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the set of natural numbers

the set of integers

the set of integers modulo n where n € N

{nz |z €Z} where n € N

the set of m X n matrices over a semiring S where m,n € N
!

{inaiyi |leNjz; € X,a; € ' and y; € Y for all z}

i=1

where X and Y are nonempty subsets of a I'-semiring

l
{anxl |l € N,n; € Nand z; € X for alli}
i=1

where X is a nonempty subset of a ['-semiring
the set of all homomorphisms from X to Y where X and Y are

commutative semigroups



CHAPTER 1
INTRODUCTION

The notion of I'-ring was first introduced by N. Nobusawa in 1964 [11]. J. Luh
introduced the concept of left operator ring and right operator ring of I'-ring in
1969 [9]. M. M. K. Rao introduced the concept of I'-semiring as a generalization
of semiring and I'-ring in 1995 [12]. S. K. Sardar and T. K. Dutta modified the
definition of I'-semiring of Rao and then they defined the left operator semiring and
right operator semiring of a ['-semiring and obtained a few interesting properties.
In addition, S. K. Sardar and T. K. Dutta gave the definitions of prime, semiprime
irreducible and strongly irreducible ideals in I'-semirings and also investigated some
properties of them. H. Hedayati and K. P. Shum are researchers that studied I'-
semiring. In 2011, they introduced a I'-semiring homomorphism and methods of
constructing new I'-semirings, namely a quotient ['-semiring and the products of
[-semirings and then they created some fundamental isomorphism theorems and
the commutativity of some diagrams of I'-semirings.

In 1989, the concept of pure and purely prime ideals in semigroups was intro-
duced by J. Ahsan and M. Takahashi have brought forward [1]. Then M. Shabir
and S. Bashir extended the concept of pure ideals in semigroups to pure ideals in
ternary semigroups, in 2009. Moreover, they also defined and studied pure ideals,
weakly pure ideals and purely prime ideals in ternary semigroups. Furthermore,
they proved that the space of purely prime two-sided ideals is topologized [3].

In this research, we study some properties of ideals of a I'-semiring. Later on,
we define and characterize right pure ideals and left pure ideals in I'-semirings.
We characterize right weakly regular ['-semirings by using the properties of right
pure ideals. Next, we introduce purely prime, purely semiprime, purely irreducible

and strongly irreducible pure ideals in I'-semirings and examine their properties



such as relationships between right pure ideals and purely irreducible ideals in
[-semirings. From characterization of right pure ideals and left pure ideals, we
reduce the condition of right pure ideals and left pure ideals to construct right
weakly pure ideals and left weakly pure ideals in ['-semirings. We also characterize
right weakly pure ideals and left weakly pure ideals in I'-semirings. Finally, we
investigate the properties of right pure ideals and left pure ideals on a I'-semiring
homomorphism. We also investigate their properties in the quotient I'-semirings

and the products of I'-semirings.



CHAPTER II
PRELIMINARIES

In this chapter, we review some definitions and properties of ['-semirings, which
are a generalization of I'-rings and semirings. We first introduce the concepts of

semigroups.

Definition 2.1. [5] A semigroup (S5, *) is an ordered pair of a nonempty set S
and an associative binary operation * on S. We may write xy for x % y where
x,y €8.

If S is a semigroup such that z *y = y x x for all x,y € S, we shall say that S

is commutative.

Definition 2.2. [5] A subsemigroup 7" of a semigroup (.5,*) is a nonempty
subset T' of S such that xy € T for all x,y € T.

Definition 2.3. [5] An element 1 of a semigroup S is called an identity element

of Sifzl =z =1z forall z € S.

Definition 2.4. [5] An element e of a semigroup S is called an idempotent if

e? = ee = e. Let E(S) denote the set of all idempotents of S.

Example 2.1. From Example 2 in [8], (N,maz) is a commutative semigroup.

Then every nonempty subset of N is a subsemigroup of (N, mazx).
Example 2.2. For each n € N, (Z,,,+) and (Z,, -) are commutative semigroups.

Example 2.3. For n,m € N, if S is a commutative semigroup, then M, (S) is
a commutative semigroup under the usual addition of matrices. Moreover, if A is

a subsemigroup of S, then M,,y,,(A) is a subsemigroup of M,,x.,(.5).



Example 2.4. Let X and Y be commutative semigroups with identity elements.
If M = Hom(X,Y'), then M is a commutative semigroup under the usual addition

of functions.

Another basic structure in this thesis is semirings. It was introduced by M. K.

Sen and M. R. Adhikari [13] in 1993.

Definition 2.5. [13] A semiring is a nonempty set S with two binary operations

+ and - satisfying the following conditions: for all z,y, 2z € S,
(i) (S,+) is a commutative semigroup;
(ii) (9,-) is a semigroup;
(i) z-(y+2)=(z-y)+(r-2) and (y+2) -2 =(y-2)+(z- ).
In addition, S is a commutative semiring if (.5,) is commutative.

Definition 2.6. [13] An element 0 of a semiring S is said to be an absorbing
zero if for all a € S,

0-a=0=a-0and a+0=a.

Definition 2.7. [13] An element 1 of a semiring S is said to be the identity

elementifl-a=a=a-1forallaeS.

Definition 2.8. [13] A nonempty subset A of a semiring S is called an ideal of S

if A is a subsemigroup of (S,+) and a-s,s-a € Aforalla € Aand s € S.

Example 2.5. For each n € N, (Z,, +, ) is a commutative semiring with zero [0},

and identity [1],,.
In 1966, W. E. Barnes introduced the definition of I'-rings.

Definition 2.9. [2] Let (S, +) and (I, +') be abelian groups. S is called a I'-ring
if there exists a function S x I' x S — S, called a I'-multiplication, whose image

of (a,,b) is denoted by ayb, satisfying the following conditions:

(i) right distributive : (a + b)yc = aye + by,



(i) left distributive : ay(b+ ¢) = ayb+ ayc;
(iii) lateral distributive : a(y +' §)b = ayb + afb; and
(iv) associative : ay(bfc) = (avyb)Se

for all a,b,c € S and v, € I.

The notions of I'-semirings introduced by T. K. Dutta and S. K. Sardar [4] is

a main structure for studying this thesis.

Definition 2.10. [4] Let (S,+) and (I',+') be commutative semigroups. S is
called a I'-semiring if there exists a mapping S x I' x § — S, whose image of
(a,a, b) is denoted by aab, satisfying the following conditions: for all a,b,¢ € S
and a,f €T,

(i) aa(b+ c¢) = aab + aac;

(ii) (b+ c)aa = baa + caaq;
(iii) a(a+' B)c = aac + afc; and
(iv) aa(bBc) = (aab)Be.

Definition 2.11. [4] A ['-semiring S is said to be commutative if aab = baa for

any a,b € S and for any o € T'.

Every semiring S is a I'-semiring where I' is a subsemiring of S. Here is an

example.

Example 2.6. Let (S,+,-) be a semiring and I" a subsemiring of S. Next, define
the mapping S xI'x S — Sbyxay =z-a-yforall z,y € S and a € I'. Then S is
a I'-semiring. Therefore, every semiring S is a ['-semiring where I' is a subsemiring
of S. Moreover, if S is a commutative semiring, then S is a commutative I'-semiring

under this construction.

Similarly, we can construct a semiring from a I'-semiring by the method as

shown in the following example.



Example 2.7. Let S be a I'-semiring. Then S is an additive commutative semi-
group. Fix a € T and define the binary operation - : S x S — S by x -y = xay
for all x,y € S. Therefore, S is a semiring. Furthermore, if S is a commutative

['-semiring, then S is a commutative semiring under this construction.
The other examples of I'-semirings are as follows.

Example 2.8. For n,m € N, let S = M, x,,(R) and I' = M,,«,(R) where R is a
semiring. By Example 2.3, (S,+) and (T, +) are commutative semigroups where
+ is the usual addition of matrices. Define the mapping S x I' x S — S by AaB
which is the usual multiplication of matrices for all A, B € S and o € I'. Then S

is a ['-semiring but not a commutative ['-semiring.

Example 2.9. [8] Let I' = {1,2,3}. By Example 2.1, (N,maz) and (I',max)
are commutative semigroups. Define the mapping N x I' x N — N by aab =

min{a, «, b} for all a,b € N and o € I'. Then N is a commutative I'-semiring.

Example 2.10. [12] Let M = Hom(X,Y) and I' = Hom(Y, X)) where X and Y
are commutative semigroups with identity elements. Then M and I' are additive
commutative semigroups. Define the mapping M xI' x M — M by fah being the

usual composition map for all f,h € M and a € I'. Then M is a [-semiring.

We need to introduce the following notations used throughout this thesis. For

nonempty subsets X,Y of a I'-semiring S and a nonempty subset A of T,

X+Y={r+y|lzeXandyeY}

XAY = {inainmEN,mi € X,q; € Aand y; € Y for all@}

=1

NX = {Znixi\meN,ni € Nand z; € X for allz}.

i=1

For convenience, we write zAY, XAy and XaY instead of {z}AY, XA{y}
and X{a}Y, respectively, for all :c ,y € S and « e A. Moreover, we simply write

> xiaqy; and Y n;z; instead of Zx a;y; and anxz where m € N, z;,y; € S,

a; € I'and n; € N for all 4, respectlvely



Proposition 2.12. Let S be a commutative I'-semiring. Then for nonempty sub-

sets X and'Y of S, XTY =YTX.
Proof. This is clear. O

Proposition 2.13. Let S be a I'-semiring. Then for nonempty subsets X, Y and
Z of S and a nonempty subset A of T, the following hold:

(i) (X +Y)AZ C XAZ+YAZ;

(i) XA(Y + Z) C XAY + XAZ;
(iii) (XAY)AZ = XA(YAZ); and
(iv) (NX)AY = N(XAY) = XA(NY).

Proof. (i) Let > (x; + y;)viz; € (X +Y)AZ where x; € X,y; € Y, € A and

z; € Z for all i. Since (z; + y;)viz; = xi0u2; + Y z; for all i, we obtain

so that (X +Y)AZ C XAZ +YAZ.
(1) (C) Let > zouy; € (NX)AY where z; € NX, a; € A and y; € Y for all i. For

each i, z; = > ni;x;; where n;; € N and z;; € X for all 4;. It follows that

Z 2iQYi = Z(Z N, Ti; ) 0l = Z(nz‘sz‘j)%yi = Z ni, (zi;0qy;) € N(XAY).
Now we conclude that (NX)AY C N(XAY).

(D) Let > nzi € N(XAY) where n; € N and z; € XAY. For each i, we
obtain that z; = inj@ijyij where z;; € X, o, € A and yi; € Y. Thus

Z n;z; = Z n; ( Z SL’ij Oéij ylj) = Z n; (Iij Oél']. yz]) = Z(TLZI,LJ )Oél'j yij € (NX)AY
Hence N(XAY) C (NX)AY. |
We prove N(XAY) = XA(NY') as same as (NX)AY = N(XAY).

The proofs of (i) and (iii) are obtained similarly to the proof of (7). O



Conventionally, we write XAY AZ instead of (XAY)AZ or XA(YAZ), for all
nonempty subsets X,Y and Z of S and a nonempty subset A of T'.

Proposition 2.14. Let S be a I'-semuring. Then for nonempty subsets X,Y and
Z of S and nonempty subsets A and © of I' the following statements hold:

(i) if X CY, then XAZ CYAZ;
(ii) if Y C Z, then XAY C XAZ;
(i1i) if A C O, then XAY C XOY.

Proof. (i) Let > x;02; € XAZ where x; € X, oy € A and z; € Z for all . Since
x, € X CY, Y xa;z; € YAZ for all i. Therefore, XAZ CYAZ.
The proofs of (ii) and (iii) are similar to the proof of (). O

Definition 2.15. [4] Let S be a I'-semiring. An element 0 € S is said to be a

zero if for all a € S and a € T,

Oaa =0=aal0 and a + 0 = a.

Example 2.11. Let (S,+,-) be a semiring. By Example 2.6, S is a I'-semiring
where I' is a subsemiring of S. If 0 is an absorbing zero of a semiring S, then
Oaa =0 =aal0 and a+ 0 =a for all a € S and a € I". Hence if 0 is an absorbing

zero of a semiring S, then 0 is a zero of a I'-semiring S.

Example 2.12. Let S = N and I' = {1,2,3}. By Example 2.9, S is a ['-semiring

with aab = min{a, a, b} for all a,b € S and o € T'. Then 1 is a zero of S.

Example 2.13. For n,m € N, let S = M,xn(R) and I' = M,;,»,,(R) where R is a
semiring with absorbing zero 0. By Example 2.8, S forms a I'-semiring with AaB
which is the usual multiplication of matrices for all A, B € S and a € I". Then

[0],5m 18 & zero of S.

