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CHAPTER I

INTRODUCTION

Let {Xn}∞n=2 be a sequence of random matrices such that Xn = [Xn(i, j)], i, j =

1, 2, . . . , n, is an n × n matrix of independent random variables. Let {πn}∞n=2 be

a sequence of random permutations such that πn = (πn(1), πn(2), . . . , πn(n)) is a

uniformly distributed random permutation on {1, 2, . . . , n}. Assume that Xn and

πn are independent for all n ≥ 2. For n ≥ 2, define the combinatorial sums by

Sn =
n∑

i=1

Xn(i, πn(i)).

It is well–known that the distribution of Sn converges to the normal distribution

under some conditions ([8], [9], [19]). This convergence is called a combinatorial

central limit theorem (CCLT). The bound in CCLT was investigated broadly

such as in [1]–[3], [5], [7], [11]–[13], [15] and [18].

Random sums of random variables are very useful in probability theory and

statistics and their applications. In particular, random sums of independent and

identically distributed random variables which are called the compound random

variables have many natural applications. For instance, they are used in insurance

risk models for describing the aggregate claims. In statistics, they are also found

in common tests and overdispersion modeling.

In this work, we investigate random sums called combinatorial random sums

defined as the followings.

Let N be an integer random variable such that P (N ≥ 2) = 1 and N is

independent with {Xn}∞n=2 and {πn}∞n=2. Define the combinatorial random

sums by

SN =
N∑
i=1

XN(i, πN(i)).
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In our work, we study the distance between the distribution function of SN and

the standard normal distribution function Φ.

Let

∆N,z :=
∣∣∣P( SN√

V arSN

≤ z
)
− Φ(z)

∣∣∣ and ∆N := sup
z∈R

∆N,z.

In 2017, Frolov ([6]) gave a bound of ∆N under the (2+δ)–th moment conditions

where δ ∈ (0, 1]. The following is his result.

Theorem 1.1. ([6]) Assume that

P (N ≥ 2) = 1,

∃δ ∈ (0, 1], E|Xn(i, j)|2+δ < ∞ for all 1 ≤ i, j ≤ n and n ≥ 2,

n∑
i=1

EXn(i, k) = 0 and
n∑

j=1

EXn(k, j) = 0 for all 1 ≤ k ≤ n and n ≥ 2, (1.1)

Bn := V arSn > 0 for all n ≥ 2 and (1.2)

EBN < ∞. (1.3)

Then

∆N ≤ 45112ELN,δ +
3
√
V arBN

EBN

,

where Ln,δ =
1

nB
1+ δ

2
n

n∑
i=1

n∑
j=1

E|Xn(i, j)|2+δ.

In this work, we investigate a non–uniform bound of ∆N,z under the third

moment conditions. The followings are our main results.

Theorem 1.2. Assume that

P (N ≥ 4) = 1, (1.4)

E|Xn(i, j)|3 < ∞ for all 1 ≤ i, j ≤ n and n ≥ 2 (1.5)

and (1.1)–(1.3) hold. Then there exists a positive constant C such that for fixed
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z ∈ R with P (1 + |z| ≤ N
1
14 ) = 1, we have

∆N,z ≤
C

1 + |z|

[√
V arBN

EBN

+

√
V arBN

(EBN)2

(
EB2

N

) 1
2
+

√
V arBN

(EBN)4

{
E
(
B6

Nγ
4
N

)} 1
2

+ E
( 1√

N

)
+ EγN +

E
(
B6

NN
3
2γ4

N

)
(EBN)6

]
,

where γn = Ln,1.

In Theorem 1.2, we observe that if N = n for some positive integer n, then

∆n,z ≤
C

1 + |z|

(
1√
n
+ γn + n

3
2γ4

n

)
.

In the case of γn = O(
1

nα
) for some α >

3

8
, we have ∆n,z → 0 as n → ∞. However,

the bound in Theorem 1.2 may not tend to zero in general cases of N .

From the usefulness of the random sums when the random number is Poisson,

we consider the case of N having the Poisson distribution to show that our bound

in this case tends to zero. Our result is stated in Theorem 1.3.

Theorem 1.3. For k, n ∈ N, let Nk,n be a random variable such that

P (Nk,n = m) =
e−nnm−k

(m− k)!
where m = k, k + 1, . . . . (1.6)

Assume that (1.1), (1.2) and (1.5) hold,

γn = O(
1

nα
) as n → ∞ for some α >

3

8
and (1.7)

Bn ∼ cnβ as n → ∞ for some c, β > 0. (1.8)

Then for fixed z ∈ R and k ≥ 4 such that 1 + |z| ≤ k
1
14 , we have

∆Nk,n,z → 0 as n → ∞.
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Note that f(n) = O(g(n)) as n → ∞ represents that ∃C > 0, ∃n0 ∈ N such

that |f(n)| ≤ C|g(n)| for all n ≥ n0, and f(n) ∼ g(n) as n → ∞ represents

lim
n→∞

f(n)

g(n)
= 1.

The following is the case of N having two possible values.

Theorem 1.4. For n ∈ N, let Nn be a random variable such that

P (Nn = n) =
1

n
and P (Nn = 2n) = 1− 1

n
.

Assume that (1.1), (1.2), (1.5), (1.7) and (1.8) hold. Then for fixed z ∈ R and

n ≥ 4 such that 1 + |z| ≤ n
1
14 , we have

∆Nn,z → 0 as n → ∞.

In this thesis, we organize as the follows. In Chapter II, we give a result for

proving Theorem 1.2. The proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4

and some satisfying examples are in Chapter III.



CHAPTER II

NON-UNIFORM BOUND FOR COMBINATORIAL

SUMS

For n ≥ 2, let Y (i, j), i, j = 1, 2, . . . , n be independent random variables and

π = (π(1), π(2), . . . , π(n)) be a uniformly distributed random permutation on

{1, 2, . . . , n} such that π and Y (i, j)’s are independent. Define the combinatorial

sums by

Sn =
n∑

i=1

Y (i, π(i)).

In 2016, Simcharoen and Neammanee ([15]) gave a non–uniform bound of nor-

mal approximation for Sn under the third moment and variance one conditions.

The following is their result.

Theorem 2.1. ([15]) Assume that

n∑
i=1

EY (i, k) = 0 and
n∑

j=1

EY (k, j) = 0 for all 1 ≤ k ≤ n, (2.1)

E|Y (i, j)|3 < ∞ for all 1 ≤ i, j ≤ n and (2.2)

V arSn = 1. (2.3)

Then there exists C > 0 such that for fixed z ∈ R and a positive integer n such

that 1 + |z| ≤ n
1
14 and n ≥ 4, we have

|P (Sn ≤ z)− Φ(z)| ≤ C

1 + |z|

( 1√
n
+
√
nδ23

)
,

where δ3 =
1

n

n∑
i=1

n∑
j=1

E|Y (i, j)|3.
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In this chapter, we generalize the result in Theorem 2.1 by reducing condition

(2.3) for using in our main result in Chapter III. The following is our result.

Theorem 2.2. Assume that (2.1) and (2.2) hold. Then there exists a positive

constant C such that for fixed z ∈ R r (−1, 1) and n ≥ 4 such that 1 + |z| ≤ n
1
14 ,

we have

|P (Sn ≤ z)− Φ(z)|

≤ C

1 + |z|

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+ n

3
2 δ43

)
.

Remark 2.3. In the case that V arSn = 1, we see that our bound in Theorem 2.2

has the same order as in Theorem 2.1.

In this chapter, we organize as the follows. We give a useful lemma for proving

Theorem 2.2 in Section 2.1. Then we use the Stein’s method and the techniques

from Simcharoen and Neammanee [15] to prove our theorem in the last Section.

Throughout this thesis, C stands for a positive constant which may be different

values in different places and we denote the double sums
n∑

i=1

n∑
j=1

by
n∑

i,j=1

for every

n ∈ N.

2.1 Auxiliary Results

To obtain a non–uniform bound, we always use the technique called truncation

of random variables. For z ≥ 0 and i, j ∈ {1, 2, . . . , n}, let

Ŷz(i, j) = Y (i, j)I(|Y (i, j)| ≤ 1 + z) and Yz(i, j) = Y (i, j)I(|Y (i, j)| > 1 + z)

where I is an indicator function. For a random permutation π, we let

Ŷ (π) =
n∑

i=1

Ŷz(i, π(i)).
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Using the techniques from Neammanee and Rurkruthairat ([12]) and Sim-

charoen and Neammanee ([15]), we obtain the following lemma.

Lemma 2.4. Assume that (2.1) and (2.2) hold. Then the followings hold.

(i) E

(
n∑

i,j=1

Ŷz(i, j)

)2

≤ C(n+ n2δ23) for some C > 0.

