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CHAPTER I

INTRODUCTION

1.1 Introduction

An important theorem in elementary number theory is the following.

Theorem 1.1. For an odd prime p, (Zy)* is cyclic for all natural numbers e,
while (Z9)* = {1}, (Z4)* = (=1) and (Zae)* = (—1) x (5) for all natural numbers

e> 3.

Together with the Chinese remainder theorem, we can get the structure of

(Zy,)*, i.e., (Z/nZ)*, for any natural number n.

Theorem 1.2. Let n be a natural number which can be factored into pi*ps? . ..pSm

for some prime numbers p1,pa, ..., pm and natural numbers ey, es, ..., e,. Then

We are interested in the expanding of this result to some number fields. Using
a language in algebraic number theory, we have that Z is the ring of integers of
the field of rational numbers Q which is a number field of degree 1. This leads us
to study an analogue of the above theorem for number fields of other degrees. For
a number field K, let Ok be the ring of integers of K and A be a non-zero ideal of
O, we will study the structure of (Ox/A)*. In 1910, A. Ranum [5] studied this

problem in all number fields of degree 2. Later, J.T. Cross [2] in 1983 and A.A.



Allan [1] in 2005, apparently unawared of Ranum’s work, studied this problem in
the field of Gaussian numbers, which is a number fields of degree 2.
In this thesis we consider this problem when K is a number field of degree 3

such that the discriminant of K, disc(K), is square-free.

1.2 Preliminaries

In this section, we give notations, definitions and theorems used throughout the

thesis. Details and proofs can be found in [3] and [6].

1.2.1 The Ring of Integers

Definition. A number field is a finite extension of Q (in C).
Example 1.2.1. 1. A quadratic field is a number field of degree 2 over Q.
2. A cubic field is a number field of degree 3 over Q.

Definition. o € Cis an algebraic integer if it is a root of some monic polynomial

with coeflicients in Z.

In algebraic number theory, an algebraic integer usually comes up much more
often than an integer in Z. So it is convenient to use the word integer for an

algebraic integer and use the word rational integer for a regular integer in Z.
Remark. a € Q is an integer if and only if a € Z.

Definition. The ring of all integers in a number field K is called the ring of

integers in K and denoted by Ok-.

From now one, let K a number field of degree n over Q.



Definition. An embedding of K over QQ in C is a one to one homomorphism

o : K — C fixing Q pointwise.
Then there exist n embeddings of K over Q in C, say o1 = idg,09,...,0,.

Definition. For a € K, the norm of « is defined to be
Ni(a) == o1(@)oay(a) . ..on(@).

Definition. Let aq, as,...,a, € K. The discriminant of oy, s, ..., a, in K is
defined to be

discg (1, g, ... ) = det[ai(aj)]z.
For a € K, the discriminant of « is defined to be
n71>

discg (o) = discg (1, a, 0, ...,

Theorem 1.3. Let K be a number field of degree n over Q. Then Ok is a free
abelian group (or Z-module) of rank n, i.e., it is isomorphic to the direct sum of n

subgroups each of which is isomorphic to Z.
Definition. A Z-basis {a1,...,a,} of Ok is called an integral basis of K.
Note. An integral basis of K is also a basis of K over Q.

Proposition 1.4. Let {ay,...,a,} and {51, ..., 0.} be any integral bases of K.

Then disck (a, ..., o) = disck (51, - - -, Bn)-

Definition. The discriminant of the field K is discx (aq, ..., a,), where {aq, ..., o, }

is an integral basis of K over Q. We denote it by disc(K') or dk.

Definition. Let f(x) € Q[z] be a monic irreducible polynomial of degree n having

a € C as a root. The discriminant of f, denoted by disc(f), is defined by

disc(f) := discga)(a).



Theorem 1.5. Let K = Q(«) for some a € Ok be of degree n. If disci () is

square-free, then 6 = disck(a) and Og = Z[a].

1.2.2 Factorization in the Ring of Integers

Even Z which is the ring of integers of QQ is a unique factorization domain, this is not
true in general for the ring of integers of number fields. For example Z[/—5] which
is the ring of integers of the number field Q(1/—5) is not a unique factorization

domain. But for ideals in Ok we have:

Theorem 1.6. Every non-zero proper ideal in Og can be written uniquely as a

product of prime ideals.
Theorem 1.7. If A is a non-zero ideal of Ok, then Ok /A is finite.

Definition. The norm of a non-zero ideal A in O, denoted by N(A), is defined

to be |Ok/A|.

Theorem 1.8. 1. For any a # 0 in O, N({a)) = |[Nk(a)].
2. For any non-zero ideal A and B in Ok, N(AB) = N(A)N(B).
3. For a non-zero ideal A in Ok, N(A) € A.

Remark. If P is a non-zero ideal such that N(P) = p a prime number, then P is

a prime ideal in Of.

Let K be a number field and p be a prime number in Z. Then pOg is a non-zero
ideal in Og. We will consider the prime factorization of pOg in Og. From now

on, the term prime ideal means non-zero prime ideal.

Theorem 1.9. Let p be a prime number and P be a prime ideal in Ok. Then the

following are equivalent.
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2. P D pOg.

3. P> pZ.

E

. PNZ=ypZ.
5. PNQ = pZ.

Definition. For pZ and P satisfying any of the above theorem, we say that P lies

over (above) pZ, or pZ lies under P.

Theorem 1.10. 1. Every prime P in Ok lies over a unique prime pZ of 7.
2. Fvery prime pZ in Z lies under at least one prime P in Ok.
The following theorem gives us all prime ideals of Ok.

Theorem 1.11. Let K be a number field of degree n over Q such that Ox = Z[a]
for some o € Ok with the minimal polynomial f(x) € Z[z]. Let p be a prime
number and f(z) be the polynomial obtained from f by reducing all coefficients of
f modulo p.

Suppose that f(z) = fi (z)--- f;g(x) is the factorization of f(x) in Z,[x]. Then

POK = (p) = Py Py

is the prime factorization such that P; = (p, f;(a)) where fi(z) is a monic poly-
nomial in Z[x] whose reduction modulo p is f,(z) and deg fi(x) = deg f.(x) and

N(P) = plest.

Using the previous theorem, we can find all prime ideals of Ok by factorizing

(p) for all prime numbers p.



