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CHAPTER 1
INTRODUCTION

In statistics, classical panel data refer to two-dimensional data involving mea-
surements over time. Panel data methodology within economics had been largely
developed through economic applications. Economic applications of panel data
methods are not confined to survey or economic problems. For example, Accuracy
and rationality of state General Fund Revenue forecasts: Evidence from panel
data [H. N. Mocan, Sam Azad, 1995], Deterioration of Firm Balance Sheet and
Investment Behavior: Evidence from Panel Data on Thai Firms [S. Rungsomboon,
2005], Dynamics of social health insurance development: Examining the determi-
nants of Chinese basic health insurance coverage with panel data [J. Q. Liu, 2011},
et cetera. Most panel data models assume that the slope coefficients are the same
for all cross sectional units. However, the intercept parameter is allowed to have
some variations over individuals. In general, fixed effects estimation may not esti-
mate the cross sectional regression parameters when there are different regression
parameters. Therefore, it is possible to test if the regression slope coefficients vary
over the cross sectional unit. The test is valid where both time (7') and the num-
ber of cross sectional units (V) tend to infinity. In 1970, Swamy [26] proposed a
test, where the null hypothesis is to have a constant slope for each cross-sectional
unit, but each unit is allowed to have a different error variance. The asymptotic
distribution of the test is valid when 7" — oo and N is fixed. In 2008, Pesaran and
Yamagata [21] proposed a test which is valid when N,T — co. Recently, in 2014,
Juhl and Lugovskyy [16] proposed a test which is valid when N — oo and T is
fixed. In Monte Carlo experiments, they showed that their test performs very well
relative to existing tests. In particular, the Juhl and Lugovskyy test was derived

from the conditional Lagrange multiplier test has excellent size and power.



In applications, there are some situations where the classical panel data model
is not optimal. For example, data from complex survey having multi-dimensional
strata. For example, international tourism data [30], bilateral donors’ aid alloca-
tion [15], etc. Since complex assumptions can be made on the precise structure
of the correlations among errors in this model. In this study, we extend the
heterogeneity hypothesis test to handle three dimensional panel data models. A
multidimensional setup in panel data model was proposed by Matyas [18] and then
Matyas and Balazsi [19] represented parameter estimations of three dimensional
fixed effects panel data models. In general, fixed effects estimation may not esti-
mate the cross sectional regression parameters where there are different regression
parameters. Also, it is possible to test if the regression slope coefficients vary over
the cross sectional unit. In this work, three dimensional panel data represents time
series of two way data. We wish to test if the regression slope coefficients vary over
the two factors in the regression models for fixed time periods by extending the
conditional Lagrange multiplier test for classical panel data model proposed in
Juhl and Lugovskyy to three dimensional panel data. Moreover, we evaluate the
size of the statistic using a simulation experiment based on data generated from a
variety of distributions.

This thesis is organized as follows. In Chapter 2, we provide the basic knowledge
of statistics, matrix calculus, linear regression model and panel data models which
will be used in this thesis. In Chapter 3, we construct a test statistic for slope
heterogeneity for three dimensional panel data model by conditional Lagrange
multiplier. In Chapter 4, an empirical study of the performance of our proposed
test statistic based on simulations and discussions are provided. Conclusions are

provided in Chapter 5.



CHAPTER II
PRELIMINARIES

In this chapter, we provide basic knowledge of statistics, matrix calculus, linear

regression model and panel data models which will be used in this thesis.

2.1 Basic Knowledge of Statistics

In this section, we provide basic knowledge of statistics such as a statistical distri-
bution, principal of data reduction, method of parameter estimators and hypothesis
tests. We also give brief introductions of the conditional likelihood and Lagrange
multiplier test that are the main ideas to construct our test statistic in this thesis.
In addition, we give a review of limit theorems such as Chebychev’s weak law of
large numbers and Linderberg-Feller central limit theorem which will be used in

studying asymptotic properties of our statistic.

2.1.1 Statistical Distribution

Statistical distributions are used to model populations. There are two categories
of statistical distributions. The first category is the discrete distributions where a
random variable X is said to have a discrete distribution if the range of X is count-
able. In many situations, discrete random variables have integer-valued outcomes.
The second category is the continuous distributions where a random variable X
has its range as an interval of possible outcomes. Some well-know continuous dis-
tributions which will be used in this thesis are discussed in Definitions 2.1 - 2.4 as

follows.

Definition 2.1. [8] The uniform distribution is defined by spreading mass uni-

formly over an interval say, [a,b], denoted by Ula, b]. Its probability density func-



tion is given by

1
f(ala,b) = b—a

0 otherwise.

if = € [a, b]

The uniform distribution Ula, b] has expectation and variance given by

_b+a (b—a)?

E(X) B

and Var(X) =

Definition 2.2. [8] The normal distribution (sometimes called the Gaussian dis-
tribution) has two parameters, usually denoted by p and o2, which are its mean
and variance. The probability density function of the normal distribution with

mean 4 and variance o2 (usually denoted by N(u,o?)) is given by

1
Flalp, o) = ———=e @27 _ 6 <1 < 0.

vV 2mo?

If a normal distribution has zero mean and variance one, it is called the standard

normal distribution.

Definition 2.3. [8] The multivariate normal distribution (sometimes called the
multivariate Gaussian distribution) of a k-dimensional random vector has two pa-
rameters, usually denoted by p and ¥, which are its k-dimensional mean vector
and k X k covariance matrix. The probability density function of the multivariate
normal distribution with mean vector g and covariance matrix ¥ (usually denoted

by Ny (i, )) is given by
f(x|/~‘ta 2) = (V 27T)_%k|2|_%6_%(:”_#)T271(a:—p,)‘

Definition 2.4. [8] The chi-squared distribution with k degrees of freedom, denoted

by x?(k), is the sum of the squares of k independent standard normal random



variables. Its probability density function is given by

[

The chi-square distribution x?(k) has expectation and variance given by
E(X)=k and Var(X)=2k.

Definition 2.5. [8] The t-distribution with k degrees of freedom, denoted by (), is

A
VU/k
as a x2(k), and Z and U are independent. Its probability density function is given
by

in the form where Z is distributed as a standard normal, U is distributed

k+1 k+1
I'—— 2\ "9
f(x|k):—2k(1+?) , —oco<z< .
VETL(3)

The t-distribution ¢(;) has expectation and variance given by

for k > 2.

k
E(X)=0fork>1 and Var(X)= P

2.1.2 Principles of Data Reduction
In this part, we study in principles of data reduction. Data reduction is a function
of the data called statistics that may summarize all the information in the sample

about parameters. We introduce two principles which are the sufficient principle

and the likelihood principle.

The Sufficient Principle

If T(X) is a sufficient statistic for €, then any inference about 6 should depend on
the sample X only through the value of T'(X). That is, if  and y are two sample
points such that T'(x) = T(y), then the inference about 6 should be the same



whether X = x or X = y is observed. The formal definition of a sufficient statistic

is given as follows.

Definition 2.6. [8] A statistic T'(X) is a sufficient statistic for 6 if the conditional

distribution of the sample X given the value of T'(X') does not depend on 6.
We introduce the following theorem to find a sufficient statistic by easier way.

Theorem 2.7 (Factorization theorem). [8] Let f(z|0) denote the joint probability
density function or probability mass function of a sample X. A statistic T(X) is
a sufficient statistics for 0 if and only if there exist functions g(t|0) and h(z) such

that, for all sample points x and all parameter points 0,

f(x]0) = g(T(x)|0)h(x).

We can use the Factorization theorem to find a sufficient statistic by factoring
the joint probability density function or probability mass function of the sample
into two parts, with one part not depend on 6 that is the h(x) function. The
another part, the one that depends on @, usually depends on the sample x only

through some function 7'(x) and this function is a sufficient statistic for 6.

The Likelihood Principle

In this part, we study an important statistic called the likelihood function that

also can be used to summarize data.

Definition 2.8. [8] Let f(z|f) denote the joint probability density function or
probability mass function of the sample X = (Xj, Xs,...X,,). Then, given that
X =z is observed, the function of 8 defined by

L(blx) = f(2]0)

is called the likelthood function.



The likelihood principle specifies how the likelihood function should be used as

a data reduction device.

Definition 2.9. [8] Likelihood principle is defined as if  and y are two sample
points such that L(f|x) is proportional to L(f|y), that is, there exists a constant
C(z,y) such that

L(0lx) = C(z,y)L(fly) for all 0,

then the conclusions drawn from z and y should be identical.

2.1.3 Methods of Parameter Estimators

In this part, we study how to estimate parameters. For example, estimating a
parameter with its sample parallel is usually reasonable. Particularly, the sample
mean is a good estimate for the population mean. In more complicated models, we
need a method of estimating parameters. In this thesis, we introduce two methods
of parameter estimators such as method of moments and maximum likelihood

estimators.

Method of Moments

Let X4, X, ..., X,, be a sample from a population with probability density function
or probability mass function. Method of moments are found by equating the first
k sample moments to the corresponding k population moments, and solving the

resulting system of simultaneous equations. Define

my=—Y X! o =EX'
n -
i=1
1< :
my=—Y X2, = EX?
n <
=1
IR k ’ k



The population moment ,u;- will typically be a function of 64, ..., 0, say ,u;-(é’l, ey Ok).
The estimators (04, ..., 0),) of (61, ..., 0)) are obtained by solving the following system

of equations for (51, ey ék) in terms of (my, ..., mg):

my = ,ull(eh "'76k)7

mo = MIQ(HD "'79’6)7

mg = :u;{:(ela 79k)

Maximum Likelihood Estimators

The method of maximum likelihood is one of the most popular techniques for de-
riving estimators. If Xi,..., X, are independent and identically distributed with
probability density function or probability mass function f(z|6,...,0), the likeli-
hood function is defined by

L@]z) = LBy, - Ouo1, - )

= H f(ajz’eb .y Gk)
i=1

Definition 2.10. [8] For each sample point z, let 9(9:) be a parameter estimator
at which L(@|z) attains its maximum as a function of €, with x held fixed. A

mazximum likelihood estimator (MLE) of the parameter § based on a sample X is

0(X).

Conditional Likelihood

In this part, we introduce conditional likelihood function and the conditional max-
imum likelihood estimator of the parameter vector.

