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CHAPTER I

INTRODUCTION

Let U be a non-empty open subset in the complex plane C and denote by
HL?*(U, 1) the Hilbert space of holomorphic functions which are square-integrable
with respect to the measure du(z). There exists a function x(z,w) on U x U such

that

[f() < Rz 22w (1.1)
for all f € HL*(U, ) and 2z € U. The function x is known as the reproducing
kernel for HL*(U, u).

If 3 is the Gaussian function, i.e., (z) = 7 'e~**| then the space HL2(C, )
is called the Segal-Bargmann space, introduced by Bargmann in [3]. It is
well-known that the reproducing kernel for the Segal-Bargmann space is given by
k(z,w) = €. By (1.1), the pointwise bound for a function f € HL?*(C, ) is
given by

1f(2)]? < €‘Z|2||f||2L2(c,/3)- (1.2)

Let a > —% be a fixed real number. The Dunkl-type Segal-Bargmann

space HL?(C) is the space of holomorphic functions f on C such that

11 ey = /C () dmga(z) + /C o) diga(z) < 00

where fo(z) = 3(f(2) + f(—2)), fo(2) = 5(f(2) — f(—=)) and the densities m.q,

m, are related to the modified Bessel functions of the second kind. One can

see [2] for the history of this space. In case o = —%, we obtain the usual Segal-

Bargmann space. According to [9], the pointwise bound for a function f in the



Dunkl-type Segal-Bargmann space is given by

FEP < ez (1.3)

for all z € C. This result is due to the Cauchy-Bunyakovsky-Schwarz inequality.
Note that the pointwise bound (1.3) is of the same form as the one in (1.2).

In this work, we improve a pointwise bound for a function in the Dunkl-type
Segal-Bargmann space. Let f € HL?(C). We show that there exists a constant
C > 0 such that

Cel#l”
2
R —
[FR)F < 1+ |z[2041

for all z € C. This pointwise bound is better than the one in (1.3). This result is
obtained in Theorem 3.16.

The purpose of this work is to characterize certain smooth functions in the
Dunkl-type Segal-Bargmann space. We use the idea of Chaiworn and Lewkeer-

atiyutkul [4] to obtain our main result. Consider the differential operator

Di) =L (2)

For each n € N, define
D(D") = {f € HL;(C) | D"f € HLZ(C)}

and let C°(C) denote the set of functions in HL2(C) of which the derivatives of

all orders are in HL2(C), i.e.,
Cx(C) =) D(D").
n=1
Any function f € C°(C) is called a smooth function in HL?(C). We show that

an element f in D(D") satisfies

Clel??

1f(2)]" < (14 [2[221)(1 + |2])2




for any z € C, where C' is a positive constant depending only on f and n. Con-

versely, if a function f satisfies a pointwise bound of the form

Cel??
(1_|_ |Z‘2a+1)(1 + |Z|n+2)2

[f(2)” <

for any z € C, then f € D(D"). Hence, we obtain the characterization of smooth
functions in the Dunkl-type Segal-Bargmann space. Our main result which will
be presented in the last chapter is the following.

Theorem 4.17. Let f € HL2(C). Then f € C*(C) if and only if for each

n € N, there is C, > 0 such that

C, el
(14 2P (1 + [2])?

f(2)” <

for any z € C.

An outline of our work is as follows. In Chapter II, after reviewing some
definitions and properties of the Bessel functions, we then introduce a Hilbert
space of holomorphic functions. In particular, we give a definition of the Dunkl-
type Segal-Bargmann space. A pointwise bound for a function in the Dunkl-type
Segal-Bargmann space is established in Chapter I11. In the last chapter, we use the
pointwise bound in Chapter III to characterize smooth functions in the Dunkl-type

Segal-Bargmann space and its even and odd subspaces.



CHAPTER II

PRELIMINARIES

In this chapter, we review some definitions and properties of the Bessel func-
tions and a Hilbert space of holomorphic functions. After that we introduce the

Dunkl-type Segal-Bargmann space.

2.1 Bessel functions

We give a brief summary of the Bessel functions that will be used throughout
this work. More details can be found in, e.g., [1], [8] and [10].

The second-order differential equation

d?y | dy
22@ +z+ (2 —a?)y =0,

where 2z is a complex variable and « is an arbitrary real or complex number, is
called the Bessel equation of order a. This equation has two linearly indepen-
dent solutions. One of them is called the Bessel function of the first kind of

order « and is defined by

Jal2) = ; k!F(li—Jrle 1) (%)am'

Then J, is an analytic function of z in the plane cut along the negative real axis.

The second linearly independent solution is defined by

Jo(2) cos(am) — J_q(2) .

sin(am)

Yo (z) = (2.1)

We observe that if @ = n is an integer, then the right-hand side of (2.1) becomes



indeterminate and in this case Y, (z) is defined as a limit. By L’Hoépital’s rule,

Ya(2) = lim Ya(z) = {Wa (_1)naJ_a}

a—n T aOé (904

We call Y,(z) the Bessel function of the second kind. Next, we consider the

modified Bessel equation

Py dy
22@ + e (2 +a?)y =0, (2.2)

which differs from the Bessel equation only in the coefficient of y. Then we define
the modified Bessel function of the first kind as

ez i, (ze2) if — 7w <arg(z) < 3

e (ze 1) if T <arg(z) <m
and the modified Bessel function of the second kind as

mla(z) — 1a(2)
2 sin(am)

Ka(z) =
However, for an integer n, we define

K,(z) = lim K,(2).

a—n

The functions I,(z) and K,(2) are analytic functions of z for all z in the plane cut
along the negative real axis. Furthermore, they are linearly independent solutions
of (2.2). Note that K,(z) is also known as the Macdonald function. Next we

give some properties of the modified Bessel functions of the first and second kinds.

Proposition 2.1. 1. For z € C with |arg(z)| <7 and a € C,

e 1 2\ a+2k
]“(Z>:k§k!r(k:+a+1) (5) '

2. For Re(z) > 0 and o € R,

Ka(z):/o e~ M cosh (o) du.



3. For a, 3 € R with |a] < |8,

K. (2) < Kg(z)  for all z > 0.

4. For a, B € R such that 5 > |a|, we have

/OO Ko(s)sPLds = 2°-2T (u) r (ﬁ il O‘) .
; 2 2

. For z € C and |arg(z)| <, K_o(2) = Ku(2).

v

1
. For z € C and |arg(z)| <, K%(z) = (;)2 e’
z

D

7. For z >0 and z — 0%, the asymptotic behavior of I,(z) and K, (z) is given

by
; ol
a(z) 2‘a|F<1—|—|O[|>,
()
Ka(Z) ~ T’
2
Ko(2) =~ log-.
z

Furthermore, for z > 0 and z — o0, the asymptotic behavior of these func-

tions 1s given by

eZ

\/271'2’
() e
— ) e
2z

for all « € R. Here we use the notation f(z) ~ g(z) as z — a when

N
X
2

S
X
.

lim,,, f(2)/g(2) = 1 and in this case we say that f(z) and g(z) are asymp-

totic as z — a.

2.2 Hilbert space of holomorphic functions

In this section, we define a Hilbert space of holomorphic functions and basic

theorems about this space. The details of the proof can be found in [7].



