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CHAPTER I

INTRODUCTION

Outlier detection is an important topic in data mining as an outlier indicates ab-

normal point that varies difference from most remaining points in a dataset. Hawkins’s

defined the notion of an outlier as follows [1] : “An outlier is an observation that deviates

so much from other observations as to arouse suspicion that it was generated by a differ-

ent mechanism”. Outlier detection has been used in many real world applications such as

fraudulent detections, intrusion detections, machine failure detections, fault detection in

safety critical systems, military surveillances for enemy activity and insurance or health

care [2].

There have been many research works on novel outlier detections which use a variety

of techniques and theories [3, 4, 5, 6]. In 1998, Knorr and Ng [3] proposed a distance-based

outlier detection. If the neighbors within the radius q of an instance contains more than n

instances then it is called an inlier, otherwise it is called an outlier. The advantage of this

concept is its simplicity to detect the outliers by Hawkins’ definition. However, it cannot

detect outliers when a dataset has various densities. In 2000, Breuning et al. [4] proposed

a density-based algorithm called local outlier factor (LOF). The concept of the LOF based

on a local density where locality is given by k−nearest neighbors. The outlier score for an

instance is calculated by comparing the local density of an instance to the local density

of its neighbors. The LOF is a prototype for many forthcoming published papers. For

example, in 2002, Tang et al. [7] introduced a technique called connectivity-based outlier

factor (COF) that remedies the weakness of LOF. They assigned each instance an outlier

score by the ratio of the average chaining distances from the instance to the chaining of

its neighbors.

In 2012, Goldstein and Dengle [8] introduced a new algorithm that worked in O(n)
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linear time called the histogram-based outlier factor (HBOS). They assigned an outlier

score for each instance by a fixed bin-width histogram and the height of a bin represents

a density estimate. In 2013, Buthong et al. [5] proposed the different approach to LOF

called the ordered distance difference outlier factor. It relies on the distance of an instance

to the extreme object with respect to itself using the minimum of the ordered distance

differences from this instance along the pole of its extreme object. Then the outlier score

is assigned as the ratio of this minimum with the number of instances excluding itself. The

process of computing OOF uses the distance matrix having O(n2 logn) time complexity.

This thesis introduces a weighted minimum consecutive pair outlier factor (WOF)

which calculates an outlier score along two extreme poles. All instances are projected in

the core vector built from them. WOF is the average of two distances from each extreme

pole where the distances are generated between the instance and the first neighbors on

each side of the core vector which are weighted by the number of instances in the same

side. The WOF algorithm is the parameter-free algorithm and has O(n2) time complexity.

1.1 Research Objectives

The goal of this research is to obtain a new parameter-free outlier detection algo-

rithm called the weighted minimum consecutive pair of the extreme pole outlier factor or

WOF. The WOF algorithm is implemented and its performance and time complexity are

compared with OOF on three synthetic datasets and three real world datasets.

1.2 Thesis Overview

Chapter II describes the background knowledge such as the metric measure, the

extreme pole, the meaning of an outlier and the algorithm for calculating an outlier score.

Next, the ordered distance difference outlier factor is explained. In Chapter III, the

weighted minimum consecutive pair of the extreme pole outlier factor is presented with

its definitions and algorithm. The performance comparison with OOF are presented in

Chapter IV. Finally, Chapter V gives the conclusion of this work.



CHAPTER II

PRELIMINARIES

This chapter describes the background knowledge and the main concept for this

thesis based on distance matrix and extreme poles. This chapter is divided into four

parts. The first part gives the definition of a metric space and the distance function.

The second part gives the definition of the extreme poles. The third part defines the

outlier detection types and discusses Ordered distance difference Outlier Factor or OOF.

Finally, the fourth part shows the definition and the algorithm of OOF with an example

to illustrate this outlier score.

2.1 Metric

This section shows the definition of a metric space and a distance matrix. A distance

function is a function that defines a distance between a pair of elements in a dataset. A

set together with a distance function is called a metric space.

Definition 2.1. (Metric space) [9]

Let B be an arbitrary set. A metric space is an ordered pair (B, d) where a function

d : B ×B −→ R+
∪

{0} is a metric on B such that for any u, v, w ∈ B,

1) d(u, v) ≥ 0 (Positiveness)

2) d(u, v) = 0 if and only if u = v (Identity)

3) d(u, v) = d(v, u) (Symmetry)

4) d(u,w) ≥ d(u, v) + d(v, w) (Triangle inequality).

This definition characterizes the distance between two instances and the definition

of the distance matrix. Let B be a set and u, v be two data points in B. The function d

is called the distance function. d(u, v) means the distance between the instance u and v.
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Definition 2.2. (The Minkowski distance between two instances) [10]

Given dataset D ⊆ Rm of n instances, p ∈ D is an instance with m attributes, and

p(i) for i ∈ {1, 2, 3, ..., n} is the ith instance. The Minkowski distance of order k between

two instances p and q where p = (p1, p2, p3, ..., pm) and q = (q1, q2, q3, ..., qm) is defined

as

dk(p, q) = k

√√√√ m∑
j=1

|pj − qj |k,

We called the Manhattan distance if we set k = 1, it is written as

d1(p, q) =

m∑
j=1

|pj − qj |.

This thesis uses the Euclidean distance by setting k = 2,

d2(p, q) =

√√√√ m∑
j=1

(pj − qj)2.

To simplify the notation, d will be used to represent the Euclidean distance.

Definition 2.3. (The distance matrix) [11]

The matrix of distances between instances from dataset D is defined by

M = [di,j ]n×n,

such that di,j = d(p(i), p(j)), where p(i), p(j) ∈ D and i, j ∈ {1, 2, 3, ..., n}.

Definition 2.3 gives the calculation of the distance between instances in a dataset which

is represented by the following matrix.

M =



0 d1,2 d1,3 · · · d1,n

d2,1 0 d2,3 · · · d2,n

d3,1 d3,2 0 · · · d3,n
...

...
... . . . ...

dn,1 dn,2 dn,3 · · · 0


.
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Next, dataset A is randomly generated to help explaining the definition.

Example 2.1. Dataset A has two instances p ∈ (1, 2) and q ∈ (7, 10).

Figure 2.1: The generated points in dataset A

The Manhattan distance between two instances p and q is

d1(p, q) =

2∑
j=1

|pj − qj | = |1− 7|+ |2− 10| = 6 + 8 = 14.

The Euclidean distance between instances p and q is

d2(p, q) =

√√√√ 2∑
j=1

(pj − qj)2 =
√

(1− 7)2 + (2− 10)2 =
√

62 + 82 =
√
100 = 10.

(a) Manhattan distance (b) Euclidean distance

Figure 2.2: Manhattan distance vs Euclidean distance

Figure 2.2 shows the result of the different metrics between the Manhattan distance and
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the Euclidean distance.

Example 2.2. Dataset B (Figure 2.3) has six randomly generated instances in R2.

Figure 2.3: The randomly generated points in dataset B

The Euclidean distance between any two instances in dataset B can be represented as

matrix M as follows :

M =



0 d12 d13 · · · d1n

d21 0 d23 · · · d2n

d31 d32 0 · · · d3n
...

...
... . . . ...

dn1 dn2 dn3 · · · 0


=



0.0 5.0 4.47 5.39 12.81 12.17

5.0 0.0 2.24 5.83 9.43 12.37

4.47 2.24 0.0 3.61 8.49 10.20

5.39 5.83 3.61 0.0 8.54 7.0

12.81 9.44 8.49 8.54 0.0 8.94

12.17 12.40 10.20 7.0 8.94 0.0


.

2.2 Extreme Poles

In this section, the concept of extreme poles and a core vector are explained. The

extreme poles originally were used for the classification and the clustering [12, 13]. The

extreme poles are the pair of instances that make the largest separation. The definition

of an extreme pole is explained next.
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Definition 2.4. (The extreme poles)

Given e1 ∈ {1, 2, 3, ..., n} and e2 ∈ {1, 2, 3, ..., n} such that

d(p(e1), p(e2)) = max
i,j

d(p(i), p(j))

p(e1) and p(e2) are called the extreme poles. Note that for a finite data set, there exists

at least two extreme poles.

Figure 2.4. shows two extreme poles by Definition 2.4. Moreover, the extreme poles

appear at the rim of the intended region of a dataset.

Definition 2.5. (The core vector)

The core vector is a vector that starts from one extreme pole to another extreme

pole.