(ii) EŶ 2(π) ≤ C(V arSn + 1 + δ23) for some C > 0.

(iii) EŶ 4(π) ≤ C
(
(1 + z)δ3 + n

2
3 δ

4
3
3 + n

1
3 δ

5
3
3 + nδ23 + n

4
3 δ

8
3
3

)
for some C > 0

and n ≥ 4.

(iv) There exists a constant C > 0 such that for n ≥ 4 and 1 + z ≤
√
n,

EŶ 4(π) ≤ C(1 + n
4
3 δ

8
3
3 ).

Proof. (i) By the same argument as Neammanee and Rurkruthairat ([12], p.1592)

and the fact that |Yz(i, j)| > 1 or |Yz(i, j)| = 0, we can show that

E

(
n∑

i,j=1

Ŷz(i, j)

)2

≤
n∑

i,j=1

EY 2(i, j) + n2δ23. (2.4)

For positive real numbers a1, a2, . . . , an and real numbers r, s ̸= 0 such that

r ≤ s, we note from the power mean inequality that

n∑
i=1

ari ≤ n1− r
s

(
n∑

i=1

asi

) r
s

([10], p.32).

From this fact and Hölder’s inequality, we get that

n∑
i,j=1

EY 2(i, j) = E

(
n∑

i,j=1

Y 2(i, j)

)

≤ n
2
3E

(
n∑

i,j=1

|Y (i, j)|3
) 2

3

≤ n
2
3

{
E

(
n∑

i,j=1

|Y (i, j)|3
)} 2

3
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= n
2
3

(
n∑

i,j=1

E|Y (i, j)|3
) 2

3

= n
4
3 δ

2
3
3 . (2.5)

Hence, by (2.4) and (2.5),

E

(
n∑

i,j=1

Ŷz(i, j)

)2

≤ n
4
3 δ

2
3
3 + n2δ23.

If δ3 ≤ 1√
n

, then n
4
3 δ

2
3
3 + n2δ23 ≤ 2n. In the case of δ3 >

1√
n

, we have 1

δ3
<

√
n

which implies that n
4
3 δ

2
3
3 ≤ n2δ23. Hence

E

(
n∑

i,j=1

Ŷz(i, j)

)2

≤ C(n+ n2δ23). (2.6)

(ii) Following [12] (pp.1592–1593), we can see that

EŶ 2(π) ≤V arSn +
2

n(n− 1)

n∑
i1,i2=1

E|Yz(i1, i2)|E|Y (i1, i2)|+
nδ23
n− 1

. (2.7)

By the fact that |Yz(i, j)| > 1 or |Yz(i, j)| = 0, we have
n∑

i1,i2=1

E|Yz(i1, i2)|E|Y (i1, i2)| ≤
n∑

i1,i2=1

EY 2
z (i1, i2)E|Y (i1, i2)|

≤
n∑

i1,i2=1

E|Y (i1, i2)|3

= nδ3.

From this fact and (2.7), we obtain

EŶ 2(π) ≤ V arSn +
2δ3
n− 1

+
nδ23
n− 1

≤ C
(
V arSn +

δ3
n

+ δ23

)
.

If δ3 ≤
1√
n

, then δ3
n

+ δ23 ≤ 2 and if δ3 >
1√
n

, we have δ3
n

≤ δ23.
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Hence

EŶ 2(π) ≤ C(V arSn + 1 + δ23). (2.8)

(iii) Note that

EŶ 4(π) = Q1 +Q2 +Q3 +Q4 +Q5 (2.9)

where

Q1 =
n∑

i=1

EŶ 4
z (i, π(i)),

Q2 =
n∑

i=1

n∑
j=1
j ̸=i

EŶ 3
z (i, π(i))Ŷz(j, π(j)),

Q3 =
n∑

i=1

n∑
j=1
j ̸=i

EŶ 2
z (i, π(i))Ŷ

2
z (j, π(j)),

Q4 =
n∑

i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

EŶ 2
z (i, π(i))Ŷz(j, π(j))Ŷz(k, π(k)),

Q5 =
n∑

i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Ŷz(k, π(k))Ŷz(l, π(l)).

Simcharoen and Neammanee ([15], pp.5520–5522) showed that

|Q1| ≤ (1 + z)δ3, (2.10)

|Q2| ≤ C
(
(1 + z)δ3 + δ23

)
and (2.11)

|Q4| ≤ C
(
(1 + z)δ3 + nδ23

)
. (2.12)

By (2.5), we get that

|Q3| =
1

n(n− 1)

n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

EŶ 2
z (i1, i2)EŶ 2

z (j1, j2)

≤ C

n2

(
n∑

i1,i2=1

EY 2(i1, i2)

)2

≤ Cn
2
3 δ

4
3
3 . (2.13)
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By (2.1) and the fact that Ŷz(i, j) = Y (i, j)− Yz(i, j), we note that

|Q5| =
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))
(
Y (k, π(k))− Yz(k, π(k))

)
×
(
Y (l, π(l))− Yz(l, π(l))

)∣∣∣
≤
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Y (k, π(k))Y (l, π(l))
∣∣∣

+ 2
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Yz(k, π(k))Y (l, π(l))
∣∣∣

+
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Yz(k, π(k))Yz(l, π(l))
∣∣∣

≤C

n4

∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EY (k1, k2)
n∑

l1,l2=1
l1 ̸=i1,j1,k1
l2 ̸=i2,j2,k2

EY (l1, l2)
∣∣∣

+
C

n4

∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EYz(k1, k2)
n∑

l1,l2=1
l1 ̸=i1,j1,k1
l2 ̸=i2,j2,k2

EY (l1, l2)
∣∣∣

+
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Yz(k, π(k))Yz(l, π(l))
∣∣∣

=
C

n4

∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EY (k1, k2)
∑

p1∈{i1,j1,k1},
p2∈{i2,j2,k2}

EY (p1, p2)
∣∣∣

+
C

n4

∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EYz(k1, k2)
∑

p1∈{i1,j1,k1},
p2∈{i2,j2,k2}

EY (p1, p2)
∣∣∣

+
∣∣∣ n∑
i=1

n∑
j=1
j ̸=i

n∑
k=1
k ̸=i,j

n∑
l=1

l ̸=i,j,k

EŶz(i, π(i))Ŷz(j, π(j))Yz(k, π(k))Yz(l, π(l))
∣∣∣

=: Q51 +Q52 +Q53. (2.14)
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From [15] (p.5523), we get that

Q52 ≤ C

(
δ3
n

n∑
i1,i2=1

EY 2(i1, i2) + nδ23

)
and Q53 ≤ Cδ23

n∑
i1,i2=1

EY 2(i1, i2).

By this fact and (2.5),

Q52 +Q53 ≤ C
(
n

1
3 δ

5
3
3 + nδ23 + n

4
3 δ

8
3
3

)
. (2.15)

Observe that

Q51 ≤
C

n4

(
R1 +R2 +R3 +R4

)
(2.16)

where

R1 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EY (k1, k2)
∑

p1∈{i1,j1},
p2∈{i2,j2}

EY (p1, p2)
∣∣∣

R2 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EY (k1, k2)
∑

p2∈{i2,j2}

EY (k1, p2)
∣∣∣

R3 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)EY (k1, k2)
∑

p1∈{i1,j1}

EY (p1, k2)
∣∣∣

R4 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

n∑
k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EŶz(i1, i2)EŶz(j1, j2)(EY (k1, k2))
2
∣∣∣.