Let ¢ = (0,), where 0 is the parameter of interest and X is a vector of nuisance
parameters. If there is a sufficient statistic Sy of A then the nuisance parameters

can be eliminated from the likelihood by conditioning on it. The conditional log-



likelihood can be obtained

1.(0) = log(fys, (¥)) = log[fy (y)] — log[fa(y)], (2.1)

where fy|s, (y) is the conditional distribution of the response Y = [¥; Y5 --- Y, ]T
given Sy. Then ] maximizing [.(@) is the maximum conditional likelihood esti-
mator. If Sy depends on 6y where 0 is the parameter of interest, the conditional

log-likelihood can be obtained,

(8, X,60) = log (fyys,00)) = log[fy ()] — log|fs,60) )]- (2:2)

Then, 6 is the solution of the equation

[azc(o,,\,oo) 0 23)

o0 ] 0=00,A=X\(0)

where 0 denotes for a partial derivative.

Mean Squared Error

We study finite sample measures of the quality of an estimator.

Definition 2.11. [8] The mean squared error (MSE) of an estimator W of a

parameter a is the function of a parameter 6 is the function of 6 defined by

Eo(0 — 0)2.

Definition 2.12. [8] The bias of a point estimator § of a parameter # a is the
difference between the expected value of 6 and 6; that is, Biasg(6) = Ey(6) — 0.

An estimator whose bias is identically (in ) equal to 0 is called an unbiased and

A

satisfies Fy(0) = 7(0) for all 0.

Note that from the two previous definitions, we have

~

Eg(0 — 0)* = Varef + (Ey(0) — 0)? = Vared + (Biasg(0))>.
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Therefore, if 0 is an unbiased estimator of 0,

A

E@(@ - 9)2 = VaTgé.

2.1.4 Hypothesis Testing

In this part, we introduce basic knowledge of hypothesis testing.
Definition 2.13. [8] A hypothesis is a statement about a population parameter.

The goal of a hypothesis testing is to decide, based on a sample from the

population, which of two complementary hypotheses is accepted.

Definition 2.14. [8] The two complementary hypotheses in a hypothesis testing
problem are called the null hypothesis and the alternative hypothesis. They are
denoted by Hy and H 4, respectively.

In a hypothesis testing problem, after observing the sample the experimenter

must decide either to accept Hy or to reject Hy.

Definition 2.15. [8] A hypothesis testing procedure or hypothesis test is a rule that
specifies:
i. For which sample values the decision is made to accept Hy as true.

ii. For which sample values Hj is rejected and H 4 is accepted as true.

The subset of the sample space for which Hy will be rejected is called the
rejection region or critical region. The complement of the rejection region is called

the acceptance region.
Definition 2.16. Type I error is rejection Hy when it is true.
Definition 2.17. Type II error is failing to reject Hy when it is false.

Definition 2.18. The size of a test is the probability of falsely rejecting the null
hypothesis. That is, it is the probability of making a Type I error. It is denoted
by a. For a simple hypothesis,

a = P(rejects Hy|Hy is true).
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Definition 2.19. The power, 1—4, is the probability of correctly rejecting H
when it is false where g is the probability of a type II error.

Lagrange Multiplier Test

In this research, we apply a Lagrange multiplier test to our model. Therefore, in
this section, we introduce the Lagrange multiplier test presented by Breusch and
Pagan [6] as follows.

Consider a sample of size N from a distribution which is known apart from a
finite number K of unknown parameters @ = (1, ...,0x)" giving a log-likelihood

L(6). The hypothesis to be tested is specified as p < K restrictions on 0,

Aitchison and Silver [1,2] approached this problem by setting up the Lagrangean

function
p
L(6) + >  A;h;(6) (2.4)
j=1

and derivative of (2.4) with respect to the unknown parameters 6 and the Lagrange

multipliers A; to yield 6 and X as the solution of the first order conditions

where

D is the (K x 1) vector [gj (é)] :

H is the (K x p) matrix {gzj (é)] :
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and
Ais a (p x 1) Lagrange multipliers vector.

When the null hypothesis is correct, the restricted estimate 6 will tend to be
near the unrestricted maximum likelihood estimate so that D will be close to the
zero vector. Under the regularity condition that the order of differentiation and
integration can be interchanged, Feigin (1976) showed that D will be a zero mean

martingale, and under conditions presented in Crowder (1976)
c]_\,l/zD — N (0, A}im c&l/ch]_Vl/Q) as N — oo,
—00

where F = E(—0?L/00007) is called Fisher’s information matrix and ¢y is some

suitably chosen norming matrix. This leads to the LM test based upon the statistic
D=XH F HX (2.5)

where F' is the information matrix when the null hypothesis is true, evaluated
at the restricted estimates §. The term D F D is the “score” statistic (see
Rao [22]) while S\TI:I "F'HX is the Lagrangean multiplier statistic (see Byron
[7]), making it clear that the two test statistics are identical so that the choice of
which form to use is based on convenience. Under the usual maximum likelihood
regularity conditions, the LM statistic is asymptotically equivalent to the Wald
and Likelihood Ratio statistics. That is, when Hy is true it is asymptotically
distributed as a chi-square distribution x2. Alternative, one-side score test v/ LM

is asymptotically distributed as the standard normal distribution when H is true.

2.1.5 Convergence of Random Variables

In this part, we will discuss convergence modes and limit theorem of random
variables. We study the behavior of certain sample quantities as the sample size

approach to infinity.
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Convergence in Probability

Definition 2.20. [8] A sequence of random variables X,, (n > 1) converges in

probability to a random variable X, denoted by X,, & X, if

lim P(|X, — X| <e¢) =1,

n—oo
for all e > 0.

Theorem 2.21. [8] Suppose that X,, (n > 1) are random variables and c is a

constant such that
E(X,) —c¢ and Var(X,) %0,
then
X, e

Theorem 2.22 (Chebychev’s Weak Law of Large Numbers). [12] Let X, Xo, ...
be a sample of observations with E[X;] = p; and Var|X;] = 0? < oo. Define

i

o2/n=(1/n*)> 02 — 0 asn — oo . Then, for every e > 0,
i=1

lim P(X, — [in <€) =1,

n—o0

that is, X,, converges in probability to [i,.

Convergence in Distribution

Definition 2.23. [8] A sequence of random variables X, with distribution function
Fx, (n > 1) converges in distribution to a random variable X, denoted by X, 4 X,
if

lim Fyx, (z) = Fx(x),

n—oo
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at all point x where Fx(z) is continuous. Here, F, and Fx are the cumulative

distribution functions of random variables X,, and X, respectively.

Theorem 2.24 (Lindeberg-Feller Central Limit Theorem). [12] Suppose that {X},
i =1,2,...,n, are sample of random vectors with E|X;| = p; and Var|X;| = Q;,

and all mized third moments of the multivariate distribution are finite. Let

I ~ 1 &

We assume that

lim Q, = Q,

n—o0

where Q is a finite, positive definite matriz, and that for every i,

" -1
Tim (nQ,)"'Q; = lim (Z QZ-) Qi =0.

We allow the means of the random vectors to differ, although in the cases that
we will analyze, they will generally be identical. The second assumption states that
individual components of the sum must be finite and diminish in significance. There
is also an implicit assumption that the sum of matrices is nonsingular. Because
the limiting matriz is nonsingular, the assumption must hold for large enough n,

which is all that concerns us here. With these in place, the result is
S _ . d
Vn(X, —pi,) = N(0,Q).

2.1.6 Big O and Little o Notation

A sequence X, of random vectors is said to be O,(1) if it is stochastically bounded
and o,(1) if it converges in probability to zero. The notations gain power when

we consider pairs of sequences. Suppose X,, and Y,, are random sequences taking
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values in any normed vector space, then

X, = 0,(Y,) (2.6)
means X, /||Y,|| is stochastically bounded and

X, = 0,(Yy) (2.7)

means X,,/||Y,|| converges in probability to zero.
Definition 2.25. An estimator 6, of a parameter 0 is a consistent estimator of 6

if and only if

lim P(|0, — 0] < ¢) = 1.

n—o0

Definition 2.26. The root — N consistency means that the sampling error is
O,(N~1/2),
N
Theorem 2.27. Let z; (i =1,2,...,N) be O,(1), then > x; = O,(N).
i=1
Properties 2.28. 1. O,(N%) + O,(N?) is O,(N™=(@:b).
2. O,(N?) x O,(N®) is O,(NT?).

3. Op(N) + 0,(N?) is Op(N®) if a > b and is 0,(N®) if a < b.

4. Op(N71) is 0,(1).

2.2 Basic Knowledge of Matrix Algebra

In this section, we give basic knowledge of matrix algebra which are rank, inverse,
generalized inverse, positive definite, trace, kronecker product, vec operator and

vector and matrix differential with their properties.
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2.2.1 Rank

Before defining the rank of a matrix, we introduce the concept of linear indepen-
dence and dependence. A set of vectors aq, as, ..., a, is said to be linearly dependent

if scalars ¢y, ca, ..., ¢, (not all zero) can be found such that
c1aq + cs@g + - - - + @y, = 0. (28)
If no coefficients ¢y, ¢y, ...,c, can be found to satisfy (2.8), the set of vectors

a,as,...,a, is said to be linearly independent.

Definition 2.29. [23] The rank of any square or rectangular matrix A is defined
as
rank(A) = number of linearly independent columns of A

= number of linearly independent rows of A.

Theorem 2.30. [23] Suppose that a matriz A is n X p of rank p, where p < n.

Then A has the mazximum possible rank and is said to be of full rank.

2.2.2 Inverse

Definition 2.31. [23] A full rank square matrix is said to be nonsingular. A
nonsingular matrix A has a unique inverse, denoted by A~!, with the property

that
AAT' =A"1A=1,

where I is the identity matrix.

Theorem 2.32. (23] If A is nonsingular, then AT is nonsingular and its inverse

is defined as

(AT)—l — (A_I)T.
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Theorem 2.33. (23] If A and B are nonsingular matrices of the same size, then

AB is nonsingular and

(AB)™' = B4,

2.2.3 Generalized Inverse

We consider a general matrix A. A solution of a consistent system of equations

Az = ¢ can be expressed in terms of a generalized inverse of A.

Definition 2.34. [23] A generalized inverse of an n X p matrix A is any matrix

A~ that satisfies
AA A=A

If A is invertible, A~ = A~!. A generalized inverse is also called a conditional

inverse.

2.2.4 Positive Definite Matrices

In this part, we introduce the knowledge of positive definite that we use in this

thesis.

Definition 2.35. [23] If the symmetric matrix A has the property y'" Ay > 0 for
all possible y except y = 0, then the quadratic form y" Ay is said to be positive
definite, and A is said to be a positive definite matrix. Similarly, if y™ Ay > 0 for
all y and there is at least one y # 0 such that y" Ay = 0, then y' Ay and A are

said to be positive semidefinite.