Let U be a non-empty open set in complex plane C and p a strictly positive

continuous function on U. We denote by
e H(U) the space of holomorphic functions on U, and

o (U, i) the space of square-integrable functions with respect to measure

du(z), that is,
LU, ) = {f v 1R < oo} |

Then L*(U, p) is a Hilbert space. We write HL*(U,u) = H(U) N L*(U, i) the
space of holomorphic functions on U which are square-integrable with respect to

measure du(z), that is,

HIA(U, ) = {f eH() | /U|f(2)|2du(2) < oo} -

Here dz denotes Lebesgue measure on C = R

Remark. If f and g are continuous functions and f = g p-a.e., then f = ¢
everywhere. Therefore, we can consider the space HL*(U,p) as a subspace of
L*(U, ). To prove this, let G = {z € C| f(z) # g(2)}. Then G has y-measure
zero. Since f and g are continuous functions, G = (f — ¢)"*(C\{0}) is an open
set. If G # @, then there exists zp € G and € > 0 such that D(z,¢) C G. Since
i is a strictly positive function, p-measure of D(z,¢) is not zero, so is G which

is a contradiction. Hence, G = @. This show that f = g everywhere on C.

Theorem 2.2. 1. Let z € U. Then there exists a constant c, such that
1F(2) < el f 2w,

for any f € HL*(U, ).

2. HL*(U, i) is a closed subspace of L*(U, i) and therefore it is a Hilbert space.



It follows by Theorem 2.2 that the pointwise evaluation is continuous. This

means that for each z € U, the evaluation map T, : HL*(U, u) — C defined by

for any f € HL*(U,u) is a continuous linear functional on HL?(U, u). Thus, by
the Riesz representation theorem, for each z € C there exists a unique function

Kk, € HL*(U, u) such that
f(Z) = <fa KZ)LQ(U,,u)

for any f € HL*(U,n). We define x : U x U — C by
k(w, z) = k,(w)
for any w, 2 € U. The function & is called the reproducing kernel for HL?(U, p).

Theorem 2.3. The reproducing kernel k satisfies the following properties :

1. k(w, 2) is holomorphic in w and anti-holomorphic in z, and satisfies

k(w, z) = Kk(z,w).

2. For each z € U, k(w, z) is square-integrable with respect to measure dy(w).

3. For each z € U,

FE < 6z DN 2w

and the constant k(z,z) is optimal in the sense that for each z € U there

exists a non-zero f, € HL*(U, u) for which equality holds.

Theorem 2.4. Let {e;}52 be an orthonormal basis for HL*>(U,u). Then for all

w,z e U,

ej(w)e;(z)]| < oo

>

j=0




and the reproducing kernel for HL*(U, 1) is given by

k(w, z) = Z e;(w)e;(2).
j=0
The series converges absolutely and uniformly on compact subsets of U x U.
Definition 2.5. The Segal-Bargmann space is the space HL?*(C, 3), where

B(z) = ol

Theorem 2.6. {\j—i'} is an orthonomal basis for the Segal-Bargmann space

HL*(C, ). Therefore, the reproducing kernel for this space is given by
k(w, z) = e**
for all w, z € C.
Theorem 2.7. For any f € HL*(C,3) and for any z € C,
£ < e £1F2c.0)-

Next, we introduce the Dunkl-type Segal-Bargmann space. The definition of
this space can be found in [2] and [9]. We start by defining measures on this space.
These measures are related to the modified Bessel functions of the second kind.

Here and throughout this work, let av > —% be a fixed real number.
Definition 2.8. We define measures on the complex plane C by
Ameo(2) == Meo(2)dz

and

dMe o (2) =M (2)dz

whose densities are defined by

Ko (|2]?)]2 [
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and

1
mO,a(Z) : Ka+1(|z|2)|z|2a+2

. m2°T (v + 1)
for all 0 # z € C, where I' is the gamma function and K, is the modified Bessel

function of the second kind of order a.

Note that K,(x) is a strictly positive continuous function for all x > 0. Thus,
Me o and m, , are nonnegative functions on C. However, K, (z) diverges at x = 0.
Hence we consider the asymptotic behavior of m. , and m, , near zero. We write

Me o in the polar coordinate (z = re®) with respect to drd6:

1

2\, 2a+3
m2°T (v + 1) ).

Mea(2) =

Since the asymptotic behavior of K, (r?) as r — 0 is

K (r2) ~ 29T (Ja))
we divide « into three cases as follow:

Case 1 For o € (—%,O), we have

) o 297 (la]) _ 2% '(=a)
AT N T

K, (r

Thus, we obtain that

1 277 (=) 903
m2°l(a+1) (r?)—@
27207I0(=) 4ars

ml'(a+1)

Mea(z) =~

Case 2 For a = 0, we have

Mea(2) = Ko(r*)r® ~ = log <—) .

Case 3 For a € (0,00), we have

2y 2% (la]) _ 2°'T(a)

Kalr) ™ e = e
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It follows that

( ) ~ 1 2a71F(O‘) 20+3
Me,al? m20T(a+1) (r?)

_ o) 5

21l (a + 1)

Similarly, we write m,, in the polar coordinate with respect to drdf. The

asymptotic behavior of m, , near zero is given by

Moa(2) = —WQOT(la ey Koy (r?)r?et?

1 29I (Jo + 1) oy
720T(a+1) ()l

1 20H71T(a 4 1) 20+3
72°T(a+1) (2t
1

= —’]"7

Q

here we use the fact that +1 > 1 > 0.

In either case lim;|_,o Meo(2) = 0 and limy,|_,0 Mmoo (2) = 0. Thus, the densities
Mea(2) and my, o(z) are finite.

Moreover, K,(z) is a monotone decreasing function on (0,00) and decay as

x — oo. By Proposition 2.1 (7), we have
L
2\ R
Ka<7’ ) ~ (ﬁ) (&

as r — oo. Thus, the asymptotic behavior of m., as r — oo is

_ 1 2\,.2a+3
Mealz) = 7207 (o + 1) a(r)r
~ 1 (l)é 6—7'27,2114-3
m20T (v + 1) \ 272
— 1 6—7“2,,“2&—1—2‘

r220T20(a + 1)

Since the asymptotic behavior of K,(z) as * — oo does not depend on «, the



asymptotic behaviors of m,, and m., as r — oo are the same as follows:

1

oo Ka 2\ .. 2a+3
Moal®) = sprayy Kot
1 1
N o — i) P pRatd
20T (v + 1) \2r2
1
— 6—7"2 T2a+2.

7220t 3 (o + 1)

Notation. We denote by

e H.(C) the set of all holomorphic even functions on C, i.e.,
He(C) ={f € H(C) | f(2) = f(==) for any z € C},

e 1,(C) the set of all holomorphic odd functions on C, i.e.,

Ho(C) = {f € H(C) | f(2) = —f(=2) for any z € C}.

For any function f: C — C, we define f., f, : C — C by

FRELCES (R
and
=10 e

12

We call f. and f, the even part and the odd part of f, respectively. Note that

f=f.+/f,and f, = f, if and only if f = 0. Moreover, a function f : C — C

can be written as a sum of the even part and the odd part in a unique way.

If f is a holomorphic function on C, f has a power series expansion

o) = Y

n=0

for any z € C. In this case, we see that

fo(2) = aznz™
n=0
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and
fo(2> = Z Cl2n+122n+1
n=0
for any z € C.