By (2.1), the fact that |Ŷz(i, j)| ≤ 1 + z and the inequality

ar11 ar22 · · · arnn ≤ r1a1 + r2a2 + · · ·+ rnan (2.17)

for all ai, ri > 0 and r1 + · · ·+ rn = 1, we have
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R1 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

EŶz(i1, i2)EŶz(j1, j2)
∑

p1∈{i1,j1},
p2∈{i2,j2}

EY (p1, p2)
n∑

k1,k2=1
k1 ̸=i1,j1
k2 ̸=i2,j2

EY (k1, k2)
∣∣∣

=
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

EŶz(i1, i2)EŶz(j1, j2)
∑

p1∈{i1,j1},
p2∈{i2,j2}

EY (p1, p2)
∑

q1∈{i1,j1},
q2∈{i2,j2}

EY (q1, q2)
∣∣∣

≤
n∑

i1,i2=1

n∑
j1,j2=1

∑
p1,q1∈{i1,j1},
p2,q2∈{i2,j2}

E|Ŷz(i1, i2)|E|Ŷz(j1, j2)|E|Y (p1, p2)|E|Y (q1, q2)|

≤(1 + z)
n∑

i1,i2=1

n∑
j1,j2=1

∑
p1,q1∈{i1,j1},
p2,q2∈{i2,j2}

{E|Ŷz(i1, i2)|3}
1
3{E|Y (p1, p2)|3}

1
3{E|Y (q1, q2)|3}

1
3

≤(1 + z)
n∑

i1,i2=1

n∑
j1,j2=1

∑
p1,q1∈{i1,j1},
p2,q2∈{i2,j2}

(E|Y (i1, i2)|3

3
+

E|Y (p1, p2)|3

3
+

E|Y (q1, q2)|3

3

)

=16(1 + z)n2

n∑
i1,i2=1

E|Y (i1, i2)|3

=16(1 + z)n3δ3. (2.18)

By (2.1) again, we note that

R2 =
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

EŶz(i1, i2)EŶz(j1, j2)
n∑

k1=1
k1 ̸=i1,j1

∑
p2∈{i2,j2}

EY (k1, p2)
n∑

k2=1
k2 ̸=i2,j2

EY (k1, k2)
∣∣∣

=
∣∣∣ n∑
i1,i2=1

n∑
j1,j2=1
j1 ̸=i1
j2 ̸=i2

EŶz(i1, i2)EŶz(j1, j2)
n∑

k1=1
k1 ̸=i1,j1

∑
p2,q2∈{i2,j2}

EY (k1, p2)EY (k1, q2)
∣∣∣

≤
n∑

i1,i2=1

n∑
j1,j2=1

n∑
k1=1

∑
p2,q2∈{i2,j2}

E|Ŷz(i1, i2)|E|Ŷz(j1, j2)|E|Y (k1, p2)|E|Y (k1, q2)|.

From this fact and the same argument as (2.18), we have

R2 ≤ C(1 + z)n4δ3. (2.19)

In the same way as R2, we can show that
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R3 ≤ C(1 + z)n4δ3. (2.20)

By (2.5) and (2.17),

R4 ≤
( n∑

i1,i2=1

n∑
j1,j2=1

E|Ŷz(i1, i2)|E|Ŷz(j1, j2)|
) n∑

k1,k2=1

(EY (k1, k2))
2

≤
(
n2

n∑
i1,i2=1

EŶ 2
z (i1, i2)

) n∑
k1,k2=1

EY 2(k1, k2)

≤ n2
( n∑

i1,i2=1

EY 2(i1, i2)
)2

≤ n
14
3 δ

4
3
3 . (2.21)

From (2.16) and (2.18)–(2.21), we have

Q51 ≤ C
(
(1 + z)δ3 + n

2
3 δ

4
3
3

)
.

This fact, (2.14) and (2.15) imply that

|Q5| ≤ C
(
(1 + z)δ3 + n

2
3 δ

4
3
3 + n

1
3 δ

5
3
3 + nδ23 + n

4
3 δ

8
3
3

)
. (2.22)

Hence, by (2.9)–(2.13) and (2.22), we obtain

EŶ 4(π) ≤ C
(
(1 + z)δ3 + n

2
3 δ

4
3
3 + n

1
3 δ

5
3
3 + nδ23 + n

4
3 δ

8
3
3

)
.

(iv) From (iii) and the fact that 1 + z ≤
√
n,

EŶ 4(π) ≤ C
(√

nδ3 + n
2
3 δ

4
3
3 + n

1
3 δ

5
3
3 + nδ23 + n

4
3 δ

8
3
3

)
.

Using the same technique of (2.6) and (2.8), we can show that

EŶ 4(π) ≤ C
(
1 + n

4
3 δ

8
3
3

)
.
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Ho and Chen ([8]) constructed the following system to give an exchangeable

pair. Let

{I,K, L,M, ρ, τ} is independent of Y (i, j)’s,

(I,K), (L,M) uniformly distributed on {(i, k)|i, k = 1, . . . , n, i ̸= k},

(I,K), (L,M) and τ are mutually independent,

(I,K) and ρ are mutually independent, and

ρ(α) =



τ(α) if α ̸= I,K, τ−1(L), τ−1(M),

L if α = I,

M if α = K,

τ(I) if α = τ−1(L),

τ(K) if α = τ−1(M),

where ρ(ρ−1(α)) = ρ−1(ρ(α)) = α. Let

Ỹ (ρ) = Ŷ (ρ)− Ŝ1 − Ŝ2 + Ŝ3 + Ŝ4

where Ŝ1 = Ŷz(I, ρ(I)), Ŝ2 = Ŷz(K, ρ(K)), Ŝ3 = Ŷz(I, ρ(K)) and Ŝ4 = Ŷz(K, ρ(I)).

Then

Ŝ1, Ŝ2, Ŝ3, Ŝ4 are identically distributed (2.23)

and Ỹ (ρ) and Ŷ (ρ) are an exchangeable pair (see [11], [17] for more details).

In the case of V arSn = 1, Neammanee and Rurkruthairat ([12]) showed that

E(Ỹ (ρ)− Ŷ (ρ))2 =
4

n
+R

where |R| ≤ 4δ3
n

+
C

n2
for some C > 0. In Lemma 2.5, we compute E(Ỹ (ρ)−Ŷ (ρ))2

without using the condition that V arSn = 1.
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Lemma 2.5. Assume that (2.1) and (2.2) hold. Then

E(Ỹ (ρ)− Ŷ (ρ))2 =
4V arSn

n
+R

where |R| ≤ C

(
δ

2
3
3

n
5
3

+
δ3
n

+
δ

4
3
3

n
4
3

+
δ23
n

)
for some C > 0.

Proof. We can follow the argument of Lemma 3.7 in [14] (pp.30–33) to show that

E(Ỹ (ρ)− Ŷ (ρ))2 =
4V arSn

n
+R (2.24)

where

|R| ≤C

[
1

n2(n− 1)

n∑
i1,i2=1

EY 2(i1, i2) +
δ3

n− 1
+

1

n2(n− 1)2

(
n∑

i1,i2=1

EY 2(i1, i2)

)2

+
δ23

n− 1

]
.

By (2.5), we get that

|R| ≤C

(
n

4
3 δ

2
3

n3
+

δ3
n

+
(n

4
3 δ

2
3 )2

n4
+

δ23
n

)
≤ C

(
δ

2
3
3

n
5
3

+
δ3
n

+
δ

4
3
3

n
4
3

+
δ23
n

)
.

From this fact and (2.24), the proof is complete.

2.2 Proof of Theorem 2.2

Proof. From the fact that Φ(z) = 1− Φ(−z) for all z ∈ R, it suffices to prove for

the case that z ≥ 1 as we can apply the result to −Sn when z ≤ −1.

Assume that z ≥ 1. To prove our result, we use the Stein method which was

introduced by Stein ([16]) in 1972. It begins from the Stein’s equation for the

normal distribution function

g′(w)− wg(w) = Iz(w)− Φ(z) (2.25)
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where g : R → R is a continuous and piecewise differentiable function and

Iz(w) =

1 if w ≤ z,

0 if w > z.

It is well–known that the solution gz of (2.25) is given by

gz(w) =


√
2πe

1
2
w2
Φ(w)[1− Φ(z)] if w ≤ z,

√
2πe

1
2
w2
Φ(z)[1− Φ(w)] if w > z

and

0 ≤ gz(w) ≤ min
{√2π

4
,

1

|z|

}
for all w ∈ R ([17], pp.22–23). (2.26)

Simcharoen and Neammanee ([15], pp.5519, 5526–5527) showed that

|P (Sn ≤ z)− Φ(z)| ≤ δ3
(1 + z)3

+ T1 + T2 + T3 + T4 (2.27)

where

T1 =
∣∣∣Eg′z(Ŷ (τ))

∫ ∞

−∞
K(t)dt− E

∫ ∞

−∞
g′z(Ŷ (ρ) + t)K(t)dt

∣∣∣,
T2 =

∣∣∣Eg′z(Ŷ (τ))E

∫ ∞

−∞
K(t)dt− Eg′z(Ŷ (τ))

∫ ∞

−∞
K(t)dt

∣∣∣,
T3 =

∣∣∣Eg′z(Ŷ (τ))
∣∣∣∣∣∣1− n− 1

4
E(Ỹ (ρ)− Ŷ (ρ))2

∣∣∣,
T4 =

1

n

{
Eg2z(Ŷ (ρ))

} 1
2
{
E
( n∑

i,j=1

Ŷz(i, j)
)2} 1

2

and K(t) =
n− 1

4
[Ỹ (ρ)− Ŷ (ρ)][I(0 ≤ t ≤ Ỹ (ρ)− Ŷ (ρ))− I(Ỹ (ρ)− Ŷ (ρ) ≤ t < 0)].

