as a a 9 1

a o X A Aa A 9 o o
59 'ﬁﬂﬂﬂullﬂﬂuﬂﬂ’llﬁ'g'lllﬂgﬂ'lm'ﬁ]ﬂﬁNQlﬁﬂNllUﬂlWNﬂigﬁ%ﬁﬂ’lWﬁ’l‘Vﬁﬂﬁfy}W’lﬂ’lﬁﬁ]ﬂ

o v 9 A

FUMIAUIDFToTIN AU INeINaULAZHIA19a)

4 v d Ao
HIWYTUIIITU IIIBINIVY

unAngauasuiiudoyaatuiinvaineinusaauntnisfing 2554 liusnisluadatdyaign (CUIR)
\uuitudoyavestidndwoivendnus Ndsnunadudningidy
The abstract and full text of theses from the academic year 2011 in Chulalongkormn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

%mﬁwuﬁﬁﬂuﬁmwﬁwmﬂ”ﬁﬁﬂmmwﬁﬂqmﬂ‘%mﬂujﬁwmmam@yf]ﬁmcﬁﬁ
aninadiamanidizgndiazinensnaun MimadiamansiayInenineuinnes
ANZINGINEAT NDINTAINNINGNSD
Umsfnur 2560

'
a a A t4 a @
AUVANTUDIPWIAINTIUNNIINYIAY

CUCKOO SEARCH AND ENHANCED ARTIFICIAL BEE COLONY HEURISTIC
METHODS FOR
VEHICLE ROUTING PROBLEM WITH BACKHAUL AND TIME WINDOW CO
NSTRAINTS

Mr. Tanawat Worawattawechai

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Applied Mathematics and
Computational Science
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2017
Copyright of Chulalongkorn University

Thesis Title CUCKOO SEARCH AND ENHANCED
ARTIFICIAL BEE COLONY HEURISTIC
ROUTING
PROBLEM WITH BACKHAUL AND TIME

By

Field of Study
Thesis Advisor
Thesis Co-Advisor

METHODS FOR VEHICLE

WINDOW CONSTRAINTS
Mr. Tanawat Worawattawechai

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

Chairman

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

Thesis Advisor

(Assistant Professor Boonyarit Intiyot, Ph.D.)
Thesis Co-Advisor

(Associate Professor Chawalit Jeenanunta, Ph.D.)

Examiner

(Associate Professor Phantipa Thipwiwatpotjana, Ph.D.)

Examiner

External Examiner

(Associate Professor Jirachai Buddhakulsomsiri, Ph.D.)

Applied Mathematics and Computational Science
Assistant Professor Boonyarit Intiyot, Ph.D.
Associate Professor Chawalit Jeenanunta, Ph.D.

Dean of the Faculty of Science

4 a A

4 o @ ana 1 @ 2 A
5UI5ITU 25933 NIF0 : T[T AANAUUDUUNNUNIIAL DI NTHURONLU LAY
dszaninmdmivdymmsiadumudusoadidotinasusaifeandunagvriaig

1721 (CUCKOO SEARCH AND ENHANCED ARTIFICIAL BEE COLONY
HEURISTIC METHODS FOR VEHICLE ROUTING PROBLEM WITH
BACKHAUL AND TIME WINDOW CONSTRAINTS) o.711/3np13ne1inusvdn:

La a { a a I a v J
WA. A5, YYNT DUNYHA, @.ﬁlﬁﬂBTJ’i’lﬂ1UWH‘ﬁi’Jul 1. A7, ¥IAA %u@uw, W‘ﬁl}l

v a % o 4 { U 1 J 4
Tymmssardumudusaddivosinadiusaernduuaziaanaiigalszasdiive

widumadusoimdlu 'l 18 Idszezmalumaidumalassdiantosiiga Tasiidedinaludu

4 o ' A it o @ a s
AMWYURITD TOININGD taz wihawna TuquRinusit Tdinauedmuunieadiamansves
Yymmsiadumadusasididesinadiusaioanduuaz vihaanat el lumsminamanh
c:i z:y o Y o ada A a 9 1 o d' 1 1 9}::'
mziga wenvinil d9ldiiudueisalsaanduustuiniseaiunazIndiga (nearest urgent
candidate w50 NUC) #aldimaiinlumsiadidunanuissaiunazmsiaonguysdn 1azi58s

a A A& v v Y v 2 2 . . .
’cmﬂmiLaamwaumu%awqammmagm@m (nearest neighbor with roulette wheel selection

]
S

I 2 3 s 4 :]
w3 NNRW) Failunmswaunauismistienaiendegiaaanunmsiaeniioutiuilndigea

v
=)

@ Y A o Yy 9 2 =\ Y o as a a A an A
ﬂiuﬂgmm LW@U"IN”Icl‘IﬂLﬂ‘]jﬂJﬁ"IH HUDNIINU El\?u],ﬂu']!,ﬁuﬁl'l‘ﬁmﬁ']Elﬂiﬁﬁﬂﬁ@\n‘ﬁ INDUINALRAIN

Y 1

= A v = an A 2 an A
LW?J’]%V]@ﬂﬂiﬂslﬂaﬁ]glﬂiJ']zﬂﬁ;ﬂ ATUINADUUADUITAULUUUNNUNIN (CUCkOO search viso

A 2

= v o Y o g) an A an o 2 A 2
cs) #a'lagnihunldnudgymitiiuasusn Fnaesfotuasuiserasnsnuiounuuiiy
U52@NTA M (enhanced artificial bee colony %30 EABC) #4ldinaiiasie¥edssriny msaumi

' < o w 2 o a ' Y o Y A aw
f)fl']\ﬂﬂﬂﬁ']ﬂll"ll@ﬂﬂﬁlﬂ'ﬁ@ UASMITIHAUNTTUUDIUNAUAN N 9 GlUﬂ']'iﬂuﬂ'l@'l@UclﬂﬁLﬂU\i WAN13I28

v
1 %

S 2 Y an A) 2 ¥ a Aa a
L%Qﬂ?ﬂﬁm%iﬂlﬁu31 Guu@mmwgﬂmmuammwmuunﬁmiamwmGluwmmmwiﬂEjmww

2 ax o A A A a a = v A A oA Aaa)
ﬂluﬁ@ua‘ﬁmmmﬂimmEl:JLL‘iJULWiJi]S%ﬁVI‘ﬁmW G]NHlﬂ 33 WARAINNIUINIYIDAARINANTADU

v]
aAAaA a,

) =) o d' a o 1 Q/ g’l g’l dd’
v 45 ‘]jflJUﬁWTﬂEIL‘IEEJ‘ULVIEl‘iJﬂ‘iJNﬁLﬂﬁElTlﬂV]@ﬂVli’J‘lJ'i’JiJlJWmﬂQWU’J%El@NG] ANUUVUADUITN

a 9 [

o Y Y &2 I Ao a 9 [9 a R A o F) A
mmuewmuwﬂua‘ﬁmﬂizammwslummﬂﬂagmmﬁmmumqmummmam ANTUIDINYA

ﬂﬁ"]JLszTf!}WiNL’m"I

MAI¥ AdlamaasuazINeINIneuN Mo aeloyoiian

a A 4 J a A A A o
A1V ﬂﬂ!ﬁﬁ1ﬁﬁiﬂi$§lﬂmlﬁ$’3ﬂ81ﬂ1i AUV ’E).Tl‘]_ﬁ'ﬂy"lﬁﬂﬂ

AU aeioe 9. N1/3AM15W

nsdnmn 2560

5672859623 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS: VEHICLE ROUTING PROBLEMS / BACKHAUL / TIME WINDOW /
HEURISTICS / ARTIFICIAL BEE COLONY / CUCKOO SEARCH
TANAWAT WORAWATTAWECHAI: CUCKOO SEARCH AND ENHANCED
ARTIFICIAL BEE COLONY HEURISTIC METHODS FOR VEHICLE ROUTING
PROBLEM WITH BACKHAUL AND TIME WINDOW CONSTRAINTS.
ADVISOR: ASST. PROF. BOONYARIT INTIYOT, Ph.D., CO-ADVISOR:
ASSOC. PROF. CHAWALIT JEENANUNTA, Ph.D., pp.

The vehicle routing problem with backhauls and time windows (VRPBTW) aims to
find a feasible vehicle route that minimizes the total traveling distance while imposing capacity,
backhaul, and time-window constraints. In this dissertation, a mathematical model of VRPBTW
is introduced to obtain an optimal solution. The heuristics, namely the nearest urgent candidate
(NUC), which applies the urgency priority and candidate techniques, and the nearest neighbor
with roulette wheel selection (NNRW) which is a combination of a roulette wheel selection
method and the improved nearest neighbor heuristic, are also presented to solve this problem.
Moreover, two metaheuristic methods are presented to obtain the optimal or near optimal
solutions. The first is a cuckoo search (CS) algorithm, which is applied to this problem for the
first time. The second is the enhanced artificial bee colony (EABC) algorithm which uses a
forbidden list, the sequential search for onlookers, and the combination of neighborhood search
techniques. The computational results indicate that proposed algorithms vyield good
performance in terms of solution quality, especially EABC. It obtained 33 ties or new best
known solutions out of 45 instances comparing with the best known solutions found in the

literature. Hence, the proposed algorithms are the effective ways to solve the VRPBTW.

Department: Mathematics and Computer Student's Signature

Science Advisor's Signature

Field of Study: Applied Mathematicsand Co-Advisor's Signature

Computational Science
Academic Year: 2017

Vi

ACKNOWLEDGEMENTS

| would like to express my sincere gratitude to Assistant Professor Dr.
Boonyarit Intiyot, my dissertation advisor, Associate Professor Dr. Chawalit
Jeenanunta, my dissertation co-advisor, for their kind supervision and
encouragement with their patience and knowledge throughout my dissertation.
Without their constructive suggestions and knowledgeable guidance in this study,
this research would never have successfully been completed.

Sincere thanks and deep appreciation are also extended to Assistant
Professor Dr. Krung Sinapiromsaran, Associate Professor Dr. Phantipa
Thipwiwatpotjana, Dr. Kitiporn Plaimas, and Associate Professor Dr. Jirachai
Buddhakulsomsiri, my dissertation committees, for their comments and suggestions.

Besides, I would like to thank all teachers who have taught me all along.

| am also grateful to Development and Promotion of Science and
Technology Talents Project (DPST) for granting me financial support to do this

research.

In particular, 1 would like to thank my dear friends for giving me good
advice about my dissertation and experiences at Chulalongkorn University. Finally,
| take this opportunity to express the profound gratitude from my deep heart to my
beloved parents for their love and encouragement throughout my study.

CONTENTS

Page

THAT ABSTRACT e iv
ENGLISH ABSTRACT ...t v
ACKNOWLEDGEMENTS. ... vi
CONTENT St nre e n e nn e ne e vii
LIST OF TABLES. ...ttt 1
LIST OF FIGURES ... 2
CHAPTER 1 INTRODUCTION ..ottt 3
1.1 General Vehicle Routing Problem.........ccc.coooiiiiiii i, 3
1.2 IMIOTIVALIONS ...ttt eb e 4
1.3 RESEAICN OB JECHIVES. ...t iiiiieiieiesie et ste ettt et sae e re e e 5
1.4 Scope Of the RESEAICNciiiii e 5
1.5 OVerview Of DISSErTatioNccoeiiiireiiiirieiiei e 6
CHAPTER 2 LITERATURE REVIEW ... 8
2.1 Vehicle Routing Problem ..o 8
2.1.1 Vehicle Routing Problem with Backhaulsc.ccccoeviviiiiiicccee, 8

2.1.2 Vehicle Routing Problem with Time WINdowscccccccvevveieeieciennn, 10

2.1.3 Vehicle Routing Problem with Backhauls and Time Windows............... 11

2.2 Solution Approaches to Vehicle Routing Problem............ccccccooiiiiiiiciienen, 15
2.2.1 EXACt APPrOACNES......ccveiuieiteeiieie ettt ettt ettt ene s 15
2.2.1.1 Lagrange Relaxation............ccccovevieiiieiiiie s 15

2.2.1.2 Column GEeNErationcccoveriiiiiniiieee e 16

2.2.1.3 Integer Programming.........ccceiueeieeiiiesiieesie e 16

2.2.2 HEeuristiC APPrOACH.........ccciiiieiie et 19
2.2.2.1 TWO-Phase NeUNISTICSc.ccovviiieiiie e 19

2.2.2.2 COoNSLructive NEUFISTICScoviiviiiiiiiiieiiceee e 20

2.2.3 Metaheuristic APProach ..o s 23

CHAPTER 3 THE VEHICLE ROUTING PROBLEM WITH BACKHAULS
AND TIME WINDOWS ..o 26

Page

3.1 Problem DeSCIIPLIONcoviiiieiiiiiieieeieie e 26
3.2 Mathematical MOelcccooiiiiiiie e 26
3.3 HeUrIStIC APPIOACH ... 30
3.3.1 CommON EIBMENESc.voviiiiiiiieieee e 30
3.3.1.1 Solution Representationcoccovrereeeeiienienie e 30

3.3.1.2 Quality Measure of @ SOIULION...........ccccviviieieieee 31

3.3.1.3 Neighborhood Search ..o 31

3.3.2 Nearest Neighbor (NN) HeUFISEIC.cocviiiiiiiieieec e 34
3.3.3 Improved Nearest Neighbor (INN) HEUriStiC.........ccoocevviinininiiiccne 37
3.3.4 Nearest Urgent Candidate (NUC) HEUFISEIC..........ccceveiereneniniiieie 40

3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic43

3.4 Metaheuristic APPrOACN..........ciiiiiiiiiieiei it 46
3.4.1 Cuckoo Search (CS) AIGOrithm ... 46
3.4.1.1 The General Concept 0f CS.......cccoviiiiiiiieee e 46

3.4.1.2 Main StePS OF CS...iiiiiiieiiieiese e 47

3.4.2 Artificial Bee Colony (ABC) AlgOrithmcccceveiiiiieniniiiiice 49
3.4.2.1 The General Concept 0f ABCcooviiiiiiiieie e 49

3.4.2.2 Enhanced Atrtificial Bee Colony (EABC) Algorithm.................. 50

3.4.2.3 Main Steps Of EABCcccoiiiiiiiiniiniinieee s 52
CHAPTER 4 COMPUTATIONAL EXPERIMENTcoooiiiiiiiieiee e 54
4.1 TESEPIODIEMS ... 54
4.2 Parameter SETHINGooueieiiiiii et 54
4.2.1 Nearest Neighbor (NN) HeuriStiC........ccooviiiiiiiiiieee e 54
4.2.2 Improved Nearest Neighbor (INN) HeuristiC.........ccoceveieniiinniiciene 55
4.2.3 Nearest Urgent Candidate (NUC) HEUTISIC..........cccevvrereneiiniiieiene 55

4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic....55
4.2.5 Cuckoo Search (CS) AIGOrithm ... 56
4.2.6 Avrtificial Bee Colony (ABC) Algorithm.........cccccevveveiieiiece e 56
4.3 Results and COMPATISONccveieeieiieie e seeie e sre e re e saeeeesneenaeens 57

Page

4.4 Rate OF CONVEIGENCE.c.uiitiitiiiieiieiieiet ettt 70
4.5 RESUILS DISCUSSION ...t ciie ettt sttt sttt sre et nneene e 70
CHAPTER 5 CONCLUSION.... oottt 73
REFERENGES ...ttt et e e e e e nes 76
APPENDIX . 84
R I 1 ST SPP 145

LIST OF TABLES

Page

Table 1 Computational results of the model, NUC, NNRW, CS, and EABC for 25

CUSTOMErS IN VRPBTW. ..ot 58
Table 2 Computational results of the model, NUC, NNRW, CS, and EABC for 50

CUSTOMErS IN VRPBTW. ..ot 59
Table 3 Computational results of the model, NUC, NNRW, CS, and EABC for

100 customers i VRPBTW.ccciiiiiiieie s 60
Table 4 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 25 customers in VRPBTW. ... 61
Table 5 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 50 customers in VRPBTW.ccooiiiiiiiiiiinseee e 62
Table 6 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 100 customers iN VRPBTW.couoiiiiiiiiiisisesee e 63
Table 7 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 25 customers in VRPBTWcccccooiininnineie e 64
Table 8 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 50 customers i VRPBTW.ccccvoiviiiinniiieie e 65
Table 9 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 100 customers in VRPBTW.cccccoiviirinene i 66
Table 10 The summary of the result comparisons for each algorithm 67

Table 11 The summary of comparison between each algorithm solutions and best
KNOWN SOIULTONS ...t 69

Table 12 The average number of iterations until the start of the convergence............ 70

LIST OF FIGURES

Page
Figure 1 An EXample Of 1-MOVEcccooiiiiiiiiiee e 32
Figure 2 An Example of operator (1, 0)......ccoeieiiiiniiiseeieeesese e 33
Figure 3 An Example of 0perator (1, 2)......ccuerererenininenieeeeesee e 33
Figure 4 EXample OF CaSE STUAYc..oiiiiiiiiiieiee s 33
Figure 5 Flowchart of NN algorithm ..o 36
Figure 6 Flowchart of INN algorithm ... 39
Figure 7 An Example of candidate liStccooeiiiiiiiiiiieec e 40
Figure 8 Flowchart of NUC algorithm............cccooeiininiiiiiecec e 42
Figure 9 Flowchart of NNRW algorithim...........cccooeiiiiiiiiiiiecec e 45
Figure 10 Flowchart of CS algorithmccooiiiiiiniiie e 48
Figure 11 Flowchart of EABC algorithmcccooeiiiiiiiiniiecee e 53
Figure 12 The relationship between the heuristic solution and ratio of @ to 55
Figure 13 The relationship between fitness value and the ratio of parameters «a, S,
110 |5 VORI ¢ » v rrrrrrrerrrrrrrormrrsrrrrorrerrss~ ./ | SOOI 56

Figure 14 The relationship between the total distance and parameter 4, and
comparison A -interchange between with and without 1-move intra-route. 57

CHAPTER 1
INTRODUCTION

1.1 General Vehicle Routing Problem

Since business has always been a highly competitive environment, many
companies employ strategies for optimizing their logistics system to make their
business more efficient. To effectively improve logistic service quality, several
problems have been studied including vehicle routing problem (VRP).

The vehicle routing problem (VRP) is a transportation problem which is widely
studied in operations research. The objective of VRP is to find an optimal set of routes,
which minimizes total cost, for delivering goods located at the central depot to all
customers who have placed demands for goods. This problem is widely applied in many
applications such as logistics distribution, school bus routing, and mailing system.
Many types of vehicle routing problem models have been developed due to varieties of
real-world situations, namely the capacitated vehicle routing problem (CVRP) [1-2],
the open vehicle routing problem (OVRP) [3-4], the vehicle routing problem with
simultaneous delivery and pickups (VRPDP) [5-6], the vehicle routing problem with
backhauls (VRPB) [6-10], the vehicle routing problem with time window (VRPTW)
[11-18], etc. Since the VRP is an NP-hard combinatorial optimization problem [20], the
exact algorithm is not always possible to find an optimal solution within a limited time.
For larger problems, heuristics and metaheuristics are more appropriate than exact
methods.

A heuristic is an optimization technique which explores the space of the feasible
solutions to rapidly get satisfactory solution. There are well-known heuristics such as
nearest neighbor algorithm, sweep algorithm, and cluster algorithm. Furthermore, there
are also metaheuristic methods which are higher-level heuristics designed for finding a
near optimal feasible solution. Examples of these algorithms are genetic algorithm
(GA) [14, 21], particle swarm optimization (PSO) [22-23], ant colony optimization

(ACO) [19, 24], cuckoo search (CS) [55-56], artificial bee colony algorithm (ABC)
[57-62], and firefly algorithm (FA) [33-34] and bat algorithm (BA) [35-36].

In this dissertation, a mathematical model of the vehicle routing problem with
backhauls and time windows (VRPBTW) is introduced. Moreover, two new heuristics
and two new metaheuristic methods for solving VRPBTW are proposed and their

solutions to the benchmark problems are compared with those of several other methods.

1.2 Motivations

Since VRPBTW is one of vehicle routing problem types which is NP-hard
combinatorial optimization problem, it is too difficult to be solved by an exact method
within a limited time. In this dissertation, two heuristics and two metaheuristic methods
for VRPBTW are proposed to solve this problem. The heuristics are used to obtain high
quality feasible initial solutions in the brief time and the metaheuristics explore a larger
area of the solution space to achieve good optimization results.

The two heuristics are the nearest urgent candidate (NUC) and the nearest
neighbor with roulette wheel selection (NNRW) heuristics. For NUC, the basic idea is
that the most urgent customer should be firstly served. When generating an initial
solution, the urgency of their delivery is considered the first priority while the closeness
is the second one. However, NUC yields only one initial solution which is not suitable
for population-based metaheuristics while NNRW can generate many good initial
solutions. The basic idea of NNRW is to generate routes by using roulette wheel
strategy where the nearer customers have higher probability to be selected as the next
customer in the current route. Although these methods can provide decent feasible
initial solutions and solve the problem in a short time, the solutions obtained from these
methods always get stuck in the local optima.

The two metaheuristic methods are the cuckoo search (CS), and the enhanced
artificial bee colony algorithm (EABC). CS is inspired by an aggressive breeding
behavior of cuckoo birds. The female cuckoos lay eggs in the nest of other host birds
to let them hatch and brood young cuckoo chicks. To the best of our knowledge, CS
algorithm had never been applied to VRPBTW. Thus, we propose a CS algorithm for

VRPBTW in this dissertation. Moreover, CS is that it requires less parameters

compared with other metaheuristics. CS has only 2 parameters while GA [14], ACO
[19], and PSO [22] have 3, 6, 8 parameters respectively. Since the results of
metaheuristics are affected by parameter tuning, the less parameters is more desirable
because it makes parameter tuning easier. However, the disadvantage of CS is that when
there are many duplicated initial solutions, they are not properly dispersed in the
solution space and that can easily lead to trapping in a local optimum. EABC is an
enhanced version of ABC, which is inspired from the intelligent finding food sources
behavior of the honey bees around the hives. Although the original ABC has a strategy
for preventing premature convergence of the solutions, it has the same problems as CS
when there are many duplicated initial solutions. Hence, the enhanced version (EABC)
is proposed to solve this problem by using the strategy called forbidden list. Moreover,
the sequential search strategy, and the intra-route and inter-route exchange combination
strategy are applied in EABC to extend the exploration on the solution space to obtain

better solutions.

1.3 Research Objectives

The objectives of this research study are stated as follows:

1. To propose a mathematical model of the vehicle routing problem with backhauls
and time windows.

2. To develop heuristic methods for solving the vehicle routing problem with
backhauls and time windows and compare the performance with the existing

heuristics using benchmark problems.

1.4 Scope of the Research

In this research study, the VRPBTW is the single-trip VRPBTW for each
delivery vehicle. Each vehicle starts from the depot, which is assumed to be the only
one depot located in the city, and then serves a set of customers before going back to
the depot, which is considered as the destination. A time window refers to a fixed time
window in which the associated customer must be served. Note that the traveling time
from customer A to customer B is equal to the Euclidean distance between them. A
vehicle is allowed to pick up the goods from backhaul customers and then back to the

depot only after all linehaul customers are served. A vehicle is also allowed to deliver
goods to linehaul customers and then go back to the depot without any pick up. The
aim of our research is to minimize total distance for VRPBTW. Thus, there is no
additional cost for adding vehicles. The performance of the heuristics are measured

based on the benchmark problem sets developed by Gelinas et al. [37].

1.5 Overview of Dissertation

The dissertation is divided into five chapters, namely introduction, literature
review, VRPBTW and heuristic approaches, computational experiment, and
conclusion.

The first chapter is the introduction about VRP in general, the research
objectives, and the scope of this research study.

The second chapter is the literature review about the VRP and its variants
including VRPB, VRPTW, and VRPBTW. Furthermore, we also review the solution
approaches to VRP which can be categorized into mathematical optimization
approaches, heuristic approaches, and metaheuristic approaches.

The third chapter describes VRPBTW, the proposed mathematical models, and
the solution approaches. Firstly, VRPBTW is described and then a proposed
mathematical model for the problem is introduced. Next, the nearest neighbor
approaches are described including a general nearest neighbor heuristic (NN), an
improved nearest neighbor heuristic (INN), a new nearest urgent candidate heuristic
(NUC), and a new nearest neighbor with roulette wheel selection method (NNRW).
The last two approaches (NUC and NNRW) are our proposed methods in this study.
The last part presents our proposed metaheuristic approaches, which includes the
cuckoo search (CS), and the enhanced artificial bee colony algorithm (EABC).

The fourth chapter presents the computational experiments and results. Firstly,
the descriptions of test problems are described. Then, a small study on parametrization
is explained in the parameter setting section. Next, the computational results from the
mathematical model, the heuristics, and the metaheuristics are presented. Moreover, the

comparisons of our methods with the existing algorithms for solving the VRPBTW are

also shown in the same section. In addition, we also study about rate of convergence
and discuss about results.

The fifth chapter is the conclusion of this study.

CHAPTER 2
LITERATURE REVIEW

2.1 Vehicle Routing Problem

The vehicle routing problem (VRP) is a generalization of the travelling
salesman problem (TSP) which is a non-deterministic polynomial-time hard (NP-hard)
problem in computational complexity theory. It is a combinatorial optimization and
integer programming problem aiming to minimize the total distance or the total number
of vehicles used. The basic VRP consists of a depot, a set of customers who require
goods from the depot, and a fleet of vehicles. Each vehicle starts from the depot and
serves a set of customers before going back to the depot. It was first introduced by
Dantzig and Ramser [38]. The formulation of VRP has been extended with various
constraints to reflect real-world applications such as capacity, time windows, pickup
and delivery, cross-docking, and backhaul.

The capacitated vehicle routing problem (CVRP) is a classical version of VRP.
The objective of CVRP is to find an optimal route set which minimizes the total cost
for a fleet of homogeneous vehicles to serve a set of customers while being restricted
by the capacity of vehicles. All vehicle routes begin and end at the depot and all
customers are visited. Each customer is visited exactly once by exactly one vehicle. The
total demand of each route must not exceed the vehicle capacity. More details of CVRP
can be found in a VRP textbook such as [39].

2.1.1 Vehicle Routing Problem with Backhauls

The vehicle routing problem with backhauls (VRPB) is one of the interesting
variations of VRP where a vehicle does not only deliver goods to the linehaul customers
but also picks up goods from the backhaul customers before going back to the depot. A
vehicle is also allowed to deliver goods to linehaul customers and then goes back to the
depot without any pick up. The benefit of doing so is to utilize the unused capacity of

empty vehicle on the way back to the depot after delivery. For example, a coffee

company delivers the goods to its customers and picks up their raw materials on their
way back to its factory [40].

