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This dissertation provides new empirical evidence for the relationship between network structure and
asset returns in US, international markets, and Thailand. Previous studies find that a network of return correlations
provides the meaningful economic taxonomy of the equity market. This finding makes the network structure a
suitable channel through which an idiosyncratic shock propagates. This network feature can eliminate or amplify the
idiosyncratic shock on the system-wide level. Therefore, the diversifying argument of the capital asset pricing models
is not always true as the idiosyncratic shock becomes more significant when interacting with the network measures.

Based on this idiosyncratic shock propagation concept, this dissertation incorporates the measures of

interconnectedness and centrality into the asset pricing models.

In this dissertation, a stock network is constructed from the Pearson correlation matrix of stock returns
that is filtered by a network algorithm. Unlike the unfiltered matrix, the filtered one contains only the essential

information about the interrelationships. More importantly, it enables us to create a refined network of which many
network characteristics can be quantified. The important network characteristics used in this dissertation are network
topology and stock centrality. The network topology reflects the pattern of interconnections which may be integrated
into a star-like network or even dispersing into a chain-like network. Each pattern has different ability to facilitate the
idiosyncratic shock propagation. The stock centrality reflects the relative influence of the stock in two directions. The

first direction is the stock’s ability to influence the other stocks in the network while the other direction is its

vulnerability to propagated shocks.

The key finding of this dissertation is that the measures of network structure are statistically significant
to explain or predict asset returns. In the US market, | study the stocks listed in S&P500 and find that the network

topology, measured by diameter, works together with the idiosyncratic risk, measured by average stock variance, to

predict returns on the market portfolio. Furthermore, on the international financial markets, the network measures

have power to predict the probability of extreme negative returns when working with the idiosyncratic risk measure

which is average volatility of stock market returns. Lastly, in Stock Exchange of Thailand, I find that the portfolios
formed by the network criteria earn abnormal returns that cannot be explained by the capital asset pricing model
The high systematic-important firms have lower returns than the low ones. The firms with high fragility level have
higher returns than the others. Moreover, the network centrality may be useful in explaining the cross-sectional

expected returns in Thailand.
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Chapter 1 Introduction

1.1 Background and motivation

Network theory is originally the study of graph that consists of interrelationships
between objects. In the past few decades, the network theory has been successfully
applied to many fields of research. For example, in epidemiology, the network theory
models how diseases spread, how people respond to the diseases, and how much
diseases affect society. In computer science, the network becomes the most important
tool to study the communication system, data transmission and internet. In sociology,
the network is used to model the social structures such as friends of friends (Jackson &
Rogers, 2007), employees’ referrals for a job contact network (Montgomery, 1991),
and crime network (Calvo-Armengol & Zenou, 2004). Recently, research on networks
in the sociology and economics is merged into the field of social economics (or
economic sociology) . In social economics, the network is used to model the
interactions among people, firms or institutions, which in turn influences the various
economic behaviors such as the decision to buy or sell goods (Jackson, 2007). The
countless ways that network structures affect our well-being make it an interesting and
worthwhile area of research. ~As such, modeling how network structure influences
economic activity, in general, and understanding financial interconnectedness, in
particular, have been listed as one of the important research agenda for the next decade
(Jackson, 2010).

In financial economics, the network theory can be useful in studying systemic
risk and financial system. Systemic risk is originally a concept related to bank run and
currency crises. However, the recent financial crisis in 2008 has renewed the interest in
the systemic risk and even broadened the concept to the entire financial system. Due to
the complex nature of the financial system, there is still no consensus to define the
concept of systemic risk. Thus, the existing literature has focused on specific
mechanisms of the systemic risk such as correlated exposures, feedback behavior, asset
bubbles, and contagion. The network theory is useful in modeling some of these
mechanisms, in particular, contagion and shock propagation mechanism. Acemoglu et
al. (2015), for instance, report that the financial architecture is a source of systemic risk
because of its shock propagation and amplification features.

More specific, the key advantage of the network-based models is the ability to
explain the propagation mechanism of a complex system in which multiple
relationships are taken into account. As a stock market is constituted by a group of
listed companies, it is complicated by nature and thus directly affected by
interrelationships and shock transmission. The network theory is then suitable to
explain some economic activities in the stock market which are otherwise hard to



explain by the existing equilibrium models. The global financial crisis in 2007-2008 is
an excellent example in this case. The collapse of the Lehman Brother in September
2008 is estimated to cost only 5 billion dollars, but the event actually escalated to the
collapse of the whole financial network in the US. The effect of this systemic event
even spreads to other countries in the world, including Thailand. In September 2008
when the Lehman Brother collapsed, the Stock Exchange of Thailand dropped 30% in
a single month. The striking feature of the event is that the subsequent loss is far greater
than the initial damage (Haldane, 2013). Since modeling such an event involves
multiple relationships between firms as well as propagation of the firms’ shocks, the
existing economic models would be exceedingly complex and not tractable. Therefore,
this thesis paper incorporates the network concepts into the asset pricing models and
provides empirical evidence for the relationship between equity returns and network
structure in various equity markets.

1.2 Network structure of financial asset returns

In modeling the structure of equity portfolios, the typical starting point is the
cross- correlation of returns of asset pairs. The average of those simple correlation of
returns indicates the co-movement of the stock returns and has been a well-known
factor observed in financial markets. The presence of high degree of the average cross-
correlation has been empirically documented to be associated with a crisis such as Black
Friday in October 1987 (Onnela et al., 2003) and financial crisis in 2008 (Pollet and
Wilson, 2010). However, it is known that a simple correlation of return may introduce
the spurious correlations or noises in the network structure (Bonanno et al., 2004).
Moreover, a financial market consists densely connected structure which is complex
and cannot be represented by the average correlation. Therefore, there is a need to filter
out the noise and transform the complex structure into a simpler and meaningful
network.

Among other filtering approaches, Mantegna (1999) introduces a powerful
methodology to extract a minimal set of relevant interactions, called the minimum
spanning tree (MST). The MST algorithm essentially retains only a set of the highest
correlations of returns that make a connected graph. The complexity of the system is
substantially reduced from n(n-1)/2 to n-1 interactions. Therefore, the MST network
will have a hierarchical structure with the essential information of the time-series of the
stock returns. The economic justification of this methodology can be expressed by two
reasons. First, Onnela et al. (2003) show that the distribution of the MST distance
elements retains most of the features of the distribution of the correlation of returns.
Specifically, their corresponding moments have high correlation or anticorrelation
(above 0.8 in absolute value). Thus, the MST simplifies the complex correlation
structure while still retains the relevant information. Another key justification of the
MST is its ability to provide a meaningful economic taxonomy for a stock market. Since



stocks in the same sector have similar common economic factors that drive stock prices,
they should be clustered together in the network. Mantegna (1999) and Onnela et al.
(2003) evaluate the economic meaningfulness of grouping stocks in the MST asset tree
with a third party reference classification, www.Forbes.com in this case. They find that
the MST network taxonomy is well compatible with the reference classification. Both
reasons strongly advocate for this filtering approach in stock market analysis.

Nevertheless, the reduction of the fully connected structure to the minimal asset
tree is an extreme approach that may lose some valuable information. Tumminello et
al. (2005) therefore propose another filtering algorithm, called Planar Maximally
Filtered Graph (PMFG). The PMFG is, in fact, an extension of the MST. The PMFG
network consists not only the minimal skeleton structure of the MST but also some
additional links that form loops or cliques of three or four nodes. As a result, one
justification to use the PMFG is that it retains all information and features of the MST.
To illustrate, Figure 1.1 shows three graphs with 10 vertices. Figure 1.1a is the MST
graph with 9 links. Figure 1.1b and 1. 1c show two PMFG graphs with 24 links. We
can see that the PMFG graphs contain all links from the MST graph. Furthermore, the
additional links of the PMFG allow more variety of the structure than the MST. As
shown in Figure 1.1, the two PMFG graphs have a different structure that shares the
same MST structure. Also, the additional links of the PMFG graphs enable the feedback
loop which is one of the mechanisms that can explain the systemic risk. For these
reasons, the thesis will mainly focus on the properties of the PMFG graph.

Figure 1.1 An illustration of two PMFG graphs that share the same MST structure.

a) MST graph

b) PMFG graph ¢) PMFG graph
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(Note) Each graph has 10 vertices. The MST structure is shown in a) while the PMFG structure is shown
in b) and c). The source of this figure is from Tumminello et al. (2005)



Recent related papers have documented the empirical evidence of the
correlation structure for the stock market analysis. For example, Buccheri et al. (2013)
find that the correlation structure between US industry indices presents both slow and
fast dynamics. The slow dynamics suggests that the different investment diversification
is possible in different periods of time. The timescale is as slow as five years. Also, the
fast dynamics is detected on the monthly time scale with the three- month rolling
window. The changes in PMFG structure are detected both in the presence of
exogenous events (ASIAN crisis in 1977 and the sovereign debt crisis in 2011) and
endogenous events (market decline in October 1978 and market crash of October 1987,
dot-com in 1999-2001, subprime in 2008-2009). Another example is presented by Birch
et al. (2016) who compare three filtering procedures by using the stock returns in DAX
30. The filtering procedure includes MST, PMFG and asset tree. The asset tree contains
only the largest n-1 correlations of returns but does not require a connected graph. They
find that all resulting structures are useful in providing insights into the growth
dynamics of an economy. Specifically, the structures are corresponding to a period of
crisis (October-December 2008) and a period of recovery (May-August 2010).

1.3 Thesis objectives and structure

In this thesis paper, | incorporate the network theory into the asset pricing study
by using the propagation mechanism. Specifically, the network architecture of a stock
market is recreated from the correlation of stock returns in the market. A firm or stock
is a node in that network, and the correlation of stocks’ returns represents the
relationship or link between the stocks. When a firm- specific shock occurs, it could
propagate through the network structure to affect the stocks in the system. Therefore,
the role of the network structure in the stock market is to facilitate the propagation of
the firm- specific shocks. Through the transmission process, the shocks may be
diversified away or amplified to affect the entire stock market.

Based on this network concept, this dissertation examines the relationship
between equity returns and network structure in various equity markets. The second
chapter of the dissertation provides empirical evidence for the return predictability of
excess market portfolio returns of stocks. Specifically, | create a series of the stock
networks from some largest stocks in S&P500 during 1990 to 2014. The
interconnection of the networks is then a proxy for the propagation channel of firm-
specific shocks. Among other interconnectedness characteristics, the paper focuses on
the network topology or the pattern of interconnections. The dynamic of the network
topology indicates that some patterns are more suitable for the shock propagation than
the others. | quantify the network topology by the shortest distance between the two
farthest nodes, called diameter. A small diameter implies that the stocks are closely
related such that a shock can propagate to the others with the short distance. In
counterpoint, the network topology of the high diameter implies the long distance that



a shock needs to propagate to the others. In consistence with the network concept of the
shock propagation, | find that the idiosyncratic shock, measured by the average stock
variance, performs better when the diameter is taken into account. The results hold true
for both monthly and quarterly intervals. The relationship also remains significant after
controlling for variables known to forecast the stock market returns, including TED
spread, TERM spread, dividend yield, 3-month Treasury bill, market capitalization, and
book-to-market.

The third chapter of the dissertation tests whether or not the network topology
can help to identify or predict the probability of extreme negative returns for the
international equity markets. Similar to the second chapter, this article relies on the
concept of idiosyncratic shock propagation in which the network topology serves as the
propagation channel. Instead of the US market, the data of this paper consists of 43
indexes listed on MSCI World and MSCI Emerging markets. A network then represents
the interconnections of the international markets. When an extremely negative shock
spills over and affects the other countries in the network, contagion occurs. Thus, the
key components that can affect the contagion are country- specific shock and
propagation channel. The measure of the idiosyncratic risk is average variance
calculated as the equal-weighted average of stock markets’ variances, using within-
month daily data. Two network measures are used to capture two aspects of the
propagation channel. The first measure is an average correlation of returns which
reflects the strength or width of the propagation channel. The second measure is
diameter which captures the distant of the propagation channel. | find that the measures
of propagation channel are rather weakly related to the extreme negative returns, while
a measure of country-specific risk is significant. However, once the network measures
interact with the idiosyncratic risk measure, their ability to predict the probability of
extreme negative returns increases significantly.

The fourth chapter of the dissertation provides empirical evidence for the
relationship between network centrality and asset returns in the Stock Exchange of
Thailand. Unlike the previous two chapters, this chapter focuses on the developing
market in which the empirical research on this subject is lacking. Moreover, instead of
the global characteristics of the network structure, this chapter uses the local aspects
including systematic importance and fragility. A firm is systematically important if it
can affect the other firms in the network. CheiRank is a network measure to capture the
systematical importance property. On the contrary, a firm is fragile if it gets affected
by propagated shocks. PageRank is a network measure to capture the fragility property.
The methodology of this chapter is similar to the portfolio mimicking and the asset
pricing model of Fama and French (1993). | find that CheiRank has a significant and
negative relationship with equity returns, whereas PageRank has a significant and
positive relationship. Therefore, the local measures of the network structure may be



useful in explaining cross-sectional and time-series expected returns for firms listed on
the Stock Exchange of Thailand.

The rest of the dissertation is organized into four chapters. Chapter 2 elaborates
the motivation, methodologies, and results of the tests for the relationship between
network topology and market portfolio returns on the US market. Chapter 3 explains
the methodology and the findings for the network effect on international financial
contagion. Chapter 4 provides empirical evidence of the network effect on the Stock
Exchange of Thailand. Chapter 5 concludes the thesis.



Chapter 2 Stock market return predictability: Does network

topology matter?

Abstract This paper provides new evidence for the predictability of excess market
portfolio returns using a network approach. In particular, this article introduces a
measure of interconnectedness to capture the interrelationship of returns of 100 largest
stocks in S&P500 during 1990- 2014. In the financial network literature, the
interconnection of a stock network is often regarded as a channel through which an
idiosyncratic shock propagates. The idiosyncratic risk propagation is crucial to the
debate over the relationship between idiosyncratic risk and market returns because the
idiosyncratic risk is not always diversified away. Rather, the network can sometimes
amplify the effect of the idiosyncratic risk to cause aggregate fluctuation. In accordance
with this theoretical argument, | empirically show that the network topology, measured
by diameter, works together with the idiosyncratic risk, measured by average stock
variance, to affect the market portfolio returns. This relationship persists after
controlling for well-known variables known to forecast the stock market returns.

Keywords Stock market network, Network topology, Return predictability, Diameter,
Idiosyncratic risk, Average stock variance

JEL Classification G12, D85



2.1 Introduction

Are stock market returns predictable? Cochrane (1999) responds, “We once
thought that stock and bond returns were essentially unpredictable. Now we recognize
that stock and bond returns have a substantial predictable component at long horizons.”

Among other predictors of returns, the variance of stock market returns is an
intuitive measure of risk and has also been used by many papers to predict the stock
market returns. Unfortunately, the relationship between such risk and stock market
returns is not straightforward and often found to be insignificant. Pollet and Wilson
(2010) empirically show that the stock market variance cannot predict the subsequent
quarterly returns on the CRSP value-weighted index. Theoretically, the stock market
variance is composed of two components including idiosyncratic and systematic
components. The idiosyncratic component is measured by average stock variance,
which is essentially the diagonal information of the variance- covariance matrix of the
stock returns, while the systematic component is measured by average correlation (AC),
representing non-diagonal information of the correlation matrix. Pollet and Wilson
demonstrate that the weak relationship between the stock market variance and return is
primarily due to the idiosyncratic component. Therefore, the average correlation is a
better proxy for the aggregate risk that is statistically significant in predicting excess
stock market returns.

In contrast, a number of academic studies have documented the ability of the
idiosyncratic risk to explain and predict equity returns in many developed markets.
Using CRSP data, Goyal and Santa- Clara ( 2003) find a significantly positive
relationship between the stock market returns and the average stock variance. The
authors show that the idiosyncratic component is the major part of the average stock
variance while it is diversified away in the stock market variance. This finding
advocates the average stock variance as a suitable measure for idiosyncratic risk and in
turn raises the importance of idiosyncratic risk on forecasting the stock market returns.
Nanisetty et al. (1996) examine the intertemporal capital asset pricing model (ICAPM)
that includes idiosyncratic risk premia and market risk premium in the pricing equation.
They find that the idiosyncratic risk premium is significant in explaining returns on the
size and industry portfolios of equities listed on New York Stock Exchange (NYSE).
Drew et al. (2007) examine the relationship between idiosyncratic volatility and stock
excess returns for equities listed on the New Zealand Exchange. They use the approach
of Fama and French (1993) and find that the idiosyncratic volatility is statistically
significant in explaining the cross-section expected returns. Last but not least, Vidal-
Garcia et al. (2016) study the effect of the liquidity and idiosyncratic risk factors in the
European mutual fund market. They report that both liquidity and idiosyncratic risk
factors are relevant to mutual fund performance and robust to the well-known risk
factors regarding market, size, valuation, and momentum.



Given the mixed evidence from the existing literature, the relationship between
the idiosyncratic risk and market returns remains an open discussion. This paper
presents new evidence that the idiosyncratic risk, measured by average stock variance,
has forecasting power for market portfolio returns when interacting with a network
measure. Specifically, a stock market can be viewed as a complex network in which
stocks interact. The interconnection serves as a channel through which idiosyncratic
shocks propagate. The idiosyncratic shocks may be either diversified away or amplified
throughout the network. Thus, the diversifying argument is not always true, and the
idiosyncratic risk can manifest under suitable environments.

The concept of idiosyncratic risk propagation is not new and has been studied
in many related fields. For example, Acemoglu et al. (2012) study U.S. intersectoral
input- output data and show that microeconomic idiosyncratic shocks can cause
aggregate fluctuations in the economy. Diebold and Yilmaz ( 2014) document
idiosyncratic volatility spillover among major U.S. financial institutions. Acemoglu et
al. (2015) and Elliott et al. (2014) study network architectures of financial
interdependencies and show that different network structures are associated with
varying levels of interconnectedness. However, individual shocks can, in some cases,
trigger a cascade of failures and escalate into systemic events.

The economic impact of such a mechanism in a complex network can be
extraordinary when idiosyncratic shocks are amplified via feedback loops and cascades
of failures. As pointed out by Haldane (2013), when Lehman Brothers collapsed in
September 2008, the damage was not limited to itself but also spread to other firms in
the US market and eventually the global market. The direct cost of the Lehman
Brothers’ bankruptcy was estimated to be around US$5 billion, but the IMF revised
global growth down by more than 5 percent. The striking feature is that the markets can
amplify an idiosyncratic shock in such a way that the subsequent loss is far greater than
the initial damage.

Given this rationale, I study the relationship between the idiosyncratic risk and
stock market returns in the S&P500. The primary objective is to reexamine this
relationship when network measures of interconnection are taken into consideration.
Following Goyal and Santa-Clara (2003), the idiosyncratic risk is measured by the
average stock variance. The measures of interconnection, on the other hand, are not as
straightforward and required a number of tasks. To achieve this goal, I first simulated
a stock market by a network of stocks. A connection between stocks is measured by
Pearson’s correlation of stock returns. This setup allows me to capture the
interconnectedness of the stock market that functions as a propagation channel of
idiosyncratic shocks.
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A simple measure of interconnection for a correlation-based network is the
mathematic average of all correlations except for the diagonal elements. This measure
will be called average correlation (AC). However, I contend that the AC is not a good
candidate for the propagation channel of idiosyncratic risk because of two reasons.
First, it relates more to systematic risk than idiosyncratic risk. Since the AC implies
how strong stock returns are moving together in aggregate level, it is naturally
associated with the common risk profile of the stock market. Pollet and Wilson (2010)
provide empirical evidence that distinguishes the AC from the idiosyncratic component
of stock market variance and establishes it as a measure of the systematic component.
Second, from the network theory perspective, the AC is a crude measure for
interconnection. It does not give the complete picture of interdependencies nor the full
state of the complex system. More specifically, interconnection is a term used for
collective relationships or links that form a network. Two important aspects of the
interconnection are the strength of those relationships and pattern of the connections.
Though the AC is a natural and good measure of interconnection strength by
construction, it provides little information about the pattern of interconnection.
Throughout the paper, the pattern of interconnection will be referred to as “network
topology.”

| emphasize the network topology precisely in this study because it provides
direct information about the propagation channel, which is essential to the idiosyncratic
risk propagation mechanism. To illustrate, Figure 2.1 shows different patterns of
interconnection in a simple network. Figure 2.1b represents a simple chain network,
and Figure 2.1d depicts a simple star network. In theory, the latter will facilitate shock
propagation better than the first because it allows individual shocks to reach throughout
the network much more quickly. This indicates that the star-like network has the level
of interconnectedness higher than the chain-like network. To measure the network
topology, | chose an easy-to-understand network concept, called the “diameter.” The
diameter is the shortest distance between the two farthest nodes. A small diameter
implies that the stocks are closely related such that the network topology becomes more
like a star shape, as shown in Figure 2.1d. In counterpoint, the network topology of the
high diameter leans towards the chain structure, illustrated in Figure 2.1b.

Based on this background, | formulated the main research question as follows:
Does the correlation structure have the power to predict the stock market portfolio
returns? The paper’s hypothesis is that the correlation-based network should have the
power to predict the returns or at least help the existing risk factors (average correlation
and variance) to predict the future returns. There are two main reasons that support this
hypothesis. The first one is that the network structure is constructed from the filtering
procedure that retains the essential information and most properties of the correlation
matrix. Since the prediction power of the average correlation is empirically proven by



11

Pollet and Wilson (2010), there is a high possibility that the network structure will be
relevant to the future returns. Secondly, many prior works have asserted the
compatibility of the network structure and the real economic taxonomy. The change of
the network structure would then affect the common economic factors that drive the
stock prices. When the structure becomes tightly packed, a common economic factor
specific to a sector can affect the stocks in the other sector more easily. Moreover, the
shock specific to a firm can efficiently propagate throughout the network and even be
amplified by the network feature to cause a system-wide risk.

Results of the paper show that the network topology, measured by diameter, is
a potential indicator of idiosyncratic shock propagation channel. The measure of
idiosyncratic risk alone is barely able to predict the return with the monthly t- statistic
of -1.938 and the quarterly of -1.878. The adjusted R? is also very low at 1.4% and
1.9%, respectively. By adding the interaction term between the diameter and average
stock variance, | can test the effect of the idiosyncratic risk propagation model on
returns. The coefficients of average stock variance and interaction term are both
statistically significant at 95% confidence interval. The adjusted R? is improved
significantly to 3.6% and 8.8% for the monthly and quarterly intervals. The ability to
explain the return variation is greatly improved from when the average stock variance
is the sole predictor. These results imply that idiosyncratic shocks cannot be entirely
rejected due to a diversification argument. Instead, they can sometimes affect the stock
market returns under favorable network topologies that serve as propagation channel
with an amplification or diversification function. Furthermore, the findings support the
diameter as a good propagation channel for idiosyncratic shocks.

The rest of the paper is organized into four sections. Section 2.2 explains the
methodologies applied in constructing the stock networks and generating measures of
network topology and idiosyncratic risk. Section 2.3 presents the description of data
and summary statistics. Section 2.4 reports the empirical results from time- series
regressions as well as alternative specifications for robustness checks. Section 2.5
concludes the paper.
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Figure 2.1 Examples of five-stock networks.
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(Note) This figure illustrates the possible network structure of a system consisting of five stocks. The
complete network in a) is the representation of a structure with all possible relationships. The minimum-
spanning- tree filtering procedure ( MST) compresses the complete network into three structures,
including Chain-like network in b), Tree-like network in c) and Star-like network in d)

2.2 Methodology

Assessing the impact of network topology on the relationship between market
portfolio returns and idiosyncratic risk requires the definitions of several related
concepts and parameters. | will begin with explaining necessary concepts for the
construction of a stock network and the filtering procedure that allows us to observe the
dynamics of interconnection structures. | will then introduce the concept of diameter
for capturing the network topology of the filtered network. Lastly, I will define the
idiosyncratic risk measure and related variables used for the predictive regressions on
portfolio returns.

2.2.1 Network construction

To simulate the large and complex system of a stock market, | carried out three
steps: i) define the node, ii) define the links between a pair of nodes, and iii) eliminate
the unimportant links to capture the essential structure of the network.

In this paper, a node represents a stock. A link or relationship between nodes is
defined as a correlation between the stock returns. Although the relationship can be
various, | choose to work with the simple correlation of stock returns for two reasons.
First, it is widely used in the financial network literature (See for example Mantegna
(1999), Tumminello et al. (2005), and Engle and Kelly (2012)). Second, a correlation
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of returns contains all information about the stock relationship, including investor
expectations that are otherwise difficult to measure or obtain.

The last step of the network construction is to apply a filtering procedure to
control complexity and yet maintain the essence of the stock interrelationship. More
specifically, a correlation matrix without the diagonal elements is, in fact, a fully
connected network. The total number of the network connections is n(n-1)/2
correlations for n stocks. For instance, when n is 5, there are ten correlations as shown
in Figure 2.1a. If nis 100, the number of links becomes 4,950. As n grows, the network
becomes complicated and hard to deduce any patterns of interconnection. To reduce
the complexity while maintaining the minimal- yet- meaningful structure, Mantegna
(1999) introduces a filtering procedure, called Minimum Spanning Tree (MST). The
algorithm starts by ordering the correlations from high to low. Next, the highest
correlation is picked first, followed by the next highest correlation as long as the graph
is connected without a loop or cycle. If an additional link does not satisfy the condition,
the algorithm skips to the next link. The total number of links then reduces to n-1.
Figures 2.1b-2.1d illustrate simple MST networks for five stocks. We can see that the
number of connections decreases from 10 in the complete network to 4 in the MST
networks.

However, the reduction to a minimum network structure is an extreme approach
with a large amount of information lost. Tumminello et al. (2005) therefore propose
another filtering algorithm, called Planar Maximally Filtered Graph (PMFG). The
PMFG is very similar to the MST, except for a more relaxed network constraint. That
is, the PMFG keeps adding links as long as the graph can still be drawn on a 2-D surface
without link crossing. This constraint is called the planarity condition. Consequently,
the PMFG network contains all of the MST links and some additional links that form
loops or cliques of three or four nodes. If a graph contains a subgraph K5 (a complete
graph on five vertices) or K3,3 (a complete bipartite graph on six vertices), it is not
planar. The maximum number of links is 3(n-2), which is much higher than that with
the MST. For instance, when n is 5, the MST network has four edges, and the PMFG
has 6. When n is 100, the MST graph contains 99, and the PMFG is 294. In short, |
choose to work with the MST networks for basic illustration and the PMFG networks
for the main results due to the additional valuable information.

2.2.2 Measuring network topology with diameter

Since a Pearson’s correlation matrix is a complete network with all non-
diagonal pairs connected, measuring a network topology from such a network is not
feasible. The only network measure of the complete network is the average correlation,
which mainly captures the strength of interconnectedness. Consequently, to extract a
pattern of interconnection called network topology, | apply the PMFG filtering



14

algorithm to compress the complex network into a smaller one that contains the essence
of the interrelationship. Different network measures then can be computed from this
kind of the network, such as diameter, degree distribution, clustering coefficient,
average path length, and centrality measures. Interested readers can consult Jackson
(2008) for a more detailed explanation.