By (2.26) and Lemma 2.4 (i), we get that

T4 ≤
C

nz

(
n+ n2δ23

) 1
2 ≤ C

1 + z

(
1√
n
+ δ3

)
. (2.28)
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To bound T3, by following the argument of Lemma 5.1 in [4] (p.248), we can

show that

E|g′z(Ŷ (τ))| ≤ C

1 + z

(
1 + EŶ 2(τ)

)
.

By this fact and Lemma 2.4 (ii), we have

E|g′z(Ŷ (τ))| ≤ C

1 + z

(
1 + V arSn + δ23

)
. (2.29)

By (2.1), we observe that ESn = 0 and

V arSn = ES2
n

=
n∑

i=1

EY 2(i, π(i)) +
n∑

i=1

n∑
j=1
j ̸=i

EY (i, π(i))Y (j, π(j))

=
1

n

n∑
i,j=1

EY 2(i, j) +
1

n(n− 1)

n∑
i,j=1

[EY (i, j)]2 (2.30)

≤ 1

n

n∑
i,j=1

EY 2(i, j) +
1

n(n− 1)

n∑
i,j=1

EY 2(i, j)

≤ Cn
1
3 δ

2
3
3 (2.31)

where we have used (2.5) in the last inequality. By (2.31), Lemma 2.5 and the

same teqnique as (2.6) and (2.8), we get that

∣∣∣1− n− 1

4
E(Ỹ (ρ)− Ŷ (ρ))2

∣∣∣ ≤ C

(
|V arSn − 1|+ V arSn

n
+

δ
2
3
3

n
2
3

+ δ3 +
δ

4
3
3

n
1
3

+ δ23

)

≤ C

(
|V arSn − 1|+ δ

2
3
3

n
2
3

+ δ3 +
δ

4
3
3

n
1
3

+ δ23

)

≤ C

(
|V arSn − 1|+ 1√

n
+
√
nδ23

)
.
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By this fact, (2.29), (2.31) and the same technique as (2.6) and (2.8), we have

T3 ≤
C

1 + z

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+

V arSn√
n

+
√
nδ23 +

√
nδ23V arSn +

√
nδ43

)

≤ C

1 + z

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+

δ
2
3
3

n
1
6

+
√
nδ23 + n

5
6 δ

8
3
3 +

√
nδ43

)

≤ C

1 + z

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+ n

3
2 δ43

)
.

(2.32)

To bound T2, let

G =Ŷz(I,M) + Ŷz(K,L)− Ŷz(I, L)− Ŷz(K,M),

A ={τ(I) ̸= L, τ(K) ̸= M, τ(I) ̸= M, τ(K) ̸= L}

and B be the σ-algebra generated by {I,K, L,M, Y (i, j) : 1 ≤ i, j ≤ n}. Neam-

manee and Rattanawong ([11], p.40) showed that

EBI(AC) ≤ C

n
, (2.33)

EG2I(AC) ≤ C

n3

n∑
i,j=1

EY 2(i, j) and (2.34)

E|G|3I(AC) ≤ Cδ3
n2

. (2.35)

From [15] (p.5527), we have that

T2 ≤
Cn

1 + z
EG2I(AC) + Cn

(
EŶ 4(τ)

z4

) 1
3(

E|G|3I(AC)
) 2

3
.

Thus, by (2.5), (2.34), (2.35), Lemma 2.4 (iv) and the same technique as (2.6) and
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(2.8), we have

T2 ≤
C

(1 + z)n2

n∑
i,j=1

EY 2(i, j) +
Cδ

2
3
3

z
4
3n

1
3

(
EŶ 4(τ)

) 1
3

≤ Cδ
2
3
3

(1 + z)n
2
3

+
Cδ

2
3
3

(1 + z)n
1
3

(
1 + n

4
3 δ

8
3
3

) 1
3

≤ C

1 + z

(
δ

2
3
3

n
1
3

+ n
1
9 δ

14
9
3

)

≤ C

1 + z

(
1

n
2
3

+ n
1
3 δ23

)
. (2.36)

To bound T1, let ∆Ŷ = Ŷ (ρ)− Ŷ (τ) and δ = |∆Ŷ |+ |Ỹ (ρ)− Ŷ (ρ)|. From [15]

(p.5528), we have

E|Ỹ (ρ)− Ŷ (ρ)|3 ≤ Cδ3
n

, (2.37)

E(Ỹ (ρ)− Ŷ (ρ))4 ≤ C(1 + z)δ3
n

, (2.38)

Eδ3 ≤ Cδ3
n

and (2.39)

Eδ4 ≤ C(1 + z)δ3
n

. (2.40)

By (2.5) and (2.23), we note that

Eδ2 ≤ C(E|∆Ŷ |2 + E|Ỹ (ρ)− Ŷ (ρ)|2)

≤ CEŶ 2
z (I, ρ(I))

≤ C

n2

n∑
i,j=1

EY 2(i, j)

≤ Cδ
2
3
3

n
2
3

. (2.41)
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Let

fδ(t) =


0 if t < z − 2δ,

(1 + t+ δ)(t− z + 2δ) if z − 2δ ≤ t ≤ z + 2δ,

4δ(1 + t+ δ) if t > z + 2δ.

From [15] (pp.5528–5530), we have

T1 ≤ T11 + (1 + z)(M1 +M2) +
Cδ3
1 + z

, (2.42)

where

T11 ≤
C

1 + z

[
|EŶ (τ)fδ(Ŷ (τ))|+ 1

n

{
E

(
n∑

i,j=1

Ŷz(i, j)

)2} 1
2{

Ef 2
δ (Ŷ (τ))

} 1
2

]
,

M1 ≤
Cn

z2
(Eδ3)

1
3

(
EŶ 4(τ)

) 1
2
(
E|Ỹ (ρ)− Ŷ (ρ)|3

) 2
3
,

M2 ≤
Cn

z

(
EŶ 4(τ)

) 1
4 (

Eδ4
) 1

4

(
E|Ỹ (ρ)− Ŷ (ρ)|4EBI(AC)

) 1
2
.

By (2.31) and Lemma 2.4 (ii), we have

EŶ 2(π) ≤ C(1 + n
1
3 δ

2
3
3 + δ23)

and note that |fδ(t)| ≤ 4δ(1 + |t|+ δ) for all t ∈ R.

From these facts, (2.39)–(2.41), Lemma 2.4 (iv) and the fact that 1 + z ≤ n
1
14 , we

have

E|Ŷ (τ)fδ(Ŷ (τ))|

≤ C
(
E|Ŷ (τ)|δ + EŶ 2(τ)δ + E|Ŷ (τ)|δ2

)
≤ C

(
{EŶ 2(τ)}

1
2{Eδ2}

1
2 + {EŶ 4(τ)}

1
2{Eδ2}

1
2 + {EŶ 4(τ)}

1
4{Eδ3}

2
3

)
≤ C

(
δ

1
3
3

n
1
3

+
δ

2
3
3

n
1
6

+
δ

4
3
3

n
1
3

+ n
1
3 δ

5
3
3

)



21

and

Ef 2
δ (Ŷ (ρ))

≤CE(δ + δ|Ŷ (ρ)|+ δ2)2

≤C
(
Eδ2 + {Eδ4}

1
2{EŶ 4(ρ)}

1
2 + Eδ4

)
≤C

(
δ

2
3
3

n
2
3

+
(1 + z)

1
2 δ

1
2
3√

n
+ (1 + z)

1
2n

1
6 δ

11
6
3 +

(1 + z)δ3
n

)

≤C

(
δ

2
3
3

n
2
3

+
δ

1
2
3

n
13
28

+ n
17
84 δ

11
6
3 +

δ3

n
13
14

)
.

From these facts and the same technique as (2.6) and (2.8), we have

T11 ≤
C

1 + z

[
δ

1
3
3

n
1
3

+
δ

2
3
3

n
2
3

+
δ

4
3
3

n
1
3

+ n
1
3 δ

5
3
3

+
1

n

(
n+ n2δ23

) 1
2
( δ 2

3
3

n
2
3

+
δ

1
2
3

n
13
28

+ n
17
84 δ

11
6
3 +

δ3

n
13
14

) 1
2

]
≤ C

1 + z

( 1√
n
+
√
nδ23

)
. (2.43)

By (2.33), (2.37)–(2.40), Lemma 2.4 (iv) and the fact that 1+z ≤ n
1
14 , we get that

M1 ≤
Cδ3

(1 + z)2

(
EŶ 4(τ)

) 1
2 ≤ C

(1 + z)2

(
δ3 + n

2
3 δ

7
3
3

)
(2.44)

and

M2 ≤
C(1 + z)

3
4 δ

3
4
3

zn
1
4

(
EŶ 4(τ)

) 1
4

≤C(1 + z)
7
4 δ

3
4
3

(1 + z)2n
1
4

(
1 + n

4
3 δ

8
3
3

) 1
4

≤ C

(1 + z)2

( δ 3
4
3

n
1
8

+ n
5
24 δ

17
12
3

)
. (2.45)
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From (2.42)–(2.45), and the same technique as (2.6) and (2.8), we get that

T1 ≤
C

1 + z

( 1√
n
+ n

3
2 δ43

)
. (2.46)

From (2.27), (2.28), (2.32), (2.36) and (2.46), we obtain that

|P (Sn ≤ z)− Φ(z)|

≤ C

1 + z

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+ δ3

+
√
nδ23 + n

3
2 δ43

)

≤ C

1 + z

(
|V arSn − 1|+ |V arSn − 1|V arSn + |V arSn − 1|δ23 +

1√
n
+ n

3
2 δ43

)
.