Figure 2.4: pe1 and pe2 are extreme poles and v is the vector core

Figure 2.4, pe1 and pe2 are the poles. It is the farthest pair among all instances in the

dataset and the vector v is defined as the core vector of the dataset.

2.3 Outlier

This section introduces the outlier techniques, types of outiers and outlier detection.

In a dataset, an instance that is placed far from most instances or does not conform to a
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notion of normal patterns is called outlier, see Hawkins [1].

2.3.1 Outlier Detection Approaches

Three popularly uses of outlier detection techniques are the statistics-based, the

distance-based and the density-based approaches.

2.3.1.1 The Statistics-Based Approach

The statistic approach assumes a probability or a distribution model for a dataset.

Then, an outlier is identified by the model using the discordancy test. Many techniques

are only applicable in one dimension. If the dimension increases, it becomes difficult and

inaccurate to identify an outlier in the multidimensional space, see [14].

2.3.1.2 The Density-Based Approach

The density-based approach estimates the density distribution based on neighbor-

hood of each instance. If the neighbors of an instance has similar density, then the

instance is identified as the normal instance, see [4].

2.3.1.3 The Distance-Based Approach

The distance-based approach calculates an outlier as an instance which has a large

distance from other instances, see [5, 7, 8].

2.3.2 Outlier Detection

Next, the outlier detection is described that depends on the availability of labels

in a training dataset. Each data point in a dataset is associated with its label which

describes whether that instance is normal or anomalous. Based on the extent to which

the labels are available, an outlier detection algorithm can operate in one of the following

three modes.
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2.3.2.1 Supervised Outlier Detection

This type of algorithm applies to a training dataset which all instances have been

labeled as normal or outlier. Typically, a predictive model is used to distinguish an

instance into the normal and outlier class. Any unseen data instance is compared against

the model to determine which class it belongs to. There are two major issues that arise in

supervised outlier detection. First, the anomalous instances are few comparing with the

normal instances in the training data. Second, predicting accurate labels for both normal

and outlier classes is usually challenging.

2.3.2.2 Semi-Supervised Outlier Detection

In this group of a semi-supervised algorithm, a training dataset assumes to have only

the normal class label. Then the model is built based on these instances. Instances that

do not comply with the model are reported as the outlier. Since they do not require labels

for the outlier class, they are more widely applicable than supervised outlier detection.

2.3.2.3 Unsupervised Outlier Detection

This situation does not require a training dataset, and thus are most widely applica-

ble. The techniques in this category make the implicit assumption that normal instances

are far more frequent than outliers. If this assumption is not true then such techniques

suffer from high false alarm rate.

2.4 Ordered Distance Difference Outlier Factor

This section explains OOF which shares the common characteristic and is used to

compare performances with our algorithm. In 2013, Buthong.N et al. [5] proposed a

parameter-free distance-based method, called ordered distance difference outlier (OOF ).

Definition 2.6. (The Minimum Distance of p)
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Given the dataset D with n instances and p ∈ D

mindist(p) := min{d(p, q)|q ∈ D\{p}}

Then, mindist(p) be the minimum distance of between p and other instances.

Definition 2.7. (The Difference Distance between q and o w.r.t p)

Let p, q, o ∈ D, the difference distance between the instances q and o with respect to

the instance p when p is fixed as a common instance is defined by the difference between

d(p, q) and d(p, o). It is written as,

△dp(q, o) := |d(p, q)− d(p, o)|.

Figure 2.5 shows the difference distance between two instances with respect to instance

p. it means the difference between the distance p, q or d(p, q) and the distance p, o or

d(p, o). The value of this equation is always positive.

Figure 2.5: The difference distance between two instances with respect to instance p

Definition 2.8. (The Distance Matrix)

The distance matrix of the data set D is defined as:

DistMtx(D) := (di,j)n×n,

such that di,j = d(p(i), p(j)), where p(i), p(j) ∈ D and i, j ∈ {1, 2, 3, ..., n}.

Definition 2.9. (The Ordered Distance Matrix)

The ordered distance matrix of the dataset D is defined by

OrderedMtx(D) := (O⃗)n×1,
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where i ∈ {1, 2,…, n} and (O⃗)1 is an ordered distance of row ith of the distance matrix.

This is defined by (O⃗)1 = (di,j(i)1
di,j(i)2

. . . di,j(i)k
. . . di,j(i)n

), where k, j(i)k ∈ {1, 2, 3, ..., n}

with di,j(i)1
≤ di,j(i)2

≤ ... ≤ di,j(i)n
.

The distance matrix calculates the distance from an instance to all other instances

which is represented by the following matrix:

DistMtx(D) =



d1,1 d1,2 d1,3 · · · d1,n

d2,1 d2,2 d2,3 · · · d2,n

d3,1 d3,2 d3,3 · · · d3,n
...

...
... . . . ...

dn,1 dn,2 dn,3 · · · dn,n


.

Each row in the OrderedMtx from the definition 2.9 is ascending sorted using the

nearest neighbor idea. Let di,j(i)k
be the distance between the instance p(i) and kth nearest

neighbors of p(i) and the distance of di,i is zero. Consequently, the ordered distance matrix

is generated as

OrderedMtx(D) =



0 d1,j(1)1
d1,j(1)2

d1,j(1)3
· · · d1,j(1)n

0 d2,j(2)1
d2,j(2)2

d2,j(2)3
· · · d2,j(2)n

0 d3,j(3)1
d3,j(3)2

d3,j(3)3
· · · d3,j(3)n

0
...

...
... . . . ...

0 dn,j(n)
1

dn,j(n)
2

di,j(n)
3

· · · di,j(n)
n


.

Definition 2.10. (The Difference of the Ordered Distance Matrix)

The difference of the ordered distance matrix of dataset D is defined by

∆OrderedMtx(D) := (∆O⃗i)n×1,

where i ∈ {1, 2, 3, ..., n} and (∆O⃗i) is the difference of the ordered distance of row ith of

the distance matrix.
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Definition 2.11. (The Difference of the Ordered Distance Outlier Factor)

The difference of the ordered distance outlier factor (OOF ) of instance p is defined

by

OOF :=

∑n
i=1min{∆di(j

(i)
k , j

(i)
k−1),mindist(p)}

n− 1
.

An instance p in the ordered distance difference outlier factor is calculated without

parameter. It relies on the distance from p to the extreme pole using the minimum of the

ordered distance difference from this instance along the pole with its extreme pole. Then

the outlier score is assigned as the ratio of this minimum with the number of instances

excluding itself. If its score is high, then it has a high probability to be outlier. Next

example shows how to calculate OOF of all instances in the dataset.

Example 2.3. Given dataset C that contains 6 instances having one majority group and

a single outlier. C = [(1, 5), (2, 4), (2, 5), (2, 6), (3, 4), (9, 13)].

Figure 2.6: The dataset C containing 6 instances with a single outlier

Dataset C is randomly generated having one majority group with the single outlier

(O). Only the calculation of three instances N1, N3, O are demonstrated in details.
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The mathematical notation for the distance matrix is

DistMtx(C) =



d(N1, N1) d(N1, N2) d(N1, N3) d(N1, N4) d(N1, N5) d(N1, O)

d(N2, N1) d(N2, N2) d(N2, N3) d(N2, N4) d(N2, N5) d(N2, O)

d(N3, N1) d(N3, N2) d(N3, N3) d(N3, N4) d(N3, N5) d(N3, O)

d(N4, N1) d(N4, N2) d(N4, N3) d(N4, N4) d(N4, N5) d(N4, O)

d(N5, N1) d(N5, N2) d(N5, N3) d(N5, N4) d(N5, N5) d(N5, O)

d(O,N1) d(O,N2) d(O,N3) d(O,N4) d(O,N5) d(O,O)


,

=



0.0 1.4142 1.0 1.4142 2.2361 11.3137

1.4142 0.0 1.0 2.0 1.0 11.4018

1.0 1.0 0.0 1.0 1.4142 10.6301

1.4142 2.0 1.0 0.0 2.2361 9.8995

2.2361 1.0 1.4142 2.2361 0.0 10.8167

11.3137 11.4018 10.6301 9.899 10.8167 0.0


.