Definition 2.9. The Dunkl-type Segal-Bargmann space HL?(C) is the space
of holomorphic functions such that f. € L*(C,m.,) and f, € L*(C,m,,). We

define the inner product on HL?(C) by

(f, 9>HL3(<C) = <f€7g€>L2((C,me,a) + <f0790>L2((C,mo,a)

for all f,g € HL2(C). We also define the even subspace of HL?(C) by
HL(C,mea) = He(C) N L (T me )

and the odd subspace of HL2(C) by
HLA(C,myw) = Ho(C) N L*(Cymy ).

Then (HL2(C), (-, ) 312 (c)) is an inner product space over C. In fact, it is the
(internal) direct sum of HL?(C, m.,) and HL?(C,m,,) since the zero function is

the only function that is both even and odd.

1

In particular, if @ = —35, we obtain

1 1
22 923 T 2 e 1 e
e 32 = o K 4P = oy (57 ) e = e

’ WF(%) N 7T(7T)% 2|z|? T
and
22 923 3 1
Mo-1(2) = = K (|22 = ( ”2) oo = Lot
o mI(3) 2 m(m)z \2|2| -

which follow from Proposition 2.1 (5) and (6). Thus, the Dunkl-type Segal-

Bargmann space becomes to the usual Segal-Bargmann space.

Theorem 2.10. HL?(C,m.,) and HL?(C,m,,) are Hilbert spaces.
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Proof. Let

HL*(C,meq) = H(C) N L*(C,meq)

and

HL*(C,mpa) = H(C) N L*(C,myq).

By Theorem 2.2, HL*(C,m.,) and HL?*(C, m,,) are Hilbert spaces. Thus, it
suffices to show that HLZ(C,m.,) and HL2(C, m,,) are closed subspaces of
HL*(C,meqo) and HL*(C,m,,), respectively. Let (f,) € HL*(C,m.,) and
f € HL*(C,m.,) such that f, — f in HL*(C,m.,). It remains to show that f
is an even function. Let z € C. By Theorem 2.2, there exists a constant ¢, such

that

[fu(2) — f(2)] < Cz”fn_fHLZ((c,mE’a) —0 asn— oo.

This shows that f,,(z) — f(z). Since f, is an even function, we have

J(2) = lim fu(2) = lim fu(—2) = f(~2).

n—oo n—o0

Hence, f is an even function. The proof for HL2(C, m, ) is similar to HL?(C, m, )

hence we omit the proof. O

Corollary 2.11. The Dunkl-type Segal-Bargmann space HL%(C) is a Hilbert

space.

Proof. The proof follows from the fact that the direct sum of two Hilbert spaces

is also a Hilbert space. ]



CHAPTER III

POINTWISE BOUNDS

In this chapter, we first obtain a pointwise bound for a function in the even
and odd subspaces of the Dunkl-type Segal-Bargmann space. Then a pointwise
bound for a function in the Dunkl-type Segal-Bargmann space is obtained from

the pointwise bound for its even part and odd part.

Proposition 3.1. If f is an entire function with f(z) =Y - a,2" for all z € C,

then
2
£ 1502 @) = D lan]*dn()
n=0
where
20 (|12 +a+1
ooy < P (12 +at 1)
['(a+1)
Proof. Note that
||f||?+¢Lg(C) = ||f€||%2((c,me,a) + ||fo||%2(<c,mo,a)-
We will show that
er“%%c,me,a) = Z |azn|*dan ()
n=0

and
||fOH%2(C,moﬁa) = Z |a2n+1’2d2n+1(a)-
n=0
Let R € [0,00) and

M(R) = / R dmea(:)
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Then

n=0
oo 00
— - 2n=2m
- Z A2nA2m / £z dme a(z)a
n=0 m=0 |2|<R

by the uniform convergence of the power series of f on compact subsets of C. We

write z = re?. Then

oo oo 1
M(R) = Zzagnm/ P Ko (|2) |2 dz

n=0 m=0 |o|<R m2eT(a + 1)
2
1
a2na2m/ / 2n+2m 12(n m)0 - Ka(’f’2>7’2a+27’ drdb
P 2T 1)
. A2n02m S 0 R2223 2
:ZZ—/ gi2n=m) d@/ pentEmAeRatS i (r?) dr
2T (a+ 1) 0
n=0 m=0
> 27ag, Ao, /R Ant20+3 2
— _ artanin n+2o Ka d
—~m2eT(a 1) ), (") dr
= f: |a2n’2 /R(T2>2n+a+lK (r2)2r dr.
—2T(a+1) Jy
Now, using the monotone convergence theorem twice, we have
||fe||%2(<c,me,a) = P}EEOM(R)
— lim f: |CL2n‘2 /R(T2)2n+a+1Ka(T2)2T dr
R—o0 =0 QQF(CM ‘l— 1) 0

[e.e]

|a2n‘2 /Oo 212 1 2
— (r?)= et K, (r?)2r dr.
; 2T+ 1) J,

By Proposition 2.1 (4), we obtain that
/ rAnt2e2 )l (P 2r dr = 22" T (n+ )T (n+a+1).
0

Hence,
oo
1fellZ2(cameny = D laon] don()
n=0

Similarly, we have

o0

||fOH%2(C,m07Q) = Z |a2n+1’2d2n+1(a)-

n=0
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It follows that
£ 2 ey = D lan|*dn(c). O
n=0

Lemma 3.2. d,(a) > n! for alln € NU{0}.

Proof. For n = 0, we have 0! = 1 = dy(«). Let k € N. Assume that dy(«) > k!.

We consider

2k+1 L L _|_ +
dk+1(a) 2 ( « )

If k is even, then k = 2m for some m € N. Thus,

22mAl| 2l I (| 222 | + 0 4 1)
I'(a+1)
22 imI T (m+ o+ 2)
['(a+1)
22"l (m+a+ 1D (m+a+1)
['(a+1)
= 2(m+a+ 1)dyy ()

dpy1(a) =

Vv

2(m + a+1)(2m)!

Vv

Cm+1)(2m)! = 2m+1)! = (k+ 1)L

If £ is odd, then n = 2m + 1 for some m € N. Thus,

22m+2L2m2+2J!F (I_Qm;-?)J Lo+ 1)

d pum
k1 () T(a+ 1)
22 (m 4+ DIT (m 4+ o+ 2)
['(a+1)
= 2(m + 1)d2m+1 (CY)
> 2m+1)2m+1D!=2m+2)! = (k+ 1)
By mathematical induction, d,(«) > n! for all n € NU {0}. O

Proposition 3.3. Let (a,)5, be a sequence of complex numbers such that

> o lanl?dn(@) < co. Then the power seriesy -, an,z" converges absolutely for
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all z € C and hence the function f(z) = Y " a,z" is an entire function. More-
over, > 7 anz" converges to f in HL2(C). Hence the set of complex polynomials

is dense in HL%(C).

Proof. Let z € C. By Cauchy-Bunyakovsky-Schwarz inequality, we obtain

lan| = 3 lanlVafa)
n=0 n=0 dn(CY)
~ 1/2 /oo o 1/2
< (o) (£25)
1 1
By Lemma 3.2, we have n! < d,(«) and so < —. Then
d,(a) — n!
> ‘Z|2n > |Z‘2n 2
< _ z
Zdn(@) <. ! €

Thus, for each z € C,

o o 1/2
a, 2" < a,?d, (« 2 < o,
D a2 < Y lanl?d,

Therefore, >~  a,z" is absolutely convergent for all z € C.