Theorem 2.36. [23]
1. If A is positive definite, then all its diagonal element a;; are positive.
2. If A is positive semidefinite, then all a; > 0.

Theorem 2.37. [23] Let P be a nonsingular matric
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1. If A is positive definite, then PTAP is positive definite.
2. If A is positive semidefinite, then PTAP is positive semidefinite.
Corollary 2.38. [23] A positive definite matrix is nonsingular.

Theorem 2.39. [23] If A is positive definite, then A™" is positive definite.

2.2.5 Trace

Definition 2.40. [23] The trace of an n x n matrix A = (a;;) is a scalar function

defined as the sum of the diagonal elements of A; that is, trace(A) = >_ ay;.
i=1

Theorem 2.41 below lists some important properties of trace which will be used

in this thesis.

Theorem 2.41. 1. If A and B are n X n matriz, then

trace(A £ B) = trace(A) £ trace(B).

2. If A is an n X p matriz and B is a p X n matrix, then

trace(AB) = trace(BA).

3. If A and B are the same size matriz, then
[trace(AB)]? < [trace(A)?][trace(B)?).
4. If A is any n x n matriz and P is any n X n nonsingular matriz, then

trace(P~'AP) = trace(A).

5. If A is any n X n matriz and C is any n X n orthogonal matriz, then

trace(CTAC) = trace(A).
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6. If A is an n x p matrixz of rank r and A~ is a generalized inverse of A, then

trace(A”A) = trace(AA™) =r.

2.2.6 Kronecker Product
The kronecker product transforms two matrices A and B into a matrix.

Definition 2.42. [17] If A is an m x m matrix, B is a p X ¢ matrix, then the
knorecker product of A and B is defined as the matrix

CLHB CllgB s alnB
anB axB - a9,B
A®B— 2.1 2? 2.
amlB am2B T amnB
which is an mp X ng matrix.
1 2 3 1 21
Example 2.43. Let A = and B = . Then
4 5 6 21 2

12 4 2 3 6 3
2 4 2 4 6 3 6
4 5 10 5 6 12 6
8 10 5 10 12 6 12

1B 2B 3B

1
2
4B 5B 6B 4
8

=~ 00 = N

Note that it is not true in general that A ® B # B ® A.

Theorem 2.44. [17] If A is an m X n matriz, B is an r x s matriz, C is ann X p

matriz, D is an s X t matriz and « is a scalar, then
1. A BC=(A®B)C=A® (Br(C),
2.(A+B)®(C+D)=AC+A®D+B®C+B®D,

3. (A® B)(C ® D) = (AC @ BD),
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4. aRA=0dA=Aa=AQR .
Theorem 2.45. [17] For all A and B, (A2 B)" = A" @ B'.

Corollary 2.46. [17] If square matrices A and B are symmetric, then A ® B is

symmetric.
Theorem 2.47. [17] If A and B are square matrices, trace(A®B) = (traceA)(traceB).

Theorem 2.48. [17] Let A and B are nonsingular, (A® B)™' = A~' @ B~

2.2.7 Vec Operator

The vec operator transforms a matrix into a vector by stacking its columns one

below the other.

Definition 2.49. [17] Let A be an m x n matrix,

A: a; as an s

where a;; 1 =1,2,...,n is an m x 1 vector, then vec A is the mn x 1 vector,

aj

ag
vec A =

an

Note that vec A = vec B does not imply A = B.

Theorem 2.50. [17] For any column vector a, vec a' = vec a = a.

Theorem 2.51. [17] For any two column vectors a and b, vec ab' = b® a.

Theorem 2.52. [17] For A and B are matrices of the same order,
(vec A)Tvec B = trace(A' B).
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Theorem 2.53. [17] Let A, B and C be three metrics such that the matriz product
ABC is defined. Then

vec ABC = (C" ® A) vec B. (2.9)

Theorem 2.54. [17] Let A, B, C and D be four matrices such that the matriz
product ABCD s defined and square. Then

trace (ABCD) = (vec D")"(CT ® A) vec B (2.10)
= (vec D)"(A®CT) vec B'. (2.11)

2.2.8 Vector and Matrix Differentials

In this part, let £ and y be vectors of orders m and n, respectively,

X1 Y1
X2 Y2

x = ) y = b
xm yn

where each component y; may be a function of the z;, or y = y(x).

The derivative of the vector y with respect to vector x is the m x n matrix,

dr; dz; dxq
@: drey dzs dxy
dx : : . :
Ay dys o dyn
_dem dl’m dxm_




The derivative of a scalar ¢ with respect to vector is a vector,

" de
dl’l

dc
@ — dl’g

dx .
de

L dx ),

The derivative of a vector with respect to scalar ¢ is a vector,

de dc dc dc

dy _\dyn dy - dyn

22

The summary of differentiation results is presented in Facker [11]. We state those

properties as follows. Let A beann xm, BbeapXx g, x beanm x 1, and X be

defined comformably. The result shows as following

1.
[Dfli; = d{;if)

2.

dAx

. A.
3.

Dlaf(z) + fy(x)] = aDf(x) + SDg().
4.
D[f(g(x))] = ['(9(x))d (z)
5.
D[f(z)g(z)] = (9(z)" @ Ln)f'() + (I, ® f(2))g'(z).

6.

dx " Ax

ol T
= =al(A+ AT,

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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7.
dvec(z " Az
8.
TAT
dx:;—AAx —o @z AT, (2.19)
9.
T T
% —uAez. (2.20)
10.
d‘g(B =B' ® A. (2.21)
11.
-1
d;A =—(AT®A"). (2.22)
12.
dl;l—ﬁ = vec(A™")T. (2.23)
13.
—dtra‘;‘;((AX ) vec(A™)T (2.24)

2.2.9 Random Vectors and Matrices

In this thesis, we are interested in linear models, it is convenient to express the
observed data in form a vector or a matrix. A random vector or a random matriz

is a vector or matrix whose elements are random variables.
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Mean Vectors

The expected value of a p x 1 random vector y is defined as the vector of expected

value of the p random variables y1, ya, ..., y, in ¥:

_yl_ _E(y1>_ _,U1_
T R b I L ) g (2.25)
| Yp | _E (yp)_ | Fp |

where E(y;) = p; (i =1,2,...,p).

Theorem 2.55. [23] If x and y are p X 1 random wvectors, the expected value of

their sum is the sum of their expected values
E(x +y) = E(z) + E(y). (2.26)

Covariance Matrix

The variances 07,03, ..., 07 of y1,%s, ..., yp and the covariances oy; for all i # j can

be conveniently displayed in the covariance matriz, which is denoted by X,

011 O12 - O1p

021 O22 -+ Ogp
Y =cov(y) =

| Op1 Op2 """ Opp]|

Theorem 2.56. [23] Ifa is a p x 1 vector of constants and y is a p X 1 random

vector with mean vector p and covariance matriz X, then
1. E(a'y) =a"p, and

2. Var(a'y) = a'Xa.
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2.3 Basic Knowledge of Linear Regression Model

In this section, we are interested in multiple linear regression model, we attempt
to predict a dependent variable or response variable y on the basis of an assumed

linear relationship with several independent or predictor variables xq, xs, ..., Tg.

2.3.1 The Model

The multiple linear regression model can be expressed as

y = Bo+ Bix1+ Paxa + - + Pra + € (2.27)

To estimate the ’s in (2.27), we will use a sample of N observations on y and the

associated x variables. The model for the ¢th observation is
Y, = ﬂo + 61.%‘1'1 + 521’1‘2 + 4 BKZEZ'K -+ €, 7= 1, 2, ceeny N. (228)

To complete the model in (2.27), we make the following additional assumptions:
1. E(¢,) =0fori=1,2,...,N.
2. Var(e) =c?fori=1,2,....,N.
3. Cou(e;,e;) =0 for all i # j.

For the N observations, we can be written in matrix form as

Y1 1 211 212 - wik Bo €1
Y2 1 ®mor @a2 -+ moK Bi €2
= +
YN 1 zy1 N2 - TNk Bx €N

or

y=XB+e (2.29)
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The proceeding two assumptions on ¢; or y; can be expressed in terms of the model
in (2.29):
1. E(e) =0or E(y) = XB.

2. Cov(e) = o* or Cov(y) = oI

2.3.2 Estimations of 8 and o?

We study the least squares approach to estimation of the §’s in the model (2.29).

For parameters Sy, 01, ..., Ok, we seek BO, 51, e BK that minimize

N N
D& =D i)
=1 =1
N
= Z(yz - ﬁO - 511’1'1 - 52.1'1‘2 s 6[(331‘[()2. (230)
=1

S . N
To find the values of 3y, S, ..., Bk that minimize (2.30), we could differentiate . ¢
i=1

with respect to each Bj and set results equal to zero. The result is given in the

following theorem.

Theorem 2.57. 23] Ify = XB +e€, where X is N x (K +1) of rank (K+1) < N,
then the value of,B = (Bo, B, ...,BK)T that minimizes (2.30) is

B=(X"X)'XTy.

Properties 2.58. [23] If E(y) = XB, then B is an unbiased estimator for f.

The method of least square does not yield a function of the y and X values
in the sample that we can minimize to obtain an estimator of o?. However, we
can devise an unbiased estimator for o2 based on the least-square estimator B . By
assumption Cov(y) = oI, o2 is the same for each y;, (i = 1,2,...,n). o2 is defined

by 0% = E[y; — E(y;)]?, and by assumption, E(y;) =z, 8, we obtain

o’ = Ely; —-’E;F,BP,



27

where z; is the ith row of X.

We estimate o2 by a corresponding average from the sample

N
1 .
2 _—Z T2
S _N_K_li:1<yl w’LIB) (231)
SSE
NoK-T (2:32)

where N is the sample size and K is the number of x’s.

Theorem 2.59. [23] If s* is defined by (2.31) or (2.32) and if E(y) = XB and

Cov(y) = o1, then s is an unbiased estimator of o>.

2.4 Basic Knowledge of Panel Data Model

In this section, we are interested in panel data. Classical panel data refer to two-
dimensional data. The data have both cross-sectional and time-series directions.

We provide multiple observations on each individual in the sample.