CHAPTER 11

SOME LEMMAS

Throughout the thesis, we sometimes have to deal with a long summation of ele-
ments in Ok which we just want to say that the summation is in Of. For example

consider
(1+2p+3p®)(2+ 5pa) = 2 + p(4 + Sa + 6p + 10pa + 15p*a).

Sometime we don’t care what exactly is the multiple of p, we just want to know
that it is p multiplies some element of Of. That is why we will use a square, [J,

as a placeholder for a non-specific element of Ok. That is we may write
(1+2p+3p°)(2 + 5pa) = 2 + pl.

Note that [ is a placeholder and is not a variable. That is, each [ may not be

equal. We may write 200 + 400 = 2.

Notation. For subgroups H and K of an abelian group G, if the product HK is
an (internal) direct product, i.e., H N K = {1}, then we will write H ® K for the

product HK.

Note. As ® is associative, we can write a direct product of more than 2 subgroups
consecutively without parentheses. For example, for subgroups H, K and L of an

abelian group G, we can write

HO®KOL.



Theorem 2.1. Let G be an abelian group and H be a subgroup of G. Let g € G

be an element of order p. If g ¢ H then H ® (g).

Proof. Assume ¢ H. Suppose the product H{g) is not direct. Then h = g* for
some h € H~ {1} and 1 < k < p. Tt can be seen that k is relatively prime to p,
so there is | € N such that kl =1 (mod p). Since g is of order p, g = g* = h' € H

which is a contradiction. O]

Theorem 2.2. Let G be a finite abelian group, H be a subgroup of G and g be an
element of G such that the order of g is p® for some prime number p and natural

number e > 2. If H® (g”), then H ® (g).

Proof. Suppose that H ® (gP) and the product H{g) is not direct. Then g* = h for
some k € Nand h € H~{1}. So h? = g** € (gP) which also implies h? € H N (g").
Since H ® (gP), g** = h? = 1. Since the order of ¢ is a p¢, p~! | k. As e > 2, then
p | k. Together with the fact that g* = h, we get that h € (¢gP) and H N (gP) # {1}.

Thus H(gP) is not direct, which is a contradiction. O

Next theorem is a generalization of Euler’s ¢ function to a number field. We
will concern only the case where the ideal is a power of a prime ideal. We can use

the Chinese remainder theorem to get a general formula.

Definition. A local ring is a commutative ring which has a unique maximal

ideal.

Theorem 2.3. Let R be a local ring with the mazimal ideal P. Then
R* =R~ P.

Theorem 2.4. For any number field K, prime ideal P of Ok and natural number

e, Ok/P¢ is a local ring with the mazimal ideal P/P°.



Theorem 2.5. Let P be a prime ideal of O and e € N. Then
(O /P?)*| = (N(P) = 1)N(P)".
Proof. By Theorem 2.3 and Theorem 2.4, it follows that

(Ox/P*)* = Ok /P° ~ P/P".

By the third isomorphism theorem for rings, O;/é)}:e = Ok/ P, so by Theorem 1.8(i)

|P/P¢| = N(P)*~'. Thus
((Ok/P)*| = |Ok/P?| = |P/P*| = N(P)* = N(P)*"! = (N(P) — 1)N(P)~".
N

Definition. Let p be a prime number and n € N. Denote the highest power m of

p such that p™ | n by v,(n).

To find the structure of (O /P¢)*, we need to find the order of some elements

of (O /P¢)* by the application of the following lemmas and theorems.
Lemma 2.6. Let p be a prime and m € N. If either

1. p>3andm > 2, or

2. p=2and m > 3,
then m — vy(m) > 2.

Proof. We first consider the case where p > 3 and m = 2. Since p > 3, 1,(2) =0,

SO



Next for the case of any prime p, suppose for a contradiction that there exists

m > 3 such that m — v,(m) < 2. Let [ be the least of such m. So
I —1(l) < 2. (1)

If p11, then [ — v,(I) =1 — 0 > 2, which contradicts (1). So p | [.
Let [ = pl’. Since I’ < [, by the minimality of [, either I’ = 1, I’ = 2 or

U'—yy(l') >2. If " =1, then [ = p. So
l=—y(l)=p—1p) =p-12>2,
which contradicts (1). If I’ = 2, then
l—v,(l)=2p—1,(2p) >2p—2>2
which also contradicts (1). Thus
V= uyll) =2, 2)

Substitute | = pl’ in (1), we get 2 > pl' — v, (pl') = pl' — v, (I') — 1, so
3>pl' —v,(I)=(p—-1I'+ "= v,(I')) > (p — 1)I' + 2, which implies that

1> (p— 1)I'. This is impossible since both p — 1 and [’ are natural numbers. [

Lemma 2.7. Let p be a prime number and a,m natural numbers such that 0 <

m < p®. Then

(1)) ==yt

m

Proof. For any i € N such that 0 < ¢ < p®, we see that v,(i) = v,(p* —1i). Consider

Pty _ Pt 1) (p"—m+1)
m) 1(2)---(m—1)m

Since v,(i) = v,(p* — 1) for any 0 < i < p%, v,(p* — 1) = v,(1),v(p* — 2) =

Vp(2),...,p(p* —m+1) = vp(m — 1). Thus I/p(( a)) = I/p(%l) =a—1vy(m). O

p
m



Theorem 2.8. Leta € N and r,s € Z. If p > 3 is a prime number, then
(r + psa)?" = r?" 4 p TP g 4 pt 0.
If r and s are odd numbers, then
(r +2sa)* =r*" 429 o 4+ 20T a? 4 207200,
Proof. Let p > 3 be a prime number. Then

(4 psa)” = 3 ( ) P ()™

m=0

10

By the previous lemma, yp((fs )) = a — vy(m) for m > 2, it follows by Lemma 2.6,

p(@z)pm) =a—vp(m)+m>a+2.

for m > 2. That is every terms from the third term onward (m > 2) can be

combined into p®*t20. The first and second terms are clearly 77 and p**1r?"~lsa,

respectively.

Again using the previous theorem, from the fourth term onward (m > 3) of the

expansion of (r + 2sa)?" can be combine to 2472(J, that is,

(r +2sa)?" = r*" 42072 "lgq 4 2071 (20 — 1)r?" 2572 4 20T,

29—-1

Since r and s are odd, so does * ~'s. So we can write

202 " lgq = 2071 (1 4 20)a = 2T o + 207200
Similarly
2a+1<2a . 1)7,2 7252 2 2a+1(1 + QD)OCQ — 2a+1a2 + 2a+2|:|.