In semiring theory, the properties of their ideals play an important role in their
structure theory. Similarly, in ['-semiring theory, T. K. Dutta and S. K. Sardar

gave the definition of ideals of a I'-semiring in 2000.



Definition 2.16. [4] A nonempty subset I of a I'-semiring S is called a right
ideal (left ideal) of S if [ is a subsemigroup of (S, +) and acx € I (zaa € I) for

alla € I, z € S and for all a € T'.

Definition 2.17. [4] If I is both right and left ideal of a I'-semiring S, then we

say that [ is an ideal of S.

Remark 1. A I'-semiring S is a right ideal and a left ideal of S. On the other

hand, every right ideal (left ideal) of a I-semiring is a I'-semiring.

Remark 2. If S is a commutative I'-semiring, then right ideals (left ideals) of S

are ideals of S.

Remark 3. For each right ideal (left ideal) I of a I'-semiring S with zero 0, 0 € [

because 0 = zal € [ (0=0azx € I) forall z € [ and a € T.

Example 2.14. Let (S, +, ) be a semiring and I' a subsemiring of S. By Example
2.6, S is a ['-semiring with zay = x-«a-y forall z,y € S and a € I'. If [ is an ideal
of a semiring S, thena+bel and z-a-a,a-a-x €[ forall x € S,a,b € I and
a € T'. Hence [ is a subsemigroup of (S,+) and zaa,aaz € I for all z € S,a € 1
and a € I'. Now we conclude that any ideals of a semiring S are ideals of a I'-
semiring S. Conversely, let S be a semiring with identity 1 and I an ideal of a
[-semiring S where I' = S. So [ is a subsemigroup of (S,+) and for a € I, x € S,

a-r=a-1l-z€landz-a=x-1-a €& I. Therefore, I is an ideal of S.

Example 2.15. For k € N, n = p{"py*---p,* where pi,ps,...,pr are pairwise
distinct primes and n; € N for all .. Let S = Z, and ' = S. By Example 2.6,
S is a commutative I'-semiring with [z],[a].[y], = [ray], for all [z],,[y], € S
and [o], € T. Let I = {m[pi'p?---p¥], | m € Z} where 0 < I; < n;. For
mlpyps - ol oV Ps e € Tomlpips - pila + tpyps o pile = (m+
[ p2 - - - pl*], € I. Thus I is a subsemigroup of S. For [z],, € S, m[p}p - - p}t], €
I and [a], € T, [z],[e]nm[pp - - - pl¥], = zam[plp} - p*], € I. Therefore, I is
an ideal of S.
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Example 2.16. Let S =N and I' = {1,2,3}. By Example 2.9, S is a '-semiring
with aab = min{a, a, b} for all a,b € S and o € I'. Then {1}, {1,2} and {1,2,3}
are ideals of S. Moreover, [ is an ideal of S if {1,2,3} C I.

Example 2.17. For n,m € N, let S = M,,xm(R) and I' = M,,«,(R) where R is
a semiring. By Example 2.8, S forms a ['-semiring with the usual multiplication
of matrices AaB for all A,B € S and a € I'. Let I be an ideal of R. Then [ is a
subsemigroup of (R, +). By Example 2.3, M,,,,(I) is a subsemigroup of S under

the usual addition of matrices. Next, let A = [ai;]nxm € S, B = [jlmxn € I and

n m
E E i1k Cj where AikOgICly € I

k=1 I=1 nxm

because each ¢;; is an element of the ideal /. We now obtain that ABC' € M, ({).
Therefore, if I is an ideal of R, then M, ., (I) is an ideal of S. On the other hand,

C = [Cij]nxm S Mnxm(I) Then ABC =

let R* be a semiring with absorbing zero 0 and identity element 1 and M,,,,(J) be
an ideal of M,,«m(R*). By Remark 3, [0],,xm € Mpxm(J). Thus 0 € J. For z € R*,
we define [z],x., 18 an n X m matrix with = on (1, 1)-entry and absorbing zeros
elsewhere. Then for all a,b € J, [a + bluxm = [anxm + [Dlnxm € Muxm(J) implies
that a +b € J. Next, let z € R*. We obtain from [2],xm € Mpsm(R), [a]nsxm €
My sm(J) and [1]xn € Mpsn(R*) that [ax]nsm = [@]nxm[Umxn[T]nxm € Mpsm(J)
and [za]nsm = []nxm[Umxn[@lnxm € Muxm(J). Hence ax,za € J. Therefore, if
M, (J) is an ideal of the M,,«,(R*)-semiring M, «,,(R*), then J is an ideal of
R*. Now we conclude that for a semiring R* with absorbing zero 0 and identity

element 1, M,,«,(J) is an ideal of M,,.,,(R*) if and only if J is an ideal of R*.

Example 2.18. Let M = Hom(X,Y) and I' = Hom(Y, X') where X and Y are
commutative semigroups with identity elements and Y = E(Y'). By Example 2.10,
M forms a I'-semiring with the usual composition map fah for all f,h € M and
acl. Let I ={f € M| fisaconstant function}. If f,h € I, then there
exist y,z € Y, f(x) = y and h(x) = z for all x € X. We obtain (f + h)(z) =
f(z) + h(z) =y + z so that f + h € I. Thus I is a subsemigroup of M. Next,
let g € M and o € I'. Then ¢g(X) = Y’ and a(Y) = X' for some X’ C X and
Y’ C Y. It follows that (fag)(X) = fag(X) = fa(Y') C f(X') = {y} and
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(gaf)(X) = gaf(X) = ga({y}) = g({t}) = {s} for some t € X and s € Y. Hence
fag € I and gaf € I. Therefore, I is an ideal of M.
Next, some properties of ideals of I'-semirings are given.

Proposition 2.18. Let S be a I'-semiring and I a subsemigroup of (S,+). Then
the following hold:

(i) 1 is a right ideal of S if and only if IT'S C I;
(i) I is a left ideal of S if and only if STI C I;
(iii) I is an ideal of S if and only if STI C I and IT'S C I.

Proof. (i) (—) Let I be a right ideal of a I'-semiring S and y € IT'S. Then
y = > a;a;x; where a; € I, x; € S and a; € T for all i. By assumption, each
a;o;w; € 1. Since I is a subsemigroup of (S, +), y = > a;auz; € 1.
(<) Let ITSCI. Forallae I, x € Sand o € I', aaw € IT'S C I. By Definition
2.16, I is a right ideal of S.

(#¢) This is similar to the proof of (i).

(7ii) The proof follows from (i) and (i7). O

Proposition 2.19. Let X be a nonempty subset of a I'-semiring S and A a
nonempty subset of I'. Then the following statements hold:

(i) XAS is a right ideal of S;
(i) SAX is a left ideal of S;
(111) SAXAS is an ideal of S.

Proof. (i) We show that XAS is a right ideal of S. First, let a,b € XAS. Then
a =Y za;a; and b= > y;5;b; where x;,y; € X, a;,b; € S and «;, §; € A for all
i,j. We obtain from a+b =) z;0va; + > y;8;b; that a+b € XAS. Hence XAS
is a subsemigroup of (S, +). Next, let s € S and o € I". Then

aas = <Z miﬁiai> as = (Z xiﬁiaias) = Z z;0; (a;as8) € XAS.
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Therefore, XAS is a right ideal of S.

(77) Similarly, we can show that SAX is a left ideal of S.

(77i) From (i) and (ii), (SAX)AS is a right ideal and SA(XAS) is a left ideal of
S, respectively. Hence SAXAS is an ideal of S. O]

Proposition 2.20. Let S be a I'-semiring with zero 0. The following statements

hold:
(i) {0} is an ideal of S;
(ii) any finite intersection of ideals of S is an ideal of S.

Proof. (i) It is obvious that ST{0} = {0} and {0}I'S = {0}. By Proposition 2.18,
{0} is an ideal of S.

(i7) Forn € N, let A = ﬂ {J; | J; is an ideal of S}. Then A # & because {0} € A.
Let a,b € A. Thus a, b E J; for all i. For each ¢, J; is a subsemigroup of (S, +)
so a+b e J; for all 7. It follows that a +b € A. Now we obtain that A is a
subsemigroup of (S,+). Next, let x € S and o € T'. Each 4, J; is an ideal of S.

Thus zaa, aax € J; for all i. So raa,aaxr € A. Hence A is an ideal of S. O

Moreover, T. K. Dutta and S. K. Sardar introduced the definition of prime,

semiprime, irreducible and strongly irreducible ideals of I'-semirings.

Definition 2.21. [4] A proper ideal P of a I-semiring S is said to be prime if for
all ideals H and K of S, H['TK C P implies that either H C P or K C P.

Definition 2.22. [4] A proper ideal P of a I'-semiring S is said to be semiprime
if for every ideal A of S, AT'A C P implies that A C P.

By virtue of Definitions 2.21 and 2.22, we can conclude that every prime ideal
is semiprime. It follows that if I is not a semiprime ideal of S, then [ is not a

prime ideal of S. Here is an example.

Example 2.19. Let S = Nand I' = {1, 2,3}. By Example 2.16, S is a ['-semiring
with aab = min{a, a, b} for all a,b € S and o € " and {1, 2, 3,4} is an ideal of S.
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But {1,2,3,4} is not semiprime of S because there exists an ideal I; = {1,2,3,4,5}
of S such that I1T'[; C {1,2,3,4}. It follows that {1,2,3,4} is not a prime ideal
of S.

Definition 2.23. [4] A proper ideal I of a I'-semiring S is said to be irreducible
if for all ideals H and K of S, H N K = I implies that H =1 or K = 1.

Definition 2.24. [4] A proper ideal I of a I-semiring S is said to be strongly
irreducible if for all ideals H and K of S, H N K C [ implies that H C I or
KCI.

From Definitions 2.23 and 2.24, we can conclude that every strongly irreducible
ideal is irreducible. It follows that if I is not an irreducible ideal of a I'-semiring

S, then [ is not a strongly irreducible ideal of S.

Example 2.20. Let S = M, y1(Z15) and T' = My, (Z12). We have S forms a I'-
semiring with AaB, which is the usual multiplication of matrices for all A, B € S
and a € I'. By Example 2.17, we conclude that all ideals of S are S, I =
{l0he]r } T = {[winly Jzi € {[0)12, (610} }, Lo = {[win],py [2in € {[0]12, [4]12,
812}, Is = {[wit] 1 |71 € {012, 312, [6]12, [912} } and Ly = {[wir], .y [2ir € {[0]12,
2]12, [4]12, [6]12, [8]12, [10]12}. Consider sets I; N I}, where [; and I are ideals of S,

Lhnh=5L Lnlk=I, NIi=1L LHNIli=1
LNnly=101 LNlz=1 LNly=1I, IsNIly =1
ILbNnlhh=1 LnNlg=1y ILbNly=1 IsNI3=1I;
Isnly=1 ILhnly=1, IyNly=1 IxNIly =1
SNIy=1; LinNS=1I.

We obtain that
e all strongly irreducible ideals of S are I5, Is and I, and
e all irreducible ideals of S are I, I3 and Iy.

Example 2.21. Let S = Nand I' = {1, 2,3}. By Example 2.16, S is a ['-semiring
with aab = min{a, «, b} for all a,b € S and a € I" and {1,2, 3,4} is an ideal of S.
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But {1,2,3,4} is not irreducible of S because there exist ideals I; = {1,2,3,4,5}
and I, = {1,2,3,4,6} such that Iy N I, = {1,2,3,4}. It follows that {1,2,3,4} is

not a strongly irreducible ideal of S.

In semirings, some interesting properties of semirings are true when that semir-
ings have the identity. Likewise, in I'-semirings, the identity element was intro-

duced by K. Hila, I. Vardhami and K. Gjino in 2013.

Definition 2.25. [7] An element e of a I-semiring S is called an identity element

of S'if ace = a =eaa, for alla € S and a € T.

Example 2.22. Let S = {1,2,3,4,5} and I" = {5}. We see that (S, max, min) is
a semiring and I' is a subsemiring of S. By Example 2.6, S is a ['-semiring with

aab = min{a, a, b} for all a,b € S and o € I'. Then 5 is an identity element of S.

For a I'-semiring, the definition of the ideal generated by set is given by R. D.
Jagatap and Y. S. Pawar.

Definition 2.26. [8] Let X be a nonempty subset of a I'-semiring S. By (X), we
mean the right ideal of S generated by X (that is the intersection of all right
ideals of S' containing X).

Similarly, (X); and (X); denote the left ideal and two-sided ideal gener-

ated by X, respectively.

The following useful theorem based on a ['-semiring with identity element is

required.

Proposition 2.27. [8] For nonempty subset X of a I'-semiring S with identity

element, we have
(i) (X), = XTS;
(ii) (X), = STX;

(iii) (X); = STXTS.



