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CHAPTER 1
INTRODUCTION

Let {X,}22, be a sequence of random matrices such that X, = [X,,(¢,7)], 4, =
1,2,...,n, is an n x n matrix of independent random variables. Let {m,}>%, be
a sequence of random permutations such that m, = (7,(1), m,(2),...,m(n)) is a
uniformly distributed random permutation on {1,2,...,n}. Assume that X, and

m, are independent for all n > 2. For n > 2, define the combinatorial sums by

S, = ZXn(i,wn(i)).

It is well-known that the distribution of .S,, converges to the normal distribution
under some conditions ([8], [9], [19]). This convergence is called a combinatorial
central limit theorem (CCLT). The bound in CCLT was investigated broadly
such as in [1]-[3], [5], [7], [11]-[13], [15] and [18].

Random sums of random variables are very useful in probability theory and
statistics and their applications. In particular, random sums of independent and
identically distributed random variables which are called the compound random
variables have many natural applications. For instance, they are used in insurance
risk models for describing the aggregate claims. In statistics, they are also found
in common tests and overdispersion modeling.

In this work, we investigate random sums called combinatorial random sums
defined as the followings.

Let N be an integer random variable such that P(N > 2) = 1 and N is
independent with {X,}>2, and {m,}5°,. Define the combinatorial random

sums by

Sy =Y Xy(i,mn (D).

i=1



In our work, we study the distance between the distribution function of Sy and
the standard normal distribution function ®.
Let

SN

_ N < _ —
m_z) @(z)) and Ay :=supAn,,.

z€R

Ay, = ‘P(

In 2017, Frolov ([6]) gave a bound of Ay under the (246)-th moment conditions

where 0 € (0,1]. The following is his result.

Theorem 1.1. ([6]) Assume that

P(N>2)=1,

36 € (0,1], E|Xn(i,5)*™ < oo forall1<i,j<nandn>2,

ZEXn(i,k;) =0 and ZEXn(k,j) =0 foralll<k<nandn>2, (1.1)
i=1

j=1
B, :=VarS, >0 foralln>2 and (1.2)

Then

3vVarBy

Ay < 45112FL
N =< Neo + EBx

R .
where Ly s = o3 ZZE’Xn(%J)’QM-
nB, ? i=1 j=1

In this work, we investigate a non-uniform bound of Ay, under the third

moment conditions. The followings are our main results.

Theorem 1.2. Assume that

P(N >4) =1, (1.4)

E|X,(i,j)P <oo forall1<i,j<nandn>?2 (1.5)

and (1.1)-(1.3) hold. Then there exists a positive constant C' such that for fixed



z € R with P(1+|z| < N11) = 1, we have

Bvs = —i—C|z] Bt <§ZZB§5 (BB%)" + ﬁ{]ﬂ@%ﬁv)};
3
+E(\/Lﬁ) + Eyn + E<(BEJGV;\:)Z?V>],

where 7y, = Ly, 1.

In Theorem 1.2, we observe that if N = n for some positive integer n, then

A < C 1 DU J
n,z —— n nzvy, |-
=T\ T

1

n
the bound in Theorem 1.2 may not tend to zero in general cases of V.

3
In the case of v,, = O(—a) for some o > 3’ we have A, , = 0 as n — oco. However,

From the usefulness of the random sums when the random number is Poisson,
we consider the case of N having the Poisson distribution to show that our bound

in this case tends to zero. Our result is stated in Theorem 1.3.

Theorem 1.3. For k,n € N, let Ny, be a random variable such that

P(Nkm:m):% where m =k, k+1,.... (1.6)

Assume that (1.1), (1.2) and (1.5) hold,
Tn = O(%) as n — oo for some a > 2 and (1.7)
B, ~cn? asn — oo for some ¢, 3 > 0. (1.8)

Then for fived z € R and k > 4 such that 1+ |z| < k11, we have

An, .. —0asn — oo.



Note that f(n) = O(g(n)) as n — oo represents that 3C' > 0, Ing € N such
that |f(n)] < Clg(n)| for all n > ng, and f(n) ~ g(n) as n — oo represents

f(n)

lim —= = 1.
n—oo g(n)

The following is the case of N having two possible values.
Theorem 1.4. Forn € N, let N,, be a random variable such that

1 1
P(N,=n)=— and P(N,=2n)=1-——.
n n
Assume that (1.1), (1.2), (1.5), (1.7) and (1.8) hold. Then for fized z € R and

n >4 such that 1+ |z| < ni1, we have
An,.— 0 asn — oo.

In this thesis, we organize as the follows. In Chapter II, we give a result for
proving Theorem 1.2. The proofs of Theorem 1.2, Theorem 1.3 and Theorem 1.4

and some satisfying examples are in Chapter III.



CHAPTER 11
NON-UNIFORM BOUND FOR COMBINATORIAL
SUMS

For n > 2, let Y(4,7), i,7 = 1,2,...,n be independent random variables and
m = (7(1),7(2),...,7(n)) be a uniformly distributed random permutation on
{1,2,...,n} such that 7 and Y (4, j)’s are independent. Define the combinatorial

sums by

S, = Zm,w(z’)).

In 2016, Simcharoen and Neammanee ([15]) gave a non—uniform bound of nor-
mal approximation for S,, under the third moment and variance one conditions.

The following is their result.

Theorem 2.1. ([15]) Assume that

Y EY(i,k)=0and Y EY(k,j)=0 forall 1<k<n, (2.1)
i=1 j=1

E|lY(i,5)? < oo forall 1<i,j <n and (2.2)

VarS, = 1. (2.3)

Then there exists C' > 0 such that for fized z € R and a positive integer n such

that 1+ |z] < nit andn > 4, we have

c o1 )
|P(S, <2)—®(2)] < T+ (% + \/563),

1 n n
h 03 = — ElY(i,7)].
where 8 =30 S EIY(i.5)

=1 j=1



In this chapter, we generalize the result in Theorem 2.1 by reducing condition

(2.3) for using in our main result in Chapter III. The following is our result.

Theorem 2.2. Assume that (2.1) and (2.2) hold. Then there exists a positive
constant C' such that for fived z € R~ (=1,1) and n > 4 such that 1+ |z| < nii,

we have

|P(Sh < 2) — ©(2)]
C
1+ |7

< <|Va7“Sn — 1|+ |VarS, — 1|VarS, + |VarS, — 1|63 + + n%5§>.

1
NLD
Remark 2.3. In the case that VarS,, = 1, we see that our bound in Theorem 2.2

has the same order as in Theorem 2.1.