In this paper, | measure the topology of the filtered network with a network
concept, called “diameter.” If the shortest path or geodesic path of each pair of nodes
is the lowest number of links between the two nodes, the diameter is the largest of all
geodesic paths. This definition makes the diameter an easy-to-understand and intuitive
measure for the network topology. To illustrate, | create a fully connected graph for
five stocks 1-5 as shown in Figure 2.1a. By applying the MST algorithm, the complete
network can be compressed to one of the three structures, including star, tree, or chain
network. Figure 2.1b is a chain-like structure that has the longest diameter of 4 as
measured by the number of links of the largest geodesic path. Figure 2.1c is a tree-like
structure with a diameter of 3. Figure 2.1d is a star-like network with the shortest
diameter of 2. This exercise clearly shows us that the large diameter indicates the chain-
like network and vice versa.

At this point, | measure the pattern and strength of interconnection by the
diameter and average correlation, respectively. The important question is whether or
not the diameter can provide additional insights into the stock returns. To achieve this
goal, I simulate a series of equally-weighted MST networks of five stock returns’
correlations on a quarterly basis. I choose to illustrate the small networks because they
provide better conceptual illustration and visualization for the analysis. Furthermore,
the five-stock network is the smallest and simplest network that allows the diameter to
accurately specify the shapes of network structures as shown in Figures 2.1b-2.1d.
Additionally, | can control the effect of average correlation on the network by making
all links attach to a given node with equal weight. The average correlation is assigned
into three groups because the average correlation is continuous and the diameter is
discrete in value. Therefore, if the network topology, measured by diameter, provides
additional market information to the average correlation, | should see the variety of
diameters in each correlation group. The result is presented in Section 2.4.1 and
suggests that the diameter holds some unique information about stock returns which is
not captured by the average correlation.
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2.2.3 Approximation of risk measures

Following Goyal and Santa-Clara (2003), | calculate the monthly variance of
an asset by using within-month daily returns, as expressed in Equation (2.1).

D¢ D¢
Var = Z ria+2 z Taala,d-1 (2.1)
d=1 a=2

where ragq is the return of asset a on day d. Dt is the number of the trading days
in month t. According to Goyal and Santa-Clara (2003), the second term on the right-
hand side is used for the autocorrelation adjustment in daily returns. If asset a is a
portfolio P, rp; is the portfolio return and Vp: is @ measure of the portfolio risk.

If asset a is a stock 1, Vit is a monthly variance of stock i. Goyal and Santa-Clara
(2003) propose that the equally-weighted average of Vit is a good approximation of
idiosyncratic risk of the stock market portfolio. Specifically, the equally- weighted
average variance can be decomposed into systematic and idiosyncratic components.
The effect of idiosyncratic risk constitutes the majority part of the variance while
systematic risk is negligible. Ultimately, Goyal and Santa-Clara show that this risk
measure has forecasting power for market returns. However, Bali et al. (2005) argue
that small stocks and liquidity premiums drive the predictability of such a measure.
Rather, the value-weighted measure of idiosyncratic risk can mitigate the problem and
is more natural for the predictability of market returns. Thus, in this paper, | use the
value-weighted average stock variance to measure the idiosyncratic risk as in Equation
(2.2).

N
AV = Z WitVie (2.2)
i=1

where the weights for stock i, w; ¢, are the market capitalization of stock i at the
last trading day in period t divided by the market capitalization of the entire market
portfolio. I assume that the weights are constant in period t. N is the number of stocks
used in the calculation of period t.

Lastly, following Pollet and Wilson (2010), average correlation is estimated as
the value-weight mathematic average of the correlations as in Equation (2.3).

N

AC; = Z Z Wit Wi tPik,t (2.3)

i=1 k=i
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where the weights for stock i, w; ., are the market capitalization of stock i at the
last trading day in period t divided by the market capitalization of the entire market
portfolio. py ¢ is the Pearson’s correlation between stock i and k. Nt is the number of
stocks used in the calculation of period t. While the average correlation is a measure of
stock market risk as documented by Pollet and Wilson, it is also a measure of
interconnection in the network literature.

2.3 Description of data

| compute the measures of network topology and risk using a set of 100 stocks
listed in the S&P500. The sample begins in January 1990, ends in December 2014 and
is collected from Bloomberg Terminal. The daily stock return, rit, is generated from the
difference in log prices between two consecutive days, as shown in Equation (2.4).
When returns are not available due to a holiday or other reasons, | use the number from
the last-known period.

Tie = ln(pi,t) —In(p;¢-1) (2.4)

The list of 100 stocks is determined by market capitalization and return
availability. Specifically, at the end of each quarter, | sort all stocks in the S&P500 by
market capitalization. A stock with missing return data is eliminated. Finally, | select
100 largest stocks in the remaining list. This data set is then used to compute the
correlation matrix, network measures, and risk measures.

For the analytical purpose, the main results are reported on both monthly and
quarterly intervals. In the monthly analysis, a network is created using the 3-month
rolling sample from month t-2 to t. Thus, a series of diameter is estimated from 300
rolling-sample PMFG networks. It should be noted that | use a rolling sample instead
of the within-month sample because the latter is rather too short for revealing the
stocks’ interrelationships. Without going into detail, the results from the within-month
data still support the paper’s hypothesis but are much weaker. On the other hand, the
risk measures are slightly in favor of the within-period sample.

Monthly risk measures are calculated from the within-month daily returns of
the 100 selected stocks as shown in Equation (2.1), (2.2) and (2.3). The excess market
portfolio return is the log return on the value-weighted market portfolio over the 3-
month Treasury Bill. 1 use the portfolio returns instead of the S&P500 index return to
avoid potential biases from smaller stocks not included in the sample.
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In the quarterly analysis, PMFG networks and diameters are created using the
within-quarter data, which provide 100 networks and associated diameters, in total. The
risk measures and portfolio returns are also constructed using the within-quarter data.

2.4 Empirical results
2.4.1 Simple illustration of network topology in the stock market

In the introduction, | postulate that the average correlation (AC) captures one
aspect of interconnectedness and the diameter capture another, network topology in
particular. This section provides a simple illustration of this statement by comparing
diameters and average correlations associated with the portfolio returns. The result
demonstrates that the diameter is informational about the asset returns after controlling
for the AC.

For illustration, | simulate a series of small MST networks with five stocks on
the quarterly interval. Specifically, out of 1,086 listed firms in the sample period, five
stocks are selected, based on market capitalization and return availability. The five
largest stocks in size include XOM (Exxon Mobile), GE (General Electric), MSFT
(Microsoft), WMT (Wal-Mart), and PFE (Pfizer). The network topology is then
measured by the diameter, whereas the commonality among asset returns is captured
by the average correlation.

Figure 2.2 and Table 2.1 present the histogram and summary statistics of
average correlation (ACs) and diameter during the 100 periods of the sample. The
average ACs of five stocks is quite high at 0. 34, given that the five stocks belong to
different industries. The positive sign also indicates that the stock prices usually move
together in the same direction. The average diameter (DIAs) is 3.13. Out of 100 periods,
the tree-like network with the diameter of 3 appears the most frequent at 55 periods,
followed by the chain at 29, and then the star at 16. This result indicates that the network
topology of the portfolio can change over time and, thus, has some implication on the
portfolio returns. The question is whether or not the diameter can have an influence on
the returns in addition to the AC, which is simpler and proved to be significant by Pollet
and Wilson (2010).
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Figure 2.2 Histograms of average correlation and diameter for small networks.
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(Note) Figure 2a represents the frequency of average correlation, which is defined as the cross-sectional
average of the Pearson’s correlation of daily returns of the selected five stocks. Figure 2b represents the
frequency of diameter, which is defined as the largest geodesic path of a five-stock network

Table 2.1 Summary statistics for five-stock networks

Average correlation Diameter

Correlation Group ACs N Network Topology DIAs N
Low (< 0.25) 0.16 27 Chain 4 29
Medium (0.25-0.4) 0.33 43 Tree 3 55
High (>0.4) 0.53 30 Star 2 16
Full sample 0.34 100 Full sample 3.13 100

(Note) Table 2.1 reports the summary statistic of average correlation (ACs) and diameter (DIAs) from
the five-stock networks. Average correlation is classified into three groups: Low, Medium, and High.
Diameter represents three structure of the network topology, including Chain, Tree or Star. ACs is the
cross-sectional average of average correlation for the corresponding groups. DIAs is average diameter
for the corresponding network structures. N is the number of periods that the portfolio returns belong to
the corresponding groups or network structures

Since it is difficult to compare the continuous variable (average correlation)
with the discontinued variable (diameter), | classify the average correlations into three
groups: Low, Medium, and High. The histogram in Figure 2.2a shows that the cutoffs
at 0.25 and 0.4 ensure the sufficient sample size in each group. Table 2.1 reports that
the sample sizes for the low, medium and high correlation groups are 27, 43 and 30,
respectively, with the average correlation of 0.16, 0.33, and 0.53. Next, the correlation
groups are mapped with the diameter as shown in Figure 2.3. All three types of network
structures can appear in each AC group. The low correlation group is composed of 41%
chain structure, 48% tree structure and 11% star structure. The medium group consists
of 30% chain structure, 56% tree network and 14% star structure. The high group
comprises 23% chain structure, 60% tree structure and 17% star structure. The results
suggest that the diameter can change under a relatively stable condition of the AC. In
other words, the diameter bears some new insights of interconnectedness and stock
market return not reflected in the average correlation.
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These observations and conceptual understandings serve as my motivation for
using the diameter as the measure of network topology to predict market portfolio
returns. The next section will provide time-series analysis of the diameter and the
portfolio returns of the full sample.

Figure 2.3 Frequency of network structures classified by the correlation groups.
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(Note) The average correlation is the cross-sectional average of the Pearson’s correlation of daily returns
of the selected five stocks. The Low/Medium/High groups consist of the quarterly periods with the
average correlation below 0.25, between 0.25-0.4 and above 0.4, respectively. The frequency of diameter
is the number of diameters that are matched to each correlation group. Star on the top of the candle
represents the number of networks with a diameter of 2. Tree in the middle of the candle is the number
of networks with a diameter of 3. Chain in the bottom is the number of networks with a diameter of 4

2.4.2 Dynamic of network topology and market timing

In this section, the goal is to see if the network topology as measured by the
diameter shows a certain trend with the stock market movement. To better reflect the
actual market, | compute a diameter from the PMFG 100-stock network in each quarter.
| then plot the diameter over time along with the portfolio returns as shown in Figure
2.4.

The very first thing we can see from the graph is that the network structures lean
towards the star-like shape. For a network with 100 members, the most extreme star
and chain networks will have the diameter of 2 and 99, respectively. However, the
diameters of the stock networks are closer to the star- like network with a range from 5
to 11. This result implies that, in general, one stock can reach the other stocks in the
network with a short distance.

Although the diameter does not exhibit a pronounced upward or downward
trend, it does show that the stock market structure becomes more star-like in the second
half of the sample period. In the first half, the diameter ranges from 6 to 11, while it
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goes from 5 to 10 in the second half. One possible explanation is that the stock
market becomes more integrated during the 2000s possibly due to advances in
computer and network technologies and financial innovations such as CDO and CDS.

In addition, Figure 2.4 illustrates the relationship of diameter and the major
market timings. The shaded areas represent three periods of recession as defined by the
NBER, including July 1990 — March 1991, March 2001 — November 2001, and
December 2007 — June 2009. In these contraction periods, the diameter has volatile
movement with a sharp decline in value to 6. For example, before the global market
sell-off in September 2008, the diameter started to fall from a peak in 2008 Q2 with the
diameter of 10 and reached the bottom in 2008 Q4 with the diameter of 6.

Similar to Kaya (2014), the jumps in the network topology can be seen as a
necessary condition for market sell-off but not a sufficient condition given that the
measure assigns some false indications. For example, during 1997, the diameter
remains very low at 6 possibly due to the fear of contagion from the East- Asia crisis.
However, the star-like network does not trigger the sell-off in the US market. This event
can be partly explained when the idiosyncratic risk, measured by the average stock
variance, is taken into account. In particular, since the diameter reflects the propagation
channel of the idiosyncratic risk, analyzing the individual effect of diameter might not
be accurate and sometimes cause the false indications. Figure 2.4 shows that the
diameter will be more relevant to the market timings when coupling with the average
stock variance. During the Mexican peso crisis (1993-1994), the East-Asia crisis (1997)
and the dot-com crisis (2000), the diameters drop sharply from the peak, but the average
stock variance does not change much. As a result, the effect of diameter on those crisis
periods is rather limited. Conversely, during the last two recessions, both diameter and
average stock variance work together to cause a disturbance in the stock market and
result in intermittent drops of the stock market index.
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Figure 2.4 Diameter, Average stock variance and S&P500 index over time.
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(Note) The figure presents the dynamic of the diameter, average stock variance and S&P500 index over
time from 1990 Q1 to 2014 Q4. The vertical axis on the left shows the value of diameter and the
percentage of average stock variance. The vertical axis on the right shows the S&P500 price index.
Diameter is calculated as the longest distance of all geodesic paths in a given network. Average stock
variance is the value-weighted average of stock variances. The shaded gray areas represent periods of
contraction according to NBER

2.4.3 Predicting excess portfolio returns with network topology

This section reports the predictability performance of the diameter, how it
relates to the market portfolio returns and its role as a channel of idiosyncratic risk
propagation. To assess the relationship between returns and explanatory factors, |
estimate the regressions and report in Table 2.3. The dependent variable is excess
market portfolio returns at period t+ 1. The explanatory variables are average
correlation, diameter, average variance, stock market portfolio variance, and two
interaction terms at period t.

Table 2.2 shows the summary statistics of the related variables used in
the predictive regressions. Panel A and B report the statistics for the monthly and
quarterly intervals, respectively. The excess monthly and quarterly portfolio
returns (rp) are averaged at 0.007 and 0.021 with the standard deviation of 0.041 and
0.075. Compared to the excess returns on S&P500 (rsps00), My market portfolio returns
are somewhat more stable. For instance, the SD of monthly rpis 0.041 while that of
monthly rsps00 is 0.043. The skewness of monthly rpis -0.567 whereas that of monthly
Ispsoo 1S -0.800. The kurtosis of monthly rpis 4.045 whereas that of monthly rspsoo is
4.662. This slight difference between rp and rspsoo is mainly because my sample consists
100 largest stocks in S&P500 and in turn encounters less effect from smaller stocks.

The average correlation (AC) is the value-weighted average of correlations of
100 stocks. The AC is moderate at 0.308 for both monthly and quarterly data. That is,
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the stock prices tend to move in the same direction with the moderate strength. The
average variance ( AV) is the value- weighted cross- sectional average of stock
variances and represents the idiosyncratic risk level of the stock market. The mean of
monthly AV at 0.008 is four times higher than that of the portfolio variance (Vp) at
0.002, while the quarterly AV at 0.023 is about three times greater than the V, at
0.007. This evidence indicates that the market risk itself is much smaller than the total
risk measured by AV. The idiosyncratic risk, therefore, represents a significant
proportion of the total risk and its fluctuation tends to be greater at a higher frequency.
The diameter (DIA) measures an aspect of the PMFG network that enables us to see the
channel through which shocks propagate. The means of DIA are very small at 7.323
and 7.290 for monthly and quarterly samples. That is, it takes only seven links on
average for one stock to affect the other stocks. The effect of an idiosyncratic shock
could then be amplified with just seven links and present a threat to the whole stock
market.

The first-order autocorrelation (AR1) of each variable is also reported in Table
2.2. The AR1 of rp are 0.006 and 0.044 for the monthly and quarterly samples. The
AR1 of rspsoo are 0.061 and 0.070 for the monthly and quarterly samples. Clearly, both
rp and rspsoo are not persistent, and their lagged variables are not likely to have the
power to predict the future returns. On the other hand, DIA, AC, AV, and Vjare all
relatively persistent with the AR1 of 0.467, 0.601, 0.705, and 0.473 for the monthly
sample, 0.263, 0.633, 0.745, and 0.363 for the quarterly sample.

The Augmented Dickey- Fuller statistics are also reported for the unit-root
test. To account for one year of information, I used 12 lags and 4 lags for the monthly
and quarterly samples. For the monthly statistics, all variables except for the AC
rejected the null hypothesis of a unit root at 5% critical value. For the quarterly
statistics, the AC and AV exhibit an evidence of a unit root while the others are not.

The correlation matrix in Table 2.2 reports the correlations between returns and
independent factors. AV, Vp and AC are negatively correlated with the
contemporaneous portfolio returns, whereas DIA is virtually not correlated with rp.
This result suggests that there is a difference between AC and DIA, regarding the market
return information. Also, AC and DIA are somewhat negatively correlated at -0.389 and
-0.483 for the monthly and quarterly sample. This negative relationship indicates that
periods of high average correlation are not necessarily the same as periods of low
diameter. This result confirms the previous findings that diameter holds some different
information from average correlation. Lastly, when compared to the conventional risk
measures, the average correlation is more related to systematic risk while the diameter
leans towards the idiosyncratic risk.
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Table 2.2 Summary statistics for predictive regressions

Panel A: Monthly Statistics Panel B: Quarterly Statistics
rp rspsoo DIA- AC AV Vp 'p rspsoo DIA AC AV Vp

mean 0.007 0.003 7.323 0.308 0.008 0.002 0.021 0.010 7.290 0.308 0.023 0.007
min  -0.158 -0.186 5.000 0.028 0.001 0.000 -0.190 -0.256 5.000 0.078 0.006 0.001
max 0.106 0.102 11.000 0.741 0.067 0.040 0.208 0.179 11.000 0.669 0.128 0.073
SD 0.041 0.043 1311 0.139 0008 0.004 0075 0080 1431 0.121 0.020 0.009
Skew -0.567 -0.800 0.781 0542 3358 5.930 -0.409 -0.791 0.813 0.593 2470 4.870
Kurt 4.045 4662 3053 3.127 18.104 51957 3.402 3.844 2876 3.433 10.114 34.265
AR1 0006 0061 0467 0.601 0.705 0473 0.044 0.070 0.263 0.633 0.745 0.363
ADF -3991 -4137 -3.348 -2.191 -3.048 -3.684 -3.719 -3.820 -3.675 -2.076 -2.664 -3.186

Correlation Matrix Correlation Matrix

I 1.000 1.000

rspsoo 0.984 1.000 0.983 1.000

DIA 0.006 -0.001 1.000 -0.009 -0.027 1.000

AC  -0.235 -0.252 -0.389 1.000 -0.276 -0.307 -0.483 1.000

AV  -0.217 -0.288 0.198 0.198 1.000 -0.358 -0.454 0.239 0.199 1.000

Vo -0.260 -0.324 -0.038 0.430 0.852 1.000 -0.404 -0.488 -0.057 0.486 0.844 1.000

(Note) Summary statistics of the 100-stock portfolio are reported in Panel A for monthly sample and in
Panel B for the quarterly sample. The sample period is January 1990 to December 2014 (300 monthly
observations and 100 quarterly observations). ry is the log value-weighted portfolio return minus the 3-
month Treasury bill. rspsoo is the log return of the S&P500 index minus the 3-month Treasury bill. AC is
the value-weighted cross-sectional average of the Pearson’s correlations of the 100 stocks. DIA is the
diameter of the correlation-based PMFG network and calculated as the longest distance of all geodesic
paths in a given network. AV is the measure of idiosyncratic risk and calculated as the value-weighted
cross-sectional average of stock variances. Vp is the portfolio variance. Skew is the skewness, Kurt is
the kurtosis, and ARL1 is the first-order autocorrelation. ADF is the Augmented Dickey- Fuller statistic
calculated with a constant and 12 lags for the monthly sample and 4 lags for the quarterly sample. The
critical values for rejection of ADF statistics at five percent levels are -2.879 for the monthly sample and
-2.894 for the quarterly sample

The predictive regression results with the full sample period are presented in
Table 2.3 (the second quarter of 1990 to the fourth quarter of 2014). Panel A reports
the results for the monthly sample, and Panel B reports the results for the quarterly
sample. Newey- West t- statistics with the maximum of 6 lags are reported in the
brackets. The first model in column 1 indicates that the average correlation (AC:) has a
positive relationship with subsequent portfolio returns ( rpt+ 1) . However, the
relationship is not robust with the quarterly t- statistic of 1. 071 and adjusted R? of
0.018. The monthly statistics are even worse with the monthly t-statistic of 0.697 and
adjusted R?of 0.000. These results contradict the evidence of Pollet and Wilson (2010)
that report the significant coefficients of the average correlation. This suggests that the
average correlation is not robust to the change in the sample period, at least in this
study.
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The second specification in column 2 shows that the diameter (DIA:) is a strong
predictor of the subsequent excess portfolio returns, with the robust t-statistics of -1.951
and -3.600 for monthly and quarterly analysis. The negative sign of diameter coefficient
indicates the inverse relationship between the diameter and the subsequent portfolio
returns, which is fairly intuitive, bearing in mind that the low diameter is an indicator
for the star-like network and the high diameter is an indicator for the chain-like network.
Since the star-like network allows shocks to propagate more easily than the chain- like
network, the low-diameter network should be more fragile and thus demand greater
compensation than the chain-like network with higher diameter. The following results
reveal that the higher return is actually to compensate for higher idiosyncratic risk
amplified by the diameter’s functionality.

Compared to the average correlation, the diameter appears to reflect more
desirable properties of interconnectedness for predicting portfolio returns. In addition
to the evidence above, one standard deviation of the diameter also accounts for the
subsequent excess portfolio returns almost twice. If the diameter increases by one
standard deviation ( 1.431), the quarterly returns will decrease by 2.2%, which
represents 29.3% of a standard deviation of the portfolio return. On the other hand,
when the average correlation increases by one standard deviation (0.121), the quarterly
return increases by 1.3%.

The third specification in column 3 includes both average correlation and
diameter in the linear regression. With the monthly adjusted R? of 0. 006 and the
quarterly R? of 0.069, the model does not add much value in explaining the variation of
the subsequent portfolio returns, in comparison to the second specification. Moreover,
the power of the model mostly comes from the diameter, as the quarterly t-statistics of
the average correlation and diameter are 0.190 and -2.278, respectively.

The models in column 4 and 5 show the predictive regression results of the
average stock variance (AVy) and portfolio variance (Vpy). Consistent with Goyal and
Santa- Clara ( 2003) and Pollet and Wilson ( 2010) , the Vpthasa negative
relationship with subsequent portfolio returns(rpt+1) and insignificant coefficients with
the monthly t-statistic of -0.675 and the quarterly t-statistic of -0.023. Similar to Goyal
and Santa-Clara, | find a significant relationship between AV and rp+1 but with weaker
t-statistics. Nonetheless, the coefficients’ sign appears to be negative instead of positive
like the Goyal and Santa-Clara's result, possibly due to the difference in data and sample
period.

The models in column 6 and 7 test the paper’s main hypothesis that the network
topology serves as a channel through which idiosyncratic shocks propagate to affect the
portfolio returns. In the specification 6, | regress the portfolio returns (rpt+1) on the
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average stock variance (AVy) and the interaction term between diameter and average
stock variance (AVixDIAy). The Newey-West t-statistics of AVi and AVixDIA; are 2.122
and - 3.329 for the monthly data, and 2.308 and -3.628 for the quarterly data. The
significant coefficients indicate that the diameter and idiosyncratic shocks, measured
by AV:, work together to affect the portfolio returns. For robustness check, I include the
diameter in the specification 7. The interaction term is robust in both monthly and
quarterly sample with the monthly t-statistic of -3.231 and the quarterly t-statistic of -
1.910, whereas the coefficients of diameter are insignificant. This evidence supports
the hypothesis that the diameter works through the idiosyncratic risk to affect the
portfolio returns.

The model in column 8 of Table 2. 3 assesses the effect of the average
correlation (ACy) in idiosyncratic shock propagation mechanism. It appears that the AC;
does not have a significant effect on the mechanism as the coefficients of the
interaction term (AVixDIAy) are insignificant with the monthly t-statistic of -0.625 and
the quarterly t-statistic of -0.620.

Comparing Panel A to Panel B, I observed the different regressive results of
average stock variance (AV:), average correlation (ACy) and diameter (DIAy). In column
4, the t-statistics of AV coefficient estimates are -1.938 in Panel A and -1.878 in Panel
B. That is, the AVt is slightly more significant in the short run than in the medium run.
This result is expected because the AV: captures idiosyncratic risk which is likely to
fade away or cancel out in the long run. While the effect of the idiosyncratic risk
decreases in the longer term, the influence of the systematic risk, measured by AC;,
increases. In column 1, the t-statistic and adjusted R?of AC: are 1.071 and 1.8% for
Panel B whereas they are only 0.697 and 0% for Panel A. This evidence indicates that
AC: has a stronger effect in the longer term. In column 2, the t-statistic and adjusted
RZof DIA: are -3.600 and 7.7% for Panel B whereas they are -1.951 and 1% for Panel
A. As a measure of the propagation channel, the DIA; outperforms the ACt in both short
and medium runs. Additionally, the diameter demonstrates the ability of return
prediction in the medium run better than in the short term. This evidence suggests that
the propagation channel, captured by the DIA;, is associated with permanent
relationships of stocks more than temporary ones. This property is also supported by
the statistics in Table 2.1. Specifically, the diameters in both panels of Table 2.1 have
the similar means and do not vary much. However, the AR1 of the diameter is much
more persistent in the short run than in the medium run. This finding indicates that the
diameter takes time to change and thus does not perform well in the data with high
frequency.

Lastly, the role of diameter on the idiosyncratic risk propagation model is
revealed in column 6. While the idiosyncratic risk measure has a negative linear
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relationship with returns, the diameter makes the relationship nonlinear. The graph of
the AVt in the model 6 is a bell shape for both Panel A and B. For example, in Panel A,
the predicted returns are estimated as “0.012 + 2.439* AV;— 0.401* AVixDIA:.” The
lower region of the DIA:(5,6) gives the positive slope. The higher region of the
DIA: (>= T7) gives the negative slope. These results imply that the idiosyncratic risk can
transmit to the others when the diameter is low. On the other hand, when the diameter
is high, the effect of idiosyncratic risk is lessened, possibly due to diversification. In
short, the specification 6 provides some evidence of the shock propagation and how the
diameter facilitates the propagation of idiosyncratic shocks.

In summary, the findings from the OLS predictive regressions show that the
network topology, measured by the diameter, can affect the stock market returns by
serving as the propagation channel for the idiosyncratic risk, measured by average stock
variance. The rest of Section 4 provides the analysis of various specifications to check
the robustness of the idiosyncratic risk propagation model.
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Table 2.3 Predicting subsequent excess portfolio returns from January 1990 to
December 2014.