The distance matrix is sorted by the distance in each row which generates the ordered

distance matrix

O⃗(C) =



d1(N1, N1) d1(N1, N3) d1(N1, N2) d1(N1, N4) d1(N1, N5) d1(N1, O)

d2(N2, N2) d2(N2, N3) d2(N2, N5) d2(N2, N1) d2(N2, N4) d2(N2, O)

d3(N3, N3) d3(N3, N1) d3(N3, N2) d3(N3, N4) d3(N3, N5) d3(N3, O)

d4(N4, N4) d4(N4, N3) d4(N4, N1) d4(N4, N2) d4(N4, N5) d4(N4, O)

d5(N5, N5) d5(N5, N2) d5(N5, N3) d6(N5, N1) d5(N5, N4) d5(N5, O)

d6(N6, N6) d6(N6, N4) d6(N6, N3) d6(N6, N5) d6(N6, N1) d6(N1, O)


,

=



0.0 1.0 1.4142 1.4142 2.2361 11.3137

0.0 1.0 1.0 1.4142 2.0 11.4018

0.0 1.0 1.0 1.0 1.4142 10.6301

0.0 1.0 1.4142 2.0 2.2367 9.8995

0.0 1.0 1.4142 2.2361 2.2361 10.8167

0.0 9.8995 10.6301 10.8167 11.3137 11.4018


.

The result of the computation is
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∆O⃗(C) =



0 ∆d1(N3, N1) ∆d1(N2, N3) ∆d1(N4, N2) ∆d1(N5, N4) ∆d1(O,N5)

0 ∆d2(N3, N2) ∆d2(N5, N3) ∆d2(N1, N5) ∆d2(N4, N1) ∆d2(O,N4)

0 ∆d3(N1, N3) ∆d3(N2, N1) ∆d3(N4, N2) ∆d3(N5, N4) ∆d3(O,N5)

0 ∆d4(N3, N4) ∆d4(N1, N3) ∆d4(N2, N1) ∆d4(N5, N2) ∆d4(O,N5)

0 ∆d5(N2, N5) ∆d5(N3, N2) ∆d5(N1, N3) ∆d5(N4, N1) ∆d5(O,N4)

0 ∆d6(N4, N6) ∆d6(N3, N4) ∆d6(N5, N3) ∆d6(N1, N5) ∆d6(N2, N1)


,

=



0 1.0 0.4142 0.0 0.8219 9.0776

0 1.0 0.0 0.4142 0.5857 9.4017

0 1.0 0.0 0.0 0.4142 9.2159

0 1.0 0.4142 0.5857 0.2360 7.6634

0 1.0 0.4142 0.8218 0.0 8.5805

0 9.8994 0.7306 0.1865 0.4970 0.0880


.

Next, the distance from a common instance to another instances on the ordered distance

difference matrix for calculating OOF is considered.

Case N1 :

∆O⃗(C) =



0 ∆d1(N3, N1) ∆d1(N2, N3) ∆d1(N4, N2) ∆d1(N5, N4) ∆d1(O,N5)

0 ∆d2(N3, N2) ∆d2(N5, N3) ∆d2(N1, N5) ∆d2(N4, N1) ∆d2(O,N4)

0 ∆d3(N1, N3) ∆d3(N2, N1) ∆d3(N4, N2) ∆d3(N5, N4) ∆d3(O,N5)

0 ∆d4(N3, N4) ∆d4(N1, N3) ∆d4(N2, N1) ∆d4(N5, N2) ∆d4(O,N5)

0 ∆d5(N2, N5) ∆d5(N3, N2) ∆d5(N1, N3) ∆d5(N4, N1) ∆d5(O,N4)

0 ∆d6(N4, N6) ∆d6(N3, N4) ∆d6(N5, N3) ∆d6(N1, N5) ∆d6(N2, N1)


.

Then the ordered distance difference outlier factor or OOF is calculated:

OOF (N1) = [min{0,mindist(N1)}+min{∆d2(N1, N5),mindist(N1)}

+min{∆d3(N1, N3),mindist(N1)}+min{∆d4(N1, N3),mindist(N1)}

+min{∆d5(N1, N3),mindist(N1)}+min{∆d6(N1, N5),mindist(N1)}]/6.
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Note mindist(p) is the minimum distance of p

(i.e. mindist(p) := min{d(p, q)|q ∈ D\{p}}). Then, mindist(N1) = 1. Hence,

OOF (N1) =
0 + 0.4142 + 1.0 + 0.4142 + 0.8218 + 0.4970

6

=
3.1472

6

= 0.5245.

Case N3 :

∆O⃗(C) =



0 ∆d1(N3, N1) ∆d1(N2, N3) ∆d1(N4, N2) ∆d1(N5, N4) ∆d1(O,N5)

0 ∆d2(N3, N2) ∆d2(N5, N3) ∆d2(N1, N5) ∆d2(N4, N1) ∆d2(O,N4)

0 ∆d3(N1, N3) ∆d3(N2, N1) ∆d3(N4, N2) ∆d3(N5, N4) ∆d3(O,N5)

0 ∆d4(N3, N4) ∆d4(N1, N3) ∆d4(N2, N1) ∆d4(N5, N2) ∆d4(O,N5)

0 ∆d5(N2, N5) ∆d5(N3, N2) ∆d5(N1, N3) ∆d5(N4, N1) ∆d5(O,N4)

0 ∆d6(N4, N6) ∆d6(N3, N4) ∆d6(N5, N3) ∆d6(N1, N5) ∆d6(N2, N1)


.

Then the ordered distance difference outlier factor or OOF is calculated:

OOF (N3) = [min{∆d1(N3, N1),mindist(N3)}+min{∆d2(N3, N2),mindist(N3)}

+min{0,mindist(N3)}+min{∆d4(N3, N4),mindist(N3)}

+min{∆d5(N3, N2),mindist(N3)}+min{∆d6(N3, N4),mindist(N3)}]/6.

From, mindist(p) is the minimum distance of the instance p

(i.e. mindist(p) := min{d(p, q)|q ∈ D\{p}}). Then, mindist(N3) = 1. Hence,

OOF (N3) =
1.0 + 1.0 + 0 + 1.0 + 0.4142 + 0.7306

6

=
4.1448

6

= 0.6908.
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Case O:

∆O⃗(C) =



0 ∆d1(N3, N1) ∆d1(N2, N3) ∆d1(N4, N2) ∆d1(N5, N4) ∆d1(O,N5)

0 ∆d2(N3, N2) ∆d2(N5, N3) ∆d2(N1, N5) ∆d2(N4, N1) ∆d2(O,N4)

0 ∆d3(N1, N3) ∆d3(N2, N1) ∆d3(N4, N2) ∆d3(N5, N4) ∆d3(O,N5)

0 ∆d4(N3, N4) ∆d4(N1, N3) ∆d4(N2, N1) ∆d4(N5, N2) ∆d4(O,N5)

0 ∆d5(N2, N5) ∆d5(N3, N2) ∆d5(N1, N3) ∆d5(N4, N1) ∆d5(O,N4)

0 ∆d6(N4, N6) ∆d6(N3, N4) ∆d6(N5, N3) ∆d6(N1, N5) ∆d6(N2, N1)


.

Then the ordered distance difference outlier factor or OOF is calculated:

OOF (O) = [min{∆d1(O,N5),mindist(O)}+min{∆d2(O,N4),mindist(O)}

+min{∆d3(O,N5),mindis(O)}+min{∆d4(O,N5),mindist(O)}

+min{∆d5(O,N4),mindist(O)}+min{0,mindist(O)}]/6.

From, mindist(p) is the minimum distance of the instance p (i.e. mindist(p) := min{d(p, q)|q ∈

D\{p}}). Then, mindist(O) = 9.899. Hence,

OOF (O) =
9.0776 + 9.4017 + 9.2159 + 7.6634 + 8.5805 + 0

6

=
43.9391

6

= 7.3232.

This is the calculation of OOF scores for three instances, N1, N3, O. For other in-

stances, the OOF scores of N2 = 0.4176, N5 = 0.3317, N4 = 0.3171 are computed using

python language on a web-based cloud computing named CoCalc.com[15]. Since the OOF

score of O is 7.3232 which is significantly higher than other instances, that mean it should

be considered as an outlier.



CHAPTER III

WEIGHTED MINIMUM CONSECUTIVE

PAIR OF THE EXTREME POLE OUTLIER

FACTOR

In this chapter, the definition of WOF, time complexity of WOF, and the WOF

algorithm are described. Let D be a dataset having n instances with m attributes, d(p, q)

be the Euclidean distance between two instances p and q, M(D) be the distance matrix

of dataset D, and the extreme pole be the maximum distance between two instances in

M(D).