In this chapter, we organize as the follows. We give a useful lemma for proving
Theorem 2.2 in Section 2.1. Then we use the Stein’s method and the techniques
from Simcharoen and Neammanee [15] to prove our theorem in the last Section.

Throughout this thesis, C' stands for a positive constant Wthh may | be different
values in different places and we denote the double sums Z Z by Z for every

=1 j=1 4,j=1
n € N.

2.1 Auxiliary Results

To obtain a non—uniform bound, we always use the technique called truncation

of random variables. For z > 0 and 7,5 € {1,2,...,n}, let
Vo(i, ) = YL DY (6, 4)] < 1+2) and Yi(i,§) = Y (i, HI(Y G 5)] > 1+ 2)

where I is an indicator function. For a random permutation 7, we let

SRR



Using the techniques from Neammanee and Rurkruthairat ([12]) and Sim-

charoen and Neammanee ([15]), we obtain the following lemma.

Lemma 2.4. Assume that (2.1) and (2.2) hold. Then the followings hold.

n 2
(7) E( Z Y/z(z,j)) < C(n+n?53) for some C > 0.

ij=1
(i1) BY?(n) < C(VarS, +1+62) for some C > 0.
~ 2 4 1.3 8
(4ii) BY*(m) < C((l + 2)03 +n363 +n3d; +nds + n%5§> for some C >0
and n > 4.
(iv) There exists a constant C > 0 such that for n >4 and 1+ 2 < /n,

EVi(r) < O(1 +n363).

Proof. (i) By the same argument as Neammanee and Rurkruthairat ([12], p.1592)
and the fact that |Y,(i,5)| > 1 or |Y.(4,7)] = 0, we can show that

n 2 n
E< > m,j)) <Y EY?(i,§) +n’03. (2.4)
i,j=1 i,j=1

For positive real numbers aq,as, ..., a, and real numbers r,s # 0 such that

r < s, we note from the power mean inequality that



N

n 3
ns ( ElY (i,j)l?’)
ij=1

4
n3ds.

L ol
~~
Do
ot
SN—

Hence, by (2.4) and (2.5),

n 2
E < > fé(@j)) < nd6] + %,

ij=1

1 2 1 1
If 63 < —, then n%5§’ + n?63 < 2n. In the case of §3 > —, we have — < /n

v Vi 2

which implies that n362 < n262. Hence
n 2
E(E:ﬁagv < CO(n+ n?s3). (2.6)
ij=1
(7i) Following [12] (pp.1592-1593), we can see that

2
no;

n—1

Z BIY, (i1, 42)|E|Y (i1, i2)| +

i1,i9=1

- 2
EY? < _
(m) <VarS, + TP

By the fact that |Y,(i,7)] > 1 or |Y.(4,7)| = 0, we have

> EY.(in, i) |B)Y (i i) < Y EYZ(in,ia) B|Y (iv,2))|

i1,i2=1 i1,02=1
n

< ) E[Y(ir i)

i1,i0=1

= 77,53.

From this fact and (2.7), we obtain
~ 20 o2
EY?(r) < VarS, + —2_ 4 %
n—1 n-—1

< C’(VarSn + % + 5§>

1 0 1 0.
If 65 < — then—3+5§§2andif53>—,Wehave—3gég.
n n

Vi Vn



Hence

EY?(n) < C(VarS, + 1+ 62). (2.8)

(iii) Note that
EYHT) = Q14 Qs+ Qs+ Qs+ Qs (2.9)

where
= ZEYQ“(M(D),
Q=) Y EY2(,7(i)Y.(j, 7(5),

i=1 j=1
J#

Qs = Z > EY(i,x(i)Y2(, ().
-

Qs = ZZ Z Z EY.(i, 7 ()Y (4, 7(1) Yk, m(k)) Y2 (1, 7 (1)),
iy e piy

Simcharoen and Neammanee ([15], pp.5520-5522) showed that

Q1] < (1+2)6s, (2.10)
Qul < C((1+2)05+2) and (2.11)
Q4 < C((1+ 2)d +n3). (2.12)

By (2.5), we get that

|Q3‘: n_l Z Z EY 21,22 EY (]17]2>

Z1 i2=1 j1,j2=1

J170
J2Fiz
2
Ol < 2
S ﬁ( Z EY (21,Z2>
i1,i9=1

< Cn3ss. (2.13)
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By (2.1) and the fact that Y.(i,j) = Y (i,5) — Y.(i, j), we note that

Q5| :\ SN BV m ()Y 7 () (Y (R, w(k)) = Ya(k, w(K)))

i=1 j=1 k=1 I=1
j#i kA5 1#£1,5,k

x (Y (l,7(1) - n(lm(l»)(

n n n n

<33T Y BV i)Y w )Y (k. w(0)Y (17 (1)|
% B e
+2‘22 ; Z BY. (i, (i)Y, w(7)Va(k, 7 (k)Y (1, 7(1)]

j#i kg l;éz 7.k

WZZZZEMW Vo, m () Y-k, 7 (0)Y- (1, 7(D)

=1 j=1 k=1 I=
G0 k;ézyl;éz]k

C n n
—4‘ Z Z Z EY 21,12 EY (jl,jQ)EY(kl,kQ) Z EY(ll,l2>‘
11,52=1 j1,j2=1 k1,k2=1 l1,l2=1
Ji#iL kiing l1741,51,k1
jz#iz k27éi2 jz la#iz,j2,k2

i) EY. (1, o) Y. (ki ko) Z EY (L, l5)

11,02=1 j1,j2=1 k1,k2=1 l1,l2=1
giFi ki Jt Lii1,51,k1
JaFi2 ko#izjo laFi2,52,k2

WZZZZWMW V(. m () Yk, 7 (0)Y- (1, 7(D)

i=1 j=1 k=1 I[=1
j#i k.5 1#£1,5,k

C oo S
:F‘ Z Z Z EY(11,42) EY(jr, j2) EY (k1. k2) Z EY (p1,p2)
i1,92=1 j1,52=1 k1,ko=1 p16{’i1,j1,k1},

Jrin ki g1 p2€{iz,jo ka2 }
JoFia k27512 ,J2

+%‘ Z Z Z Ei}z(il,i2)E3>z(j1,j2)En(k1,k2) Z EY(pl,pz)

i1,82=1 j1,j2=1 k1,k2=1 p1€{i1,j1,k1},
J1#i k1ia Jt p2€{ia,jo,ka}
JoFiz ka#ia,jo

WZZZZEMW Vo, m (7)) Y-k, 7 (0)Y- (1, 7(D)

i=1 j=1 k=
0 k;ézyl;éz]k

=: Q51 + Q52 + Qs3. (2.14)
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From [15] (p.5523), we get that

