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NOTATION

N the set of natural numbers

Z the set of integers

Zn the set of integers modulo n where n ∈ N

nZ {nz | z ∈ Z} where n ∈ N

Mm×n(S) the set of m× n matrices over a semiring S where m,n ∈ N

XΓY

{
l∑

i=1

xiαiyi | l ∈ N, xi ∈ X,αi ∈ Γ and yi ∈ Y for all i

}
where X and Y are nonempty subsets of a Γ-semiring

NX

{
l∑

i=1

nixi | l ∈ N, ni ∈ N and xi ∈ X for all i

}
where X is a nonempty subset of a Γ-semiring

Hom(X, Y ) the set of all homomorphisms from X to Y where X and Y are

commutative semigroups



CHAPTER I

INTRODUCTION

The notion of Γ-ring was first introduced by N. Nobusawa in 1964 [11]. J. Luh

introduced the concept of left operator ring and right operator ring of Γ-ring in

1969 [9]. M. M. K. Rao introduced the concept of Γ-semiring as a generalization

of semiring and Γ-ring in 1995 [12]. S. K. Sardar and T. K. Dutta modified the

definition of Γ-semiring of Rao and then they defined the left operator semiring and

right operator semiring of a Γ-semiring and obtained a few interesting properties.

In addition, S. K. Sardar and T. K. Dutta gave the definitions of prime, semiprime

irreducible and strongly irreducible ideals in Γ-semirings and also investigated some

properties of them. H. Hedayati and K. P. Shum are researchers that studied Γ-

semiring. In 2011, they introduced a Γ-semiring homomorphism and methods of

constructing new Γ-semirings, namely a quotient Γ-semiring and the products of

Γ-semirings and then they created some fundamental isomorphism theorems and

the commutativity of some diagrams of Γ-semirings.

In 1989, the concept of pure and purely prime ideals in semigroups was intro-

duced by J. Ahsan and M. Takahashi have brought forward [1]. Then M. Shabir

and S. Bashir extended the concept of pure ideals in semigroups to pure ideals in

ternary semigroups, in 2009. Moreover, they also defined and studied pure ideals,

weakly pure ideals and purely prime ideals in ternary semigroups. Furthermore,

they proved that the space of purely prime two-sided ideals is topologized [3].

In this research, we study some properties of ideals of a Γ-semiring. Later on,

we define and characterize right pure ideals and left pure ideals in Γ-semirings.

We characterize right weakly regular Γ-semirings by using the properties of right

pure ideals. Next, we introduce purely prime, purely semiprime, purely irreducible

and strongly irreducible pure ideals in Γ-semirings and examine their properties
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such as relationships between right pure ideals and purely irreducible ideals in

Γ-semirings. From characterization of right pure ideals and left pure ideals, we

reduce the condition of right pure ideals and left pure ideals to construct right

weakly pure ideals and left weakly pure ideals in Γ-semirings. We also characterize

right weakly pure ideals and left weakly pure ideals in Γ-semirings. Finally, we

investigate the properties of right pure ideals and left pure ideals on a Γ-semiring

homomorphism. We also investigate their properties in the quotient Γ-semirings

and the products of Γ-semirings.



CHAPTER II

PRELIMINARIES

In this chapter, we review some definitions and properties of Γ-semirings, which

are a generalization of Γ-rings and semirings. We first introduce the concepts of

semigroups.

Definition 2.1. [5] A semigroup (S, ∗) is an ordered pair of a nonempty set S

and an associative binary operation ∗ on S. We may write xy for x ∗ y where

x, y ∈ S.

If S is a semigroup such that x ∗ y = y ∗ x for all x, y ∈ S, we shall say that S

is commutative.

Definition 2.2. [5] A subsemigroup T of a semigroup (S, ∗) is a nonempty

subset T of S such that xy ∈ T for all x, y ∈ T .

Definition 2.3. [5] An element 1 of a semigroup S is called an identity element

of S if x1 = x = 1x for all x ∈ S.

Definition 2.4. [5] An element e of a semigroup S is called an idempotent if

e2 = ee = e. Let E(S) denote the set of all idempotents of S.

Example 2.1. From Example 2 in [8], (N,max) is a commutative semigroup.

Then every nonempty subset of N is a subsemigroup of (N,max).

Example 2.2. For each n ∈ N, (Zn,+) and (Zn, ·) are commutative semigroups.

Example 2.3. For n,m ∈ N, if S is a commutative semigroup, then Mn×m(S) is

a commutative semigroup under the usual addition of matrices. Moreover, if A is

a subsemigroup of S, then Mn×m(A) is a subsemigroup of Mn×m(S).
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Example 2.4. Let X and Y be commutative semigroups with identity elements.

If M = Hom(X, Y ), then M is a commutative semigroup under the usual addition

of functions.

Another basic structure in this thesis is semirings. It was introduced by M. K.

Sen and M. R. Adhikari [13] in 1993.

Definition 2.5. [13] A semiring is a nonempty set S with two binary operations

+ and · satisfying the following conditions: for all x, y, z ∈ S,

(i) (S,+) is a commutative semigroup;

(ii) (S, ·) is a semigroup;

(iii) x · (y + z) = (x · y) + (x · z) and (y + z) · x = (y · x) + (z · x).

In addition, S is a commutative semiring if (S, ·) is commutative.

Definition 2.6. [13] An element 0 of a semiring S is said to be an absorbing

zero if for all a ∈ S,

0 · a = 0 = a · 0 and a+ 0 = a.

Definition 2.7. [13] An element 1 of a semiring S is said to be the identity

element if 1 · a = a = a · 1 for all a ∈ S.

Definition 2.8. [13] A nonempty subset A of a semiring S is called an ideal of S

if A is a subsemigroup of (S,+) and a · s, s · a ∈ A for all a ∈ A and s ∈ S.

Example 2.5. For each n ∈ N, (Zn,+, ·) is a commutative semiring with zero [0]n

and identity [1]n.

In 1966, W. E. Barnes introduced the definition of Γ-rings.

Definition 2.9. [2] Let (S,+) and (Γ,+′) be abelian groups. S is called a Γ-ring

if there exists a function S ×Γ×S → S, called a Γ-multiplication, whose image

of (a, γ, b) is denoted by aγb, satisfying the following conditions:

(i) right distributive : (a+ b)γc = aγc+ bγc;
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(ii) left distributive : aγ(b+ c) = aγb+ aγc;

(iii) lateral distributive : a(γ +′ β)b = aγb+ aβb; and

(iv) associative : aγ(bβc) = (aγb)βc

for all a, b, c ∈ S and γ, β ∈ Γ.

The notions of Γ-semirings introduced by T. K. Dutta and S. K. Sardar [4] is

a main structure for studying this thesis.

Definition 2.10. [4] Let (S,+) and (Γ,+′) be commutative semigroups. S is

called a Γ-semiring if there exists a mapping S × Γ × S → S, whose image of

(a, α, b) is denoted by aαb, satisfying the following conditions: for all a, b, c ∈ S

and α, β ∈ Γ,

(i) aα(b+ c) = aαb+ aαc;

(ii) (b+ c)αa = bαa+ cαa;

(iii) a(α +′ β)c = aαc+ aβc; and

(iv) aα(bβc) = (aαb)βc.

Definition 2.11. [4] A Γ-semiring S is said to be commutative if aαb = bαa for

any a, b ∈ S and for any α ∈ Γ.

Every semiring S is a Γ-semiring where Γ is a subsemiring of S. Here is an

example.

Example 2.6. Let (S,+, ·) be a semiring and Γ a subsemiring of S. Next, define

the mapping S×Γ×S → S by xαy = x ·α ·y for all x, y ∈ S and α ∈ Γ. Then S is

a Γ-semiring. Therefore, every semiring S is a Γ-semiring where Γ is a subsemiring

of S. Moreover, if S is a commutative semiring, then S is a commutative Γ-semiring

under this construction.

Similarly, we can construct a semiring from a Γ-semiring by the method as

shown in the following example.
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Example 2.7. Let S be a Γ-semiring. Then S is an additive commutative semi-

group. Fix α ∈ Γ and define the binary operation · : S × S → S by x · y = xαy

for all x, y ∈ S. Therefore, S is a semiring. Furthermore, if S is a commutative

Γ-semiring, then S is a commutative semiring under this construction.

The other examples of Γ-semirings are as follows.

Example 2.8. For n,m ∈ N, let S = Mn×m(R) and Γ = Mm×n(R) where R is a

semiring. By Example 2.3, (S,+) and (Γ,+) are commutative semigroups where

+ is the usual addition of matrices. Define the mapping S × Γ× S → S by AαB

which is the usual multiplication of matrices for all A,B ∈ S and α ∈ Γ. Then S

is a Γ-semiring but not a commutative Γ-semiring.

Example 2.9. [8] Let Γ = {1, 2, 3}. By Example 2.1, (N,max) and (Γ,max)

are commutative semigroups. Define the mapping N × Γ × N → N by aαb =

min{a, α, b} for all a, b ∈ N and α ∈ Γ. Then N is a commutative Γ-semiring.

Example 2.10. [12] Let M = Hom(X, Y ) and Γ = Hom(Y,X) where X and Y

are commutative semigroups with identity elements. Then M and Γ are additive

commutative semigroups. Define the mapping M ×Γ×M →M by fαh being the

usual composition map for all f, h ∈M and α ∈ Γ. Then M is a Γ-semiring.

We need to introduce the following notations used throughout this thesis. For

nonempty subsets X, Y of a Γ-semiring S and a nonempty subset ∆ of Γ,

X + Y = {x+ y | x ∈ X and y ∈ Y }

X∆Y =

{
m∑
i=1

xiαiyi | m ∈ N, xi ∈ X,αi ∈ ∆ and yi ∈ Y for all i

}

NX =

{
m∑
i=1

nixi | m ∈ N, ni ∈ N and xi ∈ X for all i

}
.

For convenience, we write x∆Y , X∆y and XαY instead of {x}∆Y , X∆{y}

and X{α}Y , respectively, for all x, y ∈ S and α ∈ ∆. Moreover, we simply write∑
xiαiyi and

∑
nixi instead of

m∑
i=1

xiαiyi and
m∑
i=1

nixi where m ∈ N, xi, yi ∈ S,

αi ∈ Γ and ni ∈ N for all i, respectively.
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Proposition 2.12. Let S be a commutative Γ-semiring. Then for nonempty sub-

sets X and Y of S, XΓY = Y ΓX.

Proof. This is clear.

Proposition 2.13. Let S be a Γ-semiring. Then for nonempty subsets X, Y and

Z of S and a nonempty subset ∆ of Γ, the following hold:

(i) (X + Y )∆Z ⊆ X∆Z + Y∆Z;

(ii) X∆(Y + Z) ⊆ X∆Y +X∆Z;

(iii) (X∆Y )∆Z = X∆(Y∆Z); and

(iv) (NX)∆Y = N(X∆Y ) = X∆(NY ).

Proof. (i) Let
∑

(xi + yi)αizi ∈ (X + Y )∆Z where xi ∈ X, yi ∈ Y, αi ∈ ∆ and

zi ∈ Z for all i. Since (xi + yi)αizi = xiαizi + yiαizi for all i, we obtain

∑
(xi + yi)αizi =

∑
xiαizi +

∑
yiαizi ∈ X∆Z + Y∆Z

so that (X + Y )∆Z ⊆ X∆Z + Y∆Z.

(iv) (⊆) Let
∑
ziαiyi ∈ (NX)∆Y where zi ∈ NX,αi ∈ ∆ and yi ∈ Y for all i. For

each i, zi =
∑
nijxij where nij ∈ N and xij ∈ X for all ij. It follows that

∑
ziαiyi =

∑
(
∑

nijxij)αiyi =
∑
i,ij

(nijxij)αiyi =
∑
i,ij

nij(xijαiyi) ∈ N(X∆Y ).

Now we conclude that (NX)∆Y ⊆ N(X∆Y ).

(⊇) Let
∑
nizi ∈ N(X∆Y ) where ni ∈ N and zi ∈ X∆Y . For each i, we

obtain that zi =
∑
xijαijyij where xij ∈ X, αij ∈ ∆ and yij ∈ Y . Thus∑

nizi =
∑
ni

(∑
xijαijyij

)
=
∑
i,ij

ni(xijαijyij) =
∑
i,ij

(nixij)αijyij ∈ (NX)∆Y .

Hence N(X∆Y ) ⊆ (NX)∆Y .

We prove N(X∆Y ) = X∆(NY ) as same as (NX)∆Y = N(X∆Y ).

The proofs of (ii) and (iii) are obtained similarly to the proof of (i).
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Conventionally, we write X∆Y∆Z instead of (X∆Y )∆Z or X∆(Y∆Z), for all

nonempty subsets X, Y and Z of S and a nonempty subset ∆ of Γ.

Proposition 2.14. Let S be a Γ-semiring. Then for nonempty subsets X, Y and

Z of S and nonempty subsets ∆ and Θ of Γ the following statements hold:

(i) if X ⊆ Y , then X∆Z ⊆ Y∆Z;

(ii) if Y ⊆ Z, then X∆Y ⊆ X∆Z;

(iii) if ∆ ⊆ Θ, then X∆Y ⊆ XΘY .

Proof. (i) Let
∑
xiαizi ∈ X∆Z where xi ∈ X, αi ∈ ∆ and zi ∈ Z for all i. Since

xi ∈ X ⊆ Y ,
∑
xiαizi ∈ Y∆Z for all i. Therefore, X∆Z ⊆ Y∆Z.

The proofs of (ii) and (iii) are similar to the proof of (i).

Definition 2.15. [4] Let S be a Γ-semiring. An element 0 ∈ S is said to be a

zero if for all a ∈ S and α ∈ Γ,

0αa = 0 = aα0 and a+ 0 = a.

Example 2.11. Let (S,+, ·) be a semiring. By Example 2.6, S is a Γ-semiring

where Γ is a subsemiring of S. If 0 is an absorbing zero of a semiring S, then

0αa = 0 = aα0 and a+ 0 = a for all a ∈ S and α ∈ Γ. Hence if 0 is an absorbing

zero of a semiring S, then 0 is a zero of a Γ-semiring S.

Example 2.12. Let S = N and Γ = {1, 2, 3}. By Example 2.9, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. Then 1 is a zero of S.

Example 2.13. For n,m ∈ N, let S = Mn×m(R) and Γ = Mm×n(R) where R is a

semiring with absorbing zero 0. By Example 2.8, S forms a Γ-semiring with AαB

which is the usual multiplication of matrices for all A,B ∈ S and α ∈ Γ. Then

[0]n×m is a zero of S.

In semiring theory, the properties of their ideals play an important role in their

structure theory. Similarly, in Γ-semiring theory, T. K. Dutta and S. K. Sardar

gave the definition of ideals of a Γ-semiring in 2000.
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Definition 2.16. [4] A nonempty subset I of a Γ-semiring S is called a right

ideal (left ideal) of S if I is a subsemigroup of (S,+) and aαx ∈ I (xαa ∈ I) for

all a ∈ I, x ∈ S and for all α ∈ Γ.

Definition 2.17. [4] If I is both right and left ideal of a Γ-semiring S, then we

say that I is an ideal of S.

Remark 1. A Γ-semiring S is a right ideal and a left ideal of S. On the other

hand, every right ideal (left ideal) of a Γ-semiring is a Γ-semiring.