The dependent variable is the monthly excess portfolio returns at t+1 in Panel A and
quarterly excess portfolio returns at t+1 in Panel B

Panel A: Monthly

Model @ 2 3 (C)) ®) () @) ®
Constant 0.002 0.033 0.031 0.013 0.008 0.012 0.000 0.002
[0.300] [2.588] [1.405] [4.868] [3.775] [3.960] [-0.005] [0.295]
AC; 0.017 0.005 0.036%**
[0.697] [0.170] [2.022]
DIA; -0.004*  -0.003 0.002
[-1.951] [-1.474] [0.834]
AV, -0.683* 2.439*+  3.127** -0.394
[-1.938] [2.122] [2.202] [-0.614]
Vit -0.458
[-0.675]
AVxDIA -0.401** -0.496**
[-3.329] [-3.231]
AVXAC -0.926
[-0.625]
Adj R? 0.000 0.010 0.006 0.014 -0.002  0.036 0.034 0.016
N 299 299 299 299 299 299 299 299

Panel B: Quarterly

Model 6] [3) (©) [0)) ©) (©) 0)) ®
Constant 0010 0135 0123 0037 0022 0033 0077  -0.010
[-0.347] [4.354] [1698] [4571] [2675] [3.205] [1891] [-0.337]
AC, 0.104 0.021 0.161%
[1.071] [0.190] [1.844]
DIA, -0.016%* -0.015%* -0.006
[-3.600] [-2.278] [-1.173]
AV, -0.627+ 2610%* 1668  -0.449
[-1.878] [2.308] [1288] [-0.732]
Vi -0.022
[-0.023]
AVxDIA, -0.405%* -0.274%
[-3.628] [-1.910]
AVXAC, -0.898
[-0.620]
Adj R? 0018 0077 0069 0019 -0010 0088 0083 0045
N 99 99 99 99 99 99 99 99

(Note) Table 2.3 presents the results of one-period ahead predictive regressions of the excess value-
weighted portfolio returns on lagged variables. AC; is the value-weighted cross-sectional average of the
Pearson’s correlations of the 100 stocks. DIA; is the diameter of the correlation-based PMFG network
and calculated as the longest distance of all geodesic paths in a given network. AV: is the measure of
idiosyncratic risk and calculated as the value-weighted cross-sectional average of stock variances. Vp, is
portfolio variance. AVxDIA; is the interaction term between average stock variance and diameter.
AVXAC; is the interaction term between average stock variance and average correlation. N is the number
of observations. Newey-West t-statistics with the maximum of 6 lags are reported in the brackets. ** is
significant at 95% confidence interval. * is significant at 90% confidence interval
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2.4.4 Predicting excess portfolio returns with different horizons

This subsection tests how long the diameter and the idiosyncratic risk
propagation model can influence the portfolio returns. To achieve this goal, | regressed
the independent variables at time t on the annualized k- month excess portfolio returns

suchthatr, ¢4y = (1,(—2) * ;‘=1(rp,t+ j — Tre+j)- FOrinstance, the dependent variable of

the 3-month model is the sum of log portfolio returns minus the 3-month Treasury Bill
returns from t+1 to t+3, whereas the 24-month model uses the sum of log excess
portfolio returns from t+1 to t+24. These sum returns are then annualized by the factor
12/, which enables me to compare the coefficients across all horizons.

Table 2.4 presents the results of the predictive regressions on the annualized k-
month excess portfolio returns. In Panel A, | use the monthly diameter to predict the
portfolio returns at different frequencies. As expected, the coefficients of the diameter
decline monotonically from the 3-month model to the 48-month model. The regressions
also suggest that the diameter can hold the information about the portfolio returns up to
24 months with the t-statistic of - 1.847 and adjusted R? of 6%. After this point, the
adjusted R? statistics decline and the coefficients are insignificant. Consistent with the
results in Section 2.4. 3, the negative regression coefficients across all time horizons
suggest that the diameter has an inverse relationship with the portfolio returns.

In Panel B, I test the robustness of the idiosyncratic risk propagation concept at
different frequencies by regressing the average stock variance (AVy), diameter (DIA:)
and the interaction (AVixDIA:). The coefficients of AV; and the interaction decrease as
the returns are extended into the future. The adjusted R? increases to a peak at 24
months, which accounts for 19.5% of the variation in returns. Then, the adjusted R?
decreases monotonically. Similar to the specification of Panel A, the result suggests
that the specification of Panel B has information relevant up to two-year portfolio
returns. Moreover, during the two years, the diameter coefficients are insignificant
while the coefficients of AV: and the interaction are significant. These findings support
my hypothesis that the diameter works through the idiosyncratic risk.

It should be noted that the adjusted R? is artificially high because of the nature
of annualized accumulated returns. When k increases, the standard deviation of the
returns will decrease, and in turn the monthly independent variables will be able to
capture a better proportion of the return variation. While this kind of test is useful to
indicate a trend in the future, one should be careful in using the R? statistics to infer the
model fit.



29

Table 2.4 Regressions of the excess portfolios returns with different horizons.

Panel A: 1y = awk + bDIA + e

Horizon (months) 1 3 6 9 12 18 24 30 36 42 48
Constant 0.401 0.456  0.440 0.415 0.357 0.272 0.263 0.226 0.179 0.147 0.119
[2.588] [4.141] [3.907] [4.368] [3.959] [2.980] [2.795] [2.716] [2.610] [2.443] [1.978]
DIA: -0.043*  -0.050** -0.048** -0.045** -0.037** -0.025** -0.024* -0.019 -0.013 -0.009 -0.005
[-1.951] [-3.237] [-2.934] [-3.232] [-2.908] [-2.015] [-1.847] [-1.643] [-1.340] [-1.031] [-0.592]
Adj R? 0.010 0.051 0.087 0.109 0.092 0.055 0.060 0.046 0.023 0.010 0.001
N 299 297 294 291 288 282 276 270 264 258 252

Panel B: Mpt+k = Qpek T b1AV1 + b2D|A1 + b3AVtXD|A1 + Btk

Horizon (months) 1 3 6 9 12 18 24 30 36 42 48
Constant 0001 0319 0194 0192 0138 0036 0005 -0.003 -0.015 -0.020 -0.043
[-0.005] [2.248] [1.385] [1.704] [1.431] [0.391] [0.051] [-0.045] [-0.222] [-0.312] [-0.658]
AV, 37.523*% 10.155 25.232+* 23.287** 22.424%* 23.275%* 25129+ 21.739** 17.764** 15.318** 14.590%**
[2.202] [0.691] [2.386] [3.044] [3.268] [4.329] [4.219] [5.183] [4.640] [4.458] [4.375]
DIA: 0020 0026 -0012 -0012 0005 0.010 0.014 0015 0.017* 0.017* 0.020**
[0.834] [-1.437] [-0.613] [-0.756] [-0.345] [0.814] [1.146] [1471] [1.745] [L761] [2.121]
AVxDIA 5958+ .1.993 -3.664*+ -3.310%+ -3.221*+ -3.414*+ 3,665+ -3.249*+ .2.715%+ .2.346%+ .2.237+*
[-3.231] [-1.255] [-3.077] [-3.577] [-3.769] [-4.819] [-4.745] [-5.304] [-4.935] [-4.743] [-4.762]
Adj R? 0.034 0.068 0.127 0154 0149 0153 0195 0187 0148 0121 0.117
N 299 297 294 291 288 282 276 270 264 258 252

(Note) Table 2.4 presents the results of one-period ahead predictive regressions of the excess value-
weighted portfolio returns on lagged variables. The dependent variable is the sum of k-month excess
value-weighted portfolio returns. AV: is the measure of idiosyncratic risk and calculated as the value-
weighted average of stock variances. DIA; is the diameter of the correlation-based PMFG network and
calculated as the longest distance of all geodesic paths in a given network. AVixDIA; is the interaction
term between average stock variance and diameter. N is the number of observations. Newey-West t-
statistics with the maximum of 6 lags are reported in the brackets. ** is significant at 95% confidence
interval. * is significant at 90% confidence interval

2.4.5 Out-of-sample predictability

The objective of this subsection is to assess whether or not forecasting power of
the idiosyncratic risk propagation model still holds in the out- of-sample exercises.
Following McCracken (2007), | use the one-period-ahead forecasts with a recursive
scheme. Specifically, the sample is divided into two sets for initial and evaluation
periods. | denote R as the number of initial periods and T as the total sample periods.
The number of evaluation periods, P, is then T — R +1. Starting from period t = R, the
parameters are estimated and used to forecast the excess portfolio returns at t+1. The
process continues until the last sample period T. Under the recursive scheme, the OLS
estimation will use all available information from the first period to t.
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The common approach to evaluate the forecasting accuracy is to compare the
out- of-sample forecasts of the restricted and unrestricted models. The null hypothesis
is equal to the forecasting accuracy or the forecast encompassing the restricted and
unrestricted models. In this paper, the restricted model is autoregressive of order 1 or
AR(1) of the portfolio returns as shown in Equation (2.5). The unrestricted models are
the AR(1) plus the first lag of the studied variables. Equation (2.6) provides the
forecasts of the predictors (xt), including average correlation, diameter, and average
stock variance. Equation ( 2.7) provides the forecasts of the idiosyncratic risk
propagation model.

Tpt+1 = D11+ b1y + Ugpgq (2.9)
Tpt+1 = Do + Doty + bysXe + Up p1q (2.6)
Tpt+1 = ba1 + Doty + by 3 AV + by 4y DIAL + by sAVDIA; + g pyq 2.7)

To test the null hypothesis, | use four measures of forecasting accuracy,
including the out-of-sample R2, dRMSE, ENC-NEW, and MSE-F. The out-of-sample
R2 is computed from 1 minus the ratio of the mean squared forecasted errors over the
mean squared errors from the restricted model. The dRMSE is the difference between
the root mean squared of the restricted model, and the root mean squared of the
unrestricted model. The positive R2 and dRMSE mean that the forecast accuracy of the
unrestricted model is superior to that of the restricted model in predicting the
subsequent excess portfolio returns. ENC- NEW is a formal test of forecast
encompassing applied to 1-step ahead prediction and tests the null hypothesis that the
restricted model forecast encompasses the unrestricted model. Clark and McCracken
(2001) show that the asymptotic distribution of ENC-NEW statistics depend on the
ratio of the evaluation period and initial period (= = P/R) and provide the asymptotic
critical values accordingly. MSE-F is the F-type test of out-of-sample predictive ability
concerning loss function. McCracken (2007) shows that the asymptotic distribution of
MSE-F statistics also depends on . To determine the significance of ENC-NEW and
MSE-F, 1 use the asymptotic critical values available on Clark and McCracken (2001)
and McCracken (2007), respectively.

Table 2.5 reports statistics of the out- of- sample tests as described above.
According to Hansen and Timmermann (2012), the forecasting performance depends
on how the data set is split. |, therefore, consider two forecasting periods. For the
monthly sample in Panel A, the long out-of-sample forecast begins in January 2000 (P
=180), and the corresponding R and z are 120 and 1.5. The short one starts in September
2006 (P =100), and the corresponding R and z are 200 and 0.5. For the quarterly sample
in Panel B, the long out- of-sample forecast starts at 2000 Q1 (P = 60), and the
corresponding R and = are 60 and 1.5. The short one begins in 2006 Q2 (P = 35), and
the corresponding R and = are 65 and 0.54.
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The findings for the long evaluation period (z = 1.5) provide strong evidence of
out- of- sample predictability of average correlation, diameter and average stock
variance in comparison to the lagged portfolio returns. They all have positive out- of-
sample R? and dRMSE. The ENC-NEW and MSE-F statistics are also significant at
95% confidence interval. The idiosyncratic risk propagation model as in Equation (2.7)
shows the strongest forecasting power with the monthly out-of-sample R? of 10.2% and
the monthly dRMSE of 6.7%.

The findings for the short evaluation period, on the other hand, provide mixed
evidence of the out-of-sample forecasting ability. For a monthly interval, only average
stock variance can increase the predictive power of the lagged returns, whereas average
correlation and diameter cannot. For the quarterly interval, all predictors, except for
average correlation, are significant at 95% confidence interval. Similar to the long-
period forecasting exercise, the idiosyncratic risk propagation model exhibits the
strongest out-of-sample ability for both monthly and quarterly samples.

In short, the diameter is sufficiently robust to the quarterly sample exercises but
not in the case of monthly sample exercises. The idiosyncratic risk propagation model,
on the other hand, is robust to the out- of- sample tests in both intervals. The findings
strongly support the hypothesis that network topology, measured by diameter, can help
idiosyncratic risk, measured by average stock variance, to predict the subsequent
portfolio returns.
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Table 2.5 Forecasting out-of-sample excess portfolio returns.

Panel A: Monthly

Average correlation Diameter Average stock variance AV-DIA model

n=15 ==05 n=15 =05 =n=15 n=0.5 n=15 n=05
Out-of-sample R?1.160 -0.224 2.601 -0.072 4.159 4.622 10.205 6.714
dRMSE 0.025 -0.005 0.055 -0.001 0.089 0.098 0.221 0.143
ENC-NEW 2.029** 0.253 3.801** 0.655 6.112**  4.006%* 16.434%*4 578%**
MSE-F 2.112** .0.223 4.807** -0.071  7.811**  4.846%* 20.457%*7.197%**

Panel B: Quarterly

Average correlation Diameter Average stock variance AV-DIA model

n=15 n=054 =15 n=054 n=15 n=0.54 n=15 n=0.54
Out-of-sample R?4.037 -1.449 12.104 8.978 5.386 5.627 18.146 16.429
dRMSE 0.161 -0.055 0.493  0.347 0.215 0.215 0.751  0.648
ENC-NEW 3.031** 0.490 6.892** 3.300** 3.200**  1.908** 10.852%*4 554%**
MSE-F 2.524** .0.500 8.262** 3.452** 3.415%*%  2,087** 13.302**6.881**

(Note) Table 2.5 presents the results of one-period ahead forecasts with the recursive scheme. The
dependent variable is the excess value-weighted portfolio returns. The first three columns compare the
restricted model with the unrestricted model in Equation (2.6). Average correlation is the value-weighted
average of the Pearson’s correlations of the 100 stocks. Diameter is the longest distance of all geodesic
paths in a given network. Average stock variance is the value-weighted average of stock variances. AV-
DIA model is the idiosyncratic risk propagation model as in Equation (2.7). Measures of forecasting
accuracy or forecasting encompassing are out- of-sample R?, dRMSE, ENC-NEW and MSE-F as
described in Section 4.5. ** is significant at 95% confidence interval. * is significant at 90% confidence
interval

2.4.6 Predictive regressions with controlled variables

Table 2.6 reports the regression estimates of diameter, average stock variance
and the interaction term when various predictors are presented. The goal is to ensure
that the primary results are unaffected and still robust in the presence of the controlled
variables. The first controlled factor is the lagged excess portfolio return (rp). The
second (rf) is the 3-month Treasury Bill. Yield is the dividends relative to the S&P500
index price (d/p). TED spread is retrieved from Federal Reserve Bank of St. Louis and
calculated as the spread between 3-month LIBOR based on US dollars and 3-month
Treasury Bill. Term spread is also retrieved from Federal Reserve Bank of St. Louis
and calculated as the difference between 10-year Treasury Constant Maturity and 3-
month Treasury Constant Maturity. Size; is defined as the market capitalization of the
S&P500 index. Book to market (BMy) is the ratio of book value to the market
capitalization of the S&P500 index.

Specification 1 is the same as the regression in model 7 of Table 2.3 implying
the significant effect of the idiosyncratic risk propagation model on portfolio returns.
Specifications 2 to 8 regress the idiosyncratic risk propagation model with each
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predictor. Across the models, the coefficients of diameter are constantly insignificant
while the coefficients of average stock variance and interaction term are significant.
Lagged excess portfolio returns, Risk-free rates, Dividend yield, TED spread, Size and
BM have insignificant coefficients and do not improve the adjusted R? of the based
model. Only Term spread is significant with the t-statistic of -2.038 and the adjusted
R? of 4.5%.

Specification 9 controls all seven predictors. The diameter coefficient remains
insignificant. The coefficients of the average stock variance (AV:) and the interaction
term (AVixDIAy) are relatively stable and significant with the Newey- West t- statistics
of 2.354 and -2.984, respectively. Compared to the first specification, the adjusted R?
improves from 3.4% to 4.6% . Term spread and Size appear to contain distinct
information about the portfolio returns in addition to the idiosyncratic risk propagation
model. These results indicate that the changes in the future returns are associated with
not only some global shocks but also some sufficient idiosyncratic shocks interacting
with network topology. This evidence confirms the previous findings of the importance
and role of the network topology in the market portfolio returns.
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Table 2.6 Regressions of the excess portfolios returns with controlled variables.
The dependent variable is the monthly excess portfolio returns at t+1
@ (2 3 4 ) (6 ) ®) €)]
Constant ~ 0.000  0.000 -0.003 0.002 0.000 0005 0.07 0.007 0.077
[-0.005] [0.008] [-0.232] [0.136] [0.000] [0.326] [0.414] [0.310] [2.084]

DIA: 0.002 0002 0002 0002 0002 0002 0001 0.002 0.001
[0.834] [0.826] [0.850] [0.869] [0.835] [1.149] [0.616] [0.806] [0.351]
AV, 3.127%% 3.000%* 3.388%* 3.280%* 3.130%* 3.020%* 2865 3.370** 2856+

[2.202] [2.175] [2.512] [2.531] [2.497] [2.826] [2.018] [2.635] [2.354]
AVXDIA;  -0.496%* -0.494%* -0.533** -0.520%* -0.497** -0.612%* -0.460%* -0.532%* -0.463**
[-3.231] [-3.187] [-3.629] [-3.605] [-3.356] [-3.929] [-2.973] [-3.721] [-2.984]

ot -0.009 -0.020
[-0.144] [-0.327]
o 1.370 -6.190
[1.083] [-1.441]
Yield; -0.143 -0.541
[-0.352] [-0.452]
TED: 0.000 -0.003
[-0.025] [-0.213]
Term -0.004%* -0.012%*
[-2.038] [-2.689]
Sizey 0.000 0.000%*
[-1.110] [-2.349]
BM, 0.017 0.012

[-0.480] [0.173]
Adj R? 0034 0031 0035 0032 0031 0045 0033 0032 0.046
N 299 299 299 299 299 299 299 299 299

(Note) Table 2.6 presents the results of one-period ahead predictive regressions of the excess value-
weighted portfolio returns on lagged variables. DIA: is the diameter of the correlation-based PMFG
network and calculated as the longest distance of all geodesic paths in a given network. AV is the measure
of idiosyncratic risk and calculated as the value-weighted average of stock variances. AVixDIA; is the
interaction term between average stock variance and diameter. “rs;” is the 3-month Treasury Bill. Yield;
is the dividend to price ratio of the S&P500 index. TED:; is the spread between 3-month LIBOR based
on US dollars and 3-month Treasury Bill. Term; is the spread between 10-year Treasury Constant
Maturity and 3-month Treasury Constant Maturity. Size; is the market capitalization of the S&P500 index
at the end of the month. BM is the book-to-market ratio of the S&P500 index at the end of the month. N
is the number of observations. Newey-West t-statistics with the maximum of 6 lags are reported in the
brackets. ** is significant at 95% confidence interval. * is significant at 90% confidence interval

2.4.7 Predictive regressions with alternative network measures

This last subsection presents the regression estimations of the alternative
network measures. The objective is to assess if the implication of interconnectedness
still holds when alternative network measures are applied instead of the diameter. The
alternative measures are average closeness centrality, average eccentricity centrality,
average eigenvalue centrality, and average KNN centrality.
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Table 2.7 reports the regression estimates of the alternative network measures
in comparison to the diameter. The first two models in the table are the same as the
model 2 and 7 in Panel A of Table 2.3. The specification 1 estimates the effect of the
idiosyncratic risk, measured by the average stock variance, on the market returns. The
specification 2 tests the effect of diameter and its role as the propagation channel of the
firm-specific shocks. The main implication of this model is that the diameter reflects
the network topology of the portfolio, which in turn serves as the propagation channel
of idiosyncratic risk. Without going into detail, average correlation is another measure
of interconnectedness which appears to be insignificant in the propagation mechanism
as mentioned in Section 2.4.3.

Specification 3 uses the average closeness centrality as the measure of
interconnectedness rather than the diameter. In network theory, closeness measures
how easily a node can reach the other nodes. A node with high closeness centrality
means that it takes shorter distance to reach all other nodes in the network. Since | use
the equal-weighted PMFG network to calculate the network measures, changes in the
closeness centrality are informative about the network topology although not as direct
and straightforward as the diameter. High average cross-sectional closeness centrality
indicates that the stocks are closed and the stock network would lean to the star- like
configuration. Similar to the diameter model, the closeness coefficient is not significant,
and the interaction between average stock variance and closeness is significant with the
t-statistic of 1.750 and adjusted R? of 2%.

Specification 4 uses the average eccentricity centrality as the measure of
interconnectedness. The eccentricity of a node is its shortest distance to the farthest
node in the network. Similar to diameter and closeness, the average eccentricity
centrality can reflect network topology of a stock market. Its meaning is much like the
diameter. That is, low eccentricity would indicate the star-like structure, and high
eccentricity is more chain-like. The regression coefficient of the eccentricity is negative
but insignificant. The significant interaction term with the t-statistic of -2.635 suggests
that the eccentricity works through the idiosyncratic risk to affect the subsequent
portfolio returns.

Specification 5 employs the concept of eigenvector centrality, which measures
the relative influence of a node in a network. The node attached to the high-scoring
nodes will have a higher level of eigenvector centrality than a connection to the low-
scoring nodes. This definition makes the eigenvector centrality closer to the average
correlation and less informative about the network topology. Similar to the other
network measures, the coefficient of the individual eigenvector is not significant with
the t-statistic of 0.845. Unlike the diameter, the eigenvector centrality does not work
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with the idiosyncratic risk to affect the market with the interaction-term t-statistic of
0.173 and adjusted R? of 1.5%.

Lastly, Specification 6 tests the role of KNN centrality for the idiosyncratic risk
propagation mechanism. KNN stands for K- nearest neighbors and is calculated as the
average nearest neighbor degree of the given nodes with K distance. For simplicity, |
use only adjacent neighbors and make K equal to 1. In the setting of this paper, high
average KNN centrality means that this node tends to connect to the high degree nodes
rather than low degree nodes. The network topology implication of KNN is mixed
because the high KNN nodes might occur only in part of the network and sometimes
result in a chain- like structure. Moreover, the regression estimation indicates that the
KNN does not fit the role of the propagation channel with insignificant coefficients and
the adjusted R? of 1.1%.

In summary, the evidence for interconnectedness in the idiosyncratic risk
propagation mechanism is not unanimous. Closeness and Eccentricity are statistically
significant while AC, Eigenvalue, and KNN are not. These findings suggest that not all
aspects of the interconnectedness are relevant to the portfolio returns, and diameter is
the best among other tested network measures, at least in my sample.



Table 2.7 Regressions of the excess portfolios returns with alternative network

measures.
The dependent variable is the monthly excess portfolio returns at t+1
(€) ) (©) () ®) (6)
Constant 0.013 0.000 0.007 0.007 -0.075 -0.009
4.868 -0.005 0.314 0.426 -0.730 -0.460
Average stock variance -0.683*  3.127**  .3518** 2.638* -2.541 -0.763
(AV) [-1.938] [2.202] [-2.246] [1.757] [-0.233] [-0.423]
Diameter 0.002
[0.834]
Closeness 0.015
[0.214]
Eccentricity 0.001
[0.323]
Eigenvalue 1.147
[0.845]
KNN 0.002
[1.180]
(AV)x(Diameter) -0.496%**
[-3.231]
(AV)X(Closeness) 9.701*
[1.750]
(AV)x(Eccentricity) -0.544%x
[-2.635]
(AV)x(Eigenvalue) 25.343
[0.173]
(AV)X(KNN) 0.014
[0.079]
Adj R? 0.014 0.034 0.020 0.030 0.015 0.011
N 299 299 299 299 299 299

(Note) Table 2.7 presents the results of one-period ahead predictive regressions of the excess value-
weighted portfolio returns on lagged variables. Average stock variance is the measure of idiosyncratic
risk and calculated as the value-weighted average of stock variances. Diameter is the diameter of the
correlation-based PMFG network and calculated as the longest distance of all geodesic paths in a given
network. Closeness, Eccentricity, Eigenvalue, and KNN are network measures as defined in Section 4.7.
The interaction terms are the interaction between average stock variance and the network measures. N is
the number of observations. Newey-West t-statistics with the maximum of 6 lags are reported in the

brackets. ** is significant at 95% confidence interval. * is significant at 90% confidence interval
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2.5 Concluding remarks

The relationship between idiosyncratic risk and market portfolio returns has
been supported by mixed evidence from the existing literature. Goyal and Santa-Clara
(2003), in particular, advocate the significant forecasting power of idiosyncratic risk,
measured by average stock variance, while Pollet and Wilson (2010) provide evidence
against this relationship. The typical rationale against this relationship is that
idiosyncratic shocks are diversified away in the market portfolio and thus should not
affect the market returns. However, from the network perspective, the diversification
argument is not always true. The idiosyncratic shocks can sometimes propagate to the
other stocks and in turn affect the aggregate fluctuation of the portfolio returns. Thus,
the network structure serves as a propagation channel of the idiosyncratic risk with
amplification or diversification functionality.

Although a number of network measures are studied in existing literature, | have
focused on a simple network concept, called “diameter.” This network measure is
particularly useful in capturing the network topology or pattern of connections among
the stocks. | conjecture that the network topology has a favorable impact on the
relationship between idiosyncratic risk and portfolio returns. The empirical evidence
suggests that the diameter is a good indicator for interconnectedness that functions as
the channel through which idiosyncratic risk propagates. In particular, the findings
strongly support the interaction of diameter and average stock variance to predict the
subsequent excess portfolio returns. The interaction term between the two predictors is
statistically significant in both monthly and quarterly samples. It is, also, robust to the
different horizons of the returns and out- of- sample exercises. Moreover, the effect of
the idiosyncratic risk propagation model is not affected by the well-known predictors
such as the dividend yield, TED spread, Term spread, market capitalization and book-
to-market ratio.

This work opens up many interesting areas of research regarding the
relationship between network structure and asset pricing models. As mentioned earlier,
the diameter is just one of many network measures, and the network topology is just
one of several network characteristics. The other network measures with unique
network information may be complementary or even substitute the diameter.
Furthermore, the homogeneous and static behavior of the network members is assumed
in this paper. Accordingly, incorporation of agent-based modeling and allowance of
network evolution over time are promising areas for future research. The caveat,
though, is that this kind of work will inevitably complicate the subject further in
comparison to this study.
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2.6 Appendix
2.6.1 Average stock variance

This appendix provides some additional tests of the average stock variance. In
section 2.2.3, the average stock variance is used as a proxy of idiosyncratic component
of the stock market. The underlying reason is pointed out by Goyal and Santa-Clara
(2003). The average stock variance, as shown in Equation (2.2), is a direct measure of
the total risk that can be decomposed into systematic and idiosyncratic components.
Since the systematic component is arguably much smaller than the idiosyncratic
component, the average stock variance is virtually an approximation of idiosyncratic
risk. This section reports additional evidence on this issue. Table 2.8 shows the
percentage of the idiosyncratic component to the total risk measured by the average
stock variance. In the first two rows, | directly use the data of average stock variance
and the market portfolio variance from the original sources (Goyal and Santa-Clara
2003; Pollet and Wilson 2010). In the third and fourth rows, the systematic component
is the stock market portfolio’s variance in accordance with Equation (2.1). The
idiosyncratic component of the first four rows is estimated from the subtraction between
total risk and systematic component. In the last two rows, | estimate the idiosyncratic
component from the variance of residual of the one-factor model whereby the market
return is the sole factor.

In Table 2. 8, we can see that the overall idiosyncratic component is
approximately 70% or above. Goyal and Santa-Clara get the higher number at 94.06%
because they use most stocks in CRSP to calculate the parameters. Moreover, they use
the equal-weighted approach to construct the variable, while this thesis and Pollet and
Wilson use the value-weighted approach. These two factors tend to decrease the weight
of the systematic component and increase the weight of the idiosyncratic component.
Pollet and Wilson (2010) get the second highest at 77.79%, which is a bit higher than
my data. This is expected because my data comprises of the largest 100 stocks rather
than the largest 500 stocks in Pollet and Wilson (2010).
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Table 2.8 Percentage of idiosyncratic component to the total risk.

