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CHAPTER I

INTRODUCTION

Shallow water equations (SWE) are considered as system of hyperbolic conser-

vation equations which can be used to model many real flow problems such as

dam break flows, tsunami waves, open channel flows, flood simulations, etc, where

details are given in Chapter II.

There are numerous numerical methods for solving SWE, such as, finite differ-

ence methods (FDM) [14], finite element methods (FEM) [43, 49], the finite volume

methods (FVM) [23, 25, 29, 31], and the discontinuous Galerkin methods (DG)

[15, 37]. The FDM and the FEM can be used to solve these equations but the

schemes require to use very large number of nodes in order to obtain high accuracy,

especially, for discontinuous solutions, which usually take massive computational

time. In addition, these methods usually do not preserve conservation property.

Thus, in this work, we use numerical schemes that satisfy the conservation prop-

erty and are more efficient to deal with discontinuous solution, the DG method

and the FVM. The DG method has several advantages, namely, it can be used to

handle complex geometries, and in the same time, adaptive strategies are easily

applied. The accuracy of numerical solutions can be improved by increasing the

polynomial degree of approximating polynomial. The FVM is a special case of the

DG method that the approximate solution is averaged in any cell.

By the concept of DG method and FVM, numerical solutions need not to be

continuous at cell interfaces, where an efficient flux approximation is required,

known as a numerical flux. Generally, there are several types of approximations.

The Harten-Lax-van Leer (HLL) flux [37, 40, 41], proposed by Harten, Lax and

van Leer, is the one extensively used for the SWE. The modified version of this nu-

merical flux for two-dimensional problems is Harten-Lax-van Leer contact (HLLC)

[2]. To obtain more accurate approximations, the weighted average flux (WAF)
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has been introduced, see [2, 6, 29, 38, 39, 41, 42].

Hyperbolic conservation equations have steady state solutions in which the

flux gradient is required to be balanced with the bottom slope source term. The

numerical schemes without balancing these quantities usually exhibit spurious os-

cillations in the numerical solutions. A numerical scheme that is able to balance

these quantities at the steady state is considered to be a well-balanced scheme.

The property of a well-balanced scheme was first introduced by Bermudez and

Vazquez [5], where the solution from the numerical scheme is exact when applied

to the still water stationary solution. Many well-balanced schemes for the SWE

have been developed in literature, see [2, 3, 11, 17, 18, 31, 47].

In this dissertation, a well-balanced scheme with total variation diminish-

ing Runge-Kutta discontinuous Galerkin (TVD-RK-DG) method for solving one-

dimensional SWE is developed. From previous literature, the WAF has been

successfully applied to solve various kinds of problems, especially, in the FVM

[2, 6, 11, 29, 38, 39]. However, it is rarely applied in the DG method. Thus, we

develop the TVD-RK-DG using the WAF approximation and show that the pre-

sented scheme is consistent with the WAF approximation. Various kinds of flows

have been simulated to check the accuracy of the modified scheme, where detail is

described in Chapter III.

The previous developed scheme assume that every cross-sectional area is equal

in the entire domain. If we consider the one-dimensional flow in realistic problem,

such as flows in a natural river, where the cross-sectional areas are not equal in

the entire domain, we should use SWE in the other form for more realistic re-

sults. Thus, we consider the one-dimensional SWE for arbitrary cross-sectional

areas instead of the previous equations. In order to reduce complexity of calcula-

tion in DG method, the finite volume method is applied. A difficult part of the

approximation is even occur when the numerical scheme deal with the dry area.

Thus, we also improve the efficiency and stability of the numerical scheme to deal

with the wet/dry problem by applied the reconstruction and bottom modification

techniques. Various numerical experiments have been performed to check the ef-

ficiency and accuracy of the developed numerical scheme. The detail of this work
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is presented in Chapter IV.

In addition, in order to consider the flow in two-dimension when applying the

SWE to real world applications and to reduce complexity of calculation in DG

method for higher dimensional problem, a well-balanced FVM for solving two-

dimensional SWE with WAF approximation is developed to simulate real world

problems such as dam break or flood, especially, the great flood in Thailand, 2011.

A wet/dry cell tracking technique is also presented to reduce computational time.

The accuracy of the developed scheme is investigated by applying to some well-

studied cases. For practical purposes, it is also applied to simulate the flooding of

the Chao Phraya river from Chai Nat to Sing Buri provinces in Thailand during

October 13-17, 2011. The detail of this work is given in Chapter V, and the

conclusion is given in Chapter VI.



CHAPTER II

SHALLOW WATER EQUATIONS

The shallow water equations (SWE) are considered as a system of hyperbolic par-

tial differential equations which simplified from the Navier–Stokes equations, in

the case that the horizontal length scale is much greater than the vertical length

scale. These equations can be used to model many real flow problems such as dam

break flows, tsunami waves, open channel flows, flood simulations, etc.

2.1 The one-dimensional SWE

For flow in one-dimension in the x-direction, we consider the control volume with

uniform cross-sectional area from x to x+∆x as shown in Figure 2.1,

Figure 2.1: One-dimensional control volume.

where h is the water depth, u is the flow velocity in the x-direction, g is the

acceleration due to gravity, z is the bottom elevation, and Sf is the friction term.

We will derive SWE in one-dimension by considering the net flow rate in this

control volume using principles of conservation of mass and momentum with the

assumptions that the fluid is assumed to be incompressible and inviscid, and the
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pressure distribution is assumed to be hydrostatic.

Conservation of mass

The conservation of mass states that

The rate of mass

increase within the

control volume

= Mass flux entering

the control volume

− Mass flux leaving

the control volume

First, we consider the mass flux entering the control volume at the left boundary

of control volume (x, t), which is

ρhu, (2.1)

where ρ is the density of the fluid, h (x, t) and u (x, t) are the fluid depth and flow

velocity in the x-direction, respectively.

Next, the mass flux leaving the control volume at the right boundary of control

volume (x+∆x, t) is

ρhu+∆x
∂

∂x
(ρhu) . (2.2)

Thus, the net rate of mass flux entering the control volume is

ρhu−
[
ρhu+∆x

∂

∂x
(ρhu)

]
= −∆x

∂

∂x
(ρhu) . (2.3)

The rate of mass increase within the control volume is

∆x
∂

∂t
(ρh) . (2.4)

Hence, from (2.3) and (2.4) with the law of conservation of mass, we have

∆x
∂

∂t
(ρh) = −∆x

∂

∂x
(ρhu) . (2.5)
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Since, ∆x is a constant and the assumption of SWE states that the fluid is

incompressible, thus, the density of fluid ρ is a constant. Then, we obtain

∂h

∂t
= − ∂

∂x
(hu) (2.6)

or

∂h

∂t
+

∂

∂x
(hu) = 0. (2.7)

Equation (2.7) is the conservation of mass for the one-dimensional shallow water

equations.

Conservation of momentum

The principle of conservation of momentum states that

The rate of change of

momentum in the control

volume

= The net rate of momentum

flux entering the control

volume

+ Sum of force

acting on the

control volume

First, we consider the rate of change of the momentum in the control volume,

which is

∆x
∂

∂t
(ρuh) . (2.8)

Next, the rate of momentum entering the control volume at the left boundary

of control volume (x, t) is the product of the mass flux and the velocity

ρu2h, (2.9)

and the momentum leaving the control volume at the right boundary of control

volume (x+∆x, t) is

ρu2h+∆x
∂

∂x

(
ρu2h

)
. (2.10)
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Thus, the net rate of the momentum entering the control volume is

ρu2h−
[
ρu2h+∆x

∂

∂x

(
ρu2h

)]
= −∆x

∂

∂x

(
ρu2h

)
. (2.11)

In addition, there are three forces acting on the control volume, which are the

gravity force, the pressure force, and the frictional force described as following

(1) The gravity force Fg is the weight of the fluid within the control volume

acting in the x-direction,

Fg = −ρgh∆x
∂z

∂x
, (2.12)

where g is a gravity and
∂z

∂x
is the bottom slope.

(2) The pressure force Fp is assumed to be the hydrostatic pressure on the

vertical section of control volume and water depth h at the boundary (x, t), that

is

Fp|x =

∫ h

0

ρg (h− y) dy =
1

2
ρgh2 (2.13)

and the pressure force at the boundary (x+∆x, t) is

Fp|x+∆x =
1

2
ρgh2 +∆x

∂

∂x

(
1

2
ρgh2

)
. (2.14)

Thus, net of pressure force on two vertical sides is

1

2
ρgh2 −

[
1

2
ρgh2 +∆x

∂

∂x

(
1

2
ρgh2

)]
= −∆x

2

∂

∂x

(
ρgh2

)
. (2.15)

(3) The frictional force Ff acting on the bottom assumed to be

Ff = ρgh∆xSf , (2.16)

where Sf is the friction term define by Sf = −n2u |u|
h4/3

and n denoting the Manning’s

roughness coefficient.
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From the conservation of momentum, combining (2.8), (2.11), (2.12), (2.15),

and (2.16), we obtain

∆x
∂

∂t
(ρuh) = −∆x

∂

∂x

(
ρu2h

)
+ ghρ∆x

(
−∂z

∂x
+ Sf

)
− g

2
∆x

∂ (ρh2)

∂x
. (2.17)

Since ρ and ∆x are non-zero constants,

∂

∂t
(uh) = − ∂

∂x

(
u2h
)
+ gh

(
−∂z

∂x
+ Sf

)
− g

2

∂h2

∂x
. (2.18)

It can be rewritten as

∂

∂t
(uh) +

∂

∂x

(
u2h+

gh2

2

)
= −gh

∂z

∂x
+ ghSf . (2.19)

If quantity uh is expressed by the discharge Q, then (2.7) and (2.19) can be

rewritten as

ht +Qx = 0, (2.20)

Qt +

(
Q2

h
+

gh2

2

)

x

= −ghzx + ghSf , (2.21)

known as the SWE.

The SWE can be expressed in the one-dimension hyperbolic conservation form

as

Ut + F (U)x = S (U) , (2.22)

where

U =


 h

Q


 , F (U) =




Q

Q2

h
+

gh2

2


 , and S(U) =


 0

−ghzx + ghSf


 .

(2.23)

The vectors U , F , and S represent the vector of primitive variables, the flux

function, and the source term, respectively.
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2.2 The one-dimensional SWE in arbitrary cross-sectional

area

In the previous section, SWE in (2.20)-(2.21) are obtained under the assumption

that the cross-sectional area is uniform. In order to obtain SWE for more real-

istic case such as flows in a natural river, where the cross-sectional area is not

uniform in the entire domain. We have to consider the one-dimensional SWE in

arbitrary cross-sectional area. The resulting equations are called the Saint Venant

equations. These equations are also derived from the conservation of mass and the

conservation of momentum, but the cross section is arbitrary as shown in Figures

2.2 and 2.3,

Figure 2.2: Cross-section of channel.

Figure 2.3: One-dimensional control volume for arbitrary cross-sectional area in

channel.
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where A is the wetted cross-sectional area, Z = h+ z is the water surface level, h

is the water height, z is the bottom function, B is the width of the cross-section

at the water surface, Fp is the pressure force, Fg is the gravity force, and Ff is the

friction force.

Derivation of the one-dimensional SWE in arbitrary cross-sectional area

Conservation of mass

The mass flux entering the control volume for an arbitrary cross-sectional area at

the left boundary (x, t) of control volume x to x+∆x showing in Figure 2.3 is

ρAu, (2.24)

where ρ is the density of fluid, A (x, t) and u (x, t) are the wetted cross-sectional

area and flow velocity in the x-direction, respectively.

Next, the mass flux leaving the control volume at the right boundary (x+∆x, t)

is

ρAu+∆x
∂

∂x
(ρAu) . (2.25)

Thus, the net rate of mass flux entering the control volume is

ρAu−
[
ρAu+∆x

∂

∂x
(ρAu)

]
= −∆x

∂

∂x
(ρAu) . (2.26)

The rate of mass increases within the control volume is

∆x
∂

∂t
(ρA) . (2.27)

Hence, from (2.26) and (2.27) with the conservation of mass, we have

∆x
∂

∂t
(ρA) = −∆x

∂

∂x
(ρAu) . (2.28)

Since ∆x is non-zero constant and the assumption of SWE states that the fluid

is incompressible, thus, ρ is a constant, then we obtain
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∂A

∂t
= − ∂

∂x
(Au) (2.29)

or

∂A

∂t
+

∂

∂x
(Au) = 0. (2.30)

Equation (2.30) is the conservation of mass for the one-dimensional shallow

water equations for arbitrary cross-sectional area.

Conservation of momentum

First, we consider the rate of change of the momentum in the control volume,

which is

∆x
∂

∂t
(ρuA) . (2.31)

Next, the rate of momentum entering the control volume at the left boundary

(x, t) is the product of mass flux and velocity

ρu2A (2.32)

and the momentum leaving the control volume at the right boundary (x+∆x, t)

is

ρu2A+∆x
∂

∂x

(
ρu2A

)
. (2.33)

Thus, the net rate of the momentum enters in the control volume is

ρu2A−
[
ρu2A+∆x

∂

∂x

(
ρu2A

)]
= −∆x

∂

∂x

(
ρu2A

)
. (2.34)

In the case of arbitrary cross-sectional area, there are four forces acting on the

control volume, which are the hydrostatic pressure force, the pressure force due

to a change in width, the gravity force, and the frictional force described as follows:
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(1) The hydrostatic pressure force Fp that acts at the boundary (x, t) is

Fp|x = gρI1, (2.35)

where

I1 =

∫ h

0

(h(x)− η)µ (x, η) dη, (2.36)

g is a gravity, η is a depth integration variable, and µ (x, η) is the width of the

cross-section at η such that µ (x, η) = B(x) at the water surface level (η = h).

The pressure force at the boundary (x+∆x, t) is

Fp|x+∆x = gρI1 + gρ∆x
∂I1
∂x

. (2.37)

Thus, the net of pressure force on two vertical sides in the x-direction is

Fp|x − Fp|x+∆x = gρI1 − gρI1 − gρ∆x
∂I1
∂x

= −gρ∆x
∂I1
∂x

. (2.38)

(2) The pressure force due to a change in width Fw for a given cross-section

is expressed by

Fw = gρ∆xI2, (2.39)

where

I2 =

∫ h

0

(h(x)− η)
∂µ (x, η)

∂x
dη. (2.40)

(3) The gravity force Fg the weight of fluid within the control volume acting in

the x-direction,

Fg = −ρgA∆x
∂z

∂x
, (2.41)
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where
∂z

∂x
is the bottom slope.

(4) The frictional force Ff acting on the bottom and the sides of the channel is

Ff = ρgA∆xSf , (2.42)

where Sf is the friction term expressed by

Sf = −n2Q |Q|
R4/3A2

,

n is a Manning’s roughness coefficient, Q is a discharge, R = A/P is the hydraulic

radius, and P is the wetted perimeter of the channel.

From the conservation of momentum, combining (2.31), (2.34), (2.38), (2.39),

(2.41), and (2.42), we obtain

∆x
∂

∂t
(ρuA) =−∆x

∂

∂x

(
ρu2A

)
− gρ∆x

∂I1
∂x

+ gρ∆xI2

− ρgA∆x
∂z

∂x
+ ρgA∆xSf . (2.43)

Since ρ and ∆x are non-zero constants, we have

∂

∂t
(uA) =− ∂

∂x

(
u2A

)
− g

∂I1
∂x

+ gI2 − gA
∂z

∂x
+ gASf . (2.44)

It can be rewritten as

∂

∂t
(uA) +

∂

∂x

(
u2A+ gI1

)
= gI2 − gA

∂z

∂x
+ gASf . (2.45)

Equation (2.45) is the conservation of momentum for the one-dimensional shallow

water equations for arbitrary cross-sectional area.