Remark 2. If S is a commutative Γ-semiring, then right ideals (left ideals) of S

are ideals of S.

Remark 3. For each right ideal (left ideal) I of a Γ-semiring S with zero 0, 0 ∈ I

because 0 = xα0 ∈ I (0 = 0αx ∈ I) for all x ∈ I and α ∈ Γ.

Example 2.14. Let (S,+, ·) be a semiring and Γ a subsemiring of S. By Example

2.6, S is a Γ-semiring with xαy = x ·α ·y for all x, y ∈ S and α ∈ Γ. If I is an ideal

of a semiring S, then a+ b ∈ I and x · α · a, a · α · x ∈ I for all x ∈ S, a, b ∈ I and

α ∈ Γ. Hence I is a subsemigroup of (S,+) and xαa, aαx ∈ I for all x ∈ S, a ∈ I

and α ∈ Γ. Now we conclude that any ideals of a semiring S are ideals of a Γ-

semiring S. Conversely, let S be a semiring with identity 1 and I an ideal of a

Γ-semiring S where Γ = S. So I is a subsemigroup of (S,+) and for a ∈ I, x ∈ S,

a · x = a · 1 · x ∈ I and x · a = x · 1 · a ∈ I. Therefore, I is an ideal of S.

Example 2.15. For k ∈ N, n = pn1
1 p

n2
2 · · · p

nk
k where p1, p2, . . . , pk are pairwise

distinct primes and ni ∈ N for all i. Let S = Zn and Γ = S. By Example 2.6,

S is a commutative Γ-semiring with [x]n[α]n[y]n = [xαy]n for all [x]n, [y]n ∈ S

and [α]n ∈ Γ. Let I = {m[pl11 p
l2
2 · · · p

lk
k ]n | m ∈ Z} where 0 ≤ li ≤ ni. For

m[pl11 p
l2
2 · · · p

lk
k ]n, t[p

l1
1 p

l2
2 · · · p

lk
k ]n ∈ I, m[pl11 p

l2
2 · · · p

lk
k ]n + t[pl11 p

l2
2 · · · p

lk
k ]n = (m +

t)[pl11 p
l2
2 · · · p

lk
k ]n ∈ I. Thus I is a subsemigroup of S. For [x]n ∈ S,m[pl11 p

l2
2 · · · p

lk
k ]n ∈

I and [α]n ∈ Γ, [x]n[α]nm[pl11 p
l2
2 · · · p

lk
k ]n = xαm[pl11 p

l2
2 · · · p

lk
k ]n ∈ I. Therefore, I is

an ideal of S.
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Example 2.16. Let S = N and Γ = {1, 2, 3}. By Example 2.9, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. Then {1}, {1, 2} and {1, 2, 3}

are ideals of S. Moreover, I is an ideal of S if {1, 2, 3} ⊆ I.

Example 2.17. For n,m ∈ N, let S = Mn×m(R) and Γ = Mm×n(R) where R is

a semiring. By Example 2.8, S forms a Γ-semiring with the usual multiplication

of matrices AαB for all A,B ∈ S and α ∈ Γ. Let I be an ideal of R. Then I is a

subsemigroup of (R,+). By Example 2.3, Mn×m(I) is a subsemigroup of S under

the usual addition of matrices. Next, let A = [aij]n×m ∈ S, B = [αij]m×n ∈ Γ and

C = [cij]n×m ∈Mn×m(I). Then ABC =

[
n∑

k=1

m∑
l=1

ailαlkckj

]
n×m

where aikαklclj ∈ I

because each clj is an element of the ideal I. We now obtain that ABC ∈Mn×m(I).

Therefore, if I is an ideal of R, then Mn×m(I) is an ideal of S. On the other hand,

let R∗ be a semiring with absorbing zero 0 and identity element 1 and Mn×m(J) be

an ideal of Mn×m(R∗). By Remark 3, [0]n×m ∈Mn×m(J). Thus 0 ∈ J . For x ∈ R∗,

we define [x]n×m is an n × m matrix with x on (1, 1)-entry and absorbing zeros

elsewhere. Then for all a, b ∈ J , [a + b]n×m = [a]n×m + [b]n×m ∈ Mn×m(J) implies

that a + b ∈ J . Next, let x ∈ R∗. We obtain from [x]n×m ∈ Mn×m(R∗), [a]n×m ∈

Mn×m(J) and [1]m×n ∈Mm×n(R∗) that [ax]n×m = [a]n×m[1]m×n[x]n×m ∈Mn×m(J)

and [xa]n×m = [x]n×m[1]m×n[a]n×m ∈ Mn×m(J). Hence ax, xa ∈ J . Therefore, if

Mn×m(J) is an ideal of the Mm×n(R∗)-semiring Mn×m(R∗), then J is an ideal of

R∗. Now we conclude that for a semiring R∗ with absorbing zero 0 and identity

element 1, Mn×m(J) is an ideal of Mn×m(R∗) if and only if J is an ideal of R∗.

Example 2.18. Let M = Hom(X, Y ) and Γ = Hom(Y,X) where X and Y are

commutative semigroups with identity elements and Y = E(Y ). By Example 2.10,

M forms a Γ-semiring with the usual composition map fαh for all f, h ∈ M and

α ∈ Γ. Let I = {f ∈ M | f is a constant function}. If f, h ∈ I, then there

exist y, z ∈ Y , f(x) = y and h(x) = z for all x ∈ X. We obtain (f + h)(x) =

f(x) + h(x) = y + z so that f + h ∈ I. Thus I is a subsemigroup of M . Next,

let g ∈ M and α ∈ Γ. Then g(X) = Y ′ and α(Y ) = X ′ for some X ′ ⊆ X and

Y ′ ⊆ Y . It follows that (fαg)(X) = fαg(X) = fα(Y ′) ⊆ f(X ′) = {y} and
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(gαf)(X) = gαf(X) = gα({y}) = g({t}) = {s} for some t ∈ X and s ∈ Y . Hence

fαg ∈ I and gαf ∈ I. Therefore, I is an ideal of M .

Next, some properties of ideals of Γ-semirings are given.

Proposition 2.18. Let S be a Γ-semiring and I a subsemigroup of (S,+). Then

the following hold:

(i) I is a right ideal of S if and only if IΓS ⊆ I;

(ii) I is a left ideal of S if and only if SΓI ⊆ I;

(iii) I is an ideal of S if and only if SΓI ⊆ I and IΓS ⊆ I.

Proof. (i) (→) Let I be a right ideal of a Γ-semiring S and y ∈ IΓS. Then

y =
∑
aiαixi where ai ∈ I, xi ∈ S and αi ∈ Γ for all i. By assumption, each

aiαixi ∈ I. Since I is a subsemigroup of (S,+), y =
∑
aiαixi ∈ I.

(←) Let IΓS ⊆ I. For all a ∈ I, x ∈ S and α ∈ Γ, aαx ∈ IΓS ⊆ I. By Definition

2.16, I is a right ideal of S.

(ii) This is similar to the proof of (i).

(iii) The proof follows from (i) and (ii).

Proposition 2.19. Let X be a nonempty subset of a Γ-semiring S and ∆ a

nonempty subset of Γ. Then the following statements hold:

(i) X∆S is a right ideal of S;

(ii) S∆X is a left ideal of S;

(iii) S∆X∆S is an ideal of S.

Proof. (i) We show that X∆S is a right ideal of S. First, let a, b ∈ X∆S. Then

a =
∑
xiαiai and b =

∑
yjβjbj where xi, yj ∈ X, ai, bj ∈ S and αi, βj ∈ ∆ for all

i, j. We obtain from a+ b =
∑
xiαiai +

∑
yjβjbj that a+ b ∈ X∆S. Hence X∆S

is a subsemigroup of (S,+). Next, let s ∈ S and α ∈ Γ. Then

aαs =
(∑

xiβiai

)
αs =

(∑
xiβiaiαs

)
=
∑

xiβi (aiαs) ∈ X∆S.
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Therefore, X∆S is a right ideal of S.

(ii) Similarly, we can show that S∆X is a left ideal of S.

(iii) From (i) and (ii), (S∆X)∆S is a right ideal and S∆(X∆S) is a left ideal of

S, respectively. Hence S∆X∆S is an ideal of S.

Proposition 2.20. Let S be a Γ-semiring with zero 0. The following statements

hold:

(i) {0} is an ideal of S;

(ii) any finite intersection of ideals of S is an ideal of S.

Proof. (i) It is obvious that SΓ{0} = {0} and {0}ΓS = {0}. By Proposition 2.18,

{0} is an ideal of S.

(ii) For n ∈ N, let A =
n⋂

i=1

{Ji | Ji is an ideal of S}. Then A 6= ∅ because {0} ∈ A.

Let a, b ∈ A. Thus a, b ∈ Ji for all i. For each i, Ji is a subsemigroup of (S,+)

so a + b ∈ Ji for all i. It follows that a + b ∈ A. Now we obtain that A is a

subsemigroup of (S,+). Next, let x ∈ S and α ∈ Γ. Each i, Ji is an ideal of S.

Thus xαa, aαx ∈ Ji for all i. So xαa, aαx ∈ A. Hence A is an ideal of S.

Moreover, T. K. Dutta and S. K. Sardar introduced the definition of prime,

semiprime, irreducible and strongly irreducible ideals of Γ-semirings.

Definition 2.21. [4] A proper ideal P of a Γ-semiring S is said to be prime if for

all ideals H and K of S, HΓK ⊆ P implies that either H ⊆ P or K ⊆ P .

Definition 2.22. [4] A proper ideal P of a Γ-semiring S is said to be semiprime

if for every ideal A of S, AΓA ⊆ P implies that A ⊆ P .

By virtue of Definitions 2.21 and 2.22, we can conclude that every prime ideal

is semiprime. It follows that if I is not a semiprime ideal of S, then I is not a

prime ideal of S. Here is an example.

Example 2.19. Let S = N and Γ = {1, 2, 3}. By Example 2.16, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ and {1, 2, 3, 4} is an ideal of S.
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But {1, 2, 3, 4} is not semiprime of S because there exists an ideal I1 = {1, 2, 3, 4, 5}

of S such that I1ΓI1 ⊆ {1, 2, 3, 4}. It follows that {1, 2, 3, 4} is not a prime ideal

of S.

Definition 2.23. [4] A proper ideal I of a Γ-semiring S is said to be irreducible

if for all ideals H and K of S, H ∩K = I implies that H = I or K = I.

Definition 2.24. [4] A proper ideal I of a Γ-semiring S is said to be strongly

irreducible if for all ideals H and K of S, H ∩ K ⊆ I implies that H ⊆ I or

K ⊆ I.

From Definitions 2.23 and 2.24, we can conclude that every strongly irreducible

ideal is irreducible. It follows that if I is not an irreducible ideal of a Γ-semiring

S, then I is not a strongly irreducible ideal of S.

Example 2.20. Let S = Mn×1(Z12) and Γ = M1×n(Z12). We have S forms a Γ-

semiring with AαB, which is the usual multiplication of matrices for all A,B ∈ S

and α ∈ Γ. By Example 2.17, we conclude that all ideals of S are S, I0 ={
[[0]12]n×1

}
, I1 =

{
[xi1]n×1 |xi1 ∈ {[0]12, [6]12}

}
, I2 =

{
[xi1]n×1 |xi1 ∈ {[0]12, [4]12,

[8]12}, I3 =
{

[xi1]n×1 |xi1 ∈ {[0]12, [3]12, [6]12, [9]12}
}

and I4 =
{

[xi1]n×1 |xi1 ∈ {[0]12,

[2]12, [4]12, [6]12, [8]12, [10]12}. Consider sets Il ∩ Ik where Il and Ik are ideals of S,

I1 ∩ I1 = I1 I1 ∩ I2 = I0 I1 ∩ I3 = I1 I1 ∩ I4 = I1

I2 ∩ I2 = I2 I2 ∩ I3 = I0 I2 ∩ I4 = I2 I3 ∩ I4 = I0

I2 ∩ I2 = I2 I2 ∩ I3 = I0 I2 ∩ I4 = I2 I3 ∩ I3 = I3

I3 ∩ I4 = I1 I4 ∩ I4 = I4 I0 ∩ Ik = I0 Ik ∩ I0 = I0

S ∩ Ik = Ik Ik ∩ S = Ik.

We obtain that

• all strongly irreducible ideals of S are I2, I3 and I4, and

• all irreducible ideals of S are I2, I3 and I4.

Example 2.21. Let S = N and Γ = {1, 2, 3}. By Example 2.16, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ and {1, 2, 3, 4} is an ideal of S.



14

But {1, 2, 3, 4} is not irreducible of S because there exist ideals I1 = {1, 2, 3, 4, 5}

and I2 = {1, 2, 3, 4, 6} such that I1 ∩ I2 = {1, 2, 3, 4}. It follows that {1, 2, 3, 4} is

not a strongly irreducible ideal of S.

In semirings, some interesting properties of semirings are true when that semir-

ings have the identity. Likewise, in Γ-semirings, the identity element was intro-

duced by K. Hila, I. Vardhami and K. Gjino in 2013.

Definition 2.25. [7] An element e of a Γ-semiring S is called an identity element

of S if aαe = a = eαa, for all a ∈ S and α ∈ Γ.

Example 2.22. Let S = {1, 2, 3, 4, 5} and Γ = {5}. We see that (S,max,min) is

a semiring and Γ is a subsemiring of S. By Example 2.6, S is a Γ-semiring with

aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. Then 5 is an identity element of S.

For a Γ-semiring, the definition of the ideal generated by set is given by R. D.

Jagatap and Y. S. Pawar.

Definition 2.26. [8] Let X be a nonempty subset of a Γ-semiring S. By (X)r we

mean the right ideal of S generated by X (that is the intersection of all right

ideals of S containing X).

Similarly, (X)l and (X)t denote the left ideal and two-sided ideal gener-

ated by X, respectively.

The following useful theorem based on a Γ-semiring with identity element is

required.

Proposition 2.27. [8] For nonempty subset X of a Γ-semiring S with identity

element, we have

(i) (X)r = XΓS;

(ii) (X)l = SΓX;

(iii) (X)t = SΓXΓS.



CHAPTER III

PURE IDEALS

In this chapter, we separate our work into two parts. Firstly, we introduce the

definitions of right pure ideals and left pure ideals in Γ-semirings and investigate

their properties such as characterization of right pure ideals and left pure ideals and

relationships between pure ideals and purely irreducible ideals in Γ-semirings. We

also characterize right weakly regular Γ-semirings. Secondly, we include conditions

into right pure ideals to define purely prime, purely semiprime, purely irreducible,

strongly irreducible pure and purely maximal ideals in Γ-semirings and and inves-

tigate their relationships. Finally, We reduce conditions of right pure ideals and

left pure ideals to define weakly right pure ideals and weakly left pure ideals in

Γ-semirings and investigate thier properties.

Definition 3.1. An ideal I of a Γ-semiring S is called right pure (left pure) if

for each x ∈ I there exist a ∈ I, α ∈ Γ such that xαa = x (aαx = x).

It is straightforward to show that for each commutative Γ-semiring S, right

pure ideals and left pure ideals of S are coincide.