Total risk Systematic Idiosyncratic
component component
Average stock  Market portfolio Estimated/Residual
variance variance variance
Covaland — iy 1962-1999 All CRSP 0.029 0.002 0.027 0
Santa-Clara y ; . . . 94.06%
Pollet and Quarterly 1963-  Largest 500 0.022 0.005 0.017 g0
Wilson 2006 CRSP : : : 17.79%
Thesis Monthly 1990-2014 'S‘zrge“ 100 0.008 0.002 0006  70.00%
. Quarterly 1990- Largest 100
Thesis 2014 sp 0.023 0.007 0.016 69.87%
Thesis Monthly residual  Largest 100 5050 0.006 0.65°
variance SP : ) ‘ 70.65%
. Quarterly residual Largest 100
Thesis variance sp 0.023 - 0.017 73.40%

(Note) The data in first two rows is directly retrieved from Goyal and Santa-Clara (2003) and Pollet
and Wilson (2010). In third and forth rows, the average stock variance is calculated from Equation (2.2).
The systematic component is the stock market portfolio’s variance in accordance with Equation (2.1).
The idiosyncratic component of the first four rows is estimated from the subtraction between total risk
and systematic component. The systematic component is the stock market portfolio’s variance in
accordance with Equation (2.1). The idiosyncratic component is estimated from the subtraction between
total risk and systematic component. In the last two rows, | estimate the idiosyncratic component from
the variance of residual of the one-factor model whereby the market return is the sole factor.

Nonetheless, the systematic component is the embedded part of the average stock
variance and may take over the total risk in some periods. In particular, the crisis period
is known to have a high degree of the global shocks that are considered the systematic
risk. Therefore, there is a need to test the periods of crisis and non-crisis separately.
Similar to the section 2.4.2, | define the crisis period as the contraction period in
accordance to NBER, including July 1990 — March 1991, March 2001 — November
2001, and December 2007 — June 2009. Table 2.9 reports the percentage of the
idiosyncratic component to the total risk in two subsamples. Panel A uses the data from
the non-contraction period. Panel B uses the data from the contraction period. As
expected, the portion of the idiosyncratic component in the non-contraction period is in
general higher than that in the contraction period. In the average stock variance
approach, the number is about 71% in the non-contraction period while it is about 64%
in the contraction period. Similarly, in the one-factor approach, the number is about
75% in the non-contraction period while it is about 60% in the contraction period. Thus,
regarding the idiosyncratic risk information, the average stock variance approach is
better than the one-factor approach. All in all, the average stock variance in the thesis
is a good proxy for the idiosyncratic component. Nevertheless, since the portion of the
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systematic risk is fairly large in the contraction period, it will be interesting to see the
use of different idiosyncratic component measures in the future research.

Table 2.9 Percentage of the idiosyncratic component of the total risk in two
subsamples.
Panel A Non-contraction periods

Total risk Systematic Idiosyncratic
component component
Average stock Market portfolio Estimated/Residual
variance variance variance
Average variance approach monthly 0.007 0.002 0.005 71.61%
Average variance approach quarterly 0.020 0.006 0.015 71.50%
One-factor approach monthly 0.007 - 0.005 74.11%
One-factor approach quarterly 0.020 0.016 76.91%
Panel B: Contraction periods
. Systematic Idiosyncratic
19talRER component component
Average stock Market portfolio Estimated/Residual
variance variance variance
Average variance approach monthly 0.015 0.005 0.010 64.85%
Average variance approach quarterly 0.044 0.016 0.029 64.83%
One-factor approach monthly 0.015 - 0.009 59.88%
One-factor approach quarterly 0.044 - 0.028 62.56%

(Note) This table shows the percentage of the idiosyncratic component in two subsamples. Panel A uses
the data from the non-contraction period. Panel B uses the data from the contraction period according to
NBER. In the first two rows, the average stock variance is calculated from Equation (2.2). The systematic
component is the stock market portfolio’s variance in accordance with Equation (2.1). The idiosyncratic
component of the first four rows is estimated from the subtraction between total risk and systematic
component. The systematic component is the stock market portfolio’s variance in accordance with
Equation (2.1). The idiosyncratic component is estimated from the subtraction between total risk and
systematic component. In the last two rows, | estimate the idiosyncratic component from the variance of
residual of the one-factor model whereby the market return is the sole factor
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Chapter 3 Predicting the probability of extreme negative returns: A

network approach

Abstract This paper proposes a network model to predict the probability of the extreme
negative returns of global stock markets during 2000 to 2015. The extreme negative
return is defined as the bottom five percent of the country's return distribution. In the
network model, the global market can be demonstrated in a large network where
countries are connected by some kinds of relationships. A country-specific shock then
propagates through the cross-country linkages to the other countries, which may result
in the extreme negative situation in the respective countries. This paper focuses on the
properties of the propagation channel and studies the role of the network structure in
determining the probability of the extreme negative returns. | find that the network
measures themselves have the weak ability to identify or predict the extreme situations.
Rather, the results suggest that the network measures help a measure of country-specific
shocks to improve the ability to predict the probability of the extreme negative returns.

Keywords: Extreme negative returns, Financial network, Diameter, Country- specific
shocks, Extreme value analysis.

JEL classifications: D85, F36, G15
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3.1 Introduction

The US subprime mortgage crisis in 2007-2008 is the extremely negative event
that affects not only the US but also other countries in the world. Similarly, the Greek
government- debt crisis is another event where the downfall of one country can
potentially threaten the stability of other financial markets. The common interesting
feature of both systemic events is the phenomenon where an extremely negative shock
can spillover and affect other countries. This phenomenon is called “contagion.” The
primary objective of this paper is to study the probability of the extreme negative
returns that are associated with contagion and in particular examine the factors that
could identify and predict the probability of the extreme negative returns.

To begin with, in the context of the international equity market, the extreme
negative returns is used to study contagion. In fact, there are many ways to define and
study contagion in the existing literature. For example, Masson (1999) considers an
event as contagion if the market co-movement is not explained by global shock and
linkages through normal trade and economic relationships. Boyer et al. (2006) define
contagion as the excess correlation between stock markets. Forbes and Warnock (2012)
classify contagion if a country-specific shock causes changes in another country’s gross
capital inflows or outflows. Forbes (2012) provides a thorough summary of contagion
and discussed several definitions of contagion. She suggests that a concept of the
extreme negative returns is suitable for the broad definition of contagion. Specifically,
the contagion can be broadly defined as the transmission of an extreme negative shock
in one country to others through numerous real and financial channels. This broad
definition is particularly appropriate for the use of citizens and policymakers because it
is quite straightforward and can be measured in real time. Due to this reason, | am
motivated to study the relationship between extreme negative returns and network
structure which is the essential element of contation.

According to the broad definition of contagion, both US and Greek crises are
naturally classified as contagion because the extreme negative shocks are actually
transferred and cause extreme negative events in the other countries. Figure 3.1
demonstrates the contagion process in which a country-specific shock travels through
the propagation channel to the affected country. Forbes (2012) explains that a contagion
may occur when one or more countries experience extreme negative returns. The
coincidence of countries with extreme negative events (ENRan) is, then, naturally
associated with contagion. Forbes (2012) provides empirical evidence that this measure
of contagion is robust and statistically significant in identifying the probability of the
extreme negative returns. The intuition for this measure is straightforward. Contagion
is considered occurring if several stock markets experience extreme negative returns at
the same time. The high percentage of countries facing extreme negative returns means
that the extremely negative shocks do hit those countries. The affected countries would
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then have the high probability of the extreme negative returns. If the extreme negative
events are not caused by global shocks, then they are likely to result from contagion.
After controlling the global shocks, Forbes finds that the ENRay is still significant and
even dominates the effect of global shocks. In this paper, | also reach the same
conclusion that ENRay is the robust measure for measuring the probability of the
extreme negative returns in the contemporary periods.

Figure 3.1 A Simple Network Model with Two Countries

Country- _
specific risk Width

Distance

(Note) This figure demonstrates the contagion components of a simple network model, including the
country-specific risk, width or strength of propagation channel, distance of propagation channel and the
affected country

However, while the coincidence of extreme negative returns (ENRay) is a natural
indicator for the probability of each country’s extreme negative return in the same
period, it may not be the case for the prediction. Specifically, the extreme negative
returns in one period may not be a good predictor of the probability of the extreme
negative returns in the next period. Instead, this article proposes that the underlying
structure that allows the transmission of the extreme negative shocks is more relevant
to the future return situations. From Figure 3.1, one can easily see that the ENRay is not
the only factor that can affect contagion. The country- specific shock and the
propagation channel are two components that come before the ENRai.  Without the
sufficient degree of both factors, the possibility of contagion is likely to decrease
substantially. In the existing literature, the shock and propagation channel are two
important ingredients of contagion. For example, Elliott et al. (2014) report that the
large idiosyncratic shock can result in the initial failure, which in turn triggers cascades
of failures through the propagation channel in the financial architecture. Acemoglu et
al. (2015) study different network architectures of financial interdependencies. They
show that different network structures are associated with different levels of
interconnectedness, some of which can facilitate the shock propagation and even turn
it into a systemic event. Likewise, Bisias et al. (2012) emphasize that the network
approach can explain how a systemic event unfolds and usually be regarded as an early
warning of the systemic event.

This paper focuses on the measures of idiosyncratic risk and propagation
channel in addition to the percentage of countries with extreme negative returns on the
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stock markets (ENRan). The measure of idiosyncratic risk is straightforward and
calculated as the equal-weighted average of stock markets’ variances, using within-
month daily data. To quantify the properties of the propagation channel, I use the
techniques from the network theory. Specifically, | view the global market as a network
whereby stock markets are connected by their correlation of returns. In a simplest two-
countries setting, a country- specific shock can propagate to another via the channel of
return correlation between two stock markets. Thus, the probability of future extreme
negative return will depend on country- specific shock, strength/ width of the
propagation channel and distance of the channel, as shown in Figure 3.1.

With this background in mind, | construct the main research question of the
paper as follows: Does the network structure have an influence on the extreme negative
returns in the immediately subsequent period? I expect that the measure of the network
structure will have the power to predict the extreme negative returns. In particular, the
underlying structure of the global market serves as the channel through which shocks
propagate. Since the procedure of shock propagation and amplification is a part of the
buildup of the systemic risk, the network approach is forward-looking and useful in
tracking and monitoring threats. The network measures should then have some degree
of forecast power. | find that the measures of propagation channel are rather weak to
identify and predict the probability of extreme negative returns, while a measure of
country-specific risk is significant. However, once the network measures interact with
the idiosyncratic risk measure, their predictive power increases significantly. As for
the identification of the contemporary extreme negative returns, the interactions are also
significant, but they do not significantly improve the performance of the idiosyncratic
risk measure.

The contribution of this paper is two-fold. First, the percentage of the sample
with extreme negative returns (ENRani) is only moderately significant to predict the
probability of the extreme negative returns. More importantly, | apply the network
approach to the extreme value analysis. | find that the network measures can improve
the performance of idiosyncratic risk measure to predict the probability of the extreme
negative returns. The rest of the paper is divided into five sections. In Section 3.2, |
will explain the methodologies applied in constructing the stock networks and
generating related variables. Section 3.3 presents the description of data and some
basic statistics. Section 3.4 reports the empirical results from logistic regressions.
Section 3.5 concludes the paper.

3.2 Methodology

To achieve the main goal of the study of the relationship between network
structure and extreme negative return, it is necessary to define the extreme negative
return, the relevant context and measures. Section 3.2.1 explains the extreme negative
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returns and its significance in contagion. Afterward, Section 3.2.2 explains an approach
to study the probability of extreme negative returns and the methods to construct the
studied measures.

3.2.1 Extreme negative return and contagion

Following Forbes (2012), | define an extreme negative return as the bottom 5%
of that country’s monthly return distribution. Apparently, the extreme negative return
and contagion are closely related for several reasons. First, according to Forbes (2012),
the contagion is defined as the transmission of an extreme negative shock in one country
to one another or more countries. If many countries experience the extremely negative
events in a given period, there is a high possibility of contagion. This version of
contagion does not concern how the shock transmits nor what channel it employs.
Rather, the occurrence of contagion depends on the number of countries affected by the
shock. Second, the extreme negative shock can also affect the other countries without
the actual propagation. General citizens do not care how the shocks are propagated to
them and simply care about its effect on them. The citizens, for example, may fear that
negative events in other countries would go out- of-control and affect them. Thus,
without the actual propagation, the shock would still affect other markets. Last but not
least, although there are many ways to define contagion, policymakers and governments
may find it difficult to identify various forms of contagion promptly. This board form
of contagion is straightforward and flexible enough to satisfy the needs of policymakers
and governments. Thus, Forbes (2012) believe that the measure of contagion is
significant in explaining the extreme negative returns.

3.2.2 Measuring the probability of extreme negative returns

In this paper, the extreme value analysis is used for three reasons. First, the
extreme value approach directly tests the probability of extreme negative returns in the
tail distribution of returns. Second, the extreme value analysis is robust to different
assumptions about return distribution. Since this approach focuses on the behavior of
the tail distribution, it does not matter if the whole distribution is normal or asymmetry.
Last but not least, contagion is often not limited to crisis periods. With the suitable
environment, an extreme negative event can sometimes occur in the non-crisis periods.
Nonetheless, this extreme value approach has two disadvantages. The sample of
extreme returns is inevitably small. ~ To mitigate the problem, I apply the panel data
analysis to the extreme value approach. Another problem is that extreme returns in
multiple markets may not result from contagion measure or network measures but
global shocks. To investigate this issue, I also include some global shock measures in
the analysis.
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Following Forbes (2012), | examine the possibility of the coincidence of
extreme negative returns by using the binomial logistic regression. The outcome
variable is the dichotomous variable of extreme negative returns, ENR;t. A country
experiences an extremely negative period when its stock market experiences an extreme
negative return. The ENR;; is defined as the bottom 5% of that country’s monthly
return distribution. ENR;¢is 1 if country i is experiencing an extremely negative return
in month t. ENR;;¢ is O if otherwise. The predictor variables of interest are the
percentage of countries with extreme negative returns, ENRait, @ measure of country-
specific risk, a measure of propagation channel strength and a measure of propagation
channel distance. The first measure is a benchmark which is directly borrowed from
Forbes’ paper. The other measures are the extension of the based model and therefore
the contribution of this article.

3.2.2.1 Percentage with an extreme negative return

According to Forbes (2012), ENRa is the natural factor to identify the contagion
and therefore will be served as the benchmark factor. The rationale behind this measure
is that it reflects the impact of the idiosyncratic shocks on other countries. If an
idiosyncratic shock affects only a respective country and not the others, the number of
countries facing extreme negative returns should not exceed 5% of the sample in each
period. However, the fact that some periods have high ENRay indicates that the
idiosyncratic shocks could propagate to the other countries and results in extreme
negative returns of’ multiple countries. Therefore, without taking into account the
spillover channels whatsoever, the ENRay can display the impact of idiosyncratic
shocks and be a good indicator for contagion identification.

3.2.2.2 A measure of country-specific risk

Following Goyal and Santa-Clara (2003), | construct a measure of country-
specific risk from the equal- weighted average of the members’ variance in a portfolio,
as expressed in Equation (3.1).

1w
AV, = —Z V., 3.1)
N 4 '
=1
Dy Dy
Vie = Z iy + 2 Z Tialid—1/ (3.2
d=1 a=2

where AVt is the measure of country-specific risk in month t. Nt is the number
of stocks used in the calculation of period t. Vit is the monthly variance of the stock
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market of the respective country i in month t. The formula of Vi is shown in Equation
(3.2) and is calculated from the daily returns within month t.  rigq is the return of the
stock market i on day d. Dy is the number of the trading day in month t. The second
term on the right-hand side is used for the autocorrelation adjustment in daily returns.

According to Goyal and Santa- Clara (2003), AVt is originally the measure of
total risk of a portfolio and can be decomposed into the idiosyncratic component and
systematic component. Because the systematic component is much smaller than the
idiosyncratic component, the AV: is virtually an approximation of idiosyncratic risk.

3.2.2.3 Measures of cross-country linkages

Measures of cross-country linkages are relatively different from the ENRay, as
they primarily focus on the cross- country linkages and transmission of shocks.
Specifically, the cross-country linkages serve as channels through which idiosyncratic
shocks propagate. Changes in these links would directly influence the extent to which
the idiosyncratic shocks affect members in a network. In this paper, | use two measures
of such linkages, including cross-market correlation and diameter. The first one is used
to capture the strength of the propagation channel, whereas the latter is used to estimate
the distance that the shocks would travel.

Cross- market correlation is calculated as the equal- weighted average of
correlations of stock market returns using a 52-week rolling sample of 43 market
returns. | use weekly return instead of daily returns to avoid the non-synchronous
timing among the countries. By this construction, the average correlation implies how
strong the market returns are moving together in aggregate level. In terms of cross-
country linkages, this implication of the average correlation is directly associated with
the strength of propagation channel. If the average correlation is high, a country-
specific shock can easily affect the counterparties. However, the average correlation
does not capture how the shock transmits from one country to the rest of the network.
In addition, the cross-correlation is a crude measure of contagion with some limitations
as discussed by Forbes and Rigobon (2002), Ang and Chen (2002) and Forbes (2012).
Equation (3.3) show the formula for the average correlation.

1
AC = =" puer (33)

where p; ; is the Pearson’s correlation between stock i and k. N is the number
of stocks used in the calculation, equal to 43. n is the number of correlation excluding
the diagonal elements. In this case, nis 1,806. One distinct advantage of the average
correlation is that it is also an indicator of systematic risk. Pollet and Wilson (2010)
empirically show that it is better than many measures of systematic risk to predict the
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subsequent US stock market returns. Thus, the average correlation is complementary
to the measure of country-specific risk (AVy).

Diameter is a network concept that can reveal how the linkages are connected
and formed a network structure. By knowing the pattern of the network structure, we
can quantify the aspect of propagation channels that allow idiosyncratic shocks to reach
all members of a network. The standard definition of the diameter is the longest
distance of all geodesic paths in a given network. The geodesic path is the lowest
number of links between two nodes. Consequently, the diameter is an intuitive measure
for the distance of propagation channel. To illustrate, | generate a simple network of 5
markets as shown in Figure 3.2. Figure 3.2a is a chain-like structure that has the longest
diameter of 4 as measured by the number of links of the largest geodesic path. Figure
3.2b is a tree-like structure with a diameter of 3. Figure 3.2c is a star-like network with
the shortest diameter of 2. The average correlation is just an average number of links
and clearly not sufficient to capture the network pattern. The diameter, on the other
hand, provides direct information about the pattern and thus the distance of propagation
channel.

Unlike the average correlation, the calculation of the diameter is not as
straightforward and required incorporation from the field of the network theory. 1 carry
out this task in three steps. First, | estimate a matrix of correlation of returns, just like
when | construct the average correlation. A correlation matrix is constructed from 52-
week rolling returns and updated at the end of the month. Creating a network from this
full correlation matrix is possible. However, the network will be so noisy and
complicated that it is impaossible to see any pattern of connections as shown in Figure
3.3a. Second, to compress such a complex network, the correlation matrix is filtered
by an algorithm, called Planar Maximally Filtered Graph (PMFG). This network
algorithm is introduced by Tumminello et al. (2005). The algorithm starts by ordering
the correlations from high to low. Then, the highest correlation is picked first, followed
by the next highest correlation as long as the graph can be drawn on a 2-D surface
without link crossing. If an additional link does not satisfy the planarity constraint, the
link is removed, and the process continues to the next link. The total number of
connections in a network is reduced from n(n-1)/2 to 3(n-2). The filtered network then
contains the essence of stock interrelationships which forms the network topology as
shown in Figure 3.3b. The noisy and weak relationships in Figure 3.3a would then be
eliminated and in fact transformed into long-distance paths in Figure 3.3b. Lastly, the
diameter is calculated by counting the number of links between the two furthest nodes
in Figure 3.3b. The network structure is updated at the end of each month from January
2000 to December 2015. The sample has a total of 192 monthly networks as well as
the list of respective diameters.
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Figure 3.2 Illustration of Five-stock Network
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a) Chain-like network b) Tree-like network c) Star-like network

(Note) This figure illustrates the possible patterns of the connected network with the minimal humber of
links. There are three patterns, including Chain-like network in a), Tree-like network in b) and Star-like
network in c).

3.3 Description of data

In order to study contagion of the global market, | work with the stock market
returns of 43 countries. The data includes 22 developed markets of MSCI World and
21 emerging markets of MSCI Emerging markets. The developed markets include
Canada (can), United States (usa), Austria (atr), Belgium (bel), Denmark (den), Finland
(fin), France (fra), Germany (ger), Ireland (ire), Italy (ita), Netherland (net), Norway
(nor), Portugal (por), Spain (spn), Sweden (swe), Switzerland (swz), United Kingdom
(uk), Australia (aus), Hongkong (hk), Japan (jpn), Newzealand (nz), Singapore (sgp).
The emerging markets are Brazil (bra), Chile (chl), Columbia (col), Mexico (mex),
Peru (per), Czech (cz), Egypt (egp), Greece (gre), Hungary (hun), Poland (pol), Russia
(rus), South Africa (sfr), Turkey (tur), China (chn), India (ind), Indonesia (idn), South
Korea (kor), Malaysia (may), Philippines (phl), Taiwan (tai), Thailand (tha). The daily
stock returns are generated from the difference in log prices between two consecutive
days, collected from Bloomberg Terminal. Monthly returns are calculated from the
within-month daily returns. The sample period is January 2000 to December 2015.

Table 3.1 reports the summary statistics of the 43 market on a monthly basis.
The average monthly return of the MSCI world is very low at 0.0001, whereas that of
the MSCI Emerging markets is much higher at 0.0038. On the other hand, the average
standard deviation of the MSCI world markets at 0.056 is lower than that of the MSCI
emerging countries at 0.0773. As expected, the developed markets are more stable than
the emerging, but the return on investment is also lower during the sample period.

Figure 3.3b depicts the global network of 43 markets during the sample period.
This network is constructed from the correlations of weekly returns and then filtered by
the PMFG algorithm.  Grey nodes represent stock markets listed in the MSCI world.
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White nodes are stock markets listed in the MSCI emerging market. The network
provides us with some useful information that cannot be seen from the standard
statistics. Firstly, the markets tend to cluster around each other in the same region. For
example, the markets in Asia are very close to each other. An idiosyncratic shock takes
only 1 or 2 links to reach the others. Likewise, the markets in South America tend to
cluster around each other with Brazil at the center. Thus, a country-specific shock
would first transmit to the countries in the same region and then propagate through the
other regions of the world. Furthermore, the developed markets in gray are at the center
while the emerging markets tend to be on the outer part of the network. That is, shocks
from developed markets, in general, will travel across the network faster than those of
emerging markets. For instance, a shock from the USA can affect countries in Europe
and South America simultaneously. A shock from Greece, on the other hand, only has
a direct effect on countries in Europe. Nevertheless, if the shock from Greece is large
enough, it can travel throughout the network and cause a systemic event.

Based on these observations, the network structure can be regarded as
propagation channel through which idiosyncratic shocks propagate.  The network
measures are then closely related to the contagion of the idiosyncratic shocks. The next
section provides some empirical evidence for the relationship between the extreme
negative returns and network measures.

Figure 3.3 The Global Network of the Full Sample
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a) Correlation-based complete network b) Correlation-based PMFG network

(Note) This figure depicts two networks of 43 countries using the weekly returns from January 2000 to
December 2015. A node represents a country and a link represents a correlation of returns between two
countries’ stock market returns. The gray nodes are developed markets, and the white nodes are
emerging markets. Figure 3.3a depicts a complete network constructed from the full correlation matrix.
Figure 3.3b depicts a PMFG network constructed from

the PMFG-filtered correlation matrix.
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Table 3.1 Data Description of Stock Market Returns

MSCI World MSCI Emerging Markets

mean min max sD Skew | Kurt mean min max SD Skew | Kurt
can | 0.0023 |-0.1827 | 0.1098 | 0.0431 |-0.9569 | 5.3745 bra | 0.0008 |-0.3908 | 0.2498 | 0.1032 |-0.6291 | 4.4144
usa 0.0016 |-0.1893 | 0.1029 | 0.0444 | -0.7060 | 4.3977 chl 0.0044 | -0.1463 | 0.1458 | 0.0446 | 0.0072 | 3.4206
atr | 0.0001 |-0.3651| 0.1759 | 0.0688 |-1.5217 | 8.9239 col 0.0096 | -0.3362 | 0.2201 | 0.0883 | -0.4182 | 3.6517
bel 0.0003 |-0.3527 | 0.1391 | 0.0602 | -2.0281 | 10.8566 mex | 0.0054 |-0.3671 | 0.1548 | 0.0695 | -0.9564 | 6.4564
den | 0.0073 | -0.1963 | 0.1699 | 0.0544 | -0.6857 | 4.6972 per | 0.0081 | -0.4470 | 0.2368 | 0.0865 | -0.7753 | 6.1492
fin | -0.0046 | -0.3711 | 0.2776 | 0.0856 |-0.6265 | 5.6669 cz 0.0044 | -0.2633 | 0.2064 | 0.0660 | -0.3462 | 4.6833
fra |-0.0007 |-0.1741 | 0.1201 | 0.0519 |-0.5763 | 3.6462 egp | 0.0092 |-0.3745 | 0.3113 | 0.0943 | -0.2262 | 4.1714
ger | 0.0001 |-0.2867 | 0.1796 | 0.0632 |-0.8971 | 5.5605 gre |-0.0183 |-0.4474 | 0.2225 | 0.1016 |-0.8166 | 4.9496
ire | -0.0035 |-0.2576 | 0.1519 | 0.0658 |-0.8747 | 4.3763 hun | 0.0023 | -0.4086 | 0.1790 | 0.0793 | -0.8689 | 6.1298
ita |-0.0033 |-0.1672 | 0.1715 | 0.0578 | -0.3660 | 3.3919 pol |-0.0001 |-0.2729 | 0.1932 | 0.0692 |-0.2092 | 3.9757
net |-0.0001 |-0.2039 | 0.1233 | 0.0552 |-1.0049 | 4.8832 rus | 0.0031 |-0.4350 | 0.3189 | 0.1074 |-0.5558 | 4.5502
nor | 0.0029 |-0.2760 | 0.1253 | 0.0638 |-1.2148 | 6.3943 sfr | 0.0085 |-0.1803 | 0.1317 | 0.0501 |-0.3122 | 3.6287
por |-0.0052 | -0.2228 | 0.1236 | 0.0556 |-0.7603 | 4.7598 tur | 0.0074 |-0.4122 | 0.4453 | 0.1076 | -0.0234 | 4.8937
spn | -0.0006 | -0.1923 | 0.1616 | 0.0608 | -0.4157 | 3.8996 chn | 0.0030 |-0.2601 | 0.1730 | 0.0807 | -0.6878 | 3.9101
swe | 0.0011 | -0.2067 | 0.2025 | 0.0639 | -0.5039 | 4.5523 ind | 0.0081 |-0.2847 | 0.2520 | 0.0737 |-0.5076 | 4.4275
swz | 0.0010 |-0.1324 | 0.1036 | 0.0407 |-0.6499 | 3.4962 idn | 0.0094 |-0.3643 | 0.1917 | 0.0772 | -0.7295 | 5.5040
uk -0.0004 | -0.1398 | 0.0847 | 0.0411 | -0.6825 | 3.6877 kor 0.0044 | -0.2355 | 0.2363 | 0.0697 | -0.2100 | 4.0430
aus | 0.0029 |-0.1166 | 0.0808 | 0.0383 |-0.6310 | 3.1808 may | 0.0036 |-0.1632 | 0.1381 | 0.0464 | -0.3573 | 4.3300
hk 0.0019 |-0.2434| 0.1576 | 0.0621 |-0.6068 | 4.5301 phl 0.0044 |-0.2398 | 0.1552 | 0.0633 | -0.3504 | 3.7911
jpn | -0.0004 | -0.2365 | 0.1192 | 0.0527 |-0.5326 | 4.4692 tai |-0.0012 | -0.2454 | 0.2348 | 0.0680 | -0.1327 | 4.3178
nz 0.0002 |-0.1575| 0.1006 | 0.0419 |-0.5694 | 3.8747 tha 0.0038 | -0.3661 | 0.2621 | 0.0773 | -0.7076 | 6.4905
sgp | -0.0003 | -0.3079 | 0.1917 | 0.0599 |-1.1258 | 7.5177 Average| 0.0038 |-0.3162 | 0.2218 | 0.0773 |-0.4673 | 4.6614

Average| 0.0001 |-0.2263 | 0.1442 | 0.0560 |-0.8153 | 5.0972

(Note) The data consists of 22 markets in the MSCI World index and 21 markets in the MSCI Emerging
markets index. The statistics are calculated monthly using within-month daily returns. “SD” is standard
deviation, “Skew” is the skewness, and “Kurt” is the kurtosis.
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3.4 Empirical results

3.4.1 Explanatory variables over time

To identify and predict the contagion, | focus on four explanatory variables,
including the percentage of the sample with extreme negative returns (ENRan), average
correlation (AC), average variance (AV) and diameter (DIA). The ENRa s the original
measure in Forbes’ model, and the remaining variables are the extension of the model.