3.1 Definitions of Weighted Minimum Consecutive Pair of

the Extreme Pole Outlier Factor

The weighted minimum consecutive pair of the extreme pole outlier factor (WOF)

does not require any parameter and have O(n2) time complexity for assigning to all in-

stances in the dataset. From the extreme pole of the dataset, WOF of each instance p

is the weighted summation of the distance between p and its adjacent instances on the

core vector. Since the core vector is generated from two extreme poles, WOF is set as the

average computation from each extreme pole.

Using the property of the extreme poles and the core vector that is the distribution

of all instances in dataset make acute angle between two vectors, the core vector and the

vector generated from the extreme pole to an instance. Considering the radial projection

of all instances on the core vector using one of the extreme poles as the center (see Figure

3.1). Figure 3.1(a), Figure 3.1(b) and Figure 3.1(c) show the distance from the radial

projection from center p(e1) to p2, p3, p4, respectively which are ordered with respect to
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the center p(e1).

Definition 3.1. (The radial projected order list on the core vector from the extreme pole)

The radial projected order list on the core vector from an extreme pole, e, of dataset

D is defined by

OrdList(D, e) := (d(e,k))1×n,

where e ∈ {e1, e2} is the index of the extreme pole and k ∈ {1, 2, 3, ..., n} with 0 =

d(e,1) ≤ d(e,2) ≤ d(e,3) ≤ ... ≤ d(e,k) ≤ ... ≤ d(e,n).

(a) (b)

(c)

Figure 3.1: The radial projected order list on the core vector from the extreme pole

The distance between each instance is identified as the normal instance or outlier
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Figure 3.2: The radial projection of all other instances with respect to p(e1)

Figure 3.3: The radial projection of all other instances with respect to p(e2)

where the instance that is far away from other instances, tends to be outlier and the

instance that is close to other instances, tends to be normal. Hence, the distance between

the instance to the nearest instance represents the distance between instance to all in-

stances toward the center or away from the center. Considering instance p(k) on the core

vector that using the radial projection by center p(e1) see Figure 3.4, (d(e1,p(k))−d(e1,p(k−1)))

to represent the distance between the instance p(k) to the other instance within the radius

p(k) and (d(e1,p(k+1))−d(e1,p(k))) to represent the distance between p(k) and other instances

outside the radial projection. Then, the outlier factor is the weighted sum of all distances.

Similarly, instance p(k) on the core vector that using the radial projection by center p(e2)

see Figure 3.4, (d(e2,p(k)) − d(e2,p(k−1))) to represent the distance between the instance p(k)

to the other instance within the radius p(k) and (d(e2,p(k+1)) − d(e2,p(k))) to represent the

distance between p(k) and other instances outside the radial projection. Then, the outlier

factor is the weighted sum of all distances which is defined in Definition 3.2.

Definition 3.2. (The ordered outlier factor)

The ordered outlier factor of instance p computing by extreme pole e is defined by

OFe(p
(k)) :=

(d(e,p(k)) − d(e,p(k−1)))(k − 1)

(n− 1)
+

(d(e,p(k+1)) − d(e,p(k)))(n− k)

(n− 1)
,
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Figure 3.4: The radial projected order score on the core vector from p(e1)

Figure 3.5: The radial projected order score on the core vector from p(e2)

where k ∈ {1, 2, 3, ..., n}.

(a) The radial projection the instance
out of group with respect to p(e1)

(b) The radial projection the instance
out of group with respect to p(e2)

Figure 3.6: The radial projection the instance out of group with respect to extreme
pole

That radial projected order list depends on the center either from the extreme poles

e1 or e2. Figure 3.3 shows the radial projection of the dataset containing one group with

two additional outliers. In Figure 3.6, the extreme poles are e1 and e2. Considering in-

stance O, if this instance projected using the radial projection from the center e2 to the

core vector see Figure 3.6(a), it is close to the group of e1 which is hard to identify as

the outlier. If instance O is projected using the radial projection from the center e1 to

the core vector see Figure 3.6(b), it is far from the group of e1 which can be detected as

the outlier. Hence, the formula for WOF will compute from both e1 and e2 which is the

average between OFe1(p
(k)) and OFe2(p

(k)).
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Definition 3.3. (Weighted minimum consecutive pair of the extreme pole outlier factor)

The weighted minimum consecutive pair of the extreme pole outlier factor (WOF)

is defined as

WOF (p) :=
OFe1(p

k) +OFe2(p
k)

2
.

(a) Synthetic dataset A (b) Synthetic dataset B

Figure 3.7: Example of synthetic datasets

Example 3.1. Dataset A (Figure 3.7(a)) contains 7 instances having one majority group

and a single outlier. A = [(0, 2), (1, 2), (0, 1), (1, 0), (1, 3), (2, 1), (8, 10)].

Dataset A is generated having one majority group with the single outlier (O) man-

ually. The distance matrix of A is

DistMtx(A) =



0 1 1 2.236 1.414 2.236 11.313

1 0 1.414 2 1 1.414 10.630

1 1.414 0 1.414 2.236 2 12.041

2.236 2 1.414 0 3 1.414 12.206

1.414 1 2.236 3 0 2.236 9.899

2.236 1.414 2 1.414 2.236 0 10.816

11.313 10.630 12.041 12.206 9.899 10.816 0



.

From the above distance matrix, two extreme poles are p(4) and p(7). Consider the in-

stance p(1), the distance matrix is sorted by the row p(4) starting from p(4) to p(7) and

sorted the row p(7) starting from p(7) to p(4).
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OrdList(p(4)) = [p(4) p(3) p(6) p(2) p(1) p(5) p(7)]

= [0 1.414 1.414 2 2.236 3 12.206].

OrdList(p(7)) = [p(7) p(5) p(2) p(6) p(1) p(3) p(4)]

= [0 9.899 10.630 10.816 11.313 12.041 12.206].

The calculations of OFp(4)(p(1)) and OFp(7)(p(1)) are

OFp(4)(p(1)) =
(2.2360679774− 2)(4) + (3− 2.2360679774)(2)

6

= 0.53934466.

OFp(7)(p(1)) =
(11.313708− 10.816653)(4) + (12.041594− 11.313708)(2)

6

= 0.69531282.

Hence, WOF =
OFp(4)(p(1)) +OFp(2)(p(1))

2

=
0.53934466 + 0.69531282

2

= 0.61732874.

For other instances, WOFs of dataset A are shown in Table 3.1 computed using
python language on COCALC.

instance score
p(1) 0.61732874
p(2) 0.42462275
p(3) 0.44863050
p(4) 0.78958730
p(5) 3.04301429
p(6) 0.45638958
p(7) 9.55302528

Table 3.1: WOFs of all instances in dataset A

Example 3.2. Given dataset B as in Figure 3.7(b) contains 10 instances having two group

and a single outlier. B = [(0, 2), (1, 2), (0, 1), (1, 0), (1, 3), (2, 1), (5, 5), (8, 10), (8, 9), (8, 8),

(9, 9), (9, 8), (7, 9)].
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WOFs of all instances in dataset B are shown in Table 3.2.

The examples of synthetic datasets A and B are displayed in Figure 3.7. From Table 3.1,

instance score instance score
p(1) 0.62391104 p(8) 0.58248052
p(2) 0.45399109 p(9) 0.36543922
p(3) 0.40628677 p(10) 1.46566486
p(4) 0.78958730 p(11) 0.3415247
p(5) 2.66284836 p(12) 1.44854526
p(6) 0.42126840 p(13) 0.40980008
p(7) 4.16904172

Table 3.2: WOFs of all instances in dataset B

p(7) has the highest WOF in the dataset A which means that p(7) should be considered as

the outlier. The instances with the lower WOF lies within the cluster such as p(2), p(3), p(6).

From Table 3.2, p(7) has the highest WOF in the dataset B which means that p(7) should

be considered as the outlier whereas instances p(1), p(2), p(3), p(4), p(6), p(8), p(9), p(11), p(13)

are considered as inliers.

3.2 Time Complexity Analysis

For the time complexity analysis, the WOF algorithm is divided into two parts:

1) computing the distance matrix and 2) finding the extreme pole and computing the

WOF. For the first part, the instances in the dataset have n instances then the distance

matrix using O(n2) time complexity. In the second part, all row in the distance is found

the extreme pole, then this part uses O(n2) time complexity. Then, the overall time

complexity is O(n2) +O(n2) = O(n2).