Example 3.1. Let M = Hom(X, Y ) and Γ = Hom(Y,X) where X and Y are

commutative semigroups with identity elements and Y = E(Y ). By Example

2.18, M forms a Γ-semiring with the usual composition map fαh for all f, h ∈M

and α ∈ Γ and I = {f ∈M | f is a constant function} is an ideal of M . Since for

f ∈ I there exists α ∈ Γ such that f = fαf , I is a right pure ideal and a left pure

ideal of M .

Example 3.2. Let S = N and Γ = {1, 2, 3}. By Example 2.16, S is a Γ-semiring

where aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. Then {1}, {1, 2} and {1, 2, 3}

are right pure ideals of S. But I = {1, 2, 3, 4} is not a right pure ideal of S because
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4 6= 4αx for all x ∈ I and α ∈ Γ. Since S is a commutative Γ-semiring, {1}, {1, 2}

and {1, 2, 3} are left pure ideals of S.

Example 3.3. For n ∈ N, let S = Mn×1(Z6) and Γ = M1×n(Z6). Then S forms

a Γ-semiring with AαB being the usual multiplication of matrices for all A,B ∈

S and α ∈ Γ. By Example 2.17, all ideals of S are S,
{

[xi1]n×1 |xi1 ∈ {[0]6}
}

,{
[xi1]n×1 |xi1 ∈ {[0]6, [3]6}

}
and

{
[xi1]n×1 |xi1 ∈ {[0]6, [2]6, [4]6}

}
. It’s easy to see

that S and
{

[xi1]n×1 |xi1 ∈ {[0]6}
}

are right pure ideals and left pure ideals of S.

Next, to show that I =
{

[xi1]n×1 |xi1 ∈ {[0]6, [3]6}
}

is a right pure ideal of S, let

[xi1]n×1 ∈ I. Then there exist [[3]6]n×1 ∈ I and [[1]6]1×n ∈ Γ such that
x11

x21
...

xn1


(

[1]6 [0]6 · · · [0]6

)


[3]6

[0]6
...

[0]6

 =


[3]6x11

[3]6x21
...

[3]6xn1

.

If xi1 = [0]6, then [3]6xi1 = [0]6. If xi1 = [3]6, then [3]6xi1 = [3]6. Hence
x11

x21
...

xn1


(

[1]6 [0]6 · · · [0]6

)


[3]6

[0]6
...

[0]6

 =


x11

x21
...

xn1

.

Therefore, I is a right pure ideal of S. Moreover, if [xi1]n×1 = [[0]6]n×1, then there

exist [ai1]n×1 ∈ I and [α1i]1×n ∈ Γ such that [xi1]n×1 = [ai1]n×1 [α1i]1×n [xi1]n×1.

But if [xi1]n×1 6= [[0]6]n×1, then there exists k ∈ {1, 2, ..., n} such that xk1 = [3]6.

We choose [α1i]1×n ∈ Γ by

α1i =

[1]6 if i = k;

[0]6 if i 6= k.

Thus
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

x11
...

xk1
...

xn1


(

[0]6 · · · [1]6 · · · [0]6

)


x11
...

xk1
...

xn1


=



[3]6x11
...

[3]6xk1
...

[3]6xn1


=



x11
...

xk1
...

xn1


.

Therefore, I is a left pure ideal of S. Moreover,
{

[xi1]n×1 |xi1 ∈ {0̄, 2̄, 4̄}
}

is a right

pure ideal and left pure ideal of S which can be proved in a similar way.

Theorem 3.2. If a and b are integers such that at least one of them is non-zero

and c = gcd(a, b), then there exist integers x and y such that c = ax+ by.

We use the above theorem to characterize right pure ideals and left pure ideals

in the Zn-semiring Zn in the following result.

Proposition 3.3. For k ∈ N, n = pn1
1 p

n2
2 · · · p

nk
k where p1, p2, . . . , pk are pairwise

distinct primes and ni ∈ N. Let S = Zn = Γ and I = {m[pl11 p
l2
2 · · · p

lk
k ]n | m ∈ Z}

where 0 ≤ li ≤ ni for all i. Then I is a right pure ideal of S if and only if for each

i, li = 0 or li = ni.

Proof. (←) Let li = 0 or li = ni for each i. By re-arrangement, we assume that

l1 = n1, l2 = n2, . . . , lt = nt and lt+1 = 0, lt+2 = 0, . . . , lk = 0. We will show

that I = {m [pn1
1 p

n2
2 · · · pnt

t ]n | m ∈ Z} is a right pure ideal of S. First, we write

a = pn1
1 p

n2
2 · · · pnt

t . We obtain that gcd(a, p
nt+1

t+1 p
nt+2

t+2 · · · p
nk
k ) = 1. By Theorem 3.2,

xa + yp
nt+1

t+1 p
nt+2

t+2 · · · p
nk
k = 1 for some x, y ∈ Z. Now we conclude that there exists

x ∈ Z such that p
nt+1

t+1 p
nt+2

t+2 · · · p
nk
k |xa − 1. Let [z]n ∈ I. Then [z]n = c[a]n. We

obtain from xa− 1 = wp
nt+1

t+1 p
nt+2

t+2 · · · p
nk
k for some w ∈ Z that

(ca)(xa− 1) = (ca)(wp
nt+1

t+1 p
nt+2

t+2 · · · p
nk
k )

(ca)(xa)− ca = cwn.

Since n|(ca)(xa)−ca, [(ca)(xa)]n = [ca]n. Thus [z]n[xa]n = [z]n. Hence for [z]n ∈ I

there exist [xa]n ∈ I and [1]n ∈ Γ such that [z]n[1]n[xa]n = [z]n. Therefore, I is a
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right pure ideal of S.

(→) Let I = {m[pl11 · · · p
lk
k ]n | m ∈ Z} be a right pure ideal of S. Without loss of

generality, suppose that there exists i = 1 such that 0 < l1 < n1. Since l1 < n1,

[pl11 p
l2
2 · · · p

lk
k ]n ∈ I − {0}. Thus there exist t[pl11 p

l2
2 · · · p

lk
k ]n ∈ I and [α]n ∈ Γ such

that

[pl11 p
l2
2 · · · p

lk
k ]n = [pl11 p

l2
2 · · · p

lk
k ]n[α]nt[p

l1
1 p

l2
2 · · · p

lk
k ]n

= [αtp2l11 p2l22 · · · p
2lk
k ]n.

We obtain that pn1
1 p

n2
2 · · · p

nk
k |

(
(αtp2l11 p2l22 · · · p

2lk
k )− (pl11 p

l2
2 · · · p

lk
k )
)

and therefore,

pn1
1 p

n2
2 · · · p

nk
k |

(
(αtpl11 p

l2
2 · · · p

lk
k − 1)pl11 p

l2
2 · · · p

lk
k

)
. Since l1 < n1, we have p1 |

(αtpl11 p
l2
2 · · · p

lk
k − 1)pl22 · · · p

lk
k . Then p1 | (αtpl11 pl22 · · · p

lk
k − 1) because p1 - pl22 · · · p

lk
k .

Since l1 > 0, p1 | (p1(αtpl1−11 pl22 · · · p
lk
k )− 1). We obtain that

p1(αtp
l1−1
1 pl22 · · · p

lk
k )− 1 = cp1

p1(αtp
l1−1
1 pl22 · · · p

lk
k − c) = 1

for some c ∈ Z. It is a contradiction because αtpl1−11 pl22 · · · p
lk
k − c ∈ Z. Therefore,

li = 0 or li = ni for all i.

By commutative property, this proposition holds for left pure ideals in the

Zn-semiring Zn.

Example 3.4. For the Z48-semiring Z48, we consider I = {m[24]48 | m ∈ Z} =

{[0]48, [16]48, [32]48}. We know that 48 = (24)(3) and there exists [1]48 ∈ Z48 such

that 3 | (1)(24) − 1. We obtain that for [x]48 ∈ I, [x]48[1]48[16]48 = [x]48. Thus I

is a right pure ideal of the Z48-semiring Z48. Next, we consider J = {m[(22)]48 |

m ∈ Z48}. There exists 3[22]48 = [12]48 ∈ J − {0} such that 3[22]48[α]48m[22]48 =

m[(3)(24)]48[α]48 = [0]48 6= 3[22]48 for all m[22]48 ∈ J and α ∈ Γ. Hence J is not a

right pure ideal in the Z48-semiring Z48.

Furthermore, we get right pure ideals in the Mm×k(Zn)-semiring Mk×m(Zn)

where m ≤ k in the following proposition.
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Proposition 3.4. Let m ≤ k. Then I is a right pure ideal of the Zn-semiring Zn

if and only if Mk×m(I) is a right pure ideal of the Mm×k(Zn)-semiring Mk×m(Zn).

Proof. (→) Suppose that I is a right pure ideal of the Zn-semiring Zn. From the

proof of the above proposition, we obtain that there exist y ∈ I such that z = zy

for all z ∈ I. Since Zn is a semiring with identity, I is an ideal of the semiring Zn.

By Example 2.17, Mk×m(I) is an ideal of the Mm×k(Zn)-semiring Mk×m(Zn). To

show that Mk×m(I) is a right pure ideal of the Mm×k(Zn)-semiring Mk×m(Zn), let

[zij]k×m ∈Mk×m(I). We choose [bij]k×m ∈Mk×m(I) by

bij =

y if i = j;

[0]n if i 6= j

and [αij]m×k ∈Mm×k(Zn) by

αij =

[1]n if i = j;

[0]n if i 6= j.

Then

[aij]k×m[αij]m×k[bij]k×m = [aij]k×myIm = [yaij]k×m = [aij]k×m.

Therefore, Mk×m(I) is a right pure ideal of the Mm×k(Zn)-semiring Mk×m(Zn).

(←) Let Mk×m(I) be a right pure ideal of the Mm×k(Zn)-semiring Mk×m(Zn). By

Example 2.17, I is an ideal of the semiring Zn. By Example 2.14, I is an ideal of

the Zn-semiring Zn. To show that I is a right pure ideal of the Zn-semiring Zn,

let a ∈ I. We define [x]k×m to be the k × m matrix with x on (1, 1)-entry and

absorbing zeros elsewhere. Then [a]k×m ∈ Mk×m(I). We obtain that there exist

[bij]k×m ∈Mk×m(I) and [βij]m×k ∈ Γ such that

[a]k×m = [a]k×m[βij]m×k[bij]k×m.
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Then

[a]k×m =


a
∑k

l=1 β1lbl1 a
∑k

l=1 β1lbl2 · · · a
∑k

l=1 β1lblm

0 0 · · · 0
...

... · · · ...

0 0 · · · 0

 .

Hence a = a
∑k

l=1 β1lbl1. Since I is an ideal of the semiring Zn and blj ∈ I,∑k
l=1 β1lbl1 ∈ I. So there exist

∑k
l=1 β1lbl1 ∈ I and [1]n ∈ Zn such that a =

a[1]n
∑k

l=1 β1lbl1. Therefore, I is a right pure ideal of the Zn-semiring Zn.

A characterization of a right pure ideal in a Γ-semiring with identity element

is furnished in the following theorem.

Theorem 3.5. Let S be a Γ-semiring with identity element e. Then an ideal I of

S is right pure if and only if J ∩ I = JΓI for all right ideals J of S.

Proof. (→) Suppose that I is a right pure ideal of S and J is a right ideal of

S. Then JΓI ⊆ J ∩ I. If a ∈ J ∩ I, then there exist x ∈ I, α ∈ Γ such that

a = aαx ∈ JΓI. This implies J ∩ I = JΓI.

(←) Suppose that I is an ideal of S such that J ∩ I = JΓI for all right ideals J of

S. Let x ∈ I and α ∈ Γ. By Proposition 2.19, xαS is a right ideal of S. Then

(xαS) ∩ I = (xαS)ΓI = xα(SΓI) ⊆ xαI.

We obtain from x = xαe ∈ xαS that x ∈ xαS ∩ I ⊆ xαI. This implies x =∑
xαai = xα

∑
ai, ai ∈ I all i. Since I is a subsemigroup of (S,+),

∑
ai ∈ I.

Thus there exist b ∈ I, α ∈ Γ, such that x = xαb. Hence I is a right pure ideal of

S.

Similarly, we can show that an ideal I of S is left pure if and only if I∩J = IΓJ

for all left ideals J of S.

Next, we define and characterize right weakly regular Γ-semirings.
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Definition 3.6. A Γ-semiring S is said to be right weakly regular if for each

x ∈ S, x ∈ (xΓS)2 = (xΓS)Γ(xΓS).

Example 3.5. Let S = {1, 2, 3, 4, 5} and Γ = {5}. By Example 2.22, S is a

Γ-semiring with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. Since x =

(xαx)α(xαx) for all x ∈ S, S is right weakly regular.

Theorem 3.7. Let S be a Γ-semiring with identity element e. Then the following

assertions are equivalent:

(i) S is right weakly regular;

(ii) J2 = JΓJ = J for all right ideals J of S;

(iii) J ∩ I = JΓI for all right ideal J and ideal I of S.

Proof. (i)→ (ii) Let S be right weakly regular and J a right ideal of S. We obtain

that JΓJ ⊆ JΓS ⊆ J . Let x ∈ J . Then x ∈ (xΓS)2. By Proposition 2.27, xΓS is

the smallest right ideal containing x which implies that xΓS ⊆ J . Thus

x ∈ (xΓS)2 ⊆ J2.

Hence J = J2 = JΓJ .

(ii) → (i) Suppose that J2 = JΓJ = J for all right ideals J of S. To show that

S is right weakly regular, let x ∈ S. We know that xΓS is a right ideal of S. By

assumption, (xΓS)2 = (xΓS)Γ(xΓS) = (xΓS). Then x ∈ (xΓS)2.

(i)→ (iii) Suppose that S is right weakly regular. Let J be a right ideal and I an

ideal of S. Then JΓI ⊆ J ∩ I. Let x ∈ J ∩ I. By assumption, x ∈ (xΓS)2. Thus

x ∈ (xΓS)Γ(xΓS) ⊆ (JΓS)Γ(IΓS) ⊆ (JΓS)ΓI ⊆ JΓI.

Hence JΓI = J ∩ I.

(iii) → (i) Assume that J ∩ I = JΓI for all right ideals J and ideals I of S. To

show that S is right weakly regular, let x ∈ S. Then x ∈ xΓS ∩ SΓxΓS. Since
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xΓS is a right ideal and SΓxΓS an ideal of S, we obtain that

x ∈ xΓS ∩ SΓxΓS = (xΓS)Γ(SΓxΓS) = (xΓSΓS)Γ(xΓS) ⊆ (xΓS)Γ(xΓS).

Then x ∈ (xΓS)Γ(xΓS) = (xΓS)2. Therefore, S is right weakly regular.

By virtue of Theorems 3.5 and 3.7, we obtain the following theorem.

Theorem 3.8. Let S be a Γ-semiring with identity element. Then S is a right

weakly regular Γ-semiring if and only if every ideal I of S is right pure.

From this theorem, we can conclude that every ideal of S in Example 3.5 is

right pure.

A sufficient condition on a Γ-semiring S that makes S a right pure ideal and a

trivial right pure ideal are shown in the following proposition.

Proposition 3.9. The following statements hold:

(i) if S is a Γ-semiring with identity e, then S is a right pure ideal of S;

(ii) if S is a Γ-semiring with zero 0, then any finite intersection of right pure

ideals of S is a right pure ideal of S.