In this section, we introduce a linear panel data model. Commonly, the model

used to assess the effects of both time and individual factors is written as
yit:ait—i_x;ﬁit—i_eit 7;:17---7N7 t:17"'7T7

where N is the number of cross-sectional unit, 7" is the number of time unit, o;;
is an 1 x 1 vector of intercept, Bi = (Buit, Boits ---, Brar) T is a K x 1 vector of slope
coefficient parameters that vary across ¢ and ¢, z;; = (331,-,5, Tty ooy T K,-t) isan1x K
vector of covariate variables and ¢;; is the error term.

In this research, we assume that regression parameters are constant overtime,

but can vary across individuals. The model of interest is written as

Yit = o + 4B + €ar. (2.33)
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Three types of restrictions can be imposed on the model in (2.33):

1. Regression slope coefficients are constant but the intercepts varies over indi-

viduals,
Yit = 0 + Ty + €ir. (2.34)

2. The intercepts are constant but regression slope coefficients varies over indi-

viduals,

Yit = .+ -”3;,31 + €5

3. Both slope and intercept coefficients are constant,

Y =+ 2B + €.

There are two types of panel data model as follows.

Definition 2.60. [13] A homogeneous panel data model is a model in which both

intercept and slope coefficients are constant.

Definition 2.61. [13] A heterogeneous panel data model is a model in which both

intercept and slope coefficients vary across individuals.

In this research, we study in model (2.34), the slope heterogeneity in panel data

model, and write in vector form as following:

N 2 0 0 X1 €1

0 L 0 X €
Y2 = . Oé1+ . Oég+"'+ . OZN+ _2 ,B+ ‘2 (235)
YN 0 0 L XN EN

or

Y = q;lr +X1ﬁ+ez 1= 1,2,,N (236)
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where
Yi1 Tyl Tj2 ot Tk
Yi2 Tio1 T2t Tk
Yi=1 . |- Xi= )
Yir TiT1 TiT2 ct UTK

ﬂ—l— == (61)6% "'75K)a 76;r = (Eila "'7€iT)7

L denotes the T' x 1 vector of ones and I denotes the T' x T identity matrix.
In this work, we assume that all X; are full-rank.
The proceeding three assumptions on ¢; can be expressed in terms of the panel

data model in (2.36):
1. E(GZ) =0 or E(yz) :O./Z‘LT—FXZ‘,B.
2. E(QGJ—) = U?HT.

3. Eee] ) =0 if i # j.

2.4.1 Estimations of a, 8, and o?

We know that the least square estimator of (2.36) is the best linear unbiased esti-
mator (BLUE). To find the regression coefficient estimators in panel data model,
T
Lyt
define Ny = Il — %, where properties of N are listed in the following proposi-

tion.

Proposition 2.62. 1) Ny = 0.
2) NJNo=N,.

Proof. 1)
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where we use the fact that ¢er = T.

2)

T

T T
= (r.-— 272 (1, - 2L

LTl Lply Lpbg Lyl
T T T T
p, ity Ty
T T T
LrLy  Lply Lrlg,

T\ | T
NOTNOZ(HT_ﬁ> <HT—@>

= I — _
T r T T
T
L7l
ZHT—%
_N07

where, similar to 1), we use the fact that ¢t].ep = T.

0
Multiplying N to (2.36), from Proposition 2.62(1), we obtain
Noyi = Noaitr + NoXiB + Noe€;

The ordinary least square estimator B of B is obtained by minimizing the sum of

squared errors as the following

(Noe:) " (Noe;)

I
.MZ

SSEs

1

7

(Noy; — NOXiﬂ)T(NOyi — NoX,p)

NE

1

.
Il
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N
Z(NOyi)TNOyi — (Noy:) "NoX B — (NoXiB) Noyi + (NoX,8) 'NoX 8
=1

¥/ Noyi —y/ No(X:8) — (X:B) ' Noy; + (X:8) 'No(X:8) (2.38)

M-

@
Il
—

y; Noy; — 2y No(X,8) + (X;8) 'No(X.B),

I
AMZ

Il
—

)

where we use Proposition 2.62(2) to obtain (2.38).

Taking partial derivative of SSEjs with respect to S,

N
> —2X[Noy; +2X NoX:B.

=1

0SSE;
0B

0SSE,
oB

Since

N N
=0, —2> X/Noy;+28> X/NoX;=0.
B=8 i=1 i=1

Therefore, the least square estimator B is

N
B= <ZXZTN0X1'> ZXZTNO%'-
=1 i=1

Theorem 2.63. [10] If the matriz
L
.
~ > X[NoX;
i=1

is positive definite and converges to a non-stochastic positive definite matrix in the

limit, then the least squares estimator B for B in the model (2.56) is consistent.

Proposition 2.64. The least square estz’matorﬁ is an unbiased estimator for .

Proof.

-1 N

N
EB=E (ZXZ Noxi> > XNy

i=1 i=1
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-1 N

i=1

]

The ordinary least square estimator of «; is obtained by minimizing the sum

of squared errors as the following

N
- Z(?/z — ity — XiB) ' (yi — aier — Xi)

= Z(yvz ~X.B)" (yi — XiB) — (yi — XiB) " (cvtr) — (aitr) ' (y: — XiB)
+ (aser) " (citr)

N
= Wi —XB) (i — XiB) — 2(y; — XiB)" (cvier) + (aier) " (aitr)
= Z(yz —X:B) (¥ — XiB) — 20 (ys — XiB) "ur + QPupir.

Taking partial derivatives of SSE, with respect to ay,

0SSE,
= —2(y; — X:B) "vr + 20ty
8042-
0SSE, .
Since — =0, — 2(y; — XiB) "ty + 2aiter = 0.

Therefore, the least square estimator &; (i = 1,2,..., N) is

d' — (yl _XiB>TLT
! T
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L (yi — Xz:B)
N

Proposition 2.65. The least square estimator ¢&; (i = 1,2,...,N) is an unbiased

estimator for a.

Proof.

T

B tp(aitr + X8 — X.p)
B T
= aZ—T

T
= ;=

T
= ;.

]

To find an estimator for o2 based on the unbiased least square estimators d;

and ,B . We estimate o2 by corresponding average from the sample

N
L2 1 ) . .
O¢ —N(T_1)_K;(N0yi—NoOéibT—NoXi,3) (Noyi—NOXiﬁ)
1 N
J— o 'A T o ‘A
_N(T—l)—K;(Noyz NoX.8)" (Noy; — NoX.B)
_ SSEg
CN(T—-1)-K’

where N is the sample size, T is the time size and K is the number of z’s.



CHAPTER I11
HYPOTHESIS TESTING FOR SLOPE
HETEROGENEITY FOR THREE DIMENSIONAL
PANEL DATA

In this chapter, we construct a test statistic for slope heterogeneity for three di-
mensional panel data models by conditional Lagrange multiplier.
3.1 Model of Slope Heterogeneity

Consider the three dimensional panel data model
Yijt = o + 75 + -’L'iTjtﬂij + €ijt, (3.1)

where y;;; is the response variable for factor 1 level i (i = 1,...,I), factor 2 level
JU=1,.,J)at timet (t =1,..,T), x;j; is a K x 1 vector of covariates, a; is
the effect of factor 1 level ¢, 7; is the effect of factor 2 level j, € is an error with
zero mean and variance o2 and fB;; represents the regression slope coefficients for
the (¢, j) unit. To allow for potential slope heterogeneity, we suppose that B;;, a

K x 1 vector, is represented by
Bij = B +mni +wy, (3.2)

where E(n;|z) = 0 and E(w;|z) = 0. Let the covariance matrices of parameter

heterogeneity be given as

E(nmﬂm) =%, and E(ij]T|a:) =%..
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3.2 Testing Slope Heterogeneity

In this study, we test for slope heterogeneity of f3;; presented in (3.2) where the
regression coefficients depend on either one of the two factors of interest. The two
tests can be performed in a similar manner. Therefore, in this thesis, we derive
a test statistic on the effect of one factor while the test for another factor can be

similarly constructed. The hypothesis of interest is

H()i EUJZO
V.S.
HAZ EW#O

Under the null hypothesis, the model in (3.1) can be written in a matrix form as

follows, for j =1,2,...,J,

ui? Llo|r o 0 afhy afh - aly|p oq |
. . . . (03] .
I Y I PO T P 4

: @2
NI R T I N RPN I I

. . . I
1T ' N I T
yg) 1 00 -1 mgjl)l xgj1)2 xgjl)k ) 5?1)
I T I R A A | L
| o o] |
] D) oo e )

or
Y; = vibiT —f‘Xjﬂj + €5, (33)

where y; is an IT x 1 vector of responses (yff N, X ; is a covariate matrix with

dimension IT x (K + 1), €; is an IT x 1 vector of error terms (egi)) with a mul-
tivariate normal distribution with mean zero and covariance matrix o2lI;r where

I;r is an identity matrix of size IT x IT | ¢;r is a IT x 1 vector of ones and
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B = (ar, - ,ar,Bi, -+, Bk) isa (K + I) vector of slope coefficients.

.
To find parameter estimations of the model, define My = I;p — ”?TIT, where

properties of Mg are listed in the following proposition.
Proposition 3.1.

_Z) MQL]T =0.

2) MT - Mo.

8) MJMy= M,.

Proof. 1)

L[TL—r
IT
M- = (HIT — ) LT

IT
T
. Litliplir
=LliT — —
IT
=Ll — LT
— 0’

where we use the fact that ¢}perr = IT.

2)
T T
LTt
M =1, 22T
0 ( 1T IT
_ . urur
1T IT
- MO-

3)

IT IT

(1. Lirbly ' LTty
1T IT 1T IT

LTty _ Lirtip | biTtir Ty
Ir Ir Ir IT
L[TLITT _ L[TLITT L]T[TL[TT
Ir Ir ITIT

L[TLT T L[TLT
MjM, = (HIT - —IT> (HIT - —IT)

=17 —

= I —
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T T T
Littir  Uttir | UTtir

S
T IT IT
. bt
IT T
= M07
where, similar to 1), we use the fact that ¢]e;7 = IT. [

Multiplying M to (3.3), from Proposition 3.1(1), we obtain

Myy; = Myyjirr + Mo X ;8; + Mg,
= M()Xjﬁj + M()Ej. (34)

The ordinary least square estimator B of B is obtained by minimizing the sum of

squared errors as the following

+ (MoX,;8) ' M.X ;B

J

= ?JjTMO?Jj - ijMo(Xjﬁ) —(X,;8) "My, + (X;8)"My(X,8) (3.5)

j=1
J

="y Moy, — 2] Mo(X,8) + (X,8)"Mo(X ),

7=1

where we use Proposition 3.1(2) to obtain (3.5).
Taking partial derivative of SSEjs with respect to S,
J

> —2X [ Moy; +2X ] MoX;B.