3.3 Weighted minimum consecutive pair of the extreme

pole outlier factor algorithm

Next, the WOF algorithm for computing the outlier score for all instances in the

dataset is shown as follows :
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INPUT: Dataset D with n instances m attributes

OUTPUT: WOF for each instance

WOF Algorithm

STEP 1: Compute the distance between the instance p(i) and p(j) for every

i, j ∈ {1, 2, 3, ..., n} to build the distance matrix (M)

STEP 2: Find two extreme poles pe1 and pe2 in D and construct the core vector

STEP 3: Generate the projected order list on the core vector from the extreme pole

STEP 4: Compute OF for each pole by Definition 3.2,

OFe(p
(k)) :=

(d
(e,p(k))

−d
(e,p(k−1))

)(k−1)+(d
(e,p(k+1))

−d
(e,p(k))

)(n−k)

(n−1)

where k ∈ {1, 2, 3, ..., n}

STEP 5: Compute WOF of each instance by Definition 3.3, WOF (p) :=
OFe1+OFe2

2



CHAPTER IV

EXPERIMENTS AND RESULT

This chapter is divided into two sections. The first section describes the performance

of the WOF algorithm comparing with the OOF algorithm and the second section covers

the time complexity between the WOF algorithm and the OOF algorithm.

4.1 The Performance of the WOF Algorithm

This section explains the synthetic datasets and UCI datasets, the measurements

for testing the performance and the experimental results.

4.1.1 Dataset

Three synthetic datasets in two-dimensional are generated and three real-world UCI

datasets namely Wisconsin diagnostic breast cancer dataset, statlog (Landsat Satellite)

dataset and glass identification dataset are used for testing the WOF algorithm. The

details of all datasets that use in this thesis are shown in Table 4.1.

4.1.2 Measurements

In this part, the comparison results of the synthetic dataset are shown in the scatter

plot and the comparison results of the real world dataset are shown using the area under

the ROC curve[16, 17]. The ROC curve represents the relative trade-offs between the

true positive rates (TPR) on the y-axis and false positive rate (FPR) on the x-axis. Since

TPR is equivalent to sensitivity and FPR is equal to 1 − specificity. TPR is used for

measuring the function of positive examples that are correctly labeled (4.1) and FPR is

used to measure the function of negative examples that are misinterpreted as positive

(4.2). Those measures can be derived from the confusion matrix in Table 4.2. The rows
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Dataset Attribute Instance Class Class Name
Synthetic dataset1 2 1010 1
Synthetic dataset2 2 2210 2
Synthetic dataset3 2 3810 3

Breast Cancer 32 357 0 benign
212 1 malignant

Landsat Satellite 36

1072 1 red soi
480 2 cotton crop
961 3 grey soil
415 4 damp grey soil
370 5 soil with vegetation stubble
1038 7 very damp grey soil

Glass 10

70 1 building windows float
processed

75 2 building windows non
float processed

17 3 vehicle windows float
processed

13 5 containers
9 6 tableware
28 7 headlamps

Table 4.1: The description of all datasets in experiments

of the table are the actual class label of all instances, and the columns are shown in Table

4.2.

The meaning of the true positive (TP), the false negative (FN), the false positive

(FP) and the true negative (TN) in the confusion matrix are followed:

• True Positive (TP) is the number of the instances that are predicted as outliers,

and they are actual outliers.

• False Negative (FN) is the number of the instances that are predicted as normal

instances, but they are outliers.

• False Positive (FP) is the number of the instances that are predicted as outliers,

but they are normal instances.

• True Negative (TN) is the number of the instances that are predicted as normal

instances, and they are actual normal instances.
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Table 4.2: Confusion Matrix

True Positive Rate (TPR) = TP
TP + FN . (4.1)

False Positive Rate (FPR) = FP
FP + TN . (4.2)

To generate the ROC curve, outlier scores from all instances in the dataset are

ranked in descending order. The ROC curve uses multiple cut-offs to generate the point

on the ROC curve using TPR and FPR. An instance having the score above the cut-off

will be identified as the outlier while the instance having the score less than or equal to

the cut-off will be identified as the normal instance. The first cut-off for the first point is

set at the maximum score and the other cut-offs uses the decreasing outlier scores. The

best prediction would generate the graph from the lower left corner (0, 0) to the upper

left corner (0, 1) and end at the upper right corner (1, 1). Therefore, the closer of the

ROC curve to the upper left corner, the better the algorithm that generates the scores is.

Example 4.1. Dataset A contains 7 instances having one majority group and a three

outliers as A = {(1, 5), (2, 4), (2, 5), (3, 6), (5, 4), (9, 13)}.

WOFs are computed and shown in Table 4.3.

First, the outlier scores are ranked in descending order. The calculation of the True

Positive Rate (TPR) and the False Positive Rate (FPR) is performed using the cut-off by

the decreasing outlier score as in Table 4.4. Finally, the ROC curve is plot in Figure 4.1.
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instance WOF score
(1,5) 0.6081
(2,4) 0.5440
(2,5) 0.7313
(3,6) 1.7123
(5,4) 3.0905
(9,13) 9.1253

Table 4.3: The WOF score for dataset A

instance WOF score Predicted Actual
(9,13) 9.1253 outlier outlier
(5,4) 3.0905 outlier outlier
(3,6) 1.7123 normal outlier
(2,5) 0.7313 normal normal
(1,5) 0.6081 normal normal
(2,4) 0.5440 normal normal

Table 4.4: The ROC point at (0, 2
3) using the cut-off = 1.7123

Figure 4.1: The ROC curve use WOF algorithm

The ROC curves contain useful information for understanding the accuracy. How-

ever, when the curves overlap, it is hard to recognize the best algorithm. Therefore,

researchers use the area under the receiver operating characteristic curve (AUC) [17, 18]

to obtain the best algorithm. AUC should be between 0.5 and 1.0. If it reaches 1, the

algorithm perfectly separates instances into outliers and normal instances.

Wilcoxon signed rank test [19, 20] was used to compare the result performance of

the algorithms. It is a non-parametric statistical procedure for comparing two samples.
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This method is suitable for the samples which are relatively small and do not have the

normal distribution.

Let k be the number of paired comparisons and Si be the rank of the difference

value of two techniques, where i = 1, 2, 3, ..., k. First, the difference between each sample

pair is computed. Hence, the absolute values of the differences are the rank. For this

method, the differences of zero are ignored when ranking. Then, the sum of ranks with

positive differences denoted by R+ and the sum of ranks with negative differences denoted

by R− are computed as the equation below.

R+ =
∑
si>0

rank(Si), R− =
∑
si<0

rank(Si)

Let T be the smaller of sum, T = min{R+, R−}, the statistic

z =
T − k(k + 1)/4√

k(k + 1)(2k + 1)/24

for the larger number of the dataset [21]. The critical values for T can be found in tables

published in the statistical textbooks if the number of datasets less than thirty. Table 4.5

shows the critical values of Wilcoxon signed rank test up to thirteen datasets.

k Two-Tailed Test One-Tailed Test
α = 0.05 α = 0.01 α = 0.05 α = 0.01

5 – – 0 –
6 0 – 2 –
7 2 – 3 0
8 3 0 5 1
9 5 1 8 3
10 8 3 10 5
11 10 5 13 7
12 13 7 17 9
13 17 9 21 12

Table 4.5: The critical values of Wilcoxon Signed Rank Test
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The null hypotheses and alternative hypotheses for two-tailed test are set as follows:

H0 : µ1 − µ2 = 0,

H1 : µ1 − µ2 ̸= 0,

where µ1 is the the area under the curve (AUC) of the WOF algorithm and µ2 is the the

area under the curve (AUC) of the OOF algorithm.

4.1.3 A synthetic example

Three collections of synthetic two-dimensional datasets are simulated for testing the

WOF algorithm. The first collection contains ten datasets having a cluster of the normal

distribution with ten outliers. The second collection contains eight datasets having two

clusters of the normal distributions with ten outliers. The third collection contains ten

datasets having two clusters of the normal distribution and one cluster of the uniform with

ten outliers. Figure 4.2 shows one of all scatter plot of the first synthetic collection that

contains 1010 instances where 1000 instances are in a cluster and 10 instances are outliers.