That is

(r+2sa)” =" + (2" +2°7°0) + (2*7a® + 2°720) 4 207200,

=¥ 420 4 202 4 20720
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Many literatures give only a formula for finding the discriminant of an irre-
ducible polynomial of the form z® + az + b € Q|z].
Theorem 2.9. Let 23 + ax + b € Q[z] be an irreducible polynomial. Then
disc(z® + ax + b) = —4a® — 27V°.

We can use the following theorem to obtain a formula for finding discriminant

of general monic irreducible cubic polynomials.
Theorem 2.10. Let f(x) € Q[z]. Then for all a € Q,
disc(f(z + a)) = disc(f(x)).
Theorem 2.11. [f 232* + bx + ¢ € Qx] is an irreducible polynomial, then
disc(x® + az® 4 bx + ¢) = a®b* — 4b> — 4a®c — 27¢* + 18abe.
Proof. To make the coefficient of 2 vanishes, we substitute z — ¢ to x. Then

3

(95—5)3 +a(r — g)Q + b(z — g) t+c

= (2% - 33:2(%) + 3x((§) — a237) + a(x? — 2x(%) + 6;2) + b(x — g) +c
:x3+(—a+a)az2+(32—23a2+b)x—|—(—;i+ 6;3 — C;b+c)
:x?’—ir(—;—l—b)a:—i—(zci—? c)
Thus
disc(2® + az® + bx + ¢) = disc((x — %)3 +a(x — %)2 + b(x — g) +¢)
= —4(—‘22 +b)? — 27(22@73 — C;b + ¢)?
= —4(—3? + C?b —a*b® +b%)
B 27(471;1; N c129b2 e 4;;113 N 4;;0 B 2c;bc)

= a®b® — 4% — 4a3c — 272 + 18abe.
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Sometimes we can use the structure of (Z,,)* for some natural number m to

find the structure of (O /A)* for some ideal A.

Theorem 2.12. Let A be an non-zero ideal of Ok . If n is the least natural number

in A, then there is the natural embedding
(Zn)" = (O /A)*.
Proof. Consider the natural homomorphism
Z — Ok/A
a — |a.

The kernel of this homomorphism is Z N A which is an ideal of Z. Since A is a

non-zero ideal, 0 < N(A) € A and N(A) € Z, then ZN A is not a zero ideal. Thus
ZNA=nZ
for some n € N. Then by the first isomorphism theorem,
Ly =707 — Ok /A.
Consequently,
(Z,) = (Z/nZ)* — (Ox/A)™
as desired. Moreover since Z N A = nZ, n is actually the least natural number in

A. ]

We will concern when the ideal A in the above theorem is P¢ or (p¢) where P
is a prime ideal lying over pZ and e € N. Consider the least natural number n in
P¢. Since p € P, p° € P¢, so ged(n,p®) € P€. Since n is the least natural number
in P, n = ged(n,p®). Since P is a proper ideal, n # 1, thus n = p™ for some
m > 1. Hence

(Zpm)™ = (O /P)".
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For (p®), we proceed similarly. Since p¢ € (p¢), then ged(n,p®) € (p). Since n is
the least natural number in (p®), n = ged(n, p®), thus n = p™ for some m > 1.

Also since p™ € (p°), (p°) | (p™), thus e < m. This forces m = e. Hence

(Zpe)™ = (Ox /(p))"



CHAPTER II1

MAIN THEOREMS

Throughout this chapter, let K be a cubic field such that O = Z[a] for some
a € Ok and disc(K) = disck(«) is square-free. This a will be a root of some
monic irreducible polynomial of degree 3, say f(x), in Z[z]. Thus in essence, we
study the structure of (Z[a]/A)* for all non-zero ideals A of Z[a]. Applying the
Chinese remainder theorem, we only need to consider the structure of (Z[a]/P¢)*

for all prime ideals P of Z[a] and natural numbers e.

3.1 Categories of prime factorizations

We will apply Theorem 1.11 to consider possible factorizations of a monic cubic

polynomial f(x) (mod p). There are 5 possibilities:

1. f(z) = (z + a)(x + b)(z + ¢) (mod p) for some a,b,c € Z that are non-

congruent modulo p.

2. f(z) = (> + a1z + ap)(x +b) (mod p) for some irreducible polynomial z? +

a1 + ag € Z[x] and b € Z.

(r + a)?(x + b) (mod p) for some a,b € Z that are non-congruent

3. f(x)

modulo p.

4. f(z) = (z +a)® (mod p) for some a € Z.

5. f(x) (mod p) is irreducible.
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By using Theorem 1.11, each factorization of f(x) corresponds respectively to

the following 5 categories:

1. <p> = 515253

2. (p)=0Q5S
3. {p) = R*S
4. (p) =R’

5. (p) stays prime

where prime ideals in the factorization in each categories are distinct. Ideals de-

noted by S with or without a suffix are of norm p, N(R) = p and N(Q) = p*.

3.2 S in the first, second and third categories

This is the easiest case of ideals. Since Si, Sy or S3 does not make any different
from S, we will also call them S. We will show that Ok /S = Z,.. We know that
|Ok/S¢|N(S¢) = p® so it suffices to show that [0],[1],...,[p® — 1] are distinct in
Ok /S¢. Suppose not, then [a] = [b] for some 0 < a < b < p®ie. b—a € S° We
know that p¢ € S¢ so the g.c.d of p® and b— a which is p' for some 0 < I < e is also
in S¢ and so (p') C S°. By the property of ideals in O, S¢ divides (p'). From the
categorization above, the largest power of S dividing (p) is 1, so the largest power
of S dividing (p') is I. Since [ < e so S¢ 1 {p') which is a contradiction. So we have

the following theorem.

Theorem 3.1. (Ok/S¢)* = (Zye)™.



16
3.3 (@ in the second category: (p) = Q5S.