J=1

0SSE;
B
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assgk‘
op B=B

Since

J J
=0, —2) X Muy; +2B> X MX,;=0.

j=1 j=1

Therefore, the least square estimator ,3 is

J - J
B = (ZXJ-TMOXJ) > XMy,

J=1 Jj=1

Proposition 3.2. The least square estz’mator,@ has the following property

J - J
E[B] = (ZX}MOXj) > XTMX,B.

j=1 j=1

Proof.

J - J
EB|=E (ZXIMoXj) > X My,

j=1 j=1

J -
= ZX]-TMOXJ) ZX]‘TMO Ely;]
j=1 j=1

J J
= ZX;—MOXJ'> > X Mo(yjur + X ,;8)
j=1 j=1

J )
= ZX]-TMOXj) > X MX B,
=1 j=1
where we use Proposition 3.1(1) to obtain the last equation.

J .
Note that if Y= X ]TM 0X ; is invertible, B is an unbiased estimator for f. O
j=1

The ordinary least square estimator 9; of «y; is obtained by minimizing the sum of

squared errors as the following
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\M“

<
Il
-

(%‘LIT)T(%'LIT)

_|_

<
I
—-

I
-M“

<
Il
-

I
AM&

Taking partial derivative of SSE, with respect to v;,

0SSE
1= —2(y; — X;B) "err + 2yt rtrr
;
O0SSFE .
Since 7 =0, —2(y; — Xj,B)TLIT + 2’}7jb}—TL]T =0.

Vi vi=7;.B=B
Therefore, the least square estimator 4, (7 = 1,2, ..., J) is
.y —XiB) ur

LIT( - X; ,3)
IT

(y; — X,;8)" (y; — X;B) — (y; — X,;B)" (vierr) — (vitrr) ' (y;

(y; — X;B) (y; — X;B) — 2v;(y; — X;B) "wrr + Yiprtrr.
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— X;B)

(y; — X,;B) " (y; — X;B) — 2(y; — X;8) " (verr) + (verr) " (ierr)

Proposition 3.3. The least square estimator ¥; (j = 1,2, ..., J) has the following

property
J o
X;|B- ZX]-TMOXJ- ZX]TMOX]-,B
A j=1 j=1
Proof.
. ey, — X,B

tir(Ely il —X; E[IB])
IT A
_ tir(yitr + X ;8 — X, E[B))
IT
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X;(8—EB])
IT

X; (ﬂ - (i X]TMOX]) z XTMX ﬂ)

j=1

A IT

Note that if ,B is an unbiased estimator for 8, then 4; is an unbiased estimator for

’}/j. L]

The likelihood function of 8 = (v;, 8,02, %,,) is given by

L@ly) = f(yr,y2, - ys10) = Hf(yjIO)

J
1
= H 27|%,]) ~1/2 eXP( 5(?/ Yitrr — X ,B)TE ( — Yt _Xjﬂ))

exp (‘5 Z(yj —Yitrr — X;8) 2y — vt — Xjﬁ)) : (3.6)

j=1
The log-likelihood function is
J

J
1
H 27|%;]) 1/2 Jexp (- 52(1/ — YL — XJ,B)TZ)]-_1

j=1

InL(8ly) =

l—|

(Y — vt — Xjﬂ))}

J
1
= In(2r|g;))"* - 55 — it — X;B) 5 y; —vierr — X;B)

J
1 1 _
=> .- 5 In(2m) — 111 251 = 55 = vjur — X;8) '35

J J

J 1 -
=—5n@n) =5 ) WS =5 ) (y —yer — X,8) %

j=1 j=1
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Ignoring the constant term, the log-likelihood function is written as

J J
1 1 e
(7]7ﬂ7 57 :_5 E 1H|EJ|—§ E ej2j16j7
Jj=1 j=1

e; =y; — vitir — X;PB
= Xw; + €,
and ¥, = Eleje) |X]
=X;.X] +0Lir.

Therefore, under null hypothesis, ¥, = o2Ir.

The likelihood function has J parameters associated with v, (7 = 1,2, ..., J), but
we wish to consider when J — oo. Therefore, to avoid the problem of estimation
of v;, we study the likelihood conditional on the sufficient statistic S,; for ; given
as follows.

Proposition 3.4. A sufficient statistic for v; is S,, = yTi
Lir&;

Proof. From (3.6), we can write the likelihood function as
J J

L(Bly) = [H(27r|2jl)‘1/2] exp (—% S (- X85, - ij)

j=1 j=1

J
1 _ _
exp <—§ Z —2(y; — Xj:B>TEj 17jL1T + V?LITE]- 1lqr:r)

j=1
J J
[H 27| %,]) 71/ exp( Z —X;8)" (y; —Xj,B))
J=1 Jj=1
_ (y; —X'ﬁ)TE Lt
exp (Z %‘L?sz Yurr [ ’ 2 -
j=1 LIT

= [H(Qﬂzﬂ)l/z exp <—% > - X,8)'S (y; - Xjﬂ))

L\Dlr—t

j=1 j=1
J Tzfl X. Tzfl
S vr ﬂ)
exp Vibrra; tir T — =
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= [H(27T|2j|)_1/2] exp (‘ %Z(yj - X;8) 27 (y; — X,;B)

j=1 j=1

(Xj:B)TEj_lLIT

T —1
L[sz LT

)J
).

Y5 ey
is a sufficient statistic for v;. [

J
= s ur
j=1
J
exp (Z fijITZj_lL T
j=1

J
= h(y) exp (Z ’ij}—sz_lbjT
j=1

Ty—1
Y; X ur
T -1

J
T -1

Y, 5 ey
From the Factorization theorem, S, = TJ -
L ITZ j LiT

3.2.1 Conditional Likelihood

To find the conditional likelihood function, we condition on the sufficient statistic

S,,; as follows.
The conditional likelihood function of 8 = (8,02, X,) is

lC = 1D(fy|S.y)
-t o ({1

= Zln fy;) — Zlnf(S%.), (3.7)

where f(y;) and f(S,,) are the probability density functions of y; and S,,,, respec-
tively. Since Y~ N(/Lj, Ej),

fly;) = 2r[%;]) " exp (—%(yj — yitrr — X;8) 25y — vtir — Xjﬂ))

1 1 1 _

where € =Y; —vitir — X]ﬂ
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Using Theorem 2.56 and y; ~ N(p;,%;), then

Sy, = ajy; ~ Nla;pj, a8 a] ),

J

1

Therefore, the probability densnzy function of S, is

1 _
£(S,,) = (27]a;S;a; )~/ exp (—5(%’%’ —a;p;) (a;55a ) azy; — aj[-laj)) ,

then
1 1 1 _
In f(Sy;) = =5 In(2m) — 5 Infa;¥;a; = 55— pi)'a; (a;25a]) " a;(y; — py)
1 1 1
= —-In(27) — =Inla;E;a | — ze,a] (a;5;a] ) 'aje;. (3.9)
2 2 2
Note that
a;55a] = (0,08 vr) e r B R (0 )
= (1% ) " e S e (0 2 ) !
= (LITE ) (3.10)
therefore,

aj (@;%ja;) " a; = T (S5 o) T e By o) (0S5 o) e B

:2 LIT(L[TE L]T) ”ITZ 1 (311)

From (3.9), (3.10), and (3.11),

1 1 1 D IPRTRTTANS St
In f(5,,) = —3 In(27) 4+ 5 ln(LITTZj_lz,IT) - &

58 e;. (3.12)

L ITE
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Substitute (3.8) and (3.12) into (3.7),

J -1, T y-1
1 1 )P LITL[TZ .
; ( | [T ) 92 772 J 2 7 L}—sz lLIT J
(3.13)
Set {; =y; — X,;8 = e; + vjtir, 80, €; = {; — v;trr. Therefore,
e/ Y e; = ((; —ytr) ¢ — )
j<i © i = it j — Ytir
(TE l(j - 2'7]( E L+ Y; LITZ L, (3.14)
and
IPRTRCTI Y  IPRTISTRES yaut
T J 1T T j LIT T4
el [T Vo o ¢y — )T | g
J L;sz IL]T J ( J J L[TTE]' ILIT ( J J )
DIPRTRTTANS S LS e TE
— CjT - IT_iT j - 2%( IT T IT) ¢
LITE- Lir ITE]-

1
j T
ITEj
-1 T $—1

T —1
LITZj LT

= CJT ¢j— 2’YJ"1T S+ L

(3.15)

Substitute (3.14) and (3.15) into (3.13), the conditional likelihood function is

l\Dll—

2 Lt ITE

T
ITE j

¢;, (3.16)

J
Z [In 2] + In(e 755 7))
J

1
2

where (; =y; — X,B.
To derive a test statistic, we examine the score evaluated at the true parameters

under the null hypothesis.

Theorem 3.5. The derivative of the conditional likelihood evaluated at @y =
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(B,02, 8, =0) is

o, 1 <
= o > le) MoX ;X[ Me; — oltrace(X | MoX ;)]
W g 1
J
~ > 6] MoX ;X[ Moe; — o’trace(X | MoX )] .

J=1

Proof. From (3.16),

(4 + B; + C; — D),

1

J
lo=—

N | —

J

where, for each j =1,2,...,J,

Aj=In ¥,

Bj =In(t;7 X7 vr),

C; =¢/ 27,
DIFRTRVURED

_ T
L[T j LiT

¢

For all terms of A;, B;, C;, and D;, the partial derivatives with respect to w are

obtained as follows.