Figure 3.4 depicts monthly dynamic of the four variables over time. The bar
chart of ENRai reports the percentage of countries with an extremely negative return in
each month t. The straight line at 5% is the threshold for classifying the extreme
negative returns. If there is no contagion, the ENRai should not exceed 5%. Instead,
the ENRan chart clearly shows that the extreme negative returns are not evenly
distributed. For instance, in September 2008, the ENRaj reached 74%. Clearly, not
only did the collapse of Lehman’s Brothers affect the USA but also caused the
transmission of an extreme negative shock throughout the international markets. In this
regard, the evidence is consistent with Forbes (2012) and presents the ENRai as a
potential identifier of contagion.

AV graph shows the dynamic of the equal-weighted average variance of the
stock markets’ returns. The graph indicates that the country-specific risk shows no
trend but clear bursts. The spikes are corresponding to the extreme events in the sample
period, especially the financial crisis in 2008. For this reason, AV is also a potential
candidate for measuring extreme negative returns.

The graphs of AC and DIA depict the measures of cross- country linkages over
time. Unlike ENRaj and AV, they are constructing by using the 52-week rolling sample
and are updated every month. Thus, in theory, they should be more capable of capturing
a trend in international markets. As expected, the AC graph demonstrates a certain
trend for the global market. It has an upward trend from 2000 to 2009 and then a
downward trend after 2009. Other things equal, if the AC is high, it is easier for an
idiosyncratic shock to affect many markets and even the entire network. For example,
the financial crisis in 2008-2009 was associated with the high level of AC, and a
country-specific shock can easily affect the other countries. On the other hand, the DIA
graph shows no trend but some small spikes throughout the sample period. Its
fluctuation pattern even somewhat resembles the behavior of ENRay and AV, albeit
lesser degree. Therefore, it is clear that DIA captures the different aspect of propagation
channel from the AC. Furthermore, among the other tested measures, the DIA is the
only one that has discrete values ranging from 4 to 7. The lowest diameter at 4 means
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that it takes only four steps for a country-specific shock to reach all members of the
network. The largest diameter at 7 indicates that the shock would take more time and
effort to affect the whole network. In general, the network’s diameter will be at 5 and
6 about 60% and 25% of the time. When the diameter reaches 4, an idiosyncratic shock
would propagate easier, and the likelihood of contagion should be higher. However,
the DIA graph of Figure 3.4 shows that the diameter of 4 includes the periods of both
normal and crisis time. The reason is that the diameter is not directly related to the
market returns. Theoretically, it serves as a measure of propagation channels through
which a shock propagates. As a result, to assess the effect of the diameter more
accurately, | incorporate a measure of idiosyncratic risk into the analysis of diameter in
Section 3.4.3.

Figure 3.4 Dynamic of Contagion Measures
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(Note) The figure presents the dynamic of ENRai, AV, AC, and DIA over time from January 2000 to
December 2015. “ENRay” is the percentage of countries that experience extreme negative returns in each
month. “AV” is the measure of idiosyncratic risk, calculated as the equal-weighted cross-sectional
average of stock variances. “AC” is the equally-weighted cross-sectional average of the Pearson’s
correlations of the 43 markets. “DIA” is the diameter of the correlation-based PMFG network and
calculated as the longest distance of all geodesic paths in a given network
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3.4.2 Extreme value analysis

Based on Forbes (2012), this paper uses an approach of extreme-value analysis
to explain and predict the probability of extreme negative returns. | define this change
as the bottom 5% of that market’s monthly return distribution, ENR;t. The extreme
negative returns can be caused by a number of factors, including contagion measures,
idiosyncratic shocks, and global shocks. Forbes (2012) proposes one contagion
measure, called the percentage of the extreme negative returns. More specifically, the
extreme negative return may be caused by the transmission of the extreme negative
shock from the other countries. As a result, the infected stock market will encounter an
abnormal change in returns and sometimes result in the extreme negative return. In this
paper, I extend Forbes” model by incorporating the measures from the network model
as mentioned in Section 3.2.2 and 3.2.3. To assess the effect of the explanatory factors,
| estimate the conditional probability of extreme negative returns by using the logistic
regression in Equation (3.4).

Prob(ENR;, = 1) = F(const + byENRyy + byAV; + b3AC, + b,DIA,),  (3.4)

ENR;t is the binary outcome and equal to 1 if country i has an extremely negative
return in month t. ENRat is the percentage of countries with extremely negative returns
in month t. Forbes (2012) provided empirical evidence of its ability to identify financial
contagion. Thus, ENRant will serve as the benchmark and control factor of the other
models. AV is the average variance in month t and represents an idiosyncratic risk of
the international market. AC: is the average correlation in month t. It captures the co-
movement of market returns as well as the strength of cross-country linkages. DIA; is
the diameter of a global network in month t. The diameter quantifies a pattern of
connections and distance of propagation channel into a categorical number. The lower
the number is, the closer the network topology is to a star- like network, which has a
short distance of the propagation channel. The high diameter, on the other hand,
indicates the chain-like network that has a long distance of the propagation channel

Table 3.2 reports regression results of the full sample from January 2000 to
December 2015. Panel A and B provide the regression results of the cross-country
extreme returns in month t and t+1, respectively. The main purpose of Panel A is to
address the research question regarding the identification of the extreme negative
returns. The goal of Panel B is to study the effect of the independent variables on the
prediction of the extreme negative returns. Z-statistics are reported in brackets and
McFadden’s pseudo R? is also provided in Table 3.2. Another important estimation is
an area under a ROC curve (AUC). The AUC measures the ability of the model to
classify binary outcomes correctly. The basic concept of AUC is to calculate the area
under the ROC curve (Receiver Operating Characteristic). This curve is a graphical
plot that illustrates the performance of a binary classifier system. The construction of
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the graph relies on the actual outcomes and predicted outcomes. The actual binary
outcome, ENRy, is 1 if a market’s return is extremely negative and O otherwise. The
predicted outcomes are calculated from the probability provided by the logistic
regression in Equation (3.4). If the fitted probability exceeds a certain threshold, the
respective outcome will be 1. With the actual and predicted outcomes, we can
determine the statistics of true positive, true negative, false positive and false negative.
The false positive rate (FPR) is the X-axis in the ROC space, and the true positive rate
(TPR) is the Y-axis. As the discrimination threshold is varied from 0 to 1, we will get
a set of coordination based on the FPR and TPR. When plotted on the ROC space, the
ROC curve is formed and usually concave downward. If the curve is closed to the
upper vertical axis, the AUC will be closed to 1. The tested model with AUC of 1
represents the perfect test. If the graph is the diagonal line, the AUC is 0.5, and the
model is indifferent from a constant model.

In Panel A, the constant model is reported to have McFadden’s pseudo R? of
0% and AUC of 0.500. These statistics will be the benchmark for the tested model
afterward. In column 2, the percentage of markets with extreme negative returns
(ENRan) has a strongly positive coefficient with a z-statistic of 27.681. Its R? is also
very high at 37.8%. Thus, when the number of countries experiencing a distress period
increases, the probability of extreme negative returns increases as well. Additionally,
with the AUC of 94.6%, the ENRay is extremely efficient to identify the extreme
negative events.

In column 3, the average stock market variance (AV) is statistically significant
to explain the extreme negative returns, with a z-statistic of 19.797 and R? of 20.7%.
The average variance also has a high level of AUC at 85.0%, which is much greater
than the constant model. This indicates that a period with high idiosyncratic risk is
likely to result in extreme negative returns. Nevertheless, compared to the ENRa, the
AV is somewhat less effective.

In column 4 and 5, the coefficients of the network measures are all insignificant.
Their R? is statistically zero, and their AUC around 50% is practically indifferent from
the constant model. This finding implies that the individual network measures are not
directly related to the extreme negative returns in the contemporary period.

Lastly, when all factors are included in column 6, the McFadden’s R? and AUC
are 38.7% and 93.6%, respectively. Since the numbers are very similar to the ENRa
model in column 2, the result strongly supports the dominant effect of the ENRaj on the
identification of the extreme negative returns.
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Panel B shows that the constant model in column 1 has the R? of 0% and the
AUC of 50%. Both ENRaj and AV in column 2 and 3 are statistically significant in
explaining the extreme negative returns at month t+1. The coefficients of both ENRa
and AV are significant and positive with the z-statistics of 12.914 and 8.817. Clearly,
both measures can not only identify but also predict the extreme negative events.
However, the ability of both models to predict the outcomes at month t+1 is much lower
than that the ability to identify the contemporary outcomes in Panel A. The AUC of
ENRai is 62.3%, and the AUC of AV is 68% in Panel B.

In column 3 and 4 of Panel B, | find that the coefficients of AC and DIA are
statistically significant with the z- statistics of -4.856 and - 3. 331, respectively.
Nevertheless, the values of AUC are still low at 54.8% for AC and 54.1% for DIA. The
R? is also very low and in fact almost indifferent from the constant model. Therefore,
the individual effects of the tested network measures are not sufficient to identify and
predict the probability of the extreme negative returns.
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Table 3.2 Extreme value analysis — Regression results for the current extreme
negative turns in Panel A and the future the extreme negative returns in Panel B

Panel A: Dependent variable is the dummy variable ENRi

(1) (2 €)) 4) ®) (6)

Constant -2.939 -4.078 -4.294 -3.242 -2.614 -2.605
[-58.340] [-49.235] [-45.391] [-10.935] [-6.613] [-4.463]
% with extreme negative 8.699** 7.909**
returns, ENRait [27.681] [20.960]
Average variance, 177.997** 56.590%**
AVt [19.797] [4.593]
Average correlation, 2.584 -9.847**
AC:t [1.042] [-3.382]
Diameter, -0.063 -0.128
DIA: [-0.827]  -[1.312]
R-squared 0.000 0.378 0.207 0.000 0.000 0.387
Area under ROC curve 0.500 0.946 0.850 0.528 0.500 0.936
Observations 8,256 8,256 8,256 8,256 8,256 8,256

Panel B: Dependent variable is the dummy variable ENRi t+1

1) (2 ©)] “4) ©) (6)

Constant -2.944 -3.177 -3.157 -1.612 -1.597 -0.051
[-58.160] [-55.000] [-53.974] [-5.893] [-3.957] [-0.102]
% with extreme negative 2.842%* 2.893**
returns, ENRait [12.914] [8.345]
Average variance, 31.319%* 4.356
AVt [8.817] [0.735]
Average correlation, -11.629** -14.226**
ACt [-4.856] [-5.789]
Diameter, -0.262**  -0.299%**
DIA: [-3.331] [-3.629]
R-squared 0.000 0.039 0.018 0.007 0.003 0.054
Area under ROC curve 0.500 0.623 0.68 0.548 0.541 0.651
Observations 8,213 8,213 8,213 8,213 8,213 8,213

(Note) This table presents the results of logistic regressions of the dummy variable of extreme negative
returns on contagion measures in Equation (3.4). “ENRay” is the percentage of countries with extreme
negative returns on month t. “AV¢” is the measure of idiosyncratic risk, calculated as the equal-weighted
cross-sectional average of stock variances. “AC;” is the equally-weighted cross-sectional average of the
Pearson’s correlations of the 43 markets. “DIA” is the diameter of the correlation-based PMFG network
and calculated as the longest distance of all geodesic paths in a given network. “R-squared” is
McFadden’s pseudo R-squared. “Area under ROC curve” is the statistic to determine the ability to
classify contagion. Z-statistics are reported in brackets. ** is significant at 95% confidence interval. *
is significant at 90% confidence interval
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3.4.3 The effect of idiosyncratic risk propagation model

This section uses the concept of idiosyncratic risk propagation to identify and
predict the probability of the extreme negative returns. In Section 3.4.1, we learn that
the network measures are inefficient to measure the extreme negative returns in both
contemporary and subsequent periods. Rather, | conjecture that the network structure
serves as channels through which idiosyncratic shocks propagate.  Without the
incorporation of these shocks, the network measures by themselves are not sufficient to
measure the probability of the extreme negative returns. To capture this risk
propagation concept, | extend the Equation (3.4) by adding the interaction terms
between the average variance and network measures, as shown in Equation (3.5).

Prob(ENR;; =1) =F (conSt \ iﬂiﬁﬁfi’ﬂtbfni};tbf fyifélj b“DIAt) (3.5)

ENRit is a dummy variable equal to 1 if the stock market of country i has an
extremely negative return in month t. ENRau is the percentage of the sample with
extremely negative returns in month t. AV is the average variance that measures
idiosyncratic risk of the international market in month t. AC:is the average correlation
that measures the strength of propagation channel. DIA; is the diameter of a network.
The diameter reveals a pattern of connections that determines paths of idiosyncratic
shock propagation. The effects of idiosyncratic risk propagation are captured by the
interaction terms between average variance and network measures. AV¢*AC; represents
the effect of idiosyncratic shocks when interacting with the strength of propagation
channel. AV:*DIA; represents the effect of idiosyncratic shocks when interacting with
diameter. Table 3.3 provides empirical evidence for measuring the current extreme
negative returns in Panel A and the future extreme negative returns in Panel B. The
first two models in Table 3.3 assess how well each of the measures of cross-country
linkages can facilitate the transmission of idiosyncratic shocks.

In column 1 and 2 of Panel A, the AUC of the AC and DIA models are 83.1%
and 84.1%, which are lower than the single factor model of AV in Table 3.2. Even if
both AC and DIA are included in column 4 and 5, the AUC remains at around 85%.
That is, the network measures are not capable of improving the probability of the
extreme negative returns of the average variance. In column 6, the regression includes
all tested factors and interaction terms as well as the benchmark factor, ENRan. | find
that the ENRay is indeed a dominant factor for measuring the probability of the extreme
negative returns in the contemporary period.

In Panel B, | find that the average correlation and the diameter are both capable
of helping the average variance to predict the probability of the extreme negative
returns. For reference, the base model is the single factor model with AV; as a sole
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predictor. The regression estimates of AV: in column 2 of Table 3.2 are 1.8% for
McFadden’s pseudo R? and 68% for AUC. In column 1, | extend the base model by
including ACt and AV{*AC:. This purpose is to test the role of AC: as a propagation
channel strength of the country-specific shock, AV:. The interaction term, AV{*AC;, is
statistically significant with the z-statistic of -10.052. The McFadden’s R?is 5.9%, and
the AUC is 69.7%. Both statistics are clearly higher than those of the one-factor AV
model. The result advocates the role of average correlation, AC, in helping the average
variance, AV, to predict the probability of the extreme negative returns.

In column 2, | extend the base model by including DIA: and AV:*DIA:. The goal
is to assess the role of diameter on the propagation of the country-specific shock. The
interaction term, AV¢*DIAy, is statistically significant with the z-statistic of -9.135. The
McFadden’s pseudo R? is 4.9%, and the AUC is 71.1%. Similar to the average
correlation, the diameter also helps the average variance to predict the probability of
the extreme negative returns. Moreover, the negative sign of AVi*DIA; indicates that
when the distance is short, the shock tends to cause the extreme negative return in the
subsequent period.

In column 3, | extend the individual AVt model by including AV¢*AC; and
AVi*DIA:.  This model enables me to test the strength and distance of propagation
channel simultaneously. The coefficients of both interaction terms are significant at
95% confidence interval. The McFadden’s R? increases to 7.2% and the AUC increases
to 72.1%. These results suggest that the two aspects of propagation channel are
complementary to each other in improving the performance of the idiosyncratic shocks.

In column 4, I examine the general model that includes individual factors and
interactions. That is, | extend the previous model in column 3 by adding the individual
factors, ACtand DIA:. The coefficient estimates of ACt and DIA; are both insignificant
at 95% confidence interval. Compared to the specification 3, the AUC is slightly
improved to 73% and the R? is roughly unchanged. This finding advocates that the
properties of propagation channel do not directly affect the transmission of an
idiosyncratic shock. Instead, they serve as a channel through which the shock
propagates.

Lastly, | added the benchmark factor, ENRan, to the prediction models as shown
in column 5 and 6. The statistics are very similar to the specifications 3 and 4 from
which the ENRa is excluded. The coefficients of AVt and the interaction terms are all
statistically significant. The addition of ENRa also has no significant impact on the
RZand AUC. Thus, the relationship between the idiosyncratic risk propagation model
and the extreme negative returns is quite robust to the percentage of countries with
extreme negative returns.
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Table 3.3 Idiosyncratic risk propagation — Regression results for the current extreme
negative turns in Panel A and the future the extreme negative returns in Panel B

Panel A: Dependent variable is the dummy variable ENRit

NI ) 4) 5) (6)
Constant -9.059 -0.600 -4.620 -5.461 -4.462 -4.308
[-13.129] [-0.670] [-43.440] [-4.305] [-37.633] [-3.833]
% with extreme negative 7.694%* 7.990%*
returns, ENRaut [20.789] [19.523]
Average variance, 861.372** -35.329 620.000** 678.022**  285.944** 260.024**
AV: [12.793] [-0.357] [11.110]  [5.247] [4.330] [2.184]
Average correlation, 35.715%* 34.594*x* -8.720
AC: [6.639] [6.321] [-1.500]
Diameter, -0.730** -0.682** 0.177
DIA [-4.090] [-3.536] [0.995]
AVi*ACt -5162.084** -2238.741** -5076.218** -866.389**  -76.234
[-10.275] [-10.203] [-10.096]  [-2.947]  [-0.129]
AVi*DIA: 42.558** -27.129**  34.375% -22.142**  -37.768**
[2.189]  [-2.976] [1.699] [-2.183] [-2.046]
R-squared 0.25 0214  0.239 0.258 0.387 0.388
Area under ROC curve 0.831 0.841 0.851 0.84 0.941 0.937
Observations 8,256 8,256 8,256 8,256 8,256 8,256

Panel B: Dependent variable is the dummy variable ENRi t+1

1) (2 3 4 ) (6)

Constant -5.633 -4.485 -3.773 -4.835 -3.698 -4.283

[-11.050] [-7.993] [-46.136] [-6.771] [-44.010] [-5.884]
% with extreme
negative 1.386%* 1.350%**
returns, ENRan ¢ 3.588 [3.257]
Average variance, 571.730** 508.905** 660.499** 725.201** 575.772** 612.620%*
AVt [10.755] [9.906] [14.506] [11.599] [11.016] [8.527]
Average correlation, | 16.236** 6.196 0.963
ACt [4.074] [1.426] [0.208]
Diameter, 0.188* 0.057 0.088
DIA: [1.795] [0.499] [0.756]
AV*ACt -3847.213%* -2025.117** -2514.667** -1786.502** -1834.018**

[-10.052] [-9.049] [-5.801] [-7.395] [-3.776]
AVe*DIA -81.258**  .57.745%*  .57.438** .52.033** .57.283**

[-9.135] [-7.968] [-5.198] [-6.794] [-5.032]

R-squared 0.059 0.049 0.072 0.073 0.076 0.076
Area under ROC
curve 0.697 0.711 0.721 0.730 0.719 0.721
Observations 8,213 8,213 8,213 8,213 8,213 8,213
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(Note) This table presents the results of logistic regressions of the dummy variable of extreme negative
returns on contagion measures and interaction terms in Equation (3.5). “ENRuany” is the percentage of
countries with extreme negative returns on month t. “AV,” is the measure of idiosyncratic risk, calculated
as the equal-weighted cross-sectional average of stock variances. “AC;” is the equally-weighted cross-
sectional average of the Pearson’s correlations of the 43 markets in month t. “DIA¢” is the diameter of
the correlation-based PMFG network and calculated as the longest distance of all geodesic paths in a
given network. “AV¢*AC;” is the interaction term between AViand AC.. “AV¢*DIA;” is the interaction
term between AV, and DIA;. “R?’ is McFadden’s pseudo R?. “AUC” is the area under ROC curve. Z-
statistics are reported in brackets. ** is significant at 95% confidence interval. * is significant at 90%
confidence interval.

3.4.4 The effect of global shocks on the extreme value analysis

In this paper, the possibility of contagion depends on the number of countries
that experience a distressed period. In Section 3.4.2 and 3.4.3, | find that the percentage
of countries with extreme negative returns, ENRay, is the most suitable to identify
contagion, while the models of idiosyncratic risk propagation are useful for predicting
contagion. However, it is also possible that the extremely negative returns in multiple
markets are caused by global shocks. To test whether or not the main results are
unaffected from the global shocks, I introduced three possible global shocks into the
regression models. The first one is Bloomberg Commodity Index (BCOM;) which
reflects commodity futures price movement in month t. The second is TED: spread,
calculated as the spread between 3-month LIBOR based on US dollars and 3-month
Treasury Bill. The last one is US10b: or 10-year Treasury constant maturity US
government bond in month t. The data of TED; and US10b is obtained from Federal
Reserve Bank of St. Louis.

Table 3.4 presents the estimates from the logistic regressions after controlling
for the global shocks. Excluding the controlled variables, the six specifications are the
same as those in Section 3.4.3. In Panel A, the goal is to estimate the conditional
probability that a country has an extreme negative return in month t. In column 1-4,
the average variance and interaction terms all remain significant after controlling for
the global shocks. Moreover, the estimates of R? and AUC are all marginally different
from the models without the global shocks in Table 3.3. This finding indicates that the
ability to identify contagion of the network-related terms is robust to the global shocks.
In column 5 and 6, when the ENRayi is included, the R? and AUC also remain roughly
unchanged from those in Table 3.4. The ENRay is once again the most dominant factor
for measure the probability of the extreme negative returns in the same period.

In Panel B, the main objective is to estimate the conditional probability of
extreme negative returns in month t+ 1. AV; is statistically significant in all
specifications.  That is, the idiosyncratic risk is indeed important for predicting
contagion in a subsequent period. In column 1,2 and 3, the coefficients of AV{*ACtand
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AV¢* DIA; are all statistically significant at 95% confident interval.  Thus, after
controlling for the global shocks, the average correlation and diameter can facilitate and
amplify the effect of idiosyncratic shocks. The most contribution of the global shocks
are the increases in McFadden’s pseudo R? of all six models. They increase around 3%
or more across all tested models. For instance, the R? of the two- interaction model in
column 3 increases from 7.2% in Table 3.3 t0 10.1% in Table 3.4. Among the global
shocks, | find that this contribution comes from TED spread. The TED spread is the
only global shock with strongly significant coefficients across all six models.

However, compared to the specifications without the global shocks, the AUC
remain roughly unchanged. Since the AUC is an important figure for discrimination of
extreme negative returns, the joint coincidence of extreme negative returns is then
closely related to the idiosyncratic shocks and network structure. This relationship
persists even after the global shocks are included in the tests.
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Table 3.4 Controlling for global shocks — Regression results for the current extreme
negative turns in Panel A and the future the extreme negative returns in Panel B

Panel A: Dependent variable is the dummy variable ENRit

(€)) 0 3 () ) (6)
Constant -8.925 -1.08 -4.126 -5.663 -4.929 -4.750
[-11.030] [-1.142] [-19.390] [-4.191] [-17.365]  [-3.733]
% with extreme negative 8.180** 8.454%**
returns, ENRait [20.381] [19.533]
Average variance, 858.172**  -45416 752.703** 751.054**  275.805** 283.099**
AVt [12.474] [-0.415] [11.103] [5.540] [3.466] [2.348]
Average correlation, 35.043** 34.323%* -8.724
ACt [6.188] [5.972] [-1.396]
Diameter, -0.793** -0.625%* 0.194
DIA: [-4.208] [-3.194] [1.065]
AV*ACt -5127.664%** -2783.248** -5063.660**  -124.75 555.926
[-10.103] [-9.210] [-10.009] [-0.307] [0.914]
AV*DIA: 43.436** -36.214** 20.829 -38.222%*  -56.704**
[2.075]  [-3.813] [0.990] [-3.423] [-2.948]
Commodity index, -2.153* © -4.701**% = -2.610%*  -2.868** -4.488%*  -4,292%*
BCOM:¢ [-1.761]  [-3.798] [-2.050] [-2.268] [-3.057] [-2.873]
TED spread, -13.522 -13.488  -28.205**  -24.255*%  -60.474** -63.970**
TEDt [-1.071]  [-1.058] [-2.082] [-1.763] [-3.799] [-3.968]
10-year bond rate, -0.138 ~ 22.298** -13.790%** 0.461 18.016%*  14.562*
US10bt [-0.022] [4.748]  [-2.333] [0.073] [2.378] [1.809]
R-squared 0.252 0.224 0.244 0.26 0.394 0.395
Area under ROC curve 0.829 0.847 0.85 0.839 0.931 0.929
Observations 8,256 8,256 8,256 8,256 8,256 8,256
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Panel B: Dependent variable is the dummy variable ENR; 1

(€3 (0] (©)] Q) (©) (©)

Constant -3.429 -4.214 -3.806 -2.521 -3.836 -2.503

[-5.190] [-6.749] [-18.842] [-2.933] [-18.694] [-2.918]
% with extreme negative 0.762* 0.792*
returns, ENRant [1.735] [1.729]
Average variance, 287.348** 175.916** 413.700** 334.852** 370.867** 288.488**
AVt [4.649] [2.807] [6.985] [4.297] [5.722] [3.483]
Average correlation, -2.193 -3.019 -4.747
ACt [-0.477] [-0.642] [-0.990]
Diameter, -0.038 -0.16 -0.125
DIA: [-0.342] [-1.348] [-1.036]
AVt*ACt -2050.792%* -2010.734** -1886.074** -1828.448** -1560.355**

[-4.728] [-6.626] [-4.060] [-5.607] [-3.087]
AV*DIA: -30.689** -22.005**  -11.487  -20.427**  -12.777

[-2.925] [-2.598] [-0.930] [-2.362] [-1.017]

Commodity index, 1.541 -0.053 1.261 1.193 1.382 1.358
BCOM¢ [1.320] [-0.045] [1.071] [1.001] [1.172] [1.134]
TED spread, 127.326** 112.379** 113.013** 118.870** 109.574** 115.682**
TED:¢ [11.420] [10.258]  [9.950] [9.820] [9.425] [9.399]
10-year bond rate, -7.853 ~ 17.988** = 5121 -7.511 -2.946 -5.863
US10bt [-1.314] [3.945] [-0.911] [-1.250] [-0.507] [-0.955]
R-squared 0.099 0.088 0.101 0.102 0.102 0.103
Area under ROC curve 0.695 0.697 0.719 0.709 0.724 0.711
Observations 8,213 8,213 8,213 8,213 8,213 8,213

(Note) This table presents the results of logistic regressions of the dummy variable of extreme negative
returns on contagion measures, interaction terms, and global shocks. “ENRa:” is the percentage of
countries with extreme negative returns on month t. “AVy” is the measure of idiosyncratic risk, calculated
as the equal-weighted cross-sectional average of stock variances. “AC;” is the equally-weighted cross-
sectional average of the Pearson’s correlations of the 43 markets in month t. “DIA;” is the diameter of
the correlation-based PMFG network and calculated as the longest distance of all geodesic paths in a
given network. “AV¢*AC;” is the interaction term between AViand AC.. “AV¢*DIA/” is the interaction
term between AV and DIA:.. “BCOMy” is Bloomberg Commodity Index and calculated from commodity
futures price movement. “TEDy” is the spread between 3-month LIBOR based on US dollars and 3-
month Treasury Bill. “US10by” is 10-year Treasury constant maturity US government bond. “R?’ is
McFadden’s pseudo R2. “AUC” is the area under ROC curve. Z-statistics are reported in brackets. **
is significant at 95% confidence interval. * is significant at 90% confidence interval
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3.4.5 Alternative network measures

In this paper, | compress the complex interrelationships of the international
stock markets into a network model. Even though the network structure greatly
simplifies the complex relationships, it is still impossible to use a single measure to
describe the whole network. In the network, one country can directly affect the adjacent
countries as well as indirectly affect the countries in the further part of the network. Its
shock can also reach one country or many countries through the propagation channel
of the network. Therefore, the network literature produces many network measures to
quantify the properties of network structure. Among other measures, | use the average
correlation to capture the strength of the propagation channel and the diameter to
capture the distance of propagation channel. This section compares the ability to
classify the contagion between the regression model in Equation (3.6) and the other
specifications in which alternative network measures are presented.