Proof. (i) Let S be a Γ-semiring with identity e. Clearly, S is an ideal of S.

For right ideal J of S, JΓS ⊆ J = J ∩ S. In contrast, since e ∈ S, for any

x ∈ J ∩S, x = xαe ∈ JΓS. Thus J ∩S ⊆ JΓS. Hence J ∩S = JΓS. By Theorem

3.5, S is a right pure ideal of S.

(ii) Suppose that S is a Γ-semiring with zero 0. For n ∈ N, let A =
n⋂

i=1

{Ji | Ji
is a right pure ideal of S}. We obtain from 0 ∈ A that A is a nonempty set. For

each i, Ji is an ideal of S implies that A is an ideal of S by Proposition 2.20. Let

x ∈ A. Then there exist yi ∈ Ji, αi ∈ Γ such that x = xαiyi for all i. Thus

x = xα1y1 = (xα2y2)α1y1 = . . . = (xαnyn)αn−1yn−1 . . . α2y2α1y1.
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Since each i, Ji is an ideal of S, it follows that ynαn−1yn−1 . . . α2y2α1y1 ∈ Ji for all

i. Now we have ynαn−1yn−1 . . . α2y2α1y1 ∈ A, αn ∈ Γ such that

x = xαn(ynαn−1yn−1 . . . α2y2α1y1).

Hence A is a right pure ideal of S.

In the same way, we can show that S is a left pure ideal of a Γ-semiring S with

identity. Any finite intersection of left pure ideals of S is a left pure ideal of a

Γ-semiring S with zero.

By virtue of above theorem, {0} is a right pure ideal and a left pure ideal of a

Γ-semiring with zero 0.

Next, we include some conditions on right pure ideals and investigate their

properties.

Definition 3.10. A proper right pure ideal I of a Γ-semiring S is called purely

prime if I1ΓI2 ⊆ I implies I1 ⊆ I or I2 ⊆ I for any right pure ideals I1 and I2 of

S.

Definition 3.11. A proper right pure ideal I of a Γ-semiring S is called purely

semiprime if I1ΓI1 ⊆ I implies I1 ⊆ I for any right pure ideals I1 of S.

It is straightforward to verify that every purely prime ideal is purely semiprime.

Example 3.6. For n ∈ N, let S = Mn×1(Z30) and Γ = M1×n(Z30). We have S

forms a Γ-semiring with the usual multiplication of matrices AαB for all A,B ∈ S

and α ∈ Γ. Then all right pure ideals of S are S,{[0]30}, Mn×1(2Z30), Mn×1(3Z30),

Mn×1(5Z30), Mn×1(6Z30), Mn×1(10Z30) and Mn×1(15Z30). Hence

• all purely prime ideals of S are Mn×1(2Z30), Mn×1(3Z30) and Mn×1(5Z30),

• all purely semiprime ideals of S are Mn×1(2Z30), Mn×1(3Z30), Mn×1(5Z30),

Mn×1(6Z30), Mn×1(10Z30), Mn×1(15Z30) and {[0]30}.



24

Example 3.7. Let S = N and Γ = {1, 2, 3}. By Example 3.2, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ and all right pure ideals of S

are I1 = {1}, I2 = {1, 2} and I3 = {1, 2, 3}. Consider sets IiΓIj where Ii and Ij

are right pure ideals of S,

I2ΓI2 ⊆ I2 I2ΓI3 ⊆ I2 I3ΓI2 ⊆ I2

I3ΓI3 ⊆ I3 IiΓI1 ⊆ I1 I1ΓIi ⊆ I1.

We obtain that

• all purely prime ideals of S are I1, I2 and I3,

• all purely semiprime ideals of S are I1, I2 and I3.

Using the include condition on right pure for purely prime, the finite intersection

of purely prime ideals is just a purely semiprime. It’s not a purely prime in general.

Proposition 3.12. Let S be a Γ-semiring with zero 0. Then the finite intersection

of purely prime (or purely semiprime) ideals of S is a purely semiprime ideal of S.

Proof. For n ∈ N, let A =
n⋂

i=1

{Pi | Pi is a purely prime ideal of S}. By Proposi-

tion 3.9, A is a right pure ideal of S. Assume that I is a right pure ideal of S such

that IΓI ⊆ A. Then IΓI ⊆ Pi for all i. Since Pi is purely prime for all i, Pi is a

purely semiprime for all i. Hence I ⊆ Pi for all i, it implies that I ⊆ A. Therefore,

A is a purely semiprime ideal of S.

Likewise, we can show that if B =
n⋂

i=1

{Pi | Pi is a purely semiprime ideal of S},

then B is a purely semiprime ideal of S.

Definition 3.13. A proper right pure ideal I of a Γ-semiring S is called purely

irreducible if I1 ∩ I2 = I implies I1 = I or I2 = I for any right pure ideals I1 and

I2 of S.

Definition 3.14. A proper right pure ideal I of a Γ-semiring S is called a strongly

irreducible pure ideal if I1 ∩ I2 ⊆ I implies I1 ⊆ I or I2 ⊆ I for any right pure

ideals I1 and I2 of S.
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It is straightforward to verify that every strongly irreducible pure ideal is purely

irreducible.

Example 3.8. For n ∈ N, let S = Mn×1(Z30) and Γ = M1×n(Z30). We have S

forms a Γ-semiring with the usual multiplication of matrices AαB for all A,B ∈ S

and α ∈ Γ. Then all right pure ideals of S are S,{[0]30}, Mn×1(2Z30), Mn×1(3Z30),

Mn×1(5Z30), Mn×1(6Z30), Mn×1(10Z30) and Mn×1(15Z30). Hence

• all strongly irreducible pure ideals of S are Mn×1(2Z30), Mn×1(3Z30) and

Mn×1(5Z30),

• all purely irreducible ideals of S are Mn×1(2Z30), Mn×1(3Z30) and

Mn×1(5Z30).

Example 3.9. Let S = N and Γ = {1, 2, 3}. By Example 3.2, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ and all right pure ideals of S

are I1 = {1}, I2 = {1, 2} and I3 = {1, 2, 3}. Consider sets Ii ∩ Ij where Ii and Ij

are right pure ideals of S,

I2 ∩ I2 = I2 I2 ∩ I3 = I2 I3 ∩ I2 = I2

I3 ∩ I3 = I3 Ii ∩ I1 = I1 I1 ∩ Ii = I1.

We obtain that

• all strongly irreducible pure ideals of S are I1, I2 and I3,

• all purely irreducible ideals of S are I1, I2 and I3.

On the space of right pure ideals, purely prime and strongly irreducible pure

ideals are coincide.

Proposition 3.15. Let I be an ideal of a Γ-semiring S with identity e. Then I is

a strongly irreducible pure ideal of S if and only if I is a purely prime ideal of S.

Proof. (→) Suppose that I is a strongly irreducible pure ideal of S. To show that

I is a purely prime ideal of S, let I1 and I2 be right pure ideals of S such that

I1ΓI2 ⊆ I. Since I1 is a right ideal and I2 is a right pure ideal of S, I1 ∩ I2 =
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I1ΓI2 ⊆ I by Theorem 3.5. Since I is a strongly irreducible pure ideal of S, I1 ⊆ I

or I2 ⊆ I.

(←) Suppose that I is a purely prime ideal of S. To show that I is a strongly

irreducible pure ideal of S, let I1 and I2 be right pure ideals of S such that I1∩I2 ⊆

I. By Theorem 3.5, I1 ∩ I2 = I1ΓI2. So I1ΓI2 ⊆ I. Since I is a purely prime of S,

I1 ⊆ I or I2 ⊆ I.

A partially ordered set is defined as a set P together with relation “ ≤ ”

over set P if it is reflexive (x ≤ x for all x ∈ P ), antisymmetric (x ≤ y and y ≤ x

together imply x = y for all x, y ∈ P ) and transitive (x ≤ y and y ≤ z together

imply x ≤ z for all x, y, z ∈ P ). A totally ordered set is a subset T of a partially

ordered set P such that any two elements of T are comparable with relation ≤ (for

any s, t ∈ T we have either s ≤ t or t ≤ s) [10].

We recall that every strongly irreducible pure ideal is purely irreducible. The

converse is not true generally. However, the converse is true on some assumption

of the set of all right pure ideals of a Γ-semiring with zero.

Proposition 3.16. Let S be a Γ-semiring with zero. Then the following assertions

are equivalent.

(i) The set of all right pure ideals of S is a totally ordered set under inclusion

of sets.

(ii) Each right pure ideal of S is a strongly ireducible pure ideal of S.

(iii) Each right pure ideal of S is a purely ireducible ideal of S.

Proof. (i) → (ii) Suppose that the set of all right pure ideals of S is totally

ordered under inclusion of sets and I is a right pure ideal of S. To show that I is a

strongly irreducible pure ideal of S, let I1 and I2 be right pure ideals of S such that

I1 ∩ I2 ⊆ I. By assumption, I1 ⊆ I2 or I2 ⊆ I1. Then I1 ∩ I2 = I1 or I1 ∩ I2 = I2,

it follows that I1 ⊆ I or I2 ⊆ I. Hence I is a strongly irreducible pure ideal of S.

(ii) → (iii) Suppose that each right pure ideal of S is a strongly irreducible pure

ideal of S. Let I be a right pure ideal of S and I1 ∩ I2 = I where I1 and I2 are
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right pure ideals of S. By assumption, I1 ⊆ I or I2 ⊆ I. Since I = I1 ∩ I2 ⊆ I1

and I = I1 ∩ I2 ⊆ I2, I1 = I or I2 = I. Hence I is a purely irreducible ideal of S.

(iii)→ (i) Suppose that each right pure ideal of S is a purely irreducible ideal. To

show that the set of all right pure ideals of S is totally ordered set under inclusion

of sets, let I1 and I2 be right pure ideals of S. Thus I1 ∩ I2 is a right pure ideal of

S. By assumption I1 ∩ I2 is purely irreducible of S. Note that I1 ∩ I2 = I1 ∩ I2 we

obtain that I1 = I1 ∩ I2 or I2 = I1 ∩ I2. Hence I1 ⊆ I2 or I2 ⊆ I1. Therefore, the

set of all right pure ideals of S is totally ordered set under inclusion of sets.

Proposition 3.17. Let X be the set of right pure ideals of a Γ-semiring S, ordered

by inclusion and C a totally ordered subset of X . Then
⋃

J∈C J is a right pure ideal

of S.

Proof. Let M =
⋃

J∈C J . To show that M is a right pure ideal of S, let x1, x2 ∈M .

Then x1 ∈ J1 and x2 ∈ J2 for some J1, J2 ∈ C. Thus J1 ⊆ J2 or J2 ⊆ J1; WLOG

the former is assumed. We obtain x1 ∈ J2 so that x1 + x2 ∈ J2 ⊆ M . Next, let

a ∈ S and α ∈ Γ. Then aαx2, x2αa ∈ J2 ⊆ M . It follows that M is an ideal of S.

Since x1 ∈ J1 and J1 is a right pure ideal of S, there exist y1 ∈ J1 ⊆M and α ∈ Γ

such that x1 = x1αy1. Hence M is a right pure ideal of S.

Zorn’s lemma is a proposition of set theory which states that a partially ordered

set containing upper bounds for every totally ordered subset necessarily contains

at least one maximal element.

Proposition 3.18. Let I be a right pure ideal of S and a ∈ S such that a /∈ I.

Then there exists a purely irreducible ideal J of S such that I ⊆ J and a /∈ J .

Proof. Let X = {J | J is a right pure ideal of S such that I ⊆ J and a /∈ J}. We

obtain that X 6= ∅ because I ∈ X. First, we will show that a partially ordered set

X containing upper bounds for every totally ordered subset. Let T be a totally

ordered subset of X and M =
⋃

J∈C J . By Proposition 3.17, M is a right pure

ideal in S. We have I ⊆ Ji and a /∈ Ji for all i implies that I ⊆ M and a /∈ M .

Thus an upper bound M of T contain in X. We obtain that X has a maximal
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element, say J by Zorn’s Lemma. Thus J is a right pure ideal such that I ⊆ J

and a /∈ J . Next, show that J is a purely irreducible ideal of S. Let A and B are

right pure ideals of S such that A ∩ B = J . Then J ⊆ A and J ⊆ B. Suppose

that J ⊂ A and J ⊂ B. By maximality of J , A /∈ X and B /∈ X. Thus I * A or

a ∈ A and I * B or a ∈ B. Since I ⊂ A and I ⊂ B, a ∈ A ∩ B = J which is a

contradiction. Hence J * A or J * B. Therefor, J = A or J = B.

We use Proposition 3.18 to find a relationship between right pure ideals and

purely irreducible ideals in Γ- semirings.

Proposition 3.19. Every proper right pure ideal I of S is the intersection of all

purely irreducible ideals of S containing I.

Proof. Suppose that I is a proper right pure ideal S. By Proposition 3.18, there

exists a purely irreducible ideal containing I. Let {Jk}k∈K be the family of all

purely irreducible ideals of S which contain I. Since I ⊆ Jk for all k ∈ K,

I ⊆
⋂

k∈K
Jk. To show that

⋂
k∈K

Jk ⊆ I, let a /∈ I. Then there exists a purely

irreducible ideal J such that I ⊆ J and a /∈ J by Proposition 3.18. It follows that

a /∈
⋂

k∈K
Jk. We now conclude that I =

⋂
k∈K

Jk.

Next, we introduce the concept of a purely maximal ideal of a Γ-semiring.

Definition 3.20. A proper right pure ideal I of a Γ-semiring S is said to be purely

maximal if for any proper right pure ideals J of S, I ⊆ J implies that I = J .

Example 3.10. For n ∈ N, let S = Mn×1(Z30) and Γ = M1×n(Z30). We

have S forms a Γ-semiring with the usual multiplication of matrices AαB for all

A,B ∈ S and α ∈ Γ. Then all of right pure ideals of S are S,{[0]30}, Mn×1(2Z30),

Mn×1(3Z30), Mn×1(5Z30), Mn×1(6Z30), Mn×1(10Z30) and Mn×1(15Z30). We obtain

that Mn×1(2Z30), Mn×1(3Z30) and Mn×1(5Z30) are purely maximal ideals of S.

Example 3.11. Let S = N and Γ = {1, 2, 3}. By Example 3.2, S is a Γ-semiring

with aαb = min{a, α, b} for all a, b ∈ S and α ∈ Γ. All of proper right pure ideals

of S are {1}, {1, 2} and {1, 2, 3}. Thus {1, 2, 3} is a purely maximal ideal of S but

{1} and {1, 2} are not purely maximal ideals of S.
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The following proposition guarantee existence of a purely maximal ideal in a

Γ-semiring with identity element.

Proposition 3.21. If I is a proper right pure ideal of a Γ-semiring S with identity

element e, then S contains a purely maximal ideal M such that I ⊆M .

Proof. Let X be the set of proper right pure ideals of S, ordered by inclusion. Let

C be a chain in X and M =
⋃

J∈C J . By Proposition 3.17, M is a right pure ideal

of S. If e ∈ J for some J ∈ C, then for all x ∈ S and α ∈ Γ, xαe, eαx ∈ J which

implies that x ∈ J . Thus J = S which is a contradiction. We obtain from e /∈ J

for all J ∈ C that e /∈M and M 6= S.