A
To obtain %, using (2.13), (2.15), (2.18), and (2.23), we obtain
w

0A;  O0In|¥;| Ovec(X;) Ovec(X,)
Ow — Ovec(X;)T dvec(Z,)T  Ow

= Vec(Ej’l)T(Xj @ X j)vec(lryk). (3.17)

0B;
To obtain a—], using (2.13), (2.15), (2.18), (2.22), and (2.23), we obtain
w

0B; (X ) Ovec(B;Y) dvec(E;) dvec(E,)
ow 8vec(2j_1)T Ovec(X;)T Ovec(L,)T Ow

= —vee((trrZy ) ™) Ty © 078X © Xj)vee(lry k)
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1
= —1, 51 (LITE ®LIT2 (X, @ X;)vec(lrk). (3.18)
IT

oC;
To obtain 8_J’ using (2.13), (2.18), and (2.22), we obtain
w

oc; HJETC Ovee(B7h) dvec(E;) dvec(T,)
Ow avec(E DT dvec(E;)T dvec(E,)T  Ow

~(¢] o¢HET @)X © X;)vee(liix). (3.19)
To obtain 82 let
ow’
Irr
F -
@)=

G(w) :E LITL[TE 1

then D; = ] F(w)G(w)¢;.
Using (2.16), we have

(9vec(F(;z)G(w)) —(Glw)T ®H[T)8vec(F(w)) e F(w))ﬁvecég(w))‘
(3.20)
Using (2.13), (2.15), (2.18), and (2.22),
Ovec(F(w)) O ) Tt Ovec(B5Y) dvec(E;) dvec(T,)

= VeC(]I]T)

Ow Ovec(B;1)T Ovec(E;) T dvec(E,)"T  Ow

(LITZ LIT) (LITz:; ®LIT2; )X @ Xj)vee(lr k)

LS @ e
— — Ijgll 2 Lj;)Q (X] ®Xj)V€C(]I]+K). (321)
1T

Using (2.13), (2.16), (2.18), and (2.22),

Ovec(G(w))  Ovec(X; YY) Ovec(B5Y) dvec(E;) dvec(T,)
Ow B Ovec(B; )T Ovec(X;)T Ovec(E,)"  Ow

—(L[TL}rTz);l X ]I[T + HIT & 2; L[TL;T)(E;I (029 2;1)()(] (059 Xj)VeC(H[+K)



47

= —(brer5 @ L) (57 @ B7)(X; © Xj)vee(l k)
— (L @5 erreyp) (B @B (X © Xj)vee(Iry k)
= — (& ure B @ 27 (X; © X )vee(Irix)
— (B 0% e B ) (X @ X )vee(l k). (3.22)

Substitute (3.21) and (3.22) into (3.20), we have

oD; O F(w)G(w)(;
ow ow

[ T @ s
== (C;‘rzj_ll'ITL}rsz_lé-j) IT(L 5 Li) (X, @ X )vec(lr1k)
T
CTE-’lme 271®<T fl
+ | = T I; (X ; ® Xj)vee(Iryk)
T
vl TE Lt 8Tt
" Cj j LCE ITb & (Xj ®Xj)vec(]II+K)). (3.23)
T

Combining the terms (3.17), (3.18), (3.19), and (3.23), therefore

o, 1< _
% = 3 2 vec(Ej 1)T(Xj ® X )vec(ljyk) (A1)
1< 1
z (]2 T)X; X I A2
* 2]-21LITT2}1LIT(LIT ® Ty )X ® X pvec(lien) )
1
+§Z(CT®CT)(2 ® 57X © X;)vee(lr k) (A3)
7j=1
J r T —1 T -1
1 T 1 Ly @ik,
- 2 X, X I A4
+2; _(C LTt D INS) (LITE Trr)? (X; @ Xj)vee(lryk)  (Ad)
J Ty—1 T -1 Ty—1
1 G X vty ®@¢; N,
- X; ® X ;)vec(l A5
2;‘21 LITTEj_ll’IT (X ®Xypvecllir) )
J Ty—1 o ,Ty—1, T g1
1 (X @B X
_ 52 = e [T (Xj®Xj)Vec(]II+K)>- (A6)

Next, we compute (A1) — (A6) under the null hypothesis. Throughout the calcu-

lation, we use the notation Mo 16 refer to equal under the null hypothesis H.
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Applying Theorem 2.54 and Theorem 2.41(2) to (Al), respectively, then (A1)

under the null hypothesis is

—= Zvec ;@ X )vee(lrik)
1 _
=—3 Z trace[XijTEj 1

J
- —% Z trace[X | X' X ]

1
~553 Z trace[XjT]IlTXj] :
€ i—1

Applying Theorem 2.44(3), Theorem 2.53, and Theorem 2.41(2) to

tively, then (A2) under the null hypothesis is

J

1
- T
2 p= ILITEJ

LITE ® LITZ DX @ Xj)vee(lrix)

J 1
- %Z:: e L)](TE@) ir% X, )VeC(HI+K)
1 ivec urs XX T8
2 = RIS Y
1 ZJ: LITTEj_lXijTEj_lL]T]
2 s L
= % EJ: trace LITZ ;j;XTZ

N | —

.
Il
—

trace

M«

<.
Il

P.¢hn L[TLITE 1X

L ITE

J
trace - T

2 [TLI T

(A2), respec-
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XTI’ITL}FTX
i

5.2
20¢ 4

The sum of (A1) and (A2) is

i (3.24)

202 4
J=1

Applying Theorem 2.44(3) and Theorem 2.53 to (A3), respectively, then (A3)
under the null hypothesis is

J
1
52 <T®CT 2 ®2 )()(J ®Xj)VeC(]I[+K)
7j=1
1 J
=3 > (€SX; ()5 X )vee(l k)
=
1 J
=3 > veel(] T XX T8¢
j=1

¢/ 2 XX T8¢

l\DI»—t
M%

.
Il
—

I
N | —
NG

race[CjTEj_lXijTEj_l(j]

<
Il
—

.

- 4
20° p

Applying Theorem 2.53, Theorem 2.41(2), and Py = t;7(tjptrr) tejp to (A4),
respectively, then (A4) under the null hypothesis is

1 - it 15 X @S X
- 2 I
5 ; (¢ 25 et 271H) (L,TE LIT) vec(lzyx)
J T 1 1
- I
T2 Z (LIT2 "IT) VeC( 1+K)
1 i LirE 1X X Tz LITC TE I'ITLITE ¢
T2 = (I’ITE "IT)Q
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(LJT2 LIT)
ST XX TS S e S

1 "

52 e i (LIT2 LIT)
J
-3 )

_XJ'TZ LITCTE LirtirE ICJ"IT 1X
(7725 "IT)2

T,T /T
XjtrG; LITLITCJLITX J ]

(LITTLI 7)?

) trace [
J=1

H 1
20

m

<

[+T TF,T T,T
1 Ztraee Gy trtrrCitrr X X typ
"~ 20! (¢fperr)?
TviT

1 ¢l ?
j “IT T T, T
=3 Ztrace (#—) L XXty

€ j=1 Lrptir

m

Jj=1

<

<

1 _ _
= 7 Z trace HC;—LIT(L}FTL]T) 1]T[C;—L]T(L}|—TL[T) 1]L}|—TXjX;‘rLIT]
€ ] 1

[\

<

1
= Z trace [K;‘rLIT(L}FTLIT>_I]L}FTXJ‘X;-FL]T [C;I—L]T(L}—TL]T)_I]T]

202 4
J=1

J
1
= ﬁ Ztrace [C]TL[T(L}FTL[T) LITX X LIT(L[TLIT) 1LITT<J']
€ ]:1
1
= 57 > trace [(JPoX ;X [PoC;]
€ ]:1
Applying Theorem 2.44(3), Theorem 2.53, and Py = ¢ip(tjperr) )y to (A45),

respectively, then (A5) under the null hypothesis is

J Ty —1 T -1 Ty —1
1 G X ety ®( Y]
_§Z< — Ij IET; (X ®Xj)VeC<]II+K)>
j=1 T

1N [T ;571X 0 (81X
“ )

Vec(]Ier)

LITZj LiT

C;—Ej_lx ‘XTE_lL[TL}—TZj_le

L ITE

[\3|>—l




(87X, XSS L[TLITE ¢

2 pu LITE
5 _ _ _
_ L > trace (% IXJ‘X JT B s
Tyt
2 i Lir j LT
. J
= T Ztrace ¢ XX eur(erpeir) o)
€ j=1
L
T T
— Ztrace [(] X;X; Pu(j] .
€ j=1

Applying Theorem 2.44(3), Theorem 2.53, and Py = trr(tirtrr)
respectively, then (A6) under the null hypothesis is

J Ty -1 Ty -1 T y—1
1 CE ®<2 LTt 3
_52 ( — T]g—]l (X ®Xj)VeC(]II+K)>
j=1 Lrr

j br

¢(EX;® (TE*%,TJTEJ*X j

L ITZ

V€C<]I[+K)

C;—E L[TLITZ 1X XTZ 1C]

L ITZ

¢h>n L[TLITE 'X; XX ¢

-1
LITE' LT

S ;2 XX ]S

L ITE

1 J
= 5 Ztraee

7
1 _
Ho — o E trace [C;—L[T(L;TLIT> IJTXJXJ‘TCJ']

€ j=1

1
~ 551 Ztraee [C]-TPOXJ-X]-T(]-} )
€ ]:1

The sum of (A3), (A4), (A5), and (A6) is

J
> tracel¢] X ;X (] + trace [¢] PoX ;X | Po(;]

204
€ ]:1

— trace [(] X ;X ] Po(;] — trace [(] PoX ;X ()]

51

’1LITT to (A6),
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race CTX XT(]I]T PO)C]] — trace [(IP()X]X;—(H]T — Po)C]]

T Wr = err(efperr) " eip)C5)

— trace [(j POXijT(H[T — LIT(LITTLIT)ALITT)CJ]

J
1
= Ztraee[cjxjijogj] — trace [¢] PoX ;X | M(;]

4
200 —

Ztrace (I — Po)X XTMO(]]

0-4

Z trace H[T L[T(LITTL[T)ill,}rT)XjX;rM()(j]

6

J
trace[¢] MoX ;X | Mo(;]
J
(3.25)
The sum of (3.24) and (3.25) is
1
51 D [T MoX X MG — otrace(X ] MoX;)] (3.26)
j=1
Since Myt;r = 0,
MC; = Mo(y; — X;B)
= My(y; — vjtir — X;B)
= Moe;. (3.27)

Therefore, substituting (3.27) into (3.26), under the null hypothesis, the score is

J
L > le) MoX ;X[ Me; — o?trace(X | MoX )]

204
j=1
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which is proportional to

M“

[e] MoX ;X | Moe; — oltrace(X ] MoX ;)] . (3.28)

7j=1
U

The score function in Theorem 3.5 suggests a statistic that is valid under Ele;ef | X ;] =

o2l;r. Under the null hypothesis and the fact that Mo(; = M€;, we have

E[¢] MoX ;X Mo¢;|1X;] = traceEle] MoX ;X Moe;|X ]
= traceEleje] MoX ;X | M| X j]
= trace(o”MX X M)
= trace(aQX M\M,X ;)
= trace(c?X | M{MX )
(02X MoX ;)
= Uftrace(Xj MyX,),

where we have used Ele;e] |X ;] = 02,7, Theorem 2.41(2), Proposition 3.1(2) and
Proposition 3.1(3).