CHAPTER I11
PURE IDEALS

In this chapter, we separate our work into two parts. Firstly, we introduce the
definitions of right pure ideals and left pure ideals in I'-semirings and investigate
their properties such as characterization of right pure ideals and left pure ideals and
relationships between pure ideals and purely irreducible ideals in I'-semirings. We
also characterize right weakly regular I'-semirings. Secondly, we include conditions
into right pure ideals to define purely prime, purely semiprime, purely irreducible,
strongly irreducible pure and purely maximal ideals in ['-semirings and and inves-
tigate their relationships. Finally, We reduce conditions of right pure ideals and
left pure ideals to define weakly right pure ideals and weakly left pure ideals in

[-semirings and investigate thier properties.

Definition 3.1. An ideal I of a I'-semiring S is called right pure (left pure) if

for each x € I there exist a € I, a € I" such that zaa = z (acx = z).

It is straightforward to show that for each commutative I'-semiring S, right

pure ideals and left pure ideals of S are coincide.

Example 3.1. Let M = Hom(X,Y) and I' = Hom(Y, X) where X and Y are
commutative semigroups with identity elements and ¥ = E(Y). By Example
2.18, M forms a I'-semiring with the usual composition map fah for all f,h € M
and o€ "and I = {f € M | fis a constant function} is an ideal of M. Since for
f € I there exists o € I' such that f = faf, I is a right pure ideal and a left pure
ideal of M.

Example 3.2. Let S = N and I' = {1,2,3}. By Example 2.16, S is a ['-semiring
where aab = min{a, , b} for all a,b € S and @ € I". Then {1},{1,2} and {1,2, 3}
are right pure ideals of S. But I = {1,2, 3,4} is not a right pure ideal of S because
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4 # 4oz for all x € I and a € T'. Since S is a commutative I'-semiring, {1}, {1, 2}
and {1,2, 3} are left pure ideals of S.

Example 3.3. For n € N, let S = M,,«1(Z¢) and I' = M,,,,(Zg). Then S forms
a '-semiring with AaB being the usual multiplication of matrices for all A, B €
S and a € T'. By Example 2.17, all ideals of S are S { Ti1], 1 170 € {[0] }}
{[z] 1 |z € {[0]6, [3l6}} and {[zi],x; |za € {[0]6, [26, [4]6}}. It’s easy to see
that S and { Ti1),, 1 |:B11 € {[0] }} are right pure ideals and left pure ideals of S.
Next, to show that I = {[zs],,, |za € {[0]s, [3]6}} is a right pure ideal of S, let
[z4],,., € I. Then there exist [[3]¢]nx1 € I and [[ J6J1xn € I' such that

T11 [3]6 [3]611711

T21 Ole 3l6T21
R e .

Tt [0]6 [Blen1

If Ty = [0]67 then [3]61’1'1 = [0]6 If i1 = [3]67 then [3]633“ = [3]6 Hence

L1 [3]6 T
Ta1 Ols Ta1
(e e o )| =] "
Tn1 [0]6 Tn1

Therefore, I is a right pure ideal of S. Moreover, if [z;1],,; = [[0]6],,«1, then there

nx1

exist [ai1],,, € I and [ay] € I' such that [2i1],.q = [@i1],x1 [@1i]1 50 [@i1] -

Ixn

But if [z4],.; 7 [[0]6],,»;, then there exists & € {1,2,...,n} such that x4 = [3]6.

eI by

nx1

We choose [av5],.,,

1] ifi=k;
Q=

06 if i # k.

Thus
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T11 Z11 [3]63711 T11
L1 ( 06 -+ [l --- [0]s ) zia | = | Blezia | = | zm
Tn1 Tn1 [3]6513'n1 Tn1

Therefore, I is a left pure ideal of S. Moreover, {[z:1],,, |za € {0,2,4}} is a right

pure ideal and left pure ideal of S which can be proved in a similar way.

Theorem 3.2. If a and b are integers such that at least one of them is non-zero

and ¢ = ged(a,b), then there exist integers x and y such that ¢ = ax + by.

We use the above theorem to characterize right pure ideals and left pure ideals

in the Z,-semiring Z, in the following result.

Proposition 3.3. For k € N, n = p{'py?---p.* where p1,ps,...,p are pairwise
distinct primes and n; € N. Let S = Z, =T and I = {m[pi'p% - pl¥], | m € Z}
where 0 < I; < n; for alli. Then I is a right pure ideal of S if and only if for each

i, li=0o0rl;, =n,.

Proof. («+) Let I; = 0 or l; = n; for each i. By re-arrangement, we assume that
li = nyyly = ng,... ly = ng and Ly = 0,040 = 0,...,lx = 0. We will show
that I = {m [p{"py*---p*], | m € Z} is a right pure ideal of S. First, we write
a = pi'py?---pi*. We obtain that ged(a, pii'pts -+ - pp*) = 1. By Theorem 3.2,
za + yp ipls - ppt =1 for some z,y € Z. Now we conclude that there exists
z € Z such that p, ' pis’ -+ ppflea — 1. Let (2], € I. Then [z],, = cla],. We

obtain from za — 1 = wp, {5 p/ 5’ - - pp* for some w € Z that

(ca)(wa — 1) = (ca)(wp 3 iy - vi)

(ca)(za) — ca = cwn.

Since n|(ca)(za)—ca, [(ca)(xa)), = [ca],. Thus [z],[za], = [z].. Hence for [z], € I

there exist [za], € I and [1], € I such that [2],[1],[za], = [z],. Therefore, I is a
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right pure ideal of S.

(=) Let I = {m[p---pl*], | m € Z} be a right pure ideal of S. Without loss of
generality, suppose that there exists ¢ = 1 such that 0 < l; < n;. Since [ < nq,
Pp - pi¥], € T —{0}. Thus there exist t[pl'pk ---pi¥], € I and [a], € T such
that

[P1p2‘ ] [P1p2‘ ] [a]n [P1p2‘ ]

= [atpi"ps? - - pi*],..

We obtain that pi'p5? - pp* | ((atp?ll pal .ty — (plipl - pij)) and therefore,

Pyt | ((atp1 Py — l)pfpf---pk). Since l; < ny, we have p; |
(atpl p2 . -pif — 1)1922 e k. Then p; | (atp1 p2 pf,f — 1) because p; J(pl; .- -pij.
Since I; > 0, py | (p1(atp~'p - pl¥) —1). We obtain that

h-lple

p1(atpy P —1=cp

pr(atpltpl ol — ) =1

for some ¢ € Z. It is a contradiction because atpll 1p122 e pﬁf — ¢ € Z. Therefore,

li:()orli:ni for all 4. ]

By commutative property, this proposition holds for left pure ideals in the

Lp-semiring Z,,.

Example 3.4. For the Zsg-semiring Zsg, we consider I = {m[2%];s | m € Z} =
{[0]4s, [16]4s, [32]4s}. We know that 48 = (2%)(3) and there exists [1]4s € Zyg such
that 3 | (1)(2*) — 1. We obtain that for [z]ss € I, [7]ss[1]48[16]ss = [z]ss. Thus I
is a right pure ideal of the Zjg-semiring Z,g. Next, we consider J = {m[(2?)]ss |
m € Zyg}. There exists 3[22]45 = [12]4s € J — {0} such that 3[2%]s[a]sism[2%]ss =
m[(3)(24)]s[a]as = [0]ag # 3[22%]4s for all m[2%]45 € J and o € T'. Hence J is not a
right pure ideal in the Zg-semiring Zys.

Furthermore, we get right pure ideals in the M,,.x(Z,)-semiring My, (Z,,)

where m < k in the following proposition.
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Proposition 3.4. Let m < k. Then I 1is a right pure ideal of the Z,-semiring Z,,
if and only if Myxm(I) is a right pure ideal of the M, xi(Zy,)-semiring Myym(Zy,).

Proof. (—) Suppose that I is a right pure ideal of the Z,-semiring Z,. From the
proof of the above proposition, we obtain that there exist y € I such that z = zy
for all z € I. Since Z,, is a semiring with identity, I is an ideal of the semiring Z,.
By Example 2.17, My, (I) is an ideal of the M,y (Z,)-semiring My (Zy,). To
show that My, (1) is a right pure ideal of the M,,xx(Z,)-semiring My (Z,,), let
Zijlixm € Mixm(L). We choose [bi;]kxm € Mixm(I) by

y ifi=j;
bij -
O, ifi#j
and [ijlmxir € Mimxk(Zy,) by
1], ifi=y;
Q5 =
0], ifi# .

Then

[aij]kxm[aij]mxk[bij]kxm = [aij]kay[m = [yaij]ka = [aij]kxm-
Therefore, My, (I) is a right pure ideal of the M,,«x(Z,)-semiring My, (Zy,).
(«—) Let Myxm(I) be a right pure ideal of the M,,«(Z,)-semiring M., (Z,,). By
Example 2.17, I is an ideal of the semiring Z,. By Example 2.14, [ is an ideal of
the Z,-semiring Z,. To show that [ is a right pure ideal of the Z,-semiring Z,,
let @ € I. We define [« to be the k x m matrix with z on (1,1)-entry and
absorbing zeros elsewhere. Then [a|gxm € Mixm(I). We obtain that there exist
bijlexm € Mixm(I) and [Byj]mxi € I' such that

[a]ksm = [a}kxm[ﬁij]mxk[bij]kxm-
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Then

a5 Bubn aSr Bube - a Sy Bubim
0 0 . 0

[a]kxm -

Hence a = azgll Bubii. Since I is an ideal of the semiring Z, and b; € I,
Zle Bubin € 1. So there exist Zle pPubn € I and [1], € Z, such that a =
a(l], Zle Bubn. Therefore, I is a right pure ideal of the Z,-semiring 7Z,,. O

A characterization of a right pure ideal in a ['-semiring with identity element

is furnished in the following theorem.

Theorem 3.5. Let S be a I'-semiring with identity element e. Then an ideal I of
S is right pure if and only if JNI = JUI for all right ideals J of S.

Proof. (—) Suppose that I is a right pure ideal of S and J is a right ideal of
S. Then JI'I € JNI. If a € JN I, then there exist x € I, a € I' such that
a = aax € JI'I. This implies JN I = JI'I.

(<) Suppose that I is an ideal of S such that J NI = JI'I for all right ideals J of
S. Let x € I and a € I'. By Proposition 2.19, za.S is a right ideal of S. Then

(xaS)NI = (xaS)I'] = za(STI) C zal.

We obtain from x = zae € zasS that x € xraS NI C xal. This implies © =
Y xaa; = zay a;, a; € I all i. Since I is a subsemigroup of (S,+), > a; € I.
Thus there exist b € I, o € T', such that x = xab. Hence I is a right pure ideal of
S. O

Similarly, we can show that an ideal I of S is left pure if and only if INJ = IT'J
for all left ideals J of S.

Next, we define and characterize right weakly regular I'-semirings.
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Definition 3.6. A I'-semiring S is said to be right weakly regular if for each
r eSS, xve (xS)? = (2T'S)T'(2I'9).

Example 3.5. Let S = {1,2,3,4,5} and T' = {5}. By Example 2.22, S is a
[-semiring with aab = min{a,a,b} for all a,b € S and a € I'. Since z =

(zax)a(zazx) for all z € S, S is right weakly regular.

Theorem 3.7. Let S be a I'-semiring with identity element e. Then the following

assertions are equivalent:
(i) S is right weakly regular;
(ii) J? = JUJ = J for all right ideals J of S;
(ii) J NI = JUI for all right ideal J and ideal I of S.

Proof. (i) — (ii) Let S be right weakly regular and J a right ideal of S. We obtain
that JT'.J C JI'S C J. Let z € J. Then z € (zI'S)?. By Proposition 2.27, 2T'S is
the smallest right ideal containing x which implies that xI'S C J. Thus

x € (2'S)* C J°.

Hence J = J? = JT'J.

(i) — (i) Suppose that J?> = JT'J = J for all right ideals J of S. To show that
S is right weakly regular, let x € S. We know that 'S is a right ideal of S. By
assumption, (zI'S)? = (zI'S)I'(2I'S) = (2T'S). Then = € (2'S)%.

(1) — (4i7) Suppose that S is right weakly regular. Let J be a right ideal and I an
ideal of S. Then JT'I C JNI. Let z € JN 1. By assumption, z € (zI'S)?. Thus

z € (2I'S)[(z'S) C (JIS)I(ITS) C (JTS)IT C JTI.

Hence JI'T =JN 1.
(7i1) — (7) Assume that J N1 = JT'I for all right ideals J and ideals I of S. To
show that S is right weakly regular, let x € S. Then z € zI'S N STx['S. Since
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xI'S is a right ideal and STxI'S an ideal of S, we obtain that
z € xI'SNST2l'S = (2T'S)I'(ST2T'S) = (2L STS)I'(2['S) C (2I'S)T'(2T'S).

Then z € (zI'S)T'(z'S) = (2['S)?. Therefore, S is right weakly regular. O
By virtue of Theorems 3.5 and 3.7, we obtain the following theorem.