Proposition 3.22. If I is a purely maximal ideal of a Γ-semiring S, then I is a

purely irreducible ideal of S.

Proof. Suppose that I is a purely maximal ideal of a Γ-semiring S. To show that

I is a purely irreducible ideal of S, let J1 and J2 be right pure ideals of S such

that J1 ∩ J2 = I. Since I is a proper right pure ideal of S, J1 or J2 is a proper

right pure ideal of S; WLOG the former is assumed. Then I = J1 ∩ J2 ⊆ J1. By

assumption, I = J1. Hence I is a purely irreducible ideal of S.

The converse of Proposition 3.22 is not true. Counterexamples are {1, 2} and

{1} in Example 3.11.

The last, from Theorem 3.5, I is a right pure ideal (left pure ideal) of a Γ-

semiring S with identity provided JΓI = J ∩ I for all right ideals (left ideals) J

of S. Now, we construct right weakly pure ideals and left weakly pure ideals in a

Γ-semiring S under the condition of all ideals of S.

Definition 3.23. An ideal A of a Γ-semiring S is called right weakly pure (left

weakly pure) if B ∩ A = BΓA (A ∩B = AΓB) for all ideals B of S.

Every right pure ideal (left pure ideal) is a right weakly pure (left weakly pure).

Proposition 3.24. If A and B are ideals of a Γ-semiring S with zero 0, then

A−1B = {b ∈ S | bαa ∈ B for all a ∈ A,α ∈ Γ}
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and

BA−1 = {b ∈ S | aαb ∈ B for all a ∈ A,α ∈ Γ}

are ideals of S.

Proof. Suppose that A and B are ideals of a Γ-semiring S with zero. Since 0αa =

0 ∈ B for all a ∈ A, α ∈ Γ, 0 ∈ A−1B. So A−1B 6= ∅. Let b, b′ ∈ A−1B, a ∈ A

and α ∈ Γ. Then

(b+ b′)αa = bαa+ b′αa ∈ B +B.

Since B is a subsemigroup of (S,+), B + B ⊆ B. Now we have (b + b′)αa ∈

B + B ⊆ B. So b + b′ ∈ A−1B. Thus A−1B is a subsemigroup of S. Next, let

x ∈ A−1B, s ∈ S and β ∈ Γ. Then for any y ∈ A and γ ∈ Γ, we obtain sγy ∈ A

so that

(xβs)γy = xβ(sγy) ∈ B

and

(sβx)γy = sβ(xγy) ∈ SΓB ⊆ B.

Hence xβs, sβx ∈ A−1B. This shows that A−1B is an ideal of S. Similarly, BA−1

is an ideal of S.

From above proposition, we can characterize right weakly pure ideals and left

weakly pure ideals of Γ-semirings in the following theorem.

Theorem 3.25. Let S be a Γ-semiring with zero 0. An ideal A of S is right weakly

pure (left weakly pure) if and only if (A−1B) ∩A = A ∩B ((BA−1) ∩ A = B ∩ A)

for all ideals B of S.

Proof. (→) Suppose that A is a right weakly pure ideal and B is an ideal of S. By

Proposition 3.24, A−1B is an ideal of S. By assumption, (A−1B)∩A = (A−1B)ΓA.

For any x ∈ (A−1B)ΓA, x =
∑
biαiai where bi ∈ A−1B,αi ∈ Γ and ai ∈ A for all

i. Then biαiai ∈ B for all i. Since B is a subsemigroup of (S,+), x ∈ B. Now we
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have (A−1B)ΓA ⊆ B and (A−1B)ΓA ⊆ A. Thus

(A−1B) ∩ A = (A−1B)ΓA ⊆ A ∩B.

Since B is an ideal of S, for any b ∈ A ∩ B, bαa ∈ B for all a ∈ A,α ∈ Γ. Thus

b ∈ A−1B. Hence A ∩B ⊆ (A−1B) ∩ A. Therefore, (A−1B) ∩ A = A ∩B.

(←) Assume that A is an ideal of S such that (A−1B) ∩ A = A ∩ B for all ideals

B of S. To show that A is right weakly pure, let B be an ideal of S and b ∈ B.

Thus for all a ∈ A and α ∈ Γ, bαa ∈ BΓA and BΓA is an ideal of S because

(BΓA)ΓS = BΓ(AΓS) ⊆ BΓA and SΓ(BΓA) = (SΓB)ΓA ⊆ BΓA. We obtain

b ∈ A−1(BΓA) so that B ⊆ A−1(BΓA). Thus

A ∩B ⊆ A ∩ A−1(BΓA) ⊆ A ∩ (BΓA) ⊆ BΓA.

Since BΓA ⊆ A ∩B, BΓA = A ∩B. Therefore, A is right weakly pure.

In the same way, we can shows an ideal A of S is left weakly pure if and only

if BA−1 ∩ A = B ∩ A for all ideals B of S.

The following proposition shows the condition on the set of ideals in a Γ-

semiring with zero that make left weakly pure ideals and right weakly pure ideals

coincide.

Proposition 3.26. Let S be a Γ-semiring with zero. Then the following assertions

are equivalent:

(i) each ideal of S is left weakly pure;

(ii) each ideal I of S, I2 = IΓI = I;

(iii) each ideal of S is right weakly pure.

Proof. (i) → (ii) Suppose that each ideal of S is left weakly pure. Let I be an

ideal of S. Then I ∩ J = IΓJ for all ideals J of S. Hence

I = I ∩ I = IΓI = I2.
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(ii)→ (i) Assume that each ideal I of S, I2 = IΓI = I. Let A and B be ideals of

S. We have A ∩B is an idael of S. Thus

A ∩B = (A ∩B)Γ(A ∩B) ⊆ AΓB.

Since AΓB ⊆ A ∩B, AΓB = A ∩B. Therefore, A is left weakly pure.

(ii)→ (iii) Similarly, as (ii)→ (i).

(iii) → (ii) Suppose that each ideal of S is right weakly pure. Let I be an ideal

of S. Then I is a right weakly pure ideal of S, it follows that I ∩ J = JΓI for all

ideals J of S. Thus

I = I ∩ I = IΓI = I2.



CHAPTER IV

PURE IDEALS IN NEW Γ-SEMIRINGS

We devide this chapter into two parts. First, we find the conditions for preser-

vation of right pure ideals and left pure ideals by Γ-semiring homomorphisms which

were introduced by H. Hedayati and K. P. Shum in 2011. According to H. Hedayati

and K. P. Shum [6], we investigate some properties of right pure ideals and left

pure ideals in new Γ-semirings which are quotient Γ-semirings and the products of

Γ-semirings in the last two parts.

The basic structure of a Γ-semiring homomorphism is a semigroup homomor-

phism.

Definition 4.1. [5] For semigroups S and T , a map φ : S → T is a homomor-

phism if φ(xy) = φ(x)φ(y) for all x, y ∈ S. Monomorphisms, epimorphisms

and isomorphisms are defined as usual.

In 2011, H. Hedayati and K. P. Shum [6] introduced homomorphisms, epimor-

phisms, monomorphisms and isomorphisms in Γ-semirings.

Definition 4.2. [6] Let S1 be a Γ1-semiring and S2 a Γ2-semiring. A mapping

(ϕ, g) : S1 −→ S2 is called a Γ-semiring homomorphism if ϕ : S1 −→ S2 and g :

Γ1 −→ Γ2 are semigroup homomorphisms such that ϕ(xαy) = ϕ(x)g(α)ϕ(y) for all

x, y ∈ S1 and α ∈ Γ1. The mapping (ϕ, g) is called a Γ-semiring epimorphism if

(ϕ, g) is a Γ-semiring homomorphism and ϕ and g are epimorphisms of semigroups.

The definitions of Γ-semiring monomorphisms and Γ-semiring isomor-

phisms are defined usually.

In this research, we may write “homomorphism” instead of “Γ-semiring homo-

morphism”. It is similar to write epimorphism, monomorphism and isomorphism
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instead of Γ-semiring epimorphism, Γ-semiring monomorphism and Γ-semiring iso-

morphism, respectively.

We need to introduce the following notations used throughout this thesis. For a

nonempty subset X of a Γ1-semiring S1 and a nonempty subset Y of a Γ2-semiring

S2,

(ϕ, g)(X) = {(ϕ, g)(x) | x ∈ X} = ϕ[X]

(ϕ, g)−1(Y ) = {x ∈ S1 | (ϕ, g)(x) ∈ Y } = ϕ−1[Y ]

where ϕ is a semigroup homomorphism from S1 to S2 and g is a semigroup homo-

morphism from Γ1 to Γ2.

Example 4.1. Let S1 = {1, 2, 3, 4, 5}, Γ1 = {1, 2, 3}, S2 = {7, 8, 9, 10} and

Γ2 = {7, 8}. Then (S1,max), (Γ1,max), (S2,max) and (Γ2,max) are commu-

tative semigroups. Define the mappings S1 × Γ1 × S1 → S1 by aαb = min{a, α, b}

for all a, b ∈ S1 and α ∈ Γ1 and S2 × Γ2 × S2 → S2 by xβy = min{x, β, y} for all

x, y ∈ S2 and β ∈ Γ2. Thus S1 is a Γ1-semiring and S2 is a Γ2-semiring.

Consider the mapping (ϕ, g) : S1 −→ S2 defined by

1
ϕ7→ 7, 2

ϕ7→ 7, 3
ϕ7→ 8, 4

ϕ7→ 9, 5
ϕ7→ 10

1
g7→ 7, 2

g7→ 7 and 3
g7→ 8.

We obtain that

ϕ (max{1, 1}) = ϕ(1) = 7 = max{7, 7} = max{ϕ(1), ϕ(1)},

ϕ (max{1, 2}) = ϕ(2) = 7 = max{7, 7} = max{ϕ(1), ϕ(2)},

ϕ (max{1, 3}) = ϕ(3) = 8 = max{7, 8} = max{ϕ(1), ϕ(3)},

ϕ (max{1, 4}) = ϕ(4) = 9 = max{7, 9} = max{ϕ(1), ϕ(4)},

ϕ (max{1, 5}) = ϕ(5) = 10 = max{7, 10} = max{ϕ(1), ϕ(5)},

ϕ (max{2, 2}) = ϕ(2) = 7 = max{7, 7} = max{ϕ(2), ϕ(2)},

ϕ (max{2, 3}) = ϕ(3) = 8 = max{7, 8} = max{ϕ(2), ϕ(3)},

ϕ (max{2, 4}) = ϕ(4) = 9 = max{7, 9} = max{ϕ(2), ϕ(4)},
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ϕ (max{2, 5}) = ϕ(5) = 10 = max{7, 10} = max{ϕ(2), ϕ(5)},

ϕ (max{3, 3}) = ϕ(3) = 8 = max{8, 8} = max{ϕ(3), ϕ(3)},

ϕ (max{3, 4}) = ϕ(4) = 9 = max{8, 9} = max{ϕ(3), ϕ(4)},

ϕ (max{3, 5}) = ϕ(5) = 10 = max{8, 10} = max{ϕ(3), ϕ(5)},

ϕ (max{4, 4}) = ϕ(4) = 9 = max{9, 9} = max{ϕ(4), ϕ(4)},

ϕ (max{4, 5}) = ϕ(5) = 10 = max{9, 10} = max{ϕ(4), ϕ(5)},

ϕ (max{5, 5}) = ϕ(5) = 10 = max{10, 10} = max{ϕ(5), ϕ(5)}.

Hence ϕ : S1 −→ S2 is a semigroup homomorphism. In the same way, g : Γ1 −→ Γ2

is a semigroup homomorphism. We show that ϕ(xαy) = ϕ(x)g(α)ϕ(y) for all

x, y ∈ S1 and α ∈ Γ1, let x, y ∈ S1 and α ∈ Γ1.

Case 1 : if x = y = α, then ϕ(x) = g(α) = ϕ(y). Hence ϕ (min{x, α, y}) =

ϕ(x) = min{ϕ(x), g(α), ϕ(y)}.

Case 2 : if x = y < α, then ϕ(x) = ϕ(y) ≤ g(α). Hence ϕ (min{x, α, y}) =

ϕ(x) = min{ϕ(x), g(α), ϕ(y)}.

Case 3 : if x = α < y, then ϕ(x) = g(α) ≤ ϕ(y). Hence ϕ (min{x, α, y}) =

ϕ(x) = min{ϕ(x), g(α), ϕ(y)}.

Case 4 : if α < x = y, then g(α) ≤ ϕ(x) = ϕ(y). Hence ϕ (min{x, α, y}) =

g(α) = min{ϕ(x), g(α), ϕ(y)}.

Case 5 : if x < α < y, then ϕ(x) ≤ g(α) ≤ ϕ(y). Hence ϕ (min{x, α, y}) =

ϕ(x) = min{ϕ(x), g(α), ϕ(y)}.

Case 6 : if α < x < y, then g(α) ≤ ϕ(x) < ϕ(y). Hence ϕ (min{x, α, y}) =

g(α) = min{ϕ(x), g(α), ϕ(y)}.

Case 7 : if x < y < α, then ϕ(x) ≤ ϕ(y) < g(α). Hence ϕ (min{x, α, y}) =

ϕ(x) = min{ϕ(x), g(α), ϕ(y)}.

Therefore, (ϕ, g) is a Γ-semiring homomorphism. Moreover, it is easy to see that

ϕ and g are semigroup epimorphisms. Hence (ϕ, g) is a Γ-semiring epimorphism.

Example 4.2. Let S1 = Mn×1 (Z12), Γ1 = M1×n (Z12), S2 = Mn×1 (Z6) and

Γ2 = M1×n (Z6). Then S1 is a Γ1-semiring and S2 is a Γ2-semiring. Define the



36

mappings ϕ : S1 −→ S2 and g : Γ1 −→ Γ2 by
[
[xi1]12

]
n×1

ϕ7−→
[
[xi1]6

]
n×1 and[

[xi1]12
]
1×n

g7−→
[
[x1i]6

]
1×n. Clearly, ϕ and g are well defined. We obtain that

ϕ

([
[xi1]12

]
n×1 +

[
[yi1]12

]
n×1

)
= ϕ

([
[xi1]12 + [yi1]12

]
n×1

)
= ϕ

([
[xi1 + yi1]12

]
n×1

)
=
[
[xi1 + yi1]6

]
n×1

=
[
[xi1]6

]
n×1 +

[
[yi1]6

]
n×1

= ϕ

([
[xi1]12

]
n×1

)
+ ϕ

([
[yi1]12

]
n×1

)
,

where
[
[xi1]12

]
n×1,

[
[yi1]12

]
n×1 ∈ S1. This shows that ϕ is a semigroup homo-

morphism. Furthermore, we obtain that for every
[
[xi1]6

]
n×1 ∈ S2 there exists[

[xi1]12
]
n×1 ∈ S1 such that ϕ(

[
[xi1]12

]
n×1) =

[
[xi1]6

]
n×1. Therefore, ϕ is a semi-

group epimorphism. In the same way, g is a semigroup epimorphism. In particular,

ϕ

([
[xi1]12

]
n×1

[
[α1i]12

]
1×n

[
[yi1]12

]
n×1

)

= ϕ

[[ n∑
k=1

xi1α1kyk1

]
12

]
n×1


=

[[
n∑

k=1

xi1α1kyk1

]
6

]
n×1

=
[
[xi1]6

]
n×1

[
[α1i]6

]
1×n

[
[yi1]6

]
n×1

= ϕ

([
[xi1]12

]
n×1

)
g

([
[α1i]12

]
1×n

)
ϕ

([
[yi1]12

]
n×1

)
.

where
[
[xi1]12

]
n×1,

[
[yi1]12

]
n×1 ∈ S1 and

[
[α1i]12

]
1×n ∈ Γ1. Now we conclude that

(ϕ, g) is a Γ-semiring epimorphism.