Next, we define a sequence (Fy) by

for any z € C. Then, by Proposition 3.1, we have

N
1Py = Ful3ze = Y lanl’di(a) >0 as M,N — .
n=M+1

That is, (Fly) is a Cauchy sequence in HL?(C). Thus, (Fy) converges in HL?(C)
to some function, say g. Then there is a subsequence of (Fl) converging pointwise
almost everywhere to g. Since (Fly) converges pointwise to f, g = f almost
everywhere. This implies that ¢ = f in HL2(C) and so (Fy) converges to f in
HLE(C). O
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Proposition 3.4. Let f € H(C). Then f € HL%(C) if and only if there exists a
sequence (a,)2%, of complex numbers such that 320 |a,|” dn(a) < oo and f(z) =

Zzozo a,z" for all z € C.

Proof. Let f € HLZ(C). Then f is an entire function and || f[[3,,2 ) < co. Thus,
there exists a sequence (a,)5>, of complex numbers such that f(z) =Y " a,2"
for all z € C. By Proposition 3.1, we have 377 [a,[*dn(@) = || fII3,12(c) < oo
On the other hand, suppose that f(z) =Y o ja,2" and Y - |a,[*d, (@) < oo.
It follows from Proposition 3.3 that f is an entire function and so, by Proposition

3.1, we have || f[|3,2 ) = >nso |an|” dy(@) < co. Hence, f € HLA(C). O

By direct computation, we obtain a pointwise bound for a function in the
Dunkl-type Segal-Bargmann space. This pointwise bound is of the same form as

the pointwise bound of the Segal-Bargmann space.

Proposition 3.5. For any f € HL2(C) and for any z € C,
£ < €™ fllanz -

Proof. Let f € HL2(C) and z € C. From the proof of Propositions 3.3, we have

@< Y lanz"]
n=0

o 1/2
(Sonsi) o

n=0

IN

€‘Z|2/2HfHHL§(C)'
This finishes the proof. O

Proposition 3.6. Let n € NU{0}. Define

for all z € C. Then {e,}22, is an orthonormal basis for HL?(C).
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Proof. We note that
(=", Zm>HLg(<C) = d,()0nm
where 6, ,, is the Kronecker delta function. This show that {2"}2° is an orthog-

onal set in HL2(C) and so {e,} -, is an orthonormal set in HL2(C). To prove

that it is complete, let f € HL?(C) be such that

<f7 6m>’;—[[%((c) = 07

for all m € NU {0}. Write f(z) = 3°° a,2" where 0% |an|? du(e) < oo.
It follows from Proposition 3.3 that Y - ja,z" converges in HL2(C). By the

continuity of an inner product, we have

(2
= SR ERE T 71(e
= V() .
am m m
= — (M, z
\/m< >HL3((C)
a
= " d,(«
7o) ()

Hence, a,,+/dpn(a) = 0 for all m € NU {0}. Since dp,(a) > 0, a,, = 0 for all

m € NU{0} and so f = 0. O

Proposition 3.7. The reproducing kernel of HL2(C) is given by

k(w, z) = Z ZZL(Z)

n=0

for all w, z € C.
Proof. The proof can be done by Theorem 2.4 and Proposition 3.6. O]

Proposition 3.8. Let n € NU{0}. Define

2n

un(2) = —_d2n ©

for all z € C. Then {u,}2, is an orthonormal basis for HL?(C,m.).
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Proof. The proof is similar to that of Proposition 3.6, so we omit the details of

the proof. O

Proposition 3.9. The reproducing kernel of HL:(C,m..) is given by

for all w, z € C. In particular,

2°T (o + 1) I, (]2]%)
Ke(z,2) = BEE

for all z € C.

Proof. From Theorem 2.4 and Proposition 3.8 we obtain that the reproducing

kernel of HL?*(C,m.,) is given by

(e}

Ke(z,2)

i |z[*"T(a + 1)

=22l (n +a+1)

2°T (o + 1) I, (]2|%)
|Z|2a

for all z € C. O]

Corollary 3.10. For any f € HL%(C,m..) and for any z € C,

2°T (v + 1) I (|2)%)
|f(2)|2 S |Z|2a Hf||%2((cvme,a).

Proof. The proof follows from Theorem 2.3 (3) and Proposition 3.9. [

By estimating the asymptotic behavior of the modified Bessel function, we

obtain in Corollary 3.10 in a more familiar form.
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Theorem 3.11. Let f € HL*(C,m.,). Then there is a constant C > 0 such that

Clol=P/2
(1 + ‘Z|2a+1)1/2

F(2)] <

for any z € C.

Proof. Let f € HL*(C,me.4). It follows from Corollary 3.10 that

2°T (a+ 1)1, (]z|%)

|Z|2a

f()I <

1F1Z (€.

for any z € C. We note that the asymptotic behavior of the modified Bessel

function of the first kind I,(|2|?) as |z| — oo is given by
€‘Z|2

V27|22

Thus, there exists R > 0 such that for all z € C with |z| > R

La(|2*) =

Lo(|2P%)

e‘z|2

\/ 27|z|2

-1 <1,

which implies that

N

(I12[*)

elzl?

\/ 27|z|2

0< <2

and thus

%¢l2l?

RVG=FEl

La(l2I*)

By Corollary 3.10, we obtain

[f()1F < 2°T(a+ DI 1122 @me )

(0% 2€|Z|2 — sz
< 2°T(a+1) (W) 272N F 122 om0
20t30(a + 1) [ el )

ﬁ |Z|2a+1 ||f”L2((C,me,a)

for all z € C and |z| > R. This implies that

Ael®
f(2)] < |Z|2—0‘+1
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2%t 31 (at1
for all z € C and |z| > R, where A = %HfH%Q((C,me,a)' Note that

2

<
~ 14z

SN

for any > 1. We choose S = max{R, 1}. Hence, we obtain

2 Ael#l?
2
R —
|f(Z)| — 1+|Z|2a+1

(3.1)
for any z € C and |z| > S. Since f is a continuous function and {z € C : |z| < S}

is a compact set, f is bounded on this set. That is, there exists M > 0 such that
f(z)] < M

1212 /2 . .
B 7z 1s continuous on the

for any z € C and |z| < S. The function z — Ty

set {z € C: |z] < S}, so it has the minimum value, say L. Thus, we have

elo2/2
f(2)] < M = Mor< %( ) (3.2)

I L\ (1+ [zpet)1/2

forall z € C and |z| < S. From inequalities (3.1) and (3.2), there exists a constant

C' > 0 such that
Clol2/2

1f(2)] < (14 |z[2+1)1/2

for all z € C. O]

Next, we turn to the odd subspace of the Dunkl-type Segal-Bargmann space.

We will state its analogous results to the even counterparts.

Proposition 3.12. Let n € NU{0}. Define
2n+1
val(2) = —
dapy1(cv)

for all z € C. Then {v,}2, is an orthonormal basis for HL2(C,m, ).

Proof. The proof is similar to that of Proposition 3.6. m
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Proposition 3.13. The reproducing kernel of HL?(C,m,,) is given by

( ) o w2n+122n+1
RolW, 2 ) = —_—
o n—=0 d2n+1 <a>

for all w, z € C. In particular,

20T (v + 1) Ioi1 (|2]?)
Ko(2,2) = |2[2 -

for all z € C.