53 o - o
Q52 < C(ﬁ > EY2(11,22)+n5§) and Q53 < C6 Y EY?(iy,ia).

i1,92=1 i1,02=1

By this fact and (2.5),
1.5 4 8
@52 + Q53 < C<n§(5§ +nd3 + n§533). (2.15)
Observe that
C
Q51 S m <R1 + Rz + R3 + R4> (2.16)

where

R, = E E g Eyz(ihiZ)EYz(jlaj?)EY(kla ko) E EY (p1,p2)
i1,i2=1 jp]iél ]/;:1;2:'1 pr€{ing},
i it (i

Ro=| 30 % N BV )Y EY (ki ky) Y EY (ki.pa)
11,02=1 j1,j2=1 k1,k2=1 p2Eq{iz,j2}
nFi ki
J2Fiz ka#ia,jo

R 2’ E E E Eﬁ(ilaiQ)EYz(jbﬁ)EY(kl;k2) E ~ EY(p1,k2)
i1,i2=1 j1,j2=1 k1,k2=1 p1€fin,g}
J1#i k17,0
JeFia kaFi,j2

Ro=[ 30 ST BV i) BV, ) (BY ()2
i1,02=1 j1,j2=1 k1,ka=1
J1#i ki#iLi
JeFiz ka#iz,j2

By (2.1), the fact that |V, (i,7)| <1+ z and the inequality
1 T2

ay'ay’ -+ ayt < riay 4 raag + o+ rpan (2.17)

for all a;,7; >0and r{ +---+ 1, =1, we have
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B 3N BV i) EY.Gud) Y EY(pip) 3 BY (k)|
11,i2=1 jl',j;é'zl ple{zil,j‘l}, ’261;6'2:'1
i et i

:‘ Z Z E}Afz(z’l,ig)E?z(jl,h) Z EY (p1,p2) Z EY (q1,42)

i1,i2=1 j1,j2=1 p1€{it,gi}, qi€fininl,
J17i p2€{iz,j2} a2€{iz,j2}
JaFi2

< Z Z Z E|YZ(@'1,z'g)|E|§A/z(j1,j2)|E|Y(p1,p2)|E|Y(q1,q2)|
i1,i2=1 j1,52=1 p1,q1 €{i1,51},
p2,q2€{i2,j2}

" - ST 1 1 i

<A+ Y > Y BN ) PHEY () PEEY (a1, @)}
t1,52=1 j1,j2=1 p1,q1€{i1,j1},
p2,q2€{i2,j2}

<(1+2) Z Z Z <E|Y(Z31722)| _I_E’Y(p317p2>’ +E\Y(Q31;Q2)| )

i1,42=1 j1,j2=1p1,q1 €{i1,51},
p2,q2€{i2,j2}
n

=16(1+z)n” > E|Y (i, i)

i1,i9=1

=16(1 + 2)n>;. (2.18)

By (2.1) again, we note that

Bo=| Y3 BV BYGii) > > BY(kup) Y EY(ki k)
i1,i2=1 j1,j2=1 k1=1 poe{iz,jo} ko=1
J1#41 k111,51 ko#iz,jo
Jo#ia
= > Y BN a)EYGud) Y Y BY(kup)EY ()
i1,02=1 J};j;:l k1k72i:1}j1 p2,q2€{i2,j2}
JaFiz

< Z Z Z Z E’Yz(ibiz)‘E‘f/z(jl,jz)’E’Y(k1,P2)’E|Y(k1,92)"

11,02=1 j1,j2=1 k1=1 po,q2€{i2,j2}

From this fact and the same argument as (2.18), we have
Ry < O(1+ 2)n6s. (2.19)

In the same way as Ry, we can show that
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Ry < C(1 + 2)n*6s. (2.20)

By (2.5) and (2.17),

n

Re< (D0 3 BV ) EN:Gr o)) D (BY (ki ko))

i1,02=1 j1,j2=1 k1,ko=1
< (n2 3 E}?(z’l,iz)) S EY2(ki, k)
i1,49=1 k1,k2=1
n 2
S n2< Z EY2(i1,i2)>
i1,i2=1
14 _4
< n%63. (2.21)

From (2.16) and (2.18)—(2.21), we have
Q51 < C((l + 2)03 + n%5§>

This fact, (2.14) and (2.15) imply that

05| < c((1+z>53+n%5§ +nis +n5§+n%5§). (2.22)
Hence, by (2.9)—(2.13) and (2.22), we obtain

EYi(n) < C’((l +2)03 + n§5§ + néé?)g +nd; + n%5§>.
(iv) From (iii) and the fact that 1+ z < /n,

EYY(x) < C(Vds +ndo] +nio] +nd3 +nio)).

Using the same technique of (2.6) and (2.8), we can show that

EYi(n) < C(l +n%5§>.
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Ho and Chen ([8]) constructed the following system to give an exchangeable

pair. Let

{I,K,L,M,p,7} is independent of Y (i, j)’s,

(I, K), (L, M) uniformly distributed on {(i, k)i, k =1,...,n,i # k},
(I,K), (L, M) and 7 are mutually independent,

(I, K) and p are mutually independent, and

(o) ifa# K, 77YL), 7 Y(M),

L ifa=1,

pla) =4 M if o = K,

7(I) ifa=71"1L),

7(K) ifa=71"YM),

Y(p)=Y(p) = 51— S+ S5+ 5,
where Sy = Y.(I, p(I)), S2 = Y.(K, p(K)), S5 = Y.(I, p(K)) and Sy = Y.(K, p(I)).
Then

§1, §2, §3, S, are identically distributed (2.23)

and Y (p) and Y (p) are an exchangeable pair (see [11], [17] for more details).
In the case of VarsS, = 1, Neammanee and Rurkruthairat ([12]) showed that
~ N 9 4
E(Y(p)=Y(p) =-+R

n

463 C ~ -
where |R| < —3+—2 for some C' > 0. In Lemma 2.5, we compute E(Y (p)—Y (p))?
n on

without using the condition that VarSs, = 1.
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Lemma 2.5. Assume that (2.1) and (2.2) hold. Then

4Vars,,

n

E(Y(p) = Y(p)* = +R

5 52
where |R| < C| =%+ =+ -2 + =2 | for some C > 0.
)

Proof. We can follow the argument of Lemma 3.7 in [14] (pp.30-33) to show that

4Vars,,

n

E(Y(p) = Y(p))* = +R (2.24)

where

R| <C|

03
+n—1]'

By (2.5), we get that

2
0
Z EY ’ll,Zz _31+ ’n,—l < Z EY Zl,Z2>

2122 1 i1,i9=1

1.2 40209 oo 3 3 2
mi<o( e 2 O B) (B, 0 8L 8
n n n n ns3 n ns3 n
From this fact and (2.24), the proof is complete. ]

2.2 Proof of Theorem 2.2

Proof. From the fact that ®(z) = 1 — ®(—=2) for all z € R, it suffices to prove for
the case that z > 1 as we can apply the result to —S,, when 2z < —1.

