed by various numerical experiments when compared with
exact solutions or known results in literature and the scheme is applied to simulate

the great flood which occurred in Thailand, 2011.
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