Theorem 3.8. Let S be a I'-semiring with identity element. Then S is a right
weakly reqular I'-semiring if and only if every ideal I of S is right pure.

From this theorem, we can conclude that every ideal of S in Example 3.5 is
right pure.
A sufficient condition on a I'-semiring S that makes S a right pure ideal and a

trivial right pure ideal are shown in the following proposition.
Proposition 3.9. The following statements hold:
(i) if S is a T-semiring with identity e, then S is a right pure ideal of S;

(i) if S is a T'-semiring with zero 0, then any finite intersection of right pure

ideals of S is a right pure ideal of S.

Proof. (i) Let S be a I'-semiring with identity e. Clearly, S is an ideal of S.
For right ideal J of S, JI'S C J = J N S. In contrast, since e € S, for any
reJNS,x=xae € JI'S. Thus JNS C JI'S. Hence JNS = JI'S. By Theorem
3.5, S is a right pure ideal of S.

(77) Suppose that S is a [-semiring with zero 0. For n € N, let A = fn] {Ji | J;
is a right pure ideal of S}. We obtain from 0 € A that A is a nonempt;:;et. For
each i, J; is an ideal of S implies that A is an ideal of S by Proposition 2.20. Let

x € A. Then there exist y; € J;, o; € I' such that x = zayy; for all i. Thus

Tr=zxonyy = (95042?J2)041y1 =...= (xanyn)an—lyn—l - QY201 Yy -
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Since each ¢, J; is an ideal of .S, it follows that y,q,_1Yn_1 ... aaysaqy; € J; for all

1. Now we have y,a,_1Yn_1 ... a1y € A, ,, € T' such that

T = ZUOén(ynan—l?/n—l .. -042?/2a1y1)-

Hence A is a right pure ideal of S. ]

In the same way, we can show that S is a left pure ideal of a I"-semiring .S with
identity. Any finite intersection of left pure ideals of S is a left pure ideal of a
[-semiring S with zero.

By virtue of above theorem, {0} is a right pure ideal and a left pure ideal of a
['-semiring with zero 0.

Next, we include some conditions on right pure ideals and investigate their

properties.

Definition 3.10. A proper right pure ideal I of a I'-semiring S is called purely
prime if [;I'[y C [ implies Iy C I or I, C [ for any right pure ideals I; and Iy of
S.

Definition 3.11. A proper right pure ideal I of a I'-semiring S is called purely

semiprime if [;I'/; C [ implies Iy C I for any right pure ideals I of S.
It is straightforward to verify that every purely prime ideal is purely semiprime.

Example 3.6. For n € N, let S = M,,«1(Z30) and I' = My, (Z30). We have S
forms a ['-semiring with the usual multiplication of matrices AaB for all A, B € S
and o € T'. Then all right pure ideals of S are S,{[0]30}, Mx1(2Z30), Mpx1(3Zs0),
M, x1(5Z30), Myx1(6Z30), Mysx1(10Z30) and M, 1 (15Z30). Hence

e all purely prime ideals of S are M,,x1(2Z30), Mpx1(3Z30) and M, x1(5Z3),

e all purely semiprime ideals of S are M,,«1(2Zs30), Mux1(3Z30), Mpx1(5Z3),
Mnx1(6Z30)7 Mn><1<1OZ30)a Mnx1(15Z30) and {[0]30}-



24

Example 3.7. Let S = N and " = {1,2,3}. By Example 3.2, S is a I'-semiring
with aab = min{a, a, b} for all a,b € S and o € I" and all right pure ideals of S
are I; = {1},1, = {1,2} and I3 = {1,2,3}. Consider sets I,I']; where I; and I,
are right pure ideals of S,

LUL, €I, DLUI;CI, LI C I
LI'l;CIly LI'LCL LI CILL.

We obtain that
e all purely prime ideals of S are Iy, Is and I3,
e all purely semiprime ideals of S are Iy, I and I3.

Using the include condition on right pure for purely prime, the finite intersection

of purely prime ideals is just a purely semiprime. It’s not a purely prime in general.

Proposition 3.12. Let S be a I'-semiring with zero 0. Then the finite intersection
of purely prime (or purely semiprime) ideals of S is a purely semiprime ideal of S.
Proof. For n € N, let A = ﬁ {P; | P, is a purely prime ideal of S}. By Proposi-
tion 3.9, A is a right pure idé:all of S. Assume that [ is a right pure ideal of S such
that IT'I C A. Then IT'I C P, for all 4. Since P; is purely prime for all 7, P; is a
purely semiprime for all 7. Hence I C P; for all 4, it implies that I C A. Therefore,
A is a purely semiprime ideal of S.

Likewise, we can show that if B = ﬁ {P; | P, is a purely semiprime ideal of S},
then B is a purely semiprime ideal on Tgl O]
Definition 3.13. A proper right pure ideal I of a [-semiring S is called purely
irreducible if Iy NI, = I implies I; = I or I, = I for any right pure ideals [; and
Iy of S.

Definition 3.14. A proper right pure ideal [ of a ['-semiring S is called a strongly
irreducible pure ideal if [y NI, C I implies I; C I or I, C [ for any right pure
ideals I; and Iy of S.
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It is straightforward to verify that every strongly irreducible pure ideal is purely

irreducible.

Example 3.8. For n € N, let S = M,«1(Zs0) and I' = M;«,(Z3y). We have S
forms a ['-semiring with the usual multiplication of matrices AaB for all A, B € S
and a € I'. Then all right pure ideals of S are S,{[0]30}, Mpnx1(2Z30), Myx1(3Zs30),
M,51(5Z30), Mpx1(6Z30), Myx1(10Z3) and M,,»1(15Zs30). Hence

e all strongly irreducible pure ideals of S are M, 1(2Z30), Myx1(3Z30) and
M1 (5Zs0),

e all purely irreducible ideals of S are M, «1(2Z30), M,x1(3Z30) and
M,,x1(5Zsy).

Example 3.9. Let S = N and I" = {1,2,3}. By Example 3.2, S is a I'-semiring
with aab = min{a, a, b} for all a,b € S and o € I" and all right pure ideals of S
are [y = {1}, I, = {1,2} and I3 = {1,2,3}. Consider sets /; N I; where I; and I;
are right pure ideals of S,

Lnlh=1, LnNnlz=1, I3Nlh=1I

IsNnl3=13 INnhL=0L LNI=1I.

We obtain that
e all strongly irreducible pure ideals of S are Iy, I, and I3,
e all purely irreducible ideals of S are Iy, Iy and I3.

On the space of right pure ideals, purely prime and strongly irreducible pure

ideals are coincide.

Proposition 3.15. Let I be an ideal of a I'-semiring S with identity e. Then I is
a strongly irreducible pure ideal of S if and only if I is a purely prime ideal of S.

Proof. (—) Suppose that I is a strongly irreducible pure ideal of S. To show that
I is a purely prime ideal of S, let I; and I5 be right pure ideals of S such that
LTI, C I. Since I is a right ideal and I is a right pure ideal of S, [y N I, =
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I,T'I; C I by Theorem 3.5. Since [ is a strongly irreducible pure ideal of S, I} C I
or I, C 1.

(«—) Suppose that I is a purely prime ideal of S. To show that I is a strongly
irreducible pure ideal of S, let I; and I be right pure ideals of S such that I; NI, C
I. By Theorem 3.5, Iy NIy = [1T'l;. So I;T'l; C I. Since [ is a purely prime of S,
Iy Clorl,ClI. ]

A partially ordered set is defined as a set P together with relation “ <7
over set P if it is reflexive (z < z for all x € P), antisymmetric (r <y and y < x
together imply x = y for all z,y € P) and transitive (x < y and y < z together
imply x < z for all z,y, 2 € P). A totally ordered set is a subset T of a partially
ordered set P such that any two elements of 7" are comparable with relation < (for
any s,t € T we have either s <t or ¢t <s) [10].

We recall that every strongly irreducible pure ideal is purely irreducible. The
converse is not true generally. However, the converse is true on some assumption

of the set of all right pure ideals of a I'-semiring with zero.

Proposition 3.16. Let S be a I'-semiring with zero. Then the following assertions

are equivalent.

(i) The set of all right pure ideals of S is a totally ordered set under inclusion

of sets.
(ii) Each right pure ideal of S is a strongly ireducible pure ideal of S.
(11i) Each right pure ideal of S is a purely ireducible ideal of S.

Proof. (i) — (i1) Suppose that the set of all right pure ideals of S is totally
ordered under inclusion of sets and [ is a right pure ideal of S. To show that [ is a
strongly irreducible pure ideal of S, let I; and I5 be right pure ideals of .S such that
NI, CI. By assumption, [y C Iy or Iy CI;. Then NI, =1, or Iy N1y = Iy,
it follows that I; C I or I, C I. Hence [ is a strongly irreducible pure ideal of S.
(i1) — (i17) Suppose that each right pure ideal of S is a strongly irreducible pure
ideal of S. Let I be a right pure ideal of S and I; NI, = I where I; and I, are



27

right pure ideals of S. By assumption, I; C I or Iy C I. Since [ =11, NI, C I;
and I =1,NI, C Iy, Iy =1or I, =1. Hence I is a purely irreducible ideal of S.

(77i) — (i) Suppose that each right pure ideal of S is a purely irreducible ideal. To
show that the set of all right pure ideals of S is totally ordered set under inclusion
of sets, let I; and I, be right pure ideals of S. Thus I} N I is a right pure ideal of
S. By assumption I; N I, is purely irreducible of S. Note that I; NIy = [ N Iy we
obtain that Iy = Iy NIy or Iy = I; N I5. Hence I} C I, or Iy C I;. Therefore, the

set of all right pure ideals of S is totally ordered set under inclusion of sets. [

Proposition 3.17. Let X be the set of right pure ideals of a I'-semiring S, ordered
by inclusion and C a totally ordered subset of X. Then | ;cc J is a right pure ideal
of S.

Proof. Let M = J . J. To show that M is a right pure ideal of S, let 1,z € M.
Then x, € J; and x5 € J5 for some Ji,Jy € C. Thus J; C Jy or J, C J;; WLOG
the former is assumed. We obtain x; € J; so that 1 + zo € Jo C M. Next, let
a € S and a € I'. Then aaxy, roca € Jo C M. It follows that M is an ideal of S.
Since z1 € J; and J; is a right pure ideal of S, there exist y; € J; C M and a € T’

such that x1 = x1ay;. Hence M is a right pure ideal of S. O

Zorn’s lemma is a proposition of set theory which states that a partially ordered
set containing upper bounds for every totally ordered subset necessarily contains

at least one maximal element.

Proposition 3.18. Let I be a right pure ideal of S and a € S such that a ¢ I.
Then there exists a purely irreducible ideal J of S such that I C J and a ¢ J.

Proof. Let X = {J | J is a right pure ideal of S such that I C J and a ¢ J}. We
obtain that X # @ because I € X. First, we will show that a partially ordered set
X containing upper bounds for every totally ordered subset. Let T be a totally
ordered subset of X and M = (J,..J. By Proposition 3.17, M is a right pure
ideal in S. We have I C J; and a ¢ J; for all i implies that I C M and a ¢ M.
Thus an upper bound M of T" contain in X. We obtain that X has a maximal
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element, say J by Zorn’s Lemma. Thus J is a right pure ideal such that I C J
and a ¢ J. Next, show that J is a purely irreducible ideal of S. Let A and B are
right pure ideals of S such that AN B = J. Then J C A and J C B. Suppose
that J C A and J C B. By maximality of J, A ¢ X and B ¢ X. Thus I ¢ A or
ac€Aand I € Borae B. Since ] C Aand I C B,a € ANB = J which is a
contradiction. Hence J € A or J € B. Therefor, J = A or J = B. O]

We use Proposition 3.18 to find a relationship between right pure ideals and

purely irreducible ideals in I'- semirings.

Proposition 3.19. Every proper right pure ideal I of S is the intersection of all

purely irreducible ideals of S containing I.

Proof. Suppose that [ is a proper right pure ideal S. By Proposition 3.18, there
exists a purely irreducible ideal containing I. Let {Ji}rex be the family of all
purely irreducible ideals of S which contain /. Since I C J; for all £ € K,
I € (N Jk. To show that () Jx C I, let a ¢ I. Then there exists a purely

keK keK

irreducible ideal J such that I C J and a ¢ J by Proposition 3.18. It follows that

a¢ () Jx. We now conclude that I = [ Jj. O
keK keK

Next, we introduce the concept of a purely maximal ideal of a I'-semiring.

Definition 3.20. A proper right pure ideal I of a ['-semiring S is said to be purely
maximal if for any proper right pure ideals J of S, I C J implies that I = J.