The figure illustrates the result of OOFs and WOFs where the score is represented by the

red circle. A large circle implies that instance is an outlier, while a small circle implies

that instance is normal. The scatter plot in Figure 4.3 shows the result of WOFs on the

second synthetic collection that contains 2210 instances where 2000 instances are in one

cluster, 200 instances are sparse in another cluster, and 10 instances are outliers. The

scatter plot in Figure 4.4 shows the result of WOFs on the third synthetic collection that

contains 3810 instances where 3000 instances are in the ellipse cluster, 700 instances are

in the square cluster, 100 instances are in the sparse cluster, and 10 instances are outliers.
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(a) The OOFs (b) The WOFs
Figure 4.2: Comparison of the OOF and the WOF on 1010 data points where the

radius of the circle represents its score

(a) The OOFs (b) The WOFs
Figure 4.3: Comparison of the OOF and the WOF on 2210 data points where the

radius of the circle represents its score

(a) A synthetics example (b) The WOFs
Figure 4.4: The WOFs on 3710 data points where the height represents its score
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4.1.4 UCI datasets

Wisconsin Diagnostic Breast Cancer dataset

Wisconsin diagnostic breast cancer dataset has 569 instances, 32 attributes in 2

classes; the class “benign” has 357 instances and the class “malignant” has 212 instances.

The class “benign” chosen as the majority data instances in the Wisconsin diagnostic

breast cancer dataset and 10 instances from malignant instances are picked randomly.

The generated datasets from Wisconsin diagnostic breast cancer dataset are performed

ten times for testing.

Figure 4.5 - 4.14 and Table 4.6 - 4.15 show the ROC curves and top-10 ranks of

Wisconsin diagnostic breast cancer dataset (Bcd) between WOFs and OOFs, sorted by

its score. The bold numbers are marked when OOF and WOF identify these instances as

outlier, correctly. Note that the AUC of the WOF algorithm is better than the AUC of

the OOF algorithm.

Figure 4.5: The ROC between WOFs
and OOFs for Bcd 1

Rank
OOF WOF

index score index score

1 367 438.471 367 456.368

2 359 195.501 359 289.572

3 361 136.928 361 164.978

4 300 95.883 362 116.515

5 364 74.257 300 107.98

6 363 63.687 366 98.356

7 366 58.67 363 81.871

8 74 30.947 364 79.039

9 360 23.104 360 50.458

10 203 22.523 36 48.564

Table 4.6: The score for Bcd 1

Figure 4.6: The ROC between WOFs
and OOFs for Bcd 2

Rank
OOF WOF

index score index score

1 361 345.109 361 380.472

2 362 65.068 363 113.352

3 363 63.711 362 72.569

4 365 49.814 203 71.522

5 203 31.614 365 49.618

6 74 30.691 36 48.775

7 366 29.862 74 46.461

8 36 17.773 300 45.006

9 208 16.919 312 38.421

10 312 16.529 366 35.692

Table 4.7: The score for Bcd 2
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Figure 4.7: The ROC between WOFs
and OOFs for Bcd 3

Rank
OOF WOF

index score index score

1 358 1230.5 358 1276.322

2 359 304.783 359 372.419

3 360 214.89 360 233.234

4 365 97.921 365 141.176

5 300 55.938 300 69.672

6 203 31.324 203 60.094

7 74 30.685 36 48.051

8 36 19.573 74 44.051

9 312 16.461 312 34.986

10 334 11.982 334 25.296

Table 4.8: The score for Bcd 3

Figure 4.8: The ROC between WOFs
and OOFs for Bcd 4

Rank
OOF WOF

index score index score

1 362 450.998 362 620.831

2 359 216.197 366 451.732

3 360 172.097 359 378.512

4 366 140.417 360 219.271

5 364 137.15 300 172.674

6 300 131.478 364 139.853

7 361 33.537 203 70.689

8 203 31.735 36 48.73

9 363 23.786 363 42.558

10 36 18.86 361 40.114

Table 4.9: The score for Bcd 4

Figure 4.9: The ROC between WOFs
and OOFs for Bcd 5

Rank
OOF WOF

index score index score

1 358 67.352 361 436.078

2 361 67.117 366 166.417

3 366 63.485 364 108.488

4 362 49.241 300 104.451

5 364 37.228 358 82.562

6 203 31.508 203 70.668

7 36 20.312 362 55.57

8 367 19.894 36 48.807

9 208 17.084 312 34.59

10 312 16.589 367 26.117

Table 4.10: The score for Bcd 5
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Figure 4.10: The ROC between WOFs
and OOFs for Bcd 6

Rank
OOF WOF

index score index score

1 360 399.773 360 441.318

2 300 75.146 300 180.365

3 366 63.501 366 80.793

4 203 31.358 203 71.914

5 74 30.39 36 48.856

6 36 19.188 74 43.636

7 364 18.895 364 29.637

8 208 15.224 334 24.968

9 334 11.98 208 23.324

10 295 11.285 295 20.177

Table 4.11: The score for Bcd 6

Figure 4.11: The ROC between WOFs
and OOFs for Bcd 7

Rank
OOF WOF

index score index score

1 358 874.095 358 906.865

2 366 122.042 366 165.588

3 362 53.838 361 103.838

4 300 46.68 300 87.956

5 359 34.633 203 71.362

6 203 31.592 362 69.477

7 74 30.911 36 48.663

8 361 19.589 74 47.226

9 36 17.625 312 35.357

10 312 16.315 359 32.21

Table 4.12: The score for Bcd 7

Figure 4.12: The ROC between WOFs
and OOFs for Bcd 8

Rank
OOF WOF

index score index score

1 359 505.804 359 518.662

2 362 174.574 361 283.205

3 366 166.772 366 256.763

4 367 145.836 362 195.326

5 363 137.459 367 172.628

6 203 28.537 300 110.893

7 361 21.28 363 107.221

8 36 19.543 36 48.606

9 208 16.983 203 38.928

10 312 16.691 312 32.278

Table 4.13: The score for Bcd 8
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Figure 4.13: The ROC between WOFs
and OOFs for Bcd 9

Rank
OOF WOF

index score index score

1 358 339.824 358 450.122

2 361 243.504 361 224.599

3 364 152.318 364 115.758

4 366 98.204 360 111.017

5 300 55.483 300 107.386

6 367 34.275 366 90.048

7 74 30.486 36 48.052

8 360 26.195 367 47.052

9 36 19.116 203 37.993

10 208 16.799 74 36.393

Table 4.14: The score for Bcd 9

Figure 4.14: The ROC between WOFs
and OOFs for Bcd 10

Rank
OOF WOF

index score index score

1 358 550.652 358 565.656

2 363 177.492 359 290.455

3 359 167.768 363 188.925

4 366 63.941 366 124.656

5 365 31.41 203 67.972

6 203 31.35 365 51.517

7 36 18.15 36 48.731

8 300 17.319 300 33.51

9 74 16.887 208 31.141

10 208 16.835 74 29.618

Table 4.15: The score for Bcd 10

Table 4.16 shows the significant test of the AUC performance between the WOF

algorithm and the OOF algorithm. Note, this table, “Bcd i” represents Wisconsin di-

agnostic breast cancer dataset i when i = 1, 2, ..., 10. The ranks are assigned from the

lowest to the highest of the absolute difference. The sum of all ranks for the positive

difference is R+ = 5 + 9 + 7 + 4 + 8 + 6 + 10 + 3 = 47 and the sum of all ranks for the

negative difference is R− = 2 + 1 = 3. According to Table 4.5, a level of significance is

α = 0.05 and n = 10 datasets. T = min{47, 3} = 3, which is less than the critical value

for Wilcoxon signed rank test (8) so it rejects the null-hypothesis.



36

Dataset the WOF algorithm the OOF algorithm Difference Rank
Bcd 1 0.99467787 0.98851540 +0.00616246 5
Bcd 2 0.89943977 0.71652661 +0.18291316 9
Bcd 3 0.64761904 0.59383753 +0.05378151 7
Bcd 4 0.96246498 0.95658263 +0.00588235 4
Bcd 5 0.92296918 0.92436974 -0.00140056 2
Bcd 6 0.80420168 0.63473389 +0.16946779 8
Bcd 7 0.90756302 0.89019607 +0.01736694 6
Bcd 8 0.98067226 0.77843137 +0.20224089 10
Bcd 9 0.92492997 0.92521008 -0.00028011 1
Bcd 10 0.95966386 0.95798319 +0.00168067 3

R+ = 47, R− = 3

Table 4.16: The significant test of the AUC performance between the WOF algorithm
and the OOF algorithm

Statlog (Landsat Satellite) dataset

Statlog (Landsat Satellite) dataset has 4435 instances, 36 attributes in 6 classes.