Proposition 4.3. Let S1 be a Γ1-semiring with zero 0S1 and S2 a Γ2-semiring with

zero 0S2. If (ϕ, g) is a homomorphism from S1 into S2 and ϕ(x) = 0S2 for some

x ∈ S1, then ϕ(0S1) = 0S2.

Proof. If (ϕ, g) is a homomorphism from S1 into S2 and ϕ(x) = 0S2 for some
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x ∈ S1, then

0S2 = 0S2g(α)ϕ(0S1) = ϕ(x)g(α)ϕ(0S1) = ϕ(xα0S1) = ϕ(0S1).

Note that if (ϕ, g) is a homomorphism from Γ1-semiring S1 to Γ2-semiring S2,

then ϕ[S1] is a g[Γ1]-semiring.

Next, we investigate homomorphisms of right pure ideals and left pure ideals

in Γ-semirings.

Theorem 4.4. Let (ϕ, g) be a homomorphism from a Γ1-semiring S1 to a Γ2-

semiring S2. If I is an ideal of S1, then (ϕ, g)(I) is an ideal of the g[Γ1]-semiring

ϕ[S1].

Proof. Suppose that I is an ideal of S1. Clearly, (ϕ, g)(I) is a nonempty subset of

S2. Since ϕ is a semigroup homomorphism and I is a subsemigroup of S1, ϕ[I] is

a subsemigroup of S2. Hence (ϕ, g)(I) = ϕ[I] is a subsemigroup of S2. Next, let

s ∈ ϕ[S1], x ∈ ϕ[I] and α ∈ g[Γ1]. Then s = ϕ(t), x = ϕ(a) and α = g(β) for some

t ∈ S1, a ∈ I and β ∈ Γ1. Thus

sαx = ϕ(t)g(β)ϕ(a) = ϕ(tβa) and xαs = ϕ(a)g(β)ϕ(t) = ϕ(aβt).

Since I is an ideal of S1, tβa, aβt ∈ I. We obtain that sαx, xαs ∈ ϕ[I] = (ϕ, g)(I).

Therefore, (ϕ, g)(I) is an ideal of the g[Γ1]-semiring ϕ[S1].

Corollary 4.5. Let S1 be a Γ1-semiring and S2 a Γ2-semiring. If (ϕ, g) is an

epimorphism, then (ϕ, g)(I) is an ideal of S2 where I is an ideal of S1.

Example 4.3. From Example 4.1, (ϕ, g) : S1 −→ S2 is a Γ-semiring epimorphism.

Since I = {1, 2, 3} is an ideal of S1, {7, 8} = (ϕ, g)(I) is an ideal of S2.

Example 4.4. From Example 4.2, (ϕ, g) : S1 −→ S2 is a Γ-semiring epimor-

phism. We have I =

{
[xi1]n×1|xi1 ∈

{
[0]12, [4]12, [8]12

}}
is an ideal of S1. Thus{

[xi1]n×1|xi1 ∈
{

[0]6, [2]6, [4]6
}}

= (ϕ, g)(I) is an ideal of S2.
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On the other hand, if I is an ideal of a Γ2-semiring S2, we can prove that the

set of all elements x in a Γ1-semiring S1 such that ϕ(x) ∈ I is an ideal of S1.

Theorem 4.6. Let S1 be a Γ1-semiring with zero 0S1 and S2 be a Γ2-semiring

with zero 0S2. If (ϕ, g) : S1 −→ S2 is an epimorphism and I an ideal of S2, then

(ϕ, g)−1(I) is an ideal of S1.

Proof. Suppose that (ϕ, g) : S1 −→ S2 is an epimorphism and I is an ideal of S2.

Thus there exists x ∈ S1 such that ϕ(x) = 0S2 . By Proposition 4.3, ϕ(0S1) = 0S2 .

Since 0S2 ∈ I, 0S1 ∈ ϕ−1[I] = (ϕ, g)−1(I) 6= ∅. We show that ϕ−1[I] is an ideal of

S2. Since ϕ is a semigroup homomorphism and I is a subsemigroup of S2, ϕ
−1[I]

is a subsemigroup of S1. Next, Let s ∈ S1, x ∈ ϕ−1[I] and α ∈ Γ1. Thus

ϕ(sαx) = ϕ(s)g(α)ϕ(x) ∈ I

and

ϕ(xαs) = ϕ(x)g(α)ϕ(s) ∈ I.

Hence xαs, sαx ∈ ϕ−1[I]. Therefore, (ϕ, g)−1(I) is an ideal of S1.

Example 4.5. From Example 4.1, (ϕ, g) : S1 −→ S2 is an epimorphism. Since

I = {7, 8} is an ideal of S2, {1, 2, 3} = (ϕ, g)−1(I) is an ideal of S1.

Example 4.6. From Example 4.2, (ϕ, g) : S1 −→ S2 is an epimorphism. We

have J =

{
[xi1]n×1|xi1 ∈

{
[0]6, [2]6, [4]6

}}
is an ideal of S2, Thus

{
[xi1]n×1|xi1 ∈{

[0]12, [2]12, [4]12, [6]12, [8]12, [10]12
}}

= (ϕ, g)−1(J) is an ideal of S1.

The following theorem shows preservation of right pure ideals by Γ-semiring

homomorphisms.

Theorem 4.7. Let S1 be a Γ1-semiring and S2 a Γ2-semiring. If (ϕ, g) is an

epimorphism, then (ϕ, g)(I) is a right pure ideal of S2 where I is a right pure ideal

of S1.
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Proof. Suppose that (ϕ, g) is an epimorphism and I is a right pure ideal of S1. By

Corollary 4.5, (ϕ, g)(I) is an ideal of S2. To show that (ϕ, g)(I) is a right pure

ideal of S2, let x ∈ (ϕ, g)(I). Then x = ϕ(y) for some y ∈ I. Since I is a right

pure ideal of S1, there exist a ∈ I and α ∈ Γ1 such that y = yαa. We obtain that

x = ϕ(y) = ϕ(yαa) = ϕ(y)g(α)ϕ(a) = xg(α)ϕ(a),

where ϕ(a) ∈ ϕ[I] and g(α) ∈ Γ2. Therefore, (ϕ, g)(I) is a right pure ideal of

S2.

Similarly, we can show that (ϕ, g)(I) is a left pure ideal of S2 where I is a left

pure ideal of S1.

Example 4.7. From Example 4.1, (ϕ, g) : S1 −→ S2 is an epimorphism. Since

I = {1, 2, 3} is a right pure ideal and a left pure ideal of S1, {7, 8, 9} = (ϕ, g)(I) is

a right pure ideal and a left pure ideal of S2.

Example 4.8. From Example 4.2, (ϕ, g) : S1 −→ S2 is an epimorphism. Both of

J =

{
[xi1]n×1|xi1 ∈

{
[0]12, [4]12, [8]12

}}
and I =

{
[xi1]n×1|xi1 ∈

{
[0]12, [3]12, [6]12,

[9]12
}}

are right pure ideals and left pure ideals of S1. Thus

{
[xi1]n×1|xi1 ∈{

[0]6, [2]6, [4]6
}}

= (ϕ, g)(J) and

{
[xi1]n×1|xi1 ∈

{
[0]6, [3]6

}}
= (ϕ, g)(I) are

right pure ideals and left pure ideals of S2. Now we have K =

{
[xi1]n×1|xi1 ∈{

[0]6, [2]6, [4]6
}}

is a right pure ideal of S2 but (ϕ, g)−1(K) =

{
[xi1]n×1|xi1 ∈{

[0]12, [2]12, [4]12, [6]12, [8]12, [10]12
}}

is not a right pure ideal of S1.

For Zn-semiring Zn, the sufficient conditions to prove that (ϕ, g)−1(I) is a right

pure ideal in Zn are given.

Proposition 4.8. For k ∈ N, n = pn1
1 p

n2
2 · · · p

nk
k and m = pm1

1 pm2
2 · · · p

mk
k where

p1, p2, . . . , pk are pairwise distinct primes and mi ≤ ni. Let ϕ([x]n) = [x]m and

g([α]n) = [α]m for all [x]n, [α]n ∈ Zn. Then (ϕ, g)−1({c[pti]m | c ∈ Z}) = {l[pti]n |

l ∈ Z} where 0 ≤ t ≤ mi.
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Proof. It is easy to show that ϕ and g are semigroup homomorphisms and ϕ(aαb) =

ϕ(a)g(α)ϕ(b) for any a, b, α ∈ Zn. Thus (ϕ, g) is a Γ-semiring homomorphism. Set

0 ≤ t ≤ mi, In = {l[pti]n | l ∈ Z} and Im = {c[pti]m | c ∈ Z}. We will show that

(ϕ, g)−1(Im) = In. Clearly, ϕ[In] ⊆ Im implies that In ⊆ ϕ−1[Im]. Next, let [x]n ∈

(ϕ, g)−1(Im). Then [x]m = ϕ([x]n) ∈ Im. It follows that [x]m = c[pti]m = [cpti]m for

some c ∈ Z implies that x−cpti = ma for some a ∈ Z. We obtain from x = ma+cpti

that [x]n = [ma+ cpti]n = [pti(
m
pti
a+ cpti)]n. Since m

pti
a+ cpti ∈ Z, [x]n ∈ In.

By Proposition 3.3, {c[pti]m | c ∈ Z} is a right pure ideal in the Zm-semiring

Zm if t = mi. The above proposition makes we conclude that if t = mi = ni,

then (ϕ, g)−1(Im) is a right pure ideal in the Zn-semiring Zn. For instance, we

consider n = (22)(3) and m = (2)(3). A right pure ideal I6 = {[0]6, [3]6} in

the Z6-semiring Z6 is {c[3]6 | c ∈ Z}. By this conclusion, {[0]12, [3]12, [6]12, [9]12} =

(ϕ, g)−1(I6) is a right pure ideal in the Z12-semiring Z12. ThusMn×1((ϕ, g)−1(I6)) =

{[xi1]n×1 | xi1 ∈ {[0]12, [3]12, [6]12, [9]12}} is a right pure ideal in Mn×1(Z12) from

Proposition 3.4. In Example 4.8, if I = {[xi1]n×1 | xi1 ∈ {[0]6, [3]6}}, we obtain

that (ϕ, g)−1(I) = {[xi1]n×1 | xi1 ∈ {[0]12, [3]12, [6]12, [9]12}} is a right pure ideal in

Mn×1(Z12).

Next, we show that the sufficient condition for (ϕ, g)−1(J) is a right pure ideal

of S1 where J is a right pure ideal of S2 in the following theorem.

Theorem 4.9. Let S1 be a Γ1-semiring with zero and S2 a Γ2-semiring with zero.

If (ϕ, g) : S1 −→ S2 is an isomorphism and I is a right pure ideal of S2, then

(ϕ, g)−1(I) is a right pure ideal of S1.

Proof. Suppose that (ϕ, g) : S1 −→ S2 is an isomorphism and I is a right pure

ideal of S2. By Theorem 4.6, (ϕ, g)−1(I) is an ideal of S1. To show that (ϕ, g)−1[I]

is a right pure ideal of S2, let x ∈ ϕ−1[I]. Then ϕ(x) ∈ I. So there exist y ∈ I and

α ∈ Γ2 such that ϕ(x) = ϕ(x)αy. Since ϕ and g are onto, ϕ(x) = ϕ(x)g(β)ϕ(b)

for some b ∈ ϕ−1[I] and β ∈ Γ1. Now we obtain that ϕ(x) = ϕ(xβb). Since ϕ is

one to one, x = xβb. Therefore, ϕ−1[I] is a right pure ideal of S1.



41

Similarly, we can show that (ϕ, g)−1(I) is a left pure ideal of S1 where I is a

left pure ideal of S2.

The second part, we study some properties of a quotient Γ-semiring and con-

struct right pure ideals and left pure ideals in quotient Γ-semirings.

In 2011, H. Hedayati and K. P. Shum [6] introduced the quotient Γ-semiring

on a Γ-semiring with zero and correspondence theorem.

Suppose that S is a Γ-semiring with zero and I is an ideal of S. H. Hedayati

and K. P. Shum defined
S

I
= {x+ I | x ∈ S}

where

x+ I = {x+ a | a ∈ I}.

Theorem 4.10. [6] Let S be a Γ-semiring with zero and I an ideal of S. Then

the operators ⊕ and ∗, given by

(x+ I)⊕ (y + I) = x+ y + I and (x+ I) ∗ γ ∗ (y + I) = xγy + I,

for all x, y ∈ S and γ ∈ Γ, make
S

I
into a Γ-semiring, called a quotient Γ-

semiring.

For convenience, we write (x+ I)γ(y+ I) instead of (x+ I) ∗ γ ∗ (y+ I) for all

x, y ∈ S and γ ∈ Γ.

Note that I is a zero of the quotient Γ-semiring
S

I
. Moreover, if S is a Γ-

semiring with zero and identity e, we obtain that e+ I is an identity of
S

I
.

Example 4.9. Let S = Z12 and Γ = S. By Example 2.6, S is a Γ-semiring.

All of ideals of S are {[0]12}, {[0]12, [6]12}, {[0]12, [4]12, [8]12}, {[0]12, [3]12, [6]12, [9]12},

{[0]12, [2]12, [4]12, [6]12, [8]12, [10]12} and S. If I = {0̄, 6̄}, then
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[0]12 + I = I = [6]12 + I,

[1]12 + I = {[1]12, [7]12} = [7]12 + I,

[2]12 + I = {[2]12, [8]12} = [8]12 + I,

[3]12 + I = {[3]12, [9]12} = [9]12 + I,

[4]12 + I = {[4]12, [10]12} = [10]12 + I,

[5]12 + I = {[5]12, [11]12} = [11]12 + I.

We have
S

I
= {x+ I | x ∈ S} is a quotient Γ-semiring.

Example 4.10. Let S = N and Γ = {1, 2, 3}. By Example 2.16, I = {1, 2} is an

ideal of S.

1 + I = I,

2 + I = {2},

3 + I = {3},
... =

...

n+ I = {n}.

We have
S

I
= {x+ I | x ∈ S} is a quotient Γ-semiring.

Example 4.11. Let S = Z and Γ = 2Z. Then S is a Γ-semiring with xαy, which

is the usual multiplication on Z for all x, y ∈ Z and α ∈ Γ. Let I = 10Z. Then I

is an ideal of S. We have
S

I
= {I, 1 + I, 2 + I, ..., 9 + I} is a quotient Γ-semiring.

Example 4.12. Let S = M2×1(Z12) and Γ = M1×2(Z12). By Example 2.17,

we see that I =
{

[xi1]2×1 | xi1 ∈ {[0]12, [6]12}
}

is an ideal of S. We have
S

I
={

[xi1]2×1 + I| [xi1]2×1 ∈ S
}

is a quotient Γ-semiring.

Some basic properties to prove our work are as follows.