For discharge Q = Au, (2.30) and (2.45) can be rewritten as

∂A

∂t
+

∂Q

∂x
= 0, (2.46)

∂Q

∂t
+

∂

∂x

(
Q2

A
+ gI1

)
= gI2 + gA

(
−∂z

∂x
+ Sf

)
. (2.47)
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Applying the Leibnitz’s rule for
∂I1
∂x

we obtain

∂I1
∂x

=
∂

∂x

∫ h(x)

0

(h(x)− η)µ (x, η) dη

= [(h(x)− h(x))µ(x, h(x))]
dh(x)

dx
+

∫ h(x)

0

∂

∂x
(h(x)− η)µ (x, η) dη

=

∫ h(x)

0

[
(h(x)− η)

∂µ(x, η)

∂x
+ µ(x, η)

∂h(x)

∂x

]
dη

=

∫ h(x)

0

(h(x)− η)
∂µ(x, η)

∂x
dη +

∫ h(x)

0

µ(x, η)
∂h(x)

∂x
dη

= I2 +
∂h(x)

∂x

∫ h(x)

0

µ (x, η) dη

= I2 + A
∂h(x)

∂x
.

Thus, the equation (2.47) becomes

∂Q

∂t
+

∂

∂x

(
Q2

A

)
= −gA

∂Z

∂x
+ gASf , (2.48)

where Z = h + z. The hydrostatic pressure term and the pressure force due to a

change in width are combined.

Hence, the SWE in arbitrary cross-sectional area are written by

At +Qx = 0, (2.49)

Qt +

(
Q2

A

)

x

= −gAZx + gASf . (2.50)

These equations can be written in hyperbolic conservation form (2.22) with vectors

U =


 A

Q


 , F (U) =




Q

Q2

A


 , and S(U) =


 0

−gAZx + gASf


 . (2.51)

In the particular case when the channel is rectangular with constant width,

(2.49) and (2.50) reduce to (2.20) and (2.21), respectively.
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2.3 The two-dimensional SWE

In order to consider the flow in two-dimension, the control volume must be consid-

ered in two-dimensions as shown in Figure 2.4. Derivation of the two-dimensional

SWE is similar to the one-dimensional SWE, but the flow in the y-direction is

also considered. The conservation of mass and the conservation of momentum

equations in the x- and the y-directions are written as

ht + (hu)x + (hv)y = 0, (2.52)

(hu)t +

(
hu2 +

1

2
gh2

)

x

+ (huv)y = −ghzx + Sfx, (2.53)

(hv)t + (huv)x +

(
hv2 +

1

2
gh2

)

y

= −ghzy + Sfy, (2.54)

where u and v are the flow velocities in the x- and y-directions, respectively,

Sfx = −Cu
√
u2 + v2 and Sfy = −Cv

√
u2 + v2 are the friction terms in the x-

and y-directions, respectively, with C = gn2/h1/3 and n is a Manning’s rough-

ness coefficient. These equations can be written in two-dimensional hyperbolic

conservation form as

Ut + F (U)x +G (U)y = S (U) , (2.55)

where F and G represent the flux functions in the x- and y-directions, respectively.

Thus, (2.52)-(2.54) can be written in the form of (2.55) with

U =




h

hu

hv


 , F (U) =




hu

hu2 + 1
2
gh2

huv


 , G(U) =




hv

huv

hv2 + 1
2
gh2


 (2.56)

and

S(U) =




0

−ghzx + Sfx

−ghzy + Sfy


 . (2.57)
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Equation (2.52)-(2.54) are called the two-dimensional shallow water equations.

We will develop a finite volume method to solve these equations in Chapter V. The

applications of simulating these equations to the great flood in Thailand, 2011 are

shown in the same Chapter.

Figure 2.4: Control volume for two-dimensional problem, side view (left) and top

view (right).



CHAPTER III

WELL-BALANCED DISCONTINUOUS GALERKIN

METHOD WITH WEIGHTED AVERAGE FLUX FOR

ONE-DIMENSIONAL SHALLOW WATER EQUATIONS

A well-balanced scheme with total variation diminishing Runge-Kutta discontinu-

ous Galerkin (TVD-RK DG) method with weighted average flux (WAF) for solving

SWE is presented in this Chapter. Generally, the flux function at cell interface in

the TVD-RK DG scheme for SWE is approximated by using the Harten-Lax-van

Leer (HLL) method. Here, we apply WAF, a higher order approximation, instead

of using the HLL in the TVD-RK DG method. Moreover, the consistency prop-

erty is shown and the modified well-balanced technique for flux gradient and source

terms under the WAF approximations is developed.

3.1 Discontinuous Galerkin method (DG) for one-dimensional

shallow water equations

Consider the one-dimensional SWE

Ut + F (U)x = S (U) , (3.1)

where

U =


 h

Q


 , F (U) =




Q

Q2

h
+

gh2

2


 and S(U) =


 0

−ghzx + ghSf


 (3.2)
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in which h is the water depth, Q = uh is the discharge, u is the flow velocity in the

x-direction, g is the acceleration due to gravity, z is the bottom elevation, and Sf

is the friction term define by Sf = −(n2u |u|)/h4/3 with n denoting the Manning’s

roughness coefficient.

The DG method for one-dimensional conservation equation is started by di-

viding the computational domain (0, L) into K cells. We denote the i-th cell by

Ii =
[
xi− 1

2

, xi+ 1

2

]
, for i = 1, 2, 3, . . . K, with uniform cell size ∆x = xi+ 1

2

− xi− 1

2

.

The cell center is xi =
(
xi+ 1

2

+ xi− 1

2

)
�2, where xi− 1

2

and xi+ 1

2

are the left and the

right boundaries, respectively. Approximate solution is denoted by Uh = (hh, Qh)
T .

Multiplying (3.1) by a test function vh (x) ∈ PN (Ii), where PN (Ii) is the

polynomial space of degree N on the interval Ii, replacing U by Uh and taking the

integration by parts over Ii, we obtain the weak form of the numerical scheme,

∫

Ii

∂ (Uh)

∂t
vh(x)dx−

∫

Ii

F (Uh) v
′
h(x)dx+ F̂i+ 1

2

vh

(
x−

i+ 1

2

)
− F̂i− 1

2

vh

(
x+
i− 1

2

)

=

∫

Ii

S (Uh) vh(x)dx , (3.3)

where the flux function F at the cell interfaces is approximated by F̂i± 1

2

as a

function of U+
h and U−

h at xi± 1

2

, defined by

F̂i± 1

2

= F̂
(
(Uh)

−

i± 1

2

, (Uh)
+
i± 1

2

)
. (3.4)

Here, (Uh)
−

i± 1

2

and (Uh)
+
i± 1

2

denote the approximate solutions at the left and the

right of cell boundaries, respectively. If we apply the Legendre polynomials as local

basis functions, the approximate solution Uh can be written by

Uh (x, t) =
N∑

m=0

Um
i (t)ϕm (x) , (3.5)

where Um
i (t) is called the temporal coefficient and the basis function ϕm (x) is the

Legendre polynomial Pm([−1, 1]).



19

The test function vh (x) is typically chosen to be the basis function, vh (x) ∈
{ϕl (x)}Nl=0. After applying the Legendre’s properties, the equation (3.3) is simpli-

fied to

dU l
i (t)

dt
=
2l + 1

∆x

∫

Ii

F (Uh)ϕ
′
l (x) dx+

2l + 1

∆x

{
(−1)l F̂i− 1

2

− F̂i+ 1

2

}

+

∫

Ii

S (Uh) vh(x)dx , (3.6)

for i = 1, 2, 3, . . . , K, and l = 0, 1, 2, . . . , N .

The conservation form (3.1) is reduced to a system of ordinary differential

equations in time for unknown U l
i . The time derivative term in (3.6) can be

approximated by applying the high-order total variation diminishing Runge-Kutta

(TVD-RK) method [7, 15, 36].

3.1.1 Numerical flux

In this dissertation, we use two types of numerical flux functions, the Harten-Lax-

van Leer flux and the weighted average flux, to approximate flux at interfaces,

F̂i± 1

2

.

Harten-Lax-van Leer flux (HLL)

Harten, Lax and van Leer [14] presented approximate Riemann Solver for the

numerical flux which is called HLL flux [35, 37, 40, 41]. The HLL flux, F̂HLL
i+ 1

2

, at

the interface xi+ 1

2

is defined by

F̂HLL
i+ 1

2

(
U−

i+ 1

2

, U+
i+ 1

2

)
=





F
(
U−

i+ 1

2

)
if 0 ≤ SL;

F ∗

i+ 1

2

if SL < 0 < SR;

F
(
U+
i+ 1

2

)
if 0 ≥ SR,

(3.7)

where F ∗

i+ 1

2

is defined by

F ∗

i+ 1

2

=
SRF

(
U−

i+ 1

2

)
− SLF

(
U+
i+ 1

2

)
+ SLSR

(
U+
i+ 1

2

− U−

i+ 1

2

)

SR − SL

. (3.8)
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The wave speeds SL and SR at the cell interface are chosen under the assumption

of two-rarefaction waves in the star region,

SL = min
(
u−

i+ 1

2

−
√
gh−

i+ 1

2

, u∗ −
√
gh∗

)
, (3.9)

SR = min
(
u+
i+ 1

2

+
√
gh+

i+ 1

2

, u∗ +
√

gh∗

)
, (3.10)

with

√
gh∗ =

1

2

(√
gh−

i+ 1

2

+
√
gh+

i+ 1

2

)
− 1

4

(
u+
i+ 1

2

− u−

i+ 1

2

)
, (3.11)

u∗ =
1

2

(
u−

i+ 1

2

+ u+
i+ 1

2

)
+
√

gh−

i+ 1

2

−
√

gh+
i+ 1

2

. (3.12)

The expressions for the wave speeds are obtained by assuming the wet bed

condition, i.e., h±

i+ 1

2

> 0. For the dry bed on the right side of the cell interface,

i.e., h+
i+ 1

2

= 0 and h−

i+ 1

2

> 0, the wave speeds are approximated by

SL = u−

i+ 1

2

−
√
gh−

i+ 1

2

, SR = u−

i+ 1

2

+ 2
√
gh−

i+ 1

2

, (3.13)

and for the dry bed on the left side of the cell interface, i.e., h−

i+ 1

2

= 0 and h+
i+ 1

2

> 0,

SL = u+
i+ 1

2

− 2
√
gh+

i+ 1

2

, SR = u+
i+ 1

2

+
√
gh+

i+ 1

2

. (3.14)

The diagram for the HLL flux corresponding to the Riemann problem is shown

in Figure 3.1.
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Figure 3.1: The diagram for HLL flux corresponding to the Riemann problem at

interface i+1/2.

Weighted average flux (WAF)

The WAF was first introduced by Toro, see [40, 41]. The WAF approximation is

second-order accurate in both space and time in statistical sense, [40].

The weighted average flux, F̂WAF
i+ 1

2

, at the interface xi+ 1

2

is defined by the integral

average of a flux function F (U) at the half-time step,

F̂WAF
i+ 1

2

=
1

∆x

∫ ∆x
2

−∆x
2

F

(
Ui+ 1

2

(
x,

∆t

2

))
dx. (3.15)

Figure 3.2: The diagram for WAF corresponding to the Riemann problem at

interface i+1/2.

It can be written in the summation of wave structure form as,
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F̂WAF
i+ 1

2

=
Nc+1∑

k=1

ωkF
(k)

i+ 1

2

, (3.16)

where Nc is the number of wave solutions in the Riemann problem and F
(k)

i+ 1

2

is the

kth flux of the Riemann problem. For one-dimensional shallow water flows, one has

Nc = 2, with F
(1)

i+ 1

2

= F
(
U−

i+ 1

2

)
, F

(3)

i+ 1

2

= F
(
U+
i+ 1

2

)
, and the flux component F

(2)

i+ 1

2

is obtained from the HLL approach [40]. The weighted ωk are defined by ωk =

1
2
(ck − ck−1), where ck = Sk∆t/∆x is the Courant number of wave k, c0 = −1,

cNc+1 = 1, and Sk is the speed of wave k with S1 = SL and S2 = SR which defined

in the same manner as the HLL flux. The diagram for WAF corresponding to the

Riemann problem is shown in Figure 3.2.

To avoid spurious oscillations near a shock front, the WAF method is modified

by enforcing a total variation diminishing (TVD) scheme [6, 11, 29, 40, 41]. The

TVD-WAF version becomes

F̂WAF−TV D
i+ 1

2

=
1

2

(
F
(
U−

i+ 1

2

)
+ F

(
U+
i+ 1

2

))
− 1

2

Nc∑

k=1

sgn (ck)φ
(k)

i+ 1

2

∆F
(k)

i+ 1

2

, (3.17)

where

∆F
(k)

i+ 1

2

= F
(k+1)

i+ 1

2

− F
(k)

i+ 1

2

. (3.18)

Here, φ
(k)

i+ 1

2

is a WAF limiter function. There are various choices for φ
(k)

i+ 1

2

, see more

details in [6, 11, 29, 40, 41]. In this work, we employ the minmod slope limiter

φ
(k)

i+ 1

2

(
r(k)
)
=





1, r(k) ≤ 0,

1− (1− |ck|) r(k), 0 < r(k) < 1,

|ck| , r(k) ≥ 1,

(3.19)
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where r(k) is defined by

r(k) =





∆h
(k)

i− 1

2

∆h
(k)

i+ 1

2

=
h
(k),+

i− 1

2

− h
(k),−

i− 1

2

h
(k),+

i+ 1

2

− h
(k),−

i+ 1

2

, if ck ≥ 0,

∆h
(k)

i+ 3

2

∆h
(k)

i+ 1

2

=
h
(k),+

i+ 3

2

− h
(k),−

i+ 3

2

h
(k),+

i+ 1

2

− h
(k),−

i+ 1

2

, if ck < 0

(3.20)

with ∆h
(k)

i− 1

2

, ∆h
(k)

i+ 1

2

and ∆h
(k)

i+ 3

2

are the jumps of h across the wave k in the solutions

Ui− 1

2

, Ui+ 1

2

and Ui+ 3

2

of the Riemann problem, respectively.

Actually, WAF has a consistency property which can be shown by the following

Lemma.

Lemma 1 TVD-WAF is a consistent numerical flux for smooth flow problem.

Proof Consider a smooth solution at interface i+1/2, it is sufficient to show that

TVD-WAF is a consistent numerical flux if F̂ TV D−WAF
i+ 1

2

(
U−

i+ 1

2

, U+
i+ 1

2

)
= F

(
Ui+ 1

2

)
.

The TVD-WAF is defined by

F̂ TV D−WAF
i+ 1

2

(
U−

i+ 1

2

, U+
i+ 1

2

)
=
1

2

(
F
(
U−

i+ 1

2

)
+ F

(
U+
i+ 1

2

))

− 1

2

2∑

k=1

sgn (ck)φ
k
i+ 1

2

∆F
(k)

i+ 1

2

, (3.21)

for smooth flow problem, U−

i+ 1

2

= U+
i+ 1

2

= Ui+ 1

2

, then F (1) = F
(
U−

i+ 1

2

)
= F

(
Ui+ 1

2

)
,

F (3) = F
(
U+
i+ 1

2

)
= F

(
Ui+ 1

2

)
, F (2) = F

(
Ui+ 1

2

)
, and ∆F

(k)

i+ 1

2

= 0. Thus,

F̂ TV D−WAF
i+ 1

2

(
U−

i+ 1

2

, U+
i+ 1

2

)
= F̂i+ 1

2

(
Ui+ 1

2

, Ui+ 1

2

)

=
1

2

(
F
(
Ui+ 1

2

)
+ F

(
Ui+ 1

2

))
− 1

2

2∑

k=1

sgn (ck)φ
k
i+ 1

2

∆F
(k)

i+ 1

2

= F (Ui+ 1

2

).

(3.22)

This shows that the TVD-WAF is consistent for smooth flow.
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3.1.2 Total Variation Diminishing Runge Kutta (TVD-RK)

After discretizing conservation equations in spatial space by the DG method, we

obtain a system of ODEs with respect to the time derivative as in (3.6), which

can be approximated by applying the high-order TVD-RK method [7, 15, 36],

introduced by Chi-Wang Shu [36].

The system (3.6) can be written in the form

dUh (t)

dt
= Lh (Uh, t) , (3.23)

where t ∈ (0, T ) with initial condition

Uh (x, 0) = U0h (3.24)

and Lh (Uh, t) represents the right hand side of equation (3.6).

Let {tn}Mn=0 be a partition of [0, T ] into M intervals with ∆tn = tn+1 − tn, for

n = 0, . . . ,M − 1. The time marching algorithm can be summarized as follows.