Assume that z > 1. To prove our result, we use the Stein method which was
introduced by Stein ([16]) in 1972. It begins from the Stein’s equation for the

normal distribution function

g'(w) —wg(w) = L(w) - (2) (2.25)
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where g : R — R is a continuous and piecewise differentiable function and

1 ifw < z,
L(w) =

0 if w> z.

It is well-known that the solution g, of (2.25) is given by

2rez’ (w)[l — ®(2)] if w < z,
g9:(w) = L
2rez P(2)[1 — ¢(w)] fw >z

and

~[5
3

1
0<g.(w) < min{ , —} for all w € R ([17), pp.22-23). (2.26)

2|
Simcharoen and Neammanee ([15], pp.5519, 5526-5527) showed that

d3

where
T, = |Eq.(Y (7 / K(t dt—E/OO ’(Y(p)+t)K(t)dt(,
T, = |Eq.(V(7) / K(t)dt — Eq.(V / K(t dt‘
Ty =|Eg.(V(r H1— n- 1E(Y( )=V (p))
1. = LEdv ()} {B( 2 ( i.0)° )
and K(t) = "~ L7 (0) - V(10 < t < V() — V() ~ IV (o) — V(o) < t < 0).

By (2.26) and Lemma 2.4 (i), we get that

T, < g(n +n23)" < ¢ (i + 53>. (2.28)
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To bound T3, by following the argument of Lemma 5.1 in [4] (p.248), we can

show that

Q

Elg.(Y (r)| <

: (1 + EYQ(T)).

+

z

By this fact and Lemma 2.4 (ii), we have

Q

Blg.(V ()] < = (14 Vars, +53).

1

+

By (2.1), we observe that £S,, = 0 and

Vars, = ES2

= ZEYQZF

n n

)+ > D EY(i7(

=1 j=1
J#i

_ %ZEW(MHﬁ

ijfl

—ZEYQZj

i,7=1
2

< Cnsb}

n

z’jfl

IN

i,j=1

Y BY ()P

(2.29)

Y (j,7(j))

(2.30)

(n—l ZEYQZJ)

(2.31)

where we have used (2.5) in the last inequality. By (2.31), Lemma 2.5 and the

same teqnique as (2.6) and (2.8), we get that

—1 - . VarS,
1= BT () - V()P < €| IVars, — 1]+ =220 4+ %
53
<C|\|VarS, — 1|+ 2+(53+
<C||VarS _1,+L+\/552
n \/ﬁ 3

2
T
5 ns3

La |

51 +52>
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By this fact, (2.29), (2.31) and the same technique as (2.6) and (2.8), we have
¢ 1 VarS
Ty <——| [VarS, — 1|+ [VarS, — 1|VarS, + [VarS, — 1]6; + —= .
53 < z(’ ar |+ [Var \VarsS, + |Var |3+\/ﬁ NG

+v/nd; + /nd3VarS, + \/ﬁdgf)

VarS, — 1|+ |VarS, — 1|VarS, + |VarS, — 1|62 + — +
(| I+ | | Bt

(e%)
W wio

NI

<

“1+z

/o2 +nka; + ﬁég*)
1
(|VarSn — 1|+ |VarS, — 1|VarS, + |VarS, — 1|65 + NG + n§5§>.

<

14z
(2.32)

To bound T3, let

G:}A/Vz(laM)_‘_}A/Vz(K?L) _}A/Z(IvL) _?;(K’M)a
A={r(I) # L,7(K) # M,7(I) # M,7(K) # L}

and B be the o-algebra generated by {I, K, L, M,Y (i,j) : 1 <i,7 < n}. Neam-

manee and Rattanawong ([11], p.40) showed that

EPI(A%) < Q’ (2.33)
n
C < -
EG?I(A%) < = > EY?(i,j) and (2.34)
i,j=1
o)
E|GPI(A) < n—j (2.35)

From [15] (p.5527), we have that

Cn EY4()\°® 3
< 210 AC 31/ AC
I, < - EG*I(A )—i—Cn( - ) (ElGP1A))”.

Thus, by (2.5), (2.34), (2.35), Lemma 2.4 (iv) and the same technique as (2.6) and
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(2.8), we have

(14 2) 2”:1 2303
Co3 | Co 1
8
< i+ 3__ (1 —|—n35§’>

+ n§5§> . (2.36)

To bound T}, let AY =Y (p) — Y (7) and § = |AY|+|Y (p) — Y (p)|. From [15]
(p.5528), we have

BIV(p) - V(o) < < (2.37)

B(7(p) - V(p)) < T, (2.33)
. Cdy

E§ <= and (2.39)

pot < G20 ;; 2% (2.40)

By (2.5) and (2.23), we note that

E&* < C(E|AY P + E|Y(p) — Y(p)?)
< CEY2(I,p(I))
C & o
S ﬁ Z EYQ(%Q)
ij=1
_ 63

iy 2
ns3

(2.41)




20

Let

(

0 if t < z—29,

i) = +t4+0)(t—2+20) ifz—26<t<z+26,

45(1 +t+0) if t > z + 20.

\

From [15] (pp.5528-5530), we have

Ty <Ty+ (14 2) (M + M) + 10_532, (2.42)
where
T < Fcz ’EY(T)JC(S(Y(T))‘ + %{E<lj21}>z(iaj)> } {Efg(?<7>)}2],
My < e (EV@) (B0 -V ()F)

By (2.31) and Lemma 2.4 (ii), we have
. L2
EY?(r) < C(1+n36§ +63)

and note that |fs(t)] < 45(1+ [t|+0) forallt e R.
From these facts, (2.39)-(2.41), Lemma 2.4 (iv) and the fact that 1+ z < n11, we

have

EIY () f5(Y'(7))|
< C(E\Y(T)w + EV(r)5 + E|Y(T)|52)

< C({EY2(MP B} + BV (n)}H{ES) + {BY ()} {E6°} )

1 2 4
03 03 03 5

< C<—31+—31+—31+n§5§)
n3 ne ns3
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and