Hence, from the above,

E [GJTMOXijTMOej — thrace(XjTMoXjﬂXj}

=F [ejTMoXijTMoeﬂXj] - Uftrace(XjTMoXj)

= o’trace(X ] MoX ;) — o’trace(X | MoX ;)

=0, (3.29)

that is each term in the sum of (3.28) has mean zero, and we can apply a central
limit theorem. In this discussion, we propose a statistic, CLM, when IT — 1 >

I + K for which the parameter estimates «; and @- are well-defined. The statistic
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is defined as

VI &
CLM = — . :
Oclm
where Ej :yj —"}7]'L[T —Xij,
52 — &
I IT-T1-K-1
J
1

and Gom = 7 9, [€ MoX;X] Mog; — 5Ftrace(X] MoX )]

j=1

In order to study asymptotic properties of the statistic C LM, we require the

following assumptions

Assumption 1. Conditional on X, € are independent across i,j and t, and

E(eije|X) =0 where X = (X],... X])".
Assumption 2. The matrix
1
-
5D X[ MX,
j=1

is positive definite and converges to a non-stochastic positive definite matriz in the

limit.

Assumption 3. 0 < E[(¢]€;)*|X;] < Ji < 0o and Eltrace[(X| MoX;)"]] < J, <

oo for each j.

Under assumptions 1-3, we obtain the limiting distribution of CLM as the

following theorem.

Theorem 3.6. Suppose that assumptions 1-3 hold, Ele;e]|X;| = o?I;r and that
J — o0. Then under the null hypothesis of ¥, = 0,

CLM % N(0,1).
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Proof. The fixed effect residuals with group means subtracted are given by

€ =y; — Yitir — X;B;
= ytir + X;B +€; — Yjtir — X ;B

=€+ (v — T + X, (B B)). (3.30)

Using (3.30), we consider

<

7 > & MX ;X[ M,

]:

J
1 . ° .
Yz > e+ (v = Fperr + X (8 = B,)) T MoX;X [ Mo(e; + (7; — Fy)err
j=1
+X;(8-B;))
1 J
- > €] MoX ;X[ M, (3.31)
j=1

A

2e] MoX ;X My((v; — 4;)err + X;(8 — B,)) (3.32)

A

— A + X (B = B;))) TMoX ;X Mo((v; — ) + X508 - B;)).

3\

(3.33)

From Assumption 2 and Theorem 2.63, (8 — BJ) and (y; — 4;) are O,(J~Y/?).
Finally, we use Theorem 2.27 in (3.32) and (3.33), then we can see that (3.32) and
(3.33) are stochastically bounded O,(J~'/2). Hence, the term

J
1 T TAf = 1 T T —1/2
—= > EMX X Mg = —=> €] MoX,; X Moe; + O, (). (3.34)
\/j i J J \/7 i J J
Similarly, from the definition of &7 and (3.30), we have

trace( X MyX;)

HM&
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J
L €€ T |
— J;IT 7 K_ltrace(XjMoX])
- i e+ (3 = Fp)ur + X8 = B))]les + (35 = Ap)err + X;(B — B)))
s IT-1-K-1
7j=1
trace(XjTMOXj)
J T
1 €€
— J; T 1trace(X MyX,)
J
: ; X; XTM,X
+ == 3026 (3 — A + X,(8 = B trace(X] MoX,)

J ey
1 < €le;
== 7 T . —1/2
N J;IT—I—K— ptrace(X; MoX ;) + Op(J777). (3.35)

Combining the term (3.34) and (3.35) gives us

J
L Z [E;M()XJX;M()E] — 6]2.trace(XjTM0Xj)}

V. =
1 el ejTej T —-1/2
ﬁ; TMX ;X Mge; — T e trace(X [ MoX) | +0,(J 7).
(3.36)
Let
EJ'TGJ' T 2
}LH;O—ZVGT € TMoX X Moe; — T ] R 1trace(Xj MX;)| =05,
Since
T T € € T
E e, MoX ;X ; Me; — A 1trace(Xj MyX;)| =0, (3.37)
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then
€le; ?
Jlim Z E €] MoX ;X Me; — T IJ_JK — 1trace(XjTMoXj)] =2,
We use the fact that
J €€
T Z_: [ TMuX; X Mge; — T I]—jK — 1trace(XjTMoXj)]
N [1 S leTMOXjXTMgej 1 trace(XTMoX ) ] .
J 2| I IT—T-K—1 J

Therefore, we can apply the multivariate Linderberg-Feller Central Limit Theorem,
then (3.36) is N(0,02%,,) + O,(J1/?).

It remains to show that 6%, 2 02 . From definition of 6%, we have
4 2
D (6 MoX ;X[ Mg, — 53trace(X ] MoX ;)]
J
D & MoX ;X Mg;)’
1
5
— 5 D (€] MoX ;X [My&;)5 trace(X | MoX )
1
+ 7 Z (6j2trace(X]TM0Xj))2. (3.38)
Using (3.30), we consider

J
1
5 Z (€] MoX ;X M)

’YJ)L]T +X (,B ,B ))TM()XJ‘X;-FMO

M |

/-\

( TMoX ;X Me;

K‘ I

-2
€+ (v — Fur + X;(8 - B;)))?
-2
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+2e] MoX ;. X Mo((v; — 5j)urr + X;(8 — B;))
+ (5 — Fj)err + X5(B — Bj)))TMOXjXJTMo
(v = Vj)err + X5(B — Bj)))

1 J
== (6] MoX ;X Mee;)
j=1

k

~

+2(e] MoX ;X Moe;) (2¢] MoX ;X [ Mo((v; — 3)err + X8 — B;))
+ (3 = A)err + X5(B = B;)) TMoX ;X T Mo((v; — j)urr
+X,(8-8))

T (26] MoX X Mo((3; — 7)ur + X,(8 — B,))
+ (95 — Fp)err + X5(B — B,;))) "MoX ;X[ M,
(v = 3)er + X;(8 = B,))’
1

J
=~ Z (€] MoX ;X Moe;)" + 0,(1), (3.39)

where we have used the Properties 2.28.

Similarly, from (3.30) and definition of 57, we have

J
- %Z(e MoX ;X | Mo;)5trace(X | MoX ;)

Jj=1

IT—I—-K-1
trace(XjTMoXj))
2 T T €€ T
=5 Z €; Mo X ;X ; Mg, T 1trace(Xj MX;) ) +o0,(1).
j=1

(3.40)
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Similarly, from the definition of 5? and (3.30), we have

%i (52trace(X ] MoX ;)
J:i ( € + (v; = Fi)r + X;(B = B)) (& + (v; — Vp)ur + X;(8 - B)))
J = IT-1—-K—1
trace(X | MoX j)) 2
=7 Z ([T ; EJK - 1tface(X;MoXj))2 + op(1). (3.41)

Combining the term (3.39), (3.40), and (3.41) into (3.38) gives us

2

J T
_ 1 €€,
o 7 Z [ejTMOXijTMOej — [J—]K — 1trace(X;-rMoXj) + 0,(1).
Let
[ ele; ?
zj = G;l—MoXjX;rMoﬁj — T IJ_JK - 1tI‘aCe(X;»I—M0Xj)]
i y ,
T
= -ejT |:M0XJX;FM0 — IT—T— K — 1trace(XjTM0Xj)} le
- ]:[ 2
= |trace [e [MOX X M, — 7 ]ITK 1trace(XjTM0Xj)} ejH
_ 1 9
= |trace {e] [MOX XM, — [T_II_TK_ 1trace(X]TM0Xj)m .
Define the quantities
Zjl = ij;»r
I
Zj» = MoX ;X[ My~ ——— II_T o trace(X [ MoX ).

Therefore, z; = (trace[Z;1Z j5])*.
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Using Z ;1 and Zj, are symmetric matrix, Theorem 2.41(3), and Assumption 3,

—

[trace(Z Zy))? [trace(ZjTQZﬂ)m
E ([trace(Z-le )? [trace(ZjT2 Zp)?) 1X;]

—

E ([trace(Z},2,0)) 1X,] Eltrace(Z},2,)]

I
Djtijtijbj

(€ €)X ] Eltrace[(X ; MoX ;)]

Then

J
G2, = Z NTMOXX Me; — 5?trace(X;~rMoXj)]2

J T 2
p - T fj 6]' T '
— }1_>r£10 ¥ E_ i MoX; X Me; — e 1trace(Xj MX;)
= O—glm'



CHAPTER IV
NUMERICAL RESULT

In this chapter, we show an empirical study to numerically test the performance
of our proposed test statistic by considering the size of the proposed hypothesis.
The setting of the simulation is as follows.

Consider the model under null hypothesis
Yijt = QG + 75 + x;;tﬂ + €ijit, (4.1)

where q; is drawn from the N (0, 1) distribution and ; is drawn from the N (0, 0.001)

distribution. In addition, we construct

Tin = (br @ (by @ L))y + (b7 @ (Iy @ 1))y + wijn with wjn ~ N(1,1),
Tijio = (br @ (by @ Ip))a; + (b7 @ (I; @ ¢1))7y; + wijro With wjjee ~ N(2,1),
Tijis = (br @ (by @ 1))y + (b @ (I @ ¢1))yj + wijis With w;js ~ N(1.5,1),
Tijra = (b @ (g @ I1))ay; + (br @ (I @ 1))y + Wijea With wjjes ~ N(1.75,1),
Tijts = (b7 @ (by @ 1p))evi + (b7 @ (Ly @ 1))y + wijes With w;js ~ N(1.25,1),

x;;; is a b x 1 covariate vector and simulate the slope coefficient vector B of size

5 x 1 from
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From the above construction, we can see that «;, v;, and x;;; are correlated. The
variance of the error terms are given by E(e};,) = o7 with 67 ~ U(0,0.01). Sample
sizes are [ = 5,7,9, J = 25,50,75,100, and T'=T7.

We study the size of a hypothesis testing by letting 8,; = B for all ¢, j. For each
experiment, we perform 5000 replications. We compare the different significant lev-
els such as a = 0.1, 0.05, 0.01, 0.0001. In our simulation, we examine the accuracy
of the limiting distribution of CLM by generating model error €;;; in (4.1) from
three different distributions such as a normal distribution, a t¢-distribution with
five degrees of freedom and a centered chi-square distribution with four degrees of
freedom. Tables 4.1 - 4.3 show the size of CLM in percentage and Figures 4.1a -
4.9d show the range of statistics C'LM.