1. Set U0
h = U0h.

2. For n = 0, ..,M − 1 compute Un+1
h from Un

h as following steps 2.1-2.3;

2.1 set d(0) = Un
h ,

2.2 for m = 1, ..., k + 1 compute the intermediate functions:

d(m) =

{
m−1∑

s=0

(
αmsd

(s) + βms△tnLh

(
d(s), t

))
}
,

where αms and βms are parameters of the TVD-RK.

2.3 set Un+1
h = d(k+1).

For example, the TVD-RK of orders 2 and 3 are as follows

TVD-RK order 2

d(1) = Un
h +∆tLh (U

n
h , t

n) , (3.25)
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Un+1
h = d(2) =

1

2

(
Un
h + d(1) +∆tLh

(
d(1), tn +∆t

))
. (3.26)

TVD-RK order 3

d(1) = Un
h +∆tLh (U

n
h , t

n) , (3.27)

d(2) =
1

4

(
3Un

h + d(1) +∆tLh

(
d(1), tn +∆t

))
, (3.28)

Un+1
h = d(3) =

1

3

(
Un
h + 2d(2) + 2∆tLh

(
d(2), tn +

1

2
∆t

))
. (3.29)

By these setting, the TVD-RK has some useful stability properties, where details

are given in [7, 15].

Note that when the polynomial of degree N is applied for DG, the TVD-RK

method of order at least N+1 is required to obtain the accuracy of order O(∆xN+1)

for smooth flows problem.

3.1.3 Monotonic Upstream-Centered Scheme for Conserva-

tion Laws (MUSCL) slope limiter

The TVD-RK DG method can be used to simulate shallow water flows with moving

shocks. Unphysically oscillate behaviours are usually produced near the shock

fronts. The slope limiter techniques can be applied to remove the oscillations. In

this work, we apply the Monotonic Upstream-Centered Scheme for Conservation

Laws (MUSCL) limiter [7, 15, 25, 40] in the TVD-RK DG method. This approach

limits the present solution slope by comparing with neighbor cells.

In the case of piecewise linear approximation, Uh|Ii = U0
i + U1

i x, the slope

limiter function of Uh|Ii is
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ΛΠ1
h (Uh|Ii) = U i + (x− xi)minmod

(
Ux,i,

U i+1 − U i

∆x
,
U i − U i−1

∆x

)
, (3.30)

for i = 1, . . . , K .

In (3.30), U i is the mean value in the i-th cell, Ux,i = U1
i and the minmod

function is defined by

minmod (a1, a2, . . . , an) =





sgn (a1) min
1≤i≤n

|ai| , if sgn (a1) = . . . = sgn (an) ,

0, otherwise .

This is the well-known slope limiter of the MUSCL schemes introduced by van

Leer [44, 45].

In the case that the approximate solution is a polynomial of degree N ≥ 2,

Uh|Ii (x, t) =
N∑

l=0

U l
i (t)ϕl (x) .

We defined the degree one of Uh denoted by U1
h as

U1
h |Ii (x, t) =

1∑

l=0

U l
i (t)ϕl (x) .

The slope limiter procedure in this case, denoted by ΛΠN
h , is obtained as follows

(1) Compute Ũ−

i+ 1

2

and Ũ+
i− 1

2

from

Ũ−

i+ 1

2

= Ūi + minmod
(
U−

i+ 1

2

− Ūi, Ūi − Ūi−1, Ūi+1 − Ūi

)
, (3.31)

Ũ+
i− 1

2

= Ūi − minmod
(
Ūi − U+

i− 1

2

, Ūi − Ūi−1, Ūi+1 − Ūi

)
. (3.32)

(2) If Ũ−

i+ 1

2

= U−

i+ 1

2

and Ũ+
i− 1

2

= U+
i− 1

2

, then set ΛΠN
h (Uh|Ii) = Uh|Ii .

(3) Otherwise, take Uh|Ii equals to ΛΠ1
h (U

1
h |Ii).
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3.2 Consistency of WAF with TVD-RK DG method

The HLL flux is usually used in the TVD-RK DG method. Another choice but

higher order is the WAF. This approximation has been extensively applied in the

FVM, but it is rarely used in the TVD-RK DG method. Thus, the main objective

of this work is to modify the WAF in the TVD-RK DG method. The consistency

of the WAF in the TVD-RK DG scheme without source term is described below.

Lemma 2 The TVD-RK DG method is consistent with the WAF for smooth

flows problem.

Proof Considering the weak form of DG method for the conservation law

∫

Ii

(
∂

∂t
U

)
v(x)dx−

∫

Ii

F (U) v′(x)dx+ F
(
Ui+ 1

2

)
v
(
x−

i+ 1

2

)

− F
(
Ui− 1

2

)
v
(
x+
i− 1

2

)
= 0 . (3.33)

Exact solution U is approximated by U∗
h , the test function v is estimated by

vh, and flux function, F , at cell interfaces are approximated in terms of numerical

flux, F̂i± 1

2

, the DG method becomes

∫

Ii

(
∂

∂t
U∗
h

)
vh(x)dx−

∫

Ii

F (U∗
h) v

′
h(x)dx

+ F̂i+ 1

2

(
(U∗

h)
−

i+ 1

2

, (U∗
h)

+
i+ 1

2

)
vh

(
x−

i+ 1

2

)

− F̂i− 1

2

(
(U∗

h)
−

i− 1

2

, (U∗
h)

+
i− 1

2

)
vh

(
x+
i− 1

2

)
= T, (3.34)

where T is a total truncation error of the scheme.

By using Gauss-Lobatto quadrature N +1 points, the integrals terms in (3.34)

give the exact value for polynomials degree N . Then, the truncation error, T , is

composed of the numerical flux error, the approximate solution in space, and the

approximate solution in time which are denoted by T1, T2, and T3, respectively.
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Consider interface i+1/2, when the solution is smooth, it is continuous at xi+ 1

2

,

thus, (U∗
h)

+
i+ 1

2

= (U∗
h)

−

i+ 1

2

= (U∗
h)i+ 1

2

. From Lemma 1, the TVD-WAF is consistent,

thus, the numerical flux, F̂i+ 1

2

, becomes an exact flux, F
(
(U∗

h)i+ 1

2

)
. It can be

considered similarly for interface i − 1/2. This makes T1 = 0 for smooth flow

problem.

For the TVD-RK DG method, the approximate solution U∗
h in (3.34) is defined

by

U∗
h (x, t) =

N∑

k=0

Uk(t)ϕk(x),

where ϕk(x) is the Legendre polynomial degree k. Since the considering solution

is smooth, Theorem 3.1 in [7] gives that the truncation error term T2 due to

approximating polynomial is in the form

T2 := ‖U − U∗
h‖L2(0,1) ≤ O

(
∆xN+ 1

2

)
, for N ≥ 0. (3.35)

After substituting the approximate solution into the numerical scheme (3.34),

we obtain an ODE system

d

dt
U∗
h = L (U∗

h) .

The TVD-RK scheme is applied for integrating in time. The order of accuracy

for time integration depends on the TVD-RK order, [7, 15, 36], since the TVD-RK

order N + 1 is applied, thus, a truncation error term T3 is O
(
∆tN+1

)
.

Combining all of the truncation error terms, the total truncation error term of

the TVD-RK DG with WAF is

T = T1 + T2 + T3 ≤ O
(
∆xN+ 1

2 ,∆tN+1
)
. (3.36)

This shows that the total truncation error term approaches zero as ∆x → 0 and

∆t → 0. Hence, the TVD-RK DG with the WAF method is consistent.
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Remark If we apply consistent numerical scheme to approximate source terms,

the TVD-RK DG with the WAF method is consistent in the case of the scheme

with source term.

3.3 Well-balanced TVD-RK DG with WAF scheme

For the SWE with the source term, the steady solutions of (3.1) is obtained by

setting

hu = constant and
1

2
u2 + g (h+ z) = constant. (3.37)

Since the flux gradient is nonzero, it must be balanced with the bottom gradient.

Usually, numerical schemes without balancing these two quantities produce oscil-

late steady solution, hence, balancing numerical scheme is needed. In this case

the scheme is called the well-balanced scheme. As suggested by Bermudez and

Vazquez [5], a numerical scheme is said to be well-balanced if it satisfies the exact

C-property, i.e., the numerical solution must satisfy still water condition at steady

state

u = 0 and h+ z = constant. (3.38)

Therefore, one can obtain a well-balanced scheme by designing the method that

its steady solutions satisfy (3.38). Note that we consider only the bottom slope

in the source terms at steady state because the friction term does not affect still

water solutions.

In this section, we develop a well-balanced scheme for the TVD-RK DG based

on the WAF method. The main purpose is to present a modified scheme for solving

the SWE with source term that also preserves exactly stationary solution when

bottom slope exists. Consider the standard TVD-RK DG method
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∫

Ii

(
∂

∂t
Uh

)
vh(x)dx −

∫

Ii

F (Uh) v
′
h(x)dx + F̂i+ 1

2

vh

(
x−

i+ 1

2

)

− F̂i− 1

2

vh

(
x+
i− 1

2

)
=

∫

Ii

G (Uh) vh(x)dx (3.39)

with initial condition

∫

Ii

Uh (x, 0) vh(x)dx =

∫

Ii

U0(x)vh(x)dx, (3.40)

where F̂i± 1

2

are the WAFs defined in (3.17), and the source term

G(U) =


 G1 (U, x)

G2 (U, x)


 =


 0

−ghzx


 .

We derive a well-balanced scheme based on [47] by using the WAF in the

TVD-RK DG instead of the Lax-Friedrichs (LF) flux. The main modification is

the treatment of the source terms in the WAF method by writing the source terms

as a summation

Gp(U, x) =
2∑

m=1

sm(a(U, x)) t
′

m(x), p = 1, 2 , (3.41)

where sm and tm are functions to be determined later and prime, ′, denote the

derivative with respect to x.

If the solution at steady state is stationary, then a (U, x) in (3.41) can be

decomposed into a1 (U, x) and a2 (U, x), such that

a1 ≡ h+ z = constant and a2 ≡ u = 0.

Since G1 is zero, we consider only G2,

G2 (U, x) = −ghzx = −g (h+ z) zx +
1

2
g
(
z2
)
x

(3.42)

which is the same as having

s1 = s1 (a1) = −g (h+ z) , s2 =
1

2
g, t1(x) = z, and t2(x) = z2
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for p = 2 in (3.42). To balance the flux gradient and the source term approximation

at steady state, it is required that

d

dx

(
F (U(x))−

2∑

m=1

sm(a(U, x))tm(x)

)
= 0 (3.43)

or

F (U(x))−
2∑

m=1

sm(a(U, x))tm(x) = α, (3.44)

where α and a(U, x) are constants.

The integration of source term in (3.39) can be approximated by

∫

Ii

G2 (Uh, x) vh(x)dx =

∫

Ii

∑

m

sm(a(U, x))t
′
m(x)vh(x)dx

=
∑

m

[
1

2

(
sm

(
a (Uh, x)

+
i− 1

2

)
+ sm

(
a (Uh, x)

−

i+ 1

2

))]

[ ∫

Ii

t′m(x)vh(x)dx
]

+
∑

m

[ ∫

Ii

{
sm (a (Uh, x))−

1

2

(
sm

(
a (Uh, x)

+
i− 1

2

)

+ sm

(
a (Uh, x)

−

i+ 1

2

))}
t′m(x)vh(x)dx

]

=
∑

m

[
1

2

(
sm

(
a (Uh, x)

+
i− 1

2

)
+ sm

(
a (Uh, x)

−

i+ 1

2

))]

[
tm

(
xi+ 1

2

)
vh

(
x−

i+ 1

2

)
− tm

(
xi− 1

2

)
vh

(
x+
i− 1

2

)

−
∫

Ii

tm(x)v
′
h(x)dx

]

+
∑

m

[ ∫

Ii

{
sm (a (Uh, x))−

1

2

(
sm

(
a (Uh, x)

+
i− 1

2

)

+ sm

(
a (Uh, x)

−

i+ 1

2

))}
t′m(x)vh(x)dx

]
, m = 1, 2. (3.45)

Functions a (Uh, x) and tm(x) on the RHS of (3.45) can be approximated by

ah(Uh, x) and (tm)h (x), where ah(Uh, x), (tm)h (x) ∈ PN (Ii). Then, we obtain

(t1)h (x) = zh and (t2)h (x) = z2h. Thus,
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F (Uh(x))−
∑

m

sm(a(Uh, x)) (tm)h (x) = α (3.46)

and

∫

Ii

G2 (Uh, x) vh(x)dx =
∑

m

[
1

2

(
sm

(
ah (Uh, x)

+
i− 1

2

)
+ sm

(
ah (Uh, x)

−

i+ 1

2

))]

[ (
t̂m
)
h,i+ 1

2

vh

(
x−

i+ 1

2

)
−
(
t̂m
)
h,i− 1

2

vh

(
x+
i− 1

2

)

−
∫

Ii

(tm)h (x)v
′
h(x)dx

]
+
∑

m

[ ∫

Ii

{
sm (ah (Uh, x))

− 1

2

(
sm

(
ah (Uh, x)

+
i− 1

2

)
+ sm

(
ah (Uh, x)

−

i+ 1

2

))}

(tm)
′

h (x)vh(x)dx
]
,

(3.47)

where
(
t̂m
)
h,i− 1

2

and
(
t̂m
)
h,i+ 1

2

are approximations of tm

(
xi− 1

2

)
and tm

(
xi+ 1

2

)
,

respectively. To satisfy the WAF in (3.16),
(
t̂m
)
h,i+ 1

2

is modified as

(
t̂m
)
h,i+ 1

2

=
Nc+1∑

k=1

ωkt
(k)

h,i+ 1

2

, (3.48)

and if the TVD version in (3.17) is applied, then we use

(
t̂m
)
h,i+ 1

2

=
Nc+1∑

k=1

sgn (ck)φ
(k)

i+ 1

2

t
(k)

h,i+ 1

2

. (3.49)

Note that ωk are weights in the WAF approximations and φ
(k)

i+ 1

2

is the WAF limiter

function, it can be seen that t
(k)

h,i+ 1

2

is defined similar to F
(k)
i+1/2.

For one-dimensional problem, we have Nc = 2, t
(1)

h,i+ 1

2

= th

(
x−

i+ 1

2

)
, t

(3)

h,i+ 1

2

=

th

(
x+
i+ 1

2

)
, and t

(2)

h,i+ 1

2

in the intermediate region is obtained via the HLL approach,
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t
(2)

h,i+ 1

2

=





th

(
x−

i+ 1

2

)
, if SL ≥ 0,

SRth

(
x−

i+ 1

2

)
− SLth

(
x+
i+ 1

2

)
+ SRSL

(
th

(
x+
i+ 1

2

)
− th

(
x−

i+ 1

2

))

SR − SL

, if SL < 0 < SR,

th

(
x+
i+ 1

2

)
, if SR ≤ 0 ,

where SL and SR are the wave speed in the Riemann problem.

At steady state, the solution is assumed to be stationary, i.e., h+ z = c, where

c is a constant and u = 0. From (3.46), we have

F (Uh)−
∑

m

sm(ah(U, x))tm(x) =
1

2
g(hh)

2 −
[
1

2
gz2h − g(hh + zh)zh

]

=
1

2
g(hh + zh)

2

=
1

2
gc2 = α .

This shows that the choices of a(Uh, x) and tm are suitable in the TVD-RK DG

with the WAF.

The following result shows that the TVD-RK DG with the WAF method pre-

serves the well-balanced property.

Proposition The TVD-RK DG with the WAF scheme preserves exactly station-

ary solutions at steady state.

Proof To show that the TVD-RK DG with the WAF scheme preserves exactly

stationary solutions at steady state, it is sufficient to show that T = 0 where T is

a total truncation error of the scheme at steady state.

Since ah(Uh, x) and ah(Uh, x)
±

i∓ 1

2

are equal to the same constant c at each point

over cell Ii at steady state, thus,
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∑

m

[∫

Ii

{
sm (ah (Uh, x))−

1

2

(
sm

(
ah (Uh, x)

+
i− 1

2

)
+ sm

(
ah (Uh, x)

−

i+ 1

2

))}
(tm)

′

h (x)vh(x)dx

]
= 0 .