Ef;(Y(p))
<CE(6 + 0| (p)| + 62)>
§C<E52 BBV () + E(54>

5% (1+2)203 11 1 (14 2)6s
<Cl|= 3 4+ (1 21600
(ﬁ YRR T
5 6F  au b
<C _2+ 13 74(536 + 13
ns3 n 28 nia

1 2 4
C |63 53 63 1 5
7L< Y 9% 9 95 13
11_1+Z ns n%—i_n%—i_n‘gg
55 o3 5
n 1
+—<n+n25§>2<—32+ St nsee + f3>2]
n n3 n 28 nia
C 1
< Y (- 52). 2.43
1+xﬁ+ﬁ3 (2.43)

By (2.33), (2.37)~(2.40), Lemma 2.4 (iv) and the fact that 1+ 2z < n11, we get that

1

M, < (1252)2 (EY”!@))§ < (152)2(53+n§53§> (2.44)

and

<L>2(£ +n%5§i). (2.45)
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From (2.42)-(2.45), and the same technique as (2.6) and (2.8), we get that

¢ (% + n%5§>.

From (2.27), (2.28), (2.32), (2.36) and (2.46), we obtain that

|P(Sn < 2) — B(2)]

C
Sl—l——z <\Var5n — 1|+ |VarS, — 1|VarS, + |VarS, — 1|65 +
b ViR +nzag)
¢ 2
Sl e \VarS, — 1|+ |VarS, — 1|VarS, + |VarsS, — 1|05 +

(2.46)

1
—= + 5

vn

1 3
% +TL2(5§>.

]



CHAPTER I11
NON-UNIFORM BOUND FOR COMBINATORIAL
RANDOM SUMS

Let {X,,}5°, be a sequence of random matrices such that X,, = [X,,(¢,7)], i,7 =
1,2,...,n, is an n X n matrix of independent random variables. Let {m,}>%, be
a sequence of random permutations such that m, = (7,(1), m,(2),...,m(n)) is a
uniformly distributed random permutation on {1,2,...,n}. Assume that X, and
7, are independent for all n > 2. Let N be an integer random variable such that
P(N > 2) = 1 and N is independent with {X,}>%, and {m,}5°,. Define the

combinatorial random sums by

Sy = ZXN(i, TN ().

In this chapter, we study the distance between the distribution function of Sy
and the standard normal distribution function ®.

Let
SN

vV VCLTSN

In 2017, Frolov ([6]) gave a bound of A 5 under the (240)—th moment conditions

Ay, = ‘P( < z) - q)(z)’ and Ay :=supAy,.

z€R

where 0 € (0,1]. The following is his result.
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Theorem 3.1. ([6]) Assume that

P(N >2) =1,

36 € (0, 1], E|Xn(i,j)|2+5 <oo foralll<i,j<nandn?>2,

ZEXn(i,k;) =0 and ZEXn(k‘,j) =0 foralll<k<mnandn>2 (3.1
i=1

J=1

B, :=VarS, >0 for all n>2 and (3.2)
EBy < . (3.3)
Then
3V VarBy

Ay < 45112FL
N = N T EDBx

1 n n o 5

where L, s = e ZZE|X7L(Z7.]>|2+ :
nBn, ? i=1 j=1

In this chapter, we investigate a non—uniform bound of Ay . under the third

moment conditions. The followings are our main results.

Theorem 3.2. Assume that

P(N>4) =1, (3.4)

E|X,(i,)P <oo forall1<i,j<nandn>?2 (3.5)

and (3.1)-(3.3) hold. Then there exists a positive constant C' such that for fixed
z € R with P(1+ |z| < N11) =1, we have

e < | Eme + mm () + gy (E(B4) )
3
ol 0]

where v, = Ly 1.
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To show that there exists a situation such that the bound in Theorem 3.2
tends to zero, we give some examples of the random number N in Theorem 3.3

and Theorem 3.4.

Theorem 3.3. For k,n € N, let Nj,, be a random variable such that

P(Nkm:m):% where m =k, k+1,.... (3.6)

Assume that (3.1), (3.2) and (3.5) hold,
Y = O(%) as n — oo for some a > g and (3.7)
B, ~ cen® asn — oo for some ¢, 5 > 0. (3.8)

Then for fized z € R and k > 4 such that 1 + |z| < k11, we have
ANz = 0 asn — oo,
Theorem 3.4. Forn € N, let N,, be a random variable such that

1

P(N, =n)=— and P(N, =2n) =1— —. (3.9)
n n

Assume that (3.1), (3.2), (3.5), (3.7) and (3.8) hold. Then for fized z € R and

n >4 such that 1+ |z| < nﬁ, we have
An, . — 0 asn — oo.

In this chapter, we organize as the follows. In Section 3.1, we prove Theorem
3.2 by using the result of Theorem 2.2. In Section 3.2, we prove Theorem 3.3 by
using the idea from [6]. A proof of Theorem 3.4 is in Section 3.3. In the last

section, we give some examples satisfying our conditions.
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3.1 Proof of Theorem 3.2

Proof. Without loss of generality, it suffices to prove the theorem in the case of

S
z > 0 as we can apply the result to —— =% when z < 0.

vV VCLT’SN

2
If0<z<1, then 1< T By Theorem 3.1, we have
z

3vVarBy 2 3vVarBy
Ay, <45112F < 45112F — . 3.10
Nz = Y TEBy _1+z< Wt TEBy (3.10)
Next, we will prove the theorem in the case of z > 1.
3
Sh, B, Xn (1, ] E|X,(i,5)°
Note that Va'r’( > = ——and F (i.y) = X J3)| . By Theorem
VEBy EBy VEBy (EBy)>2
2.2, there exists a constant C' > 0 such that for all n > 4 such that 1+ 2z < nﬁ,
we have
Sh

P(J5m <) 2

53 1 n2p
1\ \ —i e
11 ( ’JF‘EBN 25y By U EBE T i T BBy
_ _C (1B.=EBw|  |B.—EBN|B,  |B, —EBN]Bn%JFLjLBgn%%‘%L
142 EBy (EBn)? (EBy)* vn  (EBy)® )

1 n
where 5 = — E E|X,(i,5)>. Since VarSy = EBy >0 ([6], p.5934) and
n
,5=1

E|By — EByn| < v/VarBy, we get that

— ZP(Nzn)‘P(\/g”_BN < z) —@(z)’

E|By — EBy| E(\BN - EBN\BN> . (\BN - EBNIBNVN)
EBy (EBy)? (EBy)*

T 14z

+E< . >+E(B]6VN37§V>]

VN (EBN)°
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< C \/VCLTBN—F\/VCLTBN(EB]QV>2+\/VarBN{E<B]6V")/?§,)}2
1+z2| EBy (EBy)? (EBn)*
i ! ) B(BYNiY)
VN (EBy)°
From this fact and (3.10), the proof is complete. O

3.2 Proof of Theorem 3.3

In this section, we consider the bound in Theorem 3.2 in the case of the random
number having the Poisson distribution. Throughout this section, for k,n € N, we

define a Poisson random number Ny, by

e—nnm—k

P(Nigpn =m) = =)

where m =k, k+1,....
In the following proposition, we will show that EBY, ~ (EBy, )" as n — o0
for all £ € N and r > 0. To prove this proposition, we use a technique from [6].