CHAPTER III

NON-UNIFORM BOUND FOR COMBINATORIAL

RANDOM SUMS

Let {Xn}∞n=2 be a sequence of random matrices such that Xn = [Xn(i, j)], i, j =

1, 2, . . . , n, is an n × n matrix of independent random variables. Let {πn}∞n=2 be

a sequence of random permutations such that πn = (πn(1), πn(2), . . . , πn(n)) is a

uniformly distributed random permutation on {1, 2, . . . , n}. Assume that Xn and

πn are independent for all n ≥ 2. Let N be an integer random variable such that

P (N ≥ 2) = 1 and N is independent with {Xn}∞n=2 and {πn}∞n=2. Define the

combinatorial random sums by

SN =
N∑
i=1

XN(i, πN(i)).

In this chapter, we study the distance between the distribution function of SN

and the standard normal distribution function Φ.

Let

∆N,z :=
∣∣∣P( SN√

V arSN

≤ z
)
− Φ(z)

∣∣∣ and ∆N := sup
z∈R

∆N,z.

In 2017, Frolov ([6]) gave a bound of ∆N under the (2+δ)–th moment conditions

where δ ∈ (0, 1]. The following is his result.
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Theorem 3.1. ([6]) Assume that

P (N ≥ 2) = 1,

∃δ ∈ (0, 1], E|Xn(i, j)|2+δ < ∞ for all 1 ≤ i, j ≤ n and n ≥ 2,

n∑
i=1

EXn(i, k) = 0 and
n∑

j=1

EXn(k, j) = 0 for all 1 ≤ k ≤ n and n ≥ 2, (3.1)

Bn := V arSn > 0 for all n ≥ 2 and (3.2)

EBN < ∞. (3.3)

Then

∆N ≤ 45112ELN,δ +
3
√
V arBN

EBN

,

where Ln,δ =
1

nB
1+ δ

2
n

n∑
i=1

n∑
j=1

E|Xn(i, j)|2+δ.

In this chapter, we investigate a non–uniform bound of ∆N,z under the third

moment conditions. The followings are our main results.

Theorem 3.2. Assume that

P (N ≥ 4) = 1, (3.4)

E|Xn(i, j)|3 < ∞ for all 1 ≤ i, j ≤ n and n ≥ 2 (3.5)

and (3.1)–(3.3) hold. Then there exists a positive constant C such that for fixed

z ∈ R with P (1 + |z| ≤ N
1
14 ) = 1, we have

∆N,z ≤
C

1 + |z|

[√
V arBN

EBN

+

√
V arBN

(EBN)2

(
EB2

N

) 1
2
+

√
V arBN

(EBN)4

{
E
(
B6

Nγ
4
N

)} 1
2

+ E
( 1√

N

)
+ EγN +

E
(
B6

NN
3
2γ4

N

)
(EBN)6

]
,

where γn = Ln,1.
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To show that there exists a situation such that the bound in Theorem 3.2

tends to zero, we give some examples of the random number N in Theorem 3.3

and Theorem 3.4.

Theorem 3.3. For k, n ∈ N, let Nk,n be a random variable such that

P (Nk,n = m) =
e−nnm−k

(m− k)!
where m = k, k + 1, . . . . (3.6)

Assume that (3.1), (3.2) and (3.5) hold,

γn = O(
1

nα
) as n → ∞ for some α >

3

8
and (3.7)

Bn ∼ cnβ as n → ∞ for some c, β > 0. (3.8)

Then for fixed z ∈ R and k ≥ 4 such that 1 + |z| ≤ k
1
14 , we have

∆Nk,n,z → 0 as n → ∞.

Theorem 3.4. For n ∈ N, let Nn be a random variable such that

P (Nn = n) =
1

n
and P (Nn = 2n) = 1− 1

n
. (3.9)

Assume that (3.1), (3.2), (3.5), (3.7) and (3.8) hold. Then for fixed z ∈ R and

n ≥ 4 such that 1 + |z| ≤ n
1
14 , we have

∆Nn,z → 0 as n → ∞.

In this chapter, we organize as the follows. In Section 3.1, we prove Theorem

3.2 by using the result of Theorem 2.2. In Section 3.2, we prove Theorem 3.3 by

using the idea from [6]. A proof of Theorem 3.4 is in Section 3.3. In the last

section, we give some examples satisfying our conditions.
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3.1 Proof of Theorem 3.2

Proof. Without loss of generality, it suffices to prove the theorem in the case of

z ≥ 0 as we can apply the result to − SN√
V arSN

when z < 0.

If 0 ≤ z < 1, then 1 <
2

1 + z
. By Theorem 3.1, we have

∆N,z ≤45112EγN +
3
√
V arBN

EBN

≤ 2

1 + z

(
45112EγN +

3
√
V arBN

EBN

)
. (3.10)

Next, we will prove the theorem in the case of z ≥ 1.

Note that V ar
( Sn√

EBN

)
=

Bn

EBN

and E

∣∣∣∣∣Xn(i, j)√
EBN

∣∣∣∣∣
3

=
E|Xn(i, j)|3

(EBN)
3
2

. By Theorem

2.2, there exists a constant C > 0 such that for all n ≥ 4 such that 1 + z ≤ n
1
14 ,

we have

∣∣∣P( Sn√
EBN

≤ z
)
− Φ(z)

∣∣∣
≤ C

1 + z

(∣∣∣ Bn

EBN

− 1
∣∣∣+ ∣∣∣ Bn

EBN

− 1
∣∣∣ Bn

EBN

+
∣∣∣ Bn

EBN

− 1
∣∣∣ β2

3

(EBN)3
+

1√
n
+

n
3
2β4

3

(EBN)6

)

=
C

1 + z

(
|Bn − EBN |

EBN

+
|Bn − EBN |Bn

(EBN)2
+

|Bn − EBN |B3
nγ

2
n

(EBN)4
+

1√
n
+

B6
nn

3
2γ4

n

(EBN)6

)
,

where β3 =
1

n

n∑
i,j=1

E|Xn(i, j)|3. Since V arSN = EBN > 0 ([6], p.5934) and

E|BN − EBN | ≤
√
V arBN , we get that

∆N,z =
∣∣∣P( SN√

EBN

≤ z
)
− Φ(z)

∣∣∣
=

∞∑
n=4

P (N = n)
∣∣∣P( Sn√

EBN

≤ z
)
− Φ(z)

∣∣∣
≤ C

1 + z

[
E|BN − EBN |

EBN

+
E
(
|BN − EBN |BN

)
(EBN)2

+
E
(
|BN − EBN |B3

Nγ
2
N

)
(EBN)4

+ E
( 1√

N

)
+

E
(
B6

NN
3
2γ4

N

)
(EBN)6

]
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≤ C

1 + z

[√
V arBN

EBN

+

√
V arBN

(EBN)2

(
EB2

N

) 1
2
+

√
V arBN

(EBN)4

{
E
(
B6

Nγ
4
N

)} 1
2

+ E
( 1√

N

)
+

E
(
B6

NN
3
2γ4

N

)
(EBN)6

]
.

From this fact and (3.10), the proof is complete.

3.2 Proof of Theorem 3.3

In this section, we consider the bound in Theorem 3.2 in the case of the random

number having the Poisson distribution. Throughout this section, for k, n ∈ N, we

define a Poisson random number Nk,n by

P (Nk,n = m) =
e−nnm−k

(m− k)!
where m = k, k + 1, . . . .

In the following proposition, we will show that EBr
Nk,n

∼ (EBNk,n
)r as n → ∞

for all k ∈ N and r > 0. To prove this proposition, we use a technique from [6].

Proposition 3.5. Assume that (3.2) and (3.5) hold and

Bn ∼ cnβ as n → ∞ for some c, β > 0. (3.11)

Then for all k ≥ 2 and r > 0, we have 0 < EBr
Nk,n

< ∞ for all n ∈ N and

EBr
Nk,n

∼ (EBNk,n
)r as n → ∞.