From (3.34), the total truncation error when considering the source term is

T =

∫

Ii

F (Uh(x, t))v
′

h(x)dx− F̂WAF
i+ 1

2

vh(x
−

i+ 1

2

) + F̂WAF
i− 1

2

vh(x
+
i− 1

2

) +
∑

m

[1
2

(
sm

(
ah

(
Uh, x

)+
i− 1

2

)

+ sm

(
ah

(
Uh, x

)−
i+ 1

2

))][ (
t̂m
)
h,i+ 1

2

vh

(
x−

i+ 1

2

)
−
(
t̂m
)
h,i− 1

2

vh

(
x+
i− 1

2

)

−
∫

Ii

(tm)h (x)v
′
h(x)dx

]
.

Using F̂WAF
i± 1

2

in (3.16),
(
t̂m
)
h,i± 1

2

in (3.48), and ah (Uh, x)
±

i∓ 1

2

= c, we have

T =

∫

Ii

[
F (Uh(x, t))−

∑

m

sm(c)(tm)h(x)

]
v

′

h(x)dx−
[

3∑

k=1

ωkF
(k)

i+ 1

2

−
∑

m

sm(c)

(
3∑

k=1

ωkt
(k)

h,i+ 1

2

)]

vh(x
−

i+ 1

2

) +

[
3∑

k=1

ωkF
(k)

i− 1

2

−
∑

m

sm(c)

(
3∑

k=1

ωkt
(k)

h,i− 1

2

)]
vh(x

+
i− 1

2

)

=

∫

Ii

[
F (Uh(x, t))−

∑

m

sm(c)(tm)h(x)

]
v

′

h(x)dx−
[

3∑

k=1

ωk

(
F

(k)

i+ 1

2

−
∑

m

sm(c)t
(k)

h,i+ 1

2

)]

vh(x
−

i+ 1

2

) +

[
3∑

k=1

ωk

(
F

(k)

i− 1

2

−
∑

m

sm(c)t
(k)

h,i− 1

2

)]
vh(x

+
i− 1

2

).

After applying condition (3.46) and rearranging terms, yields

T = α
[
vh(x

−

i+ 1

2

)− vh(x
+
i− 1

2

)
]
− αvh(x

−

i+ 1

2

) + αvh(x
+
i− 1

2

) = 0.

Thus, the TVD-RK DG with the WAF scheme preserves exactly the stationary

solution at steady state, this satisfies the exact C-property, hence, it is a well-

balanced scheme. Since the weights in the TVD-WAF are not affect to the total

truncation error, thus, the TVD-RK DG with the TVD-WAF scheme is also a

well-balanced scheme.
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Remark One can show that the developed well-balanced TVD-RK DG with WAF

scheme in the case of existing source term is consistent by showing that the ap-

proximation of the source term is also consistent.

3.4 Numerical results

In this section, various experiments have been investigated to demonstrate the

accuracy of the modified scheme for both steady and unsteady flows.

3.4.1 Dam break flow

It has been shown in the previous section that the WAF is consistent with the

TVD-RK DG method. In this section, we apply this modified scheme for solving

the SWE without source terms. The accuracy of numerical solutions is presented

and compared with results from the standard TVD-RK DG with the HLL flux.

The experiment is set up as follow.

The computational domain is −5 ≤ x ≤ 5 with the initial water depth

h (x, 0) =




1, if x ≤ 0,

0.6, if x > 0.
(3.50)

The initial velocity is assumed to be zero and the boundary conditions are consid-

ered as transmissive boundaries. We perform 50, 100, and 200 cells in the numerical

experiments. Polynomials of degree zero, one, and two are applied for local basis

in the TVD-RK DG method. The root mean squared errors (RMS) of simulated

results using WAF compared with those using HLL flux at t = 2s and ∆t = 0.005s

for various N and K are shown in Table 3.1.
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N Numerical Flux K = 50 K = 100 K = 200

N = 0
HLL 0.0280 0.0215 0.0165

WAF 0.0182 0.0127 0.0094

N = 1
HLL 0.0130 0.0102 0.0072

WAF 0.0107 0.0093 0.0067

N = 2
HLL 0.0103 0.0079 0.0053

WAF 0.0100 0.0076 0.0052

Table 3.1: RMS errors when N = 0, N = 1 and N = 2 for K =50, 100 and 200

for WAF and HLL.

The results show that the accuracy of numerical solution obtained from the

WAF is higher than those obtained from the HLL method, the RMS error de-

creases as K increases and the RMS error decreases as the polynomial of degree

N increases.

The water depth profiles comparing between HLL and WAF at t = 2s for N = 1

and K = 100 are shown in Figure 3.3 and Figure 3.4, respectively. The moving

shock fronts are well captured for both HLL and WAF, however, WAF is slightly

better for rarefraction wave. This experiment shows the accuracy of the TVD-RK

DG with WAF, as an extension of the FVM [15].

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

x

h

N = 1 K = 100 HLL
solution at time = 2

 

 

exact solution
approximate solution 

Figure 3.3: Exact solution and water depth profile obtained by the TVD-RK DG

with HLL flux.
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Figure 3.4: Exact solution and water depth profile obtained by the TVD-RK DG

with WAF flux.

3.4.2 Flow over irregular bed

This experiment is set up on the uniform channel of length 1500 m with irregular

bottom as shown in Figure 3.5. The problem is proposed by Lai and Bouchut [20]

for testing the accuracy of numerical schemes at stationary state. The boundary

conditions are transmissive with the initial water depth h + z = 16 m and zero

initial velocity. The simulation runs until t = 100s with ∆t = 0.01s.

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

N = 1, K = 200
solution at time = 100

x

h
+

z

 

 

Well−balanced DG
DG
bottom

Figure 3.5: Stationary flows over irregular bottom produced by well-balanced and

non well-balanced TVD-RK DG with WAF.

Figure 3.5 shows that the well-balanced scheme (dot) gives exactly the station-

ary solution, while the non well-balanced scheme (dash line) gives solution with

high error, especially in the area where the bottom has high gradient.
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3.4.3 Steady flow over a bump

In this experiment, we consider the shallow water flows over a bump in a rectan-

gular channel of length 25 m. The bump elevation is

z(x) =




0.2− 0.05 (x− 10)2 , if 8 < x < 12,

0, otherwise .
(3.51)

At steady state, classical flows are characterized by subcritical flow, transcritical

flow with shock, or transcritical flow without shock. The TVD-RK DG with WAF

is performed for this problem. The accuracy of numerical result is investigated by

comparing with the existing analytical solutions, see [10].

Subcritical flow over a bump

The upstream boundary is imposed by Q = 4.42 m2/s and the downstream

boundary h = 2 m with initial water depth h + z = 2 m and zero initial velocity.

The simulation of the TVD-RK DG with N=1 is obtained using ∆t = 0.01s. The

comparison of RMS errors from HLL and WAF for various K is shown in Table

3.2, showing that WAF is slightly better than HLL.

K = 50 K = 100 K = 200 K = 400

HLL 1.6954e-03 4.5563e-04 1.2546e-04 3.5900e-05

WAF 1.5816e-03 4.1648e-04 1.1474e-04 3.3019e-05

Table 3.2: RMS errors when N = 1 for subcritical flow over a bump for K=50,

100, 200 and 400.

The water depth and bump profiles are shown in Figure 3.6, displaying the

agreement between the simulated result and the analytical solution.
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Figure 3.6: Water depth and bump profiles for subcritical flow.

Transcritical flow with shock over a bump

The upstream boundary is imposed by Q = 0.18 m2/s and the downstream

boundary h = 0.33 m with the initial water depth h + z = 0.33 m. The com-

parison of water surfaces is shown in Figure 3.7, showing the agreement between

the numerical result and the analytical result. This shows the accuracy of the

well-balanced scheme by capturing the shock front without any oscillations.
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Figure 3.7: Transcritical flow with shock over a bump.

Transcritical flow without shock over a bump

The upstream boundary is imposed by Q = 1.53 m2/s and the downstream

boundary is not specified, with initial water depth h + z = 0.4 m and zero initial
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velocity.
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Figure 3.8: Transcritical flow without shock over a bump.

The comparison of the water depth profiles are shown in Figure 3.8, showing

the agreement between the numerical result and the analytical solution. Therefore,

the well-balanced scheme is accurate for transcritical flow problem.

3.4.4 Small perturbation of steady state water

This experiment was first proposed by [23, 24, 25] to study the capability of nu-

merical schemes for small perturbation in shallow water flows. In this experiment,

the bottom topography is

z(x) =




0.25 (cos (10π (x− 1.5)) + 1) , if 1.4 < x < 1.6,

0. otherwise.
(3.52)

The initial conditions are specified by

q(x, 0) = 0 and h(x, 0) =




1− z(x) + ǫ, if 1.1 < x < 1.2,

1− z(x), otherwise,
(3.53)

where ǫ is a non-zero perturbation constant. The boundary conditions are trans-

missive boundaries. In this work, we consider the cases of ǫ = 0.2 and 0.01. The

disturbance of initial water depth from small ǫ splits the initial wave into two
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waves, the left and the right waves with characteristic speed ±
√
gh at the early

stage. A standard non well-balanced scheme usually has difficulty to capture the

wave speed correctly.
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Figure 3.9: Quasi-stationary flow for ǫ = 0.01.

The simulation result is produced using 400 uniform grid cells for the TVD-RK

DG degree one with WAF and run for t = 0.7s.

The comparison of water depths between the simulated results and the Lev-

eque’s solutions [24] is shown in Figures 3.9 and 3.10 for ǫ = 0.01 and 0.2, respec-

tively, which are in good agreement in terms of the amplitude and wave speed.
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Figure 3.10: Quasi-stationary flow for ǫ = 0.2.



42

3.4.5 Flow over non-horizontal bed

This experiment is carried out based on result in [39], to study the ability of

numerical schemes for unsteady flows over topography. The experiment is set on

the uniform channel of length 30 m with bottom elevation

z(x) =





0, if 0 ≤ x < 10,

0.1 (x− 10) , if 10 ≤ x < 20,

1, if 20 ≤ x ≤ 30,

(3.54)

and initial water depth

h(x) + z(x) =




4, if 0 ≤ x < 5,

2, if 5 ≤ x ≤ 30 .
(3.55)

The simulation is obtained by using ∆t = 0.01s on 200 uniform grid cells for

polynomial degree one with transmissive boundaries.

The comparison of simulated results with the Toro’s solutions [39] at t = 1s

and 4s are shown in Figure 3.11 and 3.12, respectively, showing the agreement of

both results in term of the wave speed and shock profiles.
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Figure 3.11: Flows over non-horizontal bed at time 1s.
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Figure 3.12: Flows over non-horizontal bed at time 4s.

3.5 Conclusions

In this Chapter, we present the TVD-RK DG method for solving nonlinear SWE.

Most of the TVD-RK DG methods in the literature usually approximate flux at

cell interfaces by applying the HLL method, here, another approach called the

WAF is applied. The consistent property of the TVD-RK DG with the WAF ap-

proximation is shown in Section 3.2, then the well-balanced TVD-RK DG scheme

with the WAF approximation is developed. It is used to simulate various experi-

ments for steady and unsteady flows. The high accuracy of developed numerical

scheme is demonstrated by various test cases such as flow over irregular bed, steady

flow over a bump, quasi-stationary, and flow over non-horizontal bed. The well-

balanced TVD-RK DG with the WAF method can be used to solve all the kinds

of these problems. Due to its advantages of numerical accuracy, simplicity and

well-balanced property, the presented scheme can be modified and extended to

simulate two-dimensional problems. However, depending on the types of elements,

e.g., triangles or rectangles, it is not trivial to extend for two-dimensional problems

due to the polynomial basis functions and the WAF fluxes at cell interfaces, and

is not considered in this work.



CHAPTER IV

FINITE VOLUME METHOD FOR ONE-DIMENSIONAL

SHALLOW WATER EQUATIONS IN ARBITRARY

CROSS-SECTIONAL AREA

In this Chapter, the reconstruction and bottom modification techniques for open

channel flow in arbitrary cross-sectional area is presented. We applied finite volume

method (FVM) with HLL flux to approximate SWE in arbitrary cross-sectional

area, where the difficulty usually occurs when dealing with wet/dry areas. To

improve the efficiency and stability of the numerical scheme when dealing with

wet/dry problem, we apply the reconstruction and bottom modification techniques.

Various numerical experiments are presented to show good agreement with results

in literature, which confirm the accuracy of the proposed scheme. Moreover, it

also preserves the still water stationary solution and the conservation of mass.

In addition, the proposed scheme is applied to simulate water flow in Yom river,

Phrae province, where the results agree very well with the measured data.

4.1 Finite volume method for one-dimensional shallow wa-

ter equations in arbitrary cross-sectional area

Consider the one-dimensional SWE in arbitrary cross-sectional area

Ut + F (U)x = S (U) , (4.1)

where

U =


 A

Q


 , F (U) =




Q

Q2

A


 , and S(U) =




0

−gAZx − g
n2Q |Q|
R4/3A


 . (4.2)
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This equation is sometimes called the Saint Venant equations. The first and the

second component of the flux function in (4.2) are denoted by f1 = Q and f2 =
Q2

A
,

respectively, where A is a wetted cross-sectional area, Q = Au is a discharge, u is

a velocity, g is a acceleration due to gravity, Z = h+ z is a water surface level, z is

a bottom elevation, h is a water depth, n is the Manning’s roughness coefficient,

R = A/P is the hydraulic radius, and P is the wetted perimeter of the channel. A

prototype cross-section of a channel is shown in Figure 4.1, where B is the channel

width measured at the water surface.

Figure 4.1: Cross-section of a channel.

The computational domain of length L is partitioned into K cells with uniform

cell size ∆x = xi+ 1

2

−xi− 1

2

, where xi− 1

2

and xi+ 1

2

are the left and the right interfaces

of the cell, respectively, and cell i is denoted by Ii = [xi− 1

2

, xi+ 1

2

], for i = 1, ..., K.

In the FVM, the discretized form of (4.1) is

Un+1
i = Un

i − ∆t

∆x

[
F̂ n
i+ 1

2

− F̂ n
i− 1

2

]
+∆tSn

i , (4.3)

where ∆t = tn+1− tn, Un
i is the cell average of U over cells Ii at time tn defined by

Un
i =

1

∆x

∫

Ii

U (x, tn) dx. (4.4)

Here, F̂ n
i− 1

2

and F̂ n
i+ 1

2

are the numerical fluxes at the left and the right interfaces of

the cell at time tn, respectively, the numerical fluxes for f1 and f2 components at i+
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1/2 are denoted by
(
f̂1

)n
i+ 1

2

and
(
f̂2

)n
i+ 1

2

, respectively, and Sn
i is the approximation

of the source terms at time tn.

4.1.1 Harten-Lax-van Leer flux (HLL flux)

We approximate fluxes F̂i± 1

2

at the left and the right interfaces in (4.3) by the

HLL approximate Riemann solver [19, 21, 22, 40, 41, 50, 51] as first proposed by

Harten, Lax and van Leer [13]. For instance, the HLL flux at interface i + 1/2 of

the Saint Venant equations at arbitrary time is given by

F̂HLL
i+ 1

2

(UL, UR) =





F (UL) , if SL ≥ 0,

F ∗

i+ 1

2

, if SL < 0 < SR,

F (UR) , if SR ≤ 0,

(4.5)

where UL = Ui, UR = Ui+1 which are the limits of the solution from the left and

right of the interface, F (UL) = F (Ui), F (UR) = F (Ui+1), and SL and SR are the

left and the right wave speeds defined below. As proposed by Ying and Wang

[50, 51], in the case of arbitrary cross-sectional area, F ∗

i+ 1

2

= (f ∗
1 , f

∗
2 )

T , where

f ∗
1 =

SRBi+1(f1)i − SLBi(f1)i+1 + SLBiSRBi+1(Zi+1 − Zi)

SRBi+1 − SLBi

, (4.6)

f ∗
2 =

SR(f2)i − SL(f2)i+1 + SLSR(Qi+1 −Qi)

SR − SL

. (4.7)

For wet bed problem, the left and the right wave speeds can be estimated by

SL = min

(
ui −

√
gh̄i, u

∗ −
√

gh̄∗

)
, (4.8)

SR = max

(
ui+1 +

√
gh̄i+1, u

∗ +

√
gh̄∗

)
, (4.9)

see [21, 22, 41, 50, 51], where h̄i = Ai/Bi and h̄i+1 = Ai+1/Bi+1 are the averages

of water depths, the velocity in the intermediate region u∗ is approximated by

u∗ =
1

2
(ui + ui+1) +

√
gh̄i −

√
gh̄i+1 (4.10)
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and

√
gh̄∗ =

1

2

(√
gh̄i +

√
gh̄i+1

)
+

1

4
(ui − ui+1). (4.11)

For the wet/dry problem, when the right cell is dry, the wave speed can be esti-

mated by

SL = ui −
√
gh̄i and SR = ui + 2

√
gh̄i. (4.12)

For the left dry bed problem, they can be estimated by

SL = ui+1 − 2

√
gh̄i+1 and SR = ui+1 +

√
gh̄i+1. (4.13)

Thus, the HLL fluxes F̂HLL
i± 1

2

can be calculated at each time step tn and substi-

tuted into (4.3). The diagram for the HLL corresponding to the Riemann problem

at interface i+ 1/2 is shown in Figure 4.2.