Proposition 3.5. Assume that (3.2) and (3.5) hold and
B, ~ cen® asn — oo for some ¢, 5 > 0. (3.11)
Then for all k > 2 and r > 0, we have 0 < EBvak,n < oo foralln € N and
EBY, . ~ (EBy,,)" asn — oco.

Proof. Let k> 2,r > 0and = |[rS] 4+ 1 where |-] denotes the integer part of the
number in the bracket. First, we will show that 0 < EFBy, < oo foralln € N.

Since

ml

m—k)(m—-k—=1)---(m—k—1+1)

— 1 asm — oo, (3.12)

there exists mqy > k + [ such that
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ml

(m—k)(m—k_l)...(m_k_l+1)<2 for m > mo. (3.13)

By (3.11), there exists m; > max{myg, k + 1} such that
B,, < 2em”  for m > my.

From this fact, (3.2) and (3.13), we have

[e.9]

0<EBy, =Y P(Ny,=m)B
=k

m

3 3

-1

m=k m=m1
mi1—1 e—nnm—k‘ e~ "nm— k l
T r.r
< — max B +2'c
m — k)! k<m<mi -1
m=k m=m1
0 —n,, m—k
_ i e "n
< e ™™l max 4 ortler E
E<m<mi— 1 (m — (m—k—1) - D!
m=m1
- —k
=e "™t max  BI 427! E —
k<m<mi—1 (m —k)!

m=mi—I

=e "™ 1 max Bl + 2" P(Ny, > my — 1)
k<m<mi—1

<o  for every n € N.

Next, we will show that EBy, ~~ c'n™ as n — oo.

Let € and § be positive real numbers such that e, € (0,1). We write

[(1=d)n] [(1468)n]—1
- P(New=m)By,+ > P(Nyn=m)B],
m=k m=|(1-6)n]+1
+ > P(Nyuw=m)Bj,
L(1+8)n]

=81+ S2 + S3.
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By (3.11), there exists ng > k + 1 such that

(1—=0)en” < By, < (1+06)en” for all n > ny. (3.14)
From this fact, we note that for n > 1n0 5
no—1 L(1—8)n]
51:ZPNM: )B,, + Y P(Niu=m)B],
m=ng
no—1 efnnmfk [(1=6)n]
< —— B +(14+)" P(Ng,, =
S 1oy S PO =
m= m=ng

< e ™™ P max BY A+ (148 ([(1—8)n])PP(Ni, < [(1—6)n))

k<m<ngp—1

< e ™™ M max BT+ (1+6) ¢ (1—0)Pn"PP(Ny, < [(1—0)n)).

k<m<ngp—1

(3.15)

Observe that Ny, = X, + k where X, is a Poisson random variable with mean n.
Then ENy, = EX,, + k =n+ k and VarNy, = VarX, = n. By Chebyshev’s

inequality, we have
P(Ng, < |(1—=0)n]) < P(Ng, < (1—=96)n)
= P(Nk,n — ENk,n S —671 — k)

S P(|Nk7n - ENk7n| Z (S?”L—f— k)

VarNy .,
~ (0n+k)?
n
=-——— forall ) 1
on k) orallneN (3.16)
Thus there exists ny; > 17? 5 such that
)
P(Ng, < |(1—-0)n]) < for n > n;. (3.17)

2(1+o)rer (L — )P

Since e "™ *"1  max B] tends to zero for large n, there exists ny > n; such
k<m<ng-—1

that
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—n, no—k—1

J
e "n max B < - forn > ns. (3.18)
k<m<ng—1 4

From (3.15), (3.17) and (3.18), we have that

on"?

J
0<s <—+ for n > ns. (3.19)

4

By (3.14), we have that for n > 1n05,

s < (140 (Lt o) — 1) P(LL 90 < Ny < (14 8)n))

< (148 Fern? (3.20)

and

59 > (1— 5)%7‘([(1 —S)n| + 1>TBP<L(1 —)n) < Nip < [(1+ 5)nJ>

> (1 (5)T+Tﬁcrn’"6P<L(1 — )| < Njw < |1+ 5)nj>

— (1= o)+ (1= P(Nyy 2 [(1+ 6)n]) = P(Nyy < (1= 6)n))).

(3.21)
In the same way as (3.16), we get that
P(Nin > [(1+9)n]) < P(Ngyn > (14+0)n—1)
= P(Nk,n — ENk,n Z on—k— 1)
S P(|Nk7n - ENk’n| Z on—k— 1)
VarNg,
< e
~ (n—Fk—1)?
n kE+1
=—— f _ 22
Gn k17 orn > —s (3.22)
kE+1
From (3.16) and (3.22), there exists n3 > max { 173)5, %} such that

P(Npn > [(1+9)n]) < g and P(Ng, < |[(1—-0)n]) < g for n > ns. (3.23)



31

Thus by (3.20), (3.21) and (3.23),

(1 —68)PHern™ < sy < (14 6)"Fc™n™  for n > ns. (3.24)
no
By (3.14), we note that for n > T3
o0 o —n,ym—k, 1
s5< (140 Y P(Npw=mm™ < (1+0)¢ Y. %
m=|(148)n) m=|(14+8)n) (m — k!

By (3.12), there exists ny € N such that

ml

1+0 f > n..
(m—k)(m—k—l)...(m_k_l+1)< + or M > Ny

Then for all n > ny,

e —n,,m—k
e "n
s3 < (14+90) ¢ g —
i1 ) (m—Fk—1)!
> —n, m—k
e "n

= (146 en! E —
_ |
e (ot (R

— 1+ 5)T+1cTan(Nk7n > (14 8)n] — z). (3.25)
Note that

>n+5—n—l—1)

2
)n) for n > 2(l+1).