Proof. By Theorem 2.4 and Proposition 3.12, we obtain that the reproducing

kernel of HL?(C,m,,) is given by

o9 —
w2n+1 Z2n+1

Ko(w, z) = “di(a)

n=0

for all w, z € C. By Proposition 2.1 (1), we obtain that

> ’Z‘4n+2
KolZ, 2 _—
(=:2) 0 dap11(x)
B i 2|20 (a0 + 1)
B = 2201l (n+ a +2)
o 2°T(a+ D Ias1(]2)?)
‘Z|2a
for all z € C. O]

Corollary 3.14. For any f € HL%(C,m,,) and for any z € C,

2°T (o + Dlara(]21%)

|Z|2a

f(2)” <

112 (€ m)-

Proof. The proof follows from Theorem 2.3 (3) and Proposition 3.13. O

From Corollary 3.14, we obtain a pointwise bound for a function in the space
HL2(C,m,q). This pointwise bound is given in terms of the modified Bessel
function of the first kind of order o + 1 which differs from the pointwise bound
for a function in HL?(C,m.,). However, the pointwise bound estimation for
functions in HL?(C, me ) and HLZ(C,m, ) are the same because the asymptotic

behavior of the modified Bessel function for large |z| does not depend on the order.
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Theorem 3.15. Let f € HL*(C,m,,). Then there is a constant C > 0 such that

Clel#?/2
1f(2)] < (14 |z[2+1)1/2

for any z € C.
Proof. Since the proof is similar to Theorem 3.11, we omit the proof. O]

Now we already obtained pointwise bounds for even part and odd part of
function in the Dunkl-type Segal-Bargmann space. The pointwise bound is better
than the one in Proposition 3.5. We then use this to obtain a pointwise bound

for a function in the Dunkl-type Segal-Bargmann space.

Theorem 3.16. Let f € HL2(C). Then there is a constant C' > 0 such that

Clel=2/2

|f(2)] < (1 + |z[2+1)1/2

for any z € C.

Proof. Let f € HL2(C). Then we can write f(z) = f.(z) + f,(z) for any z € C.

By Theorems 3.11 and 3.15, there exist constants C, Cy > 0 such that

IF)] < 1fe(@)] + [fo(2)]
Cyel?/2 Coel2/2
< +
(1+|Z’20¢+1)1/2 (1_|_|Z|2a+1)1/2

for any z € C. m



CHAPTER IV

CHARACTERIZATION THEOREMS

In this chapter, we will prove the characterization of smooth functions in the
Dunkl-type Segal-Bargmann space and its even and odd subspaces in terms of the
pointwise bound. Before proving this, we first study relations of the domain of

the Dunkl operator, the multiplication operator and the differential operator.

4.1 Even subspaces

We consider the Schrodinger radial kinetic energy operator D, :

(Deaf)(2) = L) 4 (20‘ - 1) @

:@ 2 dz

and the multiplication operator by 22
(M?f)(2) = 2° ().
Definition 4.1. For each n € N, we denote the domains of D, and M*" by
D(Dio) = {f € HLI(C,meo) | D2of € HLE(C, mea)}

and

D(M*") = {f € HLA(C,meq) | M*"f € HL2(C,m.q)}.

Remark. Cholewinski [5] proved that the operators D, , and M? are densely
defined, for the set of even polynomials is contained in each of these domains, and

that they are adjoints of each other.
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Proposition 4.2. D(D,,) = D(M?).

Proof. Let f € HLZ(C,meq) with f(2) = >0 ag,2*" for all z € C. Then

M8

(Deaf)(z) = [(2n)(2n — 1) + (200 + 1)(2n)] agn 2> 2

S
Il
o

hE

[4n2 —2n +4an + Qn] Qg 22" 2

S
Il
o

I
WK

[An(n + a)] ag,2*" 2

3
Il
o

and (M?f)(z) = Y 07 as,2*""2. We note that
dan (@) = 4n(n + a)day,_o().

By Propositon 3.1 and the above equality, we have

IDeaflF2@my = D 14n(n+ a)ag|” dan—o(a)
n=0
= ) 4n(n+ a)|az,do(a)
n=0
and
HMQfH%?((C,me,Q) - Z |a2n’2d2n+2(a)
n=0
= Z 4(n+1)(n 4 a + 1)|ag,|*don(a)
n=0
= Zél(nz +na+n+n+a+ 1)|ag,*dy(a)
n=0

= [An(n + o) +4(2n + a + 1)] |agn|*don ().

n=0

Since 4(a + 1) = dy(a),

1M Fll (e me ) = 1 Pecaf 2 (me ) + D 81laznl*dan (@) + da(@) | fl1Z2(c e -

n=0
It is clear that || M?2f ”2L2((C meo) < 00 implies that the right-hand side of the

above equality is finite and so || D qf ||%2(C meo) < 00- Conversely, we suppose
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that HDe,afH%z(c,mM) < oo. Then Y > 4n(n + a)|ag,|?ds,(a) < oo and so
D oo 8nlaz,[*dan (@) < oo. It follows that | M* £z, ) < 0o. Hence, D(Dn) =
D(M?). O

Corollary 4.3. For each n € N, D(D? ) = D(M*").

Proof. By Proposition 4.2, we have D(D.,) = D(M?). Let k € N. We assume

that D(DF ) = D(M?*). Then

feDDEY) < DI'f e HLZ(C, meq)

!

D.of € D(D’;a) = D(M?)

!

M (Deof) € HL2(C,meq)
= 2% (Donf) € HLE(C,mey).
We claim (D, of) € HL*(C,m.,) if and only if D, (2% f) € HL*(C,meq).

Since f € HLZ(C,mey), we can write f(z) = Y 2 as,z°" for all z € C. From

the proof of the previous Proposition, we have

(Deof)(z) = Z 4n (n + a) ag, 2" 2.

n=0
Hence,
e af Z 4n n + O{ 2n+2k—2
and
D, ..(z 2kf 24 n+k)(n+k+a)as k=2

n=0

By Proposition 3.1,

122 (Deaf Ni2@mey = D 160% (n + a)* |agn|*dan-2p-2 ()

n=0

and

1Dea(z* All72(emeny = D 16(n+ k) (n+ k + a)? [azn *dan y21-2(cv).
n=0
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Thus, [[De,a(z** )Z2cm,.) < o0 implies [[2**(Deaf)l72cm, ) < 00 On the

other hand, we assume that [|z**(De.o f)||72(cm, ) < 00 We consider

(n+k)Pn+k+a)? = (0®+2nk+k) [(n+a)*+2(n + )k + k]

= n*(n+a)? +2n%(n + o)k +n’k* + 2n(n + o)’k

+4n(n + a)k® +2nk* + (n 4+ a)?k* + 2(n + )k + k*

< Kn*(n+a)?

where K is a constant depending on k. It follows that || De.a (2% f)]|72(

Cyme,a
Hence,

f € D(DEL) Dea(2* f) € HLZ(C,me.0)
2" f € D(D o) = D(M?)

22k f e ’HL?((C, Meo)

[

M) £ e HI2(C,me.,)

[

f c D(MQ(]C-FI)) '

By mathematical induction, we have that D(D?,,) = D(M*") for all n € N.

Theorem 4.4. Letn € N and f € HL*(C,meq).

1. If f € D(D?,,), then there is C' > 0 such that

Cel?l?
(1 + [2[2+1) (1 + [2]>)?

[f(2) <
for any z € C.

2. If there is C' > 0 such that

Clel??

f(2)]” < (1 + |z]22+1) (1 4 | 2|2 +D)2

for any z € C, then f € D(DZ,,).

)<OO.

]

(4.1)
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3. fe€ ﬂ D(D?,) if and only if for each n € N, there is C,, > 0 such that

C, el
? <
T (LA 2P+ [2P)?