Proof. Let k ≥ 2, r > 0 and l = ⌊rβ⌋+1 where ⌊·⌋ denotes the integer part of the

number in the bracket. First, we will show that 0 < EBr
Nk,n

< ∞ for all n ∈ N.

Since

ml

(m− k)(m− k − 1) · · · (m− k − l + 1)
→ 1 as m → ∞, (3.12)

there exists m0 ≥ k + l such that
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ml

(m− k)(m− k − 1) · · · (m− k − l + 1)
< 2 for m ≥ m0. (3.13)

By (3.11), there exists m1 ≥ max{m0, k + 1} such that

Bm < 2cmβ for m ≥ m1.

From this fact, (3.2) and (3.13), we have

0 < EBr
Nk,n

=
∞∑

m=k

P (Nk,n = m)Br
m

=

m1−1∑
m=k

P (Nk,n = m)Br
m +

∞∑
m=m1

P (Nk,n = m)Br
m

<

m1−1∑
m=k

e−nnm−k

(m− k)!
max

k≤m≤m1−1
Br

m + 2rcr
∞∑

m=m1

e−nnm−kml

(m− k)!

< e−nnm1−k−1 max
k≤m≤m1−1

Br
m + 2r+1cr

∞∑
m=m1

e−nnm−k

(m− k − l)!

= e−nnm1−k−1 max
k≤m≤m1−1

Br
m + 2r+1crnl

∞∑
m=m1−l

e−nnm−k

(m− k)!

= e−nnm1−k−1 max
k≤m≤m1−1

Br
m + 2r+1crnlP (Nk,n ≥ m1 − l)

<∞ for every n ∈ N.

Next, we will show that EBr
Nk,n

∼ crnrβ as n → ∞.

Let ϵ and δ be positive real numbers such that ϵ, δ ∈ (0, 1). We write

EBr
Nk,n

=
∞∑

m=k

P (Nk,n = m)Br
m

=

⌊(1−δ)n⌋∑
m=k

P (Nk,n = m)Br
m +

⌊(1+δ)n⌋−1∑
m=⌊(1−δ)n⌋+1

P (Nk,n = m)Br
m

+
∞∑

m=⌊(1+δ)n⌋

P (Nk,n = m)Br
m

= : s1 + s2 + s3.
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By (3.11), there exists n0 ≥ k + 1 such that

(1− δ)cnβ < Bn < (1 + δ)cnβ for all n ≥ n0. (3.14)

From this fact, we note that for n ≥ n0

1− δ
,

s1 =

n0−1∑
m=k

P (Nk,n = m)Br
m +

⌊(1−δ)n⌋∑
m=n0

P (Nk,n = m)Br
m

<

n0−1∑
m=k

e−nnm−k

(m− k)!
Br

m + (1 + δ)rcr
⌊(1−δ)n⌋∑
m=n0

P (Nk,n = m)mrβ

≤ e−nnn0−k−1 max
k≤m≤n0−1

Br
m + (1 + δ)rcr(⌊(1− δ)n⌋)rβP (Nk,n ≤ ⌊(1− δ)n⌋)

≤ e−nnn0−k−1 max
k≤m≤n0−1

Br
m + (1 + δ)rcr(1− δ)rβnrβP (Nk,n ≤ ⌊(1− δ)n⌋).

(3.15)

Observe that Nk,n = Xn + k where Xn is a Poisson random variable with mean n.

Then ENk,n = EXn + k = n + k and V arNk,n = V arXn = n. By Chebyshev’s

inequality, we have

P (Nk,n ≤ ⌊(1− δ)n⌋) ≤ P (Nk,n ≤ (1− δ)n)

= P (Nk,n − ENk,n ≤ −δn− k)

≤ P (|Nk,n − ENk,n| ≥ δn+ k)

≤ V arNk,n

(δn+ k)2

=
n

(δn+ k)2
for all n ∈ N. (3.16)

Thus there exists n1 ≥
n0

1− δ
such that

P (Nk,n ≤ ⌊(1− δ)n⌋) < δ

2(1 + δ)rcr(1− δ)rβ
for n ≥ n1. (3.17)

Since e−nnn0−k−1 max
k≤m≤n0−1

Br
m tends to zero for large n, there exists n2 ≥ n1 such

that
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e−nnn0−k−1 max
k≤m≤n0−1

Br
m <

δ

4
for n ≥ n2. (3.18)

From (3.15), (3.17) and (3.18), we have that

0 < s1 <
δ

4
+

δnrβ

2
for n ≥ n2. (3.19)

By (3.14), we have that for n ≥ n0

1− δ
,

s2 < (1 + δ)rcr
(
⌊(1 + δ)n⌋ − 1

)rβ
P
(
⌊(1− δ)n⌋ < Nk,n < ⌊(1 + δ)n⌋

)
< (1 + δ)r+rβcrnrβ (3.20)

and

s2 > (1− δ)rcr
(
⌊(1− δ)n⌋+ 1

)rβ
P
(
⌊(1− δ)n⌋ < Nk,n < ⌊(1 + δ)n⌋

)
> (1− δ)r+rβcrnrβP

(
⌊(1− δ)n⌋ < Nk,n < ⌊(1 + δ)n⌋

)
= (1− δ)r+rβcrnrβ

(
1− P (Nk,n ≥ ⌊(1 + δ)n⌋)− P (Nk,n ≤ ⌊(1− δ)n⌋)

)
.

(3.21)

In the same way as (3.16), we get that

P (Nk,n ≥ ⌊(1 + δ)n⌋) ≤ P (Nk,n ≥ (1 + δ)n− 1)

= P (Nk,n − ENk,n ≥ δn− k − 1)

≤ P (|Nk,n − ENk,n| ≥ δn− k − 1)

≤ V arNk,n

(δn− k − 1)2

=
n

(δn− k − 1)2
for n >

k + 1

δ
. (3.22)

From (3.16) and (3.22), there exists n3 > max
{ n0

1− δ
,
k + 1

δ

}
such that

P (Nk,n ≥ ⌊(1 + δ)n⌋) < δ

2
and P (Nk,n ≤ ⌊(1− δ)n⌋) < δ

2
for n ≥ n3. (3.23)
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Thus by (3.20), (3.21) and (3.23),

(1− δ)r+rβ+1crnrβ < s2 < (1 + δ)r+rβcrnrβ for n ≥ n3. (3.24)

By (3.14), we note that for n ≥ n0

1− δ
,

s3 < (1 + δ)rcr
∞∑

m=⌊(1+δ)n⌋

P (Nk,n = m)mrβ < (1 + δ)rcr
∞∑

m=⌊(1+δ)n⌋

e−nnm−kml

(m− k)!
.

By (3.12), there exists n4 ∈ N such that

ml

(m− k)(m− k − 1) · · · (m− k − l + 1)
< 1 + δ for m ≥ n4.

Then for all n ≥ n4,

s3 < (1 + δ)r+1cr
∞∑

m=⌊(1+δ)n⌋

e−nnm−k

(m− k − l)!

= (1 + δ)r+1crnl

∞∑
m=⌊(1+δ)n⌋−l

e−nnm−k

(m− k)!

= (1 + δ)r+1crnlP
(
Nk,n ≥ ⌊(1 + δ)n⌋ − l

)
. (3.25)

Note that

P
(
Nk,n ≥ ⌊(1 + δ)n⌋ − l

)
≤ P

(
Nk,n ≥

(
1 +

δ

2

)
n+

δn

2
− l − 1

)
≤ P

(
Nk,n ≥

(
1 +

δ

2

)
n
)

for n ≥ 2(l + 1)

δ
. (3.26)

By the same argument as [6] (p.5938), there exists a positive real number t such

that

P
(
Nk,n ≥

(
1 +

δ

2

)
n
)
≤ e−tn for n ≥ 4k

δ
. (3.27)

From (3.25)–(3.27), there exists n5 ≥ max
{
n4,

2(l + 1)

δ
,
4k

δ

}
such that
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0 < s3 < (1 + δ)r+1crn⌊rβ⌋+1e−tn <
δ

4
for n ≥ n5. (3.28)

Let nϵ ∈ N be such that the conditions of (3.19), (3.24) and (3.28) hold for n ≥ nϵ.

Hence for all n ≥ nϵ,

(1− δ)r+rβ+1crnrβ < s1 + s2 + s3 <
( δ

cr
+ (1 + δ)r+rβ

)
crnrβ.