P(N,w > (14 8)n] — z) < p(zv,m > (1 +

(3.26)

NSNS

< P(Nk,n > (1+

By the same argument as [6] (p.5938), there exists a positive real number ¢ such

that

P(Nk’n > (1 + g)n> < e ™ form> % (3.27)

2(0+1) %} such that

From (3.25)—(3.27), there exists ns > max {n4, I
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0<s3 < (1+8)Ternlrflttemn <
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for n > ns. (3.28)

Let n. € N be such that the conditions of (3.19), (3.24) and (3.28) hold for n > n,.

Hence for all n > n.,

o
(1 —6)PHern™ < 51 4 sy 4 83 < ( +(1+ 5)T+Tﬂ> cn'?.

o

r

By choosing 6 = min{

§ € (0,1) and

(1—e)cn™” <EBy,  =s1+s+s3<(l+ecn”

T
EBNk:,n

crn’h

So — 1| < e for all n > n.. This implies that

EBy,  ~cn™ asn — oco.
k,n

From (3.29), we have

EBy, , ~cn’ asn — oo.

Hence

(EBuy,,,)" ~cn'™ asn — oo.
From this fact and (3.29), we have

EBY, ~ (EBy,,)" asn — oo,

Proof of Theorem 3.3.

1
%, 1—(1- 5)47-+7-15+‘1, (1 + %) T 1}, we have that

for n > n..

(3.29)

(3.30)

Let z € R and k > 4 such that 1+ |z| < k1. Then P(Ng, >4)=1 and
P(1+]z] < NJ3) =1 for all n € N. By Proposition 3.5, we have (3.3) holds.
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Hence, by Theorem 3.2, Holder’s inequality and the fact that

VarBx,, \/EB}"VM — (EBy,,)? ( EB, . 1)?

B (EBNk,n)Z

we have a positive constant C' such that

EB]2VI€,7L o 1 + EB]2VI€,7L . 1 : EB]ZV]C,TL :

(EBNk,n)2 (EBNk,n)2 (EBNk,n)2
1 1
n EBY, 4 ' EBY,, 4{E,yg }i +E( 1 )
(EBn,..)? (EBn,,.)" N vV Nin
EBZ )7 !

+ By, + {m} {B(Mak.) ) (3.31)

for all n € N. From this fact and Proposition 3.5, to complete the proof it suffices

[N

C
Ay . <
Ni.ons _1—|—|Z|

to show that

n—oo

lim E(LT) =0 forallr>0 and

k.n
l
lim E(N,i e > —0 foralll>0,¢> 0 such that t > . (3.32)
n—o00 ’ n [0
We devide the proof into 2 steps.
1
Step 1 : we will show that lim E<—> =0 for all » > 0.
n—00 N;;n
Let r and € be positive real numbers such that € € (0,1).
27“;1:1
For n > max {Zk, _;}7 we note that
Er
E( 1 ) _ = P(Ny, =m) N i P(Ni,, = m)
N{ ., m" mr
’ m=k m:[%j—i—l

VAN

|
|

+

IN

(3.33)
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By Chebyshev’s inequality, we have that

P(Niw < 5) = P(Nun = ENiw < =5 — k)

< P(|Niw = ENgo| 2 5 + k)
VarNyp,
= Tk
n

=——— forallneN.
(%+k)2

r4+1

27r

1
T

From this fact and (3.33), there exists ng > max {2k, } such that

€

1
E( >§ n +§<6 for n > ny.

Ny (5 +k)?
This implies
) 1
lim E’(—) =0 forallr>0. (3.34)
n—00 Nl:,n

Step 2 : we will show that lim E(Nk nyNk ) =0forall [ >0, £ > 0 such that

n—oo

{ l
t>—. Let >0 and ¢ > 0 such that ¢t > — and let ¢ > 0.
o «

By (3.7), there exist d > 0 and ny > k + 1 such that

d
fymg—a for m > n;y.
m

By this fact and the fact that ¢ > —, we have that for m > ny,
e

LLomld 4 d

m

mat matfl ms

where s = at — [ > 0. From this fact, we have that

o

E (N;i,n%vk,n) =Y P(Ngpn=m)m'yl,

3
e

3
—

1—

P(Np, = m7m+ZPN,m: m)ml~t,

k m=ni

3
I
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ni—1 _
6 nnm k dt

< P(Npp =m
m=ni

< e‘”n”l_k_l(nl —1) . nax 1fyfn + th<
mxni—

N;in)' (3.35)

By (3.34) and the fact that e "n™ %! (n; — 1)’ L omax 7t tends to zero for large
smsxni—

n, there exists ny > ny such that

—n, n1—k—1 1\ t E
e "n (ny —1) k<;nn<ar§_17m <3 and
1
E( ) < — forn > ns.
N;., zdt =

From these facts and (3.35), we obtain that

E(N,i’nykan> < e forn > ns.
This implies

lim E(N,’c e ) ~0. (3.36)

n—o0

By (3.31), (3.32), (3.34) and (3.36), we obtain

An, .. — 0asn — oo.

3.3 Proof of Theorem 3.4

Proof. Let z € R. By (2.30), (3.2) and (3.5), we note that

1 & 1 "
0<Bpn= —>» EX.(i,j)+———= Y [EXu(i,j)]
m uzl m(m — 1) ”ZI
< S {EXAGNPY 4 S X))
m z; m(m — 1) z;

< oo forall m > 2.
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From this fact, we have

0 < EBYy = BLP(N, =n)+ Bj,P(N, = 2n)
< Bl +Bj,

< oo forallr >0andn > 2.

So (3.3) holds for n > 2. For n > max{4, (1+|z|)**}, we note that P(N,, > 4) =1
1
and P(1+ |z| < Ny*) = 1. Similar to (3.31), we have a positive constant C' such

1 1 1
Bk, 7 [ BB, [ BB,
(EBn,)? (EBp,)? (EBp,)?
EB% *f EBR " i 1
EEE U N Eaee | PR () E

et} el

for n > ng := max{4, (1+ |z])*}. To complete the proof, it suffices to show that

that

C
2 <
1+ |z|

An,,

. 1 T 8 1 3 8 o

Jim B(75=) = Jim B43, = Jim BN, ) =0 and
BBy
lim =

e m =1 fOI' all r > 0. (338)

Since E(\/;[_r) = n\l/ﬁ—l— \/12—71(1—%) < %7

1
lim B(—=) = 0. 3.39
PR, 339
By (3.7), there exist d > 0 and n; > ng such that

d
ngymgﬁ for m > n,.

From this fact, we have that
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d® d®
0< E(N,?;’yfvn) <n*y® 4 8nPys < = + 5803803 for n > n;.
This fact and the fact that 8a — 3 > 0 imply
lim E(N;’;ﬁvn) ~ 0. (3.40)
n—oo

Note that 0 < EA§, < E(N;;’ﬁvn) for all n > 2. Then, by (3.40), we get

lim B8 = 0. (3.41)

n—oo

Last, we will show that nlgg(} ﬁ =1 forall » > 0.