/(2)
for any z € C.
Proof. Let n € N. By Corollary 4.3, we have
feDDD!,) < feDM™) < 2"f € HLL(C, meq).

1. Let f € D(D},). Then 2*"f € HL?(C,meq). By Theorem 3.11, there exist
constants C7, Cy > 0 such that
A+ [PNf = |f)]+ 2" ()]

O el?12 Cyel/2
(1 + |Z|2a+1)1/2 + (1 + |Z|2a+1)1/2

for any z € C. This implies that there is C' > 0 such that

|2[2/2
1f(2)] < 2 €f1 2 2
(14 [z )12(1 + |2[27)

for any z € C.

2. Assume that the inequality (4.1) holds. We will show that [|2*" f||L2(cm...)

is finite. Then we consider
I s emeny = [ 1P mea(z) d:

C‘Z|4ne|z|2
< e,x d
< | L+ e L+ e o) 42

T e
- / / 1 + 7/»204+1 1 4 r2(n+1))2 Me,a (T)’r‘ drdf

T4ner
= 27'{'0/0 (1 +T2a+1>(1 +T2(n+1))2me,a(r)rd7’.

First, we consider the behavior of integrand near oo. For any o > —%, the

asymptotic behavior of m. o as r — oo is

1 2
e r 7,2a+2.

Meal2) =
ol(2) 722073 (o + 1)
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Thus, there exists a constant A > 0 such that for all r € (S, 00), when S is

large enough, we obtain

oo 704716742 me a(r) oo Apint2a+2
d rdr < dr
S (1 + r2a+1)(1 + T2(n+1))2 S (1 + r2a+1)(1 + r2(n+1))2

<1
A/ —SdT
s T

< 0oQ.

IN

Next, we observe that

S 7,4ner2me’a(r) P
0 (1 + 7a2a+1)<1 + 7/.2(7L+1))2T T <00

because the integrand is continuous function on compact set [0,.S]. Hence,

2% F1Z2(cm, oy < 00 and thus, f € D(D,).

3. The proof follows from 1 and 2. O]

4.2 (Odd subspaces

We define the operators D, , and M? by

(Dua)) = 0+ a+ 1) (1)

z
and

(M?f)(2) = 2 f(2).

Definition 4.5. For each n € N, the domains of operators D" _and M?" are

o0,a

defined as follow
D(D},) ={f € HL(C,moa) | Dy f € HL(C,moq)}

and

D(M®) = {f € HLA(C,mya) | M*"f € HLZ(C,m4p0)}
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Remark. The operators D, , and M 2 are densely defined on ?—[L?)(C,mo,a), for
the set of odd polynomials is contained in each of these domains, and that they
are adjoints of each other.

Proposition 4.6. D(D,,,) = D(M?).

Proof. Let f € HLZC,m,,) and write f(z) = Y 0 as,112°"1* for all z € C.

Then

(Doaf)(2) = [(2n+1)(2n) + (20 + 1)(2n)] azp4a 2™

)

[
hE

[4712 + 2n + 4an + Qn} a2n+1z2"_1

3
I
o

[
NE

[4n2 + 4an + 4n] a2n+1z2"_1

i
o

[An(n + a + 1)) agn 122"

I
NE

3
I
o

and (M?2f)(z) = >_07 , agn+12°" 3. Note that
d2n+1 (Oé) =4n (n + o+ 1) dgn_1<Oé).

By Proposition 3.1 and the above equality, we obtain that

Do Baemsy = 3 1001+ o+ Dzl dons (@)
n=0
= f: 4n(n +a+ 1)|a2n+1|2d2n+1(a)
n=0
and
||M2f||%2(<c,mo,a) = i |azn11[*dant3(c)
n=0

= Y A+ D) (n+ a+2)|agn | *dansa(a)
n=0

= Z 4(n® +na+2n+n+ a+ 2)|ag 1| danir (@)

n=0
oo

= [An(n 4+ o+ 1) +4(2n) + 4(a + 2)] |azns1 > dons1 ().

n=0
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Hence, we obtain

||M2f||%2(<c,mo,a) = ||D07af||%2((c,mo7a) + 28”|a2n+1|2d2n+1(a)
n=0

+ 4(a + 21 fllZ2cmon)-

Clearly, if | M2f ||2LQ(C7moya) < 00, then the right-hand side of the above equality
is finite and so HDo,afH%?((C’moya) < 00. On the other hand, we suppose that
Do flI72(cm, .y < 00 Then 3502 4n (n + a + 1) [azni1[*danti () < co. Thus,
D om0 8nlazp1|*danyi (@) < oo and so [|[M2f]|7c,y, ) < 00 Hence, D(Dy4) =

D(M?). O
Corollary 4.7. For each n € N, D(D},) = D(M*").

Proof. By Proposition 4.6, we have D(D,,) = D(M?). Let k € N. Now, we

assume that D(D} ) = D(M?*). Then

feDDE) — DE'feHLAC m,.)
< D,of €D(D},) =D(M*)
= M*(Dyof) € HLA(C,m,0)

= 2M(D,uf) € HLA(C,mpa).

We claim that 22*(D, . f) € HL2(C,m, ) if and only if D, ,(2?* f) € HL2(C,my.4).

From the proof of Proposition 4.6, we have

( oaf 2471 n+a+1)a2n+122
n=0
Thus,
(D oaf)(z 2471 (n+ a4 1) agy 222!
n=0
and
DOa( Qkf 24 n+k)(n+k+a+1)ag L 2n+2k—1

n=0
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By Proposition 3.1,

12 (Doaf ) F2(Cmyy = D 1607 (n+ @ + 1)% [azn 1 [*dongar-1(a)
n=0

and

1Do.a (% NIZ2(my ey = D 1600+ k) (04 k 4 + 1) [azas [Pdansan— ().

n=0
Thus, if || Do, (2% )72, .y < 005 we have [[(2* (Do f)IZ2(cm, .y < 00 Next,

consider

(n+k)Pn+k+a+1)? =0 +2nk+k*) [(n+a+1)>+2(n+a+ 1)k + k]
=n’(n+a+1)*+2n*(n+ a+ Dk + n’k?
+ 2n(n+a+ 1)’k +4n(n + a + 1)k* + 2nk®
+ (n+a+1)%k* +2(n+a+ 1)E +

< Kn*(n+a+1)?

where K is a constant depending on k. Suppose ||22k(Do7af)||%2( < 00.

(Camo,a)

Using the above inequality, we obtain HDQO[(z?’“f)H%Q((C o) < 00. Hence,

feD(DED Dyo(22 f) € HLA(C,m,0)
2 f e D(D,,) = D(M?)
222 f e HIA(C, Mo o)

M) f € HI2(C,mep)

[ A

f c 'D(MZ(]C—H)).

Thus, D(DETY) = D(M?* D). By mathematical induction, we conclude that

D(D},) = D(M?>") for all n € N. O

From Corollary 4.7, we obtain that the domains of the operators D!, and M?*"

are equal. We use this to characterize functions in the domain of Dy .
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Theorem 4.8. Letn € N and f € HL:(C,m,,).

1. If f e D(D},,), then there is C' > 0 such that

Cel?l?
(1 + [2[2+1) (1 + [2]>)?

[f(2) <
for any z € C.

2. If there is C' > 0 such that

Cel#l

TS T ppm @ apemy

(4.2)
for any z € C, then f € D(D7,,).