Case: p =2

In order for (2) to fall in the second category, by mean of Theorem 1.11, under
modulo 2, f(z) has to be factored into a product of two irreducible polynomials, a
linear and an irreducible quadratic polynomial modulo 2. Since there is only one

irreducible polynomial modulo 2, so
f(z) = (v +ap)(z® +x+1) (mod 2)

for some ag € Z. We can simplify the proof by shifting the value of a. Since
Z[a) = Z[a + n] and disc(a) = disc(a + n) for any n € Z, we can choose a new «

such that « is a root of a monic irreducible polynomial f(z) such that
f@)=2((x —ap)’* + (v —ap) + 1) =z(2* + 2 +1) (mod 2)

without changing the structure of (Ox/Q%)*. So f(z) = 23 + cox® + c17 + 2¢, for
some natural number ¢y and odd numbers ¢; and ¢,. Now from f(z) = x(2*>+x+1)

mo ,t € principilie 1aea can be tactorized to prime ideals as follows:
(mod 2), the principle ideal (2) can be factorized to prime ideals as foll
(2) = (2,a)(2,0* + a +1).

That is Q = (2,a* + a + 1). Thus 2¢ and (o + a + 1)¢ are in Q°. Using the fact
that o® + coa? 4+ i+ 2¢g = 0, we will show that (o +a+1)¢ = ra®+ sa +t such
that 2 t 7, s,t by induction. For e = 1 it is obvious. Now let ¢ > 1 and assume

that (a® + a + 1) = r.a® + s.a + t, such that 24 r., s, t.. So

(@®+a+1)T = (roa®+s.att,) (@ +at1) = rea* +H(ret5.) 0P+ (retsette ) o+ (5ot Jatte.

2

Using the fact that o® = —cya® — cja — 2¢, we have

(@® 4+ a+ 1) = (1o 4 5o+t — TeCl — TeCo — 5cCy + TeC)

F(Se + te — 2reCo — TeC1 — SeC1 + TeC1C2) 0+ (te — 27eCo — 280 + 2TeCoC2).
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Except ¢y, we know that every constant is odd, so coefficients of a?, a and o’
in the above expression are all odd. So we get the claim that there exists odd
numbers r, s, t such that ra? + sa +t € Q°. Also 2° € Q° so multiply the previous
polynomial by an inverse of » modulo 2¢, we have that o? —d,a — dy € Q¢ for some
odd numbers dy and d;. This means that in Q°¢, [a?] = [dia + do]. Together with
the fact that |Ox/Q°| = 2%¢, we have that elements in O /Q° can be represented

uniquely as follows:
Ok/Q°={lr+sa] | 0<rs<2%.
Now we consider a generating set of (Ok/Q¢)*. By Theorem 2.5, the order of
(O /Q°%)* is 3(22¢72) and thus has an element of order 3, denoted by [h]. Now we
consider the part of elements of order power of 2. For e > 3, by Theorem 2.8
[(1+20)* ] = [1+2°0) = [1],
while
[(1420)* ] =[14 2 a+ 20?4+ 2°00]
=[1+2°ta + 27 (dy + doa) + 2°0]]
=[1+2a+ 211 + a) + 200
=[1+2°" 4+ 2]
=[1+2°71]
# [1].
Thus the order of [1 + 2a] is 2¢7! for all e > 3. For e = 1,2, we can see that the
order of [1 + 2a] is also 2¢7!. And
(1+4aV62:]-+262@&)+(?za>ﬁaf%—f[

=1+ 2°0,
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while

(144a)* " =1+ 2°%4a) + 2°00
=1+21a+ 20

Thus the order of [1 + 4a] is 272 for e > 3 and the order is 1 for e = 1,2. When

e=1, (Og/Q)* is just a cyclic group of order 3.
(Ok/Q)* = ([h]) = Zs = (Z2)™ x Zs.

When e = 2, consider the product of two subgroups generated by elements of order
2:
([1+2a]){[-1]).

Since [1 + 2a] & ([—1]), so by Theorem 2.1, the product is direct. Since the order

of (Ox/Q?)* is 3(2%), then together with [h], an element of order 3, we get that
(O /Q*) = ([1+2a]) O ([=1]) O ([h]) = Zy x Ly X L = (Ln2)* X L X L.

Now for e > 3, consider the product of three subgroups generated by elements of

order 2:

([L+27 ([0 + 2 al)([-1]).

Since e > 3, [1 + 2°7!] # [~1] and so {[1 + 2°7']) ® ([~1]). The previous direct
product contains only cosets representable by natural numbers so [1 + 2°71a] ¢

([1+2°7') ® ([-1]). By Theorem 2.1, we have
(T+27 Do (1 +27a) o ([-1]).
By computations above, the product can be written as

(I(L+40)" ) @ ([(1+2a)* 7)) @ ([-1)).
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By Theorem 2.2,

(14 4a]) © ([1 +2a]) © ([-1]).

It is a direct product of order (2¢72)(2°71)(2) = 2272, Since the order of (O /Q°)*

is 3(22¢72), thus together with an element [h] of order 3, We have
(Ok/Q)" = ([1 +4a]) © ([1 + 2a]) © ([=1]) © ([A])
= Zlige—2 X Lige—1 X Lig X Lig

= (de)x X de—l X Zg.
To summarize,

Theorem 3.2. Let () be a prime ideal lying over 2 of norm 4. Then
(Ok/Q°)" = (Zge)™ X Lge—1 X Lg.

Case: p> 3
We find that it is easier to consider instead (Ox/S°Q°)* = (Okx/(p?))* and
use the isomorphism (Og/S°Q°)* = (Ok/S)* x (Og/Q°)* to get the structure

of (Ok/Q°)*. Elements of Ok /(p®) can be represented uniquely by
Ok /(%) = {[r +sa+ta®] |0 <r st <pl.

Since (Ok/Q)* is the unit group of the field Ok /Q, it is a cyclic group of order
p*—1. (Ok/Q)* can be embedded into (O /(p))*, thus (Ox/(p))* has an element
[h] of order p* — 1. So

WPl =1 4 p00.

Then

hpe(pQ,l) -1 —|—pe|:|.

Let m be the order of [h7°] in (O /(p®))*. Then m | p*> — 1 and h*"™ =1+ p°0J =

1 + p, so the order of [h] in (Ok/Q)* divides p°m, i.e., p>* — 1 | p*m. Since
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ged(p> — 1,p°) = 1, p> =1 | m, so m = p? — 1, i.e., [h¥"] is of order p*> — 1 in
(Ok/(p?))*. When e =1, (Ok/Q)* is the group of units of the field O /Q thus
is cyclic of order p? — 1, so

(Ok/Q)* = Zya,.