Figure 4.2: The wave structure diagram for HLL corresponding to the Riemann

problem.

4.1.2 An approximation of the source term

We follow the idea proposed in [50, 51] to approximate the source terms Sn
i in

(4.3), which includes of the water surface gradient and the friction term. First,

the water surface gradient for cell i is approximated using the central difference

scheme
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(Zx)
n
i =

Zn
i+1 − Zn

i−1

xi+1 − xi−1

. (4.14)

The friction term is approximated using a splitting scheme in which we obtain

the solution A and Q at the next time step as follows

An+1
i = An

i −
∆t

∆x

[(
f̂1

)n
i+ 1

2

−
(
f̂1

)n
i− 1

2

]
, (4.15)

Q∗,n
i = Qn

i −
∆t

∆x

[(
f̂2

)n
i+ 1

2

−
(
f̂2

)n
i− 1

2

]
−∆t (gAn

i (Zx)
n
i ) , (4.16)

Qn+1
i = Q∗,n

i −∆t

(
g
n2Q∗,n

i |Q∗,n
i |

(Rn
i )

4/3 An
i

)
. (4.17)

where Q∗,n
i is the intermediate value of Q obtained from (4.16).

4.2 Reconstruction and bottom modification techniques for

wet/dry problems

In order to improve the stability and efficiency of handling the wet/dry problem,

we extend the idea in [3] from uniform to arbitrary cross-sectional areas. There

are 2 steps as follows

Step 1 Reconstruction for non-negativity of the water depth

We consider only the interface i+1/2 of cell i for arbitrary time, thus, we omit

superscript n. If the interface is detected as a wet/dry interface, we reconstruct

the left and the right limits of water depths to be the following new values

h−

i+ 1

2

= max
(
0, hi + zi − zi+ 1

2

)
, (4.18)

h+
i+ 1

2

= max
(
0, hi+1 + zi+1 − zi+ 1

2

)
. (4.19)
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Here, we set zi+ 1

2

= max (zi, zi+1). Then, the water surface at interface i + 1/2

can be computed directly as Z−

i+ 1

2

= h−

i+ 1

2

+ zi+ 1

2

and Z+
i+ 1

2

= h+
i+ 1

2

+ zi+ 1

2

, Fig-

ure 4.3 is a conceptual sketch showing the reconstruction variables h±

i+ 1

2

. Similar

reconstructions are applied at the interface i− 1/2 of cell i.

Figure 4.3: The limits from the left and the right of the variable h for cell i at

interface i− 1/2 and i+ 1/2.

Step 2 Bottom modification

To resolve the difference between the actual and modified water surface level

that occurrs in Step 1, we extend the idea developed in [26].

If the interface under consideration is dry on the left side, we modify the water

surface and bottom again by

Z̃−

i+ 1

2

= Z−

i+ 1

2

−∆z and Z̃+
i+ 1

2

= Z+
i+ 1

2

−∆z, (4.20)

where ∆z = max
(
0, zi+ 1

2

− (hi+1 + zi+1)
)

and the water depths are kept at the

same values, i.e., h̃−

i+ 1

2

= h−

i+ 1

2

and h̃+
i+ 1

2

= h+
i+ 1

2

.

The values of Ã−

i+ 1

2

and Ã+
i+ 1

2

are obtained directly by using h̃−

i+ 1

2

and h̃+
i+ 1

2

, the

discharges Q̃−

i+ 1

2

= Ã−

i+ 1

2

ui and Q̃+
i+ 1

2

= Ã+
i+ 1

2

ui+1, and we define the vector of mod-

ified variables by Ũ−

i+ 1

2

=
(
Ã−

i+ 1

2

, Q̃−

i+ 1

2

)T
and Ũ+

i+ 1

2

=
(
Ã+

i+ 1

2

, Q̃+
i+ 1

2

)T
, respectively.

For the case of dry bed on the right side of the interface, we calculate similarly, by

using ∆z = max
(
0, zi+ 1

2

− (hi + zi)
)
.

In order to approximate the water surface gradient source term, all of the

modified variables are used as follows



50

−gA (Zx)i = −g

(
Āi+ 1

2

+ Āi− 1

2

2

)(
Z̄i+ 1

2

− Z̄i− 1

2

∆x

)
, (4.21)

where Āi+ 1

2

=

(
Ã−

i+ 1

2

+ Ã+
i+ 1

2

)

2
, Āi− 1

2

=

(
Ã−

i− 1

2

+ Ã+
i− 1

2

)

2
, Z̄i+ 1

2

=

(
Z̃−

i+ 1

2

+ Z̃+
i+ 1

2

)

2
,

and Z̄i− 1

2

=

(
Z̃−

i− 1

2

+ Z̃+
i− 1

2

)

2
.

In our work, the numerical scheme with reconstruction (step 1-2) is referred

to as scheme II and the scheme without reconstruction is referred to as scheme I.

Similar work for scheme I can be seen in [50, 51].

Summary of algorithm for scheme I

1. Given the initial condition U0
i , i = 1, 2, ..., K.

2. Compute the numerical flux F̂HLL
i± 1

2

and the water surface gradient source

term by using (4.5) and (4.14), respectively.

3. Update the solution for An+1
i and Qn+1

i by using (4.15)-(4.17).

Summary of algorithm for scheme II

1. Given the initial solution U0
i , i = 1, 2, ..., K.

2. Reconstruct and modify the variables h, z, Z, A, and Q using steps 1 and 2

in Section 4.2.

3. Use the reconstructed and modified variables to compute the numerical flux

F̂HLL
i± 1

2

and water surface gradient source term by using (4.5) and (4.21),

respectively.

4. Update the solution for An+1
i and Qn+1

i by using (4.15)-(4.17).

Note that when we obtain An+1
i , we can solve for hn+1

i using the Newton’s

method.
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4.3 Numerical Results

In this section, we validate the proposed scheme II by running numerical ex-

periments using various open channel flow problems available in the literature

[4, 12, 17, 20, 21, 22, 30, 48].

4.3.1 Dam break in various channels

In this experiment, we consider the dam break flows in open channel with friction-

less, flat bottoms of different cross-sectional shapes, including parabolic, triangu-

lar, and trapezoidal. The numerical results are compared with the exact solutions

[21, 22] to assess the accuracy of the our presented scheme.

Dam break in parabolic channel

In this experiment, a 1000 m long parabolic channel with top width B =
√
h and

wetted area A = 2
3
h3/2 is considered. The cross-section of the parabolic channel is

shown in Figure 4.4(a). The wall of the dam is located at 500 m from upstream.

The initial velocity is zero, with the initial water depth

h (x, 0) =




10, if x ≤ 500,

1, if x > 500 .
(4.22)
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(a) The parabolic channel. (b) The triangular channel.

(c) The trapezoidal channel.

Figure 4.4: The cross-sectional areas of parabolic, triangular, and trapezoidal chan-

nel.

The simulation is run on uniform 400 grid cells for 20s with time step ∆t =

0.05s . Figure 4.5 shows comparisons of the water depth and the discharge between

the approximate solutions and the exact solutions. The numerical scheme can

capture the shock and rarefraction well when compared with the exact solution

given in [22].
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(b) The discharge, Q.

Figure 4.5: Comparisons of the water depth (a) and the discharge (b) between the

exact solutions and the approximate solutions at 20s for dam break in a parabolic

channel (wet bed problem).
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The experiment for the dry bed case is performed similar to the wet bed case,

except that the water depth h = 0 for x > 500 m. This case is simulated using

1000 uniform grid cells and ∆t = 0.0001s. The approximate solutions of water

depth and discharge at final time 20s are shown in Figures 4.6(a) and (b), which

are in good agreement with the exact solutions shown in [22].
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Figure 4.6: Comparisons of the water depth (a) and the discharge (b) between the

exact solutions and the approximate solutions at 20s for dam break in parabolic

channel (dry bed problem).

Dam break in triangular channel

Here, we consider a 1000 m long triangular channel with width B = 2h and wetted

area A = h2. The cross-sectional area of triangular channel is show in Figure

4.4(b). The initial water depth is set at

h(x, 0) =




1, if x ≤ 500,

0.1, if x > 500 ,
(4.23)

with zero initial velocity. The simulation is performed using K = 400 and ∆t =

0.125s. The simulation shows a rarefraction that moves to the left and a shock

that moves to the right. Figure 4.7 shows the water depth and the discharge at

80s, which agree very well with the exact solution provided in [21].
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(a) The water depth, h.
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Figure 4.7: Comparisons of the water depth (a) and the discharge (b) between

the approximate solutions and the exact solutions at 80s for dam break flow in

triangular channel (wet bed problem).

Dam break in trapezoidal channel

This experiment consider a 1000 m long trapezoidal channel, with width B = 1+4h

and wetted area A = h+ 2h2. The cross-sectional area of the channel is shown in

Figure 4.4(c). We set the initial water depth as

h (x, 0) =




1, if x ≤ 500,

0.1, if x > 500.
(4.24)

The simulation is performed on 400 uniform grid cells with zero initial velocity

and ∆t = 0.1s. Figure 4.8 shows the comparisons of the water depth and the

discharge between our approximate solutions and the exact solutions provided in

[21] at 103.1s, which agree well.
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(a) The water depth, h.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5
time is 103.1 

x

Q

 

 

exact solution
approximate solution

(b) The discharge, Q.

Figure 4.8: Comparisons of the water depth (a) and the discharge (b) between the

exact solutions and the approximate solutions for dam break flow in trapezoidal

channel.

4.3.2 Still water in parabolic channel

This experiment is designed to test the ability of the numerical scheme II to pre-

serve the still water solution in the parabolic channel described in section 4.3.1. The

computational domain is 1500 m with irregular bottom proposed in [20]. The simu-

lation is performed on 100 uniform grid cells with initial water surface, Z(x, 0) = 16

and zero velocity. The numerical solution at t = 100s is shown in Figure 4.9, illus-

trating that our numerical scheme preserves the still water solution exactly.
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Figure 4.9: The still water with irregular bed in parabolic channel.

To test the ability of the scheme to handle wet/dry still water stationary state,

an additional calculation is performed with initial conditions Z = max(z, 6) and
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u(x, 0) = 0. The numerical result at t = 100s is presented in Figure 4.10, showing

that the scheme also preserves the still water stationary solution in the case of the

wet/dry problem.
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Figure 4.10: The wet/dry still water with irregular bed in parabolic channel.

To illustrate the capability of scheme II to converge to the steady state solution,

additional calculation are performed in the parabolic channel with irregular bottom

similar to still water experiments for both wet and wet/dry bed problems. The

initial water surface are Z = 18 for x ≤ 200 and Z = 16 otherwise, for wet bed

problem, and Z = 8 for x ≤ 200 and Z = max(z, 6) otherwise, for wet/dry problem

with zero initial velocity for both cases. The initial water surfaces are shown in

Figure 4.11.
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(a) The initial water surface for wet
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(b) The initial water surface for

wet/dry bed problem.

Figure 4.11: The initial water surfaces for still water stationary solution problems.
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The simulations are performed on 100 uniform grid cells with reflective bound-

ary conditions on both sides, until the steady states are reached. The approximate

solutions for both cases are shown in Figure 4.12. These solutions converge to the

still water solution at steady state.
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(a) The simulated water surface for

wet bed problem.
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(b) The simulated water surface for

wet/dry bed problem.

Figure 4.12: The simulated water surfaces for still water stationary solution prob-

lems.

4.3.3 Riemann problem in non-prismatic channel

This experiment is similar to the one proposed by Murillo and Navarro [30]. We

consider dam break problem in a non-prismatic channel with a non flat bottom

to test the accuracy of numerical scheme II. The domain is defined as −10 ≤
x ≤ 10. The channel width is B =

√
B0h with the wetted area A = 2

3
h3/2. The

simulation is performed on 800 uniform cells with ∆t = 0.001s. The bottom, z,

has a discontinuity at x = 0, where the initial conditions and bottom profile are

given as follows

h (x, 0) =




1.5, if x < 0,

1, if x ≥ 0,
u (x, 0) =




1, if x < 0,

0, if x ≥ 0
(4.25)

and
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z (x) =




0, if x < 0,

1, if x ≥ 0,
B0 (x) =




24, if x < 0,

12, if x ≥ 0.
(4.26)

The simulation of water depth in this experiment consists of a shock wave

moving to the left and a rarefraction wave moving to the right. The comparisons

of water depth, wetted area and discharge between the approximate solutions and

the exact solutions provided in [30] at 1s are shown in Figure 4.13. This shows the

accuracy and capability of the numerical scheme II to handle flow in non-prismatic

channel over a non flat bottom.
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(a) The water surface Z.
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(b) The wetted area A.
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(c) The discharge Q.

Figure 4.13: The comparisons of the water depth, the wetted area and the discharge

between the exact solutions and the approximate solutions for Riemann problem

in a non-prismatic channel.
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4.3.4 Oscillatory flow in a parabolic bowl without friction

effects

This experiment is performed to check the capability of the numerical scheme for

an oscillating flow in parabolic bowl with the bottom

z (x) = h0 (x/a)
2 , (4.27)

where h0 and a are constants. The simulation is performed with h0 = 10 m and a =

3000 m on the computational domain −5000 ≤ x ≤ 5000 m in uniform rectangular

channel, as described in [17]. In this experiment, the flow has wet/dry interfaces

that are oscillating up and down in the parabolic bowl. This is a challenging test

of the numerical scheme’s capability to handle wet/dry problems. The simulation

is performed on 400 uniform grid cells and simulated until t = 2000s. The result

from the numerical scheme II is shown in Figure 4.14, which agree very well with

the exact solution given in [17].
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Figure 4.14: The comparison of the water surface between the approximate solution

and the exact solution for oscillatory flow in a parabolic bowl without friction

effects.

When comparing between scheme I and II based on the largest Courant-Friedrichs-

Levy (CFL) number, the CFL numbers for schemes I and II are 0.0991 and 0.3962,

respectively. This implies that scheme II is more efficient in term of stability than
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scheme I. If scheme I is applied with CFL=0.3962, the approximate solution is

oscillate as shown in Figure 4.15.
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Figure 4.15: The comparison of the water surface between the approximate solution

from scheme I with CFL=0.3962 and the exact solution.

4.3.5 Dam break flow over a discontinuous bottom

This experiment is performed to investigate the capability of the scheme to handle

the wet/dry problem for steady flow with a discontinuous bottom. The flow is

considered on a 25 m long trapezoidal channel similar to that described in section

4.3.1, with a frictionless discontinuous bottom defined by

z (x) =




0.5, if 8 ≤ x ≤ 12,

0, otherwise.
(4.28)

The initial water surface is

Z (x) =




1, if x ≤ 3,

0, otherwise
(4.29)

with zero initial velocity and reflective boundary conditions on both boundaries.

The simulation is performed using 500 uniform grid cells with ∆t = 0.001s until

the steady state is reached. The result of the water surface at steady state is shown

in Figure 4.16, illustrating that the approximate solution produced by scheme II
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converges to the still water steady state. We have also checked the conservation

of mass of the presented scheme by setting an initial mass in our simulation as

36, which remains the same as 36 for all running time t = 0s to t = 500s. This

demonstrates that our scheme preserves mass during time integration.
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Figure 4.16: The steady state water surface of the dam break flow over a discon-

tinuous bottom simulated by scheme II with ∆t = 0.001s.