Example 3.10. For n € N, let S = M,x1(Z3) and I' = My, (Z30). We
have S forms a I'-semiring with the usual multiplication of matrices AaB for all
A,B € S and a € I'. Then all of right pure ideals of S are S,{[0]30}, Myx1(2Z30),
M,x1(3Z30), Myx1(5Z30), Mpx1(6Zs0), Mysx1(10Z30) and M,,.1(15Z30). We obtain
that M,,«1(2Z30), Mpx1(3Zs30) and M,,«1(5Z30) are purely maximal ideals of S.

Example 3.11. Let S = N and I' = {1,2,3}. By Example 3.2, S is a ['-semiring
with aab = min{a, a, b} for all a,b € S and o € T'. All of proper right pure ideals
of S are {1},{1,2} and {1,2,3}. Thus {1, 2,3} is a purely maximal ideal of S but
{1} and {1,2} are not purely maximal ideals of S.
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The following proposition guarantee existence of a purely maximal ideal in a

[-semiring with identity element.

Proposition 3.21. If I is a proper right pure ideal of a I'-semiring S with identity

element e, then S contains a purely maximal ideal M such that I C M.

Proof. Let X be the set of proper right pure ideals of .S, ordered by inclusion. Let
C be a chain in X and M = J,..J. By Proposition 3.17, M is a right pure ideal
of S. If e € J for some J € C, then for all x € S and o € I', zae, eaxr € J which
implies that z € J. Thus J = S which is a contradiction. We obtain from e ¢ J
for all J € C that e ¢ M and M # S. O

Proposition 3.22. If I is a purely mazimal ideal of a I'-semiring S, then I is a

purely irreducible ideal of S.

Proof. Suppose that [ is a purely maximal ideal of a I'-semiring S. To show that
I is a purely irreducible ideal of S, let J; and Js be right pure ideals of S such
that J; N Jy = I. Since [ is a proper right pure ideal of S, J; or J, is a proper
right pure ideal of S; WLOG the former is assumed. Then I = J; N Jy C J;. By

assumption, I = J;. Hence [ is a purely irreducible ideal of S. O

The converse of Proposition 3.22 is not true. Counterexamples are {1,2} and
{1} in Example 3.11.

The last, from Theorem 3.5, I is a right pure ideal (left pure ideal) of a I'-
semiring S with identity provided JI'IT = J NI for all right ideals (left ideals) J
of S. Now, we construct right weakly pure ideals and left weakly pure ideals in a

[-semiring S under the condition of all ideals of S.

Definition 3.23. An ideal A of a I'-semiring S is called right weakly pure (left
weakly pure) if BN A= BI'A (AN B = AI'B) for all ideals B of S.

Every right pure ideal (left pure ideal) is a right weakly pure (left weakly pure).

Proposition 3.24. If A and B are ideals of a I'-semiring S with zero 0, then

A B={be S|baa € B for alla € A,a €T}
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and

BA'={be S|aab€ B foralla € A,a €T}
are ideals of S.

Proof. Suppose that A and B are ideals of a I'-semiring S with zero. Since Oaa =
O Bforallae A, ael’;0€ A 1B. So A 1B # . Let by € A 1B, a € A
and a € I'. Then

(b+V)aa =baa+Vaa € B+ B.

Since B is a subsemigroup of (S,+), B+ B C B. Now we have (b + bV)aa €
B+ B CB. Sob+V € A_;B. Thus A_B is a subsemigroup of S. Next, let
r€ A 1B,se€ Sand g €TI. Then for any y € A and v € ', we obtain syy € A
so that

(xBs)yy = 2B(svy) € B

and

(sBx)yy = sB(zyy) € STB C B.

Hence x3s, sfx € A_;B. This shows that A_; B is an ideal of S. Similarly, BA~!
is an ideal of S. |

From above proposition, we can characterize right weakly pure ideals and left

weakly pure ideals of I'-semirings in the following theorem.

Theorem 3.25. Let S be a I'-semiring with zero 0. An ideal A of S is right weakly
pure (left weakly pure) if and only if (A.1B)NA=ANB (BAH)NA=BnNA)
for all ideals B of S.

Proof. (=) Suppose that A is a right weakly pure ideal and B is an ideal of S. By
Proposition 3.24, A_; B is an ideal of S. By assumption, (A_;B)NA = (A_;B)['A.
For any x € (A_1B)T'A, v = > b;a;a; where b; € A_1B,a; € I' and a; € A for all

i. Then b;a;a; € B for all i. Since B is a subsemigroup of (S,+), © € B. Now we
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have (A_1B)TAC B and (A_1B)TAC A. Thus

(A,B)NA=(A_BTAC ANB.

Since B is an ideal of S, for any b € AN B, baa € B for all a € A,a € I'. Thus
be A_1B. Hence AN B C (A_1B) N A. Therefore, (A_1B)NA=ANB.

(«+—) Assume that A is an ideal of S such that (A_1B) N A = AN B for all ideals
B of S. To show that A is right weakly pure, let B be an ideal of S and b € B.
Thus for all @ € A and a € T, baa € BI'A and BI'A is an ideal of S because
(BTA)I'S = BT'(AI'S) € BT'A and ST(BT'A) = (STB)I'A C BI'A. We obtain
be A_1(BT'A) so that B C A_1(BT'A). Thus

ANBCANA_(BI'A) C An(BT'A) C BT A.

Since BI'A C AN B, B'A = AN B. Therefore, A is right weakly pure.
In the same way, we can shows an ideal A of S is left weakly pure if and only

if BA"'N A= BnN A for all ideals B of S. O

The following proposition shows the condition on the set of ideals in a I'-
semiring with zero that make left weakly pure ideals and right weakly pure ideals

coincide.

Proposition 3.26. Let S be a I'-semiring with zero. Then the following assertions

are equivalent:
(i) each ideal of S is left weakly pure;
(11) each ideal I of S, I? = ITI =1I;
(7ii) each ideal of S is right weakly pure.

Proof. (i) — (ii) Suppose that each ideal of S is left weakly pure. Let I be an
ideal of S. Then I N J = IT'J for all ideals J of S. Hence

I=InI=1ITI=1I
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(i1) — (i) Assume that each ideal I of S, I? = ITT =1I. Let A and B be ideals of
S. We have AN B is an idael of S. Thus

ANB=(ANB)I'(ANB) C AI'B.

Since AI'B C AN B, A'B = AN B. Therefore, A is left weakly pure.
(17) — (i1d) Similarly, as (i) — (7).
(731) — (ii) Suppose that each ideal of S is right weakly pure. Let I be an ideal
of S. Then [ is a right weakly pure ideal of S, it follows that I N J = JI'I for all
ideals J of S. Thus

I=INnI=ITI=1I



CHAPTER IV
PURE IDEALS IN NEW TI'-SEMIRINGS

We devide this chapter into two parts. First, we find the conditions for preser-
vation of right pure ideals and left pure ideals by I'-semiring homomorphisms which
were introduced by H. Hedayati and K. P. Shum in 2011. According to H. Hedayati
and K. P. Shum [6], we investigate some properties of right pure ideals and left
pure ideals in new I'-semirings which are quotient I'-semirings and the products of
[-semirings in the last two parts.

The basic structure of a I'-semiring homomorphism is a semigroup homomor-

phism.

Definition 4.1. [5] For semigroups S and T, a map ¢ : S — T is a homomor-
phism if ¢(zy) = ¢(x)p(y) for all z,y € S. Monomorphisms, epimorphisms

and isomorphisms are defined as usual.

In 2011, H. Hedayati and K. P. Shum [6] introduced homomorphisms, epimor-

phisms, monomorphisms and isomorphisms in I'-semirings.

Definition 4.2. [6] Let S; be a I'y-semiring and Sy a ['y-semiring. A mapping
(p,9) : ST —> Sy is called a I'-semiring homomorphism if ¢ : S} — S and ¢ :
'y — T’y are semigroup homomorphisms such that p(zay) = ¢(x)g(a)p(y) for all
x,y € Sy and o € I'y. The mapping (¢, g) is called a I'-semiring epimorphism if

(¢, g) is a I'-semiring homomorphism and ¢ and g are epimorphisms of semigroups.

The definitions of I'-semiring monomorphisms and I'-semiring isomor-
phisms are defined usually.
In this research, we may write “homomorphism” instead of “I'-semiring homo-

morphism”. It is similar to write epimorphism, monomorphism and isomorphism
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instead of I'-semiring epimorphism, I"-semiring monomorphism and I"-semiring iso-
morphism, respectively.
We need to introduce the following notations used throughout this thesis. For a

nonempty subset X of a [';-semiring S; and a nonempty subset Y of a ['s-semiring

SQa

(0, 9)(X) = {(0,9)(z) | v € X} = p[X]
(. 9) (V) ={z €S| (g, 9)(x) eY} =g '[Y]

where ¢ is a semigroup homomorphism from S; to Ss and ¢ is a semigroup homo-

morphism from I'; to I's.

Example 4.1. Let S; = {1,2,3,4,5}, I'y = {1,2,3}, So = {7,8,9,10} and
'y = {7,8}. Then (S, max), (I'1,maz), (Sz, maz) and (I'y, maz) are commu-
tative semigroups. Define the mappings S; x I'; x S; — S by aab = min{a, «, b}
for all a,b € S and a € Ty and Sy x 'y x Sy — Sy by xfy = min{z, §,y} for all
x,y € Sy and 8 € I'y. Thus Sy is a I'1-semiring and Ss is a I'>-semiring.

Consider the mapping (¢, g) : S1 — Sy defined by

157,257,358 459,55 10

1% 7,2 7and 3+ 8.

We obtain that

(1),¢
=7 =max{7,7} = maz{p(l), ¢
(1), ¢
(1), ¢



maz{3,3}) = ¢(3) = 8 = maz{8,8} = max{p(3),

v ( ) = ¢(5)

v ( ) = ¢(3) ) ¢(3)
v ( ) = ¢(4) = 9 = max{8,9} = maz{p(3), p(4)},
© (maz{3,5}) = ¢(5) = 10 = maz{8, 10} = max{p(3

v ( ) = ¢(4)
v ( ) = ¢(5)
v ( ) = ¢(5)

35

(3 }7

): ()},

Hence ¢ : S; — S5 is a semigroup homomorphism. In the same way, g : I'y — I'y

is a semigroup homomorphism. We show that p(zay) = ¢(z)g(a)p(y) for all

r,ye Siand a eIy, let z,y € S; and a € T'y.
Case 1: if z = y = a, then p(z) = g(a) = ¢(y)

p(r) = min{p(x), g(a), p(y)}.

Case 2 : if z = y < a, then p(z) = p(y) < g(a).

o(r) = min{p(x), g(a), p(y)}.

Case 3 : if z = a < y, then p(z) = g(a) < ¢(y).

p(x) = min{p(r),g(a), o(y)}.

Case 4 : if a < z =y, then g(a) < p(z) = ¢(y).

g(a) = min{p(z), g(a), ¢ (y)}-

Case 5 : if z < a < y, then p(z) < g(a) < ¢(y).

o(z) = min{e(r), g(a), o(y)}.

Case 6 : if a < z < y, then g(a) < p(z) < ¢(y).

g(a) = min{p(z), g(a), p(y)}.

Case 7 : if z < y < a, then p(z) < ¢(y) < g(a).

p(x) = min{p(z), g(@), ¢(y)}-

. Hence ¢ (min{z,a,y}) =

Hence ¢ (min{z, a,y}) =

Hence ¢ (min{z,a,y}) =

Hence ¢ (min{z,a,y}) =

Hence ¢ (min{x,a,y}) =

Hence ¢ (min{z, o, y}) =

Hence ¢ (min{z,a,y}) =

Therefore, (¢, g) is a I'-semiring homomorphism. Moreover, it is easy to see that

¢ and g are semigroup epimorphisms. Hence (¢, g) is

a ['-semiring epimorphism.

Example 4.2. Let Sl = Mnxl (Zlg), Fl = Man (Zlg), SQ = Mnxl (ZG) and

'y = My, (Zg). Then S is a I';-semiring and S5 is a I's-semiring. Define the
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mappings ¢ : Sy — Sy and g : I'y — I’y by [[%‘1]12} s [[xﬂ](;}nxl and

nx1

[[%’1]12] L s [[:vli]ﬁ} L Clearly, ¢ and g are well defined. We obtain that

80([[%1]12}71“ + [[?Ju]m]nxl) = 80([[3%'1]12 + [%1]12},”1)
= ( [z + yu]u}nxl)

[[%‘1 + yu]dnxl

= [lwaalo] ey + [Warle]

= 90([[%1]12]”“) + W([[yil]lﬂnxl)’

where [[xil]lg}nxl, “yil]n]nxl € S;. This shows that ¢ is a semigroup homo-

morphism. Furthermore, we obtain that for every [[z;1]s] € Sy there exists

nx1

[[Iil]lQ]nxl € Sy such that cp([[xﬂ]m}nxl) = [[xﬂ]ﬁ]nxl. Therefore, ¢ is a semi-

group epimorphism. In the same way, g is a semigroup epimorphism. In particular,

o (Ilzabal o[l )],

=¥ ”Z%lam?/m] ]
k=1 12d nx1
= ”Z ﬂfilalkykl] ]
k=1 6d nx1

= [lwalo] o [lonile] 1 [lynle]

— ( [[x,-l]n}m) 9([[%112] m) 2 ( Uyﬂ]”]nxl) '

where “x“h?]nxl’ [[y,-l]lg] € S; and [[Oéli]lg] € I';. Now we conclude that

nx1 1xn

(p,g) is a I'-semiring epimorphism.