3. fe ﬂ D(Dy ) if and only if for each n € N, there is C,, > 0 such that

n=1

B Crel”

HOF = T e

for any z € C.
Proof. Let n € N. By Corollary 4.7, we have
feDD;,) < feDM™) < 2*"f € HLXC,mya).

1. Let f € D(D},). Then 2*"f € HL2(C,m,4). By Theorem 3.15, there exist

constants C7, Cy > 0 such that

L+ PR = [fE)]+ 1" f(2)]
Cyel?/2 Coel2/2
(1 + |Z|2a+1>1/2 + (1 + ‘Z|2a+1)1/2

for any z € C. It follows that there is C' > 0 such that

Clelzl2/2

|f(2)] < 1+ ’z|2a+1>1/2(1 + |22

for any z € C.
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2. We assume that the inequality (4.2) holds. By assumption, we have

||Z2nf||%2((C,mo,a) = /C|Z2nf(z)|2mo,a<z) dz

C‘Z‘4n€\z|2
< 0,a d
— / 1 + |Z‘2a+1)(1 + |Z|2 (n+1) ) Mo, (Z) <

,r,4n€r
- 1 + r20¢+1 1 + 7,,2(”+1))2 mo,a(r)r drdf

_ C T4ner ;
= ™ 1+7,2a+1 1+T2(n+1))2mo,a(7’)r T.

Since the asymptotic behavior of m,, as r — oo is given by

1
- - €—r2r2a+2
72202 + 1)

Moa(2) = ,

there is a constant A > 0 such that for all € (S,00), when S is large

enough, we have

/ * e 1m0 (1) dr < / * Apint2o2 J
rar T
s (1 + r2a+1)(1 + 712(n+1)>2 - S (1 + T2a+1)(1 + r2(n+1))2

< A/ %dr
s T

< 0oQ.

Next, consider

o r4"e’"2mo7a(r) p
0 (1+r2a+1)(1+r2(n+1))2r r< oo,

since the integrand is continuous on [0, S]. Hence, ||z*" f H%z(c o) < 00 and

so f € D(Dy,).

3. The proof follows from 1 and 2. O

4.3 The Dunkl-type Segal-Bargmann space

The Dunkl operator A, and the multiplication operator M are defined by

f(2) —Qf(—Z))

Maf(z) = Py 204 (

dz z
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and
(M f)(2) = 2f(2).

Proposition 4.9. If f is an entire function, then

W = e+ 2 (L) - 2t (E 210D,

Proof. We calculate

2 a 2L () + 2L (—2) — (f(2) — f(—=
(N2N)(E) = flzfu)ﬂ;l(dz”* el=2) — () = S ”)

L2041 <ﬁ(z)+ 2 + 1 (f(Z)—f(—Z)>)

2z dz z 2
B 2042—21— 1 (%(_2) B 204:— 1 (f(—z)2— f(z)))
_ i‘f(zwm;l (2%9 . fif) +f(2_22))
_ Zif(z)+2“j1 (;Z—J;(z)) - By (f(z) _Qf(_z)). =

Corollary 4.10. If f is an even entire function, then

Wi =y (2‘” 1) ae.

T d2? z dz

Proof. Since f is an even function, this statement follows immediately from Propo-

sition 4.9. N

From the above corollary, we see that the Schrodinger radial kinetic energy
operator D, ,, mentioned in Section 4.1, is the Dunkl operator composed with
itself and restricted on the even subspace HL?*(C,m.,). Moreover, if we restrict
to the odd subspace HL2(C,m,,), the composition of two Dunkl operators is the

operator D, ,, mentioned in Section 4.2.

Corollary 4.11. If f is an odd entire function, then

02N = e+ a1 (1)),

z z
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Proof. Let f be an odd entire function. Then f(z) = —f(—z2) for all z € C. Thus,

(A2)(z) = dz? ( )d_f _2@;1(f(»2)—2f(—2))

- dz2 ( ) 20; 20

= d—;;(z)+(2a+1)%<@). 0

z

by Proposition 4.9, we have

Definition 4.12. For each n € N, we denote the domains of A, and M? by
D(Ay) ={f € HLL(C) | ALf € HL(C)}
and
D(M") ={f € HL(C) | M"f € HL;(C)}.

Remark. According to Sifi and Soltani [9], the Dunkl operator A, and the mul-
tiplication operator M are densely defined operators on HL?(C) and are adjoints

of each other.
Proposition 4.13. D(A,) = D(M).

Proof. Let f € HLZ(C) and write f(z) =Y o a,z" for all z € C. Then

(Aaf)(z) = Znanz”*1 + (2a+1) (#) a4,

n—
o0

=y [n + (20 +1) (#)} 2!

n=1

and (M f)(z) = >_07  anz"tt. We note that

dpir () = {n +1+(2a+1) (#)1 dy(a). (4.3)

Using Propositon 3.1 and the above equality, we obtain

HAang-LL?l((C) = Z
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and

8

1M Fl302c) = D lan] dnir ()
0
n+ 14 (20 +1) (#)] lay [2d, ()

nt 14 (2a+1) (1 - (—1)”2+ 2(_1)71)1 lan 2, ()

n

WE

i
o

NE

3
I
o

hE

—n + (2a+1) (#) +1+ 20+ 1)(—1)”} || ().

3
Il
)

Hence,

1M f 1z 0) = 18af Bz + 1 Bz + o+ 1) Y (—1)"|an*dn(a).
n=0

Thus, if HMinLLa(C) < o0, then HAOéng-[,La((C) < o0o. Conversely, suppose that
[Aaf1I3,12 ) < o0- Because of the absolute convergence, 37 ;(—1)"[a,*dn (@) <

oco. Hence, [|[Mf|3,2 () < 0o. This shows that D(A,) = D(M). O
Corollary 4.14. For each n € N, D(A?) = D(M™).

Proof. By Proposition 4.13, we have D(A,) = D(M). To show that D(Al) =

D(M™), let k € N and we assume that D(A*) = D(M*). Then

feEDNTY — AFFfcHIZ(C)
<= A.f € D(AF) =D(M*)
= MF(A.f) € HLE(C)

e 2F(Auf) € HLE(C).

We claim that z8(A, f) € HL2(C) if and only if A, (2*f) € HL2(C). To show this

claim, we write f(z) = > 7 a,2z". Then

(Auf)(2) = i [n+ (2a+ 1) (#)} a2t

n=1
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Hence,

and

i [n—i— k+ (20 + 1) (—1 — (;1)%]{)} a, 2",

n=1

By Theorem 3.1,

1 (A Pz fj[m 20 +1 (#)rww_ma)

and

1Aa (2" £)]12 —i [n+k+(2a—|—1) (ﬂ)r‘a 2
a HLL(C) = 5 ol “dnsr—1 ().
n=1

Clearly, [|Aa(2" )32y < oo implies that [[2*(Aaf)Il3,.2 ) < oo. Conversely,

we consider

n+k+ (2a+1) (%W) < n4+k+(2a+1)

IN

Kn
< K [n+ (2a+ 1) (#ﬂ

where K is a constant depending on k. Suppose that |[z"(Aaf)|3,,. © < 00

Using the above inequality, we obtain [|A, (2" f)||3,,- ) < 00. Thus,

f e DAL Aa(2¥f) € HLZ(C)
2 f € D(A,) = D(M)

e HIA(C)

[ A

MM f e HL2(C)

f e D(M*.