Prob(ENRy sy = 1) = F (et £ 1At ¥ Dot + B Pl (36)

Other than the diameter, the distance of propagation channel can be measured
by the average shortest path and the average of eccentricity. In a network, there are
several paths that can take one country to reach another country. These paths have
different distances, and the shortest one between the two countries is called the shortest
path. The average of all possible shortest paths is then a measure of the distance of the
propagation channel. A shock can propagate faster in a network with a small average
shortest path than the large one. Another measure of the distance is the eccentricity.
An eccentricity of a country is the shortest distance of that country to its furthest country
in the network. The average of the countries’ eccentricity is then comparable to the
radius of the network. Its interpretation is very similar to the diameter. The low average
eccentricity would indicate the star-like structure and let a shock to propagate faster.
On the other hand, the network with the high eccentricity is lean towards the chain-like
structure.

Another important property of the network is the relative importance of a node.
Measures of this property can give different weights to each node in a network. A node
with the high relative importance would have a significant influence on the whole
market. In particular, when an extreme negative shock hits the important country, there
is a high possibility that the other countries will be affected by the shock. In this paper,
I quantify this network characteristic with three network measures. The first measure
is the eigenvector centrality. This measure calculates the relative importance from the
eigenvector and eigenvalue of the adjacent matrix that records the connections in a
network. The country attached to the high-scoring nodes will have a higher level of
eigenvector centrality than a connection to the low-scoring nodes. The high average
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eigenvector centrality would mean that there are many high-influence countries in the
network. Another measure of the relative importance is the degree centrality. The
degree of a node in a network is the number of links attached to it. The high number
of links indicates the high level of degree centrality. In this paper, | calculate the degree
centrality from the PMFG network which has a fixed number of links in every month.
As a result, the average degree centrality will be constant over time. In the extreme
value analysis, this measure will be customized to each country in each month, while
the other network measures are the same for every country in each month.

The last measure of the relative importance is the KNN, which stands for K-
nearest neighbors.  The nearest neighbor, in this paper, is defined as the adjacent
countries and thus make K equal to 1. The KNN centrality of a node is then calculated
as the average degree of its adjacent neighbors. The high average KNN centrality
indicates that there are many countries with high relative influence. Nevertheless, these
centrality measures are not as direct as the diameter in determining the network
topology or shape. The nodes with high relative importance can be in the center or any
part of the network, and thus sometimes result in a star- like structure and sometimes
appear to be a chain-like structure.

The goal in this section is to assess the performance of average correlation and
diameter as opposed to the alternative network measures in predicting contagion. |
achieve this goal by using the brute-force approach in the extreme value analysis.
Specifically, 1 regress the extreme negative returns, ENRit+ 1, on all possible
combination of the independent variables. The tested factors include the percentage of
countries with negative return (ENRant), average market variance (AVy), average
correlation (ACy), diameter (DIAy), average shortest path (ASPy), average eccentricity
(ECCENy), average eigenvector centrality (EIGEN;), average KNN centrality (KNNy),
and degree centrality (DEGis). Additionally, 1 also include the interaction between the
average variance and network measures. The total number of the independent variables
is sixteen and results in 65,536 combinations. Please note that I do not report the results
of the extreme value analysis at month t because the ENRant dominates all other
variables.

Table 3.5 reports the AUC performance of the model in Equation (3.6) in
comparison to all other possible models. | conduct the test for both in-sample and out-
of-sample analysis. For the in-sample regressions, | regress ENR;++1 on the independent
variables by using the full sample observations. The AUC of the model is 73%, and its
rank is 3,056 out of 65,536 models. The model’s ranking is very high in the top 5"
percentile. Figure 3.5a depicts the AUC performance of all possible combinations
whereby the vertical axis is the AUC scores, and the horizontal axis is the number of
independents variables ranging from one to sixteen. Our interested model is the red dot
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coordinated at five independent variables in the x-axis and 0.73 AUC in the y-axis. The
tested model ranks very high within its group of five variables. Also, the rank is still
high even if the model is compared to the specifications with more explanatory
variables.

For the out-of-sample regressions, the sample is randomly divided into the
initial and evaluation periods. The initial period has 6,555 observations or 80% of the
total sample, while the evaluation period has 1,658 observations or 20% of the full
sample. To conduct the out-of-sample test, I first estimate the coefficients and odd-
ratios from the initial sample by using the extreme value analysis approach. Then, the
AUC estimation will use these parameters to classify the binary outcomes of the
evaluation periods. The out-of-sample AUC of Equation (3.6) is 70.7% and ranks 6,391
of all possible combinations. The model’s ranking is relatively high in the top 10th
percentile. Figure 3.5b depicts the graphical ranking of all specifications. The tested
model in Equation (3.6) is the red dot coordinated at five independent variables in the
x-axis and 0.707 AUC in the y-axis. Similar to the in-sample analysis, the interested
model is located in the high region of the out-of-sample AUC. The results from both
in-sample and out-of-sample tests suggest that the average correlation and diameter are
suitable to serve as the measures of the propagation channel in comparison to the
alternative network measures.

Table 3.5 Ranking of the model with average correlation and diameter

In-sample performance Out-of-sample performance
Pseudo R-squared 0.073 0.076
AUC 0.730 0.707
AUC ranking 3,056 6,391
AUC percentile Top 51 Top 101
Total number of combinations 65,536 65,536
Observations in each regression 8,213 1,658

(Note) This table presents the ranking of the model in Equation (3.6) among all possible combinations
of nine explanatory factors and seven interaction terms. Nine individual factors are the percentage of
countries with negative return (ENRait), average market variance (AVy), average correlation (ACy),
diameter (DIA), average shortest path (ASPy), average eccentricity (ECCEN;), average eigenvector
centrality (EIGEN:), average KNN centrality (KNNy), and degree centrality (DEG;;). Seven interaction
terms are AViXAC:, AViXDIA;, AViXASPy, AViXECCEN;, AVIXEIGEN;, AVixKNNy, and AVixDEG:. There are
65,536 combinations from the sixteen variables
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Figure 3.5 The Graphical AUC Performance

a) In-sample performance b) Out-of-sample performance
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(Note) This figure depicts the AUC performance of all tested models to predict the binary outcome of
the extreme negative returns in month t+1. The vertical axis is the area under the curve (AUC), and the
horizontal axis is the number of independent variables. The red dot is the performance of the model in
Equation (3.6) which has five variables, including average stock variance, average correlation, diameter,
the interaction of average variance and average correlation, and the interaction of average variance and
diameter

3.5 Concluding remarks

Contagion can cause an idiosyncratic shock of one country to propagate to
numerous countries. The effect of the idiosyncratic shock is not always diversified
away as the conventional asset pricing models claim. Instead, the country-specific
shock can sometimes propagate and amplify to cause a systemic event such as the US
financial crisis in 2007-2008 and the Greek government-debt crisis in 2011. This paper
focuses on the network structure that plays a crucial role in international financial
contagion. In particular, the network measure is used to determine the probability of
the extreme negative returns, which is defined as the bottom 5% of a country’s return
distribution. The network variables are tested in both contemporary periods at month t
and future period at month t+1.

| find that the percentage of countries with extreme negative returns is the most
dominant factor to measure the probability of the extreme negative returns in month t.
It also has some power to predict the probability of the extreme negative returns but is
not as good as the factors in the idiosyncratic risk propagation model, including the
average variance, the network measures, and their interactions. The average variance
represents the country-specific risk of the global market. The average correlation and
diameter are the network measures that reflect some aspects of cross-country linkages.
The interactions represent the effects of the propagation of idiosyncratic shocks through
the network linkages. | find that the interactions increase the ability to predict the
probability of the extreme negative returns.
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This article opens up an interesting research topic. Specifically, Bisias et al.
(2012) pointed out that network models help us to understand more about how systemic
events unfold. This paper supports this argument and provides empirical evidence that
network measures are indeed relevant to the probability of the extreme negative returns.
In particular, the network structure serves as a channel through which an idiosyncratic
shock propagates. This process could then have more or less effect on the subsequent
extreme negative situation of countries in the network. However, this paper touches just
some aspects of the network theory. It does not explain as to why and how networks
change from one structure to another. The study of this network transition naturally
gives us some new information and more fundamental knowledge about how financial
contagion and systemic events occur.
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3.6 Appendix
3.6.1 Area under the ROC curve (AUC)

The AUC measures the ability of the model to classify binary outcomes
correctly. The basic concept of AUC is to calculate the area under the ROC curve
(Receiver Operating Characteristic) as shown in Figure 3.6. The construction of the
ROC curve relies on the actual outcomes and predicted outcomes. The actual binary
outcome, ENRy, is 1 if a market’s return is extremely negative and O otherwise. The
predicted outcomes are calculated from the probability provided by the logistic
regression in Equation (3.4). If the fitted probability exceeds a certain threshold, the
respective outcome will be 1. With the actual and predicted outcomes, we can
determine the statistics of true positive, true negative, false positive and false negative,
as shown in Table 3.6. The outcome is true positive if both actual and predicted
outcomes are 1. The outcome is true negative if the actual outcome is 0 and the
predicted outcomes are 1. The outcome is false positive if the actual outcome is 1 and
the predicted outcomes are 0. The outcome is false negative if both actual and predicted
outcomes are 0.

Table 3.6 Possible outcomes of the binary classification.

Actual outcome

True (1) False (0)
Predicted Positive (1) True positive False positive
outcome Negative (0) True negative False negative

The ROC space is defined by the true positive rate (TPR) on the Y-axis and the
false positive rate (FPR) on the X-axis. The TPR is equivalent to sensitivity and
calculated as the number of true positive outcomes divided by the number of true
outcomes. The FPR is equal to 1-specificity and calculated as the number of false
positive outcomes divided by the number of true outcomes. As the discrimination
threshold is varied from 0 to 1, we will get a set of coordination based on the FPR and
TPR. When plotted on the ROC space, the ROC curve is formed and usually concave
downward. If the curve is closed to the upper vertical axis, the AUC will be closed to
1. The tested model with AUC of 1 represents the perfect test. In other words, the
predicted outcomes of the model are perfectly equal to the actual outcomes. If the graph
is the diagonal line, the AUC is 0.5, and the model is indifferent from a constant model
without any predictors.



Figure 3.6 ROC (Receiver Operating Characteristic) space and curve.
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Chapter 4 Interconnectedness and equity returns: The case
of Thailand

Abstract Interconnectedness has been regarded as a key driver of the global financial
crisis in 2007-2008. However, empirical research that directly tests the relationship
between interconnectedness and equity returns is essentially lacking. This paper aims
to contribute to the field by providing empirical evidence in the Stock Exchange of
Thailand. By incorporating techniques from the network theory, | quantify two
characteristics of interconnectedness: systematical importance and fragility. The first
measures the ability to spread shock while the latter measures the vulnerability to
incoming shocks. | find evidence of the positive and significant relationship between
systematical importance and stock returns and the negative and significant relationship
for fragility. The measure of systematic importance, in particular, can capture cross-
sectional variation in stock returns, while the well-known risk factors such as market
risk, size and book-to-market cannot.

Keywords Interconnectedness, Systematical importance, Fragility, Asset pricing,
CheiRank, PageRank

JEL Classification G12, D85
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4.1 Introduction

Due to the wide-spread and exceptional damage to many financial markets, the
2007-2008 financial crisis has been subject to considerable research effort in the past
decade. The previous studies report that interconnectedness is a key driver of the crisis
instead of the present common risk factors such as firm’s size. Specifically, the
interconnectedness between firms forms a network structure that facilitates the
propagation of firm-specific shocks to cause cascades of failures, financial contagion,
and ultimately a systemic event. In this kind of network, the highly interconnected firms
tend to have a significant influence on the market because they can swiftly transmit
their own shocks to multiple firms or be vulnerable to propagated shocks. Therefore,
the interconnectedness can induce the system-wide risk and be considered as a common
risk factor for the equity market.

Although a number of studies have focused on modeling the interconnectedness
and studying its relationship with the systemic risk, little attention has been paid to the
effects of interconnection on equity returns. Empirical research on this subject is
essentially lacking, and most of them focus on the developed markets and international
indices. The primary purpose of this paper is to fill this gap by providing empirical
evidence for the relationship between interconnectedness and equity returns in the stock
exchange of Thailand.

The previous study that examines the relationship between an
interconnectedness measure and equity returns is “Eccentricity in Asset Management”
of Kaya (2014). This paper focuses on returns on international equities such as stock
indices, bonds, commodities, sectors, and industries. The author simulates a network of
the global equities whose connection is calculated from the joint distribution of two
equities’ returns. The centrality of assets is then estimated from this network. The key
finding of this paper is that the assets located towards the center area of the network
tend to have higher returns than the other assets in the network. Buraschi and Porchia
(2012) provide another empirical evidence that is consistent with Kaya’s conclusion.
Unlike Kaya (2014), Buraschi and Porchia focus on the US stock market instead of the
global equities. Specifically, they study a network of US-listed companies whose values
depend on other firms’ dividend states. A firm, which is likely to affect the others,
would have a high degree of active connectivity (DC) and thus be more central to the
network. The paper reports that the CAPM will hold if firms have homogeneous
connections and DC, which can be observed in a symmetric network such as a
disconnected network and a complete undirected network. On the other hand, the
CAPM is not valid in an asymmetric network that has heterogeneous connections and
DC. That is, a firm with a high degree of connectivity tends to earn higher expected
returns, which cannot be explained by the market risk of the CAPM. Furthermore, the
author reports that the average slope of the DC is positive and significant in the test of
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Fama-Macbeth (1992). In other words, the central stocks tend to gain higher expected
return than the peripheral stocks. Similarly, Ahern (2013) and Chen (2014) also report
the same result in the cross-sectional regression. Ahern (2013) finds that central
industries in US tend to have greater exposure to sectoral shocks. Therefore they are
more risky economically and demanded higher returns as a compensation. Chen (2014)
finds that central stocks in a volatility network have higher returns than the rest. The
primary reason is because idiosyncratic shocks cause the affected stocks to move
together. The co-movements result in a volatility- based network, of which central
stocks have the highest degree of co-movement. Thus, investors demand higher returns
for stocks that are more central.

Although these works seem to report in the significantly positive relationship
between network position and returns, they mainly focus on the US market. Instead of
the developed market, this paper focuses on analyzing the relationship in the context of
the developing market that is Stock Exchange of Thailand ( SET). This paper
reexamines the relationship between interconnectedness measures and asset returns. |
aim to enrich the empirical evidence regarding this relationship with two primary
research questions: 1) Does network structure of stocks matter in explaining cross-
sectional expected returns in SET? 2) Can the network structure proxy for sensitivity
to common risk factors in expected returns?

The network structure can affect stocks in two ways. First, a stock uses the
network structure as a channel to transmit its shocks. Second, a stock gets affected by
the propagated shocks. To simulate a network with these properties, | use a different
approach from the previous literature such as Kaya (2014) and Buraschi and Porchia
(2012) to simulate a network of selected firms listed in SET. Following Kenett et al.
(2010), I create a directional network of stocks whose relation is calculated from the
partial correlation of returns. The main advantage of the partial correlation is that the
targeted relationship is free from the influence of the third parties and thus mitigate the
problem of spurious correlations. Moreover, because the partial correlation between A
and B (A—>B) is not equal to the reciprocal (B> A), the network is naturally directional.
As a result, I can directly measure two characteristics of the interconnectedness,
including systematic importance and fragility. A firm is systematically important if it
can affect the other firms in the network. On the contrary, a firm is fragile if it gets
affected by propagated shocks. | use the concept of CheiRank to capture the systematic
importance and PageRank to capture the fragility. To the best of the author’s
knowledge, this paper is the first study to investigate the relation of both characteristics
of the interconnectedness to stock returns. This is also the first article that explores this
matter in Stock Exchange of Thailand.
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Similar to the previous literature, this paper reports the significant relationship
between interconnectedness measures and equity returns. In particular, 1 do agree with
Chen (2014) that the network structure serves as a local channel through which
idiosyncratic shocks spread, even though our scope is different. Chen (2014) focuses
on the network risk induced by idiosyncratic shocks and thus constructs the network
from the covariance of residuals from the three-factor model of Fama and French
(1993). On the other hand, | am interested in any factors that can cause the co-
movements between stocks, rather than the idiosyncratic shocks. Specifically, | use the
approach of Kenett et al. (2010) to construct a network of correlations of returns. The
resulted network clusters the stocks with the same common economic factors together
and thus provide the meaningful economic taxonomy of the market. The change in the
network structure would also affect the transmission of the common economic factors
and in turn the common risk factor in expected returns.

Moreover, | find that that the network structure helps to explain cross-sectional
returns on stocks in the Stock Exchange of Thailand. Following Fama and French
(1992), I conduct the Fama-Machbeth cross-sectional tests by regressing the individual
excess stock returns on market beta, size, book-to-market, CheiRank and PageRank.
The measure of systematic importance, CheiRank, has a significant and positive
relationship with equity returns. On the other hand, the measure of fragility, PageRank,
has a negative relationship but not significant. In addition, when stocks are sorted into
three portfolios by their CheiRank or PageRank, the sign of the relationship is
confirmed. The highly systematically-important portfolio earn 0.18% on a monthly
basis, which is about 3.7 times lower than the low group. The highly fragile stocks earn
returns twice as much as the low group.

The rest of the paper is organized into four sections. Section 4.2 explains the
methodologies to simulate networks of firms in SET50 and to quantify the
characteristics of interconnectedness. Section 4.3 presents the description of data.
Section 4.4 reports the empirical results for the relationship between interconnectedness
measures and equity returns. Section 4.5 concludes the paper.

4.2 Methodology

This paper focuses on two important characteristics of the interconnectedness
to explain the cross-section of stock returns. The first aspect is a firm’s ability to affect
the others, which is usually called “systematic importance” in the existing literature.
The second one, on the other hand, is a firm’s vulnerability or fragility to propagated
shocks from the others. To measure both characteristics of the interconnectedness, |
proceed in two steps. | first construct a network architecture of the stock market which
allows us to see the interconnection pattern of the individual stocks. Then, I introduce
the concepts of PageRank and CheiRank to quantify the interconnectedness properties.
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4.2.1 Network structure of the stock market

To simulate the meaningful network from such a complex system as the stock
market, | follow the innovative approach proposed by Kenett et al. (2010). Prior to
their work, many papers use the Pearson correlation coefficient to create a network and
investigate stock relationships. However, the correlation between two stocks may be
spurious due to the effect of the third party. For example, A may be highly correlated
with B possibly due to C. To eliminate this problem, Kenett et al. (2010) introduce a
concept of partial correlation to simulate a network, instead of the simple Pearson
correlation.  The partial correlation coefficient is built on the observed Pearson
correlation on which the effects of the different stocks get eliminated. For example, if
| want to quantify the effect of Z on X (Z-> X), the first step to create a partial correlation
is to estimate the correlation of returns between two stocks, p(X,Y1). The second step
is to eliminate the effect of the third party Z as follows:

p(X, Yl:Z) . p(X: Yl) N p(X,Z)p(Yl,Z) (4.1)

VI =p2(X, D][1 - p*(Y1,2)]

p(X,Y1:Z) is the partial correlation between X and Y1 of which the effect of Z
is eliminated. p(X, Z) is Pearson correlation coefficient between X and Z. p(Y1,Z7) is
Pearson correlation coefficient between Y1 and Z. The upper relationship in Figure
4.1a illustrates the removal of Z in the second step.

The third step is to keep only the effect of Z on the relationship of X and Y and
therefore create another partial correlation d(X,Y1:Z) as follows:

d(X,Y1:2) = p(X,Y1) — p(X,Y1:2) (4.2)

The lower picture of F4. 1a illustrates the remaining effect of Z on the
relationship of X and Y1 in the third step. Then, we repeat the step two and three by
replacing Y1 with Y2, Y3, Y4 and so on. The fourth step is to calculate the equal-
weighted average influence of Z on X as follows:

N
1
d(X: 2) :NZ dX,Y:2):Y + X, Z 43)
i=1

It is important to notice that d(X:Z) is not equal to d(Z:X). As shown in Figure
4.1a and 4.1b, taking the effect of Z out of the X-related relationship is not equal to the
opposite. Retaining only the larger one allows us to assign the direction between X and
Z. For instance, if d(X,Z) > d(Z,X), the direction in the network will be Z->X, which
summarizes the influence of Z on the correlations between X and all the other elements
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in the system. This direction is the prime advantage of this network construction
approach among the other network construction methods. It is also crucial to note that
the partial correlation is not intended for a causality measure but a mean to understand
the correlation-based architecture of a stock market.

Figure 4.1 lllustration of partial correlation.

a) Effectof Zon X and Y1 b) Effectof XonZand Y1
X&€Z Z<X

(Note) This figure illustrates the process of partial correlation. Figure a) shows the effect of Z on the
relationship of X and Y1. Figure b) shows the effect of X on the relationship of Z and Y1. The upper
picture shows the result of Equation (4.1). The lower picture depicts the result of Equation (4.2)

After iterating the previous steps for all non-diagonal elements, the partial
correlation matrix will have N*(N-1)*(N-2)/2 partial correlation interactions, whereby
N is the number of stocks in the system. If N is 50, the total number of partial
correlations will be 58,800. When constructing a network with these correlations, the
network would be extremely complicated for the estimation of the individual
interconnectedness. Therefore, the last step is to filter out the partial correlation matrix
and retain the essential information about the interrelationships. In the correlation-
based network, three algorithms are usually used to reduce the links: Threshold method,
Minimum Spanning Tree (MST), and Planar Maximally Filtered Graph (PMFG). The
Threshold method reduces links by using thresholds. For example, the relationship that
has correlation below a certain threshold (i.e., 0.7) will be dropped out of the network.
The advantage of this method is that it can control the desired amount of information
in the network by changing the threshold levels. The other two methods reduce the
number of links by using topological constraints as described in graph theory. As
discussed in the paper “Hierarchical Structure in Financial Markets” (Mantegna, 1999),
the MST approach provides a hierarchical tree of the stocks which reflects the
memberships in the real sectors and sub- sectors classified by the Forbes. Then, in an
attempt to incorporate more relevant information into the network, Tumminello et al.
(2005) introduce a new algorithm called PMFG. This PMFG network has the same
hierarchical tree as the MST and some additional structures of loops and cliques which
satisfy the planarity condition. Additionally, the PMFG contains enough information
to make some analysis of the causal relationships of the stocks. Kenett et al. (2010)
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further develop the PMFG into the PCPG (Partial Correlation Planar Maximally
Filtered Graph). The PCPG adds directions into relationships of stocks so that we will
know the effect of one stock on another. Unlike the MST which gives a symmetric
correlation matrix, the PCPG use partial correlation to create an asymmetry correlation
matrix which in turn provides a directional network of the stock markets. In this paper,
| use the PCPG approach to create a network because it gives directional relationships
which are crucial to quantify the characteristics of the interconnectedness. The PCPG
network also simplifies the description of the system greatly by reducing the number of
interactions to 3(N-2).

4.2.2 Measures of interconnectedness

This paper considers two measures of interconnectedness, including systematic
importance and fragility. The systematic importance reflects the influence of a
particular firm on the network. The fragility indicates the vulnerability of the firm to
propagated shocks. The simplest network measure for both characteristics of the stock
interconnectedness is degree centrality, which counts the adjacent links to a firm in the
network. The high number of outgoing links indicates the high level of degree centrality
associated with systematic importance, while the high number of incoming links
indicates the high level of degree centrality associated with fragility.

Although the degree centrality is a simple and easy-to-understand concept, it
only takes into account the adjacent neighbors and omits the information beyond that
point. Sergey Brin and Larry Page (1998) introduce another concept, called Google
PageRank, which incorporates the entire network into the calculation of a firm’s
centrality measure and assigns the relative importance within the set. The Google
PageRank matrix is calculated from the eigenvector of the incoming link matrix with
the maximum real eigenvalue = 1. The PageRank is used initially to assign the
likelihood of each webpage being visited in corresponding to the searching words. The
webpage with highest PageRank probability will rank first. The calculation of
CheiRank is similar to PageRank. One difference, however, is that CheiRank uses the
eigenvector of the outgoing link matrix instead of the incoming one. Therefore,
PageRank reflects fragility while CheiRank indicates the systematic importance of a
member of the system.

Due to the success of the PageRank in the Google website business, many
papers apply the PageRank concept to many fields of research. For example, Ermann
and Shepelyansky (2011) create the world trade network of which trade flows are
classified by the PageRank and CheiRank algorithm. Dungey et al. (2012) use a
methodology based on the Google PageRank algorithm to measure the systemic risk
and rank systemically important financial institutions (SIFIs) for listed companies in
the S&P500. They report that the systemic risk, measured by the PageRank, are
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relevant. It increases before the 2008 crisis, peaks at the collapse of Lehman Brothers,
and decline afterward. Then, the systemic risk picks up again in response to the
European sovereign debt crisis. Furthermore, they also find out that the financial sector
is systemically important in the market, supporting new regulations (Basel IIl) of the
Basel Committee on Banking Supervision.