Proposition 4.11. Let I be ideals of a Γ-semiring S with zero and J a right ideal

(left ideal) of S such that I ⊆ J . If x+ I ∈ J
I

, then x ∈ J .

Proof. Suppose that x + I ∈ J

I
. Thus x + I = y + I for some y ∈ J . We obtain

0 ∈ I so that

x = x+ 0 ∈ x+ I = y + I ⊆ J.
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Proposition 4.12. Let I be an ideal of a Γ-semiring S with zero. If H and K

are right ideals (left ideals) of S such that I ⊆ H and I ⊆ K, then the following

statements hold:

(i) H ⊆ K if and only if
H

I
⊆ K

I
;

(ii)
H ∩K
I

=
H

I
∩ K
I

;

(iii)
HΓK

I
=
H

I
Γ
K

I
.

Proof. (i) (→) Suppose that H ⊆ K and x+ I ∈ H
I

. Then x ∈ H ⊆ K. It follows

that x+ I ∈ K
I

.

(←) For x ∈ H, x+ I ∈ H
I
⊆ K

I
. So x ∈ K.

(ii) (⊆) Note that H ∩K ⊆ H and H ∩K ⊆ K we obtain that
H ∩K
I

⊆ H

I
and

H ∩K
I

⊆ K

I
by (i). Thus

H ∩K
I

⊆ H

I
∩ K
I

.

(⊇) Let x+ I ∈ H
I
∩ K
I

. It follows that x ∈ H ∩K. So x+ I ∈ H ∩K
I

.

Therefore,
H ∩K
I

=
H

I
∩ K
I

.

(iii) (⊆) Let x + I ∈ HΓK

I
. We obtain that x ∈ HΓK. So x =

∑
hiαiki where

hi ∈ H,αi ∈ Γ and ki ∈ K for all i. Thus

x+ I =

(∑
hiαiki

)
+ I =

∑
(hiαiki + I) =

∑
(hi + I)αi(ki + I) ∈ H

I
Γ
K

I
.

(⊇) Let x ∈ H

I
Γ
K

I
. Then x =

∑
aiαibi where ai ∈

H

I
, αi ∈ Γ and bi ∈

K

I
for all

i. For each i, we have ai = xi + I and bi = yi + I for some xi ∈ H and yi ∈ K.

Then

x+ I =
∑

aiαibi =
∑

(xiαiyi + I) =

(∑
xiαiyi

)
+ I ∈ HΓK

I
.
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We now conclude that
HΓK

I
=
H

I
Γ
K

I
.

Theorem 4.13. [6](Correspondence Theorem) Let I and J be ideals of a Γ-

semiring S with zero such that I ⊆ J . Then
J

I
is an ideal of

S

I
. Conversely,

if K is an ideal of
S

I
, then there exists an ideal J of S such that I ⊆ J and

K =
J

I
.

This conclusion is true for right ideals and left ideals.

Proposition 4.14. Let I be an ideal of a Γ-semiring S with zero and J a right

ideal (left ideal) of S such that I ⊆ J . Then
J

I
is a right ideal (left ideal) of

S

I
.

Conversely, if K is a right ideal (left ideal) of
S

I
, then there exists a right ideal

(left ideal) J of S such that I ⊆ J and K =
J

I
.

Proof. Let x + I, y + I ∈ J

I
. Then x, y ∈ J . It follows x + y ∈ J because J

is a subsemigroup of S. Thus (x + I) + (y + I) = (x + y) + I ∈ J

I
. So

J

I
is a

subsemigroup of
S

I
. Next, let a + I ∈ S

I
and α ∈ Γ. Since J is a right ideal of S,

(x+ I)α(a+ I) = (xαa) + I ∈ J
I

. Hence
J

I
is a right ideal of

S

I
.

Conversely, let ξ = {J | J is a right ideal of S such that I ⊆ J} and ζ ={
H | H is a right ideal of

S

I

}
. We define the mapping f : ξ → ζ by f(J) =

J

I

for all J ∈ ξ. Let J1, J2 ∈ ξ be such that
J1
I

=
J2
I

. Then J1 = J2. Hence f is one

to one. Finally, we show that f is onto. Let H ∈ ζ. Choose J = ∪H. Since I is

a zero of
S

I
, I ∈ H. Thus I ⊆ ∪H = J . To show that J is a right ideal of S, let

x, y ∈ J . So x+ I, y+ I ∈ J
I

=
∪H
I

= H. Thus (x+y)+ I = (x+ I)+(y+ I) ∈ H

implies that x + y ∈ ∪H = J . Hence J is a subsemigroup of S. For a ∈ S and

α ∈ Γ, xαa + I = (x + I)α(a + I) ∈ H. Thus xαa ∈ ∪H = J . Therefore, J is a

right ideal of S such that f(J) =
J

I
= H. This prove is true for left ideal.

Example 4.13. Let S = Z12 and Γ = S. By Example 4.9,
S

I
= {x+ I | x ∈ S} is

a quotient Γ-semiring where I = {[0]12, [6]12}. Since J = {[0]12, [2]12, [4]12, [6]12, [8]12,
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[10]12} and K = {[0]12, [3]12, [6]12, [9]12} are ideals of S such that I ⊆ J and I ⊆ K,
J

I
= {I, {[2]12, [8]12}, {[4]12, [10]12}} and

K

I
= {I, {[3]12, [9]12}} are ideals of

S

I
.

Example 4.14. Let S = N and Γ = {1, 2, 3}. By Example 4.10, we see that
S

I
= {x+ I | x ∈ S} is a quotient Γ-semiring where I = {1, 2}. Since J = {1, 2, 3}

is an ideal of S and I ⊆ J ,
J

I
= {I, {2}, {3}} is an ideal of

S

I
.

Example 4.15. Let S = Z and Γ = 2Z. By Example 4.11,
S

I
= {x+ I | x ∈ S}

is a quotient Γ-semiring where I = 10Z. Since J = 2Z is an ideal of S,
J

I
=

{I, 2 + I, 4 + I, 6 + I, 8 + I} is an ideal of
S

I
.

Example 4.16. Let S = M2×1(Z12) and Γ = M1×2(Z12). By Example 4.12,
S

I
=

{x+ I | x ∈ S} is a quotient Γ-semiring where I =
{

[xi1]2×1 | xi1 ∈ {[0]12, [6]12}
}

.

Since J =
{

[xi1]2×1 | xi1 ∈ {[0]12, [2]12, [4]12, [6]12, [8]12, [10]12}
}

and K =
{

[xi1]2×1 |

xi1 ∈ {0̄, 3̄, 6̄, 9̄}
}

are ideals of S,
J

I
= {x + I | x ∈ J} and

K

I
= {x + I | x ∈ K}

are ideals of
S

I
.

Next, we can characterize right pure ideals in a quotient Γ-semiring as in the

following theorem.

Theorem 4.15. Let K and I be ideals of a Γ-semiring S with zero and identity

such that I ⊆ K. An ideal
K

I
of

S

I
is right pure if and only if

H ∩K
I

=
HΓK

I
for all right ideals H of S such that I ⊆ H.

Proof. (→) Suppose that
K

I
is a right pure ideal of

S

I
and H is a right ideal of S

such that I ⊆ H. Since H is an ideal such that I ⊆ H,
H

I
is an ideal of

S

I
. We

obtain that
S

I
is a Γ-semiring with identity. By Proposition 3.5 and Proposition

4.12,
KΓH

I
=
K

I
Γ
H

I
=
K

I
∩ H
I

=
K ∩H
I

.

(←) Suppose that
K

I
is an ideal of

S

I
and

H ∩K
I

=
HΓK

I
for all right ideals H

of S such that I ⊆ H. To show that
K

I
is a right pure ideal of

S

I
, let A be a right
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ideal of
S

I
. Then there exists a right ideal J of S such that I ⊆ J and A =

J

I
. It

follows that

A ∩ K
I

=
J

I
∩ K
I

=
J ∩K
I

=
JΓK

I
=
J

I
Γ
K

I
= AΓ

K

I
.

Therefore,
K

I
is a right pure ideal of

S

I
.

Similarly, an ideal
K

I
of
S

I
is left pure if and only if

H ∩K
I

=
KΓH

I
for all

left ideals H of S such that I ⊆ H.

Next, we construct a right pure ideal and a left pure ideal in a quotient Γ-

semiring
S

I
from a right pure ideal and a left pure ideal in a Γ-semiring S.

Theorem 4.16. Let I and J be ideals of a Γ-semiring S with zero. If J is a right

pure ideal of S such that I ⊆ J , then
J

I
is a right pure ideal of

S

I
.

Proof. Suppose that J is a right pure ideal of S such that I ⊆ J . By Theorem

4.13,
J

I
is an ideal of

S

I
. To show that

J

I
is a right pure ideal of

S

I
, let x+ I ∈ J

I
.

Since x ∈ J , there exist a ∈ J, α ∈ Γ such that x = xαa. Thus

x+ I = xαa+ I = (x+ I) ∗ α ∗ (a+ I).

where a+ I ∈ J
I

and α ∈ Γ. Therefore,
J

I
is a right pure ideal of

S

I
.

Likewise, if J is a left pure ideal of S such that I ⊆ J , then
J

I
is a left pure

ideal of
S

I
.

Example 4.17. Let S = Z12 and Γ = S. By Example 4.9,
S

I
= {x+ I | x ∈ S} is

a quotient Γ-semiring where I = {[0]12, [6]12}. Since K = {[0]12, [3]12, [6]12, [9]12} is

a right pure ideal and a left pure ideal of S such that I ⊆ K,
K

I
= {I, {[3]12, [9]12}}

is a right pure ideal and a left pure ideal of
S

I
. Moreover, H = {I, {[2]12, [8]12}, {[4]12,

[10]12}} is a right pure ideal of
S

I
because
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[0]12 + I = ([0]12 + I)[1]12([2]12 + I),

[8]12 + I = ([8]12 + I)[1]12([4]12 + I),

[4]12 + I = ([4]12 + I)[1]12([4]12 + I).

But there are no right pure ideals A of S such that I ⊆ A, K =
A

I
.

Example 4.18. Let S = N and Γ = {1, 2, 3}. By Example 4.10, we see that
S

I
= {x+ I | x ∈ S} is a quotient Γ-semiring where I = {1, 2}. Since J = {1, 2, 3}

is a right pure ideal of S and I ⊆ J ,
J

I
= {I, {2}, {3}} is a right pure ideal of

S

I
.

Example 4.19. Let S = M2×1(Z12) and Γ = M1×2(Z12). By Example 4.12,
S

I
=

{x+ I | x ∈ S} is a quotient Γ-semiring where I =
{

[xi1]2×1 | xi1 ∈ {[0]12, [6]12}
}

.

Since K =
{

[xi1]2×1 | xi1 ∈ {0̄, 3̄, 6̄, 9̄}
}

is a right pure ideal and a left pure ideal of

S,
K

I
= {x+ I | x ∈ K} is a right pure ideal and a left pure ideal of

S

I
. Moreover,{

[xi1]2×1 + I| xi1 ∈ {[0]12, [4]12, [8]12}
}

is a right pure ideal of
S

I
because [0]12

[0]12

+ I =

 [0]12

[0]12

+ I

( [1]12 [0]12

) [0]12

[0]12

+ I

,

 [4]12

[0]12

+ I =

 [4]12

[0]12

+ I

( [1]12 [0]12

) [4]12

[0]12

+ I

,

 [0]12

[4]12

+ I =

 [0]12

[4]12

+ I

( [1]12 [0]12

) [0]12

[4]12

+ I

,

 [4]12

[4]12

+ I =

 [4]12

[4]12

+ I

( [1]12 [0]12

) [4]12

[0]12

+ I

,

 [8]12

[0]12

+ I =

 [8]12

[0]12

+ I

( [1]12 [0]12

) [4]12

[0]12

+ I

,

 [0]12

[8]12

+ I =

 [0]12

[8]12

+ I

( [1]12 [0]12

) [4]12

[0]12

+ I

, [8]12

[8]12

+ I =

 [8]12

[8]12

+ I

( [1]12 [0]12

) [4]12

[0]12

+ I

.
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But there are no right pure ideals A of S such that I ⊆ A, K =
A

I
.

The sufficient conditions for the converse of Theorem 4.16 is furnished in the

following theorem.

Theorem 4.17. Let J and I be ideals of a Γ-semiring S with zero such that I ⊆ J

and
J

I
a right pure ideal of

S

I
. If for every A ∈ J

I
there exists a unique x ∈ J such

that A = x+ I, then J is a right pure ideal of S.

Proof. Suppose that I is a right ideal of S and for each A ∈ J
I

there exists a unique

x ∈ J such that A = x + I. To show that J is a right pure ideal of S, let x ∈ J .

Then x+ I ∈ J
I

. It follows that there exist a+ I ∈ J
I

and α ∈ Γ such that

x+ I = (x+ I)α(a+ I) = xαa+ I.

By assumption, x = xαa. Hence J is a right pure ideal of S.

In this same way, if
J

I
is a left pure ideal of

S

I
and for each A ∈ J

I
there exists

a unique x ∈ J such that A = x+ I, then J is a left pure ideal of S.

The last part, we examine some properties in the products of Γ-semirings which

the one new Γ-semiring was constructed by H. Hedayati and K. P. Shum. Later on,

we show the construction of right pure ideals and left pure ideals in the products

of Γ-semirings.

Suppose that X1, ..., Xn be nonempty sets. Let X1 × · · · ×Xn be the cartesian

product of X1, ..., Xn, i.e,

X1 × · · · ×Xn = {(x1, ..., xn) | xi ∈ Xi for all i} .

Lemma 4.18. [6] Let Ri be a Γi-semiring (1 ≤ i ≤ n). Then the operations on

R1 × · · · ×Rn defined by

(x1, ..., xn) + (y1, ..., yn) = (x1 + y1, ..., xn + yn)



49

and

◦ : (R1 × · · · ×Rn)× (Γ1 × · · · × Γn)× (R1 × · · · ×Rn) −→ (R1 × · · · ×Rn)

by

(x1, ..., xn) ◦ (γ1, ..., γn) ◦ (y1, ..., yn) = (x1γ1y1, ..., xnγnyn),

for all (x1, ..., xn), (y1, ..., yn) ∈ R1× · · · ×Rn and (γ1, ..., γn) ∈ Γ1× · · · ×Γn make

R1×· · ·×Rn into a Γ1×· · ·×Γn-semiring, called the products of Γ-semirings.

Example 4.20. Let Si be a semiring (1 ≤ i ≤ n). Then Si is a Γi-semiring where

Γi is a subsemiring of Si. Therefore, S1 × · · · × Sn = {(x1, ..., xn) | xi ∈ Si} is a

Γ1 × · · · × Γn-semiring.

Example 4.21. Let R1 = Z12 and R2 = N. We obtain that Ri is a Γi-semiring

where Γ1 = R1 and Γ2 = {1, 2, 3} so that R1 × R2 = {(x1, x2) | x1 ∈ R1 and x2 ∈

R2} is a Γ1 × Γ2-semiring.

Some basic properties in the products of Γ-semirings are given.