!

By mathematical induction, we conclude that D(A) = D(M™) for alln € N. O
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Next, consider the differential operator D f(z) = %(z). For each n € N, define
D(D") ={f € HLL(C) | D"f € HLL(C)}

and

= D(D").

That is, f € C2°(C) if and only if the derivatives of f of all orders are in HL2(C).
Proposition 4.15. D(D) = D(A,)

Proof. Let f € HL2(C) with f(z) = > 07 a,2z". Then Df(z) =3 07 na,z""

and

Aof(z2) = i [n + (2a+ 1) (%)} anz" "t

n=1

By Proposition 3.1 and the equality (4.3), we obtain

1 Bze) = D lanl’du(a)
n=0

o0

=¥ [n—i— (20 + 1) <#)} |n]*dn1 (),

n=1

IDf(= HHL2 ZnQ‘an‘ dp—1(
and

T R e !

n=1

We calculate

{n+ (2a+1) (W)r

=n?+n2a+ 11— (=1)") + (2a + 1)2—<1 — (4_1>n)2
=n’+na+1)(1—(-1)") + 2+ 1)2—(1 — (2_1)n)

=n?—n2a+1)(-1)"+ (2a + 1) (n—l— (20 + 1)%) :
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Thus,
A0 flizz ) = 1D F 3z ey — R+ 1) D n(=1)"|an| dns(a)
n=1
+ 2o+ D[ fl32 o

Clearly, |[Aafll3;2(c)y < oo implies that [|Df[[3,2 ) < co. On the other hand,

suppose that ||Df||7L[L2 < 00. Then

S 101 lanPd-1() < IDf s ) < -
This show that || Aq f[|3;12 ) < 0o Therefore, D(D) = D(Aq). O
Corollary 4.16. For each n € N, D(AL) = D(D").

Proof. By Proposition 4.15, we have D(A,) = D(D). Let k € N. Assume that
D(A*) = D(D¥). Then
fEDNET) «— AL'feHLL(C)
< A.f € D(AF) =D(D¥)
— DF(ALf) € HLA(C).
We claim that D¥(A,f) € HL2(C) if and only if A,(D*f) € HL2(C). Note that
if f(z)=>,",a,2", then

C n' n—=k
= Z (n — k)!anz .

n==k

By direct calculation, we have

i [n—i— (2a+1) (%ﬂ a2 1.

n=1

Thus,

gt 5 oo ()t

n=k+1

e}

= > [n—k+(2a+1) (1_2_1)71) n;k} C i!k)!anznkl

n=k+1
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and
A(DFF)(2) = nil [n kot (204 1) <1 - (;”nkﬂ - ﬁ!k)!anz"—k—l.

By Theorem 3.1, we obtain that

1D* (A f) s

e}

_ Z [n— k+ (20 +1) (1 — <2_1)n> n;kr ((n ﬁ!k)!)z | |21 ()

n=k+1

and

1Aa(D* )z )

o0

=Y {n—k+(2a+1) <#>r ((n ﬁ!k)!)glanfdnm(a)-

n=k+1

Conversely, we consider

n—k+(2a+1)<1_(_1)n) (”_k> <n—k+ (20 +1) (”_k‘)

2 n n

<n—k+(2a+1)

< K(n—k)

<K [n— k+ (200 +1) (—1 — (;l)n_kﬂ

where K is a constant depending on k. Thus, |[Aq(D*f)|3,,2 () < oo implies that

ID*(Aaf) 302 @) < 0o- Similarly, we calculate

1 — (—1)n*

kv (56

>§n—k—|—(2a+1)

< K(n—k)

<t fpomsen o (55) (7))

where K is a constant depending on k. Suppose ||D(Aq f)3,; ©) < 0o. Using
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the above inequality, we obtain that [[Aq(D"f)[13,12 ) < o0o. Thus,

FeDIS) <= Au(D*f) e HL(C)
<~ D"feD(\,)=D(D)
— DMlfcHI2(C)

< [ e DD,

This show that D(A%T!) = D(D**'). By mathematical induction, we obtain

D(AZ) =D(D") for all n € N. O

The above results tell us that the domain of the Dunkl operator, multiplication
operator and differential operator are equal. We characterize smooth functions in

the Dunkl-type Segal-Bargmann space in the following theorem.
Theorem 4.17. Letn € N and f € HL%(C).

1. If f € D(D"), then there is C' > 0 such that

Celsl

HEW = ey e

for any z € C.

2. If there is C' > 0 such that

Clel??

1f(2)]" < (L 2240 (1 1 |2[2)2

for any z € C, then f € D(D").

3. f € C(C) if and only if for each n € N, there is C,, > 0 such that

2
) C, el

f(2)]F < (14 |z[2o+1) (1 + |2]")2

for any z € C.
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Proof. Let n € N and f € HL2(C). We note that
feEDD") = feD!) «— feDM") < "fecHL:(C).

1. Let f € D(D"). Then z"f € HL?(C). By Theorem 3.16, there exist
constants C7, Cy > 0 such that
A+ [N = 1f)]+ 12" f(2)]

Clelz‘2/2 C2€|Z|2/2
<
— (1 + |Z’2a+1)1/2 + (1 + |Z‘2a+1)1/2

for any z € C. This implies that there is C' > 0 such that

C@‘ZP/Z
(1+ [z[2H)12(1 + |2[")

[F(2)] <

for any z € C.
2. We assume that (4.4) holds. Note that

||an||3{Lg(<C) = ||(an)e||%2(<c,me,a) + ||(an)o||2L2(<c,mo,a)'

Using Minkowski’s inequality, we see that

2" f e||L2(<c,me,a)

1/2
1" Men(2) dz)

) 1/2
Me.a(2) dz)

1/2
(—=2)"f(=2)
(2) dz) + </<c —

/| |2n meya(z) dz

)" f(=2)

(2" Pe(2)?

f(2) + (=2
2

SrE

2 e,x

- ([
-/
g(/c

N 1/2
Me.a(2) dz) :

Then

/ 2@

2

2

< - / Ozl Meo(z)dz
— 4o (L4 [P +|Z!”+2)2 "

T4 / / 1 + 7n2a+1 1 + rn+2)2me,a(r)7" drdf

B 20C 7,2n€'r p
= 1 ; (1 + T2a+1)(1 + rn+2)2me,a(7’>7" r.
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The asymptotic behavior of m., as r = oo is

1 2
e—r r2a+2 ]

Meo(z) ~
=) 7220t 5 (o + 1)

Thus, there is a constant A > 0 such that for all r € (S, 00), when S is large

enough, we have
/°° 727" e o (1) g < /OO Ap?nt2at? 4
rdr r
s (1 + 702a+1)(1 + ,rn+2>2 — S (1 + T2a+1)(1 + 7m+2)2

< A/ %dr
S’r‘

< 0oQ.

Since the integrand is continuous function on [0, 5],

S T2n6r2meya(7“> 4
0 (1 +T2a+1>(1 +Tn+2)27, T < 00.

Thus, we obtain

n 2
/ : ];(z) a(2)dz < 0
C
and similarly, we obtain
noel oy (2
/ W al2)dz < oo
C

Therefore, [|(z" f)ell72(cm, ) < ©0- By the same argument as in the proof
of |[(z"f)e ||L2(<c me.y» We obtain [[(z"f)o 1, (Cimony < 00 This implies that

2 f € HLI2(C).

3. The proof follows from 1 and 2. ]
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