As illustrating in Figure 4.17, the result obtained from the Scheme I does

not preserve the mass and the non-negativity of the water depth during the time

integration, even with smaller ∆t. Figure 4.18 shows that the result at steady

state from scheme I with ∆t = 0.0005s, displaying the negative water depth in

some areas. The comparison of the simulated water surfaces from schemes I and

II with K = 500 in the area that water depth from scheme I is negative is shown

in Figure 4.19. These results show that scheme II is more robust than scheme I in

the case of wet/dry problems with a discontinuous bottom.
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Figure 4.17: The simulated water surface produced by scheme I with ∆t = 0.001s.
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(a) The water surface, Z.
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(b) The area where the water depth

from scheme I is negative.

Figure 4.18: The simulated water surface produced by scheme I with smaller ∆t =

0.0005s at steady state.
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Figure 4.19: The comparison of the results from scheme I and II using K = 500 in

area where the water depth from scheme I is negative.
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4.3.6 Vacuum occurrence by a double rarefaction wave over

a step

This experiment is motivated by the results from the FVM with VFRoe using a

non-conservative variable (VFRoe-ncv) scheme given in [12] and from the FVM

weighted essentially non-oscillatory (WENO) scheme given in [48], and to illus-

trates the ability of the scheme to handle wet/dry problems over a discontinuous

bottom. The flow is considered on a 25 m long rectangular channel with discon-

tinuous bottom defined by

z (x) =




1, if

25

3
≤ x ≤ 25

2
,

0, otherwise
(4.30)

and frictionless. The initial water surface Z is 10 m and the initial discharge is

Q (x) =




−350, if 0 ≤ x <

50

3
,

350, otherwise.
(4.31)

The simulation is performed on 250 uniform grid cells with ∆t = 0.001s and

the water surface and discharge are observed at t = 0.05, 0.25, 0.45, and 0.65s (see

Figure 4.20).
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Figure 4.20: The approximate solution of the vacuum occurrence by a double

rarefaction wave over a step at various times.

The simulation results show that dry areas develop after the water flows out

of the domain as time passes. Figure 4.20 shows the numerical results for the

water surface and the discharge at various times, which show good agreement with

the results in [12, 48] (see Figure 4.21 for the result from [12]), illustrating that

the numerical scheme works well for the wet/dry problem with a discontinuous

bottom.

(a) The water surface, Z. (b) The discharge, Q.

Figure 4.21: The result of the vacuum occurrence by a double rarefaction wave

over a step at various times from [12].
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4.3.7 Unsteady dam break flow in adverse slope channel

This numerical experiment is designed to compare results with the laboratory

experiment by Aureli et al. [4]. The flow is considered on a 7 m long rectangular

channel with the dam located at 2.25 m from the left boundary. The initial water

depth is 0.292 m inside the dam and it is dry outside with zero initial velocity and

Manning’s roughness coefficient 0.025. The bottom elevation is

z (x) =




0, if 0 ≤ x < 3.5,

0.1(x− 3.5), if 3.5 ≤ x ≤ 7
(4.32)

and the simulation is performed for 30s by using K = 700 and ∆t = 0.001s.

The water depths are observed at four different locations in the channel at 1.4,

2.25, 3.4, and 4.5 m, as shown in Figure 4.22, which also shows the laboratory

results from [4]. The numerical results are in good agreement with the laboratory

measurements at various locations, showing the accuracy of the numerical scheme

for flows with bottom slope and friction effects.
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(b) x=2.25 m.
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(c) x=3.4 m.
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Figure 4.22: The comparisons between the simulated water depths and the labo-

ratory results from [4] at various locations.

4.3.8 Simulation of the flow in the Yom river

In this experiment, the numerical scheme is applied to simulate water flow in the

Yom river located at Phrae province in Northern of Thailand from the gauging

stations Y20 to Y1C (see Figure 4.23). The data of the bottom elevation and the

cross- sectional areas of the river are obtained from [16] and [53]. The simulation

is performed using 45 different cross-sectional areas located along the river from

Y20 to Y1C with ∆x = 2000 m approximately and with the bottom elevation data

shown in Figure 4.24. The example of cross-sectional areas at Y20, Y1C and at

point 1, 2, 3, and 4 in Figure 4.24 are shown in Figure 4.25 and 4.26.



67

Figure 4.23: The studied area of the Yom river from gauging stations Y20 to Y1C

(blue line).
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Figure 4.24: The bottom elevation of the Yom river from Y20 to Y1C.



68

(a) Y20 gauging stations. (b) Y1C gauging stations.

Figure 4.25: The cross-sectional areas of the gauging stations obtained from [53].
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(a) Point 1 in Figure 4.24.
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(b) Point 2 in Figure 4.24.
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(c) Point 3 in Figure 4.24.
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(d) Point 4 in Figure 4.24.

Figure 4.26: Examples of the cross-sectional areas at locations 1, 2, 3, and 4 in

Figure 4.24 obtained from [16].

The simulation of water flow in Yom river from Y20 to Y1C is performed for

two weeks, from August 27 to September 10, 2014. The initial data on August

27 is obtained by inputting the real data on August 26 for the water surface
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Z = 183.14 and the discharge Q = 63.68, then calibrating until we obtain values

of Z and Q that agree with the real data at Y1C on August 27. Figure 4.27 shows

the obtained results. This calibration of initial data also gives the value of the

Manning’s roughness coefficient of n=0.025 for our simulation.
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Figure 4.27: The numerical results for water depth and the discharge on August

27, 2014.

The water surface and discharge at Y20 from August 27 to September 10 used

in the simulation are set to be the measured data from [53] (see Figure 4.28). The

simulated discharge compared with the real data [53] from August 27 to September

10, 2014, at Y1C station is shown in Figure 4.29, showing that the simulated dis-

charge has variations very similar to the real measured data. It has small variation

from August 27 to 29, increasing rapidly from August 30 to September 4, decreas-

ing rapidly from September 4 to 6, and oscillating similarly from September 6 to

10. The result from the simulation shows good agreement with the measured data

in term of the discharge, which can capture the peaks of the discharge correctly. It

also show the efficiency and accuracy of the developed scheme to handle the flow

that cross-sectional and bottom have a lot of variation with friction effect. This

illustrates that our numerical scheme is applicable for simulating real water flows

in a river.
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Figure 4.28: The real measured data for the water surface and the discharge from

August 27 to September 10, 2014 at Y20 station.
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Figure 4.29: The comparison of the simulated discharge and the real measured

data from August 27 to September 10, 2014 at Y1C station.

4.4 Conclusions

In this work, we have presented the reconstruction and bottom modification tech-

niques to handle the shallow water equations for open channel flows in arbitrary

cross-sectional areas for wet/dry problems. The scheme preserves the mass during

time integration and it is also more efficient in term of stability when dealing with

wet/dry problems. As seen in Section 4.3, the scheme is capable of handling many
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flow situation and preserving the still water stationary state. In addition, the pre-

sented scheme is also applicable for simulating flows in the Yom river located at

Phrae province as described in Section 4.3.8, where the simulated results capture

the variation of the discharge very well when compared to the measured data of

the real flow.



CHAPTER V

WELL-BALANCED FINITE VOLUME METHOD WITH

WEIGHTED AVERAGE FLUX FOR

TWO-DIMENSIONAL SHALLOW WATER EQUATIONS

A well-balanced FVM for solving two-dimensional SWE with WAF is developed

in this work to simulate flooding. Friction source terms are estimated with a semi-

implicit scheme resulting in an efficient numerical method for simulating shallow

water flows over irregular domains, for both wet and dry beds. A wet/dry cell

tracking technique is also presented for reducing computational time. The accuracy

of these methods are investigated by applying to well-studied cases. For practical

purposes, the developed scheme is applied to simulate the flooding of the Chao

Phraya river from Chai Nat to Sing Buri provinces in Thailand during October

13-17, 2011. The numerical simulations yield results that agree with the existing

data obtained from the satellite images.

5.1 Finite volume method (FVM) for two-dimensional shal-

low water equations

Consider the two-dimensional SWE

Ut + F (U)x +G (U)y = S (U) , (5.1)

where

U =




h

hu

hv


 , F (U) =




hu

hu2 + 1
2
gh2

huv


 , G(U) =




hv

huv

hv2 + 1
2
gh2


 , (5.2)
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and

S(U) =




0

−ghzx + Sfx

−ghzy + Sfy


 , (5.3)

h is the water depth, g is a acceleration due to gravity, u and v are the flow

velocities in the x- and y-directions, respectively, Sfx = −Cu
√
u2 + v2 and Sfy =

−Cv
√
u2 + v2 are the friction terms in the x- and y-directions, respectively with

C = gn2/h1/3 and n is a Manning’s roughness coefficient.

The FVM in two-dimensions begin by dividing the computational domain in x-

and y-direction into Kx and Ky cells, with uniform cell size ∆x = xi+1/2 − xi−1/2

and ∆y = yj+1/2 − yj−1/2 for i = 1, 2, .., Kx and j = 1, 2, ..., Ky. xi−1/2 and xi+1/2

are the left and the right interfaces of the cell in x-direction, and yj−1/2 and yj+1/2

are the left and the right interfaces of the cell in y-direction, respectively. We

denote the ijth cell by Iij =
(
xi−1/2, xi+1/2

)
×
(
yj−1/2, yj+1/2

)
. The example of the

grid discretization in two-dimensions is shown in Figure 5.1.

Figure 5.1: The grid discretization in two-dimensions.

A discretized form of (5.1) is
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dUij(t)

dt
+

F̂i+1/2,j − F̂i−1/2,j

∆x
+

Ĝi,j+1/2 − Ĝi,j−1/2

∆y
= Sij, (5.4)

where Uij is the approximation of U defined as the unknown average over cell Iij,

namely,

Uij =
1

∆x∆y

∫

Iij

U (x, y, t) dxdy. (5.5)

Here, Sij is the approximation of the source term at cell Iij, and F̂ and Ĝ are

numerical fluxes in the x- and y-directions, respectively.

To ensure second-order accuracy in time, the second-order Runge-Kutta (RK2)

method is applied in our work. It is found in our simulations that this method

allows us to use time step sizes larger than those when using the first-order method.

5.1.1 Weighted average flux (WAF) for two-dimensional shal-

low water equations

Let’s first consider the approximation of numerical flux in the x-direction. The

intercell flux with WAF at interface (xi+1/2, yj) is denoted by F̂WAF
i+ 1

2
,j

, which is

defined as an integral average of F (U) at the half-time step, namely,

F̂WAF
i+ 1

2
,j

=
1

∆x

1

∆y

∫ ∆y

0

∫ ∆x
2

−∆x
2

F

(
Ui+ 1

2
,j

(
x, y,

∆t

2

))
dxdy, (5.6)

where Ui+ 1

2
,j is the solution of the Riemann problem with piecewise constant data

U−

i+ 1

2
,j
, U+

i+ 1

2
,j
, which are the solutions from the left and the right limits at the

interface i+1/2. The details of derivations of WAF can be found in [6, 40, 41, 42].

Moreover, the wave structure form of WAF can be written as

F̂WAF
i+ 1

2
,j

=
Nc+1∑

k=1

ωkF
(k)

i+ 1

2
,j
, (5.7)

where Nc is the number of waves in the solution of the Riemann problem and

F
(k)

i+ 1

2
,j

is the value of flux in the region k of the solution of the Riemann problem,

see Figure 5.2.
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The WAF with Harten-Lax-van Leer-Contact (HLLC) version in two-dimensions

is proposed by [2, 28]. There are three flux components, where the first two com-

ponents are estimated by the weighted average values from the HLLC Riemann

solver,

(
F̂WAF
i+ 1

2
,j

)
p
=

3∑

k=1

ωk

(
F

(k)

i+ 1

2
,j

)
p
, (p = 1, 2), (5.8)

while the third component is the weighted average value of WAF,

(
F̂WAF
i+ 1

2
,j

)
3
=
(
ω1∗v

−

i+ 1

2
,j
+ ω2∗v

+
i+ 1

2
,j

)(
F̂WAF
i+ 1

2
,j

)
1
, (5.9)

where
(
F

(1)

i+ 1

2
,j

)
p
=
(
F
(
U−

i+ 1

2
,j

))
p
,
(
F

(3)

i+ 1

2
,j

)
p
=
(
F
(
U+
i+ 1

2
,j

))
p
. The flux in in-

termediate region
(
F

(2)

i+ 1

2
,j

)
p

is approximated by the HLL, see [28]. The weighted

values are ω1 = 1
2
(1 + c1), ω2 = 1

2
(c2 − c1), ω3 = 1

2
(1− c2), ω1∗ = 1

2
(1 + c∗), and

ω2∗ =
1
2
(1− c∗), where c1 = SL∆t/∆x, c2 = SR∆t/∆x, and c∗ = S∗∆t/∆x. Here,

SL, SR, and S∗ are wave speeds in the left, the right, and the intermediate regions,

respectively. Note that the flux for the first two components is calculated by using

only the SL and the SR waves in the Riemann problem, while the flux for the

third component is calculated by using only the S∗ wave. The diagram for WAF

corresponding to the Riemann problem is shown in Figure 5.2.

Figure 5.2: The diagram for WAF corresponding to the Riemann problem.

The wave speeds SL and SR for the wet bed case at the cell interface are

approximated by
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SL = min
(
u−

i+ 1

2
,j
−
√
gh−

i+ 1

2
,j
, u∗ −

√
gh∗

)
, (5.10)

SR = min
(
u+
i+ 1

2
,j
+
√
gh+

i+ 1

2
,j
, u∗ +

√
gh∗

)
, (5.11)

with

√
gh∗ =

1

2

(√
gh−

i+ 1

2
,j
+
√
gh+

i+ 1

2
,j

)
− 1

4

(
u+
i+ 1

2
,j
− u−

i+ 1

2
,j

)
, (5.12)

u∗ =
1

2

(
u−

i+ 1

2
,j
+ u+

i+ 1

2
,j

)
+
√

gh−

i+ 1

2
,j
−
√

gh+
i+ 1

2
,j
. (5.13)

For the dry bed on the right side of the cell interface, the wave speeds are

approximated by

SL = u−

i+ 1

2
,j
−
√

gh−

i+ 1

2
,j
, SR = u−

i+ 1

2
,j
+ 2
√

gh−

i+ 1

2
,j

(5.14)

and for the dry bed on the left side of the cell interface

SL = u+
i+ 1

2
,j
− 2
√
gh+

i+ 1

2
,j
, SR = u+

i+ 1

2
,j
+
√
gh+

i+ 1

2
,j
. (5.15)

The intermediate wave S∗ was proposed by Toro in [41] which calculated by

S∗ =
SLh

+
i+ 1

2
,j

(
u+
i+ 1

2
,j
− SR

)
− SRh

−

i+ 1

2
,j

(
u−

i+ 1

2
,j
− SL

)

h+
i+ 1

2
,j

(
u+
i+ 1

2
,j
− SR

)
− h−

i+ 1

2
,j

(
u−

i+ 1

2
,j
− SL

) . (5.16)

To avoid spurious oscillations near a shock front, the WAF method is modified

by enforcing the TVD conditions [40, 41], which can be written as

(
F̂WAF−TV D
i+ 1

2
,j

)
p
=

Nc+1∑

k=1

ω̄k

(
F

(k)

i+ 1

2
,j

)
p
, (p = 1, 2) (5.17)

and

(
F̂WAF−TV D
i+ 1

2
,j

)
3
=
(
ω̄1∗v

−

i+ 1

2
,j
+ ω̄2∗v

+
i+ 1

2
,j

)(
F̂WAF−TV D
i+ 1

2
,j

)
1
, (5.18)
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where the new weights are

ω̄1 =
1
2

(
1 + sgn (c1)φ

(1)

i+ 1

2
,j

)
, ω̄2 =

1
2

(
sgn (c2)φ

(2)

i+ 1

2
,j
− sgn (c1)φ

(1)

i+ 1

2
,j

)
,

ω̄3 =
1
2

(
1− sgn (c2)φ

(2)

i+ 1

2
,j

)
, ω̄1∗ =

1
2

(
1 + sgn (c∗)φ

(∗)

i+ 1

2
,j

)
, and

ω̄2∗ =
1
2

(
1− sgn (c∗)φ

(∗)

i+ 1

2
,j

)
.