The class “1: red soil” chosen as the majority data instances in the statlog (Landsat Satel-

lite) dataset and 10 instances from the other classes are picked randomly. The generated

datasets from statlog (Landsat Satellite) dataset are performed ten times for testing.

Figure 4.15 - 4.24 and Table 4.17 - 4.26 show ROC and top-10 ranks of the statlog

(Landsat Satellite) dataset between WOFs and OOFs, sorted by its score. The bold num-

bers are marked when OOF and WOF identify these instances as outlier, correctly. Note

that the AUC of the WOF algorithm is better than the AUC of the OOF algorithm.

Figure 4.15: The ROC between WOFs
and OOFs for Statlog 1

Rank
OOF WOF

index score index score

1 1079 55.367 1079 132.469

2 1082 14.406 1077 39.964

3 1077 8.9442 714 12.947

4 1073 4.848 1074 3.774

5 622 3.747 1081 3.756

6 591 1.968 840 2.509

7 720 1.22 246 2.251

8 687 1.187 839 2.198

9 621 1.096 613 2.141

10 688 1.064 773 2.102

Table 4.17: The score for Statlog 1
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Figure 4.16: The ROC between WOFs
and OOFs for Statlog 2

Rank
OOF WOF

index score index score

1 1081 16.156 1081 82.268

2 622 3.412 1077 17.503

3 1079 3.088 613 9.007

4 591 1.546 584 5.33

5 720 1.219 372 3.547

6 687 1.117 1076 3.542

7 1080 1.112 622 2.749

8 688 1.06 246 1.847

9 620 1.03 222 1.679

10 653 1.027 295 1.667

Table 4.18: The score for Statlog 2

Figure 4.17: The ROC between WOFs
and OOFs for Statlog 3

Rank
OOF WOF

index score index score

1 1079 34.319 1079 104.952

2 1073 29.763 1073 61.845

3 1080 12.496 1080 24.698

4 1078 4.108 714 13.345

5 622 2.873 840 3.776

6 591 1.947 584 3.197

7 687 1.172 622 2.321

8 720 1.105 222 1.841

9 621 1.083 1072 1.786

10 1024 1.062 839 1.772

Table 4.19: The score for Statlog 3

Figure 4.18: The ROC between WOFs
and OOFs for Statlog 4

Rank
OOF WOF

index score index score

1 1074 60.138 1074 115.093

2 622 2.648 1081 28.207

3 591 1.859 714 11.617

4 1082 1.632 584 3.019

5 720 1.193 808 2.728

6 687 1.17 622 2.421

7 1081 1.119 222 2.27

8 688 1.063 246 1.978

9 653 1.047 591 1.771

10 620 1.026 688 1.619

Table 4.20: The score for Statlog 4
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Figure 4.19: The ROC between WOFs
and OOFs for Statlog 5

Rank
OOF WOF

index score index score

1 1081 32.024 1081 82.52

2 1073 11.174 1077 36.354

3 1080 3.998 1073 31.521

4 622 3.139 714 10.49

5 1077 2.76 1080 9.474

6 591 1.938 840 4.475

7 687 1.171 247 2.405

8 720 1.065 773 2.005

9 621 1.024 1082 1.886

10 1024 1.01 829 1.649

Table 4.21: The score for Statlog 5

Figure 4.20: The ROC between WOFs
and OOFs for Statlog 6

Rank
OOF WOF

index score index score

1 1073 7.327 1073 17.703

2 622 3.502 12 9.27

3 591 1.532 1082 8.571

4 1076 1.182 1081 8.158

5 687 1.107 622 3.95

6 1024 1.035 11 3.589

7 720 1.035 1076 2.531

8 12 0.978 591 2.197

9 621 0.937 688 1.862

10 246 0.908 687 1.269

Table 4.22: The score for Statlog 6

Figure 4.21: The ROC between WOFs
and OOFs for Statlog 7

Rank
OOF WOF

index score index score

1 1078 32.969 1078 104.426

2 1082 10.172 1080 16.983

3 622 3.748 714 11.737

4 591 1.977 1076 7.102

5 720 1.238 840 3.443

6 687 1.193 246 3.398

7 621 1.093 1075 2.488

8 688 1.072 591 1.718

9 653 1.055 687 1.499

10 620 1.039 688 1.463

Table 4.23: The score for Statlog 7
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Figure 4.22: The ROC between WOFs
and OOFs for Statlog 8

Rank
OOF WOF

index score index score

1 1082 26.781 1082 50.303

2 1076 7.42 12 9.385

3 622 2.489 1076 7.869

4 1075 1.967 622 6.26

5 591 1.826 11 3.787

6 1074 1.443 653 2.218

7 720 1.17 621 2.215

8 687 1.134 720 2.135

9 1024 1.024 688 2.025

10 653 1.004 1075 1.831

Table 4.24: The score for Statlog 8

Figure 4.23: The ROC between WOFs
and OOFs for Statlog 9

Rank
OOF WOF

index score index score

1 1082 63.815 1082 129.786

2 622 3.733 1078 25.65

3 591 1.961 714 12.26

4 687 1.184 1076 4.116

5 720 1.158 1073 3.195

6 621 1.084 613 2.35

7 1024 1.048 622 1.977

8 653 1.041 808 1.889

9 688 1.037 840 1.862

10 620 1.019 591 1.766

Table 4.25: The score for Statlog 9

Figure 4.24: The ROC between WOFs
and OOFs for Statlog 10

Rank
OOF WOF

index score index score

1 1081 53.896 1081 129.791

2 1082 14.707 1077 34.523

3 622 3.714 714 12.016

4 591 1.943 840 4.146

5 720 1.179 773 2.316

6 687 1.152 222 1.742

7 621 1.087 246 1.661

8 1024 1.005 12 1.651

9 688 0.969 808 1.474

10 246 0.94 1072 1.389

Table 4.26: The score for Statlog 10

Table 4.27 shows the significant test of the AUC performance between the WOF

algorithm and the OOF algorithm. “Statlog i” represents the statlog (Landsat Satellite)

dataset i when i = 1, 2, ..., 10. The ranks are assigned from the lowest to the highest

of the absolute difference. The sum of all ranks for the positive difference is R+ =

10 + 1 + 8 + 5 + 9 + 2 + 4 + 7 = 41 and the sum of all ranks for the negative difference
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is R− = 3+ 6 = 9. According to Table 4.5, a level of significance is α = 0.05 and n = 10

datasets. T = min{41, 9} = 9, which is more than the critical value for the Wilcoxon

signed rank test (8) so it fails to reject the null-hypothesis.

Dataset WOF algorithm OOF algorithm Difference Rank
Statlog 1 0.96968283 0.84188432 +0.12779850 10
Statlog 2 0.80550373 0.79291044 +0.01259328 1
Statlog 3 0.93740671 0.83069029 +0.10671641 8
Statlog 4 0.87667910 0.90065298 -0.02397388 3
Statlog 5 0.91557835 0.87546641 +0.04011193 5
Statlog 6 0.82658582 0.87145522 -0.04486939 6
Statlog 7 0.90550373 0.78087686 +0.12462686 9
Statlog 8 0.84057835 0.82527985 +0.01529849 2
Statlog 9 0.92966417 0.90037313 +0.02929104 4
Statlog 10 0.84953358 0.74962686 +0.09990672 7

R+ = 41, R− = 9

Table 4.27: The significant test of average AUC performance between the WOF
algorithm and the OOF algorithm

Glass identification dataset

Glass identification dataset has 214 instances, 10 attributes in 6 classes. The class

“2 : building windows non float processed” chosen as the majority data instances in the

glass identification dataset and 10 instances from the other class are picked randomly.

The generated datasets from glass identification dataset are performed ten times for test-

ing.

Figure 4.15 - 4.24 and Table 4.17 - 4.26 show the ROC curves and top-10 ranks of

the glass identification dataset between WOFs and OOFs, sorted by its score. The bold

numbers are marked when OOF and WOF identify these instances as outlier, correctly.