Now for e > 2, we have

(1+paf =1+p0

while
(14 pa)’ " =1+ p " a+p0.
Similarly
(14 pa®p" =1+ p0
while

(1+pa®y " =1+4p'a? 4+ p°L0.

Let [g] be a generator of (Z,)* embedded naturally in (O /(p®))* thus [gP7'] is

of order p¢~!. Consider the product

([g® P I (1 + p=ta])([1 + p~ta)).

As always we will use Theorem 2.1 to show that the above product is direct.
The first subgroup only contains cosets representable by natural numbers, thus
[1+pta]l & ([gP VP °]), so the product of the first two subgroups is direct.
Since (1 + p*ta)l =1+ Ip*~! + p°0 so the product of the first two subgroup only
contains cosets representable by an element in the form r+sa. Hence [1+p°~'a?] ¢

([g" (1 + p*a] and we have

(g " o (L+pa)) o (1 +p"a?).
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By Theorem 2.2,

{lg""'D) @ {[1 +pal) © ([1 + pa’])
of order p*~p¢~1p*~! = p3¢=3. Since the order of (Ok/(p¢))* is (p—1)(p*—1)p** 3.
Together with the fact that the element [¢7" '] is of order p — 1 and [h*"] is of order

p? — 1, we have that
O/ = [g" N @ ([¢") @ ([1+ pa]) © ({1 + pa’]) @ ([W¥"])
= L1 X Lipe—1 X Lipe—1 X Lape—1 X Lip2_1.
Now (Ojc/(p))* 2 (O /S x (O /Q)V* = Tys oy x (O / Q). Hence
(Ok/Q°) = Lpe—r X Lye—1 X Li2_;.
To summarize,
Theorem 3.3. Let Q be a prime ideal lying over p > 3 of norm p?. Then

(OK/Qe)X = Zpe—1 X Zpe—l X Zp2_1.

3.4 R in the third category: (p) = R%S

We will see that under our assumption that the discriminant of K is square-free
prevents the case p = 2. To fall in this category, the minimal polynomial f(z) of
a will be congruent to (z + ag)(z + a1)?* (mod p) for some ag,a; € N such that
ap Z a; (mod p). We can shift the value of a to make f(z) = (x + bg)z? (mod p)

for some by € N such that p 1 by and so

(p) = (p, a + bo) {p, ).

Since f(z) = 23+bpx? (mod p), f(x) = ¥3+ayx*+paz+pag for some ag, ay, as € Z

such that p{as and ay = by (mod p). By Theorem 2.11

disc(f) = —4a’p® + (—27&3 + 18ayazap + a%ag) p* — dagasp
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which is not square-free if p | ag or p = 2. Thus in this section p # 2 and p 1 aq.

Next we consider a representation set of O /R¢. First we need this lemma:

Lemma 3.4. For all e > 1, there exist ¢y, c1 € Z such that o® + pcia + pey € R®

and p 1 ¢.

Proof. We prove by induction. First R = (p,a) so a*> € R. Let e > 1 and
assume there exists co, ¢; such that a? + peja + pey € R® and pt ¢p. Since « € R,

a(a? + pera + pey) € R Using o® = —aya® — paja — pag, we have
a(a2 + pcra+ pey) = (pey — ag)oz2 + (pco — pay)a — pay.

Since p { as, p 1 pci — as, thus pe; — ap have an inverse modulo p¢™! € R¢TL

Multiply by the inverse, we have
(per — ag) ™ ((pq —ag)a? + (pcy — pay)a — pao) € Rt

So

o + (pe1 — ag) " H(peo — pay)a — (pe1 — ag) 'pag € R

We see that p | (pe; — as) *(pcy — pay) and p | (pcy — as) 'pag. Moreover, p ¢

ao(per — az) ™1, so we get the lemma. O

Now we can choose representations of cosets in (O /R¢)*. Since a®*+cia+cy €
Re for some ¢y, c; € Z, a representation of any coset in (O /R¢)* can be chosen
in a form r 4+ sa. We divide into two cases: an exponent of R is even or odd.

When an exponent of R is even, say it is 2e for some e > 1. Since (p°) =
R?*S¢ C R*, p®, pa € R*. Also |O/R*| = N(R?*) = p*, thus O /R?* can be

represented uniquely as

Ox/R* ={[r+sa] |0<r,s<p}
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Similarly for an odd exponent, say it is 2¢ + 1 for some e > 0. Since R**! D
R2e+lse — <pe><p7 &> — <pe+17pea>’ pe+1’pea c RQe—‘rl. Also ‘OK/R2€+1| — N(R2e+1>

p**1 thus O /R?**™! can be represented uniquely as
Or/R** ={[r +sa] |0 <r <p™, 0<s<p}.

Now we consider a generating set. First, some basic cases. (Og/R)* is the

unit group of the field Ok /R, so is a cyclic group of order p — 1, i.e.,
(Ok/R)" = Zp-.

Since Og/R* = {[r +sa] | 0 < r,s < p} has a subgroup isomorphic to Z,,
(Ok/R*)* has a subgroup isomorphic to Z,_;. By Theorem 2.5, [(Ox/R?)*| =

(p = p, so
(OK/Rz)X = Lp—y X Ly.

Similarly Ok /R?® = {[r + sa] | 0 < r < p?,0 < s < p}, which has a subgroup iso-
morphic to Z,2. Thus (Ok/R*)* has a subgroup isomorphic to Z,_1). By Lemma
3.4, [07] = [~para — pac], 50 [07] = [p0]. Thus for p > 3, [o?] = [a%(a)a?¥] =

[pal]]. Thus for any [r + sa] € (Ok/R3)*,
[r + salP = [rP + prPtsa + - + pr(sa)’ ' + af] = [r? + pal] = [r7].

And the order of [r?] in Ok /R? is at most p — 1. So the order of any element of

(O /R3)* is at most p(p — 1), thus
(O /RN 27, 1 X Ly X Ty,
Next we consider (O /R*)* and (O /R**)* for e > 2. For p > 5,

(14 )] = [1+pa+plp—1)a® + - +pa”~ " +a?].
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From Lemma 3.4, we know that [a?] = [paja + pag] = [p0] and for any k > 2,
[pat] = [p*a*~20] = [p°00].
Since p > 5, [a?] = [a?][a?][a?~*] = [pO][p0][0] = [p*0]. Thus from the third

term of the expansion of [(1 + «)?] onward can be combined into p(J, that is,
[(1+ )] = [1 +po+p*0].