In this paper, I apply the PageRank as the measure of a firm’s fragility and the
CheiRank as the measure of a firm’s systematic importance. Both measures together
explain some aspects of the firm’s interconnectedness.

4.3 Description of Data

In each month, I calculate the related variables from the daily returns of stocks
listed on the Stock Exchange of Thailand (SET50). A stock’s daily return is calculated
from the difference in log prices between two consecutive days as follows:

e = n(pie) = In(@ie-1) @4

The sample period is January 2000 — December 2014 or 180 months in total.
Our short sample period is inevitable due to the severe missing-data problem of stock
prices and risk-free rate before 2000. The data is primarily retrieved from Bloomberg
Terminal. The risk-free rate primarily comes from the daily rate of the 1-month T-Bill,
retrieved from the Bank of Thailand website. ~ The monthly risk- free rate used
throughout the dissertation is calculated by summing the daily rate in a given month.
The missing values of the risk-free rate in the 2000 and the first two months of 2001
are proxied by short-term government bond yield minus one percent. | obtain the proxy
from the available data in 02/2001 — 12/2001. Specifically, the one percent difference
for the proxy is the average difference of the available 1-month T-bill and the short-
term government bond in 2001 that expires in August 2003 (LB038A). Similarly, |
apply the estimation of the risk-free rate for the year 2000 by using the government
bond that will expire in one and a half year from January 2000 (LB026A). Additionally,
| use the monthly returns based on the historical daily prices to conduct the analysis.

| decide to use only the stocks in the SET50 because | want to mitigate the
liquidity effect as much as possible while | still have enough stocks to conduct the
reliable analysis. Interested readers can see more detail on the liquidity effect from
Jegadeesh and Subrahmanyam (1993). The SET50 consists of 50 largest and
liquidating stocks which are selected by the Index Advisory Committee. The index
also updates twice a year on the first trading day of January and July to adjust for any
changes in the market. Thus, the list of 50 stocks will change every six months to
reflect the actual SET50 index accurately.
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4.4 Empirical Results
4.4.1 CheiRank and PageRank

This section examines the characteristics of CheiRank and PageRank for the
stocks in SET50 (See the detail explanation in Appendix 4.6). The measures are
estimated from the rolling PCPG network on a monthly basis. In each montht,a PCPG
network is constructed from the daily returns from month t-6 to t-1 by using the
approach in Section 4.3. Then, CheiRank and PageRank are assigned to individual
stocks in the network. Lastly, the stocks are classified into three groups (Low, Medium,
High) in accordance with CheiRank or PageRank. The group of low
CheiRank(PageRank) consists of stocks with its ranking below the 30" percentile. The
group of medium CheiRank(PageRank) consists of stocks with its ranking between the
30" and 70" percentile. The group of high CheiRank(PageRank) consists of stocks with
its ranking above the 70" percentile.

Table 4.1 shows the equal-weighted average of CheiRank(PageRank) for each
group. The average CheiRank( PageRank) for the high ranking portfolio is
0.0472(0.0295), whereas the average CheiRank( PageRank) for the high ranking
portfolio is much lower at 0.076(0.0134). The statistics indicate that the relative
influence of the portfolios is differentiated clearly in the sample. On the other hand,
the standard deviation within each group is very small. The highest standard deviation
belongs to the high ranking portfolio at 0.16% for CheiRank and 0.13% for PageRank.
The standard deviations of the other portfolio are about half of the highest number.

Figure 4.2 depicts the dynamic of CheiRank and PageRank portfolios. The
graph has the similar implication to the statistics in Table 4.1. The difference of the
relative importance between the groups is noticeable while the stock behavior within
each group is relatively close. The noticeable difference between CheiRank and
PageRank is the distribution of the ranking values. The ability to affect the other stocks
tend to be mostly concentrated in the high CheiRank portfolios while the ability in the
medium and low groups is somewhat indifferent. On the other hand, the fragility across
the three PageRank portfolio is differentiated quite well.

To further investigate the PCPG network and the interconnectedness measures,
| simulate a PCPG network in September 2008 when the financial crisis unfolded after
the Lehman’s bankruptcy. Figure 4.3 shows this particular network of which the node
size indicates CheiRank level, the outgoing arrow represents its influence over the
others, and the incoming arrow indicates the source of the propagated shock. Moreover,
the systemically-important firms tend to be more central whereas the fragile firms tend
to be distant from the center. In this sample network, KBANK and BBL apparently
have the highest level of CheiRank and are central to the network. Due to these
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properties, they play a major role in spreading shocks to the other firms in the market.
This description is closely matched the actual activities. The shocks from the global
crisis propagate from the US through the banking channel to affect the other countries,
including Thailand. As a consequence, the stocks in the banking sector are the first to
receive the damage and in turn spread the damage to the other firms.

Table 4.1 Average CheiRank and PageRank

Mean Standard deviation
Low Medium High Low Medium High
CheiRank 0.0076 0.0091 0.0472 0.0006 0.0008 0.0016
PageRank 0.0134 0.0180 0.0295 0.0007 0.0005 0.0013
Number of stocks 15 20 15 15 20 15

(Note) Table 4.1 reports some statistics of CheiRank and PageRank. Stocks are classified into three
groups (Low, Medium, and High) in accordance with their CheiRank and PageRank. Mean is the equal-
weighted average of CheiRank and PageRank within each group. The number of stocks in each group is
also reported in the table.

Figure 4.2 Dynamic of CheiRank and PageRank portfolios.

a) CheiRank b) PageRank

2 o o m o2 & w2 ~ @ @ e o N om =

(Note) The figure presents the dynamic of the CheiRank portfolios in (a) and PageRank portfolios in (b)
over time from January 1990 to December 2014. The vertical axis shows the equal-weighted average of
CheiRank or PageRank. CheiRank is calculated from the outgoing link matrix and represents the relative
influence of a firm by its ability to transmit its shocks to the others. PageRank is calculated from the
incoming link matrix and represents the relative influence of a firm by its vulnerability to propagated
shocks.
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Figure 4.3 The PCPG network during the global crisis period in September 2008.
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(Note) This figure shows an example of a PCPG network constructed from the daily returns of stocks
listed in Stock Exchange of Thailand.

4.4.2 Cross-sectional regressions

The primary objective of this section is to test whether or not the network
measures can explain the return differences among the stocks in SET50. Following the
methodology of Fama and MacBeth (1973), | conduct the cross-sectional regressions
on a monthly basis. As shown in Equation (4.5), the dependent variable is the return of
an individual stock over the risk-free rate. The explanatory variables are market beta
(MKTB), size (market capitalization or ME), book-to-market (BM), CheiRank (CR),
and PageRank (PR). All independent variables except for the market beta are
transformed by natural logarithm.

R+ — Rf¢ = const; + bbeta,t(MKTBi,t) + Dsize ln(ME)i,t + bpm,¢ ln(BM)i,t (4.5)
+ bertIn(CR % 1000); + + by, In(PR * 1000); . + €;;

The first independent variable, MKTBiy, is the market risk or market beta of
stock i, in month t. It is calculated from the one-factor regression of the excess daily
returns on the individual stock from month t-6 to t-1. Thus, the MKTBi is considered
the pre-ranking beta for individual stocks. This market beta is different from the one
used in Fama and French (1992) who use portfolios to estimate the market beta. The
reason they do that is that the portfolio approach reduces idiosyncratic volatility and
allow more precise estimates of the market beta. Although this statement should not be
ignored, | use individual stocks to estimate the market risk due to the data limitation. If
| were to follow the portfolio approach, | would have only six portfolios, each of which
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has 8 members on average. That is, | will have only six market betas to conduct the
Fama- MacBeth regressions. On the other hand, the individual stock approach allows
me to have 50 different numbers in each Fama-MacBeth regression. Therefore, the
paper uses the individual stock approach to estimate the market risk premium.
Nonetheless, in the analysis, one should be careful with the effect of idiosyncratic
volatility.

ME is a stock’s market capitalization. BM is a stock’s book value to market
capitalization. Both ME and BM are updated twice a year at the beginning of January
and July of each year t. CR is a stock’s CheiRank that implies the degree of systematic
importance. PR is a stock’s PageRank that indicates the degree of fragility. The
calculation of CR and PR is explained in Appendix 4.6. In addition, both CR and PR
are multiplied by 1,000 before taking the natural logarithm in order to make them
remain positive. In Section 4.4.1, we can see that the values of CR and PR are very low.
The low CR portfolio, for example, is 0.0076 on average. As a result, it is needed to
multiply by 1,000 to make the natural logarithm in the positive range.

Table 4.2 reports the average slopes of the monthly cross-sectional regressions
in Equation (4.5). The average slope is the average of a factor’s estimated coefficients
over 180 months. The t-statistic in the blanket is the average slope divided by its time
series standard error. The one-factor regressions are reported in Model 1-5. Similar to
the existing literature, the market risk premium is not significant in explaining the cross-
sectional returns. While the size and book-to-market factors are well-known to be
significant in developed markets, their effect on the developing countries is mixed. In
this paper, | find that the size and BM factors are not significant in explaining the cross-
sectional returns. Nonetheless, the signs of the factors are consistent with the existing
literature. Size has the negative relationship with the returns. That is, big stocks tend to
earn lower returns than the small stocks. Book-to-market has the positive relationship
with returns. This result indicates that the value stocks have higher returns.

Out of five one- factor regressions, CheiRank’s average slope is solely
significant. Its negative coefficient implies that the high CheiRank stocks earn lower
returns than the low CheiRank stocks. The possible reason may be their relative
systematic importance which gives them multiple connections that can send transmitted
shocks and their own shocks to the other stocks. For instance, in Figure 4.3, KBANK
and BBL are two stocks with the highest CheiRank. They are systematically important
because they have many outward links that can affect the others. When a shock hits
KBANK and BBL, it will be quickly diversified away by the network. As a result,
investors would demand less compensation than the low CheiRank stock. On the other
hand, the PageRank is positively related to the stock returns, but not statistically
significant. That is, a transmitted shock is highly likely to find its way to the high
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PageRank stocks which has no way to diversify shocks. In Figure 4.3, such stocks are
BEC and GLOW who has the highest PageRank among others. It is natural that
investors would demand high compensation for such fragile stocks.

In Model 6, the stock returns are regressed on market risk and CheiRank.
Interestingly, the coefficient of CheiRank becomes insignificant. There are two
explanations for this result. First, it could be that the CheiRank captures some
undiversified risk that is also captured by the market risk premium. Another reason is
the effect of idiosyncratic volatility on the pre-ranking beta of the individual stocks.
Since the network structure serves as the channel for transmission of idiosyncratic
shocks, the network measures, and idiosyncratic volatility is relatively correlated.

Model 7 regresses the stock returns on market risk and PageRank. Model 8
regresses the stock returns on size and book-to-market. In Model 10, the individual
stock returns are regressed on the three factors of Fama and French (1993), including
market beta, size, and book-to- market. The three cross-sectional tests confirm that
market risk, size, book-to-market, and PageRank are not statistically significant in
explaining cross-sectional returns.

Model 9 regresses the stock returns on CheiRank and PageRank. The coefficient
of the CheiRank is still significant at the 90% confidence level. Compared to the one-
factor Model 4, the effect of CheiRank decreases from -0.357 to -0.268. This result is
expected because PageRank is somewhat reciprocal to CheiRank and both factors are
highly correlated. In Model 11, the market beta is added, and the regression becomes a
three-factor model. The coefficient of CheiRank becomes even lower at -0.104.

In Model 12 (13), I regress the stock returns on three factors, including, size,
book-to-market and CheiRank (PageRank). The goal is to see whether or not the
network measures are cross- sectionally affected by the size and book-to- market. The
coefficient of CheiRank at - 0. 336 does not change much from the one-factor Model 4
at -0.357. Likewise, The coefficient of PageRank at 0.623 does not change much from
the one-factor Model 5 at 0.592. The results infer that CheiRank (PageRank)’s ability
to explain stock returns do not come from size and book-to-market.
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Table 4.2 Average slopes from month-by-month cross-sectional regressions.

Model const MKTB In(ME) In(BM) In(CR*1000) In(PR*1000)
One factor 1 0.984%*%* -0.638
[2.157] [-1.150]
2 1.750 -0.058
[0.434] [-0.377]
3 0.381 0.207
[0.605] [1.102]
4 1.342%* -0.357**
[2.205] [-2.333]
5 -1.278 0.592
[-0.898] [1.595]
Two factors 6 1.296** -0.488 -0.188
[2.362] [-0.829] [-1.296]
7 -0.480 -0.422 0.433
[-0.413] [-0.727] [1.273]
8 -0.555 0.040 0.194
[-0.136] [0.252] [1.023]
9 0.447 -0.268* 0.229
[0.297] [-1.716] [0.606]
Three factors 10 -2.901 -0.782 0.162 0.244
[-0.782] [-1.365] [1.102] [1.288]
11 0.066 -0.355 -0.104 0.308
[0.048] [-0.592] [-0.677] [0.851]
12 -0.580 0.076 0.254 -0.336**
[-0.143] [0.473] [1.360] [-2.062]
13 -3.463 0.086 0.254 0.623
[-0.751] [0.540] [1.353] [1.640]
Five factors 14 -4.785 -0.512 0.212 0.291 -0.118 0.255
[-1.118] [-0.848] [1.395] [1.507] [-0.781] [0.646]

(Note) The table reports average slopes and t-statistics of the monthly cross-sectional regressions from
January 2000 to December 2014. In each month, individual excess stock returns are regressed on the
independent variables, including market beta (MKTB), size (market capitalization or ME), book-to-
market (BM), CheiRank (CR), and PageRank (PR). MKTB is the pre-ranking beta of an individual stock.
IN(ME) is a stock’s market capitalization. In(BM) is a stock’s book value to market capitalization. Both
In(ME) and In(BM) are updated twice a year at the beginning of January and July of each year t.
In(CR*1000) is a stock’s CheiRank that implies the degree of systematic importance. In(PR*1000) is a
stock’s PageRank that indicates the degree of fragility

4.4.3 Relationship between CheiRank/PageRank, size, and book-to-market

Since the study of Fama and French (1993), size and book-to-market have been
two well-known common risk factors in addition to the market risk. It becomes a
common practice to use size and book-to- market as a benchmark or controlled factors
in asset pricing tests. Therefore, this paper also investigates the relationship between
CheiRank/PageRank, size, and book-to-market.

To begin with, size is measured by market capitalization, retrieved from
Bloomberg. Book-to-market (BM) is an acronym for book-value to market equity of
stock. Both size and BM are updated twice a year at the beginning of January and July
of each year t. Please note that the variables are updated semiannually because the
SET50 constitution changes twice a year. Using these data, | sort the stocks into three
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portfolios by size or book-to-market. The breakpoints are the 30" and 70" percentile.
Therefore, the top 30% are large size stocks (B) or high BM stocks (H). The middle
40% are medium size stocks (M) or medium BM stocks (M). The lower 30% are small
stocks (S) or low BM stocks (L). Table 4.3 reports the average CheiRank and average
PageRank of portfolios ranked on size or book-to- market (BM). Since the big stocks
have the highest CheiRank among others, they are systemically important to the stock
market. Although the big stocks tend to be less fragile than the rest, the average
PageRank is not much different from the small and medium stocks. Moreover, | also
find evidence of the relationship between book-to-market and CheiRank. The average
CheiRank does increase a little across the BM portfolios. On the other hand, the
relationship between book-to- market and PageRank is rather weak as the average
PageRank of the three BM portfolios is very close.

To further investigate this matter, | conduct the panel regression test of
CheiRank/PageRank on size and book-to-market as follows:

In(CR % 1000); ; = const + bysize;; + e; ¢ (4.6)
In(PR = 1000);, = const + bysize;, + e;; (4.7)
In(CR *1000);,; = const + b3BM; . + e; ¢ (4.8)
In(PR * 1000); s = const + byBM; . + e;, (4.9)

In(CR*1000) i is the CheiRank of firm i in month t. In(PR*1000)i; is the
PageRank of firm i in month t. Both CheiRank and PageRank are calculated from the
PCPG network as described in Section 4.4.1. sizeiy is the equal-weighted average of
daily sizes of firm i within month t. BMi is the equal-weighted average of daily book-
to- market of firm i within month t. Table 4.4 reports the regression estimates of four
specifications above. In Panel A, the relationship between CheiRank and average firm
size is significantly positive with t-statistics of 16.981 and adjusted R? of 0.031. This
result is consistent with the findings from Table 4.3 whereby large stocks tend to be
more systematically important. The relationship between PageRank and average firm
size is significantly negative with t-statistics of -9.937 and adjusted R? of 0.011. That
is, the small stocks tend to be more fragile than the large stock. Similarly, the
relationship between CheiRank ( PageRank) and book- to- market is statistically
significant and positive (negative). However, the adjusted R? is very low at 0.005 and
0.002 for CheiRank and PageRank, respectively. Additionally, the sizes of coefficients
are month lower than those in Panel A. This finding confirms our earlier observation in
Table 4.3.
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Table 4.3 Average CheiRank and PageRank on size/book-to-market portfolios.

Portfolios ranked on size Portfolios ranked on book-to-market
Small  Medium Big Low Medium High
Average CheiRank 0.0151  0.0158 0.0307 0.0145 0.0238 0.0205
Average PageRank 0.0203  0.0209 0.0186 0.0207 0.0198 0.0197
Number of stocks 15 20 15 15 20 15

(Note) Table 4.3 presents the equal-weighted average of CheiRank and PageRank on portfolios formed
by size and book-to-market. Small (Low) portfolio consists of stocks with market capitalization (book-
to-market) below 30™ percentile. Medium portfolio consists of stocks with market capitalization (book-
to- market) between 30" and 70" percentile. Big (High) portfolio consists of stocks with market
capitalization (book-to-market) above 70" percentile.

Table 4.4 Panel regressions between CheiRank/PageRank, size, and book-to-market.

Panel A: Explanatory factor is average firm size

const b t(const) t(b) Adj R?

In(CR*1000) -0.091 0.105** -0.600 16.981 0.031

In(PR*1000) 3.613 -0.028%** 53.187 -9.937 0.011
Panel B: Explanatory factor is average book-to-market

const b t(const) t(b) Adj R?

In(CR*1000) 2.525 0.065** 245.744 6.764 0.005

In(PR*1000) 2.925 -0.020** 641.208 -4.702 0.002

(Note) Panel A presents the estimation of panel regressions of CheiRank and PageRank on firms’ size as
shown in Equation (4.6) and (4.7). Panel B presents the estimation of panel regressions of CheiRank
and PageRank on book-to-market as shown in Equation (4.8) and (4.9). CheiRank is calculated from the
outgoing link matrix and represents the relative influence of a firm by its ability to transmit its shocks to
the others. PageRank is calculated from the incoming link matrix and represents the relative influence of
a firm by its vulnerability to propagated shocks. Size is market capitalization. Book-to-market is the ratio
of book value to market equity. ** is significant at 95% confidence interval.

4.4.4 Relationship between returns, size, book-to-market, CheiRank, and PageRank

This section explores the characteristics of monthly portfolio returns ranked on
size, book-to-market, CheiRank, and PageRank. Similar to the previous sections, | sort
the excess stock returns into three portfolios with the breakpoints at the 30" and 70"
percentile. Table 4.5 reports the excess returns and the standard deviation for each
portfolio. The excess returns are the value-weighted portfolio returns minus the risk-
free rate, and the standard deviation is calculated accordingly. In consistency with Fama
and French (1993), I find that the small stocks have higher returns than the big stocks.
The average portfolio return on the small stocks is 0.58% with the standard deviation
of 9.95%, while the average portfolio return on the big stocks is 0.43% with the standard
deviation of 7.65%. However, the general trend of returns sorted on size does not
conform to their finding. The portfolio return of the medium size stocks that should be
higher than the big size is apparently lower in my data. This issue is possibly caused by



89

the specific nature of the data set which focuses the emerging market (Thailand) instead
of the developed market (US).

Book-to-market, on the other hand, has a clear increasing trend in portfolio
returns. Consistent with the existing literature, the value stocks tend to have higher
returns than the growth stocks. The average portfolio return on the high book-to-market
stocks is 0.67% with the standard deviation of 9.10%, while the average portfolio return
on the low book-to-market stocks is 0.25% with the standard deviation of 7.34%.

Both CheiRank and PageRank have a noticeable decreasing or increasing trend
on average portfolio returns, respectively. The average portfolio return on the high
CheiRank stocks is 0.18% with the standard deviation of 9.09%, while the average
portfolio return on the low CheiRank stocks is 0.68% with the standard deviation of
6.88%. Itis clear that the high CheiRank stocks earn considerably lower returns than
the low CheiRank stocks. On the contrary, The average portfolio return on the high
PageRank stocks is 0.57% with the standard deviation of 7.28%, while the average
portfolio return on the low PageRank stocks is 0.32% with the standard deviation of
8.83%. That is, the low PageRank stocks earn much lower returns than the high
PageRank stocks. The findings on CheiRank and PageRank are indeed complementary
as they measure two opposite characteristics of the interconnectedness. In other words,
the stock returns are negatively related to their relative systemic importance and
positively related to their relative fragility in the system.

Table 4.5 Average monthly excess returns of portfolios sorted on size, book-to-
market, CheiRank, and PageRank.

Average monthly excess returns Standard deviations

Small/Low Medium Big/High Small/Low Medium Big/High
Size 0.0058 0.0032 0.0043 0.0995 0.0801  0.0765
Book-to-market ~ 0.0025 0.0059 0.0067 0.0734 0.0834  0.0910
CheiRank 0.0068 0.0040 0.0018 0.0688 0.0781  0.0909
PageRank 0.0032 0.0048 0.0057 0.0883 0.0784  0.0728

(Note) Table 4.5 presents the average monthly excess returns and standard deviations of portfolio formed
on size, book-to-market, CheiRank and PageRank. Size is market capitalization. Book-to-market is the
ratio of book value to market equity. CheiRank is calculated from the outgoing link matrix and represents
the relative influence of a firm by its ability to transmit its shocks to the others. PageRank is calculated
from the incoming link matrix and represents the relative influence of a firm by its vulnerability to
propagated shocks. The breakpoints for the classification are 30" and 70™ percentiles
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4.4.5 Portfolio construction for asset pricing tests

The primary purpose of this section is to study the relationship between returns
and interconnectedness measures after controlling for size and book- to- market.
Following the portfolio construction approach of Fama and French (1993), | form six
intersection portfolios based on two risk factors. For example, 2x3 sorts on size and
CheiRank are S/CRL, S/CRM, S/CRH, B/CRL, B/CRM, and B/CRH. S stands for
small size, B stands for big size. CRL, CRM, and CRH represent low, medium, high
CheiRank, respectively. Thus, S/CRL is a portfolio of small firms with low CheiRank.
S/CRM is a portfolio of small firms with medium CheiRank. S/CRH is a portfolio of
small firms with high CheiRank. Similarly, B/CRL, B/CRM, and B/CRH are portfolios
of big firms with low, medium, high CheiRank, respectively.

In addition, I also form 2x3 sorts on size and PageRank, 2x3 sorts on book- to-
market and CheiRank, 2x3 sorts on book-to-market and PageRank. Six portfolios
formed on size and PageRank are S/PRL, S/PRM, S/PRH, B/PRL, B/PRM, and B/PRH.
The portfolios formed on book-to-market and CheiRank are L/CRL, L/CRM, L/CRH,
H/CRL, H/CRM, and H/CRH. The portfolios formed on book-to-market and PageRank
are L/PRL, L/PRM, L/PRH, H/PRL, H/PRM, and H/PRH. L stands for low book-to-
market, H stands for high book- to- market. PRL, PRM, and PRH represent low,
medium, high PageRank, respectively. Please note that three categories of
CheiRank/PageRank are used to form the intersection portfolios because the main
attention of this paper is the interconnectedness. The breakpoints are the 30" and 70%"
percentile, as usual. Due to limited data, I use only two categories of size and book-to-
market to rank the stocks in this analysis. The stocks above the 50" percentile are
considered as big size (B) or high book-to-market (H). The stocks below the 50"
percentile are considered as small size (B) or low book-to-market (H).

Table 4.6 reports the mean excess returns and standard deviations on the
intersection portfolios. Panel A shows the statistics of portfolios formed by size and
CheiRank as well as book-to- market and CheiRank. The decreasing mean excess
returns across the CheiRank portfolios clearly support the negative relationship
between return and CheiRank. This relationship is noticeable in the big stocks and
particularly strong in the small stocks. The mean excess return of S/CRL is 0.0124
while the mean of S/CRH is -0.0074. In Section 4.4.3, | find the significant relationship
between book-to-market and CheiRank, but the adjusted R? is very low. The statistics
in Panel A of Table 4.6 provide one explanation for this matter. The mean excess returns
of the low book-to- market stocks decline along with the increase in CheiRank. The
mean excess returns of the high book-to-market stocks, on the contrary, have a reverse
pattern in medium and high CheiRank portfolios. These findings suggest that the weak
relationship between book-to-market and CheiRank is primarily due to the inconsistent
behavior of the value stocks in the network.
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Panel B shows the statistics of portfolios formed by size and PageRank as well
as book-to-market and PageRank. The mean excess returns on the small stocks increase
noticeably as the stocks become more fragile. The mean excess return of S/PRL is
0.0010 while the mean of S/CRH is 0.0115. The returns on the big stocks also increase
marginally with the PageRank. Thus, the findings confirm the positive relationship
between size and PageRank. Because of this marginal increase in returns of the big
stocks, the size has the weaker relationship with PageRank than CheiRank.
Furthermore, the results show that the weak relationship of the high book-to- market
stocks is the cause of the high book-to-market portfolio. In the low book-to- market
region, the mean returns of the PageRank portfolio monotonically increase from 0.0028
to 0.0030 to 0.0064. On the other hand, the mean returns of the PageRank portfolio
with high book-to-market have no trend. The medium PageRank has the highest return
at 0.0092 while the others have much lower returns.

Table 4.6 Summary statistics for the intersection portfolios.

Panel A

CheiRank portfolios
CRL=Lo CRM=Mediu CRH=Hig CRL=Lo CRM=Mediu CRH=Hig

Size
w m h w m h
Mean excess returns Standard deviations
S=Small 0.0124 0.0087 -0.0074 0.0877 0.0967 0.1096
B=Big 0.0043 0.0033 0.0023 0.0715 0.0779 0.0913
Book-to-
market
L=Low 0.0057 0.0046 -0.0003 0.0694 0.0834 0.0905
H=High 0.0130 0.0026 0.0037 0.0901 0.0834 0.0995
Panel B
PageRank portfolios
Size PRL=Lo PRM=Mediu PRH=Hig PRL=Lo PRM=Mediu PRH=Hig
W m h w m h
Mean excess returns Standard deviations
S=Small 0.0010 0.0049 0.0115 0.1019 0.0923 0.0949
B=Big 0.0032 0.0047 0.0047 0.0882 0.0799 0.0739
Book-to-
market
L=Low 0.0028 0.0030 0.0064 0.0891 0.0821 0.0762
H=High 0.0039 0.0092 0.0040 0.0960 0.0896 0.0921

(Note) Panel A presents the mean excess returns and standard deviations formed by size, book-to-market
and CheiRank. The six intersection portfolios formed by size and CheiRank are S/CRL, S/CRM, S/CRH,
B/CRL, B/CRM, and B/CRH. S/CRL(B/CRL) is a portfolio of small (big) firms with low CheiRank.
S/CRM(B/CRM) is a portfolio of small (big) firms with medium CheiRank. S/CRH(B/CRH) is a
portfolio of small (big) firms with high CheiRank. The six intersection portfolios formed by book-to-
market and CheiRank are L/CRL, L/CRM, L/CRH, H/CRL, H/CRM, and H/CRH. L/CRL(H/CRL) is a
portfolio of low (high) book-to-market firms with low CheiRank. L/CRM(H/CRM) is a portfolio of low
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(high) book-to-market firms with medium CheiRank. L/CRH(H/CRH) is a portfolio of low (high) book-
to-market firms with high CheiRank. Panel B reports the mean excess returns and standard deviations
formed by size, book-to-market, and PageRank. The six portfolios formed by size and PageRank are
S/PRL, S/PRM, S/PRH, B/PRL, B/PRM, and B/PRH. The six portfolios formed by book-to-market and
PageRank are L/PRL, L/PRM, L/PRH, H/PRL, H/PRM, and H/PRH.