By choosing δ = min
{
ϵcr

2
, 1 − (1 − ϵ)

1
r+rβ+1 ,

(
1 + ϵ

2

) 1
r+rβ − 1

}
, we have that

δ ∈ (0, 1) and

(1− ϵ)crnrβ < EBr
Nk,n

= s1 + s2 + s3 < (1 + ϵ)crnrβ for n ≥ nϵ.

So
∣∣∣∣∣EBr

Nk,n

crnrβ
− 1

∣∣∣∣∣ < ϵ for all n ≥ nϵ. This implies that

EBr
Nk,n

∼ crnrβ as n → ∞. (3.29)

From (3.29), we have

EBNk,n
∼ cnβ as n → ∞.

Hence

(EBNk,n
)r ∼ crnrβ as n → ∞.

From this fact and (3.29), we have

EBr
Nk,n

∼ (EBNk,n
)r as n → ∞. (3.30)

Proof of Theorem 3.3.

Let z ∈ R and k ≥ 4 such that 1 + |z| ≤ k
1
14 . Then P (Nk,n ≥ 4) = 1 and

P (1 + |z| ≤ N
1
14
k,n) = 1 for all n ∈ N. By Proposition 3.5, we have (3.3) holds.
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Hence, by Theorem 3.2, Hölder’s inequality and the fact that

√
V arBNk,n

EBNk,n

=

√
EB2

Nk,n
− (EBNk,n

)2

EBNk,n

=

(
EB2

Nk,n

(EBNk,n
)2

− 1

) 1
2

,

we have a positive constant C such that

∆Nk,n,z ≤
C

1 + |z|

[{
EB2

Nk,n

(EBNk,n
)2

− 1

} 1
2

+

{
EB2

Nk,n

(EBNk,n
)2

− 1

} 1
2
{

EB2
Nk,n

(EBNk,n
)2

} 1
2

+

{
EB2

Nk,n

(EBNk,n
)2

− 1

} 1
2
{

EB12
Nk,n

(EBNk,n
)12

} 1
4{

Eγ8
Nk,n

} 1
4
+ E

( 1√
Nk,n

)

+ EγNk,n
+

{
EB12

Nk,n

(EBNk,n
)12

} 1
2{

E
(
N3

k,nγ
8
Nk,n

)} 1
2

]
(3.31)

for all n ∈ N. From this fact and Proposition 3.5, to complete the proof it suffices

to show that

lim
n→∞

E
( 1

N r
k,n

)
= 0 for all r > 0 and

lim
n→∞

E
(
N l

k,nγ
t
Nk,n

)
= 0 for all l ≥ 0, t > 0 such that t >

l

α
. (3.32)

We devide the proof into 2 steps.

Step 1 : we will show that lim
n→∞

E
( 1

N r
k,n

)
= 0 for all r > 0.

Let r and ϵ be positive real numbers such that ϵ ∈ (0, 1).

For n ≥ max
{
2k,

2
r+1
r

ϵ
1
r

}
, we note that

E
( 1

N r
k,n

)
=

⌊n
2
⌋∑

m=k

P (Nk,n = m)

mr
+

∞∑
m=⌊n

2
⌋+1

P (Nk,n = m)

mr

≤
P (Nk,n ≤ ⌊n

2
⌋)

kr
+

P (Nk,n ≥ ⌊n
2
⌋+ 1)

(⌊n
2
⌋+ 1)r

≤ P
(
Nk,n ≤

⌊n
2

⌋)
+

2r

nr

≤ P
(
Nk,n ≤ n

2

)
+

ϵ

2
. (3.33)
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By Chebyshev’s inequality, we have that

P
(
Nk,n ≤ n

2

)
= P

(
Nk,n − ENk,n ≤ −n

2
− k
)

≤ P
(
|Nk,n − ENk,n| ≥

n

2
+ k
)

≤ V arNk,n

(n
2
+ k)2

=
n

(n
2
+ k)2

for all n ∈ N.

From this fact and (3.33), there exists n0 ≥ max
{
2k,

2
r+1
r

ϵ
1
r

}
such that

E
( 1

N r
k,n

)
≤ n

(n
2
+ k)2

+
ϵ

2
< ϵ for n ≥ n0.

This implies

lim
n→∞

E
( 1

N r
k,n

)
= 0 for all r > 0. (3.34)

Step 2 : we will show that lim
n→∞

E
(
N l

k,nγ
t
Nk,n

)
= 0 for all l ≥ 0, t > 0 such that

t >
l

α
. Let l ≥ 0 and t > 0 such that t >

l

α
and let ϵ > 0.

By (3.7), there exist d > 0 and n1 ≥ k + 1 such that

γm ≤ d

mα
for m ≥ n1.

By this fact and the fact that t >
l

α
, we have that for m ≥ n1,

mlγt
m ≤ mldt

mαt
=

dt

mαt−l
=

dt

ms

where s = αt− l > 0. From this fact, we have that

E
(
N l

k,nγ
t
Nk,n

)
=

∞∑
m=k

P (Nk,n = m)mlγt
m

=

n1−1∑
m=k

P (Nk,n = m)mlγt
m +

∞∑
m=n1

P (Nk,n = m)mlγt
m
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<

n1−1∑
m=k

e−nnm−k

(m− k)!
mlγt

m +
∞∑

m=n1

P (Nk,n = m)
dt

ms

≤ e−nnn1−k−1(n1 − 1)l max
k≤m≤n1−1

γt
m + dtE

( 1

N s
k,n

)
. (3.35)

By (3.34) and the fact that e−nnn1−k−1(n1−1)l max
k≤m≤n1−1

γt
m tends to zero for large

n, there exists n2 ≥ n1 such that

e−nnn1−k−1(n1 − 1)l max
k≤m≤n1−1

γt
m <

ϵ

2
and

E
( 1

N s
k,n

)
<

ϵ

2dt
for n ≥ n2.

From these facts and (3.35), we obtain that

E
(
N l

k,nγ
t
Nk,n

)
< ϵ for n ≥ n2.

This implies

lim
n→∞

E
(
N l

k,nγ
t
Nk,n

)
= 0. (3.36)

By (3.31), (3.32), (3.34) and (3.36), we obtain

∆Nk,n,z → 0 as n → ∞.

3.3 Proof of Theorem 3.4

Proof. Let z ∈ R. By (2.30), (3.2) and (3.5), we note that

0 < Bm =
1

m

m∑
i,j=1

EX2
m(i, j) +

1

m(m− 1)

m∑
i,j=1

[EXm(i, j)]
2

≤ 1

m

m∑
i,j=1

{
E|Xm(i, j)|3

} 2
3
+

1

m(m− 1)

m∑
i,j=1

{
E|Xm(i, j)|3

} 2
3

< ∞ for all m ≥ 2.
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From this fact, we have

0 < EBr
Nn

= Br
nP (Nn = n) +Br

2nP (Nn = 2n)

≤ Br
n +Br

2n

< ∞ for all r > 0 and n ≥ 2.

So (3.3) holds for n ≥ 2. For n ≥ max{4, (1+ |z|)14}, we note that P (Nn ≥ 4) = 1

and P (1 + |z| ≤ N
1
14
n ) = 1. Similar to (3.31), we have a positive constant C such

that

∆Nn,z ≤
C

1 + |z|

[{
EB2

Nn

(EBNn)
2
− 1

} 1
2

+

{
EB2

Nn

(EBNn)
2
− 1

} 1
2
{

EB2
Nn

(EBNn)
2

} 1
2

+

{
EB2

Nn

(EBNn)
2
− 1

} 1
2
{

EB12
Nn

(EBNn)
12

} 1
4{

Eγ8
Nn

} 1
4
+ E

( 1√
Nn

)
+ EγNn

+

{
EB12

Nn

(EBNn)
12

} 1
2{

E
(
N3

nγ
8
Nn

)} 1
2

]
(3.37)

for n ≥ n0 := max{4, (1 + |z|)14}. To complete the proof, it suffices to show that

lim
n→∞

E
( 1√

Nn

)
= lim

n→∞
Eγ8

Nn
= lim

n→∞
E
(
N3

nγ
8
Nn

)
= 0 and

lim
n→∞

EBr
Nn

(EBNn)
r
= 1 for all r > 0. (3.38)

Since E
( 1√

Nn

)
=

1

n
√
n
+

1√
2n

(
1− 1

n

)
<

2√
n
,

lim
n→∞

E
( 1√

Nn

)
= 0. (3.39)

By (3.7), there exist d > 0 and n1 ≥ n0 such that

0 ≤ γm ≤ d

mα
for m ≥ n1.

From this fact, we have that
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0 ≤ E
(
N3

nγ
8
Nn

)
≤ n3γ8

n + 8n3γ8
2n ≤ d8

n8α−3
+

d8

28α−3n8α−3
for n ≥ n1.