Here, φ
(l)

i+ 1

2
,j

are the WAF limiters, l = 1, 2, ∗, where the minmod function is

employed in this work, namely,

φ
(l)

i+ 1

2
,j

(
r(l)
)
=





1, r(l) ≤ 0,

1− (1− |cl|) r(l), 0 < r(l) ≤ 1,

|cl| , r(l) > 1,

(5.19)

where r(l) is defined by

r(l) =





∆h
(l)

i− 1

2
,j

∆h
(l)

i+ 1

2
,j

,=
h
(l),+

i− 1

2
,j
− h

(l),−

i− 1

2
,j

h
(l),+

i+ 1

2
,j
− h

(l),−

i+ 1

2
,j

if cl > 0,

∆h
(l)

i+ 3

2
,j

∆h
(l)

i+ 1

2
,j

=
h
(l),+

i+ 3

2
,j
− h

(l),−

i+ 3

2
,j

h
(l),+

i+ 1

2
,j
− h

(l),−

i+ 1

2
,j

, if cl < 0

(5.20)

with ∆h
(l)

i− 1

2
,j
, ∆h

(l)

i+ 1

2
,j
, and ∆h

(l)

i+ 3

2
,j

being the jumps of h across the wave l in the

solutions Ui− 1

2
,j, Ui+ 1

2
,j, and Ui+ 3

2
,j of the Riemann problem, respectively. Similarly,

the numerical flux in the y-direction, Ĝi,j+ 1

2

, is obtained via (5.17)-(5.18). This

concept can be applied at the interfaces i− 1/2, j and i, j − 1/2.

5.1.2 Linear reconstruction

Since approximating the solution by the cell average only gives first-order accuracy

in space, second-order accuracy can be obtained by applying linear reconstruction

[23, 25, 40]. For example, in the x-direction, the unknown variables are recon-

structed as
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U+
i−1/2,j = Uij − σij∆x, (5.21)

U−
i+1/2,j = Uij + σij∆x, (5.22)

where σij is a slope limiter. In this work, we applied the minmod slope limiter,

σij = minmod

(
Ui−1,j − Ui,j

∆x
,
Ui,j − Ui+1,j

∆x

)
, (5.23)

where

minmod (a, b) =





a, if |a| ≤ |b| and ab > 0,

b, if |b| ≤ |a| and ab > 0,

0, if ab ≤ 0 .

(5.24)

Similarly, the linear reconstruction in the y-direction can be obtained as in (5.21)-

(5.22).

5.2 Well-balanced scheme

A well-balanced scheme is designed for preserving the stationary solution at steady

state. For the two-dimensional problem, the still water stationary solution is

v = 0 , u = 0 , and h+ z = constant. (5.25)

In this work, the well-balanced scheme is obtained following the pioneering

work by Audusse [3]. We reconstruct h at the interfaces in the x- and y-directions

by

h±,∗
i+1/2,j = max

(
0, h±

i+1/2,j + z±i+1/2,j − zi+ 1

2
,j

)
, (5.26)

h±,∗
i,j+1/2 = max

(
0, h±

i,j+1/2 + z±i,j+1/2 − zi,j+ 1

2

)
, (5.27)

where zi+ 1

2
,j = max

(
z−i+1/2,j , z

+
i+1/2,j

)
and zi,j+ 1

2

= max
(
z−i,j+1/2, z

+
i,j+1/2

)
.

These reconstructions ensure non-negativity of the water depth, [3].
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In this work, we have modified the conservative variables [3], to be

U+,∗
i±1/2,j =

(
h+,∗
i±1/2,j , h

+,∗
i±1/2,ju

+
i±1/2,j , h

+,∗
i±1/2,jv

+
i±1/2,j

)T

and

U+,∗
i,j±1/2 =

(
h+,∗
i,j±1/2, h

+,∗
i,j±1/2u

+
i,j±1/2, h

+,∗
i,j±1/2v

+
i,j±1/2

)T
.

The finite volume scheme becomes a well-balanced scheme and is expressed by

dUij(t)

dt
+

F̂ l
i+1/2,j − F̂ r

i−1/2,j

∆x
+

Ĝl
i,j+1/2 − Ĝr

i,j−1/2

∆y
= Sci,j , (5.28)

where the numerical flux in the x-direction and the bottom slope terms are modified

as

F̂ r
i− 1

2
,j
= F̂

(
U−,∗

i− 1

2
,j
, U+,∗

i− 1

2
,j

)
+

g

2




0(
h+
i− 1

2
,j

)2
−
(
h+,∗

i− 1

2
,j

)2

0


 , (5.29)

F̂ l
i+ 1

2
,j
= F̂

(
U−,∗

i+ 1

2
,j
, U+,∗

i+ 1

2
,j

)
+

g

2




0(
h−

i+ 1

2
,j

)2
−
(
h−,∗

i+ 1

2
,j

)2

0


 , (5.30)

and

Sci,j =




0

− g

2∆x

(
h+
i− 1

2
,j
+ h−

i+ 1

2
,j

)(
z−
i+ 1

2
,j
− z+

i− 1

2
,j

)

− g

2∆y

(
h+
i,j− 1

2

+ h−

i,j+ 1

2

)(
z−
i,j+ 1

2

− z+
i,j− 1

2

)


 . (5.31)

The linear reconstruction of the bottom elevation z in Sci,j is obtained from

the linear reconstruction of h+z minus the linear reconstruction of h, as suggested

in [3], for example, z−
i,j+ 1

2

= (h+ z)−
i,j+ 1

2

− h−

i,j+ 1

2

. When the linear reconstruction

is not applied, Sci,j is zero, which is equivalent to the first-order method.

Similarly, the numerical flux in the y-direction, Ĝr and Ĝl can be obtained by

the decomposition of the bottom slopes in the third component.
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Note that the present scheme with WAF is second-order accurate in space

for smooth flow solution when applying the linear reconstruction, which does not

depend on the choices of the numerical fluxes, see proof in [3].

5.3 Friction term approximations

To obtain a stable FVM when dealing with a strong nonlinear friction term, we

use an implicit scheme to approximate the friction. Following the splitting implicit

technique presented in [17, 18], we solve the SWE by considering the ordinary

differential equation

dUij

dt
= (Sf )

n+1
ij . (5.32)

In the x-direction, we have

d (hu)ij
dt

= (Sfx)
n+1
ij (5.33)

which can be approximated by

(hu)n+1
ij − (hu)nij

∆t
= (Sfx)

n
ij +

∂ (Sfx)
n
ij

∂ (hu)

(
(hu)n+1

ij − (hu)nij

)
. (5.34)

This can be rewritten as

(hu)n+1
ij = (hu)nij +∆t

(Sfx)
n
ij

(Dx)
n
ij

, (5.35)

where Dx is an implicit coefficient defined by

(Dx)
n
ij = 1 +∆tCn

ij

2
(
(hu)nij

)2
+
(
(hv)nij

)2

(
hn
ij

)2
√(

(hu)nij

)2
+
(
(hv)nij

)2 (5.36)

with Cn
ij = gn2/

(
hn
ij

)1/3
. Note that although this scheme is called implicit, see

(5.32), we can calculate it explicitly, see (5.35). The updated solutions are calcu-

lated twice for each step of the second-order Runge-Kutta method. The calculation

in the y-direction are considered similarly. Since the well-balanced scheme that we
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apply here has preserved the non-negativity of water depth, see [3], it implies that

our numerical scheme with this friction term approximation also preserves the non-

negativity of water depth, because the RHS in the conservation of mass equation

is zero.

5.4 Wet/dry tracking technique

The wet/dry tracking technique is employed in order to reduce the computational

time of the FVM. The key idea is to track only the updated cells, and then per-

form calculation only on these cells. To do this, we present the wet/dry tracking

algorithm in Figure 5.3 as follows

Figure 5.3: Flowchart of the wet/dry tracking algorithm.



82

The example of finding updated cells from the first to the second time step is

illustrated in Figure 5.4, where the wet cells are marked as crossed cells and the

neighboring cells are marked with black. The updated cells are the combination

of the wet cells and their neighboring cells.

By applying the wet/dry tracking algorithm, we can greatly reduce the com-

putational time for flow problems that have smaller wetted area, when compared

with the whole domain. Note that this algorithm is easy to implement in general,

since it will slightly enlarge the computational domain at each time step by adding

a few new neighboring cells to the domain without deleting cells that change from

wet to dry.

Figure 5.4: The change of the wet cells (cross) and the added neighboring cells

(black) from first time step (left) to the second time step (right).

5.5 Numerical results

In this section, we describe the numerical experiments for various test cases used to

check the accuracy of our scheme. For practical purposes, the developed numerical

scheme is applied to simulate the great flood in Thailand, 2011. The numerical

experiments in Sections 5.5.1-5.5.8 are performed by the developed scheme using

linear reconstruction. To save computational time for flood problem simulation,

we apply the numerical scheme without linear reconstruction in Section 5.5.9.

5.5.1 Rectangular dam break without friction

In this experiment, we consider the rectangular dam break flow without friction in

one-dimension. The numerical results are compared with the analytical solutions
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to check the accuracy of the scheme. The accuracy is checked for results of the

two different numerical fluxes, HLL and WAF, and for both wet and dry beds.

We compare the errors of the results for the schemes with and without the linear

reconstruction to check the accuracy of the solutions.

Wet bed

We consider the dam break flow in the domain −5 ≤ x ≤ 5 with initial condition

h (x, t) =




1, if x ≤ 0,

0.6, if x > 0 ,
(5.37)

and zero initial velocity, and with transmissive boundary conditions. We perform

50, 100, and 200 uniform grid cells to investigate the errors. The final time is set

at 2s with time step ∆t = 0.005s. The mean absolute errors (MAE) and the root

mean squared errors (RMSE) of the water depth h obtained from the HLL and

the WAF methods are shown in Table 5.1.

Scheme without the linear reconstruction

K = 50 K = 100 K = 200

MAE RMSE MAE RMSE MAE RMSE

HLL 0.0163 0.0280 0.0108 0.0215 0.0069 0.0165

WAF 0.0083 0.0182 0.0047 0.0127 0.0027 0.0093

Scheme with the linear reconstruction

K = 50 K = 100 K = 200

MAE RMSE MAE RMSE MAE RMSE

HLL 0.0078 0.0178 0.0043 0.0120 0.0023 0.0085

WAF 0.0053 0.0145 0.0028 0.0096 0.0015 0.0069

Table 5.1: The MAE and the RMSE for wet bed case.

The result from Table 5.1 shows that the MAE and the RMSE obtained from
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the WAF are less than those from the HLL for the scheme with and without the

linear reconstruction. In this case, the second-order accuracy of the approximate

solution is not obtained even though the scheme is applied with the linear recon-

struction because the solution is not smooth. However, we observe that the result

from the WAF scheme without the linear reconstruction is comparable to the HLL

with the linear reconstruction. This shows that the modified scheme with the WAF

is more accurate than that with HLL.

Dry bed

The dry bed experiment is performed on the same model problem as for the wet

bed, except with a different initial condition

h (x, 0) =




1 , if x ≤ 0,

0 , if x > 0 .
(5.38)

Scheme without the linear reconstruction

K = 50 K = 100 K = 200

MAE RMSE MAE RMSE MAE RMSE

HLL 0.0164 0.0265 0.0113 0.0187 0.0077 0.0130

WAF 0.0081 0.0117 0.0048 0.0075 0.0029 0.0050

Scheme with the linear reconstruction

K = 50 K = 100 K = 200

MAE RMSE MAE RMSE MAE RMSE

HLL 0.0100 0.0142 0.0052 0.0082 0.0026 0.0045

WAF 0.0061 0.0091 0.0030 0.0049 0.0015 0.0026

Table 5.2: The MAE and the RMSE for dry bed case.

Table 5.2 shows the errors of the water depth h for 50, 100, and 200 cells from

the WAF and HLL. Again, we observe that the result does not have second-order
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accuracy, but the result from WAF without the linear reconstruction is comparable

to the HLL with the linear reconstruction. This shows that the modified well-

balanced scheme with the WAF is more accurate than that with the HLL.

5.5.2 2D circular dam break

This numerical experiment is performed to check the accuracy of the developed

scheme for a two-dimensional problem without source term. We consider a circular

dam break flow in the domain 200 m × 200 m with flat and frictionless bottom.

The initial condition is a circular dam with 50 m radius, located at the center of

the domain as shown in Figure 5.5. The experiments are performed on both wet

and dry beds.

Figure 5.5: The domain of 2D circular dam break flow.

Circular dam break on wet bed

In this case, the initial water depths are set at 10 m inside the circular dam and

1 m outside the dam, and with zero initial velocity. The number of grid cells are

85× 85 cells and the simulation time is t = 3s.
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Figure 5.6: Water surface in 3D plot (left) and its contour plot (right) for wet bed

at t = 3s.

The circular dam wall is assumed to be removed completely and instantly at

the time of dam failure, thus, the wave front propagates outward from the center

of the domain. The water surface profile and its contour plot are shown in Figure

5.6, on the left and the right of the figure, respectively, which agree very well with

the results from [18].

Circular dam break on dry bed

In this case, the water depths are set at 10 m inside the circular dam and zero

outside the dam. The surface profile and its contour plot at t = 3s are shown in

Figure 5.7. Again, the numerical results agree very well with the results reported

in [18]. These numerical investigations for both wet and dry beds show the validity

and accuracy of the developed scheme, as compared with [18].
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Figure 5.7: Water surface in 3D plot (left) and its contour plot (right) for dry bed

at t = 3s.

In addition, the scheme with the wet/dry tracking technique reduces the com-

putational time from 37.61s to 25.15s, when compared with the scheme without

this technique.

5.5.3 Partial dam break

This experiment is considered on a 200 m × 200 m rectangular domain. The initial

water level is set at 10 m on the upstream side and zero on the downstream side.

The bottom is assumed to be flat and frictionless. The partial dam break is set at

middle of the domain, as shown in Figure 5.8.

Figure 5.8: Domain of the partial dam break problem.

The simulation is performed on 85× 85 uniform grid cells and with final time
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7.2s. The surface profile and its contour plot at t = 7.2s are shown in Figure 5.9.

The obtained simulation results agree closely with results in [1, 46].

x

y

time is 7.2s 

 

 

20 40 60 80 100 120 140 160 180

20

40

60

80

100

120

140

160

180

1

2

3

4

5

6

7

8

9

Figure 5.9: Water surface plot (left) and contour plot (right) of the partial dam

break problem.

5.5.4 Rectangular dam break with friction

In this experiment, we consider a rectangular dam break on the domain with 1000

m long and 100 m wide, with friction on flat bottom. The wall of the dam is located

at x = 500 m The water height at initial time is 1 m inside the dam (x ≤ 500

m) and zero outside the dam (x > 500 m), and with zero initial velocity. For the

friction, the Manning’s roughness coefficient is n = 0.02 m−1/3s. The simulation is

performed on 200× 20 uniform grid cells with ∆t = 0.5s and the final time 64s.
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Sanders
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Figure 5.10: The comparison of our numerical results with the results from [34].

The comparison of cross-sections along the flow direction between the numerical

results and the results from [34] is shown in Figure 5.10. The comparison shows
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that the numerical results obtained from the developed scheme is as accurate as

the results from [34], in the case of shallow-water flows with friction effect.

5.5.5 Well-balanced test in two-dimensions

This experiment is performed to check the exact C-property of the present scheme.

To satisfy the exact C-property, the numerical solution should approach the still

water stationary solution at steady state, [31], i.e., having zero errors. In this

experiment, we consider a rectangular domain [0, 1]×[0, 1] with the bottom function

defined by

z (x, y) = 0.8e−50((x−0.5)2+(y−0.5)2). (5.39)

The initial water height is h (x, y) = 1 − z (x, y) with zero initial discharges

hu (x, y) = 0 and hv (x, y) = 0.