Proposition 4.3. Let Sy be a I'y-semiring with zero Og, and Sy a I'y-semiring with
zero Os,. If (¢, 9) is a homomorphism from Sy into Sy and p(x) = Og, for some

x € Sy, then ¢(0g,) = Og,.

Proof. If (¢, g) is a homomorphism from S; into Sy and ¢(x) = 0g, for some
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r € 51, then

0s, = 0s,9(a)(0s,) = ¢(x)g()¢(0s,) = p(zals,) = ¢(0s1).

]

Note that if (¢, g) is a homomorphism from I'y-semiring S} to I's-semiring Sy,
then ¢[S;] is a ¢g[I'1]-semiring.
Next, we investigate homomorphisms of right pure ideals and left pure ideals

in ['-semirings.

Theorem 4.4. Let (¢,g) be a homomorphism from a I'i-semiring S; to a I's-
semiring Sg. If I is an ideal of Sy, then (p, g)(I) is an ideal of the g[I'1]-semiring
o[51]-

Proof. Suppose that I is an ideal of S;. Clearly, (¢, g)(I) is a nonempty subset of
Ss. Since ¢ is a semigroup homomorphism and I is a subsemigroup of Sy, [I] is
a subsemigroup of S;. Hence (g, g)(I) = ¢|[I] is a subsemigroup of S;. Next, let
s € [S1], z € ¢[I] and a € g[I'1]. Then s = ¢(t), x = p(a) and a = g(f) for some
teSi,ael and g e€TI'y. Thus

saz = ¢(t)g(B)p(a) = ¢(tBa) and zas = p(a)g(B)e(t) = p(abt).

Since [ is an ideal of S, tfa, aft € I. We obtain that sax, zas € ¢[I] = (v, g)(I).
Therefore, (¢, g)(/) is an ideal of the g[I'1]-semiring ¢[S]. O

Corollary 4.5. Let Sy be a I'y-semiring and Sy a I'y-semiring. If (¢,g) is an
epimorphism, then (@, g)(I) is an ideal of Sy where I is an ideal of S;.

Example 4.3. From Example 4.1, (¢, g) : S; — S5 is a ['-semiring epimorphism.
Since I = {1,2,3} is an ideal of Sy, {7,8} = (¢, g)(I) is an ideal of S,.

Example 4.4. From Example 4.2, (p,g) : S — S is a ['-semiring epimor-
phism. We have I = {[mil]nxﬂxﬂ e {[0}12, [4]12, [8]12}} is an ideal of S;. Thus

{[xil]nxl‘xil € {[0ls, [2s, [4]6}} = (p,g)(I) is an ideal of S,.



38

On the other hand, if I is an ideal of a I'y-semiring S, we can prove that the

set of all elements z in a I';-semiring S; such that ¢(z) € I is an ideal of ;.

Theorem 4.6. Let S; be a I'y-semiring with zero Og, and Sy be a I's-semiring
with zero Og,. If (v, g) : S — Sy is an epimorphism and I an ideal of Sy, then
(0, 9)7Y(I) is an ideal of S;.

Proof. Suppose that (¢, g) : S1 — S5 is an epimorphism and I is an ideal of S,.
Thus there exists € S; such that ¢(x) = 0g,. By Proposition 4.3, ¢(0g,) = Og,.
Since Og, € I, 0g, € o '[I] = (¢,9) ' (I) # @. We show that ¢ '[I] is an ideal of
S,. Since ¢ is a semigroup homomorphism and [ is a subsemigroup of Sy, ¢ ~![I]

is a subsemigroup of S;. Next, Let s € Sy, # € o ![I] and a € I';. Thus

p(sax) = p(s)g(a)p(r) €
and
p(zas) = p(z)g(a)e(s) € 1.
Hence zas, sax € ¢ [I]. Therefore, (¢, g) (1) is an ideal of S;. O

Example 4.5. From Example 4.1, (¢,g) : S1 — S is an epimorphism. Since
I ={7,8}is an ideal of Sy, {1,2,3} = (¢,g) (/) is an ideal of S;.

Example 4.6. From Example 4.2, (p,g) : S1 — Sy is an epimorphism. We
have J = {[xil]nxl|xi1 € {[0]6, [2ls, [4]6}} is an ideal of Sy, Thus {[xﬂ]nxﬂxﬂ €

{[Oh2, [2]12, [4]12, [6]12, [8]12, [10]12}} = (¢,9)"*(J) is an ideal of S;.

The following theorem shows preservation of right pure ideals by I'-semiring

homomorphisms.

Theorem 4.7. Let Sy be a I'y-semiring and Sy a U'y-semiring. If (v, g) is an
epimorphism, then (¢, g)(I) is a right pure ideal of Sy where I is a right pure ideal
Of Sl.
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Proof. Suppose that (g, g) is an epimorphism and I is a right pure ideal of S;. By
Corollary 4.5, (¢, ¢)(I) is an ideal of S;. To show that (y,¢)(I) is a right pure
ideal of Sy, let = € (p,g)(I). Then x = ¢(y) for some y € I. Since I is a right
pure ideal of Si, there exist a € [ and « € I'; such that y = yaa. We obtain that

r = o(y) = p(yaa) = p(y)g(a)p(a) = zg(a)e(a),

where ¢(a) € ¢[I] and g(a) € TI'y. Therefore, (¢, g)(I) is a right pure ideal of
Ss. O

Similarly, we can show that (¢, ¢)(I) is a left pure ideal of Sy where I is a left
pure ideal of 5.

Example 4.7. From Example 4.1, (¢,g) : S; — S is an epimorphism. Since
I ={1,2,3} is a right pure ideal and a left pure ideal of Sy, {7,8,9} = (v, ¢)(I) is
a right pure ideal and a left pure ideal of Ss.

Example 4.8. From Example 4.2, (,g) : S1 — S is an epimorphism. Both of
J = {[xil]nxﬂxﬂ S {[0]12; [4]12, [8]12}} and [ = {[Iﬂ]nxﬂ%il S {[0]12, 312, [6]12,

[9]12}} are right pure ideals and left pure ideals of S;. Thus ¢ [zi]nxi|za €

{[0]67[2]67[4]6}} = (»,9)(J) and {[xil]nx1|xil S {[O]GaB]G}} = (p,9)(I) are

right pure ideals and left pure ideals of S;. Now we have K = {[xﬂ]nxlml €
{[wﬂ]nxﬂl’il €

{[0]6, [2ls, [4]6}} is a right pure ideal of Sy but (¢,9) ' (K) =
{[0]12, 1212, [4]12, [6]12, [8]12, [10]12}} is not a right pure ideal of S;.

For Z,-semiring Z,, the sufficient conditions to prove that (¢, g)~*(I) is a right

pure ideal in Z,, are given.

Proposition 4.8. For k € N, n = p{'p3*---p* and m = p{"'py'? - p"* where
P1,P2, - - -, Pr are pairwise distinct primes and m; < n;. Let o([x],) = [z], and

9([a]n) = [a]m for all [, [a], € Zn. Then (¢,9)~ ({c[pi]m | ¢ € Z}) = {l[pil. |
l € Z} where 0 <t <m,.
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Proof. Tt is easy to show that ¢ and g are semigroup homomorphisms and p(aab) =
v(a)g(a)p(b) for any a,b,a € Z,,. Thus (i, g) is a [-semiring homomorphism. Set
0<t<my L, ={lpll. |1l €Z} and I,, = {c[pl];m | ¢ € Z}. We will show that
(0,9) " (In) = I,. Clearly, p[I,] C I,, implies that I,, C ¢ '[I,,]. Next, let [z], €
(0,9) 1 (1,,). Then [z],, = ¢([z],) € In. Tt follows that [z],, = ¢[pt],, = [cpt],, for
some ¢ € Z implies that z—cp! = ma for some a € Z. We obtain from z = ma+cp!

that [z], = [ma + ¢pl], = [pﬁ(;—ga + ¢pt)]n. Since ot cpt € 7, [x], € IL,. O

By Proposition 3.3, {c[p]m | ¢ € Z} is a right pure ideal in the Z,,-semiring
L, if t = m;. The above proposition makes we conclude that if t = m; = n;,
then (o, 9) *(I,,) is a right pure ideal in the Z,-semiring Z,. For instance, we
consider n = (2?)(3) and m = (2)(3). A right pure ideal Iy = {[0]s, [3]¢} in
the Zg-semiring Zg is {c[3]g | ¢ € Z}. By this conclusion, {[0]12, [3]12, [6]12, [9]12} =
(0, 9)"(Is) is aright pure ideal in the Zo-semiring Zy5. Thus M,,x1((p, g) (1)) =
{[zi]nx1 | za € {[0]12, [3]12, [6]12, [9]12}} is a right pure ideal in M, «1(Z12) from
Proposition 3.4. In Example 4.8, if I = {[xi]nx1 | i1 € {[0]6, [3]6}}, we obtain
that (i, ¢) " (1) = {[zi]nx1 | za € {[0]12, [3]12, [6]12, [9]12}} is a right pure ideal in
M1 (Zaz).

Next, we show that the sufficient condition for (¢, g)~'(J) is a right pure ideal

of S; where J is a right pure ideal of Sy in the following theorem.

Theorem 4.9. Let Sy be a I'y-semiring with zero and Sy a I's-semiring with zero.
If (p,9) : S1 — Sy is an isomorphism and I is a right pure ideal of Sy, then
(o, 9)"1(I) is a right pure ideal of S;.

Proof. Suppose that (¢, g) : S; — Sy is an isomorphism and [ is a right pure
ideal of Sy. By Theorem 4.6, (¢, g)~'(I) is an ideal of S;. To show that (p, g)~*[/]
is a right pure ideal of Sy, let x € p~![I]. Then ¢(x) € I. So there exist y € I and
a € T'y such that p(z) = ¢(x)ay. Since ¢ and g are onto, p(z) = ¢(x)g(B)p(b)
for some b € p~1[I] and 8 € I';. Now we obtain that ¢(x) = ¢(z8b). Since ¢ is
one to one, z = x3b. Therefore, ¢~![I] is a right pure ideal of S;. O
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Similarly, we can show that (¢, g) '(I) is a left pure ideal of S; where I is a
left pure ideal of 5.

The second part, we study some properties of a quotient I'-semiring and con-
struct right pure ideals and left pure ideals in quotient I'-semirings.

In 2011, H. Hedayati and K. P. Shum [6] introduced the quotient I'-semiring
on a I'-semiring with zero and correspondence theorem.

Suppose that S is a ['-semiring with zero and [ is an ideal of S. H. Hedayati
and K. P. Shum defined

; ={x+1]|zeS}

where

r+I={r+alacl}

Theorem 4.10. [6] Let S be a T'-semiring with zero and I an ideal of S. Then

the operators & and *, given by
(e+D)d(y+I)=c+y+Iand (x+1)xvx(y+1)=ayvy+1,

S .
for all x;y € S and v € T, make 7 mto a I'-semiring, called a quotient I'-

semiring.

For convenience, we write (z 4 I)y(y + I) instead of (x + 1)y * (y+ I) for all
r,y€ Sandvyel.

Note that I is a zero of the quotient I'-semiring T Moreover, if S is a I'-

S
semiring with zero and identity e, we obtain that e 4 I is an identity of —.

Example 4.9. Let S = Z15; and I' = S. By Example 2.6, S is a I'-semiring.

All of ideals of S are {[0]12}, {[0]12, [6]12}, {[0]12, [4]12, [8]12}, {[0]12, [3]12, [6]12, [9]12},
{[0]12, [2]12, [4]12, [6]12, [8]12, [10]12} and S. If T = {0,6}, then
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[0] [
[1] [
[2] 812 + 1,
Bliz+ 1= {[3l2, 912} =1[92+1,
[4li2+ 1= {[4h2,[10]12} = [10]12 + 1,
Bl + 1= {5l 11} = [11]s2 + I.

S
We have 7= {r+ 1|z e S}is aquotient I'-semiring.

Example 4.10. Let S = N and I = {1,2,3}. By Example 2.16, I = {1,2} is an
ideal of S.

1+1 = I,
2+1 = {2},
3+1 = {3},
n+1 = {n}.

S
We have 7= {r+ 1|z € S}is aquotient I'-semiring.