This fact and the fact that 8α− 3 > 0 imply

lim
n→∞

E
(
N3

nγ
8
Nn

)
= 0. (3.40)

Note that 0 ≤ Eγ8
Nn

≤ E
(
N3

nγ
8
Nn

)
for all n ≥ 2. Then, by (3.40), we get

lim
n→∞

Eγ8
Nn

= 0. (3.41)

Last, we will show that lim
n→∞

EBr
Nn

(EBNn)
r
= 1 for all r > 0.

Let r, ϵ and δ be positive real numbers such that ϵ, δ ∈ (0, 1). By (3.8), there exists

n2 ≥ n1 such that

(1− δ)cmβ < Bm < (1 + δ)cmβ for m ≥ n2.

By this fact, we note that for n ≥ max
{
n2,

(1 + δ)r

δ

}
,

EBr
Nn

=Br
nP (Nn = n) +Br

2nP (Nn = 2n)

≤Br
n

n
+Br

2n

<
(1 + δ)r(cnβ)r

n
+ (1 + δ)r(c2βnβ)r

=
((1 + δ)r

2βrn
+ (1 + δ)r

)
(c2βnβ)r

≤
(
δ + (1 + δ)r

)
(c2βnβ)r

and

EBr
Nn

≥Br
2nP (Nn = 2n)

=Br
2n −

Br
2n

n

>(1− δ)r(c2βnβ)r − (1 + δ)r(c2βnβ)r

n

=
(
(1− δ)r − (1 + δ)r

n

)
(c2βnβ)r

≥
(
(1− δ)r − δ

)
(c2βnβ)r.
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Then

(1− δ)r − δ <
EBr

Nn

(c2βnβ)r
< δ + (1 + δ)r for n ≥ max

{
n2,

(1 + δ)r

δ

}
.

By choosing δ = min
{ ϵ
2
, 1−

(
1− ϵ

2

) 1
r
,
(
1 +

ϵ

2

) 1
r − 1

}
, we get that

1− ϵ <
EBr

Nn

(c2βnβ)r
< 1 + ϵ for n ≥ max

{
n2,

(1 + δ)r

δ

}
.

This implies

EBr
Nn

∼ (c2βnβ)r as n → ∞.

By this fact and the same technique as (3.30), we get that

EBr
Nn

∼ (EBNn)
r as n → ∞.

Hence

lim
n→∞

EBr
Nn

(EBNn)
r
= 1 for all r > 0.

From this fact and (3.37)–(3.41), we obtain that

∆Nn,z → 0 as n → ∞.

3.4 Examples

Let Nk,n and Nn be defined as in (3.6) and (3.9), respectively. In this section, we

give some examples to show that the conditions of Theorem 3.3 and Theorem 3.4

hold. The following are our examples.

Example 3.6. Let Xn(i, j) be a random variable such that

P (Xn(i, j) = i) = P (Xn(i, j) = −i) =
1

2

for all i, j = 1, 2, . . . , n and n ≥ 2. Note that EXn(i, j) = 0, V arXn(i, j) = i2 and

E|Xn(i, j)|3 = i3 for all i, j = 1, 2, . . . , n and n ≥ 2. Then (3.1) and (3.5) hold.
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From (2.30), we observe that

Bn =
1

n

n∑
i,j=1

EX2
n(i, j) +

1

n(n− 1)

n∑
i,j=1

[EXn(i, j)]
2

=
1

n

n∑
i,j=1

V arXn(i, j) +
1

n− 1

n∑
i,j=1

[EXn(i, j)]
2 (3.42)

=
1

n

n∑
i,j=1

i2

=
n3

3

(
1 +

3

2n
+

1

2n2

)
for n ≥ 2. (3.43)

Thus (3.2) holds and Bn ∼ n3

3
as n → ∞. Hence (3.8) holds by choosing c =

1

3
and β = 3. By (3.43), we have that

γn =
1

nB
3
2
n

n∑
i,j=1

E|Xn(i, j)|3

=
1

nB
3
2
n

n∑
i,j=1

i3

=
1

B
3
2
n

n∑
i=1

i3

<
n4

(
n3

3
)
3
2

=
3

3
2

√
n

for n ≥ 2.

This implies that γn = O
( 1√

n

)
as n → ∞.

So (3.7) holds. Therefore the conditions of Theorem 3.3 and Theorem 3.4 hold.

By using the idea from [6], we obtain Example 3.7 and Example 3.8.

Example 3.7. Let a, b > 0 such that b <
1

4
. For every i ∈ N, let Yi be a random

variable such that

P (Yi = ia) = P (Yi = −ia) =
1

2ib
and P (Yi = 0) = 1− 1

ib
. (3.44)

Note that EYi = 0, V arYi = EY 2
i = i2a−b and E|Yi|3 = i3a−b for all i ∈ N.
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For every n ≥ 2, let Xn(i, j) = Yi for i, j = 1, 2, . . . , n. Then (3.1) and (3.5)

hold. From (3.42), it follows that (3.2) holds. From [6] (p.5939), we have (3.8)

holds and

Bn ∼ C1n
2a−b+1 as n → ∞ for some C1 > 0.

By this fact, there exists n0 ≥ 2 such that

Bn > 2C1n
2a−b+1 for n ≥ n0. (3.45)

Note that

1

n

n∑
i,j=1

E|Xn(i, j)|3 =
n∑

i=1

E|Yi|3 =
n∑

i=1

i3a−b < n3a−b+1.

From this fact and (3.45), we have

γn =
1

nB
3
2
n

n∑
i,j=1

E|Xn(i, j)|3 <
n3a−b+1

(2C1n2a−b+1)
3
2

=
1

(2C1)
3
2n

1−b
2

for n ≥ n0.

So γn = O
(

1

n
1−b
2

)
as n → ∞ and 1− b

2
>

3

8
. Thus (3.7) holds.

Hence the conditions of Theorem 3.3 and Theorem 3.4 hold.

Example 3.8. Let a, b, r > 0 such that b < 1

4
and r < a+

1− b

3
. For every n ≥ 2

such that n = 2k or n = 2k + 1, define an n× n matrix [cij] by

cii = ci+1,i+1 = ir and ci,i+1 = ci+1,i = −ir for i = 1, 3, . . . , 2k − 1

and the other entries equal zero.

Let Xn(i, j) = Yi + cij where Yi is defined as in (3.44) for all i, j = 1, 2, . . . , n

and n ≥ 2. Note that

E|Xn(i, j)|3 = E|Yi + cij|3 ≤ 4(E|Yi|3 + |cij|3) = 4i3a−b + 4|cij|3 (3.46)
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and, from (3.42),

Bn =
1

n

n∑
i,j=1

V arYi +
1

n− 1

n∑
i,j=1

c2ij =
n∑

i=1

V arYi +
1

n− 1

n∑
i,j=1

c2ij. (3.47)

Then (3.2) and (3.5) hold. From [6] (p.5939), we have that (3.1) holds,

n∑
i=1

V arYi ∼ C1n
2a−b+1 as n → ∞, (3.48)

1

n− 1

n∑
i,j=1

c2ij ∼ C2n
2r as n → ∞ and (3.49)

1

n

n∑
i,j=1

|cij|3 ∼ C3n
3r as n → ∞ (3.50)

for some C1, C2, C3 > 0. By (3.47)–(3.49) and the fact that 2r < 2a− b+1, we get

Bn ∼ C1n
2a−b+1 + C2n

2r ∼ C4n
2a−b+1 as n → ∞ for some C4 > 0. (3.51)

Then (3.8) holds. From (3.50) and (3.51), there exist n1 ∈ N and C5, C6 > 0 such

that

1

n

n∑
i,j=1

|cij|3 < C5n
3r and (3.52)

Bn > C6n
2a−b+1 for n ≥ n1. (3.53)

From (3.46), (3.52) and the fact that 3r < 3a − b + 1, there exists n2 ≥ n1 and

C7 > 0 such that

1

n

n∑
i,j=1

E|Xn(i, j)|3 ≤ 4
n∑

i=1

i3a−b +
4

n

n∑
i,j=1

|cij|3

< 4n3a−b+1 + 4C5n
3r

< C7n
3a−b+1 for n ≥ n2.
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By this fact and (3.53), we have that

γn =
1

nB
3
2
n

n∑
i,j=1

E|Xn(i, j)|3

<
C7n

3a−b+1

(C6n2a−b+1)
3
2

=
C7

C
3
2
6 n

1−b
2

for n ≥ n2.

So γn = O
(

1

n
1−b
2

)
as n → ∞ and 1− b

2
>

3

8
. Thus (3.7) holds.

Hence the conditions of Theorem 3.3 and Theorem 3.4 hold.
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