We will see later that if p = 3, [1 + a]®> may not always be [1 + 3 + 320J]. From
Lemma 3.4, a? + 3ma + 3n € Q¢ for some m,n € Z, that is, [a?] = [-3ma — 3n].
So [@?] = [-3ma? — 3na] = [-3m(—3ma — 3n) — 3na] = [(9m? — 3n)a + Imn] =

[—3na +90]. Thus

[(r + sa)®] = [r® + 3r2sa 4 3rs’a® + s°a’]
= [r® + 3r%sa + 3rs*(—3ma — 3n) + (—3ns’a + 90)]
= [r® 4+ 3r?sa + 90 + (—3ns*a + 90)]
= [r® 4+ 3(r*s — ns*)a + 90 + 90J]

= [r* +3(r’s — ns*)a + 90J].

Since we get m,n from Lemma 3.4, 34 n, son = 1 or 2 (mod 3). We will
consider first the case n = 2 (mod 3), we choose r = 1 and s = 2 so that the above
coset will be [(r+sa)?] = [1+3(2—2(8))a+90] = [1+ 3a+90]. We will consider
the case p = 3 when n > 1 (mod 3) together with the case p > 5 because both of

the cases has r, s € Z such that [r + sa]? = [1 + pa + p*0]. For e > 2,

(1+pa+p?0) " =1+ pta+pt'O,
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while
(1+pa+p" 0P = (1+pla+p0)"
=1+ p“ a+pd) +pO
=1 _i_pefl —|—pe|:|
Since p®, p°a € R?¢, pet! pfa € R?H,
Or/R* ={[r+sa]|0<r<p®and 0 <s < p°},
and
Or/R*™ ={[r+sa] |0<r <p™ and 0 < s < p°},

then in both (O /R?*)* and (O /R*™)*, the order of [1 + pa + p?0J] is p°~ L.
Since for p > 5, [1 4+ a]? = [1 + pa + p?0] and for p = 3, [1 + 2a)® = [1 + 3a + 90,
then for p > 5, the order of [1 4 «] is p® and for p = 3, the order of [1 4 2a] is p°.
Now let [g], be a generator of (Z,)* naturally embedded in (O /R**)*, so the

order of [g] in (O /R*)* is (p — 1)p¢~*. Consider the product

(g7 (L + " a)).

Since ([g®»DP"’]) only contains cosets representable by natural numbers, [1 +

pta] & ([g@ D7) so by Theorem 2.1,
(g ") o (1 +p ).

Since [r + sal? = [14 pa+p*0] and [1 + pa+ p?0F " = [14p*'a], we then have
by Theorem 2.2 that,

(9" ©(Ir + sal)

is a direct product of order p°~!p¢ = p?*~!. Thus

{lg) ©([r + sal)
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is a subgroup of (O /R*)* of order p**~!(p — 1) which is the same as the order of
(Ok/R?*)*. Similarly, let [g] be a generator of (Z,e+1)* embedded in (O /R*+1)*.

Consider the product
(9@ P (1 +p ),

Since ([g®V*""']) only contains cosets representable by natural numbers, then

[14pta] & ([¢?~7""]). Thus by Theorem 2.1,
(g" " o (1 +pa))
Similarly as in the above, we have by Theorem 2.2 that
{lg") © {r+ sal)

is a direct product of order pp® = p*¢. Thus

([g]) © ([r + sal)

is a subgroup of (O /R*™)* of order p**(p — 1) which is the same as the order

of (O /R**1)*. Thus for p = 3,
(Or/R*)* = ([g]) @ ([L + 2a]),

(Ox/R*™1)* = ([g]) © ([1 + 2a]),

and for p > 5,

(Ox /R*)* = ([g]) © ([1 + o),
(O /R*™ )" = ([g]) © ([1 + a]).

Now for the special case we left out earlier which is the case when p = 3 and

a? + 3ma + 3n € R® such that n =1 (mod 3). Recall that

[(r + s)®] = [r® + 3(r*s — ns®)a +90J].
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1. If 3| r, then
[(r 4+ s5a)?] = [r* + 3(r?s — ns®)a +90] = [300].

Since 3* € R for some k, [30J] is a zero-divisor in O /R¢, then [r + sa]
is also a zero-divisor, that is, [r + sa] € (Ox/R°)*, so we do not need to

consider this case.

2. If 3tr and 3| s, then
[(r + s5a)?] = [r* + 3(r®s — ns®)a +90] = [r* + 90J].
3. If 3tr and 31 s, then

r’s—nsP=r’s—sP=r’s—s=s5(*-1)=s(1-1)=0 (mod 3).

Thus for any [r + sa] € (Ox/R)*,
[(r + s0)%] = [r® + 3(r?s — ns®)a + 90] = [r* + 90J].
By Theorem 2.5,
(O /R*)*| = (3 - 1)3*71 = 2(3%7)

and

|(OK/R23+1>><| — (3 o 1)326 — 2(326)'

Now we consider the structures of (O /R**)* for e > 2. From the earlier |(Og /R*)*| =

2(3%~1). Consider

(1430 =1+30,

while

(1+3a)* " =1+3 o+ 30
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Let [g] be a generator of (Z3.)* embedded naturally in (Ox/R**)*. Since [1 +

3¢ 1a] ¢ ([¢°G“)]), by Theorem 2.1,
(gD @ ([1+3 ).

By Theorem 2.2, we have
(lg°]) @ ([1 + 3a])

is a direct product of subgroups of order 371371 = 32¢=2_ Thus ([g]) ® ([1 + 3a])
is of order 2(3%¢~2). This means that ([g]) ® ([1 + 3a]) is a subgroup of index 3 in
(O /R*)*. Since ([g]) ® ([1 + 3a]) is isomorphic to Zg X Zge-1 X Zge-1, then the

structure of (O /R*)* is either
ZQ X de X de—l or ZQ X de—l X de—l X Zg.

From the earlier, for any [r + sa] € (Ox/R*)*, [r + sa]®* = [r* + 90, so [r +
sa)?G7 = [r3 49026 = [r¥ 4 3¢0]2 = [r26°7)] = [1]. Thus the order of

any element in (Ox/R?)* is not greater than 2(3°71). This means that
(OK/RZE)X = ZQ X de—l X de—l X Zg.