The simulation is run on 50× 50 uniform cells for very large final time, in this

case we use t = 100s. The RMS errors for h, hu, and hv are 2.0974×10−16, 7.7270×
10−14, and 8.5070×10−14, respectively. The observed errors are approximately the

round-off errors of the machine, which implies that the obtained numerical solution

is exact. This shows that the developed scheme satisfies the exact C-property.

Figure 5.11 shows the water profile of the still water at t = 100s.
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Figure 5.11: Water surface profile for very large time.
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5.5.6 Subcritical flows over a bump

This experiment illustrates the second-order accuracy of the developed scheme for

the smooth flow with the bottom slope source term. We consider a subcritical

shallow water flow over a bump in one-dimension. The rectangular channel is 25

m long. The bump elevation is defined by

z(x) =




0.2− 0.05 (x− 10)2 , if 8 < x < 12,

0, otherwise .
(5.40)

The upstream boundary is imposed by hu = 4.42 m2/s and the downstream

boundary is set in term of water surface, h = 2 m. The initial water depth in the

domain is h+ z = 2 m with zero initial discharge and the time step is ∆t = 0.01s.

The approximate solution compared with the analytical solution from the WAF

with the linear reconstruction scheme is displayed in Figure 5.12. The numerical

accuracy is measured in terms of MAE and RMSE, when compared with existing

analytical solutions. Again, we compare the error of the results when the scheme

is performed with and without the linear reconstruction to check the accuracy of

the solutions. In addition, the accuracy is compared between the two numerical

fluxes, HLL and WAF. The comparison of errors in Table 5.3 and Table 5.4 shows

that the developed scheme with WAF is more accurate than that with HLL, for

the case of flow with bottom source term.

0 5 10 15 20 25
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0.5
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1.5

2

2.5
time is 200

x

h
+

z

 

 

analytic solution
approximate solution
bottom

Figure 5.12: Subcritical flows over a bump from WAF with the linear reconstruc-

tion scheme when K = 100.
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Scheme without the linear reconstruction

K = 25 K = 50 K = 100 order

RMSE RMSE RMSE RMSE

HLL 1.85× 10−2 1.03× 10−2 5.40× 10−3 0.89

WAF 1.46× 10−2 5.60× 10−3 2.70× 10−3 1.22

Scheme with the linear reconstruction

K = 25 K = 50 K = 100 order

RMSE RMSE RMSE RMSE

HLL 1.35× 10−2 3.70× 10−3 1.00× 10−3 1.88

WAF 1.22× 10−2 3.00× 10−3 7.44× 10−4 2.02

Table 5.3: The RMSE errors for subcritical flows over a bump.

Scheme without the linear reconstruction

K = 25 K = 50 K = 100 order

MAE MAE MAE MAE

HLL 1.01× 10−2 5.60× 10−3 2.90× 10−3 0.90

WAF 6.80× 10−3 2.60× 10−3 1.20× 10−3 1.25

Scheme with the linear reconstruction

K = 25 K = 50 K = 100 order

MAE MAE MAE MAE

HLL 6.90× 10−3 1.80× 10−3 4.79× 10−4 1.92

WAF 5.40× 10−3 1.20× 10−3 2.89× 10−4 2.11

Table 5.4: The MAE errors for subcritical flows over a bump.
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The numerical results in Tables 5.3 and 5.4 also show that the numerical scheme

without the linear reconstruction are not second-order accurate in space for smooth

flow problem as discussed recently in Section 10.6 by Ata et al. [2]. To obtain a

higher order approximation in space, we apply the linear reconstruction (5.21)-

(5.24) to HLL and WAF schemes. The order of convergence is second-order mea-

sured by the MAE and RMSE errors.

5.5.7 Dam break flows over a trapezoidal bump

In this section, we run a numerical experiment of a dam break flow over a trape-

zoidal bump, and compare with the real experiment presented by Ozmen-Cagatay

and Kocaman [32]. The flow is considered on a rectangular domain of 8.9 m long

with the wall of the dam located at 4.65 m from the channel entrance, and the

trapezoidal bump with 0.075 m high and 1 m base length at 1.53 m from the wall

of the dam, see Figure 5.13. The reservoir is on the upstream side with 0.25 m of

water, while the downstream side is dry and with zero initial velocity.

Figure 5.13: Initial setup of dam break flows over a trapezoidal bump.

The simulation is performed on 200 uniform cells with time step ∆t = 0.01s.

To compare the numerical results with the experimental data, we set h0 and
√

g/h0

as the length scale and time scale, respectively. The dimensionless time is T =

t
√
g/h0. The comparisons at snapshot of times T = 11.9, 17.54, 20.67, 23.05,

29.69, and 41.84 are shown in Figure 5.14, showing that the numerical results

agree closely with the experimental data at various times.
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Figure 5.14: The comparisons between numerical results and experimental data

from [32] for dam break flows over a trapezoidal bump for various T = 11.9, 17.54,

20.67, 23.05, 29.69, and 41.84.

5.5.8 Dam break flows over three humps

In this experiment, we consider the dam break flows over three humps defined by



94

z (x, y) = max
{
0, 1− 1

8

√
(x− 30)2 + (y − 6)2,

1− 1

8

√
(x− 30)2 + (y − 24)2,

3− 3

10

√
(x− 47.5)2 + (y − 15)2

}
,

(5.41)

on 75 m x 30 m rectangular domain. The dam is located at 16 m from the

upstream boundary with initial water depth h+ z = 1.875 m and with zero depth

on downstream boundary. The simulation is performed on 85 × 85 uniform grid

cells with the Manning coefficient 0.018. The water depth profile and its contour

plot at t = 12s are shown in Figure 5.15. The obtained result agree closely with the

previous results presented by [18, 27]. This experiment has illustrated the ability

of the developed scheme for solving flows over dry bed with friction. As shown in

the Figure 5.15, the strong shock front that attacks the largest hump is detected

correctly. This demonstrates that the developed scheme is capable of simulating

flows that have both wet and dry beds, as well as the effect from a large bottom

slope. We have also found that the splitting implicit scheme enables us to use

larger time step size when comparing with direct calculation.
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Figure 5.15: The water surface profile (left) and contour plot (right) of a dam

break flows over three humps at t = 12s.

When simulating wet/dry flow interactions, numerical schemes can result in

non-conserved water mass. We have checked this by setting an initial mass in our
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simulation as 893.3824. After running to 100 simulation time, the water mass is

remains as 893.3824. This demonstration is numerical evidence that our scheme

can preserve mass during time integration. The result is shown in Figure 5.16.

Figure 5.16: Water surface profile of a dam break flows over three humps at t =

100s.

5.5.9 Flood simulation in Thailand, 2011

The Chao Phraya river, Thailand, consists of several basins such as Ping, Wang,

Yom, Nan, Sakae Krang, Pa Sak, Tha Chin, and finally the Chao Phraya basin

itself. The lower part of this river goes through a region that is both the most

populous and of significant economic interest to Thailand. Occasional flooding of

this region has had deleterious impact on the country. In this experiment, we apply

the developed scheme to simulate the great flood near the Chao Phraya river in

2011. We check the performance of the simulation by comparing the results with

the real flood flow determined from the satellite images. The studied area is from

the latitude 15.000000◦N to 15.190800◦N and from the longitude 100.165800◦E to

100.340800◦E, known as the Chao Phraya river basin, from Chai Nat to Sing Buri

provinces (see Figure 5.17), with the gauging stations located at c13 in Chai Nat

province and c44 in Sing Buri province. The topography in this area is generally

low land next to the Chao Phraya river. The bottom elevation is obtained from

the NASA Shuttle Radar Topographic Mission (SRTM) in digital elevation data

(DEM) format with resolution 90 × 90 m [55], while the Manning coefficient is

assumed to be 0.03. In this simulation, we have adjusted DEM in the Chao Phraya
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river to be lower approximately 10 meters from the original SRTM format [55].

This error can be measured from the measurement of water depth at c13 and c44

stations [54], while the DEM on the land area remains unchanged.

Figure 5.17: The studied area, the Chao Phraya river at Chai Nat to Sing Buri

provinces, Thailand.

Since the initial condition in our simulation is not trivial, we simulate two

different cases of initial conditions with the grid resolution ∆x = 90 m, ∆y = 90 m

and time step ∆t = 5s. For the first case, we assume the whole domain to be dry

and we allow the water flows along the Chao Phraya river using the water depth

and velocity at c13 station. For the second case, we assume the domain is already

flooded. By collecting the data from the satellite image on October 15, 2011 and

the water depth data on the same day at c13 and c44 stations, we can fill the water

depth to the land to be the same value as the measurement data.
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13 Oct

2011

14 Oct

2011

15 Oct

2011

16 Oct

2011

17 Oct

2011

water height (m) 17.59 17.57 17.56 17.55 17.55

discharge (m3/s) 3534.2 3522.6 3516.8 3511 3511

Table 5.5: The measurement data of water heights and discharges average per day

at c13 station on October 13-17, 2011.

For the first case, the initial water depth is set to be dry for the whole domain.

Water is released from a source along the river where the water depth and its

discharge are set to be the same values as the data obtained from the c13 station

on October 13-17, 2011 [54]. Details are shown in table (see Table 5.5). Then,

we consider five days simulation on October 13-17. We compare the discrepancy

on the last day where the water distribution from the sattlelite image on October

17 is shown in Figure 5.18(a). The simulation result on the same day is shown in

Figure 5.18(b). The difference between real and simulation results on the lower

part of the river is shown in Figure 5.18(c). The comparison is only made on the

left of the river as specified by the pink-shaded area of Figure 5.18(c). The flood

simulation in this case is due to the massive source of water from the river that

flows over to the lower land area. The agreement between real and simulation

results is shown. It should be noted that the flooded area on the right or on the

top of the river appears. This situation is from the other sources of water over

the land that are not included initially in our simulations. Thus, we can see the

flooded area only on the lower part of the river.
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(a) (b) (c)

Figure 5.18: The results on October 17, 2011 for the case of initially dry on the

whole domain. (a) The real data from satellite image on October 17, 2011. (b) The

simulation result on October 17, 2011. Initially assumed dry for the whole domain.

(c) The difference (pink-shed area) between the real data and the simulation result

on October 17, 2011. The comparison is only made on the lower part of the river

(inside yellow box).

We have also imposed an additional source of water along the top boundary

based on the water depth over the river at c13 station exceeding the maximum

water capacity by approximately 1 meter. The comparisons are shown in Figure

5.19. The difference is shown in the pink-shaded area. It is found that numerical

solutions agree well with the real data.
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(a) (b) (c)

Figure 5.19: The results on October 17, 2011 for the case of initially dry on the

whole domain and specify water flow on the top boundary. (a) The real data from

satellite image on October 17. (b) The simulation result on October 17, initially

assumed dry for the whole domain, and specify source of water along the top

boundary. (c) The difference (pink-shed area) between real data from the satellite

image and the simulation result.

Next, we simulate using the second initial condition on October 15-17. In this

case, we assume the problem is already flooded, see Figure 5.20(a). Thus, we fill

the accumulated water distribution over the land using the water depth over the

terrain specified by the measurement of water depth recorded at the c13 and c44

gauging stations on October 15. It is found that the water depth over the river

at c13 and c44 station exceeds the maximum water capacity by approximately 1

meter. Thus, we apply this excess water depth value to fill the water over the

land, and hence, the land is assumed already flooded after filling the water, see

Figure 5.20(b). The difference between the initial water depth from the satellite

image and the assumed initial water distribution is shown in Figure 5.20(c). It

can be seen that the initial water depth is well specified by applying this criteria.

Another source of water from upstream at c13 station is also specified. Then, the

simulation is performed by the present scheme for two days, starting from October
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15 to 17, and is compared with the real data from the satellite image again on

October 17.

(a) (b) (c)

Figure 5.20: The initial water distribution on October 15, 2011. (a) The real

data from satellite image on October 15, 2011. (b) The assumed initial water

distribution on October 15, 2011. (c) The difference (pink) between real data from

satellite image and the assumed initial water distribution.

The results from the numerical simulation (Figure 5.21(b)), the satellite image

on October 17 (Figure 5.21(a)) and the difference between the satellite image and

the numerical simulation (Figure 5.21(c)) show the agreement of the simulation

result and the real data. As seen in the simulation result, after 2 days, the distri-

bution of water area is enlarged similar to that from the satellite image. Some of

the water from the river has flowed to cover the lower land next to the river on

previously dry areas, this occurred in area indicated by the yellow frame in Figure

5.21(c).

The numerical simulation from the two cases of initial condition agree with the

real data from the satellite image as discussed above. These results from Figures

5.18, 5.19 and 5.21 show that the developed scheme is quite capable of simulating

real floods for this area, where the accuracy is quite reasonable.
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(a) (b) (c)

Figure 5.21: The results on October 17, 2011. (a) The real data from satellite

image on October 17, 2011. (b) The simulation result on October 17, 2011. (c)

The difference (pink) between real data from satellite image and the simulation

result.

5.6 Conclusions

A well-balanced FVM with the WAF is developed in this work to simulate wa-

ter flows such as dam break and flood. Combining with semi-implicit scheme for

estimating friction source terms yields an efficient numerical method for simulat-

ing shallow water flows for both wet and dry beds. Importantly, we improve the

scheme to have the second-order accuracy for smooth flow by applying the linear

reconstruction. The wet/dry cell tracking technique is also employed to reduce

the computational time for problems with the less wetted area by calculating just

the updated wet cells. The accuracy of our numerical scheme is investigated by

various numerical experiments including one- and two-dimensional problems. The

scheme is shown to be well-balanced by demonstrating that is exhibits the exact

C-property as described in the numerical experiment 5.5.5. Moreover, the validity

and accuracy of the scheme is illustrated in the experiments 5.5.6-5.5.8 for flows

with friction and bottom slope, by comparison to other results in literature. It is
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also shown by numerical evidences that the present scheme can preserve mass and

non-negativity of the water depth during time integration. For real applications,

the developed scheme is applied to simulate the great flood which occurred in Thai-

land, 2011. The numerical simulations show results that agree with the existing

data obtained from satellite images. All of these experiments have demonstrated

that the presented scheme is capable of simulating various kinds of shallow water

problems with accuracy and efficiency.



CHAPTER VI

CONCLUSIONS

In this dissertation, we have developed three numerical schemes for solving the

SWE. The first scheme, see Chapter III, is the TVD-RK DG method with WAF

for one-dimensional SWE, which is shown to be consistent. In addition, the scheme

is modified to be well-balanced and used to simulate various steady and unsteady

flows.

The second scheme, see Chapter IV, is developed to obtain more realistic re-

sults for the one-dimensional flow, where the one-dimensional SWE is considered

for arbitrary cross-sectional areas, based on the FVM. In this scheme, the recon-

struction and bottom modification techniques is applied to handle the difficulty of

the dry area. The developed scheme is shown to be accurate when compared with

the known results in literature and preserve the still water stationary solution.

This scheme is also applied to simulate the real river flow for the Yom river in

Phrae province, Thailand, from August 27 to September 10, 2014.

The third scheme, see Chapter V, is developed to real world flows by consider-

ing the two-dimensional SWE, based on the well-balanced FVM with WAF. The

scheme is improved to be more efficient by combining with the splitting implicit

technique for estimating friction source term and applying the linear reconstruc-

tion to have second-order accuracy for smooth flows. In addition, the wet/dry

tracking technique is employed to reduce the computational time. The accuracy

of the scheme is confirmed by various numerical experiments when compared with

exact solutions or known results in literature and the scheme is applied to simulate

the great flood which occurred in Thailand, 2011.
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Press, 1992.

[24] Leveque R. J.: Balancing source terms and flux gradients in high-resolution
Godunov methods: The quasi-steady wave-propagation algorithm, J. Comput.
Phys. 146, 346–365 (1998).



106

[25] Leveque R. J.: Finite Volume Method for Hyperbolic Problem, Cambridge
University Press, 2005.

[26] Liang Q.: Flood simulation using a well-balanced shallow flow model, ASCE
J. Hydraul. Eng., 136, 669–675 (2010).

[27] Liang Q., Borthwick A. G.L.: Adaptive quadtree simulation of shallow flows
with wet-dry fronts over complex topography, Comput. Methods Appl. Mech.
Engrg 38, 221–234 (2009).
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