Toth and Vigo [7] proposed a heuristic which used the information of a
Lagrangian relaxation to obtain the formation of clusters of customers for generating
feasible routes. To improve the quality of the solution, intra-route and inter-route
methods were applied.

Osman and Wassan [8] presented a reactive tabu search which was a new way
to exchange neighborhood structures for VRPB. In their study, two algorithms were
used to find the initial solutions, namely the saving-insertion heuristic (SIH), and the
saving-assignment heuristic (SAH). For SIH heuristic, a set of vehicle routes for
linehauls was constructed by using saving algorithm, and then backhauls were inserted
into those routes while preserving the vehicle constraints. SAH started by generating
two sets of vehicle routes: one for linehauls and another for backhauls. The initial
solutions were constructed by using the 2-opt and 3-opt improvement heuristics to
merge linehauls routes and backhauls routes. In their tabu search algorithm, the A-
interchange was used as the neighborhood search. The results showed that this
algorithm was robust, and gave the better solutions than Toth and Vigo [7].

Brandao [9] presented a new tabu search algorithm (TSA) for the VRPB. For
the initial solution construction, two methods were introduced. The first method was
the open initial solution (TSA-open), which considered the two sets of customers
(linehauls and backhauls) separately, each with their own VRP, and then linked the two
solutions from both VRPs to form the initial solutions. The second method was the K-
tree initial solution (TSA-K-tree), which selected the best 10 lower bounds from
Lagrangian relaxation to create 10 initial solutions. The computational results showed
that TSA algorithm outperformed the heuristic of Toth and Vigo [7] and the average
results of TSA-open were almost identical to Osman and Wassan (2002).

A memetic algorithm with different local search methods was presented by
Tavakkoli-Moghaddam et al. [10]. The concept of this algorithm was the simple
population was used instead of complicated structured populations. Many types of
evolutionary operators were used in this algorithm, namely partial-mapped crossover

(PMX), order crossover (OX), position based crossover (PBX), and order-based

10

crossover (OBX). The results showed that this algorithm was better than the heuristic
of Toth and Vigo [7].

Gajpal and Abad [11] presented multi-ant colony system which used pheromone
data to generate the solutions. They divided ants into two types, namely vehicle-ants
and route-ants, to construct a feasible solution. Each elitist ant was equally important
and distinct to prevent trapping at a local minimum. Moreover, the solutions (elitist
ants) were abandoned when the solutions were not improved in limited time. This
algorithm gave some better solutions than the others and five new best known solutions

for the benchmark problem instances available in the literature.

2.1.2 Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is a VRP with a
specified time slot that a delivery is allowed for each customer. A waiting time occurs
if a vehicle arrives before the specified time window. VRPTW is commonly found in
distribution planning, material transportation, and E-grocery delivery.

Chiang and Russell [12] proposed a reactive tabu search metaheuristic for the
VRPTW. They applied the intensification and diversification strategies to obtain the
high-quality solutions. To improve the solutions, the A-interchange was used as the
neighborhood search. Large scale for real-world problems and test problems from the
literature were used in computational results report.

Berger and Barkaoui [13] presented a new memetic algorithm in the serial and
parallel versions to address the VRPTW. Later, they presented a new parallel hybrid
genetic algorithm for VRPTW [14]. Two sets of populations (solutions) were evolved
in different directions; the first one focuses on minimizing total distance, and the second
one focuses on minimizing temporal constraint violation to find a new feasible solution.
The master—slave message—passing paradigm was used for parallel method. The master
processing element controlled the parent selection process while reproduction and
mutation operators were managed by the slave processing elements. The results showed
that this algorithm was highly competitive and provided some new best known

solutions.

11

Braysy and Gendreau [15] presented research survey on the tabu search
algorithms for VRPTW. In the comparison with the current best approaches by using
Solomon’s benchmarks [16], they concluded that tabu search algorithm is one of the
best techniques to tackle this problem.

Gong et al. [17] proposed a two-generation (father and children) ant colony
system for VRPTW. In the children generation, the sub-routes were generated by
minimizing the total distance while preserving the time window constraints. Then, the
feasible solutions were composed from sub-tours in the father generation. For small test
problems, this algorithm reduced the vehicles in use but it increased the total distance
and a little break of the time window when comparing with the ant colony algorithm in
other literature.

A hybrid version which consisted of ant colony optimization (ACO) and tabu
search (TS) was presented by Yu et al. [18]. The initial solutions were constructed by
using ACO, and TS maintained the diversity of the current solutions as well as explores
the new solutions. Using Solomon’s test problems [16], this algorithm obtained 41 best
known solutions out of 56 instances. They concluded that this hybrid version was an
effective tool for VRPTW.

Ding et al. [19] presented the hybrid ant colony optimization (HACO) for
VRPTW. The ACO was combined with the saving algorithm and A-interchange
mechanism to increase the convergence speed. Furthermore, the strategy of candidate
list was adopted to reduce the time to compute the transition probabilities when ants
selected the next customer in construction phase. In addition, the pheromone approach,
which was based on Min-Max ant system, and a disaster operator were applied to
prevent trapping in local optima. The results indicated that HACO was competitive with
existing heuristics in literature and also found new best known solutions for some

instances.

2.1.3 Vehicle Routing Problem with Backhauls and Time Windows

The vehicle routing problem with backhauls and time windows (VRPBTW) is
an extension of the vehicle routing problem with backhaul (VRPB) by imposing a

specific service time window for each customer. There are three main types of

12

constraints in this problem: capacity, time window, and backhaul. The capacity
constraints ensure that the total demand in each vehicle does not exceed its capacity.
The time window constraints confirm that each vehicle arrives at each customer within
his or her specified time slot. The backhaul constraints guarantee that each vehicle
serves linehaul customers before backhaul customers and eventually goes back to the
depot.

An increasing number of publications on heuristic approaches for vehicle
routing problem have been developed for the past two decades. However, only few
studies have been devoted to the VRPBTW.

Gelinas et al. [37] proposed a new branching strategy for branch-and-bound
approaches based on column generation for the VRPTW. Two main strategies were
time window divisions and branching strategies. For time window division, time
window was divided into two subintervals to create two new problems, and then some
conditions were added to each problem to eliminate routes. For branching strategies,
there were two techniques to choose a network node on which to branch, namely
choosing a time window division, choice of the network node for branching
(elimination of cycles, number of visits, and flow values). To test these strategies, 45
benchmarks for VRPBTW were constructed based on Solomon data set [16]. Results
showed that this method successfully solved 34 problems optimally with up to 100
customers.

Thangiah et al. [41] introduced a heuristic approach to VRPBTW called the
push-forward insertion heuristic (PFIH), which was used for generating routes one by
one. A customer which was nearest to depot was selected to be a customer seed for
current route, and then unassigned customers were inserted at the best feasible
positions. If there were no feasible insertion places in the current route, the algorithm
would repeat by finding a new customer seed to generate a new route. To improve the
solutions, the A-interchange and 2-opt* methods were used as the local search. For the
computational results, PFIH solutions were compared against known optimal solutions,
and were within 2.5% of the optima on the average.

Potvin et al. [21] proposed a genetic algorithm (GA) for VRPBTW. The initial
solutions were constructed using the greedy insertion heuristic, which was derived from

Solomon’s work [16], during the route construction. For recombination, the OX, MX1,

13

MX2, and 1X operators were applied. The techniques called remove-and-reinsert,
swap, and last-will-be-first were introduced for mutation. The computational results
showed that the solutions of GA were within 1% of the optima on average.

Duhamel et al. [42] presented a tabu search heuristic for the VRPBTW. They
focused on the minimization of fleet sizes first and the minimization of schedule times
(which include travel times, service times, and waiting times) next while Thangiah et
al. [41] considered the minimization travel times only as the second goal. An initial
solution was generated by using insertion heuristic [16]. To improve the solution, tabu
search and local search and enhance algorithms were applied. The tabu search heuristic
is tested on problems where customers were distributed normally over the service area.
For the computational results, the solutions of this method were within 0.5% of the
optima on average, and better than GA [21] and PFIH [41].

Reimann et al. [43] presented the insertion based ant system for the VRPBTW.
The core of this algorithm was the incorporation of insertion heuristic [16] as the
solution construction method within the ant system. The swap and move operators were
applied as the solution improvement. The computational result showed that this
algorithm outperforms a custom-made heuristic proposed by Thangiah et al. [41].

Zhong and Cole [44] presented a guided local search heuristic (GLSA) to solve
the VRPBTW. The algorithm was divided into two phases based on the idea of a cluster-
first route-second algorithm. For the first phase, an initial solution was generated by
sweep algorithm, and then a guided local search heuristic (2-opt, 1-move, and 1-
exchange) was used to improve the solution. For the second phase, a new strategy called
section planning was applied which inserted new routes until a feasible solution was
obtained and arranged customers within routes to decrease the total distance. In this
phase, the feasibility constraints were soft in early iterations and hard later. For
experiment results, although GLSA underperformed GA [21] algorithm for VRPBTW
problems, GLSA did find a better solution than GA [21] for some instances.

Pisinger and Ropke [45] proposed a unified heuristic called ALNS to solve
several variants of the VRP including the VRPBTW. The VRPBTW was transformed
into the VRPB while the routes were ordered according to time window constraints.
The results showed that it can improve 183 best known solutions out of 486 benchmark

tests especially in large problems.

14

Aghdaghi and Jolai [46] presented a goal programming approach and a heuristic
algorithm to solve the vehicle routing problem with backhauls and soft time windows
(VRPSBTW). The different between the soft time window and the hard time window
was the lower and upper bounds of the time window was not necessary to be met, but
could be violated with the penalty. The proposed heuristic was a two-phase algorithm
based on the idea of a cluster-first route-second algorithm. During the first phase, the
partition sets of customers, called zones, were created. In the second phase, the feasible
routes were generated by using input data from the first phase. For computational
results, this algorithm results were close to the optimal results for some instances.

Liu et al. [47] presented a genetic algorithm and a tabu search method to solve
the vehicle routing problem with mixed backhauls and time windows (VRPMBTW).
For VRPMBTW, a vehicle could serve linehauls and backhauls in a mixed order. The
algorithms were tested on benchmark problems and better than the best-known
solutions in the literature.

Kiicuikoglu and Oztiirk [48] proposed a differential evolution algorithm which
is similar to a genetic algorithm. The main difference between the genetic algorithm
and the differential evolution algorithm was the process of creating the improved
solution: genetic algorithm relied on crossover while differential evolution relies on
mutation. The results showed that this algorithm could obtain some new best known
solutions. However, this algorithm lost to more than half of the current best known
solutions for the large problems. Later, Kiiciikoglu and Oztiirk [49] proposed an
advanced hybrid meta-heuristic algorithm for VRPBTW. This algorithm was a
structured combination of simulated annealing which helped to escape from local
optima and tabu search which helped to avoid cycling. The algorithm was tested on the
benchmark set of Gélinas et al. [37]. The results indicated that this algorithm had
superior performance compared with the existing algorithms in the literature. However,
one of the disadvantages of the hybrid algorithm was that it took a lot of computational

time.

15

2.2 Solution Approaches to Vehicle Routing Problem
2.2.1 Exact Approaches

Since the VRP is an NP-Hard problem, it is complicated to find the optimal
solution especially for large problems. However, various exact methods have been
developed to solve this problem. The exact methods for the VRP is divided into three
categories, namely Lagrange relaxation-based methods, column generation, and integer

programming.

2.2.1.1 Lagrange Relaxation

Lagrange relaxation method is a method which relaxes the original problem by
reducing some hard inequality constraints and adding Lagrange multiplier in the
objective function to penalize violations of the constraints. Generally, the relaxed
problem is easier than the original one.

Koul and Madsen [50] introduced an optimization algorithm based on the
Lagrange relaxation for solving VRPTW. The constraints that ensured each customer
was served exactly once are relaxed. The Lagrange multiplier was added to the
objective function to enforce that every customer was serviced once. This algorithm
could solve several previously unsolved problems with competitive computational
times.

Fisher et al. [51] presented two optimization algorithms for solving VRPTW.
The problem was formulated as a K-tree problem with degree 2K on the depot and
degree 2 on the customers. The relaxation constraints were the constraints which
ensured that exactly one vehicle visits and leaves each customer. The problem was
solved by a K-tree relaxation and a Lagrangain decomposition with variable splitting
where the problem was divided into two sub-problems, namely a series of shortest path
problems and a semi-assignment problem. This method was tested on the Solomon
benchmark problems [16] with up t0o100 customers and it was very effective with

clustered problems.

16

2.2.1.2 Column Generation

Column generation is an efficient method to solve a larger linear programming
problem. The algorithm splits the problem into two problems: the (restricted) master
problem and the sub-problem. The (restricted) master problem is the original problem
which considers only a subset of variables. After the master problem is solved, the
information of dual prices for each of the constraints in the master problem is utilized
in the objective function of the sub-problem to identify a new entering variable. When
the sub-problem is solved, the negative reduced cost variables are added to the master
problem. The master problem is re-solved to obtain new information of dual prices for
the re-solving sub-problem. This process is repeated until no negative reduced cost
variables are identified.

Agarwal et al. [52] proposed an exact algorithm based on the set-partitioning
formulation for VRP. The column generation was applied for solving this problem. The
results showed that the optimal results were slightly different from optimal solution
because all distance data in this program were represented in integer.

Desrochers et al. [53] proposed the column generation approach for VRPTW
for the first time, and later the improved version of the same model was presented by
Desrochers et al. [54]. They concluded that the column generation approach is capable

of solving large problems.

2.2.1.3 Integer Programming

Integer programming is a technique which can be used to solve a complex
problem by breaking it down into a number of sub-problems. In this way, the optimal
solutions of a large problem can be obtained from the smaller sub-problems. Branch
and bound technique is a general algorithm for solving various discrete optimization
problems. It consists of a systematic enumeration of all candidate solutions which
formed as a rooted tree. The subsets of solution are branches of the tree. Each branching
solution is checked by lower and upper estimated bound. If the solution is not better
than the old one, it will be discarded.

The name “branch and bound” first appeared in the work of Little et al. [55] and

used to solve the traveling salesman problem. All feasible solutions are divided into

17

small subsets. This process is called branching. Then a lower bound on the length
(objective value) of the feasible solutions is calculated therein in each subset. This
process repeats until a subset contains a single feasible solution whose length is less
than or equal to some lower bound for every feasible solution. Their method can
reasonably solve the extended problem size without using special techniques.

Christofides and Eilon [56] proposed a branch and bound method for the CVRP.
They suggested using a shortest spanning 1-tree bound instead of computing bound at
every node of the search tree. The efficacy of this technique was tested by two CVRP
problems: a 6-city problem and a 13-city problem. They compared three approaches,
namely the branch-and-bound approach, the savings approach, the 3-optimal tour
method. The result reported that the 3-optimal tour method was superior to the other
two methods.

An exact branch-and-bound algorithm was proposed by Fischetti et al. [57] for
solving an asymmetric capacitated vehicle routing problem. They presented the two
new additive approach bounding procedures, namely ADD_DISJ and ADD_FLOW.
Each procedure computed a sequence of non-decreasing lower bounds by solving
different relaxation problems. For branching technique, they adapted of the well-known
scheme called subtour elimination [58]. Their method was tested on both real-world
and random test problems and compared with the previous algorithms from the
literature. The result showed that all instances were solved to optimality by this
algorithm within acceptable computing time.

Baldacci and Mingozzi [59] proposed a new branch-and-cut algorithm for the
CVRP to find the optimal solution. A branch-and-cut algorithm was the method which
was applied the cutting plane to decrease the feasible solution space in the linear
programming relaxations while running a branch and bound algorithm. The
computational results showed the instances are solved to optimality by this method, and
it obtained new lower bounds which were better than the best lower bounds reported in
the literature.

Cordeau [60] presented a branch-and-cut algorithm for the dial-a-ride problem
which minimized the vehicle routes while preserving the capacity, time window, and
ride time constraints. For the computational results, the branch-and-cut method could

solve small- and medium-sized problems. It explored fewer nodes and uses less

18

computational time than the branch-and-bound method appearing in the version 8.1 of
CPLEX.

Dell’Amico et al. [61] introduced a branch-and-price algorithm for the vehicle
routing problem with simultaneous distribution and collection for the first time. A
branch-and-price was a hybrid method between branch and bound and column
generation methods. Each branch of a tree was applied with a column generation
method to improve the linear programming relaxation. The bi-directional search and
bounded number of steps were used to enhance the algorithm performance. Various
branching strategies were also studied. In computational experiments, the exact
programming and state space relaxation were compared in small- and medium-sized
problems. They concluded that branch and price was a practicable approach to solve
the vehicle routing problem with simultaneous distribution and collection for small-
and medium-sized problems.

Gutiérrez-Jarpa et al. [62] presented a branch-and-price algorithm for the VRP
with deliveries, selective pickups and time windows. The algorithm was an extension
version of the algorithm proposed by Dell’Amico et al. [40]. This algorithm was applied
to solve five variants of the problem, namely single demands with mixed routes, single
demands with backhauls, combined demands with single visits, combined demands
with multiple visits and mixed routes, and combined demands with multiple visits and
backhauls. They found the optimal solutions for the instances containing up to 50
customers.

Ropke and Cordeau [63] introduced a new branch-and-cut-and-price algorithm
for the pickup and delivery problem with time windows. A branch-and-cut-and-price
algorithm was similar to branch-and-price but cutting planes were also applied to
tighten LP relaxations within a branch-and-price algorithm. An elementary and a non-
elementary shortest path problems were considered in the column generation algorithm
as the pricing sub-problems. The results of adding valid inequalities indicating the 2-
path cut was the most successful among the valid inequalities tested. Computational
experiments showed the branch-and-cut-and-price algorithm outperforms a recent
branch-and-cut algorithm.

Pessoa et al. [64] presented robust branch-cut-and-price algorithms for vehicle
routing problems. This robust version would not change the structure of the pricing sub-

19

problem and kept its pseudo-polynomial pricing complexity. They were quite

successful on current typical instances up to 100 customers.

2.2.2 Heuristic Approach

A heuristic method is simply an algorithm which is sufficient to find immediate
solutions but may not guarantee the optimal solution. This method is suitable for
solving a complex problem because it speeds up the process and obtains satisfactory

solutions.

2.2.2.1 Two-phase heuristics

Two-phase heuristics divide a problem into two phases. The first phase is a
cluster phase, which groups customers into subsets. Then, the second phase builds
routes on each subset.

Gillett and Miller [65] introduced sweep algorithm for solving medium- and
large-scale vehicle-dispatch problems. The polar-coordinate angle for each customer
was used to build up each route by rotating the line centered at the depot in a circle.
Each customer which touched the line was added to the route. A new route was started
when the customer could not be added because of constraint violations. The results
reported that the algorithm results were slightly better than Christofides and Eilon's
results [56]. However, its computationally efficiency was slightly less so than
Christofides and Eilon's [56].

Solomon [16] adapted the sweep method for solving VRPTW. The cluster phase
of the algorithm was the same as the original version of the sweep algorithm [65]
without scheduling. For the route phase, scheduling solution was created in each sector
using some insert heuristic criteria. The computational results indicated that the
algorithm was very efficient in terms of the quality for the cluster instance type, but
other types were quite disappointing.

Fisher and Jaikumar [66] presented a generalized assignment heuristic for
vehicle routing problems based on the idea of two-phase process. The algorithm started
by clustering the customers using generalized assignment problem. It then created the

routes by applying means of a travelling salesman problem algorithm on each cluster.

20

The results indicated that it outperformed the best existing heuristics on a sample of
standard test problems.

Another heuristic called route first—cluster second was presented by Beasley
[67]. The algorithm first formed a giant tour in the route phase to ensure that the
customers who were in close proximity to one another were also near one another in
the giant tour. In the clustering phase, an algorithm for the shortest path problem was
applied. They found that five out of ten problems were the great solutions which three

of them are optimal solutions.

2.2.2.2 Constructive heuristics

Constructive heuristics is a method which creates a solution by repeating some
processes until the solution is completed.

Clarke and Wright [68] introduced the saving heuristic for scheduling vehicles
from a central depot to a number of delivery points. In this heuristic, the saving value
between any two customers was defined as the distance that was saved due to putting
them in the same route instead of having them in separate routes. The routes with largest
saving value were connected if they did not violate the constraints. The process would
be repeated again and again. This algorithm was simple because no parameters are
required. It also speeded up the selection of an optimum or near-optimum route.

Solomon [16] presented the nearest-neighbor heuristic. It started by adding an
unassigned customer which was closest to the depot. Then, the next unassigned
customer which was closest to the previous customer was added to the route if the
constraints were still preserved. If this violates the constraints, the heuristic started a

new route. The closeness in this paper was computed by the following formula:

closeness; = ac; + gh, +yv,, where a+fB+y=1 a,B,y20, ¢, denoted the

distance expressed as time from customer i to customer j , h, denoted the idle time
before servicing customer J after customer i, and v; denoted the urgency of delivery
to customer J after customer i expressed as the time remaining until the vehicle’s last

possible service started for customer J . In addition, the insertion heuristic was also

introduced as a constructive heuristic. There were three types of insertion criteria. The

21

insertion criteria type (i) focused on minimizing the extra distance and extra time
required after insertion. The insertion criteria type (ii) focused on minimizing total
distance and time. The last insertion criteria type (iii) focused on the urgency of
servicing a customer. Moreover, the saving heuristic [68] was adapted in this method
to handle VRPTW. The computational results indicated that the insertion heuristic type
(i) showed excellent performance both in terms of quality and computational time.
However, type (ii) and (iii) did not perform well in general and the results were quite
disappointing.

Potvin and Rousseau [69] presented insertion heuristic for the vehicle routing
and scheduling problem with time windows (VRSPTW). The heuristic was a parallel
version of Solomon’s insertion heuristic type (i) [15]. The measure of a gap between
the best and the second best insertion places for a customer overall routes was a criterion
for choosing the next customer to be inserted on the route. The Computational results
reported that the parallel approach was better than the sequential approach all instances
especially on pure clustered problems.

Balakrishnan [70] introduced three heuristics which were based on nearest-
neighbor and Clarke-Wright savings algorithm [68] for the vehicle routing problem
with soft time windows (VRPSTW). Each heuristic differed only in the way the first
customer was chosen for a route and the way the next customer was chosen during the
route construction. The different measures were used to compare the cost of waiting
and potential penalty which was a linear function of the amount of time window
violation. The best solutions from the three heuristics had smaller number of vehicles
used and total distances than the solutions from other methods in the literature.

Dullaert [71] introduced a new time insertion criteria to solve the VRPTW with
relatively few customers per route. The results indicated that the algorithm saved the
cost but it increased the number of customers per route. They concluded that the
algorithm can improve the quality of the heuristic for short-routed VRPTW.

loannou et al. [72] presented a greedy look-ahead heuristic for the VRPTW.
They introduced new criteria for choosing and inserting customers which were based
on a greedy look-ahead heuristic which proposed by Atkinson [73]. The results showed
that the algorithm suits the problems which required the number of vehicles used, and

daily real-life scheduling problems.

22

Pang [74] presented an adaptive parallel route construction heuristic for the
VRPTW. The heuristic was motivated from nearest-neighbor heuristic [16] which
considered three cost factors: distance, urgency and waiting cost. The weights of the
cost factors were adjusted based on the problem characteristics which were randomly
uniform distribution, clustered distribution, and the mixture of random and clustered
distribution. The results indicated that the algorithm was useful for the initial route
construction.

The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery
problem was presented by Sheridan et al. [75]. They introduced new policy that
maintained closest customer-to-vehicle assignments because of its ability to divert/re-
assign vehicles when another vehicle became available or a new customer call arrived.
The results showed that this algorithm outperformed the existing NN, and it could
minimize the longest customer waiting times in realistic scenarios.

A nearest neighbor heuristic is one of classical route construction heuristics
which is easy to implement and fast to execute. The algorithm starts by adding the
closest unassigned customer to the depot into the route and then repeats adding the next
closest unassigned customer until some constraint is violated. If it fails to add any
customers into the route because of some infeasibility, it will start a new route from the
depot and continue the process until all customers are scheduled on some routes.

Solomon [17] proposed a time-oriented nearest-neighbor heuristic that
considered both the capacity constraints and the time window constraints. In this
approach, he computed the “closeness” from three factors, namely the direct distance
between the two customers, the urgency of the delivery of the next customer, and the
time remaining until the vehicle’s last possible service starting.

Kuglkoglu and Oztiirk [49] also applied nearest-neighbor algorithm, called
improved nearest-neighbor heuristic, as a constructive heuristic to solve VRPBTW.
This heuristic was computed the closeness using the same three factors as a time-
oriented nearest-neighbor heuristic proposed by Solomon [16]. This is an inspiration to
propose new algorithms based on nearest-neighbor heuristic in this dissertation, namely
a nearest urgent candidate heuristic (NUC), in which all customers are ordered

according to the urgency of their delivery, and a nearest neighbor with roulette wheel

23

selection (NNRW) method which is a combination of a roulette wheel selection method

and the improved nearest-neighbor heuristic.

2.2.3 Metaheuristic Approach

A metaheuristic method is the optimization technique that explores a larger area
of the solution space to achieve good optimization results. It has proven to be the
methods of choice for many researchers to get an approximate, and near-optimal
solutions. The main difference between metaheuristic and heuristic is the metaheuristic
is a high-level problem-independent algorithm which guides the search process while
heuristic is a problem-dependent algorithm.

Metaheuristic methods are divided into three types, namely local search (e.g.
tabu search, simulated annealing), population search (e.g. cuckoo search, artificial bee
colony), and learning mechanism (e.g. neural network, swarm intelligence). Two
metaheuristics, namely cuckoo search (CS) algorithm, and artificial bee colony (ABC)
algorithm, are used to solve VRPBTW in this dissertation. Thus, only the literature
reviews on the two methods will be discussed.

CS is a metaheuristic method introduced by Yang and Deb [25]. It is inspired
from aggressive breeding behavior of cuckoo birds. Although this algorithm was
originally designed for solving continuous problem, a hybrid cuckoo search algorithm
with greedy randomized adaptive search procedure was first proposed by Zheng et al.
[26] to solve discrete problems like VRP. A path relinking strategy which was used as
a way of exploring trajectories between high-quality solutions was applied to CS
instead of Lévy flight in the original CS. Moreover, swap and inversion strategies were
also used in a local search. The results showed that this algorithm was effective for
solving the VRP. However, the computational time of the algorithm increased
significantly in the large-scale problems.