From Tables 4.1 - 4.3, we can see that size is generally conservative for all error
distributions and all tests with the exception when level of factor 1 is greater than
the level of time index, the test is oversized at significant level 0.1 but decreases
very quickly as significant level 0.0001. In particular, for the case of chi-square
distribution, for significant level 0.05, size is 8.24% for I = 5,J = 25, and T =
7, but decreases to 5.32% when J = 100. Moreover, for all tests and all error
distributions, the statistics behave well, in particular when the significant level is
small. For example, for normal errors, when [ =9, J = 100, and T' = 7, the size of
significant level 0.1, test is 54.08%, but decreases to 0.02% when significant level

0.0001. The simulation results confirm our theorem.
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|a=0.1][a=0.05]a=0.01]a=0.0001 |

I=5 T=7 J=25 12.42 7.6 2.74 0
J= 50 11.08 2.98 2.00 0.08
J=T75 10.14 4.94 1.00 0.02
J=100 | 10.74 5.36 1.26 0.10

[=7 T=7 J=25 10.18 5.12 1.02 0
J= 50 10.3 5.10 1.16 0.04
J=175 9.9 4.66 0.84 0.02
J=100 | 10.28 5.26 1.20 0

[=9 T=7 J=25 16.52 6.86 0.68 0
J=50 | 29.14 15.12 2.28 0
J=175 1 45.00 28.52 6.38 0.02
J=100 | 54.08 37.70 11.10 0.02

Table 4.1: Size of CLM (in percentage) when error terms are generated from a
normal distribution

| | a=01]a=0.05]a=0.01]«=0.0001|

I=5 T=7 J=25 13.28 7.52 2.52 0.08
J=50 11.10 6.00 1.64 0.14
J=175 10.82 5.30 1.42 0.10
J=100 | 11.18 5.76 1.24 0.08

I[=7 T=7 J=25 10.3 4.98 1.10 0.02
J= 50 9.64 4.54 1.10 0
J=175 10.66 5.14 0.94 0.02
J=100 | 9.92 4.86 0.88 0

[=9 T=7 J=25 14.54 6.20 0.66 0
J=150 | 28.36 14.28 2.06 0
J=T75 | 41.52 26.68 6.28 0
J=100 | 50.98 35.54 10.28 0.02

Table 4.2: Size of CLM (in percentage) when error terms are generated from a
t-distribution



64

| a=01]a=0.05]a=0.01]«=0.0001|

I=5 T=7 J=25 13.04 8.24 3.00 0.04
J=50 10.42 0.82 2.02 0.04
J=175 11.24 2.76 1.44 0.10
J=100 | 10.92 5.32 1.22 0.06
=7 T=7 J=25 10.94 5.24 1.1 0
J= 50 10.82 5.48 1.32 0.04
J=175 10.54 4.82 1.02 0
J=100 | 10.16 4.80 0.84 0
=9 T=7 J=25 15.24 6.26 0.72 0
J=50 | 27.14 14.10 2.22 0
J=T75 | 4244 26.54 6.12 0
J=100 | 53.40 36.52 10.92 0.02

Table 4.3: Size of CLM (in percentage) when error terms are generated from a
chi-square distribution



65

"UOTINIIPSIP [eULIO © A POINLIJSIP IOIIO UOYM SN[RA [RULIOU PIePUR)S 0} 109dsal IIm SO13s13R)S JO safuey] :1°F oInSI

L=1‘001=r ‘¢ =1 (p) L=1‘6L=r ‘6 =1 (9

L=106=r ‘¢ =1(q) L=16c=r‘¢c=1 (e



66

“UOTINLIPSIP [ewLIo © A POINLIJSIP IOIIO UOYM ON[RA [RULIOU PIepUR)S 0} $09dsal IIm SO13s13R)S JO saSuey] :g'f oInSi

L=1‘001=r ‘L =1 (P) L=1 ‘6= ‘L=10)

L=1‘0¢=r‘L=1 (q) L=1‘6e=r‘L=1 (e



67

"UOTINIIPSIP [ewLIon © A POINLIJSIP IOIIO TWOYM ON[RA [RULIOU PIePUR]S 03 $09dSal IIm SO13S13R)S JO SaSuey] €' oInSi ]

L=1‘001=r ‘6 =1 (P) L=1‘6L=r‘6=1 (9

Xepul uonenuIS Xapul uonenwIS

0005 000% 0008 0002 0004 0 0005 0007 000€ 0002 0004 0
I I I L L

_.r\\M...\....m

mWo. itz ~wnw.w 20

oral Big jonal Bis

L=1‘0¢=r ‘6 =1 (q) L=1‘6c=r ‘6 =1 (®)

0005 000% 000¢ 0002 0004 0 0005 000% 000€ 0002 0004 0
L L

1er3) Big e 83| DIS =

W

W10



68

OAY )M UOINLIISIP-7 © AQ POINLIISIP IOLID USUM ON[RA [RULIOU pIRPUR)S 0} 100dsol [IIm SO1ISI)RIS JO

L=1 ‘001=r ‘¢ =1 (p)

0005 000% 000€ 0002 0004
L I I

o891 BiS

L=106=r ‘¢ =1(q)

0005 000% 000€ 0002 0004
L L L

joral Big

“WOPIIIY JO SOOIFOP

L=16L=r ‘¢ =10)

0005 0007 000€ 0002 0004
L L L

W10

10191 BiS

L=1 ‘6=l ‘G =1 (®)

0005 0007 0008 0002 0004
L L L

10101 Big

sogury ' oInsig

()

W10



69

"TOPodIJ JO S09130D
OAT UM UOINQLIJSIP-7 € AQ POIMLIISIP IOIIO USYM ON[BA [RULIOU PIRPUR)S 0} J00dsol [Mm SOI)SIIR)S JO soSury G 9INJIqg

L=1‘001=r ‘L =1 (p) L=16L=r ‘L =10)

0005 000¥ 000 0002 0001 0 0005 000¥ 000€ 0002 0001 0
L. . . . L.
o
o
° =z
A9 BIS e o8] BIS =
L=1‘0¢=r‘L=1 (q) L=1‘6e=r‘L=1 (e
0005 000% 000€ 000z 0001 0 0005 000% 000€ 0002 0001 0
L. L

W10

19A3] BIS i 1or3) B r=




70

"TOPodTJ JO S09130D
OAT UM UOIMNQLIJSIP-7 € AQ POIMLIISIP IOIIO UM ON[BA [RULIOU PIRPUR)S 0} J00dsol UM SOI)SIIR)S JO soSury :9°F oInJIqg

L=1 ‘00T=r ‘6 =1 (P) L=16L=r ‘6 =10)

0005 000¥ 000 0002 0001 0 0005 000¥ 000€ 0002 0001 0
S f A
o

.
o8] BIS re
L=1‘0¢=r‘6 =1 (q) L=1‘6c=r ‘6 =1 (®)

0005 000% 000€ 000z 0001 0 0005 000% 000€ 0002 0001 0

L. L.

W10

19A3] BIS i 1or3) B r=

()



71

"WOPdIJ JO S9ITOP INOJ [IM
UOTINTIISTP SIeNDS-TYD PaIojuad © A PIINGLIISIP 0110 UM SNLA [RULIOU PIEPUR)S 04 109dSoI T[IIM SO1)S13R)S JO SoSUeY ) 'f 9INSI]

L=1 ‘001=r ‘¢ =1 (p) L=1‘6L=r‘¢=1 (9

Xepur uonenwis Xepul uoneinwis

=K
3
o o
oo
AR
N ~
1ora) Big e 1en3) Big m
_ ¢ | ¢ — —_ 3 —_ 4 —
L=1‘0s=r ‘¢ =1 (q) L=1‘se=r‘c=1 (®)
0005 000% 000€ 0002 0001 0 0005 000% 000€ 0002 0001 0
L
.
° L

1or3) Bis s [9r3] BIS I




72

L=1‘001=r ‘L =1 (P)

000€ 0002 0001 0
I

W10

1231 i

L=106=r ‘L =1(q)

Xepul uoneinwis

joral BiS

"WOPdIJ JO S9IF0p INOJ M
UOTINLIYSIP 9IeNDS-TYD PaTojuad © A PIINLISIP 0110 UM SNRA [RULIOU PIRPUR])S 04 100dSol [[IIM SO1)SIIRIS JO SoSURY Q' 9INSI]

L=1‘6L=r‘L=1 (9

0005 000¥ 000€ 000z

Ly

?
BPLr - 32, X

R

joral Big

L=1'sc=r‘L=1 (®)

0005 000% 0008 0002
L

W10

oral Big




73

"WOPdIJ JO S9IFOP INOJ M
UOIINLIYSTP oIeNDS-11D poI1ojuad © A POJNLIISIP J0LIO USYM ONJRA [RULIOU PIRPUR]S 0F 100dSaI [[)IM SO1)SIR)S JO SoSUurY 6§ 9INSI ]

L=1‘'00T=r ‘6 =1 (P)

0005 000% 0008 0002 0004
I I

0005

0008

Xapu1 uonenuwis

L=1°‘sL=r‘6=1 (9

0002
L

000}

Ly I
.
° g
.
[ora) Big e 1en8) Big. -~
_ ¢ | ¢ — —_ 3 —_ 4 —
L=1‘05=r ‘6 =1 (q) L=1‘c=r‘6=1 (®)
0005 000¥ 000€ 0002 0001 0005 000% 000€ 0002 0004

joral Big

r= ona) Bis

W10



CHAPTER V
CONCLUSIONS

In this thesis, we have constructed a test for slope heterogeneity in three-dimensional
panel data model based on a conditional Lagrange multiplier test. The advantage
of our test is more available and important in applications for multi-dimensional
panel data. From the simulation results in Tables 4.1 - 4.3, the size of CLM do
not continuously decrease when J — oo. When J = 100, it may be not large
enough to draw conclusions how effective the approach will be. Therefore, we
added experiments with J = 200 when [ = 5,T = 7 for all error distributions.
The results of this experiment as follows. When error terms are generated from a
normal distribution, a ¢-distribution and a chi-squared distribution for significant
level 0.05, the size (in percentage) is 5.76%, 5.60%, and 5.78%, respectively. In
conclusions, the size of C'LM is generally conservative when J — oo for all error
distributions and all tests with the exception when level of factor 1 is greater than
the level of time index. Moreover, our test does not require large I and 7. Even
though, we do not have a real data applications in this thesis. We hope that the
test may be applicable to some applications in the future work, for example, a real
data application could be a two-way ANOVA with time series data available for

applications in the timeline of thesis.
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