Now consider (O /R**1)* which is of order (p — 1)p®*®. Let [g] be a generator of
(Zsze+1)* embedded naturally in (O /R**™1)*. Then the subgroup ([g]) ® ([1+3a])
which is of order 2(3¢)(3°7!) = 2(3%¢7!) is of index 3 and isomorphic to Zy X Zsze X

Zse—1. Hence the structure of (O /R?**T1)* is either
Z2 X de+1 X de—l , ZQ X Z3e X de or ZQ X Z3e X de—l X Zg.

Similar to the above, any element in (O /R?**™)* is of order at most 2(3¢) so the
first form is impossible. To show that the second form is also impossible, we need

the following lemma:
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Lemma 3.5. Let p be a prime number and e € N. For any element (a,b) of order
p° in the additive group Zye X Zye, we can find an element (c,d), also of order p°,
such that

Lpe X Lpe = {(a,b)) & ((c,d)).

Proof. Since (a,b) is of order p°¢, (p°~'a,p°~'b) # (0,0). That is p°'a # 0 or
pe b # 0. If pta # 0, then we choose (c,d) = (0,1). Similarly, if p*~1b # 0, we

choose (¢,d) = (1,0). O

Suppose for a contradiction that (O /R*1)* = Zy X Zze X Zsze. Let [g] be a
generator of (Zse+1)* naturally embedded in (O /R**1)*, then the order of [¢?] is
p°. By the Lemma 3.5 above, we can find [r+ sa] of order 3¢ such that ([¢*]) ® ([r+
sa]). Since [r+sal® = [r*+90)], [r+sa* = [P+ 90" = [r*']. Since [r+sa]
is of order 3¢, [r3'] is of order 3. Since [g] is a generators of (Zser1)* embedded
naturally in (Og/R?**™1)*  ([¢%]) will contains all coset of order 3 generated by
natural numbers, specifically [3*']. Thus the product ([¢?])([r+sa]) is not direct,
which is a contradiction. Hence the structure of (O /R**)* is not Zg X Zze X Z3e

either. This leaves only one possibility that is
(O /R*T™)* 2 7y X Lige X Liger X L.

Now that we established the structure of this special case, we will find out which
minimal polynomial f(z) that will make this special case occurs. We already have
that this special case occurs when there are m, n € Z such that a?+3ma+3n € R®
andn =1 (mod 3). Let f(x) = 23+ ax?® + 3bx + 3¢, that is o® = —aa® — 3ba — 3c.
For e = 1,2 or 3 the structure of (Ox/R¢)* are the same as n =1 or 2 (mod 3).

Thus we consider e > 4. We will use the following lemma:

Lemma 3.6. Let ¢ > 4 and o® + 3ma + 3n € R°. Then for any k,l € Z, such

that o* + ka + 1 € R®, we have that 3 |l and n =% (mod 3).



30

Proof. Since a® + 3ma + 3n,a* + ka+1 € R*, B3m —l)a+ (3n—1) € R° Ife
is even, e = 2i for some ¢ > 2, then from Page 23, last paragraph, 3¢,3'a € R?.
Suppose for contradiction that 3m — k # 0 (mod 3). Then (3m — l)a + (3n — 1)
can be reduced by 3" € R to ra+ (3n — 1) € R* for some 0 < r < 3'. This makes
[ra+ (3n —1)] = [0] in Ok /R?*, which is a contradiction since we have that every
coset in {[r +sa] | 0 < r,s < 3'} are distinct. That is 7 = 0 and 3n — [ € R*.
Using the same argument we have 3' | 3n — [. Since i > 2, 9 | 3n — [, then
3| n— é If eis odd, e = 2i+1 for some 7 > 2. Also from Page 24, first paragraph,

371 3iq € R**!. We can show similarly to above that n = L (mod 3). [

From the lemma we have that if we find one element o + 3ma + 3n € R® such
that n = 2 (mod 3), other elements of the form a? + 3m’a + 3n’ € R® will also
be such that n’ = 2 (mod 3). Thus to show that there is no m,n € Z such that
a? 4+ 3ma +3n € R° and n = 1, we only need to show that there is m,n € Z such
that a? 4+ 3ma + 3n € R® and n = 2 (mod 3).

Let e > 4, assume o? 4+ 3ma + 3n € R¢. Then o® + 3ma?® + 3na € R
o’ +3ma’+3na = (—aa® —3ba—3c) +3ma’ +3na = (3m—a)a®+ (3n—3b)a—3c.
Under inverse modulo 3 € R°M o?+ (3m—a) ™' (3n—3b)a—3c(3m—a)~! € ReTL.
Under modulo 3, —¢(3m — a)™' = —¢(—a)™ = ca™! (mod 3). That is R*™! will
fall in the special case if and only if a = ¢ (mod 3). To summarize
Theorem 3.7. Let e > 2. If either

1. p>>5, or

2. p=3and f(x) = 2® 4+ az® + 3bx + 3¢ such that a # ¢ (mod 3), then

(Ok/R)* = Zy-1,

(OK/RS)X = Zp—l X Zpl_e%lj X ZPL%J
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If p=3 and f(z) = 2 + ax® + 3bx + 3¢ such that a = ¢ (mod 3), then

(Ok/R)" = Z,

(O /R)* = Zy x Lyesi X Lyjes2) X L.

3.5 R in the fourth category: (p) = R’

Under our assumption that the discriminant of the minimal polynomial of « is a
square-free rational integer, this case does not actually occur because for (p) to
be factorized to R, the minimal polynomial f(z) has to satisfy f(x) = (x + a)3
(mod p) for some a € N. We can shift the value of o to a — a without change
disc(f) so that f(z) = 2® (mod p). This makes f(x) to be in the form f(z) =
% + payx® + payx + pay for some ag,a;,a; € Z. Input in Theorem 2.11, the

discriminant of f is

disc(f) = —27p%a3 — 4p*a? + 18p®apayay + pa’as — 4p*apas,

which is divisible by p?, thus is not square-free.