ABC is inspired by the intelligent food source finding behavior of the honey
bees around the hives and was proposed by Karaboga [27]. It was firstly applied to the
CVRP by Szeto et al. [28] with some enhancements. The results showed that the
enhanced version of ABC algorithm outperformed the original one, and it could

produce good solutions when compared with the existing heuristics. Alzagebah et al.

24

[29] presented the modified ABC for the VRPTW. In this study, the list of abandoned
solutions was used to generate new solutions. The results showed that the modified
ABC algorithm obtained good results when compared with the best-known results. An
improved artificial bee colony algorithm for a real case in Dalian was introduced by Yu
et al. [30]. In this version of ABC algorithm, three strategies were applied, namely an
adaptive strategy, a crossover operation, and a mutation operation. The results showed
that some solutions were better than the best-known solutions when tested on
benchmark problems [16] for VRPTW.

There are many reasons that motivate us to apply the CS and ABC algorithm to
solve VRPBTW in this dissertation. Firstly, these algorithms were successfully applied
to VRP as described [26, 28-30]. Secondly, these algorithms are metaheuristics, which
means the exploring area of the solution space is larger than non-metaheuristics (e.g.
PFIH, unified heuristic). Thus, they can achieve good optimization results, especially
in the large-sized problems. Thirdly, these algorithms are a population-based heuristic
which starts with a number of initial solutions. Therefore, they can explore more in the
solution space and have more chance to obtain the better solutions than non-population-
based heuristic (e.g. HMA). Moreover, a population-based heuristic can be enhanced
with parallel computing or distributed computing. Finally, these algorithms can prevent
the search from premature convergence problem which is the weakness of other
population-based heuristics (e.g. GA and DEA). This is because, for ABC algorithm in
the scout bee stage, the stalled solutions are removed from the population and new
randomly generated solutions are added to the population; and, for CS algorithm, the
solutions are abandoned with a probability and then completely new solutions are built.
This process also amplifies global search capability.

To the best of our knowledge, CS algorithm had never been applied to
VRPBTW. Thus, we propose a CS algorithm for VRPBTW in this dissertation.
Although ABC algorithm was successfully applied to several variations of the VRP
[28-30], there are a few studies [31-32] that apply ABC for solving VRPBTW.
Tuntitippawan and Asawarungsaengkul [31] applied ABC to small and medium
problems and Tuntitippawan and Asawarungsaengkul [32] applied ABC to small,
medium, and large problems. However, the results showed that it still underperformed

the existing heuristics in many instances, especially in the large-scale problems. It is

25

necessary to extend the exploration on the solution space or, equivalently, to expand
the capability of the neighborhood search. Therefore, we propose the enhanced artificial
bee colony algorithm (EABC) by applying a forbidden list strategy to prevent
duplicated initial solutions (which initially extends the exploration on the solution
space), the sequential search strategy for onlookers to explore the neighborhood near
the high-quality food source, and the intra-route and inter-route exchange combination

strategy to obtain the better solutions.

26

CHAPTER 3
THE VEHICLE ROUTING PROBLEM
WITH BACKHAULS AND TIME WINDOWS

3.1 Problem Description

The vehicle routing problem (VRP) is a well-known combinatorial optimization
problem designed to find the minimum distance or fleet size required to satisfy the
demands located at a set of geographically dispersed customers from one or more
depots. Many variations of VRP have been formulated by applying constraints to add
realism such as capacity, time windows, pickup and delivery, cross-docking, and
backhaul constraints. In this dissertation, we focus on the VRP with backhaul and time
window (VRPBTW). Here, customers either require items to be delivered from the
depot (linehauls) or they need items returned to the depot (backhauls). Moreover, there
are restrictions on the times that a vehicle can arrive at the customers. The VRPBTW
has three main constraints: 1) the capacity constraints where the total demand in each
vehicle does not exceed its capacity, 2) the time window constraints where each vehicle
arrives at each customer within the customer’s specified time window, and 3) the
backhaul constraints that ensures linehauls customers are served before backhauls

customers.

3.2 Mathematical Model

We propose a mathematical model for VRPBTW which are modified from
mathematical formulation for fleet size and mixed vehicle routing problem with
backhauls (FSMVRPB) proposed by Salhi et al. [76] and vehicle routing problem with
backhauls and time windows (VRPBTW) presented by Kiiciikoglu and Oztiirk [49].
The VRPBTW can be formulated into a mixed-integer program model as follows. (Note
that the depot is considered a node indexed by 0.)

Notations:

L = number of linehaul customers (indexed by 1,...,L).
B = number of backhaul customers (indexed by L+1,...,n).

n = total number of customers (L+B).

K = number of vehicles (indexed by 1,...,K)
u* = capacity of vehicle k :k e{l,...,K}.
d,= demand of customer i.

¢, = distance between node i and node j .
a; = earliest arrival time at customer 1 .
bi = latest arrival time at customer i .

S; = service time for customeri .

t, = travel time between node i and node j .

M = a large scalar.

T .ex = maximum route time allowed for every vehicle.

o, = the vehicle load on the arc from customer i to customer j .

wk = service start time of vehicle k for customer 1. (ws means the time that vehicle
K returns to the depot.)

xi‘} =1 if vehicle k travels from customer i to customer j , O otherwise.

The model:
K n n

Min D > X @
k=1 i=0 j=0

Subject to

n K ‘

szu =1,j=1..n 2

i=0 k=1

n K v

Y3 K=, i=1,..n ®

j=0 k=1

: k . k

Xp =D X+ k=1...,K p=0,...,n (4)

27

28

L n

Zgoij:Zgo“-l-dj, j=1,...,L (5)

i—0 =0

Z¢j|+¢jo:dj+z¢ij, j=L+1,...,n (6)

I=L+1 i=1

9, =0, i=0,..,L j=0&j=L+1...,n ©)

(Dii :0, i=0,...,n (8)

Z?ioz Zdi 9

i=L+1 i=L+1

L L

205 =24, (10)

i-1 =1

X =0,i=L+1...,n; j=1...,L; k=1..,K (11)
K

@y <Y XU i%j=0,..,n (12)
k=1

ty; —W, SM(@-Xg;), j=1,...,n; k=1...,K (13)

WK s+t —wWE<sM@A-x5), i=1..., n;, k=1...,K (14)

W s+t —W SM@-%), i=1,...,n; j=1..,n; k=1...,K (15)

aigwikgbi, i=1...,n; k=1...,K (16)

o<w<T_,k=1...,K a7

i €{,0}, i=0,...,n; j=0,...,n; k=1...,K (18)

@, =0,1=0,...,n; j=0,..., n (19)

ws=0,i=0,...,n; k=1...,K (20)

In the above model, equation (1) is the objective function which refers to
minimizing the total route distances. Constraints (2) and (3) ensure that each customer
is visited exactly once and by one vehicle only. Constraint (4) guarantees that a vehicle
leaves from the same customer it has entered. Constraint (5) confirms the precedence
relationship and the delivery satisfies the demands of linehaul customers. Constraint (6)

is also a precedence constraint which ensures that the backhaul pickups are satisfied.

29

For example, we assume that the next linehaul customer is A, its demand equals 25,
and the vehicle load before serving customer A is 75. After servicing customer A, the
vehicle load becomes 50. On the other hand, if A is a backhaul customer, the vehicle
load becomes 100 after picking up the goods from customer A. Constraint (7) ensures
that the load carrying from linehaul customers to backhaul customers or the depot is
empty. Constraint (8) confirms that there is no load between the same customers.
Constraint (9) guarantees that the total of the loads on vehicles returning from backhaul
customers to the depot is equal to the sum of the demands of the backhaul customers.
Constraint (10) ensures that the total of the loads on vehicles departing from the depot
is equal to the sum of the demands of the linehaul customers. Constraint (11) prevents
vehicles from going from a backhaul customer to a linehaul customer. Constraint (12)

ensures that the vehicle load from customer i to customer j does not exceed the
capacity of the vehicle going from node i to node j. Constraint (13) guarantees that if

there is a vehicle from the depot to a customer, the travelling time between the depot

and customer j must not exceed the start service time at node j. Constraint (14) states

that, if a vehicle is traveling from node i to the depot, the arrival time at the depot must
be greater than summation of the start service time at node i, service time at node I,
and travelling time between node i and the depot. Constraint (15) states that, if a

vehicle is traveling from node i to node j, the arrive time at node j must be greater

than summation of the start service time at node i, service time at node i, and travelling
time between node 1 and node j. Constraints (16) and (17) ensure that the time window
requirements are satisfied. Finally, constraints (18), (19), and (20) define the restrictions
on the decision variables.

We use this model to obtain the exact optimal solutions using CPLEX version
12.6. The exact solutions are used for comparison with heuristic solutions and

metaheuristic solutions in terms of their quality and computational times.

30

3.3 Heuristic Approach

The VRPBTW belongs to the class of NPC (Nondeterministic Polynomial-time
Complete) problems because it is an extension of the traveling salesman problem which
has been shown to belong to the class of NPC problems [41]. This means that all known
algorithms that define an optimal solution require exponentially increasing
computational time as the number of customers increases. Therefore, heuristic methods
which provide approximate solutions are justified and are required for realistic-sized
problems. In this section, we introduce the heuristics which are based on nearest
neighbor algorithm, namely a nearest neighbor heuristic (NN), an improved nearest
neighbor heuristic (INN), a nearest urgent candidate heuristic (NUC), and a nearest
neighbor with roulette wheel selection method (NNRW). Note that the NUC and

NNRW heuristics are new proposed algorithms in this study.

3.3.1 Common Elements

The heuristics explained in this section share the following common elements:

solution representation, quality measure of a solution, and neighborhood search.

3.3.1.1 Solution Representation

A solution of the VRPBTW contains the tour for each vehicle. A tour is a path
from a depot to a subset of customers and then back to the depot. Assume there are N
customers which are denoted by integers 1 through N, and the depot denoted by 0. Also,
assume that there are K vehicles to deliver the products. A solution, which consist of
K tours, is described by a vector of length (N+K+1) that contains each customer exactly
once and (K+1) zeros that indicates the start of a new tour (a solution always starts with
a zero). The sequence of integers between two zeros represents one vehicle tour in the
solution. For example, if there are 6 customers (N=6) and 3 vehicles (K=3), a possible
solution is represented by the vector (0, 1, 2, 0, 3, 4,5, 0, 6, 0). Notice the length is 10
(N+K+1=10) and it means that the first vehicle serves customers 1 and 2, the second

vehicle serves customers 3, 4, and 5, and the last vehicle serves only customer 6.

31

3.3.1.2 Quality Measure of a Solution

The quality measure of a solution is determined by the reciprocal of fitness
function which is represented by a real number. In this dissertation, the fitness value of
a solution is the total traveled distance where the distance between any customers ,
and b is the Euclidian distance between them, which is calculated by the following
formula [50],

10(%, = %)% + (Yo = ¥p)?
[J
oo = 10

where (Xi, yi) is the Cartesian coordinate of customer i. This formula is designed to

round down the distance to one decimal place. Therefore, the quality measure of a
solution is represented by

K -1
(Z(total distance traveled by vehicle k)j

k=1

3.3.1.3 Neighborhood Search

In VRPBTW, a neighbor of a solution is generated by changing the order of
visited customers. A neighborhood search (also known as a local search) is a heuristic
method for finding neighbors of a solution that are feasible and have better quality. In
this dissertation, the 1-move intra-route exchange (Chiang and Russell [12]) and the 2

-interchange (Osman [8]) are used.

1-move Intra-route Exchange

The idea of 1-move intra-route exchange is to randomly remove one customer
(linehaul or backhaul) from a route and insert it back to the same route in a different
position. The solution is accepted if it can reduce the total cost while the capacity
constraints, the time windows constraints, and the backhaul constraints are not violated.

An example of 1-move is shown in Figure 1.

32

D Depot O Linehaul Customer O Backhaul Customer

Figure 1 An Example of 1-move

A -interchange

The 2 -interchange local search heuristic is one of the best methods to solve the
VRP problem types. The 4 -interchange is an effective technique because it combines
many methods such as insertion (randomly choose a customer from a route and then
insert him/her in a different route), swap (randomly select two customers from different
routes and then swap their positions), insert section (randomly choose a subset of
customers from a route and then insert the subset in a different route), and swap section
(randomly select two subsets of customers from different routes and then swap their
positions).

The idea of 4 -interchange is to interchange customers between routes where 1

is @ number of customers that are exchanged. In this method, the operator (4,,4,) on
routes (p, q) is defined as exchanging 4, customers on route p with A, customers on
route g, where 4,4, < 4. The customers on each route are selected either systematically

or randomly. The improved solution is accepted if the total cost is decreased while
maintaining the capacity feasibility, time window feasibility, and backhaul feasibility.
In order to simplify the mechanism, we accept the first improved solution with the cost
lower than the current solution. An example of the operator (1, 0) which removes
customer 4 in the first route and then adds it in another route is given in Figure 2. This
operator is similar to the insertion algorithm. As shown in Figure 3, the operator (1, 2)
exchanges customer 4 in the first route with customer 8 and customer 9 in the second
route. This operator is similar to the swap section algorithm.

D Depot O Linehaul Customer

O

Backhaul Customer

Figure 2 An Example of operator (1, 0)

D Depot O Linehaul Customer

O

Backhaul Customer

Figure 3 An Example of operator (1, 2)

Customer | Available Time | Demand
1 13.00-15.00 30
2 15.00-1700 30
3 15.00-17.00 30
4 10.00-12.00 50
5 13.00-14.00 40
6 14.00-15.00 10

0 o
O Linchaml Customer
O Backhaul Customer

Figure 4 Example of case study

33

34

Since the 2 -interchange is the method which interchange customers between
routes, it cannot improve the solution in some cases. For example, in Figure 4, we
assume that the first solution is represented by the vector (0, 1, 3, 2, 0, 4, 5, 6, 0) and
the second solution which is a better solution compared with the first one is represented
by the vector (0, 1, 3, 2, 0, 4, 5, 6, 0). When we try to apply A -interchange to improve
the first solution, we can notice that any operators of 1 -interchange cannot be applied
to improve solution without violating constraints. Thus, the first solution will be our
result in stead of the second one which its total distance is less than the first one. To
solve this problem, 1-move intra-route exchanges should be applied in this case. Hence,
in this dissertation, we propose the intra-route and inter-route exchange combination

strategy to obtain the better solutions.

3.3.2 Nearest Neighbor (NN) Heuristic

The nearest neighbor (NN) heuristic is one of the classic methods for solving
the VRPBTW. This method finds a solution by choosing the closest customer to the
last node to be next customer in the route while preserving the capacity, time windows,
and backhaul feasibilities.

Main steps of NN

The steps of the NN algorithm for solving the VRPBTW problem can be
described as follows:

Step 1 Build a new route by starting from the depot. Add the closest unassigned
customer to the route.

Step 2 Consider the closest unassigned customer j to the currently assigned customer

I to be next node in the route by checking the feasibility constraints. If they are
not violated, the customer is added to the route. The closeness of customer | to

customer j, denoted by closeness, ; is set to be the reciprocal of proximity, »
which is defined as: proximity, = c,, Where ¢, denotes the Euclidean distance

expressed as time from customer i to customer j .

Step 3 Repeat Step 2 until no more customers can be added to the current route, in
which case the route is finished.
Step 4 If there remain unassigned customers, go back to Step 1. Otherwise, go to Step 5.

35

Step 5 Improve the solution by the 1-move intra-route exchange, and the A -
interchange where the algorithm is operated with 2 = 4. The solution is accepted
if the total cost is lower than the current best one while maintaining the
capacity feasibility, time window feasibility, and backhaul feasibility.

Step 6 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

Are all
customers
visited?

lNo

36

maximum
number of
iterations
reached?

Yes

Create a new route

Improve the solution by
neighborhood search

Is there a
feasible
customer?

Find a closest feasible
unvisited customer

|
(closenessi}. =—)

cfff

Y

Add the closest
customer to the route

Figure 5 Flowchart of NN algorithm

37

3.3.3 Improved Nearest Neighbor (INN) Heuristic

Solomon [16] proposed a time-oriented nearest-neighbor heuristic that
considers not only the capacity constraints but also the time window constraints for
VRP with time window (VRPTW). In this approach, the closeness is computed from
three factors, namely the direct distance between the two customers, the urgency of the
delivery of the next customer, and the time remaining until the vehicle’s last possible
service start. This algorithm was later improved and applied to VRPBTW by
Kiigiikoglu and Oztiirk [49]. It is called an improved nearest neighbor heuristic (INN).
The closeness in INN is computed from the same three factors as a time-oriented
nearest-neighbor heuristic proposed by Solomon [16]. However, it considers not only
the capacity constraints and the time window constraints but also the backhaul

constraints.

Main steps of INN
The steps of the INN algorithm for solving the VRPBTW problem can be
described as follows:
Step 1 Build a new route by starting from depot. Add the closest unassigned in the
route.
Step 2 Consider the closest unassigned customer j to the currently assigned customer
I to be next node in the route by checking the feasibility constraints. If they are
not violated, the customer is added to the route. The closeness of customer i to

customer j, denoted by closeness, , IS set to be the reciprocal of proximity, ,
which is defined as: proximity, = ac, + sh, + v, » Where a+pf+y=1

05,,3,7/ 20, cy denotes the distance expressed as time from customer 1 to
customer j, n, denotes the idle time before servicing customer j after
customer i, and v, denotes the urgency of delivery to customer] after customer

I expressed as the time remaining until the vehicle’s last possible service start
for customer j .

Step 3 Repeat Step 2 until no more customers can be added to the current route, in

which case the route is finished.

38

Step 4 If there remain unassigned customers, go back to Step 1. Otherwise, go to step
5.

Step 5 Improve the solution by 1-move intra-route exchange, and A -interchange
where the algorithm is operated with 1 = 4. The solution is accepted if the total
cost is lower than the current best one while maintaining the capacity
feasibility, time window feasibility, and backhaul feasibility.

Step 6 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

Are all
customers
visited?

lNo

maximum
number of
iterations
reached?

Yes

Create a new route

v

Improve the solution by
neighborhood search

O«

Is there a
feasible
customer?

Find a closest feasible unvisited
customer
1

)
ac; + fh;+yv,

(closenessu =

A 4

Add the closest

customer to the route

Figure 6 Flowchart of INN algorithm

39

40

3.3.4 Nearest Urgent Candidate (NUC) Heuristic

We propose a nearest urgent candidate (NUC) heuristic, in which all customers
are ordered according to the urgency of their delivery. This idea comes from a common-
sense management that the most urgent customer is served before the others. However,
the cost, which consists of the traveling time and waiting time, must be taken into
account as well. Thus, we use a candidate technique [14] to maintain our concept and
reduce the cost in the same time. We speculate that a high quality initial solution will

be obtained from this algorithm.

O O
O O O O ‘ Current Node
O O O Candidate Node
O O O Non-Candidate Node
o) O © \

O O O o

Figure 7 An Example of candidate list

NUC starts with sorting the customers by their urgency (latest arrival times) in
ascending order. The customers that have urgent due times will be considered first but
they must compete using their closeness to be assigned into the current route. Our
version of closeness is computed from only two factors, which are the direct distance

from the current customer i to the next customer | ,¢;» and the maximum idle time
between servicing customers iand j ,hy . Since we suppose that the traveling time
between customer i and customer j are equal to the direct distance between them, we
can assume the direct distance is the traveling time. Formally, closeness, = aC; +ﬁhij

, where a+ =1, a20,8>0. The number of urgent customers allowed to compete

must be limited. Otherwise, all customers can compete and the urgency becomes
meaningless. Therefore, a candidate technique [14] is applied to solve this problem. In
this technique, a candidate list of a fixed size is created. The list contains the chosen

customers allowed to compete for the next node in the route. However, the proper size

41

of the list depends on the problem being considered. Figure 6 depicts an example of a

problem with 25 customers and a candidate list of size 3.

Main steps of NUC
The steps of the NUC algorithm for solving the VRPBTW problem can be
described as follows:

Step 1 Order all customers according to latest arrival time from the most urgency of
delivery to the least. The NUC algorithm considers customers to add into a route
by this order.

Step 2 Build a new route by starting from depot. Choose the first customer in the
sequence to be the first customer in this route.

Step 3 Consider the next customer j in the sequence to be a potential next node in the

route after the currently assigned customer I by checking the feasibility
constraints. If they are not violated, the customer is added to candidate list.
Consider the next customer in the sequence until the predetermined number of
candidates is reached, or no further candidate is found. Compute the closeness

value of each candidate j from the latest customer i in the route according to
the following formula:

closeness; = &G +phy;
wherea+ =1, >0, 8>0. The closest candidate is then selected as the next

node to be visited in the route and also removed from the urgency sequence.
Step 4 Repeat Step 3 until no more customers can be added to the route, in which case
the route is finished.
Step 5 If there are unassigned customers, go back to Step 2. Otherwise, go to Step 6.
Step 6 Improve the solution by 1-move intra-route exchange, and A -interchange
where the algorithm is operated with 4 = 4. The solution is accepted if the total
cost is lower than the current best one while maintaining the capacity
feasibility, time window feasibility, and backhaul feasibility.
Step 5 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

Start

\ 4
Order all customers according
to latest arrival time

\4
Define the number of
candidates, say n

maximum
number of
iterations
reached?

Are all
customers
visited?

Yes

Create a new route

% Improve the solution by

neighborhood search

Is there a
feasible

customer?

Add first n feasible unvisited
customers to candidate list

A\ 4

Add the closest customer from
the candidate list to the route

1 |

(closeness,; = ————)
- ac+fh

Figure 8 Flowchart of NUC algorithm

42

43

3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

We propose a nearest neighbor with roulette wheel selection (NNRW) method
which is a combination of a roulette wheel selection method [77] and the INN heuristic
[49] for generating the initial solutions. The idea of NNRW is to combine the advantage
of INN, which finds the next customer by choosing the best closeness one, and roulette
wheel selection, which finds the next customer by giving a chance to all customers with
more probability for the customers with better closeness. Moreover, NNRW is a
population-based heuristic. Therefore, it can explore more in the solution space and get
more chance to obtain the better solutions than a heuristic with a single initial solution.

In this algorithm, the cioseness, , Which is the reciprocal of proximity, , 1S

defined the same way the INN heuristic describes. The NNRW heuristic can be
explained as follows.

During a route construction where customer i is our current customer, let p,
be the selection probability of customer j to be served next after customer i. Let U
be the set of all unassigned customers with arbitrary order, say, U :{1, 2., N}where

N =|U|. Then, for jeU, p, is calculated by:

closeness;
p. =
' closeness,

j .
We define Q; =Z p, for JEU . Then a random number I which ranges between 0
h=1

and 1 is selected for spinning the roulette wheel. If r <q,, then choose the first

customer in U to be the next customer for the vehicle. Otherwise, if g, , < r <q,, then

choose the ™ customer in U to be the next customer where 2 < j <|U|. The

assigned customers are discarded from U to prevent duplicate customers in a route.
The initial solution construction always starts a route with the depot, and then

finds the next customer by the nearest neighbor with roulette wheel selection method.

If the next customer violates the constraints (the capacity constraints, the time windows

constraints, and the backhaul constraints), we spin the roulette wheel again to find a

44

new one. If the new one is still not feasible, we end this route and begin a new route.

This process is repeated until all customers are served.

Main steps of NNRW

The steps of the NNRW algorithm for solving the VRPBTW problem can be
described as follows:
Step 1 Build a new route by starting from depot. Set the current “customer” to be the depot.
Step 2 Find the next customer j to be the next node in the route after the currently

assigned customer 1 by spinning the roulette wheel, which can be described as

follows. Select a random number I which ranges between 0 and 1. Compute P,

and ¢, according to the following formulas:

closeness;
pj =
D, Closeness,,

j .
and g; =Y p, for €U
h=1

where U is the set of all unassigned customers, and closeness, is defined the

same way the INN heuristic describes. If I <0, then choose the first customer

in U to be the next potential customer for the route. Otherwise, if

a,,<r=gq,, then choose the jth customer in U to be the next potential

customer where 2< j<|U|.

Step 3 If the next potential customer is feasible, assign it to the route, delete the new
assigned customer from U and go back to Step 2. Otherwise, go to Step 4.

Step 4 Repeat Step 2 one time to find a new next potential customer. If the new one is

still not feasible, we end this route and go to Step 5. Otherwise, go to Step 3.
Step 5 If there remain unassigned customers, go back to Step 1. Otherwise, go to Step 6.
Step 6 Improve the solution by 1-move intra-route exchange, and A -interchange
where the algorithm is operated with 4 = 4. The solution is accepted if the total
cost is lower than the current best one while maintaining the capacity
feasibility, time window feasibility, and backhaul feasibility.
Step 7 Repeat Step 6 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

maximum
number of
iterations
reached?

Are all
customers
visited?

l No
Improve the solution by
Create a new route neighborhood search

Yes

Is there a
feasible
customer?

Compute all closest feasible
unvisited customer
1

)
ac; + ph, +yv,

(closenessq. =

v

Spin the roulette wheel to selecta

next customer to add to the route

(More high closeness value, more
high chance to be selected)

Figure 9 Flowchart of NNRW algorithm

45

46

3.4 Metaheuristic Approach

Bio-inspired intelligence known as metaheuristic methods is widespread for
solving the class of NPC including VRPBTW. Metaheuristic algorithms, which are
the optimization technique that explore a larger area of the solution space to achieve
good optimization results with independence of the problem, have been proven to
be the methods of choice for many researchers to get an approximate, and near-
optimal in some cases, solutions. In this section, we present metaheuristics, namely
a cuckoo search algorithm, and an artificial bee colony algorithm to solve the
VRPBTW.

The common elements described in Section 3.3.1 (the solution
representation, the quality measure of solution, and the neighborhood search) are

also used in the following metaheuristics.

3.4.1 Cuckoo Search (CS) Algorithm

CS is a metaheuristic method introduced by Yang and Deb [27]. Inspiration of
this algorithm is the parasitic spawn behavior of some cuckoo species. This algorithm
was originally designed for solving continuous problem. Although discrete versions of
CS have been applied to the travelling salesman problem (Ouaarab et al. [78]) and VRP
(Zheng et al. [26]), to the best of our knowledge, it had never been applied to VRPBTW.

There are three reasons that we propose the CS algorithm for VRPBTW in this
research study. First, To the best of our knowledge, CS algorithm had never been
applied to VRPBTW. Second, the CS requires fewer parameters compared with other
metaheuristics, so its solution is less affected by parameter tuning. The last reason is
the CS has a process of generating new solutions which prevents the search from

premature convergence problem.