Proposition 4.19. Let Xi and Yi be nonempty subsets of a Γi-semiring Ri (1 ≤

i ≤ n). Then the following statements hold:

(i) for each i, Xi ⊆ Yi if and only if X1 × · · · ×Xn ⊆ Y1 × · · · × Yn;

(ii) (X1Γ1Y1)× · · · × (XnΓnYn) = (X1× · · · ×Xn)(Γ1× · · · × Γn)(Y1× · · · × Yn);

(iii) (X1 ∩ Y1)× · · · × (Xn ∩ Yn) = (X1 × · · · ×Xn) ∩ (Y1 × · · · × Yn).

Proof. (i) (→) For each i, Xi ⊆ Yi, we obtain that for (x1, ..., xn) ∈ X1× · · ·×Xn,

xi ∈ Xi ⊆ Yi for all i. So that (x1, ..., xn) ∈ Y1 × · · · × Yn.

(←) Suppose that X1 × · · · × Xn ⊆ Y1 × · · · × Yn. Let xi ∈ Xi for all i. Then

(x1, ..., xn) ∈ X1 × · · · ×Xn ⊆ Y1 × · · · × Yn. So that xi ∈ Yi for all i.

(ii) (⊆) Let (x1, ..., xn) ∈ (X1Γ1Y1)×· · ·×(XnΓnYn). Thus xi =
∑
aijαijbij where
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aij ∈ Xi, bij ∈ Yi and αij ∈ Γi for all i, j. So that

(x1, ..., xn) = (
∑

a1jα1jb1j, ...,
∑

anjαnjbnj)

=
∑

(a1jα1jb1j, ..., anjαnjbnj)

=
∑

(a1j, ..., anj)(α1j, ..., αnj)(b1j, ..., bnj).

Hence (x1, ..., xn) ∈ (X1 × · · · ×Xn)(Γ1 × · · · × Γn)(Y1 × · · · × Yn).

(⊇) By symmetry, (X1 × · · · × Xn)(Γ1 × · · · × Γn)(Y1 × · · · × Yn) ⊆ (X1Γ1Y1) ×

· · · × (XnΓnYn).

(iii) (⊆) Let (x1, ..., xn) ∈ (X1 ∩ Y1)× · · · × (Xn ∩ Yn). Then xi ∈ Xi and xi ∈ Yi
for all i. We obtain from (x1, ..., xn) ∈ (X1 × · · · × Xn) ∩ (Y1 × · · · × Yn) that

(X1 ∩ Y1)× · · · × (Xn ∩ Yn) ⊆ (X1 × · · · ×Xn) ∩ (Y1 × · · · × Yn).

(⊇) By symmetry, (X1×· · ·×Xn)∩(Y1×· · ·×Yn) ⊆ (X1∩Y1)×· · ·×(Xn∩Yn).

Proposition 4.20. Let Hi be a nonempty subset of a Γi-semiring Ri (1 ≤ i ≤ n).

Then H1 × · · · ×Hn is an ideal of a Γ1 × · · · × Γn-semiring R1 × · · · × Rn if and

only if each i, Hi is an ideal of Ri.

Proof. (→) Suppose that H1 × · · · × Hn is an ideal of a Γ1 × · · · × Γn-semiring

R1×· · ·×Rn. We show that for each i, Hi is an ideal of Ri. First, let xi, yi ∈ Hi for

all i. Then (x1, ..., xn), (y1, ..., yn) ∈ H1 × · · · ×Hn. By assumption, (x1, ..., xn) +

(y1, ..., yn) ∈ H1 × · · · ×Hn. Thus xi + yi ∈ Hi for all i. Next, let ai ∈ Ri and αi

for all i. We obtain that

(a1α1x1, ..., anαnxn) = (a1, ..., an)(α1, ..., αn)(x1, ..., xn) ∈ H1 × · · · ×Hn

and

(x1α1a1, ..., xnαnan) = (x1, ..., xn)(α1, ..., αn)(a1, ..., an) ∈ H1 × · · · ×Hn.

Hence xiαiai, aiαixi ∈ Hi for all i. Therefore, for each i, Hi is an ideal of Ri.

(←) Similarly, if each i, Hi is an ideal of Ri, then H1 × · · · × Hn is an ideal of a
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Γ1 × · · · × Γn-semiring R1 × · · · ×Rn.

Example 4.22. Let R1 = Z12, R2 = N, Γ1 = R1 and Γ2 = {1, 2, 3}. By Example

4.21, R1 × R2 = {(x1, x2) | x1 ∈ R1 and x2 ∈ R2} is a Γ1 × Γ2-semiring. Let

I1 = {[0]12, [6]12}, I2 = {[0]12, [3]12, [6]12, [9]12} and K = {1, 2, 3}. We have I1 and

I2 are ideals of R1 and K is an ideal of R2 so that I1×K and I2×K are ideals of

R1 ×R2.

The construction of right pure ideals in Γ1 × · · · × Γn-semiring R1 × · · · × Rn

from right pure ideals in a Γi-semiring Ri for all i are proved.

Theorem 4.21. Let Hi be a nonempty subset of a Γi-semiring Ri (1 ≤ i ≤ n).

Then H1× · · · ×Hn is a right pure ideal of a Γ1× · · · ×Γn-semiring R1× · · · ×Rn

if and only if for each i, Hi is a right pure ideal of Ri.

Proof. (→) Suppose that H1 × · · · × Hn is a right pure ideal of a Γ1 × · · · × Γn-

semiring R1×· · ·×Rn. By Proposition 4.20, Hi is an ideal of Ri for all i. We show

that for each i, Hi is a right pure ideal of Ri. First, let xi ∈ Hi for all i. Thus

(x1, ..., xn) ∈ H1×· · ·×Hn. We obtain that there exist (a1, ..., an) ∈ H1×· · ·×Hn

and (α1, ..., αn) ∈ α1 × · · · × αn such that

(x1, ..., xn) = (x1, ..., xn)(α1, ..., αn)(a1, ..., an) = (x1α1a1, ..., xnαnan).

Hence xi = xiαiai. Therefore, each i, Hi is a right pure ideal of Ri.

(←) Suppose that each i, Hi is a right pure ideal of Ri. By Proposition 4.20,

H1 × · · · ×Hn is an ideal of R1 × · · · × Rn. Let (x1, ..., xn) ∈ H1 × · · · ×Hn. We

obtain xi = xiαiai for some ai ∈ Hi and αi ∈ Γi so that

(x1, ..., xn) = (x1α1a1, ..., xnαnan) = (x1, ..., xn)(α1, ..., αn)(a1, ..., an).

We conclude that H1 × · · · ×Hn is a right pure ideal of R1 × · · · ×Rn.

Similarly, we can show that H1×· · ·×Hn is a left pure ideal of a Γ1×· · ·×Γn-

semiring R1 × · · · ×Rn if and only if each i, Hi is a left pure ideal of Ri.
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Example 4.23. From Example 4.22, I1 × K and J1 × K are ideals of R1 × R2.

Since J1 and K are right pure ideals of R1 and R2, respectively, J1 ×K is a right

pure ideal of R1 ×R2. But I1 ×K is not a right pure ideal of R1 ×R2 because I1

is not a right pure ideal of R1.

Moreover, we show relationship between purely prime in Γ1×· · ·×Γn -semiring

R1 × · · · ×Rn and Γi-semiring Ri.

Theorem 4.22. Let H1×· · ·×Hn be a purely prime ideal (purely semiprime ideal)

of a Γ1 × · · · × Γn-semiring R1 × · · · × Rn(1 ≤ i ≤ n). Then for each i, Hi is a

purely prime ideal (purely semiprime ideal) of a Γi-semiring Ri.

Proof. By Theorem 4.21, each i, Hi is a right pure ideal of Ri. To show that for

each i, Hi is a purely prime ideal of Ri, let Ki and Pi be right pure ideals of Ri

such that KiΓiPi ⊆ Hi for all i. We obtain that

(K1×· · ·×Kn)(Γ1×· · ·×Γn)(P1×· · ·×Pn) = (K1Γ1P1×· · ·×KnΓnPn) ⊆ H1×· · ·×Hn.

Since K1 × · · · × Kn and P1 × · · · × Pn are right pure ideals of R1 × · · · × Rn,

K1×· · ·×Kn ⊆ H1×· · ·×Hn or P1×· · ·×Pn ⊆ H1×· · ·×Hn for all i. It follows

that Ki ⊆ Hi or Pi ⊆ Hi for all i. Therefore, for each i, Hi is a right pure ideal of

Ri.

Similarly, we can show that if H1 × · · · × Hn is a purely semiprime ideal of a

Γ1 × · · · × Γn-semiring R1 × · · · × Rn(1 ≤ i ≤ n), then for each i, Hi is a purely

semiprime ideal of a Γi-semiring Ri.

Example 4.24. Consider a right pure ideal ({1, 2}, 2Z30) in a {1, 2, 3} × Z30-

semiring N × Z30. We know that {1, 2} and 2Z30 are purely prime ideals of N

and Z30, respectively. But ({1, 2}, 2Z30) is not a purely prime ideal of N × Z30

because there exist right pure ideals ({1}, 3Z30) and ({1, 2, 3}, 2Z30) of N×Z30 such

that ({1}, 3Z30)({1, 2, 3},Z30)({1, 2, 3}, 2Z30) ⊆ ({1, 2}, 2Z30) but ({1}, 3Z30) *

({1, 2}, 2Z30) and ({1, 2, 3}, 2Z30) * ({1, 2}, 2Z30).

In purely semiprimes, the properties of them make the converse true.
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Theorem 4.23. Let Hi be a nonempty subset of a Γi-semiring Ri (1 ≤ i ≤ n).

Then H1 × · · · ×Hn is a purely semiprime ideal of a Γ1 × · · · × Γn-semiring R1 ×

· · · ×Rn if and only if each i, Hi is a purely semiprime ideal of Ri.

Proof. (→) It is clear by Theorem 4.22.

(←) Assume that for each i, Hi is a purely semiprime ideal of Ri. We will show

that H1× · · ·×Hn is a purely semiprime ideal of R1× · · ·×Rn. Let A1× · · ·×An

be a right pure ideal of R1×· · ·×Rn such that (A1×· · ·×An)(Γ1×· · ·×Γn)(A1×

· · · × An) ⊆ H1 × · · · ×Hn. We obtain A1Γ1A1 × · · · × AnΓnAn ⊆ H1 × · · · ×Hn

so that AiΓiAi ⊆ Hi for all i. By assumption, Ai ⊆ Hi for all i. It follows that

A1 × · · · × An ⊆ H1 × · · · ×Hn. Therefore, H1 × · · · ×Hn is a purely semiprime

ideal of R1 × · · · ×Rn.

Likewise, a relationship between purely irreducible ideals in Γ1 × · · · × Γn-

semiring R1 × · · · ×Rn and Γi-semiring Ri is shown.

Theorem 4.24. Let H1×· · ·×Hn be a purely irreducible ideal (strongly irreducible

pure ideal) of a Γ1× · · · × Γn-semiring R1× · · · ×Rn(1 ≤ i ≤ n). Then each i, Hi

is a purely irreducible ideal (strongly irreducible pure ideal) of a Γi-semiring Ri.

Proof. Clearly, each i, Hi is a right pure ideal of Ri by Theorem 4.21. Let Ai and

Bi be right pure ideals of Ri such that Ai ∩Bi = Hi for all i. Then

(A1 × · · · ×An)∩ (B1 × · · · ×Bn) = (A1 ∩B1)× · · · × (An ∩Bn) = H1× · · · ×Hn.

Since H1× · · · ×Hn is a purely irreducible ideal of R1× · · · ×Rn, A1× · · · ×An =

H1 × · · · ×Hn or B1 × · · · × Bn = H1 × · · · ×Hn, Hence Ai = Hi or Bi = Hi for

all i. Therefore, each i, Hi is a purely irreducible ideal of Ri.

Similarly, we can show that if H1×· · ·×Hn is a strongly irreducible pure ideal

of a Γ1× · · · × Γn-semiring R1× · · · ×Rn(1 ≤ i ≤ n), then each i, Hi is a strongly

irreducible pure ideal of a Γi-semiring Ri.

The converse is not true. Here is an example.



54

Example 4.25. Consider a right pure ideal ({1, 2}, 2Z30) in a {1, 2, 3} × Z30-

semiring N×Z30. We know that {1, 2} and 2Z30 are purely irreducible ideals of N

and Z30, respectively. But ({1, 2}, 2Z30) is not a purely irreducible ideal of N×Z30

because there exist right pure ideals ({1}, 3Z30) and ({1, 2, 3}, 2Z30) of N×Z30 such

that ({1}, 3Z30) ∩ ({1, 2, 3}, 2Z30) ⊆ ({1, 2}, 2Z30) but ({1}, 3Z30) * ({1, 2}, 2Z30)

and ({1, 2, 3}, 2Z30) * ({1, 2}, 2Z30).

Finally, the characterization of purely maximal ideals are proved.

Theorem 4.25. Let Hi be a nonempty subset of a Γi-semiring Ri (1 ≤ i ≤ n).

Then H1×· · ·×Hn is a purely maximal ideal of a Γ1×· · ·×Γn-semiring R1×· · ·×Rn

if and only if each i, Hi is a purely maximal ideal of Ri.

Proof. (→) Assume that H1×· · ·×Hn is a purely maximal ideal of R1×· · ·×Rn.

We show that each i, Hi is a purely maximal ideal of Ri. For each i, let Ki be a

proper right pure ideal of Ri such that Hi ⊆ Ki. Then K1 × · · · ×Kn is a proper

right pure ideal of R1 × · · · × Rn such that H1 × · · · × Hn ⊆ K1 × · · · ×Kn. By

assumption, H1 × · · · ×Hn = K1 × · · · ×Kn. Hence Hi = Ki for all i. Therefore,

each i, Hi is a purely maximal ideal of Ri.

(←) Suppose that each i, Hi is a purely maximal ideal of Ri. To Show that

H1×· · ·×Hn is a purely maximal ideal of R1×· · ·×Rn, let K1×· · ·×Kn be a proper

right pure ideal of R1×· · ·×Rn such that H1×· · ·×Hn ⊆ K1×· · ·×Kn. We obtain

Hi ⊆ Ki so that Ki = Hi for all i. It follows that H1 × · · · ×Hn = K1 × · · · ×Kn.

Therefore, H1 × · · · ×Hn is a purely maximal ideal of R1 × · · · ×Rn.

In conclusion, in quotient Γ-semirings, our goal is a 1 − 1 correspondence be-

tween the set of right pure ideals of a quotient Γ-semiring
R

I
and the set of right

pure ideals of a Γ-semiring R containing I but it is not complete. We obtain only

an 1 − 1 function from the set of right pure ideals of a Γ-semiring R containing

I, say A, to the set of right pure ideals of a quotient Γ-semiring
R

I
, say B that is

θ : A → B by θ(J) =
J

I
for all J ∈ A. Example 4.17 shows that it is not onto.

However, if for every A ∈ J
I

there exists a unique x ∈ J such that A = x+I for all
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right pure ideals
J

I
of
S

I
, then J is a right pure ideal of S. This conditions make

θ onto.

In the products of Γ-semirings, we want to construct a right pure ideal in

the products of Γ-semirings from the products of right pure ideals in Γ-semirings.

Furthermore, we can conclude that H1×· · ·×Hn is a right pure (purely semiprime,

purely maximal) ideal of a Γ1 × · · · × Γn-semiring R1 × · · · ×Rn if and only if for

each i, Hi is a right pure (purely semiprime, purely maximal) ideal of Ri.
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