Let r, e and 0 be positive real numbers such that €,6 € (0,1). By (3.8), there exists

ny > ny such that

(1 —0)em” < By, < (1+8)em” for m > ny.

(1+ 5)T}’

By this fact, we note that for n > max {ng, 5

EB}, =BP(N, =n) + B}, P(N, = 2n)
B
<—"+ B,
n
1 N B\r
(o)
n

(% +(1+0)) (2 nfy

<(6+ (1 +0)) 2Py

(1+0)" (2P0

and

EB}, >Bj, P(N, = 2n)
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Then

r

EB
(1—5)’"—6<ﬁ<5+(1+5)r foranax{m,

(14(—55)7"}'

1
T €

1
By choosing § = min{%, 1-— (1 — E) , (1 + —>T — 1}, we get that

2 2
E B 1+0)"
l—e<ﬁ<l—l—e fOranaX{TLQ,(—;)}.

This implies

EBy, ~ (c2°n”)" as n — .

By this fact and the same technique as (3.30), we get that
EBy, ~ (EBy,)" asn — oo.

Hence
BBy
lim ud

n_}@(}mzl forall?”>().

From this fact and (3.37)—(3.41), we obtain that

An, . — 0asn — oo.

3.4 Examples

Let Ni, and N,, be defined as in (3.6) and (3.9), respectively. In this section, we
give some examples to show that the conditions of Theorem 3.3 and Theorem 3.4

hold. The following are our examples.

Example 3.6. Let X,,(7, ) be a random variable such that

SN . N
P(Xn(lv.]) = Z) = P(Xn(luy) = _Z) = 5
for all 4,5 = 1,2,...,n and n > 2. Note that EX,(i,7) =0, VarX,(i,j) = i* and
E|X,(i,7))) =4 for alli,j = 1,2,...,n and n > 2. Then (3.1) and (3.5) hold.
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From (2.30), we observe that

Z EX2(i,5) + (nl_ 0 > [EXa(,5)

'Lj 1 2,J=1
1 < o
= —ZV@TX i7) 1Z[EXn(z, ) (3.42)
i,7=1 2,7=1
1 n
- = 2
n “
i,7=1
n3 3 1
2 —) for n > 2. 4
3( +2n+2n2 or n > (3.43)

1
Thus (3.2) holds and B,, ~ % as n — oo. Hence (3.8) holds by choosing ¢ = 3
and 5 = 3. By (3.43), we have that

Tn =
an i,j=1
1 .
= 3 23
nBy ij=1
1 n
B7 i=1
< n'
(2
—)2
3
33
= \/% forn > 2
.. . 1
This implies that ~, = O(—) as n — 0o.
vn

So (3.7) holds. Therefore the conditions of Theorem 3.3 and Theorem 3.4 hold. [

By using the idea from [6], we obtain Example 3.7 and Example 3.8.

1
Example 3.7. Let a,b > 0 such that b < T For every 7 € N, let Y; be a random
variable such that

» o1 1
P(Y; = i) = P(Yi = =i) = o5 and P(Y; = 0) = 1 = = (3.44)

Note that EY; = 0, VarY; = EY? = i>*% and E|Y;]> = ¢**7° for all i € N.
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For every n > 2, let X,,(i,j) = Y; for i,7 = 1,2,...,n. Then (3.1) and (3.5)
hold. From (3.42), it follows that (3.2) holds. From [6] (p.5939), we have (3.8)
holds and

B,, ~ C1n** " as n — oo for some C; > 0.
By this fact, there exists ng > 2 such that
B, > 2C1n* " for n > ny. (3.45)

Note that

1 n n n
n Z E|Xn(i7j)‘3 — ZE|Y;|3 — Zisafb < pla—btl
i=1 i=1

ij=1

From this fact and (3.45), we have

3a b+1 1
3 e for n > ng
an = ( 2a7b+1)§ (201)5
-b 3
So v, = O( = b) as n — oo and T > 3 Thus (3.7) holds.
2
Hence the conditions of Theorem 3.3 and Theorem 3.4 hold. O]

1 1-0
Example 3.8. Let a,b,r > 0 such that b < 1 and r < a+ 5 For every n > 2

such that n = 2k or n = 2k + 1, define an n x n matrix [¢;;] by
Cii = Cit14i+1 — 1" and Cii+1 = Cit1,0 = —i" for i = ]., 3, <oy 2k —1

and the other entries equal zero.
Let X,,(7,j) = Y; + ¢;; where Y; is defined as in (3.44) for all 4,5 = 1,2,...,n
and n > 2. Note that

E|X (i, )P = E|Y; + " < AEY + [ey|’) = 47" + deyy | (3.46)
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and, from (3.42),

n n

Bn:%i\/aﬂ@—l—nil Zcfj:izn;VarY;JrﬁZc?j- (3.47)

1,j=1 1,j=1 i,j=1

Then (3.2) and (3.5) hold. From [6] (p.5939), we have that (3.1) holds,

Z VarY; ~ Cin* " asn — oo, (3.48)
i=1
1 n
— Z ¢i; ~ Cyn® as n — oo and (3.49)
ij=1
1 - 3 3r
- Z lcij|° ~ Csn™ as n — 0o (3.50)
ij=1

for some Cy,Cy, C3 > 0. By (3.47)—(3.49) and the fact that 2r < 2a —b+1, we get
B, ~ Cin?* " 4 Con? ~ Cyun2* bt asn — oo for some Cy > 0. (3.51)

Then (3.8) holds. From (3.50) and (3.51), there exist n; € N and Cs, Cg > 0 such
that

1 n
— > eiP < Csn® and (3.52)
n i,7=1

B, > Cgn**~"*t forn > n,. (3.53)

From (3.46), (3.52) and the fact that 3r < 3a — b+ 1, there exists ny > n; and
C'7 > 0 such that

SN BN S 4D S e
=1

i,j=1 hj=1
< 4n3a—b+1 +4C5TL3T

3a—b+1

< Cin for n > ns.



By this fact and (3.53), we have that

R -
Yn = 3 ZE|Xn<ZaJ)|3

nBj ij=1
C7,n3a—b+1
(C’Gnh_bﬂ)%
Cr
= — for n > ns.

2 1-b
Cénz

1-0
So Y, = O(ﬁ) as n — oo and — > g Thus (3.7) holds.

n 2

Hence the conditions of Theorem 3.3 and Theorem 3.4 hold.
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