3.4.1.1 The General Concept of CS

A cuckoo is an extraordinary bird because of its aggressive breeding behavior.
The female cuckoos lay eggs in the nest of other host birds to let them hatch and brood

young cuckoo chicks. If the host birds discover that the eggs are not theirs, they can

47

either get rid of the cuckoo eggs or abandon their nests and build new ones. However,
some cuckoo species can mimic color and pattern of eggs in a few chosen host species
to reduce chance of their eggs being abandoned. In addition, a cuckoo chick always
mimics the call of the host chick to gain more feeding opportunity.

The cuckoo search starts by generating a number of host eggs (initial solutions)
and assign them to nests. In the simplest approach, each nest can always have only a
single egg. A cuckoo randomly selects a host nest and lays its egg (neighborhood
search) into the nest. The aim is to replace a not-so-good solution with a new and better
solution (cuckoo egg). A cuckoo egg will be abandoned and the host bird will build a
completely new one (generating a new solution) when it discovers the egg is not its
own. In summary, there are three ideal rules for this: (1) each cuckoo lays one egg at a
time and selects a nest randomly; (2) the best nest with a high quality egg will be carried

over to the next generation; (3) the number of host nests is fixed and a cuckoo egg is

discovered by the host with a probability P, €[0,1].

3.4.1.2 Main Steps of CS

The steps of the CS can be described as follows:

Step 1 Generate a set of initial solutions (host eggs) by the NNRW method (Section
3.3.4) and assign each egg to a host nest.

Step 2 Evaluate the fitness of each solution and record the global best solution.

Step 3 Choose randomly a host nest and then apply the neighborhood search on the
host egg to generate a cuckoo egg. The host egg will be replaced with the cuckoo

egg if the new cuckoo egg is better.
Step 4 With the probability [P, , abandon the worse nest and generate a new one.

Step 5 Update the global best solution if a solution has better quality than the current
best one and go to Step 3. Otherwise, the algorithm ends and returns the global

best solution in hand.

.

Generate initial solutions,
called host eggs, by using
NNRW method

\ 4
Evaluate the fitness of each

solution and record the global
best solution, called Best1

:

Choose randomly a host nest and
then apply the neighborhood
search on the host egg to
generate a cuckoo egg

\ 4

Replace a host egg with the
cuckoo egg if the new cuckoo
egg is better than old one

v

Abandon the worse nest with the
probability, and generate a new one

Y

Evaluate the fitness of each
solution and record the global
best solution, called Best2

Best2<Best1?

Figure 10 Flowchart of CS algorithm

49

3.4.2 Artificial Bee Colony (ABC) Algorithm

Artificial bee colony (ABC) algorithm is another metaheuristic method that
has been applied to VRP. There are a few studies (Tuntitippawan and
Asawarungsaengkul [31-32]) that apply ABC algorithm for solving VRPBTW. Hence,
we propose an enhanced ABC algorithm by applying a forbidden list strategy to prevent
duplicated initial solutions (which initially extends the exploration on the solution
space), the sequential search strategy for onlookers to explore the neighborhood near
the high-quality food source, and the intra-route and inter-route exchange combination
strategy to obtain the better solutions.

There are three main reasons that the EABC is proposed in this research study.
First, the EABC algorithm applies the combination of intra-route and inter-route
exchange as the neighborhood search. Thus, this strategy can extend the regions of the
search space to increase the chance for finding a better solution. Second, the high-
quality solutions are used more often than the low-quality ones to produce an improved
solution in the onlooker bee stage through sequential search technique. Therefore, the
regions of the search space are searched in detail. Third, the stalled solutions are
removed from the population and a new randomly generated solution is added to the
population in the scout bee stage. This process provides global search ability and

prevents the search from premature convergence problem.

3.4.2.1 The General Concept of ABC

The artificial bee colony is inspired by the intelligent finding food sources
behavior of the honey bees around the hives proposed by Karaboga [27]. A colony of
the bees consists of three types of bees: employed bees, onlookers and scouts. The
employed bees search for available nectar sources and share this information with the
onlookers via a waggle dance at the dancing area. The onlookers select the food sources
by evaluating quality of nectar sources from the waggle dance to be further explored.
When the quality of food sources is not improved within a time limit, the employed
bees abandon the food source and turn into scout bees to find new food sources.

The ABC algorithm starts by generating a number of nectar sources (initial

solutions) and assigning an employed bee to each food source. Each employed bee

50

explores a new food source near its original food source (neighborhood search) and
measures the nectar amounts (fitness value). If the nectar quality of the new source is
better than the old one, the old one will be replaced by the new one. After the employed
bees update the food sources, they return to the hive with the information of the food
sources. The information is shared with the onlookers by the waggle dance. Each
onlooker selects a food source with a probability that depends on the nectar amounts
(the roulette wheel method). In particular, a food source with higher nectar amounts has
a higher probability to be selected by an onlooker than ones with lower nectar amounts.
After selecting a food source, each onlooker finds a new food source around the selected
food sources (neighborhood search) and evaluates the amount of nectar. The employed
bee will abandon its old food source and go to the new one if it has more nectar. In the
case that the quality of food source is not improved within a time limit, the employed
bee will also abandon the old food source and become a scout bee that searches for the
new food source by randomly generating a new solution. After the scout bee finds a
new food source, it becomes an employed bee again. This process will repeat until a
stopping criterion is reached.

3.4.2.2 Enhanced Artificial Bee Colony (EABC) Algorithm

Since the ABC algorithm was successfully to applied in VRP and VRPTW,
these motivate us to apply this algorithm to solving the VRPBTW in this dissertation.
Although the ABC algorithm was firstly applied to the VRPBTW by Tuntitippawan
and Asawarungsaengkul [31-32], the computational results show that it underperforms
the existing heuristics in many instances, especially in the large-scale problem. Since
the ABC is often easily trapped in local optima, it is necessary to extend the exploration
on the solution space and, equivalently, to expand the capability of neighborhood
search. Therefore, in this dissertation, we introduce the enhanced artificial bee colony
(EABC) algorithm by applying a forbidden list strategy to prevent the duplicated initial
solution which extends the exploration on the solution space, and the sequential search

strategy for onlookers to explore the neighborhood near the high-quality food source.

51

Forbidden List Strateqy

In the process of generating the initial solution, a forbidden list strategy was
applied in this section to prevent the duplication of the initial solution. After a feasible
initial solution is obtained, the solution will be checked with the forbidden list of
solutions. If the solution is not in the list, then add it to the list. Otherwise, the solution
will be abandoned. The process repeats until the number of solutions in the forbidden
list reaches the defined number. This strategy is applied to EABC algorithm whereas
original version is executed without this strategy.

Sequential Search Strategy for Onlookers

In the onlooker bee process of the original version, if there are many onlooker
bees selecting the same food source, each onlooker individually searches for a new food
source and the old food source is replaced by the best of those new food sources. In
EABC algorithm, if there are many onlooker bees selecting the same food source, each
onlooker searches for a new food source in sequence as follows. If the previous
onlooker bee finds a new food source, the next onlooker bee will start from the newly
found food source and look for a better one. Otherwise, the next onlooker bee will start
from the same food source as the previous one. In this way, the quality food source will

be given opportunities to be further explored in good regions of the solution.

Intra-route and Inter-route Exchange Combination Strateqy

The local search in the ABC proposed by Tuntitippawan and
Asawarungsaengkul [32] only uses the 4 -interchange, which is an inter-route operator
that considers two routes at once. To extend the search ability, the EABC can either
randomly apply 4 -interchange or 1-move intra-route exchange, which work on a single
route, for its neighborhood search. Since the 1-move operator improves the solution by
deleting a customer and then inserting it into the same route, it helps rearranging the
customer in the route. The experimental parameter testing discussed in Section 4.2.6
indicates that this setting gives better solution than using A -interchange alone (See
Figure 13).

52

3.4.2.3 Main Steps of EABC

The steps of the EABC algorithm for solving the VRPBTW model can be

described as follows:

Step 1

Step 2
Step 3

Step 4

Step 5

Step 6

Generate a set of initial solutions (food sources) by the NNRW method (Section
3.3.4). The forbidden list strategy is also applied in this process. Then assign
each food source to each employed bee.

Evaluate the fitness of each solution and record the global best solution.

Apply the neighborhood search on each food source. An employed bee
abandons its old food source if a new one with better fitness is found. Otherwise,
increment the time counter of the food source.

For each onlooker, select a food source by using the fitness-based roulette wheel
selection method and improve the food source by the neighborhood search. If
the onlooker bee finds a new one with better fitness, the employed bee
associated with the food source abandons the old food source and go to the new
one.

Check the time counter of each food source. If it reaches the predetermined
limit, the food source is replaced by a new randomly generated solution.
Update the global best solution if a solution has better quality than the current
best one and go to Step3. Otherwise, the algorithm ends and returns the global

best solution in hand.

Start

A\ 4

Generate initial solutions, called food
sources, by using NNRW method, and then
assign each food source to each employed

A

a O

Yes

No

Set the time counter of the food source
to zero, ti=0

v

Replace by a new
randomly generated
solution and set ti=0

Evaluate the fitness of each solution and
record the global best solution, called Bestl

!

Apply the neighborhood search on each food
source and abandons its old food source

Evaluate the fitness
of each solution and
record the global
best solution, called
Best?2

53

<

Does new food
source better

i=ti+1

then old one?

Abandon abandons the old food
source, then replace with a new one

y

Select a food source by using the
fitness-based roulette wheel selection

method and improve the food source
by the neighborhood search

'8

Best2<Best1?

Figure 11 Flowchart of EABC algorithm

54

CHAPTER 4
COMPUTATIONAL EXPERIMENT

The proposed mathematical model for the VRPBTW and heuristic method was
programed in CPLEX version 12.6 and in Microsoft Visual C# 2010 Express
respectively. They were executed on a computer PC with 2.4 GHz Intel i7 Duo Core
CPU and 8 GB memory.

4.1 Test Problems

The EGBA was tested on the widely accepted set of benchmark instances for
VRPBTW proposed by Gelinas at el. [37] that were modified from R101-105 of
Solomon’s R1-type problems [16]. These problems had 100 customers that were
located uniformly over the service area. They had a short scheduling horizon and the
vehicle capacity was 200 units. Problems were generated by randomly selecting 10%,
30% and 50% of the 100 customers to be backhaul customers without any changes to
the other attributes. Moreover, smaller problems were obtained by considering the first

25 and 50 customers.

4.2 Parameter Setting

A small study on parametrization of our algorithm is shown in this section. The
crucial parameters are varied and their solutions are compared by carrying out on the

large problem R101 with 10% backhauls selected randomly.

4.2.1 Nearest Neighbor (NN) Heuristic

The parameters were assigned as follows: the size of 2 -interchange operator =

4. and maximum number of iterations = 300.

55

4.2.2 Improved Nearest Neighbor (INN) Heuristic

The parameters a, 8, and y , which are the weights associated with distance,
idle time, and urgency of delivery, respectively, are set to «=0.4, £=0.3, y=0.3
following Kiigiikoglu and Oztiirk [49]. The other parameters are assigned as follows:

the size of A -interchange operator = 4, and maximum number of iterations = 300.

4.2.3 Nearest Urgent Candidate (NUC) Heuristic

Recall that the parameters a,and g are the weights associated with distance, and
idle time, respectively. In Figure 11, the relationship between the heuristic solution and
ratio of a to B indicates that the heuristic solution is relatively better when the ratios of
a to 8 are 0.5: 0.5, 0.6: 0.4, and 0.7: 0.3. Hence, we select the values « = 0.6 and 8 =
0.4 for our parameters in all instances. The other parameters are assigned as follows:

the size of A -interchange operator = 4, and maximum number of iterations = 300.

Heuristic Solution

]

0.0:1.0
0.
0.2:0.8
03:0.7 |
0.4:0.6
0.5:0.5
0.6:0.4
0.7:0.3
0.8:0.2

Ratio of Parameter « to 8

Figure 12 The relationship between the heuristic solution and ratio of a to 8

4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

Recall that the parameters a, 8, and y are the weights associated with distance,
idle time, and urgency of delivery, respectively, in the calculation of proximity that
drives the probability in the roulette wheel used to generate solutions to start EGBA.
From the suggestions of Kiiciikoglu and Oztiirk [49], the relationship of these
parameters should be a+£+y =1 where @=0.4, £=0.3, y=0.3. To evaluate this fact, the
experiments based on the ratio of these parameters were performed and the results are

shown in Figure 12. The results indicate that the performance of this algorithm is better

56

when parameter a is weighted more than the others. It produced the best solution when
a=0.4, =0.3, y=0.3 as suggested in [49]. Thus, these parameters are set as a =0.4,
B=0.3, y=0.3 for the remaining of this dissertation. The other parameters are assigned

as follows: the size of 4 -interchange operator = 4, and maximum number of iterations

= 300.
1818
1816
o 1814
3 1812
S 1810
2 1808
S 1806
= 1804
L 1802
1800
1798
S o A° o o¥ o° S” o o 7
& > > A A Y e
Y o oV o oF 97 o &

Ratio of parameters (o :5:)

Figure 13 The relationship between fitness value and the ratio of parameters «, 5, and y

4.2.5 Cuckoo Search (CS) Algorithm

The CS algorithm parameters are assigned as follows: the number of host nests

=15, a = 0.4, f = 0.3, y = 0.3 (the weights associated with distance, idle time, and
urgency of delivery, respectively), P, = 0.25 (the suggestions of Yang and Deb [27]),

the size of A -interchange operator = 4, maximum number of iterations = 300.

4.2.6 Artificial Bee Colony (ABC) Algorithm

The relationship between the fitness value and parameter A is shown in Figure
13. The smaller 2 is, the more difficult it is for our algorithm to obtain a better solution
since the number of customers to be exchanged between routes is limited. Thus, the
value of parameter 2 = 4 is set in this paper. Moreover, the comparison of 1 -
interchange with and without 1-move intra-route is also shown in this figure. The
experiment indicated that the A -interchange with 1-move intra-route can produce
better solution when compared with the 2 -interchange without 1-move intra-route.

Thus, the 1-move intra-route can help improve the algorithm performance.

57

The number of employed bees and the number of onlooker bees are set to be the
same, which is 50. This idea is recommended on the performance of artificial bee
colony (ABC) algorithm which proposed by Karaboga and Basturk [79]. The

the limit time parameter was set as 20.

1875
1865 *.\

1855 \
é 1845 ".\.\ e« «@.. with 1-move intra-
B AN route exchange
2 1835 "\
()] o.\

1825 S ea - @=without 1-move

& ... 0~ intra-route
1815 [" reel - -
B St A] exchange
1805
1 2 3 4

Figure 14 The relationship between the total distance and parameter 4, and
comparison A -interchange between with and without 1-move intra-route.

4.3 Results and Comparison

In Tables 1-6, the first column represents the number of customers. The second
column shows the problem name. BH. (%) denotes the percentage of backhauls.
Distance shows the total distance of solution. Best Distance means the total distance of
the best solution from 20 replications performed using different starting solutions. NV
indicates the number of vehicles used and time represents the computational time in
seconds.

The computational results of the mathematical model, NUC, NNRW, CS and
EABC for 25, 50, 100 customers for VRPBTW are reported in Tables 1-3 respectively.
The empty slots mean the results cannot be found within 2 hours by solving the
problems with CPLEX program. Some optimal solutions are found only in the small-
sized problems, and its computational time is much higher than all proposed methods.
This indicates that the exact method is too difficult to solve the VRPBTW within a
reasonable time. Moreover, the NUC used the lowest computational time whereas the

NNRW used the highest computational time.

58

0T 8 1’165 19T 8 1’168 0co 8 T'Tes 910 8 1’168 98 8 T'16S 0s
60'c 8 $'€79 68C 8 $€79 9c0 8 6'879 ¥1’0 8 6'TE9 90CTL 8 S'€79 o€
ors L 1°59¢ L0E L 1°69¢ veco L 1'59¢ LTo L 1°69¢ SLOT L 1°59¢ o1 sord
65 S 89ty 6LT S 8°obt 610 S L'Lyy 610 S Livy 69T € 8°9hF 0s
ot 9 $'89% 16 9 I'eLt o 9 €LY 0zo0 9 $'89% - - - 0g
Fee S SISy LET S 8Tsy Lo s Pesy 170§ STsy - - - 01 to1d
€Lre 9 0'¢8t €6 9 0'est 6c0 9 888¥ 610 9 0'€st - - - 0s
Te L 0'L0S €97 L 0°'L0S §¢o0 L 0'L0s 610 L 0°L0S 1109 L 0°'L0S 0g
s S 9'9.% W™t 9 8'8LY Lo 9 88LY 610 9 T6LY - - - 01 f01d
66t 8 '¥8s we 8 ¥'#8¢ s€0 8 F¥8s LT0 8 ¥'¥8¢ - - - 0s
Tt 6 1'879 6T 6 1'879 ¥0 6 1'8¢9 910 6 1'879 - - - 0g
ws L €€9¢ 89¢ L §€9¢ e L §E98 610 L §€9¢ - - - o1 co1d
06'T 0T 89L9 FLT 0T 89.9 6C0 0T 89L9 $1°0 01 89.9 - - - 0S
00T 0T 81zL S6T 0T 81TL 9c0 0T 8TCL ¥1°0 01 81ZL - - - 0g
65 6 ¥er9 ors 6 ¥ Er9 §T0 6 Fer9 €10 6 FEr9 LLE 6 FEr9 01 1014 ¢&z=U
AWl AN 2ouesiqg aWIl AN 20uesig SWIT AN 20uUeISIq AWIT AN 20uesig amwIy AN Qouesig o]
159¢g 159 1599 159 =)
T e 0§
uonn[os DIV uonnyos SO uonnos MIANN uonnjos DN uonnjos reurdo -8 *

"MLIdIA Ul SIDWOISND 7 10J DGV PUC ‘SD ‘MUNN ‘DN ‘[PPowt 3y Jo s)[nsai [euonenduwo)) 1 d[qe],

59

8795 11 €66 6vr 11 ¥'€66 o Tl 6'866 §TO 1T 16001 - - - 0s
SI'69 TI 66101 80'TL €1 T°LZOI PEO0 €T g1¢01 810 T 8TS01 - - - 0g
LO9L 1T T9L6 1589 11 8°TL6 8¢0 Tl £€86 910 I1 1'266 - - - 01 sord
1€18 8 9°€eL 0969 8 SrEL 00 8 0PSL €€0 8 ¥6€L - - - 0s
8968 8 8reL 989 8 CThL 8’0 8 8°ThL 870 8 T'LEL - - - 0g
LTSS L 6589 Wy L 7869 8¢0 L 6°00L LT0 L oL - - - 01 tord
ro6r 11 0°€88 S8'9¢ 01 0'638 ¥o 01 768 8T0 0T 688 - - - 0s
6L6F 11 7988 LLTE 11 ¥'v68 80 TI ¥'v68 co 11 0'888 - - - 0¢
6vtS 6 €TI8 6LEY 6 8818 6’0 01 L'8T8 0T0 6 8°6T8 - - - 01 €ord
68k +I L6501 69T ¥ L6501 (A VN 4 AT LTO #1 97T901 - - - 0s
88ty I 9'HS0T LOEE FT 9'%S0T PEO ¥ pSoT €0 ¥ 1'860T - - - o€
Lvor T $9.6 €gce 1 S9L6 so @l 0LL6 00 I $9L6 - - - 01 ord
089¢ 91 6°€81I 6L€T 91 6€8T1 880 9T g8l TT0 91 6'€8IT - - - 0s
0S9¢ 9T 9I6II 61T 91 91611 60 91 9611 0T0 91 LH0TI - - - 0g
€06E ST EEECIl oFTC ST EEETI &0 ST geern LTO #1 TGPII - - - 0T 1014 os=u
awrl AN 2duBsIg awny AN Qouesig amwry AN Qouesig amwrl] AN 20ouesiq awrl AN 20ouesiq oo
1s9g 1sag 1sag 1seg T)
3 & ¢
uonnjog DAV uonnjog SO uonnjos MUNN uonnjog DN uonnjog reumdo T8 K

A LGIA Ul SI2W0)sNI (g 10J DGV PUE ‘SO ‘AVUNN DN ‘[Ppou a1y jo synsal jeuonendwo) 7 3[qe],

60

86'STZ 8T TLO9T LULET 61 96791 €8T 6l 7Lpol ¥60 61 8€H9I - - - 0S
63°€0T LT S$P6ST LYEPT 61 T'TO9I 89'T 61 9791 L0 8T #8191 - - - 0€
99vST 8T €VIST €T661 8T L'ETSI 61'T BT 6I#SI PO 6T §°SSSI - - - 01 sord
vPOSLT ¥T tLOTT LYIST #1 €L6I1 we v gerel €80 €1 LL8TI - - - 0s
11967 +1 9'8FIT 65°S0T #I 8LOTIT Ty #1 $9911 ST'T #1 L9911 - - - 0¢€
PSH6T €T 96111 STLPT €1 TSHII €T €1 09pIT 8TT €1 OTHII - - - 01 +01d
1649C 8T L'€9%T LTIOT 61 LbLvl 8L'T 6l r106%1 80T 81 tSipl - - - 0s
69°€6T LT 9°80FT 16LST 9T LLOPT LOT LT 9gepT 10T LT L'9THI - - - 0€
0SSk LT T'SSET €P'EST LT L'6LET 0T 8T 9T6¢T TS0 LT SLLET - - - 01 €01y
PI0LT 1T L'8ELT L8LTT TT §LSLI L60 TT 7e9LT V0 €T 619LT - - - 0S
00 1FE 1T t7€691 €6'T€T TT 9°SOLI SP'T €T oorLT 860 1T 89ILI - - - o€
1060 0T 80791 60°TTT 0T THT91 PI'T 1T g'8791 SL0 61 8€€9l - - - 01 701d
0L°0LZ ST TIT6T €LLIT ST EPT6I ree 9T p6T6l 86'T ST €LT6T - - - 0S
LTTLT ¥T 0°S88T 69 11T +vT 69881 PO'T $T 8'888I1 ¥8°0 YT TS88I - - - o€
660¢C ¥T 16081 PTLOT $T L'SO8IT ITT ¥T o181 6v0 tT LPISI - - - 01 1014 00I=U
W] AN 2oumsig awry AN QoumsIiqg Wiy AN 20uRsIq AW AN 20Juesiq auny AN 2JuesIq oo
1segq 1segq 152 1seg Hﬂ
S <
uonnjos DV uonnios SO uonnjos MANN uennos DAN uonnyos rewndo -8 ¢

"AMLGIIA Ul s15wo0)snd Q[10 DGV PUE ‘S ‘MANN DN ‘[Ppou 33 Jo s)nsai [euoneindwo) ¢ Jqe],

61

(19n3] @2UdpPUOI %56 18) SD Ueyl Ja11aq Ajjuediiudis s1 Dgv3 4
(19A3] 22UBpPIUOd %G6 18) MYNN Ueyl 49333 Ajpuediyiusis st NN «
[z€] ImBusesbuniemesy pue uemeddinnung woly paurelqo -

%0070 %0070 %669 Qats'L- %0070 %9669 Qats'L- 1°16S 1°16S 1°16S 1’16 1°16S (SN} 7659 0s
200070 %TL0- %€9°0- %TL0- %190 290070 %080°0- 0'879 €79 €79 0’879 6°7€9 6759 +'€€9 0¢
%00°0 2000 2000 %0FT" %000 %000 %0ST 159 1595 1595 T's9s 1°59¢ 1595 9'6LS 01 SOTd
%0070 0%00°0 08501~ %IOTL- 24000 008501~ %GT9TI ot obt oft L'L¥F L'Lby S°00¢ S'o0¢ 0c
00.6°0- %000°0 0ITL- %b6'L- %P9'T- QoEL'S 008t 6~ <30 45°89% I'SLy €LY «$"R0F €EIS + LIS 0t
%oL0°0" 266707 2609T" ASLT %0T0T %6LT %£6'0 ESH LTS 8'TSH Vesy .gTsy SSor zosy 01 ¥OTd
%0070 %0070 QtL'T- %a.L9°8- %611 %006°C QaSL'6” 0°ESt 0 €8t 0 €8t R’ €8t +L6F 7°s€s 0s
%%00°0 200°0 2090°S- %0T'S %0070 2090°S- %0T'S 0°L0S 0°L0S 0°L0S 0°L0S 0°L0S 0tES]°¥€S o€
%9%'0" %%600°0 %S0T 0%88'¢” %800 %96'T" %008°S" 9'9LY 20'0LF 8'8LY 8'8LY oLy 8881 1'L0S 0l £0Td
%%00°0 %6000 %PE'D- %ITT %0070 0WPE'D- %ITT P85 486 85 ¥'¥8S ¥'+8¢8 +'08¢ 9'16S 0s
200070 200070 2000°0 %¥T'0- 2900°0 200070 %¥FT'0- 1'879 1'879 1'879 1829 1°879 1'879 9679 0g
%000 26000 26000 %TE0" %000 %000 %TI'00 §€9¢ §'€9¢ $'€9¢ §'¢9s §€9¢ §'€9¢ Tyes 01 T01d
20000 20000 2670 %S’ %0070 2%6T0" %SET 2°9/9 2°9/9 2°0/9 8°9.L9 2°0/9 °R/9 1°€69 0¢
%000 %000 %000 %¥8'T- %000 %000 %¥8T- 17 g 17L 8'1ZL 8'1CL 81TL 8 1ZL €¢eL o€
%9000 20000 0WIT %IST %0070 0%WIS'T %IST) €19 €19 €79 ¥ €F9 1°299 1299 01 10T ¢Z=u
e 2dv NNI NN MENN NI NN o
sA SA SA SA SA SA SA 0URISI(] SOURISIQ Q0UBISIQ A0URISIQ A0URISIQ LdUeISIQ duwsid e
oavd 2dvd MUNN MUNN DN DN DN 1seg 1seg 1sedg 1sed 1seg 1seq 1seg M/m mvH mo
dNL dVD% D4V 249vd SO AMANN D[N NNI NN = m °

"MLAMA W S1WoIsnd ¢7 10J DGV Put DGV ‘SO ‘AAANN ‘DN ‘NNI ‘NN Y1 Jo synsax uostiedwo)) p 3[qe],

62

(19A3] 22udpIyU0D %S6 38) S eyl 49133q Ajpuediiusis st Dgv3I »
(]9n3] 22uUspPIHU0D %56 1) MUNN Ueyl 491199 Ajpuediiudis st DNN «
[z€] Inybusesbuniemesy pue uemeddiinung woly paureiqo e