3.6 (p) stays prime

Case: p =2

In order for (2) to stay prime, the minimal polynomial f(z) of o has to remain
irreducible under modulo 2. There are only two irreducible cubic polynomials
modulo 2, 3 +z + 1 and 2® + 2% + 1. Thus f(z) is congruent modulo 2 to one of

3 — ayx? — a1z — ag for some ag, a1, ay € Z

the two polynomials. That is f(z) =z
such that ag is odd and either a; or ay is odd (we turn those signs to minus to

make some latter calculations less confusing, specifically because it makes o® =
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asa® + aja + ag). We get that

4 2 2 2
o = alaxa” + aja+ ap) = az(aza” + aja+ apa) + ara” + ag

= (a; + a2)a® + (ag + a1a3)a + agas.
Now we consider a generating set of (O /(2°))*. First, since |(O/(2°))*| =
7(8°71), (Ok/(29))* has an element [h] of order 7. Now we consider the part with

elements of order power of 2. First one, 1+ 2« is the same as the second category

@ when p = 2. We repeat the result here. For e > 3

(142a)* " =1+20

while
(1+420)* " =1+2Ta+ 270 + 2°00.
Next
(142a%)* " =1+2°0
while

(14202 " =142+ 2ot + 2°0
=142 + 277 (a1 + a3)a® + (ag + ara)er + agaz) + 2°0
Since ag is odd and either a; or as is odd, a; + a% and ag + ayas are both odd, so

the above expression can be reduced to

=14 2°1apas + 2 ta + 2°00.

Now we are ready to find the structure of (O /(2¢))*. If e = 1, it is just a
cyclic group. For e = 2, consider ([—1])([1 + 2a])([1 + 2&]) which is the product
of three subgroups, each generated by an element of order 2. [1 + 2a] & ([—1]) so
the product of the first two subgroup is direct. Also the product of the first two

subgroups only contains coset representable by an element r+ s« for some r, s € Z.
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This makes [1 4+ 2a?] & ([—1]){[1 + 2a]). Together with [h], an element of order 7

in (Ox/(22))",
(O /22))" = (1)) © ([=1]) © {[1 + 2a]) © ([1 +20%).
Now for e > 3, consider
(5 I (L + 2 apay + 2 a1 42+ 2 o).

As usual we will use Theorem 2.1 to help showing that the previous product is
direct. (Zge)* is embedded naturally in (O /(2))*. Thus since [5] and [—1] form
a generating set of (Zy:)*, then ([5* °]) ® ([—1]) is direct. ([52"]) x ([~1]) only
contains cosets representable by r for some r € Z thus the product of the first two
subgroups does not contain [1 + 2°"'agay + 2" 'a]. This makes the product of the
first three subgroups direct. Again the product of the first three subgroups only
contains cosets representable by r + sa for some r,s € Z so the full product is

direct. By Theorem 2.2, the product

(BIA=1D([1 + 207]){[1 + 2a])

is also direct. It is a product of order (2¢72)2(2¢7!)2¢~1 = 23¢73. Combine with

[h], an element of order 7, we get

(Ox/(29))* = ([A) @ ([5]) © {[~1]) © ([1 + 2a]) © ([1 + 2a7])

= Ziq X Lige—2 X Lig X Lige—1 X Lige—1.
To summarize
Theorem 3.8. If the ideal (2) stays prime, then

(OK/<28>)X = Z7 X (de)X X ZQefl X ZQefl.
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Case: p> 3
This category use almost the same set of generators as the case () when p > 3

and also use the same explanation that

([g""]) © ([1 + pa]) © (1 + pa?]).

X is a cyclic group of order

One different is that since (p) is a prime ideal, (Ox/(p))

p? — 1 generated by [h] for some h € O. It follows that h?*~' = 1+ pJ. Thus for

e> 2,
h(Pg—l)p671 — (1 _{_p|:|>p671 =1 _’_peD'

Since the order of h in (O /(p))* is p* — 1, p* — 1 divides the order of h in

(Ok /(p°))*. Hence [h*" '] is of order p* — 1 in (O /(p¢))*. Thus

(Ox/(p) = (") @ ([¢"']) © ([1 + pa]) © {[1 + pa?))

= Zp:a,l X Zpe—l X Zpe—l X Zpe—l.
To summarize,
Theorem 3.9. Let p > 3. If the ideal (p) stays prime, then

(OK/<p6>)X g Zp3,1 X Zpe—l X Zpe—l X Zpe—l.

3.7 Examples

Consider f(z) = 2 + x + 1. Since it is a monic polynomial of order 3, if f(z) is
not irreducible, then it has a root in Z dividing 1. Substituting 1 and —1 in f(x)
does not give 0, so 23+ z + 1 is irreducible. Let a be a root of f(x) and K = Q[a/.
Since

disc(2® +2+1) = —4 — 27 = 31
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which is square-free, O = Z[a] and disc(K) is also square-free. We select some

prime numbers to show some factorizations of (p) by using Theorem 1.11
1. Let p=47. Since 23 + 2 + 1 = (v + 12)(z + 13)(z + 22) (mod 47),

(A7) = (47, o+ 12)(47, ov + 13) (47, v + 22).

2. Let p=3. Since 2>+ x+1 (mod 3) = (z—1)(z?+2+2) = (z+2)(2* +2+2)
(mod 3),

(3) = (3,a +2)(3,0* + a+2).
3. Let p=31. Since 2 + z + 1 = (z + 17)*(z + 28) (mod 31),

(31) = (31, + 17)(31, v + 28).

4. Let p = 2. Since 3 + x + 1 (mod 2) is irreducible, (2) is already a prime
ideal.

Using previous results, we have

1. (47, a0 + 12), (47, 0 + 13), (47, + 22), (3, + 2) and (31, + 28) are ideals

we denoted by S in Section 3.1, thus
(O /{47, a0 + 12))* = (O /{47, + 13)¢)" = (O [{(47, v + 22)°)* = (Zyze) ™,

(Ok/(3,a+2)) = (Zse)™,

and

(Orc/ (31, + 28)%)* =2 (Zigpo) .
2. (3,0 +a+2) is a ideal in the second category which is denoted by @. Thus

(Ok/(3,0% + a +2))* X Zge1 X Zger X Zs.
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3. (31, + 17) is a ideal in the third category which is we denoted by R. Thus

(Ok/BLa+17))" = ZLgo X L 51y X Ligy15.-

4. (2) stays prime, so it is in the fifth category. Thus

(Ok/(2)) Z Ly X (Lge)™ X Lige—1 X Lige—1.
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