4.4.6 Regression results for CheiRank-Size/Book-to-market portfolios

This section examines the relationship between CheiRank, size, and book- to-
market (BM) by using the asset pricing models similar to Fama and French (1993). The
primary goal is to test the performance of CheiRank in explaining the time-series of
expected portfolio returns. My regression models take the following forms:

Rp,t - Rf,t = COTLStt + bp (Rm,t - Rf,t) + SpSMBt + Cp CLSMCHSt + ep't (410)
R,: — Ry = const, + by(Rmt — Rr) + hyHML, + ¢,CLBMCHB, + ¢,,, (4.11)

Rpt — Rrt is the excess returns on portfolio p. Rmt is the market returns and
calculated from the value-weighted average of all stock returns in month t. SMB is the
difference between the equal- weight average of returns on small stocks (S/CRL,
S/CRM, and S/CRH) and the equal-weight average of returns on big stocks (B/CRL,
B/CRM, and B/CRH). HML: is the difference between the equal-weight average of
returns on value stocks (H/CRL, H/CRM, and H/CRH) and the equal-weight average
of returns on growth stocks (L/CRL, L/CRM, and L/CRH). CLSMCHS; in Equation
(4.10) is the difference between the equal-weight average of returns on low CheiRank
stocks (S/CRL and B/CRL) and the equal-weight average of returns on high CheiRank
stocks (S/CRH and B/CRH). CLBMCHB: in Equation (4.11) is the difference between
the equal-weight average of returns on low CheiRank stocks (L/CRL and H/CRL) and
the equal-weight average of returns on high CheiRank stocks (L/CRH and H/CRH).

Table 4.7 reports the regression estimates for the multifactor models. In Panel
A, the parameters for size- CheiRank portfolios have been estimated. The market risk
factor (Rmt— Ryy) is positive and highly significant at 5% level for all portfolios. Thus,
the increase in 1 unit of market risk would demand higher compensation on equity
returns across the market. However, since the slopes are marginally different across
portfolios formed on size and CheiRank, it is obvious that the market risk factor alone
cannot explain the differences in portfolio returns. SMB; is negative and highly
significant at 5% level for the big stocks, except for B/CRL. Also, since the coefficients
monotonically decrease with the CheiRank, the size factor is partly responsible for the
difference in CheiRank portfolio returns with large stocks. On the other hand, SMBt is
positive and highly significant at 5% level for all three portfolios of small stocks. The
positive sign of the coefficients tells us that the size effect is needed to be compensated
for the small stocks. An interesting point here is that the coefficient of SMBt on S/CRL
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is lower than that on S/CRH. This does not conform to the previous findings, which
indicate that the stock returns decrease as CheiRank or systematic important level
increases. Therefore, the effect of SMBt on systematic importance is noticeable for big
stocks and unclear for the small stocks. It seems that when a small stock is systematic
important in the network, it is priced higher than usual. This matter can be an interesting
topic for the future research.

CLSMCHS: in Equation (4.10) is highly significant at 5% level for all portfolios
except for B/CRM. The coefficients of CheiRank is positive for S/CRL and S/CRM
portfolios but becomes positive for the S/CRH portfolio. The coefficients also decrease
monotonically with the CheiRank. The result is also similar for the big portfolios. Thus,
CLSMCHS; can effectively explain the difference in CheiRank portfolio returns,
regardless of the size. Furthermore, the CheiRank factor appears to have an only
marginal effect on the return difference of small and big portfolios because the
coefficients on small and big portfolios are almost indifferent.

In Panel B, the parameters for BM-CheiRank portfolios have been estimated.
The market risk factor (Rmt— Rr¢) is positive and highly significant at 5% level for all
portfolios. Thus, the market risk demands some compensation for these portfolios.
However, similar to the size effect, the market factor alone is not sufficient to explain
the discrepancy in portfolio returns because the coefficients are marginally different.
HML. is negative and highly significant at 5% level for the growth stocks. On the other
hand, HML. is positive and highly significant at 5% level for all three portfolios of value
stocks. This stark difference in growth and value portfolios advocate the existence of
the book-to-market anomaly in returns of SET50 stocks. Furthermore, the book-to-
market factor is somewhat related to the CheiRank as we observe the monotonic
increase (decrease) of the slopes for low (high) book-to-market factor.

CLBMCHB: in Equation (4.11) is highly significant at 5% level for all portfolios
except for the medium CheiRank portfolios. The coefficient for L/ CRM is significant
at 5% level while the coefficient for H/CRM is insignificant. Similar to the CheiRank
factor formed by size, the low CheiRank portfolios demand much higher demand for
return compensation than the high CheiRank. In fact, the slope of the high CheiRank
portfolios is even negative and thus make the portfolio returns very low. Therefore, the
effect of CheiRank is significant for portfolios formed on book- to- market and
CheiRank.

All in all, CheiRank is a significant risk factor that can affect the time-series
returns on equities. The stocks with high CheiRank tend to be systematic important in
the network and earn lower expected returns than the other stocks.



94

Table 4.7 Regression estimates of excess stock returns on the portfolios formed by
CheiRank, size, and book-to-market from January 1990 to December 2014.

Panel A
CheiRank portfolios
Size CRL=Low CRMTnMEd'“ CRH=High  CRL=Low CRM;Med'“ CRH=High
const t stat (const)
S=Small 0.0005 0.0020 -0.0075 0.3045 0.8625 -2.9850
B=Big -0.0060 -0.0010 0.0020 -2.4085 -0.4906 1.2080
b t stat (b)
S=Small 1.0339**  1.0394** 0.9178** 42.2276 31.7073 25.3763
B=Big 0.9447**  0.9857%** 1.0608** 26.2833 33.2940 44.4096
S tstat (s)
S=Small 0.8616**  0.8231%** 0.9835%* 21.9827 15.6850 16.9861
B=Big -0.0419 -0.1262**  -0.1638** -0.7287 -2.6627 -4.2830
c t stat (c)
S=Small 0.5946**  0.1317** = -0.4537** 15.6779 2.5941 -8.0989
B=Big 0.5951%* 0.0340 -0.3566** 10.6900 0.7421 -9.6372
Adj R?
S=Small 0.9369 0.9070 0.9118
B=Big 0.7953 0.8832 0.9447
Panel B

CheiRank portfolios
Book-to-market CRL=Low CRM=Medium CRH=High CRL=Low CRM=Medium CRH=High

const t stat (const)
L=Low -0.0006 0.0005 -0.0010 -0.2973 0.1962 -0.5479
H=High 0.0009 -0.0034 0.0013 0.4634 -1.4740 0.8095
b t stat (b)
L=Low 0.9356**  1.0678%** 1.0098** 29.8029 31.0952 37.5762
H=High 1.1021**  0.8832** 1.0278** 37.6367 26.1174 43.8895
h t stat (h)
L=Low -0.4526**  -0.3602** -0.1647** -8.2466 -5.9997 -3.5053
H=High 0.7897**  0.7310%** 0.5018%** 15.4260 12.3636 12.2559
o tstat (c)
L=Low 0.5046**  0.1146%* -0.3825%** 11.5065 2.3896 -10.1868
H=High 0.6673** 0.0151 -0.4456%** 16.3113 0.3206 -13.6194
Adj R?
L=Low 0.8338 0.8623 0.9284
H=High 0.9143 0.8666 0.9550

(Note) Panel A presents the regression estimates of excess portfolio returns on market risk, SMB, and
CLSMCHS, as shown in Equation (4.9). The six intersection portfolios formed by size and CheiRank
are S/CRL, S/CRM, S/CRH, B/CRL, B/CRM, and B/CRH. S/CRL(B/CRL) is a portfolio of small (big)
firms with low CheiRank. S/CRM(B/CRM) is a portfolio of small (big) firms with medium CheiRank.
S/CRH(B/CRH) is a portfolio of small (big) firms with high CheiRank. Panel B presents the regression
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estimates of excess portfolio returns on market risk, HML, and CLBMCHB, as shown in Equation (4.10).
The six intersection portfolios formed by book-to-market and CheiRank are L/CRL, L/CRM, L/CRH,
H/CRL, H/CRM, and H/CRH. L/CRL(H/CRL) is a portfolio of low (high) book-to-market firms with
low CheiRank. L/CRM(H/CRM) is a portfolio of low (high) book-to-market firms with medium
CheiRank. L/CRH(H/CRH) is a portfolio of low (high) book-to-market firms with high CheiRank. ** is
significant at 95% confidence interval. * is significant at 90% confidence interval.

4.4.7 Regression results for PageRank-Size/Book-to-market portfolios

In this section, I explore the relationship between PageRank, size, and book-to-
market (BM) by using the asset pricing models similar to Fama and French (1993). The
primary goal is to test the performance of PageRank in explaining the cross-section of
expected portfolio returns. The regression models take the following forms:

Ry — Ry = const, + b,(Rye — Ry) + 5,SMB, + c,PHSMPLS, + e,, (4.12)
R, — Ry = const, + by(Rye — Ry ) + hyHML, + c,PHBMPLB, + ¢, (4.13)

Rpt — Rrt is the excess returns on portfolio p. Rmt is the market returns and
calculated from the value-weighted average of all stock returns in month t. SMB is the
difference between the equal-weight average of returns on small stocks (S/PRL,
S/PRM, and S/PRH) and the equal-weight average of returns on big stocks (B/PRL,
B/PRM, and B/PRH). HML: is the difference between the equal-weight average of
returns on value stocks (H/PRL, H/PRM, and H/PRH) and the equal-weight average of
returns on growth stocks (L/PRL, L/PRM, and L/PRH). PHSMPLS:; in Equation (4.12)
is the difference between the equal-weight average of returns on high PageRank stocks
(S/PRH and B/PRH) and the equal-weight average of returns on low PageRank stocks
(S/PRL and B/PRL). PHBMPLB: in Equation (4.13) is the difference between the
equal-weight average of returns on high PageRank stocks (L/PRH and H/PRH) and the
equal-weight average of returns on low PageRank stocks (L/PRL and H/PRL).

Table 4.8 reports the regression estimates for the multifactor models. In Panel
A, the parameters for size- PageRank portfolios have been estimated. The PageRank-
related results for the market factor and size factor are similar to those of PageRank in
the previous section. The market risk factor (Rmt— Ry.) is positive and highly significant
at 5% level for all portfolios. Therefore, the increase in 1 unit of market risk would
demand higher compensation on equity returns across the market. Nevertheless, due to
the marginal increase or decrease on the slopes, the stock returns need some new risk
factors to explain the variation in returns in addition to the market risk.

SMB: is negative and highly significant at 5% level for the big stocks, except
for B/PRH. On the other hand, SMB: is positive and highly significant at 5% level for
all three portfolios of small stocks. Since the coefficients monotonically decrease with
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the PageRank, the size factor is partly responsible for the difference in PageRank
portfolio returns in the small size domain. The vast difference in coefficients for small
and big portfolios supports the existence of the sizes anomaly in returns of SET50
stocks. Furthermore, | observe that the size factor goes against the general trend of the
PageRank portfolios in the small portfolios. The coefficient of SMBt on S/PRL is higher
than that on S/PRH. This does not conform to the previous findings, which indicate that
the stock returns increase as PageRank or fragility level increases. On the contrary, the
pattern in the big portfolios is consistent with the PageRank. B/PRH has higher
coefficient than B/PRL.

PHSMPLS:; in Equation (4.12) is highly significant at 5% level for all portfolios
except for B/CRM which is significant at 5% level. The slope of PageRank is positive
for the S/PRL portfolio but becomes positive for the S/PRM and S/PRH portfolios. The
coefficients also increase monotonically with the PageRank value. The result is similar
for the big portfolios. Therefore, PHSMPLS; can effectively explain the difference in
PageRank portfolio returns, regardless of the size. Moreover, the PageRank factor
appears to have a noticeable effect on the return difference of both small and big
portfolios because the PageRank coefficients on small and big portfolios are relatively
different. This finding suggests that the fragility effect appears to be more consistent
than the effect of systemically importance.

In Panel B, the parameters for BM-PageRank portfolios have been estimated.
The market risk factor (Rm;t— Rst) is positive and highly significant at 5% level for all
portfolios. Thus, the market risk demands some compensation for these portfolios.
However, similar to the results in Panel A, the market factor alone is not sufficient to
explain the difference in portfolio returns. HML; is negative and highly significant at
5% level for the growth stocks. On the other hand, HML: is positive and highly
significant at 5% level for all three portfolios of value stocks. This empirical evidence
supports the existence of the book-to- market anomaly in returns of SET50 stocks.
Furthermore, the relationship between book- to- market and PageRank is found for the
high BM stocks but is unclear for the low BM stocks.

PHBMPLB in Equation (4.13) is highly significant at 5% level for all portfolios.
Similar to the PageRank factor formed on size, the high PageRank portfolios demand
much higher demand for return compensation than the low PageRank. In fact, the slope
of the low PageRank portfolios is even negative and thus make the portfolio returns
very low. Therefore, the effect of PageRank is significant for portfolios formed on
book-to-market and PageRank.
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In short, PageRank is a significant risk factor that can affect the returns on
equities. The stocks with high PageRank tend to be fragile and earn higher expected
returns than the other stocks.

Table 4.8 Regression estimates of excess stock returns on the portfolios formed by

PageRank, size, and book-to-market from January 1990 to December 2014.

Panel A

PageRank portfolios

Size

S=Small
B=Big

S=Small
B=Big

S=Small
B=Big

S=Small
B=Big

S=Small
B=Big

PRL=Low PRM=Medium PRH=High

PRL=Low PRM=Medium PRH=High

const t stat (const)
-0.0011 -0.0014 0.0016 -0.4572 -0.6829 1.0022
0.0009 0.0001 -0.0018 0.5742 0.0442 -0.7385
b tstat (b)
0.9250** 0.9858** 1.0993** 29.8474 34.6437 50.0939
1.0799** 1.0246%** 0.9056** 52.7574 43.1127 27.3996
S tstat (s)
0.9517%* 0.8730%** 0.8551** 17.7267 17.7105 22.4933
-0.1330**  -0.1507** -0.0365 -3.7511 -3.6610 -0.6369
p tstat (p)
-0.5465%* 0.1422%*% 0.6622** -9.6203 2.7263 16.4614
-0.3165** 0.0995%* 0.4748%* -8.4342 2.2848 7.8376

Adj R?
0.9114 0.9089 0.9488
0.9484 0.9152 0.8083

Panel B

PageRank portfolios

Book-to-market

L=Low
H=High

L=Low
H=High

L=Low
H=High

L=Low
H=High

L=Low
H=High

PRL=Low PRM=Medium PRH=High

PRL=Low PRM=Medium PRH=High

const t stat (const)
-0.0007 -0.0007 0.0018 -0.3622 -0.3238 0.9203
-0.0004 0.0038 -0.0029 -0.2513 1.6309 -1.6219
b tstat (b)
1.0389%*  1.0349** 1.0103** 39.4961 34.0324 36.0322
1.0564**  0.9428%** 1.0849%* 43.2013 28.4475 42.4278
h t stat (h)
-0.0987**  -0.4134%** -0.4394%** -2.1159 -7.6627 -8.8333
0.4422**  (0.8235** 0.7829** 10.1936 14.0057 17.2568
p tstat (p)
-0.3735%* 0.0396 0.6187** -8.2273 0.7551 12.7843
-0.3946%* 0.0661 0.6133** -9.3497 1.1559 13.8956
Adj R?
0.9222 0.8776 0.8793
0.9421 0.8780 0.9313
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(Note) Panel A presents the regression estimates of excess portfolio returns on market risk, SMB, and
PHSMPLS, as shown in Equation (4.11). The six intersection portfolios formed by size and PageRank
are S/PRL,S/PRM, S/PRH, B/PRL, B/PRM, and B/PRH. S/PRL(B/PRL) is a portfolio of small (big)
firms with low PageRank. S/PRM(B/PRM) is a portfolio of small (big) firms with medium PageRank.
S/PRH(B/PRH) is a portfolio of small (big) firms with high PageRank. Panel B presents the regression
estimates of excess portfolio returns on market risk, HML, and PHBMPLB, as shown in Equation (4.12).
The six intersection portfolios formed by book-to-market and PageRank are L/PRL,L/PRM, L/PRH,
H/PRL, H/PRM, and H/PRH. L/PRL(H/PRL) is a portfolio of low (high) book-to-market firms with low
PageRank. L/PRM(H/PRM) is a portfolio of low (high) book-to-market firms with medium PageRank.
L/PRH(H/PRH) is a portfolio of low (high) book-to-market firms with high PageRank. ** is significant
at 99% confidence interval. * is significant at 95% confidence interval.

4.5 Conclusion

In this paper, | examine the relationship between two interconnectedness
measures and returns on listed firms in SET50. The first measure is CheiRank which
reflects the level of systematic importance. A highly systematic-important firm can
efficiently propagate its shocks to the other firms in the network. Another measure is
PageRank which quantifies the level of fragility. A firm is fragile if it is vulnerable to
propagated shocks. | find that the systematically-important firms (high CheiRank) earn
lower returns while the fragile stocks (high PageRank) earns higher returns than the
remaining stocks. | also find evidence of a positive (negative) relationship between size
and CheiRank (PageRank). The big firms, for instance, tend to be systematically
important in the network of stocks in SET50. Also, | find a significant relationship
between book- to- market and the interconnectedness measures. However, the
relationship with book-to-market is much weaker than with size.

By conducting the cross-sectional regressions similar to Fama and MacBeth
(1973), I find that size, book- to- market, and market risk are well- known risk factors,
but they are all insignificant in my data. More importantly, | find that CheiRank is
significant in explaining cross- sectional returns among individual stocks, whereas
PageRank is not. One possible explanation of the CheiRank factor is that the property
of systematical importance induces different behavior of stocks in the network. High
systematic importance means that a transmitted shock can be efficiently transferred to
other stocks via a network structure. On the other hand, low systematically important
stocks do not have the ability to transfer and diversify away the shock.

Following the approach of Fama and French (1993), | examine whether or not,
CheiRank and PageRank are common risk factors in returns in addition to the well-
known risk factors such as market risk, size, and book-to- market. The regression
estimates suggest the significant relationship between interconnectedness and stock
returns. The slope of the CheiRank factor diminishes and even turns negative as the
CheiRank increases. Therefore, in the context of PCPG networks, the high CheiRank
stocks may be useful in distributing their own risk and demand lower risk premium than
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the low CheiRank stocks. On the other hand, The slope of the PageRank factor increases
as the PageRank increases. That is, investors demand compensation for the high
PageRank firm for the vulnerability to propagated risk.

If the systematic importance means that a firm is close to central to the network,
the paper’s principal findings seem to conflict with the existing literature. Kaya (2014)
and Buraschi and Porchia ( 2012) report the positive relationship between
interconnectedness measures and returns, but this paper finds the opposite is true. This
matter may be caused by the difference in methodology. It could be the different nature
of developing and developed markets. Regardless of the reasons, the discrepancy
between our results indicates that empirical research is essentially lacking to conclude
the relationship between interconnectedness and equity returns. Considerable research
effort is required to establish the relationship. The long-term goal for this field of
research could be to find underlying economic state variables that produce variation in
returns related to the interconnectedness measures.
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4.6 Appendix

4.6.1 PageRank

PageRank is a link analysis algorithm and invented by Larry Page and Sergey
Brin in 1996. In fact, Google web search engine uses PageRank as one of many factors
to determine ranking websites. As illustrated by the picture below, PageRank is the
probability that each webpage, called node, will be reached and thus the sum of all
PageRank values is equal to 1.

Figure 4.4 The network diagram with nodes’ sizes proportional to PageRank.

PageRank probability is calculated by the following equation. PR(u) is the
probability that node u will be reached. Bu is the number of nodes that point to u.
PR(v) is the probability that node v will be reached. L(v) is the number of outbound
links of node v. The d damping factor is the probability at each page the "random
surfer" will get bored and request another random page. In other words, people will
get bored and bored at each step with the probability d, and eventually, they stop surfing
or switch to a new random page. From previous studies, it is generally assumed that
the d damping factor will be set at 0.85. Lastly, N is the number of nodes in the network.

PR = ——2 ; 4 v Z PRv)

To illustrate, suppose that there are four nodes in the network, including A, B,
C, and D as shown in the following diagram. The only links in the system are from B,
C,Dto Aand Ato B. Node A will have a PageRank of 0.67, given that the initial value
of each node is 0.25. The first term on the RHS means that a random surfer moves to
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a different webpage by some means other than selecting a link in the existing webpage
with the probability 1 — d and weight 1/N for each of webpages.

PR(4) = 1 —5.85 \ 0854 (PRl(B) s PRl(C) . PRl(D))

Figure 4.5 Illustration of PageRank procedure.

a) The initial network diagram with the b) The network diagram after running the
initial value of 0.25 first iteration of PageRank algorithm

In general, if d is between 0 and 1, the network will eventually converge to a
fixpoint. To prove this statement, let’s put the above PageRank equation into a matrix
form:

1-d
R(t+1) = ——1+dMR()

Mij = {1/|_(p,-) if j links to i
0 otherwise
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The process will continue until R(t+1) — R(t) < €. Thus, the convergence point
will be:

R=——1+dMR
N +

R=1"9% (I — dM)~1
= —-1 * —
N

The R matrix represents the final PageRank if the network converges.

As for the network in our example, it requires 10 iterations to reach the steady
state, whereby R* = (0.52, 0.40, 0.04, 0.04). This steady state of the network is depicted
in figure 2c. Nevertheless, in some cases, the network just fails to converge. For
example, there is a dangling node that has no outbound links.

4.6.2 Power Method of PageRank

Another method to compute the PageRank is the power method which is
originally used by Google. The advantage of this method is dangling node fix. Similar
to the previous method, the power method begins with an adjacency matrix H of the
network (PCPG network in this paper). The element in row i and column j of H is Hjj
= 1/li, whereby l; is the number of outbound links from i. Otherwise, Hijj=0.

Hij =1/l if i links to j
0 otherwise

But due to the problem of dangling, the system might fail to converge. So, the
new matrix S is created to deal with this problem.

S=H+dw

d = a vector contained 1 if the node is dangling and O if otherwise. w is usually
a uniform row vector. The example of the matrix S is as follows.
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0O 1 0 0 0
0O 0 1 0 0 (1 L 1)
S = + 1111
1 ; 1 N 4 4 4 4
3 0 0 5 0
0O 0 0 0 1
0O 1 0 0
0O 0 1 0
- 1 N1
35 0 0 5
1 1 1 1
1 1 1 1

In this case, node #4 is a dangling node because there is no outbound link from
the node. Therefore, a uniform vector of equal weight is added to the original matrix
H. The use of the uniform vector implies that all nodes have an equal probability to be
reached.

The next step is to create the Google matrix G = dS + (1-d)1v. d isa damping
factor as usual, 1 is the column vector of one, and v is a personalization vector, usually
a uniform vector of 1/N. Since A = 1 is not a repeated eigenvalue of G and is greater in
magnitude than any other eigenvalue of G, we can quickly find the exact solution to the
eigensystem, eG = e, whereby e is the eigenvector of G with the eigenvalue of 1.

Given the starting vector e© = (1/N)1, the power method calculates the iterates
as follows:

e® = e®VG, where k = 1,2,...
ek = oGk

The process continues until some convergence criterion is satisfied. The final
left eigenvector e is called the PageRank vector.

In summary, the PageRank process begins by assigning an initial value to each
node in the network, equal to 1/N. Then, the nodes’ values are adjusted by the adjacency
matrix of the PCPG network. The iteration continues until the steady state of the nodes’
values is reached. From the viewpoint of economics, node A in figure 2b has the highest
number of inbound links and thus is the most fragile node in the system. The intuition
is that when the value of any node in the network drop, node A will have the highest
chance to be affected. We can say that node A is more fragile than any other node.
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Chapter 5 Conclusion

The effects of the network structure in the stock markets have been documented
by researchers and practitioners, especially since the global financial crisis in 2007-
2008. One of the prominent effects of the network is the ability to amplify idiosyncratic
risk and cause a systemic event. This striking feature directly challenges the traditional
asset pricing model that assumes no idiosyncratic risk in a well-diversified portfolio.
From the network theory’s perspective, the diversifying argument is not always valid
as the idiosyncratic shock is not entirely diversified away in the network scheme and
sometimes causes the system-wide event. Therefore, equity returns may demand
compensation for the idiosyncratic risk and network factors in addition to the market
risk.

This dissertation provides empirical evidence for the relationship between
equity returns and network structure. In the US market, | observe the dynamic pattern
of the network structure over time and capture the network topology by the diameter of
the network. | find that the measure of network topology can predict the subsequent
US market returns in both monthly and quarterly interval. When I include the measure
of idiosyncratic risk in the predictive regression, the diameter becomes insignificant.
Thus, the finding suggests that the network topology, measured by the diameter, can
affect the stock market returns by serving as the propagation channel for the
idiosyncratic risk, measured by average stock variance. Similarly, in the international
equity markets, the individual network measures are weak to explain and predict the
probability of the extreme negative returns for counties across the world. Rather, once
the network measures interact with the idiosyncratic risk measure, the ability to predict
the probability of the extreme negative returns increases significantly. Lastly, in
Thailand, I examine the effect of CheiRank and PageRank on the cross-sectional stock
returns. CheiRank reflects the systematical-important aspect of stock while PageRank
reflects the fragility property of the stock. The Fama-MacBeth regressions indicate that
both network measures can capture cross- sectional variation in the stock returns.
Following Fama and French (1993), | create the portfolios sorted by CheiRank,
PageRank, size, and book-to- market. The common risk factors are also estimated
accordingly. | find that the network factors may be useful in explaining the time-series
of expected portfolio returns and thus be considered potential common risk factors.

Although the network application is very advanced in some fields such as
computer and internet, it is still early in financial economics. Theoretical models and
empirical evidence are essentially lacking. This dissertation contributes to the field by
providing empirical evidence for the relationship between network structure and equity
returns. However, this paper leaves many open questions. First and foremost, since the
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data is limited to US, Thailand, and some international indices, the future research can
reexamine the relationship in the context of other countries. Secondly, numerous
studies, including this paper, use the correlation of returns as a link or relationship
between members. However, none has established the connection between the
correlation of returns and actual relationships such as trades and balance sheet. Last but
not least, diameter, CheiRank, and PageRank only reflect some characteristics of the
network structure. The other network measures with different information may provide
more insights into the relationship between equity returns and network structure.
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