%000 9000 %69°S %LEL %CI0T %ELF OhERO- 566 v €66 v €66 6'966 1'6001 76507 V'8LOT (g
%O0L0- %LF0- %LOP %P8 %P0'CT WIT'T %I6'T LHZ0T 46°6T0T 1'LZ01 1601 RTS0T 9°GL0T €80T o€
%SE0 %TI6°0- %T6'6- %166 %68°0 %IT6 %IT'6- 7°S%6 7°0L6]8TL6 £€86 1°266 S 1601 S 1607 01 SoTd
%IT'0- %LL'O" %S8TT %6TT %P6l %LIF %6TH 65l 0°CEL SrEL 0'FSL F6EL 91LL LTLL Qg
%T0T- - 0pSH'E 09990~ 0pLL'0" GLT'9 G08EL- - 8 FEL €L IrL «T°LEL 068/ 8'S6L o€
%9L'T- - %6901 %ISTI- %¢EE0 %0F0T- %ITTT - =6'G89 7869 6'00L TE0L SFSL 1°C6L 01 +01d

%%.L9°0- %PT0- %66'F %0SB'ST %09L°00 %IL'S %4959
%T6°0" %0T°0" %T09" %LE9" %TL0 %690 %b0'L-
%6L°0- %ftT'T- %8T'S %068°¢ %ET°0 0ST'S~ %Lb'S
260070 260070 9669°€- %¥PLE" %810 0TS'E WLST
200070 200070 %SP'T %obEE %CE0 %W¥I'T %I0'E
200070 200070 %060°T- %FPL'T- %S00~ %FI'T- %6L'T-

£0'€88 0688 7768 688 1°6€6 9LY6 o¢
£7'988 F¥68 v'¥68 =0°'888 L1656 €556 o¢
€718 8818 L'3T8 8678 6'FLS 8LL8 o1 g01™
L'6S0T L'6S01 L6601 971901 €00TT 600IT qg
9501 9'+S01 IR0 1’8501 Z'1801 I'T60T o¢
S9L6 €9L6 0LLG *$'9L6 8'L86 €r66 o1 zoTd

%00°0 %000 %sSS0- %09°T %000 %SS0- %091 6'€8T1 6'E8T1 6 €8T 6°€8TI 6'€811 S06TI 1¢0¢CT 0¢
%00°0 %0070 %¥F8'T- %6T'T %69°0 %OT'T- %IS'T 91611 91611 971611 o611 L¥0TT QRITIT [xaal 0€
%00°0 %90°0- %0F'E- %068°¢ %0F T %80'C %¥T'T OFETT CEETT CEETT €EETT Al anl TELTT CCLIT 01 10T 0Qs=u
S oav NNI NN MANN NNI NN o
sA A A s sa A A 2DWeISIQ OURISIA DUEISIQ OUYSIA 0UNSIA dUMSIA DWSIA F g
2dvd DV MENN MUNN DNN DN DNN ¥sed 1sed Iseg 1sed Iseg 1sed e m.m, m m
dINT dVD% DIV OgvH SO AINN DNN NNI NN = m °

"MLAIIA Ul s13u0)snd (g 10) DGV Put DGV ‘SO ‘MAUNN ‘DN ‘NNI ‘NN 24} Jo sy[nsai uostieduio) g a[qe],

63

(19A9] 22UBpPHUOD %S6 1B) SI UBY) 49113 AjJURdIUSIS SI DEVT 4
(1on9] @2udplJUOI %S6 18) MUNN Ueyl Jo119q Ajpuediyiudis st JNN «
[z€] InyBusesbuniemesy pue uemeddinung woly paurelqo e

YLeT . %060°€" GL¥'ym %ITOT %6TE %99 - LULO9T 96791 TLPIT «8E€F91 g6691 TFCLL - og

%o8¥°0- . %00 %100 %908°0 %0T°0- %6H'0” - L£F6ST TT9T §9791 #8191 L1791 E9T91 og

%679'0- . VLTS GESST %060 %TFE L9 - L£FIST L€ 6IpST g'sss1 9Lzor T'TEOL o1 so1d

%80 - 0%IS'E- TS'E GHEH'E- 06£8'0- 04£8°'0- - ¥ L0TT CL6TT 66771 «LLSTT LPLTT 8VLZT 0

YoreT- . WFE'T %9%ET %00 WICT %tee - A8PIT §L9TT +'991T L9911 L10TT LOICL og

NPT . YSS0" %005 %SED- %0680 %tes - A6TIT TSPIT 09PIT «0TFIT €TSIT €90CL 01 roTd

YoSL70- . WECT %69 %66°0- %06°T %Ees - LTEOPT LPLPT T06YT «FSLPT §6IST STE9ST og

%900 - %0917 %T6T %IT0T WITT %IsE - 9'80FT L'LOFPT OSEPT »L'9THT 06SHT 8BLFT g

%68L°T - QO£ OIS %I0TLT O6LTS %8S - SUSSET LBLET OT6ET «SLLET THSPT VLSPT 01 €0Td

%6071 %LL0T %9997 ISTIT %I00" %899 %eESTl TTSLT L8ELT §LSLT TS9LT «6%9LT TT1681T 8'100C o5

%0 %6ET %I %9TT %S00 %L6'0T %ITT CLILT #€69T 9°SOLT O9TLT §9ILT L€€LT L'SSLT of

%070 %ITT %LST %0S'E %IE0 %LTT %0TE LOP9T 8°0T9T T'HTOT 98797 9°¢e9T 8T1L9T 8L89T o1 zOTd

%010 %0T0" %S0T %PT'CT %IT0T %0TET %STE T8TET TITET €FT6T +6T6T «€LT6T TO0661 0TEET (S

%010 %TOT %bSH 089'6" %610 %GELYT %S8'6 SPO6T 0°SS8T 69887 §'888T 7’6881 L'8L6T CI60T o¢

%610 0IS0" %LEST 09T %LII'0 %ITST %SKTI 9'8T8T TI'608T L'S08T OTI8T L'FIST S¥I6T LTLOT o1 1074 00T=U

SO olin NNI NN MEANN NINI NN fos|

SA A A A SA SA SA QJUEISI(] 22URISI(J 2JUEISI(J 2JUBIST(q 22UBISI(] 20JUBISI(J =2UeIsIq H ..u_u

OEVE D8V MUNN MUNN ONN ONN DNN 1sog 1sog 1sog 1sag 1sog 152 T & &
dNT dVD% DEV ogvd 0) MIANN ONN NNI NN ~ B *

"MIGdIA Ul s1uosnd 001 10§ DGV PUE DGV ‘SO ‘AAUNN ‘ONN ‘NNI ‘NN 29} Jo s)[nsax uostieduro)) 9 s[qe [,

64

[z€] Imybusesbuniemesy pue uemeddinung woly paureiqo
[8v] 31mzQ pue njoyndny| woly paurelqQ

[6¢] sumzQ pue njgoxndny woy paureiqQ ,
[tTv] '[e 30 yelBuey L woiy paurelqo q
[12] "o 18 uIni0d Woly paurelqQ

%LT0 % STT %000 %000 %000 %000 1°76S 5265 1°16S 1'16S 1'16S 1°16S 2T 16S 0s
%000 %L0T %000 %000 %L80 %151 $'€79 7°0€9 $'€79 €79 6'879 6759 1S €79 0€
%000 %000 %000 %000 %000 %000 1°69¢ 1°59¢ 1°69¢ 1°59¢ 1°69¢ 1°69¢ e1'69S 0ol SoTd
%000 %99CT %000 %000 %0C0 %070 ot LSSt o ard bt L'LYY L Ly 289 s
%000 %%EC0 %000 %860 %991 %000 S'39f 9'69t% S804 TI'sLt £oLY <9t 26°89t% 0¢
%000 °%LT'T %670 %IT0- %600~ %6T°0- g€t '65t SISt 8ISt resy SISt 28°ESH 01 vOTd ppgac
%000 °8F'T %000 %000 %0T1 %0070 0°€8t 0'S6F 0'€st 0'€sk 8'88t% 08y 20 €8 0¢s
%000 %LL0 %000 %000 %000 %000 0°L0S 601¢ 0°L0S 0°L0S 0°L0S 0°L0S 20°L0S 0¢
%90 %09°C %0000 %9%'0 %90 2SS0 8'8LY 0°68% 9oLy 8'8LY 8'8LY oLy 9'9LY 01 €0Td
%000 %ST0 %000 %000 %000 %000 ¥ 138 €686 ¥+R¢S +'+8¢ 8¢S ++86 + 8¢ 0S
%000 %F1'0 %000 %000 %000 %000 1°879 0°679 1'829 1'879 1°8¢9 1°879 51'879 0¢€
%000 %80 %0000 %0000 %0000 %0070 $€9S €696 §°€9¢ §€9¢ §7E9s §°€9¢ 25 €96 01 cord
%000 %000 %000 %000 %000 %000 29,9 29.9 89.9 29.9 89L9 29/9 2S°9L9 0S
%L9°0 %L90 %L90 %L9°0 %L9°0 %%L9°0 1TL I17L 1ZL 1ZL 8'1CL 1L q0LTL 0€
%000 %000 %000 %000 %000 %000 F'EF9 ¥ E€r9 7' Er9 ¥ Er9 rer9 ¥ero o €F9 0T 10Td ¢st=u
VINH vdd 04gvd SO MANN DN soumlsI Qouelsyg SOUBISI SJURISIT SJUEISI(Y JWEISIT owelsiq M o
1s2g 1s2g 152¢g 10, w. m
SMg dVD% SZVNH pvEd DdvdE SO MINN DAN S < w o

MIIIIA UI SISUWO0ISNI T 10J SISLINAY I3Y)0 pue ‘goT ‘OGVT ‘SO ‘AUNN ‘DN 23 Jo s)msat uostieduwro) £ qe,

65

[6¢] 311mzQ pue njgoxndny woy paurelqQ

[z€] Inybusesbuniemesy pue uemeddiniung wouy paurelqo s [T¥] ‘1e 18 yelBuey L wouy paurelqo q
[8¥] sumzQ pue njgoxndns woy paurelqQ | [12] ‘1e 30 uIni0d Woly paurelqo e

%8T0 %30T %000 %000 %SS0 %851 2966 ot €66 'E66 6'866 1'6001 F'£66 0s

%070 %L0T %LF'O0- %ETO %69°0 %tFL'C L'9T0T 0£01 66101 1°L20T 8 T1€0T 87CS01 2LF201 0€

%650 %000 %SE0 %000 %30°1 %86°1 S'8L6 8CL6 C9L6 8CL6 £°€86 1’266 p8CLE 01 soTd

%000 9%99°C %T90- %050~ %¥FIT %91°0 ¢'8EL vl 9eeL SFEL 0FSL F6EL 20 8EL 0s

%000 %EZ0 %LT0- %SL0 %180 %+0°0 89¢€L L'LEL 8FEL £TrL STHL I'LEL 28'9¢L 0€

%000 “%LT'T %970~ %¢ES'T %C6'1 %STT L'L89 L'889 6°589 '869 6°00L CE0L aL’L89 0T FOTd HMAS
%670 %8FC %¥PT0- %P0 %080 %¢0°0 L'L88 L'L88 £88 688 'C68 °588 217688 0s

%ST0 %LLO0 %010~ %C80 %C8°0 %01°0 £688 1568 988 168 68 888 =[°L88 0€

%000 9%09°C %6£0- %0F0 %C9°1 %SL'1 S6I8 1°1¢8 €718 8818 L'8T8 8°6C8 26°SI8 0T £0Td

%810 %SI'0 %000 %0070 %000 %810 91901 €CTT L6501 L6501 L6507 91901 L6501 0§

%L0C %rI0 %I6T %Il6C %C6'C %S5TE 901 901 9FS0T1 9¥Ss01 L¥S0T ['8501 98 17C01 0€

%E00 %EC0 %000 %000 %S00 %000 8'9L6 L'8L6 $9L6 S9L6 0°LL6 $9L6 259L6 0T 01d

%000 %000 %000 %000 %000 %000 6'€8IT 6'€81T 6°¢811 6°€8I1 6'€8IT 6°€811 e6'€811 0s

%000 %L90 %000 %000 %0¥0 %0T°1 9’161l 85l 916l1 9I6Il o611 LF0CT 971611 0€

%910 %80 %90°0- %900~ %900~ %rEl 8'GEIT £8EIT £eell eEell EEETT cerll 0Pl 01 1014 05=U

YTH vAdd Ddvid SO MINN DN soue)sI] eoup)sig QOUEISI(T QOUBISI(T AJUEISI AJUEISIA soueysiq M -
1529 1s9g 1s°g = W ©
SY9 dVD% SZWINH — pvAd D9vdE SO MINN DNN syg s m @

A LIIIA Ul SI9U0)SNI (G 0] SINSLINAY 1330 pue ‘GO DGV ‘S ‘MUNN DN 211 Jo s)[nsax uostredwo) g Aqe,

66

[sv7] doy pue sebuisid wouy pauteiqo ; [6v] SumzQ pue njSoxndny woy paurelqo ,

[z€] Imbusesbuntemesy pue uemeddininung wolj paureiqo » [Tt] "[e 18 yelbuey 1 woly paurelqo q
[8y] 1twzQ pue nigodndny woy paurelqQ , [12] ‘1e 30 uIni0d WOl PaUILIIO -
%000 %870 %610 %0651 %69°C WLY'T 1'+091 9'8091 T'LO9T 96291 L9l 8 EVol 217091 0¢
%000 %.00 %T80 %I1eT %S8'C WEET SI8ST 9°C8¢1 SP6ST 091 ¢9T91 78191 267 18ST 0g
%000 %LL0 %IT0- %IS0 %IL'T %E9'T 09151 L'LTCT EPIST L€TET 6 TIPS 8°¢CeT 09181 0T1 coTd
%000 %PF80 %0S'T %S9°0 %6¢£°¢ %9T°0- 9°68T11 96611 ¥'LOTT E€L6TT 6°6CC1 L'L8TT 29°6811 0¢
%000 %L80 %901 %SL'T %C9'C %E9'T 90tTl SOPIT 9'8FI1 8°L9TT 79911 L9911 9°9¢TT 0g
%580 %96'T %LTE %€9°C %0L°S %EE'S Fe60l ¥ COrl 96111 (401 09rI1 0Pl 1CP801 01 ro1y HMA®
%850 %850 %6F0 %ST'T %IET %0€°T 0°Sot1 0°c9rl Le9r1 L¥LrT 1'o6%1 VELvI 1S9sv1 0s
%000 %FT0 %P9l %LST %65°¢ %¥6'C 6°S8¢1 68T 9'80%1 LLOFT 9°CErl L9TF1 26°68¢1 0¢
%000 %0L0 %T90 Sty C %TEE %LT'T 6°9r¢l £95¢1 C6SEl L6LET 9161 STLLET 26°9FE1 01 €01d
%6L°0 %S8LT %IF0- %S890 %0T°T %80T 8°6SL1 T'LLLT L'BELT 8'LSLT CS9LT 619LT q0'9FLI 0s
%000 %86'T %LLT %LOT- %9%0- %Iro0- 0FCLT C'8SLIT 7'E691 9°G0LT 091L1 89TLI 0 FCLT 0g
%000 %I9T %S8T0- %<c00 %IE0 %090 L'ET91 8'6¥91 8°0791 I'+291 83791 8EE9T 2L €T9T 01 01d
%8C°0 %LTT %080 %L6°0 %EC' T %Cl'l CT16l1 cogol [l £¥T61 ¥'6lo6l £LT6l1 65061 0§
%000 %F8T %IE0- %IT0- %IT0- %IE0- 1'1681 6'5T61 0°6881 6'9881 8°3881 C'S881 21 T68T 0g
%000 %000 %¥FT0- %EE0- %000 %LI0 91181 91181 1’6081 L'G08T 91181 LVI8I p9 1181 01 1014 00I=U
VINH VAA Dgvd SD MENN DN soueysig Qoueisrg POUBISIQ QJUBISIJ 2JUBISIJ JUEISIA aowueysi(q os! -
1seg 152g 152g \..I_.l, w_. w
S3d dVD% VINH pvdd 0dvia SO AANN DN SAd ,% A.mﬂ o

‘A LIQIA U SI5W0)SNI QT 10J SHNSLINIY 13130 pue ‘GO DIV ‘SO ‘MMUNN ‘DN 23 Jo snsa uostiedwo) ¢ 9[qe],

67

Tables 4-6 report comparison results of proposed algorithms (NUC, NNRW, CS,
EABC) and the other methods (NN, INN, ABC [32]) for VRPBTW with 25, 50, and
100 customers, respectively. The %Gap_IMP column denotes the gap percentage
between the considered solution and the compared solution. A negative number in this
column means the considered solution is better than the compared solution, zero value
indicates that both are equal, and a positive value indicates the considered solution is
worse than the compared solution. Specifically, the %Gap_IMP is computed by the

formula;

the considered solution)—(the compared solution
%Gap_IMP =)= P) % 100.

the compared solution

The numbers in bold face font in these tables indicate that the considered solution is
equivalent or better comparing with compared solution for the same problem. Note that
the empty slots in ABC [32] column mean the results were not reported in their paper.
The results obtained from the comparison in Tables 4-6 can be summarized in Table
10.

Table 10 The summary of the result comparisons for each algorithm.

Versus NN INN NNRW [NUC ABC CS EABC
NN ; 1/45 1/45 0/ 45
(2.22%) | (2.22%) | (0.00%)
INN 447 45 - 1/45 0/45
(97.78%) (2.22%) | (0.00%)
NNRW | 44/45 | 44745 - 10/ 45
(97.78%) | (97.78%) (22.22%)
NUC 45745 | 45745 30/ 45 ;
(100%) | (100%) | (66.67%)
ABC ; ; ; ; ; 5/34 0/45
(14.71%) | (0.00%)
CS - - - - 29/34 - 4145
(85.29%) (8.89%)
EABC - - - - 34734 | 41/45 ;
(100%) | (91.11%)

Each fraction x/y in Table 10 means that the row algorithm obtained x
equivalent or better solutions out of the total y instances when compared with the
column algorithm. Moreover, these fractions are also shown as percentages in
parentheses. For example, in the entry (NUC, NNRW) shows the fraction 30/45. This
means, the NUC obtained 30 equivalent or better solutions out of 45 problems (66.67%)

68

when compared with the NNRW solution. The bold numbers in this table highlight the
outcomes with at least 50%.

To determine if the considered solution and compared solutions are significantly
different from each other, the Mann—Whitney U test is applied. This test is a
nonparametric test which does not require a special distribution of the dependent
variable in the analysis. The Mann—Whitney U value is the smaller value of U; and U,

which are computed from the formula:

Ny (le +1)
2

U1=R1—@,U2=R2—
where R, and R, are the sum of the ranks in samples 1 and 2, respectively; and n; and
n, are the number of samples 1 and 2, respectively. In this dissertation, we used a two-
tailed test with confidence interval at the 95% confidence so U critical value when n; =
20,and n, = 20 is U, = 105. The number which is marked with the star symbol (*) in
Tables 4-6 indicates that the NUC solution is significantly better than the NNRW
solution at 95% confidence level, and the number which is marked with the octothorpe
symbol (#) indicates that the EABC solution is significantly better than the CS solution
at 95% confidence level. In Tables 4-6 report that there are 18 problems that the NUC
is significantly better than the NNRW, whereas there are 17 problems that that the
EABC is significantly better than the CS.

To evaluate the efficiency of the proposed algorithms, the comparison between
the solutions obtained from the proposed algorithms in this dissertation and the best
known solutions in the literature is also shown in %Gap BKS column of Tables 7-9.
The %Gap_BKS in these tables is the relative difference in percentage between the

considered solution and the best known solution. %Gap_BKS is computed by:

(the considered solution)—(the best known solution)

%Gap_BKS = %X 100.

the bestknown solution

The %Gap_BKS can be negative, zero, or positive. Since this is a minimization
problem, if %Gap_BKS is negative, the considered solution is better than the best
known solution. If it is zero, the two are equal. If it is positive, the best known solution

is better. For example, in the %Gap_BKS column, the negative numbers in the EGBA

69

sub-columns means the EABC obtained better solutions than the current best known
solutions. The results obtained from the comparison can be summarized in Table 11.
Each fraction x/y in Table 11 means that the algorithm obtained x equivalent or
better solutions out of the total y instances when compared with the best known
solutions. Moreover, these fractions are also shown as percentages in parentheses. For
example, the EABC obtained 33 equivalent or better solutions out of 45 problems
(73.33%) when compared with the best known solutions. The bold numbers in this table
highlight outcomes from the proposed algorithms. These results indicate that the EABC
algorithm outperformed the other proposed algorithms in terms of solution quality in

many problems.

Table 11 The summary of comparison between each algorithm solutions and best
known solutions

Algorithm solution Best known solution
EABC 33/45 (73.33%)
HMA 29/45 (64.44%)

CS 23/45 (51.11%)
NUC 16/45 (35.56%0)
NNRW 12/45 (26.67%0)
DEA 6/45 (13.33%)

In order to evaluate the potentiality of EABC algorithm, from Tables 8-10, the
EABC algorithm is also compared with the DEA, which is a population-based heuristic,
and the HMA, which is a non-population-based heuristic. The results obtained from the
comparison can be summarized as follows.

e When compared with the DEA, the EABC algorithm obtained 38 equivalent or

better solutions out of 45 problems (84.44%).

e When compared with the HMA, the EABC algorithm obtained 37 equivalent or

better solutions out of 45 problems (82.22%).

In summary, the EABC outperformed the existing algorithms in terms of
solution quality in many problems as it obtained 33 equivalent or new best known
solutions out of 45 instances (73.33%) while others did not perform as well (NN 0.00%,
INN 6.67%, NNRW 26.67%, NUC 35.56%, CS 51.11%, HMA 53.33%, and DEA

70

13.33%). In addition, EGB algorithm obtained 15 new best known solutions, and found
the optimal solutions for some instances. Moreover, EABC still displayed superior

performance on the problems where the optimal solution is still unknown.

4.4 Rate of Convergence

In order to consider the convergence of the proposed algorithms, the graphs
between the fitness value and the number of iterations for each instance are plotted in
section A of the appendix. The results obtained from those graphs can be summarized
in Table 12.

Table 12 The average number of iterations until the start of the convergence.

The average number of iterations until the start of convergence

Proposed Small problem Medium Problem Large problem Overall
algorithms (25 customers) (50 customers) (100 customers) (45problems)
NNRW 16.20 25.27 29.93 23.80
NUC 12.93 24.27 34.13 23.78
CS 5.93 8.07 8.27 7.42
EABC 2.47 5.00 5.93 4.47

In Table 12, on average, the proposed algorithm which used the least number of
iterations was EABC for all sizes of problems. The NNRW used the most number of
iterations on average in all sizes of problems except large problems where NUC used
the most number of iterations. For overall problems, the NUC and the NNRW have
approximately the same convergent rate while EABC has faster convergent rate than
CS by 60.18 % on average.

4.5 Results Discussion

The computational results show that the optimal solution from mathematical
model cannot be found in many instances, especially the medium- and large-sized
problems, and its computation time is much higher than other heuristics. This is because
the VRPBTW is an NP-hard combinatorial optimization problem, thus, the exact

method is not always possible to find an optimal solution within a limited time.

71

The proposed heuristics (NUC, NNRW) perform better than NN and INN. We
speculate that a candidate technique in NUC helps to obtain a good initial solution by
properly selecting the customers in construction phase, while roulette wheel selection
in NNRW helps to extend the exploration on the solution space by increasing the
number of initial solutions. The computational time of NNRW algorithm is also the
highest among the other heuristics with this reason. However, the NNRW
underperforms the NUC in many problems. This may be concluded that good initial
construction is more important than the extension of the exploration on the solution
space by increasing the number of initial solutions.

The CS results indicate that it is better than other presented heuristics in this
dissertation except for EABC. It can produce better solutions than the best-known
solutions for the majority of small- and medium-sized instances. However, it does not
perform as well for large problems. We speculate that EABC algorithm contains many
techniques to extend the exploration on the solution space and to escape from local
optima while the CS does not.

When comparing the results of enhanced version of ABC with the original one
proposed by Tuntitippawan and Asawarungsaengkul [32], the EABC algorithm is
superior to original ABC algorithm in terms of the solution quality. We speculate that
the forbidden list strategy in generating process, the sequential search strategy for
onlooker bees, and the intra-route and inter-route exchange combination strategy for
the local search in the EABC algorithm indeed helps extend the exploration on the
solution space to obtain the better solutions. Note that although the sequential search of
onlookers increases the chance of finding great solutions, it also leads to larger
computational time. Further study is needed to analyze the tradeoffs and compare the
computational time with the original ABC algorithm.

When comparing the results of EABC algorithm with the other methods in terms
of solution quality, we find that the performance of our algorithm is better than the
HMA and DEA for small- and medium-sized problems while comparable with the
HMA and the DEA in the large-sized problems. We speculate that there are four main
reasons EABC algorithm contributes the successful results. First, the EABC algorithm
is a population-based heuristic which starts with a number of unduplicated initial

solutions. Therefore, it can explore more in the solution space and get more chance to

72

obtain the better solutions. Second, the EABC algorithm applied the combination of
intra-route and inter-route exchange as the neighborhood search. Hence, this strategy
can extend the regions of the search space to increase the chance for finding a better
solution. Third, the high-quality solutions are used more often than the low-quality ones
to produce an improved solution in the onlooker bee stage. Thus, the regions of the
search space are searched in shorter time and in detail. Forth, the stalled solutions are
removed from the population and a new solution from random generating is added to
the population in the scout bee stage. This process provides global search ability and

prevents the search from premature convergence problem.

73

CHAPTER 5
CONCLUSION

The vehicle routing problem with backhauls and time windows (VRPBTW) is
an extension of the vehicle routing problem with backhaul (VRPB) by imposing a
specific service time window for each customer. The objective of this problem is to find
a set of feasible vehicle routes that minimizes the total distance while imposing
capacity, backhaul, and time window constraints. In this dissertation, a mathematical
model of VRPBTW is introduced to obtain an optimal solution. It is formulated as a
mixed-integer programming model by modifying the mathematical formulation for
fleet size and mixed vehicle routing problem with backhauls (FSMVRPB) proposed by
Salhi et al. [76] and adding time window constraints from [49]. The aim of this model
is to minimize total distance for VRPBTW. (There is no additional cost for adding
vehicles.) The VRPBTW model is solved using CPLEX. However, the optimal
solutions of many problems (especially the medium- and large-sized problems) cannot
be found within two hours because the complexity of VRPBTW depends on the number
of customers in the problem. Hence, the alternative methods, which are heuristic and
metaheuristic methods, are presented to solve this issue.