Example 4.11. Let S =Z and I' = 2Z. Then S is a I'-semiring with zay, which

is the usual multiplication on Z for all z,y € Z and a € I'. Let [ = 10Z. Then [
S

is an ideal of S. We have 7= {I,L1+1,2+1,...94+ I} is a quotient I'-semiring.

Example 4.12. Let S = Msy1(Z12) and I' = My42(Z12). By Example 2.17,
S
we see that I = {[za]y,q | i € {[0]12,[6]12}} is an ideal of S. We have 7=

{[zi)yu1 + 1| [@i1)ey, € S} is a quotient I-semiring.
Some basic properties to prove our work are as follows.

Proposition 4.11. Let I be ideals of a I'-semiring S with zero and J a right ideal
J
(left ideal) of S such that I C J. Ifx+1 € 7 then x € J.

J
Proof. Suppose that z + I € 7 Thus z + I =y + I for some y € J. We obtain
0 € I so that
r=cv+0cax+I=y+1CJ
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]

Proposition 4.12. Let I be an ideal of a I'-semiring S with zero. If H and K
are right ideals (left ideals) of S such that I C H and I C K, then the following
statements hold:

H K
(i) HC K if and only sz T

)

(i) =

HDKHK'
I

i) H'K H_K
R A A

H
Proof. (i) (—) Suppose that H C K and x4+ I € T Then z € H C K. It follows

K
thatx—F]GT.
H K
(<-)Forze H, z+1€ 7 T .Soz e K.
HNnK _H
C — and

(i7) () Note that HN K C H and H N K C K we obtain that 7

HNnK _ K HﬂK H K
C—b Th — N —

T T y;[) Kus =7"T
(Q)Letx—l—IETﬂT. It follows that t € HNK. Sox+ 1 €
HNK H K

= ,
HT'K .
(131) (C) Let x + 1 € . We obtain that x € HI'K. So x = > h;a;k; where
h; € Hya; € I and k; € K for all . Thus

HNK
T

Therefore,

H_K
r4+1= (Z hiaiki> + 1= (hiak; + 1) =Y (hi+ Dou(k; + 1) € T

H_K H K
(D) Let x € TFT Then x = > a;a;b; where a; € 7 €T and b; € 7 for all

1. For each i, we have a; = z; + I and b; = y; + [ for some z; € H and y; € K.
Then

x+I=Zaiaibz‘:Z($0‘zyz+l (Zl’azyz)"‘IE H?K
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We now conclude that HTK = ? ?

[l
I

Theorem 4.13. [6](Correspondence Theorem) Let I and J be ideals of a I'-
J S
semiring S with zero such that I C J. Then 7 1s an ideal of T Conversely,

S
if K is an ideal of T then there exists an ideal J of S such that I C J and

J
K=2=-
I

This conclusion is true for right ideals and left ideals.

Proposition 4.14. Let I be an ideal of a I'-semiring S with zero and J a right
ideal (left ideal) of S such that I C J. Then % is a right ideal (left ideal) of ?

S
Conversely, if K is a right ideal (left ideal) of T then there exists a right ideal

(left ideal) J of S such that I C J and K = %

Proof. Let x + I,y +1 € % Then z,y € J. It follows = +y € J because J

is a subsemigroup of S. Thus (z+ 1)+ (y+1I) = (z+y)+1 € % So % is a

subsemigroup of ? Next, let a + 1 € ; and o € I'. Since J is a right ideal of S,
(x+DNafa+ 1) = (zaa) + 1 € % Hence % is a right ideal of ?

Conversely, let & = {J |J is a right ideal of S such that I C J} and ( =
{H | H is a right ideal of ;} We define the mapping f : £ — ¢ by f(J) = %
for all J € €. Let Jy, Js € € be such that % = % Then J; = J5. Hence f is one
to one. Finally, we show that f is onto. Let H € (. Choose J = UH. Since [ is

S
a zero of i I € H. Thus I C UH = J. To show that J is a right ideal of S, let

J UH
xv,yeJ. Sox+1,y+1€ 7= =H. Thus (z+y)+I=(z+1)+(y+1) e H
implies that * +y € UH = J. Hence J is a subsemigroup of S. For a € S and
aelzaa+ 1= (x+I)a(a+I) € H. Thus zaa € UH = J. Therefore, J is a

right ideal of S such that f(J) = % = H. This prove is true for left ideal. O

Example 4.13. Let S = Zjy and I' = S. By Example 4.9, ; ={x+1]|zeS}is
a quotient I'-semiring where I = {[0]y2, [6]12}. Since J = {[0]12, [2]12, [4]12, [6]12, [8]12,
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[10]12} and K = {[0]12, [3]12, [6]12, [9]12} are ideals of S such that I C Jand I C K,
7 = {I,{[2]12, [8]12}, {[4]12, [10]12}} and ? = {1, {[3]12, [9)12}} are ideals of ?

Example 4.14. Let S = N and T' = {1,2,3}. By Example 4.10, we see that
S
— ={z+ 1| x € S} is a quotient I'-semiring where I = {1,2}. Since J = {1, 2,3}

is an ideal of S and I C J, J ={I,{2},{3}} is an ideal of ?

S
Example 4.15. Let S = Z and I = 2Z. By Example 4.11, 7= {r+1|zeS}

J
is a quotient ['-semiring where I = 10Z. Since J = 2Z is an ideal of S, 7=

S
{I,2+ 1,4+ 1,6+ 1,8+ I} is an ideal on

Example 4.16. Let S = Msy1(Z12) and I' = M;45(Z2). By Example 4.12, ? =
{x+1 |z € S} is a quotient I'-semiring where I = { [z, | i € {[0]12, [6]12} }.
Since J = { Tit)oyq | Tar € {[0]12, [2]12, [4]12, [6]12, [8]12, [10] 12}} and K = { Ti1)gsq |
zi1 € {0,3,6,9}} are ideals of S, J—{a;—i—[|:CEJ}andE—{x—i—I\meK}

are ideals of —

Next, we can characterize right pure ideals in a quotient I'-semiring as in the

following theorem.

Theorem 4.15. Let K and I be ideals of a I'-semiring S with zero and identity
HNK HTK

I T

K
such that I C K. An ideal — of — is right pure if and only if
for all right ideals H of S such that I CH.

K S
Proof. (=) Suppose that 7 is a right pure ideal of 7 and H is a right ideal of S
H
such that I € H. Since H is an ideal such that I C H, T is an ideal of ; We

S
obtain that 7 is a ['-semiring with identity. By Proposition 3.5 and Proposition

4.12,
KUH K 0 _K 0 _ Koo
I I 1 I 1 I
HNnK HTK
|
of S such that I C H. To show that ? is a right pure ideal of ;, let A be a right

K
(<) Suppose that T is an ideal of ? and for all right ideals H
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ideal of ; Then there exists a right ideal J of S such that I C J and A = % It
follows that

K J K JnK JIK J_K K
S i A S Sy B Sy S &
K
Therefore, T is a right pure ideal of ; O
K HNK KI'H
Similarly, an ideal T of ; is left pure if and only if r; = for all

left ideals H of S such that I C H.
Next, we construct a right pure ideal and a left pure ideal in a quotient I'-

semiring 7 from a right pure ideal and a left pure ideal in a I'-semiring S.

Theorem 4.16. Let I and J be ideals of a I'-semiring S with zero. If J is a right
J S
pure ideal of S such that I C J, then 7 s a right pure ideal of 7

Proof. Suppose that J is a right pure ideal of S such that I C J. By Theorem

J S J S J
4.13, 7 is an ideal of T To show that 7 is a right pure ideal of T let x4 1 € T
Since x € J, there exist a € J,a € " such that z = xaa. Thus

r+1l=zaa+1=x+1)xax(a+I).

J J S
where a + I € 7 and « € I'. Therefore, 7 is a right pure ideal of 7 n

Likewise, if J is a left pure ideal of S such that I C J, then % is a left pure

S
ideal of —.
ideal o 7

S
Example 4.17. Let S = Zjy and I' = S. By Example 4.9, 7= {r+1|xzeS}is

a quotient I-semiring where I = {[0]2, [6]12}. Since K = {[0]12, [3]12, [6]12, [9]12} is
K
a right pure ideal and a left pure ideal of S such that I C K, 7= {I,{[3]12, [9]12}}
S
is a right pure ideal and a left pure ideal of T Moreover, H = {I,{[2]12, [8]12}, {[4]12.

S
[10]42}} is a right pure ideal of 7 because
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0ie +1 = ([Ohg + I)[1}12([2]12 + 1),
8lia+1 = ([8li2+ I)[1}12([4]12 + 1),
[l +1 = ([4h2+ D)[112([4]12 + ).

A
But there are no right pure ideals A of S such that I C A, K = T

Example 4.18. Let S = N and I' = {1,2,3}. By Example 4.10, we see that
S
7= {z+ 1|z € S}isaquotient I'-semiring where I = {1,2}. Since J = {1, 2,3}

is a right pure ideal of S and I C J, i ={I,{2},{3}} is a right pure ideal of §
1 1

Example 4.19. Let S = Msy1(Z12) and T' = M;5(Z2). By Example 4.12, ? =
{4+ 1|z € S} is a quotient I-semiring where I = { [zi1]y,, | za1 € {[0]12, [6]12]} }.
Since K = { [#i1]5,,; | i1 € {0,3,6,9}} is a right pure ideal and a left pure ideal of
S, ? ={z+1 |z € K} is aright pure ideal and a left pure ideal of ? Moreover,

S
{[za)yus + 1] za € {[0]12, [4]12, [8]12} } is a right pure ideal of i because

o) = (L)oo oo () )
e = () ) e o) () 1)
] () ) Come o) ({7 ) )
e () e e o) )+

~
oS
o o
N~ T — N~
+
~
I
R e Y e Y e Y
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A
But there are no right pure ideals A of S such that I C A, K = T

The sufficient conditions for the converse of Theorem 4.16 is furnished in the

following theorem.

Theorem 4.17. Let J and I be ideals of a I'-semiring S with zero such that I C J
J S J

and 7 right pure ideal of 7 If for every A € 7 there exists a unique x € J such

that A =x + I, then J is a right pure ideal of S.

J
Proof. Suppose that [ is a right ideal of S and for each A € 7 there exists a unique
x € J such that A = x + I. To show that J is a right pure ideal of S, let x € J.
J J
Then z 41 € 7 It follows that there exist a + I € 7 and a € I' such that

z+I=(x+1Nafa+1)=rzaa+ 1.

By assumption, x = xaa. Hence J is a right pure ideal of S. O]

In this same way, if % is a left pure ideal of % and for each A € % there exists
a unique x € J such that A = x + I, then J is a left pure ideal of S.

The last part, we examine some properties in the products of I'-semirings which
the one new I'-semiring was constructed by H. Hedayati and K. P. Shum. Later on,
we show the construction of right pure ideals and left pure ideals in the products
of I'-semirings.

Suppose that X1, ..., X,, be nonempty sets. Let X; x --- x X, be the cartesian
product of X4,..., X, i.e,

Xy x oo X Xy ={(x1, ..., z,) | 75 € X; for all i} .

Lemma 4.18. [6] Let R; be a I';-semiring (1 < ¢ < n). Then the operations on
Ry x -+ X R, defined by

(X1, ey ) + Y1y oo Yn) = (T1 F Y1, ooy T + Yn)
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o:(Ry XX Ry)x([yx-o-xTy)x (Ry X+ xRy)— (R X+ XRy)

(-Tb (RS xn) o (71) 7’771) © (yb sy yn) - <x171y17 ---vxn’)/nyn%

for all (x1,...;xn), (Y1, -y Yn) € Ry X -+ X Ry and (1, ..., ) € 'y X -+ x [y, make

Ry x--- xR, into al'y x---xT',-semiring, called the products of I'-semirings.

Example 4.20. Let S; be a semiring (1 <i < n). Then 5; is a [';-semiring where
['; is a subsemiring of S;. Therefore, Sy x --- x S, = {(x1,...,z,) | ; € S;} is a

I'y x -+ x I',,-semiring.

Example 4.21. Let Ry = Zy5 and Ry = N. We obtain that R; is a [';-semiring
where Fl = R1 and FQ = {1,2,3} so that R1 X R2 = {(xl,l’g) | T € Rl and To €

Ry} is a 'y X T'y-semiring,.
Some basic properties in the products of I'-semirings are given.

Proposition 4.19. Let X; and Y; be nonempty subsets of a I';-semiring R; (1 <
i <n). Then the following statements hold:

(i) for each i, X; CY; if and only if X1 X -+ X X,, €Y} X -+ X Yy,
(1) (XqT1Y1) X - x (X, [,Y,) = (Xg X -+« X X)) (T x -+ x D) (V) X -+ - x V)
(11i) (X1NY)) x--x(X,NY,) =Xy x---xX,)N(Y] x---xY,).

Proof. (i) (—) For each i, X; C Y}, we obtain that for (z1,...,x,) € X X -+ x X,
x; € X; CY; for all i. So that (z1,...,2,) € Y] X -+ X Y.