Note the AUC of the WOF algorithm is better then the AUC of the OOF algorithm.
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Figure 4.25: The ROC between WOFs
and OOFs for Glass 1

Rank
OOF WOF

index score index score

1 38 0.976 38 1.765

2 36 0.852 62 0.778

3 43 0.761 43 0.759

4 35 0.537 37 0.733

5 39 0.499 15 0.671

6 62 0.485 36 0.544

7 40 0.389 34 0.475

8 61 0.367 35 0.32

9 41 0.318 61 0.294

10 34 0.285 60 0.291

Table 4.28: The score for Glass 1

Figure 4.26: The ROC between WOFs
and OOFs for Glass 2

Rank
OOF WOF

index score index score

1 38 0.944 85 3.632

2 36 0.779 38 1.543

3 35 0.58 37 0.695

4 43 0.505 43 0.653

5 62 0.397 36 0.602

6 39 0.338 41 0.42

7 41 0.282 35 0.306

8 61 0.273 79 0.275

9 60 0.268 84 0.266

10 40 0.263 34 0.253

Table 4.29: The score for Glass 2

Figure 4.27: The ROC between WOFs
and OOFs for Glass 3

Rank
OOF WOF

index score index score

1 38 0.971 38 1.765

2 36 0.846 62 0.778

3 43 0.67 43 0.759

4 35 0.541 37 0.733

5 62 0.449 15 0.671

6 39 0.333 36 0.544

7 40 0.317 40 0.286

8 41 0.314 34 0.282

9 60 0.279 61 0.277

10 61 0.271 60 0.276

Table 4.30: The score for Glass 3
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Figure 4.28: The ROC between WOFs
and OOFs for Glass 4

Rank
OOF WOF

index score index score

1 38 0.96 38 1.765

2 36 0.846 62 0.778

3 43 0.665 43 0.759

4 35 0.543 37 0.733

5 62 0.437 15 0.671

6 86 0.314 36 0.544

7 41 0.313 40 0.288

8 60 0.254 35 0.281

9 61 0.236 59 0.271

10 34 0.222 61 0.258

Table 4.31: The score for Glass 4

Figure 4.29: The ROC between WOFs
and OOFs for Glass 5

Rank
OOF WOF

index score index score

1 38 0.981 38 1.765

2 36 0.818 62 0.778

3 43 0.681 43 0.759

4 35 0.575 37 0.733

5 62 0.509 15 0.671

6 39 0.383 36 0.544

7 40 0.323 34 0.475

8 41 0.32 35 0.301

9 61 0.295 61 0.294

10 60 0.263 40 0.285

Table 4.32: The score for Glass 5

Figure 4.30: The ROC between WOFs
and OOFs for Glass 6

Rank
OOF WOF

index score index score

1 38 0.961 38 1.765

2 36 0.868 43 0.759

3 43 0.66 37 0.733

4 35 0.516 62 0.721

5 62 0.468 15 0.671

6 39 0.326 36 0.544

7 41 0.316 34 0.379

8 83 0.31 35 0.321

9 40 0.292 61 0.294

10 60 0.281 39 0.254

Table 4.33: The score for Glass 6
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Figure 4.31: The ROC between WOFs
and OOFs for Glass 7

Rank
OOF WOF

index score index score

1 38 0.977 85 1.983

2 36 0.831 38 1.894

3 43 0.659 36 1.186

4 62 0.483 37 0.868

5 85 0.454 34 0.492

6 39 0.356 15 0.429

7 35 0.343 43 0.421

8 41 0.321 41 0.366

9 40 0.296 60 0.344

10 61 0.254 59 0.343

Table 4.34: The score for Glass 7

Figure 4.32: The ROC between WOFs
and OOFs for Glass 8

Rank
OOF WOF

index score index score

1 38 0.935 38 1.765

2 36 0.644 43 0.759

3 43 0.64 37 0.7

4 35 0.553 15 0.671

5 62 0.417 62 0.609

6 61 0.349 36 0.508

7 39 0.342 35 0.322

8 41 0.308 34 0.32

9 86 0.269 61 0.293

10 40 0.268 39 0.256

Table 4.35: The score for Glass 8

Figure 4.33: The ROC between WOFs
and OOFs for Glass 9

Rank
OOF WOF

index score index score

1 38 0.945 38 1.894

2 36 0.839 78 1.406

3 43 0.518 36 1.186

4 78 0.485 37 0.868

5 62 0.46 83 0.791

6 39 0.44 34 0.492

7 83 0.378 15 0.429

8 35 0.363 43 0.421

9 40 0.352 41 0.366

10 41 0.294 35 0.327

Table 4.36: The score for Glass 9
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Figure 4.34: The ROC between WOFs
and OOFs for Glass 10

Rank
OOF WOF

index score index score

1 38 0.988 38 1.765

2 36 0.832 62 0.778

3 43 0.681 43 0.759

4 35 0.554 37 0.733

5 62 0.495 15 0.671

6 39 0.364 36 0.544

7 40 0.328 34 0.475

8 61 0.325 59 0.315

9 41 0.314 61 0.294

10 60 0.287 60 0.289

Table 4.37: The score for Glass 10

Table 4.38 shows the significant test of the AUC performance between the WOF

algorithm and the OOF algorithm. “Glass i” represents the glass identification dataset i

when i = 1, 2, ..., 10. The ranks are assigned from the lowest to the highest of the absolute

difference. The sum of all ranks for the positive difference is R+ = 10+7+5+8+2+4+9 =

40 and the sum of all ranks for the negative difference is R− = 6+3+1 = 10. According to

Table 4.5, a level of significance is α = 0.05 and n = 10 datasets. T = min{40, 10} = 10,

which is more than the critical value for Wilcoxon signed rank test is (8) so it fails to

reject the null-hypothesis.

Dataset The WOF algorithm The OOF algorithm Difference Rank
Glass 1 0.52105263 0.40394736 +0.11710527 10
Glass 2 0.60789473 0.52631578 +0.08157895 7
Glass 3 0.63684210 0.57236842 +0.06447367 5
Glass 4 0.64210526 0.70789473 -0.06578947 6
Glass 5 0.62105263 0.50921052 +0.11184211 8
Glass 6 0.63552631 0.61447368 +0.02105263 2
Glass 7 0.64078947 0.58684210 +0.05394736 4
Glass 8 0.73684210 0.62368421 +0.11315789 9
Glass 9 0.70526315 0.73157894 -0.02631579 3
Glass 10 0.62236842 0.62763157 -0.00526314 1

R+ = 40, R− = 10

Table 4.38: The significant test of the average AUC performance between the WOF
algorithm and the OOF algorithm

4.2 The Efficiency of the WOF Algorithm

This section shows the running time comparison of the WOF algorithm and the
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OOF algorithm. To compare the running time for computing the outlier score, the large

size of the synthetic dataset are generated and implemented via Python programming

language. Figure 4.35 shows the running time of the random synthetic datasets and

varies the data from 100 instances to 20,000 instances. The WOF algorithm uses less

running time than the OOF algorithm.

Figure 4.35: The running time of the synthetic dataset



CHAPTER V

CONCLUSIONS

The new algorithm to compute an outlier score for each instance call the weighted

minimum consecutive pair of the extreme pole outlier factor (WOF) algorithm is pre-

sented. It is implemented using python language. The WOF algorithm does not require

any parameter to compute WOFs for all instances. From the extreme pole of the dataset,

WOF of each instance p is the weighted summation of the distance between p and its ad-

jacent instances on the core vector. Since the core vector is generated from two extreme

poles, WOF is set as the average computation from each extreme pole. If an instance

has low WOF, then this instance is identified as the normal instance. If WOF of this

instance is high, then it indicates that this instance is an outlier. From the experimental

result of three synthetic datasets, it showed that the WOF algorithm can detect the same

number of outliers as the OOF algorithm. Moreover, from the experimental results of

three real world datasets, it showed that the WOF algorithm can detect more outliers

than the OOF algorithm.

In terms of the time complexity between the WOF algorithm and the OOF al-

gorithm, the WOF algorithm has O(n2) time complexity where n be the number of

instances in a dataset. It is lower than the time complexity of the OOF algorithm which

is O(n2 logn).

However, the WOF algorithm has some weak points. If the distance between the

outlier which is the radial projection on the core vector and the consecutive pair instances

is close to the group, it is classified to be the normal. Then the distance between two

instances is calculated from the other way such that using the real distance between the

instance to the nearest instance.

Currently there are a lot of data or big data. For the future work, the WOF

algorithm could be improved to run in linear time.
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