For NUC algorithm, all customers are initially ordered according to the urgency
of delivery. The closeness is computed from only two factors, namely, the direct
distance and the waiting time. With a candidate list, we can preserve the urgency order
while constructing the initial solutions. Then, the local search heuristics, i.e. 1-move
and the A-interchange, are applied to improve the solution.

NNRW heuristic is a combination of a roulette wheel selection method and the
INN heuristic for generating the initial solutions. The closeness is computed from three
factors in the same way as described in the INN heuristic.

Moreover, two metaheuristic methods are studied to obtain the optimal or near

optimal solutions.

74

The first metaheuristic is the cuckoo search (CS) algorithm. It starts by
generating a number of initial solutions called host eggs by applying NNRW algorithm.
Then the algorithm assigns the host eggs to nests. In this dissertation, a nest always
contains only a single host egg. The neighborhood search is randomly applied to a host
egg to create a cuckoo egg. A solution (host egg) is replaced by a new solution (cuckoo
egq) if the new one is better. A cuckoo egg will be abandoned, and the host bird will
build a completely new one (generating a new solution) when it discovers the egg is not
its own.

Second one is an enhanced artificial bee colony (EABC) algorithm. The ABC
algorithm starts by generating a number of initial solutions called nectar sources by
NNRW. Then the algorithm assigns an employed bee to each food source. The
neighborhood search is applied to each solution before it is selected by a roulette wheel
selection method. When the quality of a solution is not improved within a time limit,
the employed bee abandons the food source (an old solution) and turn into a scout bee
to find a new food source (generating a new solution). Three strategies are proposed in
EABC, which are a forbidden list, the sequential search for onlookers, and the
combination of the 1-move intra-route exchange and the A-interchange technique.

The proposed algorithms were tested on the classical set of benchmark instances
(25, 50, 100 customers) proposed by Gélinas at el. [37] to evaluate the efficiency of
each algorithm.

For heuristics, NNRW and NUC algorithms are compared with the general
nearest neighbor algorithm (NN) and the improved nearest neighbor algorithm (INN)
through the benchmark instances. The results show that both proposed heuristics are
superior to NN and INN heuristic in terms of solution quality. In addition, in terms of
quality, the NUC outperforms the NNRW in many problems, and its computational
time is also lower than the NNRW algorithm. Although the convergent rate of NNRW
is the slowest in the small and medium problem sizes, the NNRW has the same
convergent rate as NUC in overall problems.

For metaheuristics, the enhanced version of ABC is superior to original version
in terms of solution quality in all problems. Moreover, the results indicate that EABC
algorithm outperforms the cuckoo search in terms of solution quality in many problems.
In addition, the comparison between the solutions of the proposed algorithms (EABC

75

and CS) and the best known solutions in the literature is made. Results show that
proposed algorithms yield the best results for most instances, especially EABC, which
obtained 33 equivalent or new best known solutions out of 45 problems (73.33%).
There are 15 new best known solutions found and the optimal solutions are obtained
for some instances. Furthermore, the convergent rate of EABC is the fastest among the
proposed algorithms. Hence, the proposed algorithms are effective ways to solve the
VRPBTW.

Although the results in dissertation shows that the proposed algorithms are
effective choices for solving VRPBTW, they were only tested on the set of benchmark
instances so it could not guarantee that it would work as well on the real-world problems
or other non-VRPBTW problems. To be more realistic, the problems should be
extended by adding some factors such as multi-depot, mixed size of the vehicle fleet,
traffic congestion levels, driver behavior, etc. Moreover, the algorithms also could be
enhanced by adding some technigues or combining with other algorithms to reduce

their disadvantages and improve their performance in the future work.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

REFERENCES

Jin, J., T.G. Crainic, and A. Lgkketangen, A parallel multi-neighborhood
cooperative tabu search for capacitated vehicle routing problems. European
Journal of Operational Research, 2012. 222(3): p. 441-451.

Santos, L., J. Coutinho-Rodrigues, and J.R. Current, An improved heuristic for
the capacitated arc routing problem. Computers & Operations Research, 20009.
36(9): p. 2632-2637.

Atefi, R., et al., The open vehicle routing problem with decoupling points.
European Journal of Operational Research, 2018. 265(1): p. 316-327.

Yu, V.F., P. Jewpanya, and A.A.N.P. Redi, Open vehicle routing problem with
cross-docking. Computers & Industrial Engineering, 2016. 94: p. 6-17.

Gajpal, Y. and P. Abad, An ant colony system (ACS) for vehicle routing problem
with simultaneous delivery and pickup. Computers & Operations Research,
2009. 36(12): p. 3215-3223.

Zachariadis, E.E., C.D. Tarantilis, and C.T. Kiranoudis, A hybrid metaheuristic
algorithm for the vehicle routing problem with simultaneous delivery and pick-
up service. Expert Systems with Applications, 2009. 36(2): p. 1070-1081.
Toth, P. and D. Vigo, A heuristic algorithm for the symmetric and asymmetric
vehicle routing problems with backhauls. European Journal of Operational
Research, 1999. 113(3): p. 528-543.

Osman, I.H. and N.A. Wassan, A reactive tabu search meta-heuristic for the
vehicle routing problem with back-hauls. Journal of Scheduling, 2002. 5(4): p.
263-285.

Brandéo, J., A new tabu search algorithm for the vehicle routing problem with
backhauls. European Journal of Operational Research, 2006. 173(2): p. 540-
555.

Tavakkoli-Moghaddam, R., A.R. Saremi, and M.S. Ziaee, A memetic algorithm
for a vehicle routing problem with backhauls. Applied Mathematics and
Computation, 2006. 181(2): p. 1049-1060.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

77

Gajpal, Y. and P.L. Abad, Multi-ant colony system (MACS) for a vehicle routing
problem with backhauls. European Journal of Operational Research, 2009.
196(1): p. 102-117.

Chiang, W.-C. and R.A. Russell, A reactive tabu search metaheuristic for the
vehicle routing problem with time windows. INFORMS Journal on computing,
1997. 9(4): p. 417-430.

Berger, J. and M. Barkaoui. A memetic algorithm for the vehicle routing
problem with time windows. in The 7th International Command and Control
Research and Technology Symposium. 2002.

Berger, J. and M. Barkaoui, A parallel hybrid genetic algorithm for the vehicle
routing problem with time windows. Computers & Operations Research, 2004.
31(12): p. 2037-2053.

Braysy, O. and M. Gendreau, Tabu search heuristics for the vehicle routing
problem with time windows. Top, 2002. 10(2): p. 211-237.

Solomon, M.M., Algorithms for the vehicle routing and scheduling problems
with time window constraints. Operations research, 1987. 35(2): p. 254-265.
Gong, W., X. Liu, J. Zhang, and Z. Fu, Two-Generation Ant Colony System for
Vehicle Routing Problem with Time Windows. in 2007 International Conference
on Wireless Communications, Networking and Mobile Computing. 2007.

Yu, B., Z.Z. Yang, and B.Z. Yao, A hybrid algorithm for vehicle routing
problem with time windows. Expert Systems with Applications, 2011. 38(1): p.
435-441.

Ding, Q., X. Hu, L. Sun, and Y. Wang, An improved ant colony optimization
and its application to vehicle routing problem with time windows.
Neurocomputing, 2012. 98: p. 101-107.

Tasan, A.S. and M. Gen, A genetic algorithm based approach to vehicle routing
problem with simultaneous pick-up and deliveries. Computers & Industrial
Engineering, 2012. 62(3): p. 755-761.

Potvin, J.-Y., C. Duhamel, and F. Guertin, A genetic algorithm for vehicle

routing with backhauling. Applied Intelligence. 6(4): p. 345-355.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

78

Ai, T.J. and V. Kachitvichyanukul, Particle swarm optimization and two
solution representations for solving the capacitated vehicle routing problem.
Computers & Industrial Engineering, 2009. 56(1): p. 380-387.

Goksal, F.P., I. Karaoglan, and F. Altiparmak, A hybrid discrete particle swarm
optimization for vehicle routing problem with simultaneous pickup and delivery.
Computers & Industrial Engineering, 2013. 65(1): p. 39-53.

Yu, B., Z.-Z. Yang, and B. Yao, An improved ant colony optimization for
vehicle routing problem. European Journal of Operational Research, 20009.
196(1): p. 171-176.

Yang, X.-S. and S. Deb. Cuckoo search via Lévy flights. in Nature &
Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on.
2009. IEEE.

Zheng, H., Y. Zhou, and Q. Luo, A hybrid Cuckoo Search Algorithm-GRASP
for Vehicle Routing Problem. Journal of Convergence Information Technology,
2013. 8(3): p. 821-828.

Karaboga, D., An idea based on honey bee swarm for numerical optimization.
2005, Technical report-tr06, Erciyes university, engineering faculty, computer
engineering department.

Szeto, W.Y., Y. Wu, and S.C. Ho, An artificial bee colony algorithm for the
capacitated vehicle routing problem. European Journal of Operational
Research, 2011. 215(1): p. 126-135.

Alzagebah, M., S. Abdullah, and S. Jawarneh, Modified artificial bee colony for
the vehicle routing problems with time windows. SpringerPlus, 2016. 5(1): p.
1298.

Yu, S., et al., An improved artificial bee colony algorithm for vehicle routing
problem with time windows: A real case in Dalian. Advances in Mechanical
Engineering, 2016. 8(8): p. 1687814016665298.

Tuntitippawan, N., and Asawarungsaengkul, K. 2016a. An Artificial Bee
Colony Algorithm for the Vehicle Routing Problem with Backhauls and Time
Windows: International Conference on Industrial Engineering and Operations

Management, Kuala Lumpur, Malaysia. p.2788

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

79

Tuntitippawan, N. and K. Asawarungsaengkul, An artificial bee colony
algorithm with local search for vehicle routing problem with backhauls and
time windows. Engineering and Applied Science Research, 2016. 43: p. 404-
408.

Pan, F., et al., Research on the Vehicle Routing Problem with Time Windows
Using Firefly Algorithm. Journal of Computers, 2013. 8(9).

Goel, R. and R. Maini, A hybrid of ant colony and firefly algorithms (HAFA)
for solving vehicle routing problems. Journal of Computational Science, 2018.
25: p. 28-37.

Wang, G. and L. Guo, A Novel Hybrid Bat Algorithm with Harmony Search for
Global Numerical Optimization. Journal of Applied Mathematics, 2013. 2013:
p. 1-21.

Zhou, Y., J. Xie, and H. Zheng, A Hybrid Bat Algorithm with Path Relinking
for Capacitated Vehicle Routing Problem. Mathematical Problems in
Engineering, 2013. 2013: p. 1-10.

Gelinas, S., et al., A new branching strategy for time constrained routing
problems with application to backhauling. Annals of Operations Research,
1995. 61(1): p. 91-1009.

Dantzig, G.B. and J.H. Ramser, The truck dispatching problem. Management
science, 1959. 6(1): p. 80-91.

Toth, P. and D. Vigo, Vehicle routing: problems, methods, and applications.
Vol. 18. 2014: Siam.

Casco, D., B. GOLDEN, and E. WASIL, Vehicle routing with backhauls:
Models, algorithms and case studies. Vehicle Routing: Methods and Studies.
Studies in management science and systems-Volume 16. Publication of:
Dalctraf.

Thangiah, S.R., J.-Y. Potvin, and T. Sun, Heuristic approaches to vehicle
routing with backhauls and time windows. Computers & Operations Research,
1996. 23(11): p. 1043-1057.

Duhamel, C., J.-Y. Potvin, and J.-M. Rousseau, A Tabu Search Heuristic for the
Vehicle Routing Problem with Backhauls and Time Windows. Transportation
Science, 1997. 31(1): p. 49-59.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

80

Reimann, M., K. Doerner, and R.F. Hartl, Insertion Based Ants for Vehicle
Routing Problems with Backhauls and Time Windows, in Ant Algorithms: Third
International Workshop, ANTS 2002 Brussels, Belgium, September 12—-14, 2002
Proceedings, M. Dorigo, G. Caro, and M. Sampels, Editors. 2002, Springer
Berlin Heidelberg: Berlin, Heidelberg. p. 135-148.

Zhong, Y. and M.H. Cole, A vehicle routing problem with backhauls and time
windows: a guided local search solution. Transportation Research Part E:
Logistics and Transportation Review, 2005. 41(2): p. 131-144.

Pisinger, D. and S. Ropke, A general heuristic for vehicle routing problems.
Computers & Operations Research, 2007. 34(8): p. 2403-2435.

Aghdaghi, M. and F. Jolai, A goal programming model for vehicle routing
problem with backhauls and soft time windows. Journal of Industrial
Engineering, International, 2008. 4(6): p. 7-18.

Liu, R., X. Xie, V. Augusto, and C. Rodriguez, Heuristic algorithms for a
vehicle routing problem with simultaneous delivery and pickup and time
windows in home health care. European Journal of Operational Research, 2013.
230(3): p. 475-486.

Kiiciikoglu, I. and N. Oztiirk, A differential evolution approach for the vehicle
routing problem with backhauls and time windows. Journal of Advanced
Transportation, 2014. 48(8): p. 942-956.

Kiiciikoglu, 1. and N. Oztiirk, An advanced hybrid meta-heuristic algorithm for
the vehicle routing problem with backhauls and time windows. Computers &
Industrial Engineering, 2015. 86: p. 60-68.

Kohl, N. and O.B. Madsen, An optimization algorithm for the vehicle routing
problem with time windows based on Lagrangian relaxation. Operations
Research, 1997. 45(3): p. 395-406.

Fisher, M.L., K.O. Jérnsten, and O.B. Madsen, Vehicle routing with time
windows: Two optimization algorithms. Operations Research, 1997. 45(3): p.
488-492.

Agarwal, Y., K. Mathur, and H.M. Salkin, 4 set-partitioning-based exact
algorithm for the vehicle routing problem. Networks, 1989. 19(7): p. 731-749.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

81

Desrosiers, J., F. Soumis, and M. Desrochers, Routing with time windows by
column generation. Networks, 1984. 14(4): p. 545-565.

Desrochers, M., J. Desrosiers, and M. Solomon, A new optimization algorithm
for the vehicle routing problem with time windows. Operations research, 1992.
40(2): p. 342-354.

Little, J.D.C., K.G. Murty, D.W. Sweeney, C. Karel, An Algorithm for the
Traveling Salesman Problem. Operations research, 1963. 11(6): p. 972-9809.
Christofides, N. and S. Eilon, An algorithm for the vehicle-dispatching problem.
Journal of the Operational Research Society, 1969. 20(3): p. 309-318.
Fischetti, M., P. Toth, and D. Vigo, A Branch-and-Bound Algorithm for the
Capacitated Vehicle Routing Problem on Directed Graphs. Operations
Research, 1994. 42(5): p. 846-859.

Bellmore, M. and J.C. Malone, Pathology of traveling-salesman subtour-
elimination algorithms. Operations Research, 1971. 19(2): p. 278-307.
Baldacci, R., E. Hadjiconstantinou, and A. Mingozzi, An Exact Algorithm for
the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network
Flow Formulation. Operations Research, 2004. 52(5): p. 723-738.

Cordeau, J.-F., A branch-and-cut algorithm for the dial-a-ride problem.
Operations Research, 2006. 54(3): p. 573-586.

Dell’Amico, M., G. Righini, and M. Salani, A branch-and-price approach to the
vehicle routing problem with simultaneous distribution and collection.
Transportation Science, 2006. 40(2): p. 235-247.

Gutiérrez-Jarpa, G., G. Desaulniers, G. Laporte, and V. Marianov, A branch-
and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective
Pickups and Time Windows. European Journal of Operational Research, 2010.
206(2): p. 341-349.

Ropke, S. and J.-F. Cordeau, Branch and cut and price for the pickup and
delivery problem with time windows. Transportation Science, 2009. 43(3): p.
267-286.

Pessoa, A., M.P. De Aragdo, and E. Uchoa, Robust branch-cut-and-price
algorithms for vehicle routing problems, in The vehicle routing problem: Latest

advances and new challenges. 2008, Springer. p. 297-325.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

82

Gillett, B.E. and L.R. Miller, A Heuristic Algorithm for the Vehicle-Dispatch
Problem. Operations Research, 1974. 22(2): p. 340-349.

Fisher, M.L. and R. Jaikumar, A generalized assignment heuristic for vehicle
routing. Networks, 1981. 11(2): p. 109-124.

Beasley, J.E., Route first—cluster second methods for vehicle routing. Omega,
1983. 11(4): p. 403-408.

Clarke, G. and J.W. Wright, Scheduling of Vehicles from a Central Depot to a
Number of Delivery Points. Operations Research, 1964. 12(4): p. 568-581.
Potvin, J.-Y. and J.-M. Rousseau, A parallel route building algorithm for the
vehicle routing and scheduling problem with time windows. European Journal
of Operational Research, 1993. 66(3): p. 331-340.

Balakrishnan, N., Simple Heuristics for the Vehicle Routeing Problem with Soft
Time Windows. Journal of the Operational Research Society, 1993. 44(3): p.
279-287.

Dullaert, W., A sequential insertion heuristic for the vehicle routing problem
with time windows with relatively few customers per route. 2000.

loannou, G., M. Kritikos, and G. Prastacos, A greedy look-ahead heuristic for
the vehicle routing problem with time windows. Journal of the Operational
Research Society, 2001. 52(5): p. 523-537.

Atkinson, J.B., A greedy look-ahead heuristic for combinatorial optimization:
an application to vehicle scheduling with time windows. Journal of the
Operational Research Society, 1994. 45(6): p. 673-684.

Pang, K.-W., An adaptive parallel route construction heuristic for the vehicle
routing problem with time windows constraints. Expert Systems with
Applications, 2011. 38(9): p. 11939-11946.

Sheridan, P.K., E. Gluck, Q. Guan, T. Pickles, B. Balciog™lu, and B. Benhabib,
The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery
problem. Transportation Research Part A: Policy and Practice, 2013. 49: p. 178-
194,

Salhi S, Wassan N, Hajarat M. The fleet size and mix vehicle routing problem
with backhauls: Formulation and set partitioning-based heuristics.
Transportation Research Part E, 2013; 56: p. 22-35.

[77]

[78]

[79]

83

Holland, J.H., Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. 1992:
MIT press.

Ouaarab, A., B. Ahiod, and X.-S. Yang, Discrete cuckoo search algorithm for
the travelling salesman problem. Neural Computing and Applications, 2014.
24(7-8): p. 1659-1669.

Karaboga, D. and B. Basturk, On the performance of artificial bee colony
(ABC) algorithm. Applied soft computing, 2008. 8(1): p. 687-697.

APPENDIX

85

A. The 45 plots showing the relationship between the fitness value of
each proposed algorithm and its number of iterations for each
instance

Small problems (25 customers)

fitness value r101A
950
900
850
800
750

700

650

600
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

s NN RV e NUC e CS EABC iterations

fitness value r101B

950
900

850
800 \ i
750 \

700

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

—=——NNRW ====NUC ==C(S EABC iterations

fitness value
1000
950 ‘
900
850 |

800

700

650
1 3 5

fitness value

850
800 |
750
700

650

600 \

750 \[_\
S\

r101C

7

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r102A

EABC

iterations

550

7

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW s NUC s CS

EABC

iterations

86

fitness value r102B
950
900
850
800
750
700 .
650 \“

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW s NUC s CS EABC iterations

fitness value r102C

850
800
750
700
650

600

550
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW e NUC e CS EABC iterations

87

fitness value r103A

800
750
700

650

600
550

500 s

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW NUC cs EABC iterations

fitness value r103B

900
850
800
750
700
650
600
550
500
450

——

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NN RW NUC csS EABC iterations

88

fitness value r103C

900
850
800
750
700
650
600
550
500
450

[

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW NUC csS EABC iterations

fitness value r104A

800
750
700
650
600
550

500
450 - ——

400

[

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

= NNRW NUC cs EABC iterations

89

90

fitness value r104B

850
800
750
700
650
600
550

500

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW NUC cs EABC iterations

fitness value r104C

800
750
700
650
600
550
500

450

400
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW NUC CS EABC

iterations

fitness value r105A

950
900
850
800
750
700
650
600
550

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

s NNRW e NUC s CS EABC iterations

fitness value r105B

950

900

850

800

750

700

650

600

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW e NUC s CS EABC iterations

91

fitness value r105C

1000
950
900
850
800
750
700
650
600
550

o

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

e NNRW e NUC e CS EABC iterations

Medium problems (50 customers)

fitness value r101A

1800

1700

1600

1500

1400

1300

1200

1100

~

1 6 11 16 21 26 31 36 41 46 51 56

s NNRW s NUC e CS EABC iterations

92

93

fitness value r101B

1800
1700
1600
1500
1400

1300

1200

1100

[y
[e)}
iy
N
[y
[e)]
N
=
N
[e)}
w
—
w
[e)}
S
[N
o
[e)}
w
iy
w1
[e)]

e NN RW NUC cs EABC iterations

fitness value r101C

1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

-
[e)]
-
N
iy
[e)]
N
iy
N
[e)]
w
iy
w
[e)]
S
[
o
[e)]
(]
iy
u
(o)}

e NN RW NUC csS EABC iterations

fitness value

1800
1700
1600
1500
1400
1300
1200
1100
1000

900

fitness value

1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

11 16
e NNRW
11 16

e NNRW

r102A

21 26 31 36 41 46 51 56
NUC cs EABC iterations
r102B
21 26 31 36 41 46 51 56

NUC cs EABC iterations

94

fitness value

1900
1800
1700
1600
1500
1400
1300
1200
1100

1000

r102C

1 6 11 16 21 26 31 36 41 46 51 56
s NNRW NUC cs EABC iterations
fitness value r103A
1700
1600
1500
1400
1300
1200
1100
1000
900 -
800
700
1 6 11 16 21 26 31 36 41 46 51 56
e NNRW NUC CS EABC iterations

95

96

fitness value r103B

1800
1700
1600
1500
1400
1300
1200
1100
1000

900

800
1 6 11 16 21 26 31 36 41 46 51 56

s NNRW NUC cs EABC iterations

fitness value r103C

1700
1600
1500
1400
1300
1200
1100
1000
900 e e
800

1 6 11 16 21 26 31 36 41 46 51 56

e NNRW NUC (&) EABC iterations

97

fitness value r104A

1800
1600
1400
1200
1000

800

600
1 6 11 16 21 26 31 36 41 46 51 56

s NNRW NUC cs EABC iterations

fitness value r104B

1700
1500
1300
1100

900

700
1 6 11 16 21 26 31 36 41 46 51 56

s NNRW NUC cs EABC iterations

98

fitness value r104C

1600
1500
1400
1300
1200
1100
1000

900

800

700

-
(<))
-
._.
-
[S)
N
s
N
<N
w
-
w
s
~
=
N
o)
n
=
n
o))

e NNRW NUC cs EABC iterations

fitness value r105A

1900
1700
1500
1300

1100

900

-
[e)]
-
N
iy
[e)]
N
iy
N
[e)]
w
iy
w
[e)]
S
[
o
[e)]
(]
iy
(O]
(o)}

e NN RW NUC csS EABC iterations

99

fitness value r105B

2000
1800
1600
1400
1200

1000

-
[e)}
=
[
=
(o))
N
[y
N
[e)}
w
[y
w
[e)}
o
[N
o
[e)}
w
[N
[
(o))

s NNRW NUC cs EABC iterations

fitness value r105C

1800
1700
1600
1500
1400
1300
1200
1100
1000

900

-
[e)]
=
[N
=
(o)}
N
[
N
[e)]
w
-
w
[e)]
o
[
o
[e)]
(]
=N
[
o)}

e NN RW NUC csS EABC iterations

100

Large problems (100 customers)

fitness value r101A
3300
3100
2900
2700
2500
2300
2100 ‘

1900 | N\
6

1700

1 11 16 21 26 31 36 41 46 51 56 61 66 71 76

s NNRW s NUC - s CS EABC iterations

fitness value R101B

3400
3200
3000
2800
2600
2400

2200 ‘
2000

1800
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW s NUC s CS EABC iterations

fitness value r101C

3400
3200
3000
2800
2600
2400
2200
2000
1800

[y
[e)]
[y
[N

16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW NUC cs EABC iterations

fitness value r102A

3300
3100
2900
2700
2500
2300
2100
1900
1700
1500

=
[e)]

11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW NUC cs EABC iterations

101

102

fitness value r102B

3400
3200
3000
2800
2600
2400
2200
2000
1800

1600
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

s NNRW NUC cs EABC iterations

fitness value r102C

3400
3200
3000
2800
2600
2400
2200
2000
1800

1600
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW NUC cs EABC iterations

103

fitness value r103A

3100
2900
2700
2500
2300
2100
1900
1700
1500
1300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

= NNRW NUC cs EABC iterations

fitness value r103B

3300
3100
2900
2700
2500
2300
2100
1900
1700
1500
1300

1 4 7 1013161922 2528 3134374043 4649 52555861646770737679

e NNRW NUC cs EABC iterations

fitness value r103C

3300
3100
2900
2700
2500
2300
2100
1900
1700
1500
1300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

s NNRW NUC csS EABC iterations

fitness value r104A

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NINRW NUC cs EABC iterations

104

105

fitness value r104B

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW NUC csS EABC iterations

fitness value r104C

3000
2800
2600
2400
2200
2000
1800
1600
1400
1200
1000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NINRW NUC cs EABC iterations

106

fitness value r105A

3200
3000
2800
2600
2400
2200
2000
1800
1600
1400

[y
[e)]

11 16 21 26 31 36 41 46 51 56 61 66 71 76

s NNRW NUC cs iterations

fitness value r105B

3400
3200
3000
2800
2600
2400
2200
2000
1800
1600
1400

=
[e)]

11 16 21 26 31 36 41 46 51 56 61 66 71 76

s NNRW NUC cs iterations

fitness value r105C

3400
3200
3000
2800
2600
2400
2200
2000
1800
1600
1400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

e NNRW e NUC cs iterations

B. Code of CPLEX program for mathematical model

int NumCus = ...;
int NumCusLine=...;
int NumVeh = ...;

range Cus = 1.. (NumCus+1l); //Cus+Depot
range CusLine=1.. (NumCusLine+1l);//CusLine+Depot
range CusBack= (NumCusLine+2) .. (NumCus+1);//Cusback

range Veh = 1..NumVeh;

int VehCapa[Veh] = ...;

int CusDemand[Cus] = ...;// CusDemand[Depot] = 0
float Dis[Cus,Cus] = ...;

dvar boolean X[Cus,Cus,Veh]; // Customer Selection
dvar int+ Y[Cus,Cus];

float e[Cus]l=...;

float 1[Cus]l=...;

float w[Cus]l=...;