(«) Suppose that X7 x --- x X, CY; x--- xY,. Let x; € X; for all i. Then
(X1, Tp) € X3 X -+ x X, CY] X --- xY,. So that x; € Y; for all i.

(1) () Let (z1, ..., x,) € (X1 Y1) x -+ - x (X, [,Y,,). Thus z; = > a;j04;b;; where
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a;; € X;, bjj € Yy and a;; € I'; for all 4, 5. So that

(ZL‘l, ceey l’n) = (Z aljaljblj, ceey Zanjanjbnj)
= Z(aljaljblj, ceey anjoznjbnj)
= Z(alj, ceey anj)(alj, ceey anj)(b1j> ceny bng)

Hence (z1,...,x,) € (X7 X -+ X X))(I'y x - x Tp) (Y1 x -+ x Y,,).

(2) By symmetry, (X7 X -+ X X,)(I'y x -+ x Tp) (Y] x --- xY,) C (XqI'1Y7) %
) (X T Ya).

(1ii) (C) Let (x1,...,2z,) € (X1 NY)) X -+ x (X, NY,). Then z; € X; and z; € Y]
for all i. We obtain from (z1,...,2,) € (X3 X -+ x X)) N (Y} x -+ x Y,) that
(XiNY) x-+-x(X,NY,) C(X;x---xX,)N(Yy x---xY,).

(2) By symmetry, (X7 x---xX,)N(Y; x---xY,) C(X;NY)) x---x(X,NY,). O

Proposition 4.20. Let H; be a nonempty subset of a T;-semiring R; (1 <i <mn).
Then Hy x --- x Hy, is an ideal of a I'y X -+ x I',-semiring Ry X --- X R, if and

only if each i, H; is an ideal of R;.

Proof. (=) Suppose that H; x --- x H, is an ideal of a I'y x -+ x I';-semiring
Ry x---x R,. We show that for each 7, H; is an ideal of R;. First, let z;,y; € H; for
all i. Then (x1,....,x,), (Y1, .-, Yn) € Hy X -+ X H,. By assumption, (1, ..., 2,) +
(Y1, -y Yn) € Hy X --- x H,. Thus z; +vy; € H; for all i. Next, let a; € R; and o
for all 7. We obtain that

(@011, .oy G Ty) = (A1, ooy ap) (A1, ooey Q) (T1, ooy ) € Hy X -+ X H,,
and
(x100a1, ooy T y) = (T1, ooy ) (1, ooy ) (a1, ooy ) € Hy X - X H,.

Hence x;0;a;, a;a;x; € H; for all 7. Therefore, for each i, H; is an ideal of R;.

(«) Similarly, if each i, H; is an ideal of R;, then H; X --- x H,, is an ideal of a
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I'y x -+ x I'-semiring R; X --- X R,. ]

Example 4.22. Let R; = Zy3, Ry = N, I'y = R; and 'y = {1,2,3}. By Example
421, Ry X Ry = {(x1,22) | 1 € Ry and x9 € Ry} is a I'} X ['y-semiring. Let
I = {[0]12, [6]12}, 1o = {[O]12, [3]12, [6]12, [9]12} and K = {1,2,3}. We have I; and
I5 are ideals of R; and K is an ideal of Ry so that I; x K and I, x K are ideals of
R; x R,.

The construction of right pure ideals in I'; X - -+ x I';-semiring Ry X --- X R,

from right pure ideals in a I';-semiring R; for all ¢ are proved.

Theorem 4.21. Let H; be a nonempty subset of a I';-semiring R; (1 < i < n).
Then Hy x --- x H, is a right pure ideal of a I'y x --- x I',,-semiring Ry X --- X R,

if and only if for each i, H; is a right pure ideal of R;.

Proof. (—) Suppose that Hy X --- x H, is a right pure ideal of a 'y x - -+ X I['-
semiring Ry X - - - X R,,. By Proposition 4.20, H; is an ideal of R; for all 2. We show
that for each 7, H; is a right pure ideal of R;. First, let x; € H; for all . Thus
(1, ...,x,) € Hy X -+- X H,. We obtain that there exist (ay,...,a,) € Hy x---x H,

and (aq,...,q,) € a1 X -+ X a, such that

(X1, ey Tp) = (T4, ey ) (1 oy ) (@1, oy ap) = (Tr001G1, ooy T ay).

Hence x; = x;a;a;. Therefore, each i, H; is a right pure ideal of R;.
(«) Suppose that each i, H; is a right pure ideal of R;. By Proposition 4.20,
Hy x---x H, is an ideal of Ry X -+ X R,,. Let (z1,...,2,) € H; X --- x H,. We

obtain x; = x;a4a; for some a; € H; and o; € T'; so that

(X1, ey Tp) = (T1001A1, ooy Tpnay) = (21, ooy Tp) (A1, vy ) (A1, oy ).

We conclude that Hy x --- x H, is a right pure ideal of Ry X - -+ X R,,. O

Similarly, we can show that Hy x --- x H,, is a left pure ideal of a 'y x - -+ X I',-

semiring Ry X --- X R, if and only if each ¢, H; is a left pure ideal of R;.
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Example 4.23. From Example 4.22, I; x K and J; x K are ideals of R; X Rs.
Since J; and K are right pure ideals of R, and R,, respectively, J; x K is a right
pure ideal of Ry X Ry. But I; x K is not a right pure ideal of Ry x Ry because I;
is not a right pure ideal of R;.

Moreover, we show relationship between purely prime in I'y X - - - X I';, -semiring

Ry x --- x R, and I';-semiring R;.

Theorem 4.22. Let Hy x - --x H,, be a purely prime ideal (purely semiprime ideal)
of a 'y x -+ x T'y-semiring Ry X -+ X R,(1 <i <n). Then for each i, H; is a

purely prime ideal (purely semiprime ideal) of a T';-semiring R;.

Proof. By Theorem 4.21, each ¢, H; is a right pure ideal of R;. To show that for
each i, H; is a purely prime ideal of R;, let K; and P; be right pure ideals of R;
such that K;I'; P, C H; for all .. We obtain that

(Kix- X Kp)(Tyx - -xT)(Prxe - x Py) = (K Ty Prxe - - x K T Py) © Hyx- - -x H,.

Since K1 x --- x K, and P, X --- x P, are right pure ideals of R; x --- X R,
Kix---xK,CH x---xH,or Ppx---xP, C H x---x H, for all 7. It follows
that K; C H; or P; C H; for all i. Therefore, for each i, H; is a right pure ideal of
R;.

Similarly, we can show that if H; x --- x H,, is a purely semiprime ideal of a
[y X -+« x I'y-semiring Ry X --- x R,(1 < i < n), then for each i, H; is a purely

semiprime ideal of a I';-semiring R;. ]

Example 4.24. Consider a right pure ideal ({1,2},2Z3) in a {1,2,3} x Zso-
semiring N X Zgo. We know that {1,2} and 2Zj, are purely prime ideals of N
and Zsg, respectively. But ({1,2},2Z3,) is not a purely prime ideal of N x Zs
because there exist right pure ideals ({1}, 3Z30) and ({1, 2, 3}, 2Z39) of N x Zszo such
that ({1},3%Z30)({1,2,3}, Zs0)({1,2,3},2Z30) C ({1,2},2Zs) but ({1},3Zs) &
({1,2},2240) and ({1,2,3},2Z40) ¢ ({1, 2}, 2Zs0).

In purely semiprimes, the properties of them make the converse true.
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Theorem 4.23. Let H; be a nonempty subset of a I';-semiring R; (1 < 1 < n).
Then Hy X --- x Hy, is a purely semiprime ideal of a 'y x --- x I';,-semiring Ry X

-+ X Ry, if and only if each i, H; is a purely semiprime ideal of R;.

Proof. (=) It is clear by Theorem 4.22.

(«—) Assume that for each i, H; is a purely semiprime ideal of R;. We will show
that Hy x --- x H,, is a purely semiprime ideal of Ry x --- x R,,. Let A; x--- x A,
be a right pure ideal of Ry X - -+ x R,, such that (A x ---x A,)(['y x -+ - x ') (A x
oo x Ay) € Hy X -+ x Hy. We obtain AjT1A; x -+ x A,T,A, C Hy x---x H,
so that A;I';A; C H; for all . By assumption, A; C H; for all 7. It follows that
Ay x---x A, C Hy x---x H,. Therefore, H; X --- x H, is a purely semiprime

ideal of Ry x -+ X R,,. O

Likewise, a relationship between purely irreducible ideals in I'; x --- X I',-

semiring Ry X --- X R, and I';-semiring R; is shown.

Theorem 4.24. Let Hy X ---x H, be a purely irreducible ideal (strongly irreducible
pure ideal) of a T'y X -+ - x I'yy-semiring Ry X -+ x R,(1 <i <n). Then each i, H;

is a purely irreducible ideal (strongly irreducible pure ideal) of a T';-semiring R;.

Proof. Clearly, each i, H; is a right pure ideal of R; by Theorem 4.21. Let A; and
B; be right pure ideals of R; such that A; N B; = H; for all i. Then

(Ayx - x A )N (By X+ xB,)=(A1NBy) X+ x(A,NB,) =Hy X+ x Hp.

Since Hy X --- X H,, is a purely irreducible ideal of Ry X --- X R,,, A1 X --- X A,, =
Hy x---xH,or By x---xB,=H x---x H,, Hence A; = H; or B; = H; for
all 7. Therefore, each 7, H; is a purely irreducible ideal of R;.

Similarly, we can show that if H; x --- x H,, is a strongly irreducible pure ideal
ofaly x -+ x ['y-semiring Ry X -+ X R, (1 <i <n), then each i, H; is a strongly

irreducible pure ideal of a I';-semiring R;. O

The converse is not true. Here is an example.
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Example 4.25. Consider a right pure ideal ({1,2},2Z3) in a {1,2,3} X Zso-
semiring N x Zgy. We know that {1,2} and 2Zs are purely irreducible ideals of N
and Zs, respectively. But ({1,2},2Z30) is not a purely irreducible ideal of N x Z3
because there exist right pure ideals ({1}, 3Zs) and ({1, 2, 3}, 2Z3) of N x Z3, such
that ({1},3Zs0) N ({1,2,3},2Zs0) C ({1,2},2Zs0) but ({1},3Zs0) € ({1, 2}, 2Zs0)
and ({1,2,3},2%30) € ({1,2}, 2Zs).

Finally, the characterization of purely maximal ideals are proved.

Theorem 4.25. Let H; be a nonempty subset of a I';-semiring R; (1 < 1 < n).
Then Hy x---x H, is a purely mazimal ideal of a 'y x - - - xT',,-semiring Ry X+ - - X R,

if and only if each i, H; is a purely maximal ideal of R;.

Proof. (—) Assume that Hy x --- x H, is a purely maximal ideal of Ry X - -+ X R,,.
We show that each i, H; is a purely maximal ideal of R;. For each i, let K; be a
proper right pure ideal of R; such that H; C K;. Then K; x --- x K, is a proper
right pure ideal of Ry x --- X R, such that H; x --- x H, C Ky x --- X K,,. By
assumption, H; x -+ x H, = K; x --- x K,,. Hence H; = K, for all i. Therefore,
each ¢, H; is a purely maximal ideal of R;.

(<) Suppose that each i, H; is a purely maximal ideal of R;. To Show that
H, x---x H, is a purely maximal ideal of Ry x---x R,,, let K x---x K, be a proper
right pure ideal of Ry x---x R,, such that Hy x---x H,, C Ky x---x K,,. We obtain
H; C K, so that K; = H; for all 7. It follows that H; x --- x H, = K; x --- x K,,.

Therefore, Hy x --- x H,, is a purely maximal ideal of Ry x --- x R,. O

In conclusion, in quotient I'-semirings, our goal is a 1 — 1 correspondence be-
tween the set of right pure ideals of a quotient I'-semiring ? and the set of right
pure ideals of a I'-semiring R containing I but it is not complete. We obtain only
an 1 — 1 function from the set of right pure ideals of a I'-semiring R containing

R
I, say A, to the set of right pure ideals of a quotient I'-semiring 7 Sy B that is
J
0:A— Bby0(J) = 7 for all J € A. Example 4.17 shows that it is not onto.

J
However, if for every A € 7 there exists a unique x € J such that A = x4+ [ for all
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right pure ideals % of ?, then J is a right pure ideal of S. This conditions make
6 onto.

In the products of I'-semirings, we want to construct a right pure ideal in
the products of I'-semirings from the products of right pure ideals in I'-semirings.
Furthermore, we can conclude that Hy x - - - x H,, is a right pure (purely semiprime,
purely maximal) ideal of a I'y x -+ x I';-semiring Ry x --- x R, if and only if for

each i, H; is a right pure (purely semiprime, purely maximal) ideal of R;.
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