//dvar boolean Y [Veh]; // Veh Selection

dexpr int VehCapaUse [k in Veh] = sum(i,j in Cus)

CusDemand [J]*X[1]1[3][k];
dvar float+ t[Cus,Veh];

107

108

dexpr float OBJ
(Dis[1][J1*X[1]1[31[k]);

sum(i,j in Cus, k in Veh)

minimize OBJ;

subject to {

conl:
forall(j in Cus : j != 1)
sum(i in Cus, k in Veh) X[i][]][k] == 1;
conz2:
forall(1 in Cus : i != 1)
sum(j in Cus, k in Veh) X[i][j][k] == 1;
con3:
forall(s in Cus, k in Veh) //: s != 1 may not use
sum(i in Cus) X[i]l[s][k] - sum(j in Cus) X[s][j][k]
== Q;
coné4:
forall(j in CusLine: J != 1)
sum(i in CusLine) Y[i][j]== sum(l in Cus)

Y[j]l[1l]+CusDemand[]];

conb:
forall(j in CusBack)//:j != 1 may not use
sum(l in CusBack) (Y[J][1]1)+Y[j]l[1l]== CusDemand[]j]+sum (i

in Cus:i!=1) Y[i][3];

conb6:

forall (i in CusLine, J in CusBack)
Y[i][J1==0;

con7:

forall (i in CusLine)
Y[1][1]1==0;

con8:

forall(i in Cus)

Y[i] [1]==0;

con9:
sum (i in CusBack) Y[i][1l] == sum(i in CusBack)
CusDemand([1i];
conlO:
sum(j in CusLine:j!=1) Y[1][]j] == sum(j in

CusLine:j!=1) CusDemand[j];

109

conll:
forall (i in CusBack,j in CusLine:j!=1, k in Veh)
X[1i][31[k]I==0;
conl2:
forall(i in Cus,j in Cus:i!=7j)
Y[i][Jjl<=sum(k in Veh) X[i][j][k]*VehCapalk];
conl3:
forall(k in Veh,j in Cus:j!=1)
Dis[1]([3j] - t[3J][k]<=10000000* (1-X[1]([3]([k]);
conl4:
forall(k in Veh, i in Cus:i!=1)

t[i] [k]+w[i]+Dis[1][1]1-t[1][k] <=10000000* (1-

conlb5:
forall(k in Veh,i in Cus:i!=1, j in Cus:j!=1)
t[i] [k]+w[i]+Dis[i][j]-t[j][k] <=10000000* (1-
X[11[311k])
conlé 1:
forall(k in Veh, i in Cus:i!=1)
eli]l<=t[i][k];
conlé 2:
forall(k in Veh, i in Cus:i!'=1)

tlil [k]<=1[1i];

conl?7 1:
forall(k in Veh)
O<=t[1][k]; //T min
conl7 2:
forall (k in Veh)
t[1][k]<=1[1]; //T max

C. Code of C# program for NN heuristic

//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};

//int[] seqCus = new int[5@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1o, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
s

110

int[] seqCus = new int[1e@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 8o, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };

int[,] vehicle = new int[numVehicle + 1, NumCusForIndex];

double alpha = 1.0;

// set u

int[] vehicleTemp = new int[NumCusForIndex];

int countIndexVehicle = 1;

int u = seqCus[@];

vehicleTemp[countIndexVehicle] = uj;

seqCus = seqCus.Except(new int[] { u }).ToArray();

double TimeArriveAtU = dis[@, u];

if (TimeArriveAtU < Node[u].earlytime)

{

}
double TotalCaplLine = 0;

double TotalCapBack = 0;
if (Node[u].type == true)

TimeArriveAtU = Node[u].earlytime;

TotalCapLine = Node[u].demand;
}
else
{

TotalCapBack = Node[u].demand;
}

int k = 1; // num of vehicle use

while (seqCus.Length != @)

{
// build temp seq
int[] seqCusTemp = new int[seqCus.Length];
for (int i = @; i < seqCus.Length; i++)

{

}
// find the proper v for adding route after u

int BestV = @; // v that is properly
double TimeAvirreAtBestV = 0;

double MinCost = 10000;

bool ExistV = false;

while (seqCusTemp.Length != 9)

{

seqCusTemp[i] = seqCus[i];

if (Node[u].type == true) // u-line

int v = seqCusTemp[0@];
seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
// check cap fesibility
if (Node[v].type == true) // v-line
{
if (TotalCapLine + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);

else

{

if (WaittingTime != 0)
{

}
//check time fesibility

if (TimeArriveAtV <= Node[v].lasttime)
{

TimeArriveAtV = Node[v].earlytime;

double cost = alpha * dis[u, Vv];
if (cost < MinCost)

{

ExistV = true;

MinCost = cost;

BestV = v;

TimeAvirreAtBestV = TimeArriveAtV;
}

}Y// end if time

}// end if cap

}
else // v-back

if (TotalCapBack + Node[v].demand <= cap)

double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];

double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);

if (WaittingTime != 0)

{

}
//check time fesibility

if (TimeArriveAtV <= Node[v].lasttime)
{

TimeArriveAtV = Node[v].earlytime;

double cost = alpha * dis[u, v];
if (cost < MinCost)

{

ExistV = true;

MinCost = cost;

BestV = v;

TimeAvirreAtBestV = TimeArriveAtV;
}

}Y// end if time

}// end if cap

// u-back

{

{
}
int v

seqCusTemp[9]; ;

while (Node[v].type == true)

{

seqCusTemp = seqCusTemp.Except(new int[] { v

}).ToArray();

if (seqCusTemp.Length == 0)

{

vV = 0;
break;

111

112

}
v = seqCusTemp[@];
}
if (v == 9)
{
break;
}

seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
if (TotalCapBack + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(®, Node[v].earlytime

- TimeArriveAtV);
if (WaittingTime != @)
{
TimeArriveAtV = Node[v].earlytime;
}

//check time fesibility
if (TimeArriveAtV <= Node[v].lasttime)
{
double cost = alpha * dis[u, v];
if (cost < MinCost)
{
ExistV = true;
MinCost = cost;
BestV = v;
TimeAvirreAtBestV = TimeArriveAtV;

}
}// end if time
}// end if cap
}// end else

}// end
// update veh temp
if (ExistV == true)

{

}

countIndexVehicle++;

vehicleTemp[countIndexVehicle] = BestV;

seqCus = seqCus.Except(new int[] { BestV }).ToArray();
// set new u

u = BestV;

TimeArriveAtU = TimeAvirreAtBestV;

if (Node[u].type == true)

TotalCapLine = TotalCapLine + Node[BestV].demand;
}
else
{

TotalCapBack = TotalCapBack + Node[BestV].demand;
}

else //can't add any more

{

//update to real veh
for (int i = 1; i < vehicleTemp.Length; i++)

vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = ©;

113

}

//start new vehicle

k++;

//set u

countIndexVehicle = 1;

u = seqCus[@];

vehicleTemp[countIndexVehicle] = uj;

seqCus = seqCus.Except(new int[] { u }).ToArray();
TimeArriveAtU = dis[@, u];

if (TimeArriveAtU < Node[u].earlytime)

{

TimeArriveAtU = Node[u].earlytime;

}
if (Node[u].type == true)

{
TotalCapLine = Node[u].demand;
TotalCapBack = 0;

}

else

{
TotalCapBack = Node[u].demand;
TotalCaplLine = 0;

}

}
} // end while seq

//add last veh temp to real veh
if (seqCus.Length == 0)

//update to real veh
for (int i = 1; i < vehicleTemp.Length; i++)
{
vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = 0;
}
}
// build index
int[] index = new int[NumCusForIndex];
int count3 1;
for (int i = 1; i <= k; i++)

{

int countl = 1;

while (vehicle[i, countl] != @)

{
index[count3] = vehicle[i, countl];
countl++;
count3++;

}

count3++;
}
// updated time arrive and capacity
double[] capForindex = new double[index.Length];
double[] timeArrive = new double[index.Length];
double temp2 = 0;
int countl5 1;
int countleé 0;
for (int m = 1; m <= numVehicle; m++)

{

temp2 = 0;
while (index[countl5] != @)

114

temp2 = temp2 + Node[index[countl5]].demand;
if (index[countl5 - 1] == 0)

if (Node[index[countl5]].earlytime == @)
//Setup arrive timeArrive for first customer

{
timeArrive[count15] = dis[index[countl5 - 1],
index[count15]];
}
else
{
timeArrive[countl5] =
Node[index[countl5]].earlytime;
}
}
else
{

double wait = Math.Max(Node[index[countl5]].earlytime -
(timeArrive[countl5 - 1] + Node[index[countl5 - 1]].servicetime +
dis[index[countl5 - 1], index[count15]]), 9);

if (wait != 0.9)

: timeArrive[countl5] =
Node[index[countl5]].earlytime;

}

else

{

timeArrive[count15] = timeArrive[countl5 - 1] +
Node[index[countl5 - 1]].servicetime + dis[index[countl5 - 1], index[countl5]];

}

}

countl5++;
}
if (index[countl5] == 9)
{

timeArrive[countl5] = 0.0;
}
for (int n = countl6; n < countl5; n++)
{

capForindex[n] = temp2;
}

countle = countl5;
countl5++; // skip depot
}
//backhaul
for (int i = 1; i <= numVehicle; i++)
{
int count2 = 2;
while (index[count2] != @)
{
int n1 = index[count2 - 1];
int n2 = index[count2];
if (Node[nl].type == false && Node[n2].type == true)
{
Console.WriteLine("\n -*-*-*_*_*_*Tnfeasible-
Backhauls*-*-*-*_*_x*x_ "),

}

count2++;

}

count2 = count2 + 2;

}
//NN end here

D. Code of C# program for INN heuristic
//INN start here

115

//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};

//int[] seqCus = new int[5e0] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50

}s

int[] seqCus = new int[10@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,

52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 79, 71, 72, 73, 74,
75, 76, 77, 78, 79, 8o, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,

95, 96, 97, 98, 99, 100 };
int[,] vehicle =
double alpha = 0.
double beta = 0.3;
double gramma = 0.3;
// set u
int[] vehicleTemp = new int[NumCusForIndex];
int countIndexVehicle = 1;
int u = seqCus[@];
vehicleTemp[countIndexVehicle] = uj;

n
4;

seqCus = seqCus.Except(new int[] { u }).ToArray();

double TimeArriveAtU = dis[@, u];
if (TimeArriveAtU < Node[u].earlytime)

{

}
double TotalCapLine = 0;

double TotalCapBack = 0;
if (Node[u].type == true)

TimeArriveAtU = Node[u].earlytime;

TotalCapLine = Node[u].demand;
}
else
{

TotalCapBack = Node[u].demand;
}

int k = 1; // num of vehicle use

while (seqCus.Length != 0)

{
// build temp seq
int[] seqCusTemp = new int[seqCus.Length];
for (int i = @; i < seqCus.Length; i++)

{
}

seqCusTemp[i] = seqCus[i];

// find the proper v for adding route after u

int BestV = @; // v that is properly
double TimeAvirreAtBestV = 0;

ew int[numVehicle + 1, NumCusForIndex];

116

double MinCost = 10000;
bool ExistV = false;
while (seqCusTemp.Length != @)

if (Node[u].type == true) // u-line
{
int v = seqCusTemp[0@];
seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
// check cap fesibility
if (Node[v].type == true) // v-line

if (TotalCapLine + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, Vv];
double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);
double urgent = Node[v].lasttime -

TimeArriveAtV;
if (WaittingTime != 0)
{
TimeArriveAtV = Node[v].earlytime;
}

//check time fesibility
if (TimeArriveAtV <= Node[v].lasttime)
{
double cost = alpha * dis[u, v] + beta *
WaittingTime+gramma*urgent;
if (cost < MinCost)

{

ExistV = true;

MinCost = cost;

BestV = v;

TimeAvirreAtBestV = TimeArriveAtV;
}

}// end if time

}// end if cap
}
else // v-back

{

if (TotalCapBack + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);
double urgent = Node[v].lasttime -

TimeArriveAtV;
if (WaittingTime != 0)
{
TimeArriveAtV = Node[v].earlytime;
¥

//check time fesibility
if (TimeArriveAtV <= Node[v].lasttime)
{

117

double cost = alpha * dis[u, v] + beta *
WaittingTime+gramma * urgent;
if (cost < MinCost)

{

ExistV = true;

MinCost = cost;

BestV = v;

TimeAvirreAtBestV = TimeArriveAtV;
}

}// end if time

}// end if cap

¥
else // u-back

{
int v = seqCusTemp[@]; ;
while (Node[v].type == true)

seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
if (seqCusTemp.Length == @)

{
vV = 0;
break;
}
v = seqCusTemp[@];
}
if (v == 0)
{
break;
}

seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
if (TotalCapBack + Node[v].demand <= cap)

double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];

double WaittingTime = Math.Max(®, Node[v].earlytime
- TimeArriveAtV);

double urgent = Node[v].lasttime - TimeArriveAtV;

if (WaittingTime != 0)

{

}
//check time fesibility

if (TimeArriveAtV <= Node[v].lasttime)
{

TimeArriveAtV = Node[v].earlytime;

double cost = alpha * dis[u, v] + beta *
WaittingTime+gramma * urgent;
if (cost < MinCost)

{

ExistV = true;

MinCost = cost;

BestV = v;

TimeAvirreAtBestV = TimeArriveAtV;
¥

}// end if time

118

}// end if cap
}// end else
}// end

// update veh temp
if (ExistV == true)

{
countIndexVehicle++;
vehicleTemp[countIndexVehicle] = BestV;
seqCus = seqCus.Except(new int[] { BestV }).ToArray();
// set new u
u = BestV;
TimeArriveAtU = TimeAvirreAtBestV;
if (Node[u].type == true)
TotalCapLine = TotalCapLine + Node[BestV].demand;
}
else
{
TotalCapBack = TotalCapBack + Node[BestV].demand;
}
}
else //can't add any more
{
//update to real veh
for (int i = 1; 1 < vehicleTemp.Length; i++)
vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = 0;
}
//start new vehicle
k++;
//set u
countIndexVehicle = 1;
u = seqCus[9];
vehicleTemp[countIndexVehicle] = uj;
seqCus = seqCus.Except(new int[] { u }).ToArray();
TimeArriveAtU = dis[©, u];
if (TimeArriveAtU < Node[u].earlytime)
{
TimeArriveAtU = Node[u].earlytime;
}
if (Node[u].type == true)
TotalCapLine = Node[u].demand;
TotalCapBack = ©;
}
else
{
TotalCapBack = Node[u].demand;
TotalCapLine = ©;
}
}

} // end while seq
//add last veh temp to real veh
if (seqCus.Length == @)

119

//update to real veh
for (int i = 1; i < vehicleTemp.Length; i++)

vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = ©;
}

}

// build index

int[] index = new int[NumCusForIndex];
int count3 1;

for (int i = 1; i <= k; i++)

{

int countl = 1;

while (vehicle[i, countl] != @)

{
index[count3] = vehicle[i, countl];
countl++;
count3++;

}

count3++;
}
// updated time arrive and capacity
double[] capForindex = new double[index.Length];
double[] timeArrive = new double[index.Length];
double temp2 = 0;
int countl5 = 1;
int countle = 9;
for (int m = 1; m <= numVehicle; m++)

{
temp2 = 0O;
while (index[countl5] != @)
{

temp2 = temp2 + Node[index[countl15]].demand;
if (index[countl5 - 1] == @)

{
if (Node[index[countl5]].earlytime == @)
//Setup arrive timeArrive for first customer
{
timeArrive[count15] = dis[index[countl5 - 1],
index[countl15]];
}
else
{
timeArrive[countl5] =
Node[index[countl5]].earlytime;
}
}
else

double wait = Math.Max(Node[index[countl5]].earlytime -
(timeArrive[countl5 - 1] + Node[index[countl5 - 1]].servicetime +
dis[index[countl5 - 1], index[count15]]), 9);
if (wait != 9.0)
{
timeArrive[countl5] =
Node[index[countl5]].earlytime;

else

{

timeArrive[count15] = timeArrive[countl5 - 1] +

120

Node[index[countl5 - 1]].servicetime + dis[index[countl5 - 1], index[countl5]];

}

}

countl5++;
}
if (index[countl5] == 0)
{

timeArrive[countl5] = 0.0;
}
for (int n = countl6; n < countl5; n++)
{

capForindex[n] = temp2;
}

countlée = countl5;
countl5++; // skip depot

}
//backhaul
for (int i = 1; i <= numVehicle; i++)
{
int count2 = 2;
while (index[count2] != @)
{
int nl = index[count2 - 1];
int n2 = index[count2];
if (Node[nl].type == false && Node[n2].type == true)
{
Console.WriteLine("\n -*-*-*_*_*_*Tnfeasible-
Backhauls*-*-*_*_*_x*x_ uy.
}
count2++;
}
count2 = count2 + 2;
}

//INN end here

E. Code of C# program for NUC heuristic

//NUC start here

//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};

//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49, 50

};

int[] seqCus = new int[10@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 99, 91, 92, 93, 94,

95, 96, 97, 98, 99, 100 };
int[,] vehicle = new int[numVehicle + 1, NumCusForIndex];
int NumCadidate = 3;
double alpha = 0.4;
double beta = 0.3;
// set u
int[] vehicleTemp = new int[NumCusForIndex];

121

int countIndexVehicle = 1;

int u = seqCus[@];

vehicleTemp[countIndexVehicle] = uj;

seqCus = seqCus.Except(new int[] { u }).ToArray();
double TimeArriveAtU = dis[@, u];

if (TimeArriveAtU < Node[u].earlytime)

{

}
double TotalCapLine = 0;

double TotalCapBack = 0;
if (Node[u].type == true)

TimeArriveAtU = Node[u].earlytime;

{

TotalCapLine = Node[u].demand;
}
else
{

TotalCapBack = Node[u].demand;
}

int k = 1; // num of vehicle use

while (seqCus.Length != @)

{
// build temp seq
int[] seqCusTemp = new int[seqCus.Length];
for (int i = @; i < seqCus.Length; i++)

{
}

seqCusTemp[i] = seqCus[i];

// find the proper v for adding route after u
int countl = 0; // count for cadidate
int BestV = @; // v that is properly

double TimeAvirreAtBestV = 0;

double MinCost = 10000;

bool ExistV = false;

while (seqCusTemp.Length != @ & countl < NumCadidate)

{
if (Node[u].type == true) // u-line

int v = seqCusTemp[0@];
seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();
// check cap fesibility
if (Node[v].type == true) // v-line
{
if (TotalCapLine + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);
double urgent = Node[v].lasttime -

TimeArriveAtV;
if (WaittingTime != 0)
{
TimeArriveAtV = Node[v].earlytime;
}

//check time fesibility

122

if (TimeArriveAtV <= Node[v].lasttime)
{
double cost = alpha * dis[u, v] + beta *
WaittingTime+gramma*urgent;
if (cost < MinCost)

{
ExistV = true;
MinCost = cost;
BestV = v;
TimeAvirreAtBestV = TimeArriveAtV;
countl++; // count v be cadidate
}

}// end if time

}// end if cap

}
else // v-back
{
if (TotalCapBack + Node[v].demand <= cap)
{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(@,
Node[v].earlytime - TimeArriveAtV);
double urgent = Node[v].lasttime -
TimeArriveAtV;
if (WaittingTime != 9)
{
TimeArriveAtV = Node[v].earlytime;
T
//check time fesibility
if (TimeArriveAtV <= Node[v].lasttime)
{
double cost = alpha * dis[u, v] + beta *
WaittingTime;
if (cost < MinCost)
{
ExistV = true;
MinCost = cost;
BestV = v;
TimeAvirreAtBestV = TimeArriveAtV;
countl++; // count v be cadidate
}
}Y// end if time
}// end if cap
}
}
else // u-back

{

int v = seqCusTemp[@]; ;

while (Node[v].type == true)

{
seqCusTemp = seqCusTemp.Except(new int[] { v
}) .ToArray();
if (seqCusTemp.Length == 0)
{

123

vV = 0;
break;
}
v = seqCusTemp[@];
}
if (v == 9)
{
break;
}

seqCusTemp = seqCusTemp.Except(new int[] { v
}).ToArray();

if (TotalCapBack + Node[v].demand <= cap)

{
double TimeArriveAtV = TimeArriveAtU +
Node[u].servicetime + dis[u, v];
double WaittingTime = Math.Max(©®, Node[v].earlytime

- TimeArriveAtV);

double urgent = Node[v].lasttime - TimeArriveAtV;
if (WaittingTime != 0)
{

}
//check time fesibility

if (TimeArriveAtV <= Node[v].lasttime)

TimeArriveAtV = Node[v].earlytime;

{
double cost = alpha * dis[u, v] + beta *
WaittingTime;

if (cost < MinCost)

{
ExistV = true;
MinCost = cost;
BestV = v;
TimeAvirreAtBestV = TimeArriveAtV;
countl++; // count v be cadidate

}

}// end if time
}// end if cap

}// end else

}// end cadidate

// update veh temp
if (ExistV == true)

{

countIndexVehicle++;

vehicleTemp[countIndexVehicle] = BestV;

seqCus = seqCus.Except(new int[] { BestV }).ToArray();
// set new u

u = BestV;

TimeArriveAtU = TimeAvirreAtBestV;

if (Node[u].type == true)

TotalCaplLine

TotalCapLine + Node[BestV].demand;
}

else

{

TotalCapBack = TotalCapBack + Node[BestV].demand;

124

else //can't add any more

{
//update to real veh
for (int i = 1; i < vehicleTemp.Length; i++)
{
vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = ©;
}
//start new vehicle
k++;
//set u
countIndexVehicle = 1;
u = seqCus[9];
vehicleTemp[countIndexVehicle] = uj;
seqCus = seqCus.Except(new int[] { u }).ToArray();
TimeArriveAtU = dis[@, u];
if (TimeArriveAtU < Node[u].earlytime)
{
TimeArriveAtU = Node[u].earlytime;
}
if (Node[u].type == true)
{
TotalCapLine = Node[u].demand;
TotalCapBack = 0;
}
else
{
TotalCapBack = Node[u].demand;
TotalCaplLine = 0;
}
}

} // end while seq

//add last veh temp to real veh
if (seqCus.Length == 0)

{
//update to real veh
for (int i = 1; i < vehicleTemp.Length; i++)
{
vehicle[k, i] = vehicleTemp[i];
vehicleTemp[i] = ©;
}
}

// build index

int[] index = new int[NumCusForIndex];
int count3 1;

for (int i = 1; i <= k; i++)

{

int countl = 1;
while (vehicle[i, countl] != @)

{

125

index[count3] = vehicle[i, countl];

countl++;
count3++;
count3++;

}

// updated time arrive and capacity

double[] capForindex = new double[index.Length];
double[] timeArrive = new double[index.Length];
double temp2 = ©;

int countl5 = 1;

int countl6 = 9;

for (int m = 1; m <= numVehicle; m++)

{
temp2 = 0;
while (index[countl5] != 9)
{

temp2 = temp2 + Node[index[count15]].demand;
if (index[countl5 - 1] == @)

if (Node[index[countl5]].earlytime == @)
//Setup arrive timeArrive for first customer

{
timeArrive[count15] = dis[index[countl5 - 1],
index[count15]];
}
else
{
timeArrive[countl5] =
Node[index[countl15]].earlytime;
}
}
else

double wait = Math.Max(Node[index[countl5]].earlytime -
(timeArrive[countl5 - 1] + Node[index[countl5 - 1]].servicetime +
dis[index[countl5 - 1], index[countl5]]), 9);

if (wait != 0.9)

{ timeArrive[countl5] =
Node[index[countl5]].earlytime;

}

else

{

timeArrive[count15] = timeArrive[countl5 - 1] +
Node[index[countl5 - 1]].servicetime + dis[index[countl5 - 1], index[countl5]];

}

}

countl5++;
}
if (index[countl5] == 9)
{

timeArrive[countl5] = 0.0;
}
for (int n = countl6; n < countl5; n++)
{

capForindex[n] = temp2;

}

126

countle = countl5;
countl5++; // skip depot

¥
//backhaul
for (int i = 1; i <= numVehicle; i++)
{
int count2 = 2;
while (index[count2] != @)
{
int nl1 = index[count2 - 1];
int n2 = index[count2];
if (Node[nl].type == false && Node[n2].type == true)
{
Console.WriteLine("\n -*-*-*-*_*_*Tnfeasible-
Backhauls*-*-*_*_*_x_ m).
}
count2++;
}
count2 = count2 + 2;
}

//NUC end here

F. Code of C# program for NNRW heuristic

//NNRW start here
//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
}s
int[] seqCus = new int[1@@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 8o, 81, 82, 83, 84, 85, 86, 87, 88, 89, 99, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };
double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int[] index = new int[NumCusForIndex];
int CountRunIndex = 0;
double timeArriveV = 0;
double totalCap = 0;
while (Cus.Length != 0)
{
int u = index[CountRunIndex];
double timeArriveU = timeArriveV;
int[] FeasibleCustomer = new int[Cus.Length];
double[] UrgentTimeFeasibleCus = new double[Cus.Length];
double[] WaitingTimeFeasibleCus = new double[Cus.Length];
int count = 0;

for (int i = @; i < Cus.Length; i++)
{

int v = Cus[i];

bool feasible = true;

double waitingTime = ©O;

127

// -*-*-check feasibility*-*-*
//---backhauls fesibility---
if (Node[u].type == false)

if (Node[v].type == true)

feasible = false;

}
}

//---time window fesibility---
if (feasible == true)

{
timeArriveV = timeArriveU + Node[u].servicetime +
dis[u, v];
if (timeArriveV < Node[v].earlytime)
{
waitingTime = Node[v].earlytime - timeArriveV;
timeArriveV = Node[v].earlytime;
}
if (timeArriveV > Node[v].lasttime)
feasible = false;
}
}

//---capacity---
if (feasible == true)

{
if (totalCap + Node[v].demand > cap)
{
feasible = false;
}
¥

//*-*-We can use this v*-*-*-Add to Array
if (feasible == true)

{
FeasibleCustomer[count] = v;
UrgentTimeFeasibleCus[count] = Node[v].lasttime -
timeArriveV;
WaitingTimeFeasibleCus[count] = waitingTime;
count++;
}

}// end for to fine feasivle cus

// construction of wheel
count = 0;
FeasibleCustomer = FeasibleCustomer.Except(new int[] { ©
}).ToArray();
if (FeasibleCustomer.Length != 0)
{
Random random = new Random(seedRand);
double[] prob = new double[FeasibleCustomer.Length];
double[] cumuprob = new double[FeasibleCustomer.Length];
double[] cost = new double[FeasibleCustomer.Length]; ;
double totalDist = 0;
for (int i = @; i < FeasibleCustomer.Length; i++)
{
cost[i] = alpha * dis[u, FeasibleCustomer[i]] + beta *
WaitingTimeFeasibleCus[i] + gramma * UrgentTimeFeasibleCus[i];

totalDist = totalDist + (1 / (cost[i]));
}
// compute prob
for (int i = @; i < FeasibleCustomer.Length; i++)

{
}

// compute q = cumulative prob
cumuprob[@] = prob[0];
for (int i = 1; i < FeasibleCustomer.Length; i++)

{

}
double rl = random.NextDouble();

count = 0;
bool found =
while (found

{

prob[i] = (1 / cost[i]) / totalDist;

cumuprob[i] = cumuprob[i - 1] + prob[i];

true;
== true)

if (rl <= cumuprob[count])

{
}

count++;

break;

}

// run index

CountRunIndex++;

//input new cus to index

index[CountRunIndex] = FeasibleCustomer[count];

// del assinged cus from Cus

Cus = Cus.Except(new int[] { index[CountRunIndex]
}).ToArray();

// update time and cap

timeArriveV = timeArriveU + Node[u].servicetime + dis[u,
index[CountRunIndex]];

if (timeArriveV < Node[index[CountRunIndex]].earlytime)

{
timeArriveV = Node[index[CountRunIndex]].earlytime;
}
totalCap = totalCap + Node[index[CountRunIndex]].demand;
}
else // means can't add anymore -> new veh
{
CountRunIndex++;
// set initial
index[CountRunIndex] = 0;
timeArriveV = 0;
totalCap = ©;
}

} // end while
//NNRW end here

Code of C# program for CS heuristic

double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int NumOfSolution = 15;

128

int[] index = new int[NumCusForIndex];
int[,] Sol = new int[NumOfSolution, NumCusForIndex];
double[] objFeasible = new double[NumOfSolution];

//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };

//int[] Cus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

16, 17, 18, 19, 20, 21, 22, 23, 24,

129

15,

15,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50} ;
int[] Cus = new int[1e@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
76, 77, 78, 79, 8o, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
96, 97, 98, 99, 100 };
//wheel for initial Sol.

for (int j = ©; j < NumOfSolution; j++)

{

32, 33, 34,
52, 53, 54,
72, 73, 74,
92, 93, 94,

index = ContByRouletteWheel(alpha, beta, gramma, Cus,
NumCusForIndex, cap, seedRand, numVehicle, Node, dis);

double obj = 0;

for (int 1 = @; 1 < index.Length; 1++)
{
if (1 != index.Length - 1)
{
obj = obj + dis[index[1l], index[1l + 1]];
}

}

//objFeasible[j] = obj;
Console.Write(" " + obj);
for (int i = @; i < index.Length; i++)

{

Sol[j, i] = index[i];
}
seedRand++;

}// end for numofSol

35,
55,
75,
95,

//CUCkOO Sear\ch**

double BestKnownOld 100001,

double BestKnownNew = 100000;

int[] NotImprove = new int[NumOfSolution];
int[] BestSo0l0ld = new int[NumCusForIndex];
int[] BestSolNew = new int[NumCusForIndex];
while (BestKnownNew < BestKnownOld)

{

//check best known solution

int MinIndex = -1;

double MinValue = 100000;

for (int i = ©; i < NumOfSolution; i++)

{

double obj = @; // compute all fitness

for (int 1 = @; 1 < NumCusForIndex; l++)

{
if (1 != NumCusForIndex - 1)
{

obj = obj + dis[Sol[i, 1], Sol[i, 1 + 1]];

}

}
objFeasible[i] = obj;
if (obj < Minvalue)

12, 13, 14 };

}

MinValue
MinIndex

obj;

Il
.
“e

}

// updated best sol
if (MinvValue < BestKnownNew)

{

}

BestknownOld = BestKnownNew;
BestKnownNew = MinValue;

for (int j = @; j < NumCusForIndex; j++)

{
BestSo0l01d[j]

BestSolNew[j]

BestSolNew[j];
Sol[MinIndex, j];

// randomly lay cuckoo egg

int[] nest
Random rnd

for (int i

{

}

new Random(seedRand);

0; i < 15; i++) //num cuckoo=15
int RandChoosePosition = rnd.Next(@, nest.Length);

int NestRChoosen = nest[RandChoosePosition];

int[] index3 = new int[NumCusForIndex];
for (int j = @; j < NumCusForIndex; j++)

{
}

index3[j] = Sol[NestRChoosen, j];
index3=CuckooEgg(index3, cap, numVehicle,Node, dis);
//build cuckoo egg
for (int j = @; j < NumCusForIndex; j++)

// replace cukoo egg to ole egg
{

}

Sol[i, j] = index3[j];

// abandon worst nest Pc=0.25 of 15 is 3 nest

// find all obj
double[] TeamObj = new double[NumOfSolution];
for (int j = @; j < NumOfSolution; j++)

{
for (int k = 0; k < NumCusForIndex; k++)
{
if (k != NumCusForIndex - 1)
{
TeamObj[j] = TeamObj[j] + dis[Sol[],
k], Sol[], k + 1]];
}
}

new int[15] { @,1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

130

11,

131

//find max obj/ worst sol

for (int j = ©; j < 3; j++)

{
// find best
double m = TeamObj.Max();
int maxIndex = Array.IndexOf(TeamObj, m);
TeamObj[maxIndex] = -1;
//bulid new nest
int[] indexTemp = new int[NumCusForIndex];
indexTemp = ContByRouletteWheel(alpha, beta, gramma,

Cus, NumCusForIndex, cap, seedRand, numVehicle, Node, dis);

seedRand++;
for (int i = @; i < indexTemp.Length; i++)

{
}

Sol[maxIndex, i] = indexTemp[i];

}

}//end while

G. Code of C# program for EABC heuristic

int NumOnlookerBee = 25;

int NumLimit = 20;
int seedRand = 0;
double alpha = 0.4;

double beta = 0.3;

double gramma = 0.3;

int NumOfSolution = 25;

int[] index = new int[NumCusForIndex];

int[,] Sol = new int[NumOfSolution,NumCusForIndex];

double[] objFeasible=new double[NumOfSolution];

//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };

//int[] Cus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
ie, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45 ,46,47,48,49,50} ;
int[] Cus = new int[1lee] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100 };

for (int j = @; j < NumOfSolution; j++)
{
bool CheckDuplicated = true;
while (CheckDuplicated == true)
{
index = ContByRouletteWheel(alpha, beta, gramma, Cus,
NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
double obj = 0;
for (int 1 = 0; 1 < index.Length; 1++)
{
if (1 != index.Length - 1)
{

132

obj = obj + dis[index[1l], index[1l + 1]];

}
// check duplication
bool ExistRepeat = false;

for (int i = @; i < objFeasible.Length;i++)

if (obj == objFeasible[i])

{
seedRand++; // at least one duplication
ExistRepeat = true;
break;
// break for to repeat while loop check duplication
}
}
if (ExistRepeat == false)// if no-duplication
{
CheckDuplicated = false;
}

if (CheckDuplicated == false)
// collect sol if not duplicated

{
//objFeasible[j] = obj;
Console.Write(" " + obj);
for (int i = ©; i < index.Length; i++)
{
Sol[j, i] = index[i];
seedRand++;
break;
}

}// end while check duplicated
}// end for numofSol

[/ EABCH ks ks ks sk sk ok sk ok sk sk sk ok ok skok sk skt ko koo sk ook koo ok ok ok ok o

double BestKnownOld = 100001;
double BestKnownNew = 100000;
int[] NotImprove = new int[NumOfSolution];
int[] BestSol0ld = new int[NumCusForIndex];
int[] BestSolNew = new int[NumCusForIndex];
while (BestKnownNew < BestKnownOld)
{

//check best known solution

int MinIndex = -1;

double MinValue = 100000;

for (int i = @; i < NumOfSolution; i++)

{

double obj = @; // compute all fitness
for (int 1 = @; 1 < NumCusForIndex; l++)
{
if (1 != NumCusForIndex - 1)
{
obj = obj + dis[Sol[i, 1], Sol[i, 1 + 1]];
}

}

objFeasible[i] = obj;
if (obj < MinValue)

{

}

MinValue
MinIndex

1}
[
“e

}

// updated best sol
if (MinValue < BestKnownNew)

{

}

obj;

)

BestknownOld = BestKnownNew;
BestKnownNew = MinValue;

for (int j = 0; j
{
BestSo0l01d[j]
BestSolNew[j]

}

<

NumCusForIndex; j++)

BestSolNew[j];
Sol[MinIndex, j];

// woker bee improve food source
int[] index3 = new int[NumCusForIndex];
for (int i = @; i < NumOfSolution; i++)

{

for (int j = @; j < NumCusForIndex; j++)

index3[j] = Sol[i, jI;

}
double objBegin

for (int 1 =0; 1

<

0; // compute all fitness

NumCusForIndex; l++)

if (1 != NumCusForIndex - 1)

{
objBegin =

}
}

objBegin + dis[Sol[i, 1], Sol[i, 1 +

111;

Apply neighborhood search here
for (int j = @; j < NumCusForIndex; j++)

Sol[i, J]
}

double objEnd = @; // compute all fitness

index3[j];

for (int 1 = @; 1 < NumCusForIndex; l++)

{

if (1 != NumCusForIndex - 1)

{
}

objEnd = objEnd + dis[Sol[i, 1], Sol[i, 1 + 1]];

}

if (objBegin == objEnd) // not improve?

NotImprove[i]
}

NotImprove[i] + 1;

int[] index4 = new int[NumCusForIndex];

if (NotImprove[i] >= NumLimit)// reach limit

{
//build new

seedRand++;

Console.Write("new-");
index4 = ContByRouletteWheel(alpha, beta, gramma, Cus,

NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
for (int j = ©; j < NumCusForIndex; j++)

{

133

134

Sol[i, j] index4[j];

}
NotImprove[i]

0;

// roulet wheel by onlooker bees

int[] index2 = new int[NumCusForIndex];

double[] probSol = new double[NumOfSolution];
double[] cumuprobSol = new double[NumOfSolution];
double TotalFitness = 0;

for (int i = @; i < NumOfSolution; i++)

{
}

for (int i = @; i < NumOfSolution; i++)

TotalFitness = TotalFitness + (1 / (objFeasible[i]));

probSol[i] = (1/objFeasible[i])/TotalFitness;

cumuprobSol[@] = probSol[@];
for (int i = 1; i < NumOfSolution; i++)
{

cumuprobSol[i] = cumuprobSol[i - 1] + probSol[i];
}
Random randomSol = new Random(1);
//try to find repeat sol.¥¥¥*¥¥xxiiiikiiix*xtect
Console.WriteLine("round " + countIteration);
for (int i = @; i < NumOnlookerBee; i++)
{

double rl1 = randomSol.NextDouble();

int count 0;

bool found = true;

// onlooker choose food source

while (found == true)

{
if (rl1 <= cumuprobSol[count])
{
break;
}
count++;
}

Console.Write(" "+count); // *¥xksisickicikiioiooitagt

for (int j = @; j < NumCusForIndex; j++)

{
}

//improve food source
Apply neighborhood search here
for (int j = ©; j < NumCusForIndex; j++)

{
}

} //end for select and improv

index2[j] = Sol[count, j];

Sol[count, j] = index2[j];

}//end

H. Code of C# program for EGB heuristic

int NumLimit = 5;
int seedRand = 0;
double alpha = 0.4;

double beta = 0.3;

double gramma = 0.3;

int NumOfSolution = 48;

int[] index = new int[NumCusForIndex];

int[,] Sol = new int[NumOfSolution,NumCusForIndex];
double[] objFeasible=new double[NumOfSolution];

135

//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };

//int[] Cus = new int[5@0] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24,

25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50} ;
int[] Cus = new int[1e@] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93,

96, 97, 98, 99, 100 };
for (int j = @; j < NumOfSolution; j++)
{
bool CheckDuplicated =
while (CheckDuplicated

{

index = ContByRouletteWheel(alpha, beta, gramma, Cus,
NumCusForIndex, cap, seedRand, numVehicle, Node, dis);

double obj = 0;
for (int 1 = @; 1 < index.Length; 1++)

{
if (1 != index.Length - 1)
{
obj = obj + dis[index[1], index[1l + 1]];
}
}

// check duplication
bool ExistRepeat = false;
for (int i = @; i < objFeasible.Length;i++)

35,
55,
75,
95,

{
if (obj == objFeasible[i])
{
seedRand++; // at least one duplication
ExistRepeat = true;
break;
// break for to repeat while loop check duplication
}
}
if (ExistRepeat == false)// if no-duplication
{
CheckDuplicated = false;
}
if (CheckDuplicated == false)
// collect sol if not duplicated
{

//objFeasible[j] = obj;
Console.Write(" " + obj);

136

for (int i = @; i < index.Length; i++)

{
}

seedRand++;
break;

Sol[j, i] = index[i];

}
}// end while check duplicated

}// end for numofSol

//*************Dlvided T @ am P % sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk ke sk ok ok sk sk kok ko skok ok ok ok ok ok

int numberMembers=8;

int numberTeams = 6;

int count4Sol = 0;

int[,,] TEAM = new int[numberTeams,numberMembers, NumCusForIndex];
for (int i = @; i < numberTeams; i++)

{
for (int j = @; j < numberMembers; j++)
{
for (int k = @; k < NumCusForIndex;k++)
{
TEAM[i, j, k] = Sol[count4Sol, k];
}
count4Sol++;
}
}

/] FFERRE Rk R KENd -Divided Teamk*kkkkkkkkokkokdokokhok ok kok ok koo kokok ko

double previousBest = 1000000; // previous Best
double presentBest = 999999; // presentBest
int NumSeason = 1;

while (presentBest<previousBest)

{

n n

Console.WriteLine("\n\n =||=||=|| Season " + NumSeason +

H=1T=l=11=");
previousBest = presentBest;
double[] Score = new double[numberTeams]; //test
//a season divided 2 part
for (int m = @; m < 2; m++)

{

//*************—Training—**********************************
for (int i = @; i < numberTeams; i++)
{
for (int j = ©; j < numberMembers; j++)
{
int[] indexTemp = new int[NumCusForIndex];
// copy to index Temp
for (int k = @; k < NumCusForIndex; k++)

{
}

// improve sol
indexTemp = Training(indexTemp, cap, numVehicle,
Node, dis);

indexTemp[k] = TEAM[i, Jj, k];

// updated
for (int k = @; k < NumCusForIndex; k++)
{

TEAM[i, j, k] = indexTemp[k];
}

137

//*************End_Tpaining_***************************

[/ ¥¥FxFFEIAEERX*Ra-Arrange sol and choose captainp*ikkk**
//Simplify Sol
for (int i = 0; i < numberTeams; i++)

{
for (int j = @; j < numberMembers; j++)
{
int[] indexTemp = new int[NumCusForIndex];
for (int k = @; k < NumCusForIndex; k++)
{
indexTemp[k] = TEAM[i, j, k];
}
indexTemp = SimplifyForm(indexTemp, numVehicle);
// updated
for (int k = @; k < NumCusForIndex; k++)
{
TEAM[1, j, k] = indexTemp[k];
}
}
}

// Arrange Sol in team (Best obj is captain *index=0%*)
TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,
NumCusForIndex, dis);

//print test Arrange player in each team

Console.WriteLine("\n\n ===> After Training :=");
for (int i = @; i < numberTeams; i++)
{

Console.WriteLine("\n TEAM :" + i);
for (int j = @; j < numberMembers; j++)
{
double TeamObj = 0;
for (int k = @; k < NumCusForIndex; k++)

if (k != NumCusForIndex - 1)
{
TeamObj = TeamObj + dis[TEAM[i, j, k],
TEAM[i, j, k + 1]7;
}
}
Console.Write(" " + TeamObj);

}

[[RFRFFI XXX XENnd - -Re-Arrange sol and choose captain***

//************_Custom Tpianing_*************************

int CountForVehicle = 0;

Random random = new Random(seedRand);

bool check = false;

int[] IndexCap = new int[NumCusForIndex];
int[] IndexPlay = new int[NumCusForIndex];
int[] NewIndex = new int[NumCusForIndex];
for (int 1 = 0; 1 < numberTeams; 1++)

{

for (int j = 1; j < numberMembers; j++)

138

int countLimit = 0;
while (countLimit < NumLimit)

{
for (int i = @; i < index.Length; i++)
{
IndexCap[i] = TEAM[1, o, i];
IndexPlay[i] = TEAM[1, j, i];
}

// fine the number of vehicles
double NumOfCapVehicle =
CountNumOfVehicles(IndexCap);
//random to select the number of vehicles that will be duplicated from captain
int Min =
Convert.ToInt32(Math.Floor(NumOfCapVehicle * 40 / 100));
int Max =
Convert.ToInt32(Math.Floor(NumOfCapVehicle * 80 / 100));

CountForVehicle = random.Next(Min, Max + 1);

//plus 1 because it is a form

//Train by captain

NewIndex = CustomTraining(IndexCap, IndexPlay,
cap, CountForVehicle, numVehicle, Node, dis);

check = NewBetterThanOld(NewIndex, IndexPlay,

dis);

if (check == true)

{
for (int i = @; i < index.Length; i++)
{

TEAM[1, j, i] = NewIndex[i];

}
break;

}

else

{
countLimit++;

}
}//end while
}//end for j
}//end for 1

// Arrange Sol again*** in team (Best obj is captain *index=0%*)
TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,

NumCusForIndex, dis);

//print test

Console.WriteLine("\n\n ===> After Custom train := ");
for (int i = @; i < numberTeams; i++)
{

Console.WriteLine("\n TEAM :" + i);
for (int j = @; j < numberMembers; j++)
{
double TeamObj = 0;
for (int k = @; k < NumCusForIndex; k++)
{
if (k != NumCusForIndex - 1)
{
TeamObj = TeamObj + dis[TEAM[i, j, k],
TEAM[1i, j, k + 1]1];

139

}
}

Console.Write(

+ TeamObj);

}

[] FHRFFFEFAAKAA L E] - QLS T OMPK KK H KA KA KA A K A K KK oK oK Kok K

//************_Star\t Match_***************************
//compute obj

double[,] ObjAll = new double[numberTeams, numberMembers];
for (int i = @; i < numberTeams; i++)

{
Console.Write(" \n ");
for (int j = @; j < numberMembers; j++)
{
double TempObj = 0;
for (int 1 = @; 1 < NumCusForIndex; l++)
if (1 != NumCusForIndex - 1)
{
TempObj = TempObj + dis[TEAM[i, j, 1],
TEAM[i, j, 1 + 1]1];
}
}
ObjAll[i, j] = TempObj;
//Console.Write(" " + TempObj);
}
}

// competition
for (int i = @; i < numberTeams; i++) // Team A
{
for (int ii =i + 1; ii < numberTeams; ii++) //Team B

{

int ScoreA = 0;
int ScoreB = 0;
for (int k = @; k < numberMembers; k++) //Member
{
if (0bjAll[i, k] < ObjAll[ii, k])
ScoreA++;
}
else if (ObjAll[i, k] > ObjAll[ii, k])
{
ScoreB++;
}
else
{
ScoreA++;
ScoreB++;
}
}
if (ScoreA > ScoreB)
{
Score[i] = Score[i] + 3;
}
else if (ScoreA < ScoreB)
{

Score[ii] = Score[ii] + 3;

1- i: j]3

}
else
{
Score[i]++;
Score[ii]++;
}

}

[] FRFFFEFAAKAA CE N Mt Ch = KKK AR KKK KKK KKK KK

//************_Exchange_*****************************
// find best score

int[] OrderedTeamByScore = new int[numberTeams];

for (int i = @; i < numberTeams; i++)

{
double ScoreMax = Score.Max();
int MaxScoreIndex = Array.IndexOf(Score, ScoreMax);
OrderedTeamByScore[i] = MaxScorelndex;
Score[MaxScoreIndex] = -1; // never choosing again
}
//exchange
for (int i = ©; i < numberTeams / 2; i++)
{
int Temp = 0;

for (int j = @; j < NumCusForIndex; j++)

{

Temp

TEAM[OrderedTeamByScore[i], numberMembers - 1 -

j] = TEAM[OrderedTeamByScore[numberTeams - 1 - i], i, j];
TEAM[OrderedTeamByScore[numberTeams - 1 - i], i, j]

= Temp;

¥
}

[/ FFFERRR Rk _End Exchange - %% kkkkororotok koot ok koo ok ok

// Arrange Sol again after exchange players*** in team (Best obj is captain

index=0%)

TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,
NumCusForIndex, dis);

//***************************_END_*******************

NumSeason++;

}// end while

//***

public static int[] SimplifyForm(int[] index, int numVehicle)

int[,] Vehicle = new int[numVehicle, index.Length];
int countl = 1;
for (int k = 0; k < numVehicle; k++) // seperated vehicles

{

int count2 = 1;
while (index[countl] != 9)

Vehicle[k, count2] = index[countl];
count2++;
countl++;

140

TEAM[OrderedTeamByScore[i], numberMembers -

i,

141

}
countl++; // skip depot

}

// re-arrange

int count3=1;

int[] index2 = new int[index.Length];
for (int i = 0; i < numVehicle; i++)

if (Vehicle[i, 1] != @)
{
int count4=1;
while (Vehicle[i, count4] != @)
{
index2[count3] = Vehicle[i, count4];
countd++;
count3++;

index2[count3] = 0;
count3++;

}

return index2;

}

[[R F Ak ok s ok sk o sk sk ok sk ok sk R Sk ok KR KR KSR R SRR R oSk R ko K ok sk o sk sk ok sk ok sk ok sk ok ok sk sk stk sk ok ok ok sk sk sk ook ok ok

public static int[, ,] ArrangePlayers(int[, ,] TEAM, int numberTeams, int
numberMembers, int NumCusForIndex, double[,] dis)

{
for (int i = @; i < numberTeams; i++)
{
double[] TeamObj = new double[numberMembers];
for (int j = @; j < numberMembers; j++)

{
for (int k = @; k < NumCusForIndex; k++)
if (k != NumCusForIndex - 1)
TeamObj[j] = TeamObj[j] + dis[TEAM[i, j, k],
TEAM[i, j, k + 1]1];
}
}
}

int[,] TempTeam = new int[numberMembers, NumCusForIndex];
for (int j = ©; j < numberMembers; j++)

{
// find best player
double m = TeamObj.Min();
int minIndex = Array.IndexOf(TeamObj, m);
TeamObj[minIndex] = 10000000;
//record new ordered
for (int k = 0; k < NumCusForIndex; k++)
{
TempTeam[j, k] = TEAM[i, minIndex, k];
}
}
//updated
for (int j = ©; j < numberMembers; j++)
{

for (int k = 0; k < NumCusForIndex; k++)

}

142

TEAM[i, j, k] = TempTeam[], k];

}

return TEAM;

[] HHR A A A KKK A KKK AR KA KA K KKK KA KKK K KK K K KK oK Ko KK o

public static int[] CustomTraining(int[] IndexCap, int[] IndexPlay, int cap,
int CountForVehicle, int numVehicle, Data[] Node, double[,] dis)

{

//copy some part of captain

int[] NewIndex = new int[IndexCap.Length];
int[] DelIndex = new int[IndexCap.Length];
int count4Run = 1, count4Index = 1;

while (CountForVehicle != 0)

{
while (IndexCap[count4Run] != @)

{
IndexCap[count4Run];

IndexCap[count4Run];

NewIndex[count4Index]
DelIndex[count4Index]
count4Run++;
count4Index++;

}

NewIndex[count4Index] = 0;
count4Index++;
count4Run++;
CountForVehicle--;
}
//delete depot to get deleting seq
DelIndex = DelIndex.Except(new int[] { @ }).ToArray();
//copy player to tempPlayer
int[] TempPlayer = new int[IndexCap.Length];
for (int i = ©; i < IndexCap.Length; i++)

{
}

//del duplicate customer from tempPlayer
TempPlayer = TempPlayer.Except(new int[] { © }).ToArray();
for (int i = @; i < DelIndex.Length; i++)

{

TempPlayer[i] = IndexPlay[i];

TempPlayer = TempPlayer.Except(new int[] { DelIndex[i]
}).ToArray();
¥
// devide the rest of customer --> 2vars
int countLine = 0, countBack = 0;
int[] LineTempPlayer = new int[TempPlayer.Length];
int[] BackTempPlayer = new int[TempPlayer.Length];
for (int i = @; i < TempPlayer.Length; i++)

{
if (Node[TempPlayer[i]].type == true)
{
LineTempPlayer[countLine] = TempPlayer[i];
countLine++;
}

else

143

BackTempPlayer[countBack] = TempPlayer[i];
countBack++;
}
}
//Build fesible vehicle
LineTempPlayer = LineTempPlayer.Except(new int[] { @ }).ToArray();
BackTempPlayer = BackTempPlayer.Except(new int[] { @ }).ToArray();
while (LineTempPlayer.Length != @ || BackTempPlayer.Length != @)
{
int[] TempRoute = new int[TempPlayer.Length];
double timelLeave = 0;
double capacityCount = 0;
int count4TempRoute = 1;
if (LineTempPlayer.Length != 9)
{
TempRoute[@] = LineTempPlayer[0];
capacityCount = Node[TempRoute[@]].demand;
LineTempPlayer = LineTempPlayer.Except(new int[] {
LineTempPlayer[@] }).ToArray();
timeLeave = Math.Max(dis[@, TempRoute[0]],
Node[TempRoute[0]].earlytime) + Node[TempRoute[@]].servicetime;

else

{
TempRoute[@] = BackTempPlayer[0];
capacityCount = Node[TempRoute[@]].demand;
BackTempPlayer = BackTempPlayer.Except(new int[] {

BackTempPlayer[@] }).ToArray();
timeLeave = Math.Max(dis[@, TempRoute[0]],
Node[TempRoute[@]].earlytime) + Node[TempRoute[@]].servicetime;

//linehual
for (int i = @; i < LineTempPlayer.Length; i++)
{
if (capacityCount + Node[LineTempPlayer[i]].demand <= cap)
{
if (timeLeave + dis[TempRoute[count4TempRoute - 1],
LineTempPlayer[i]] <=
Node[LineTempPlayer[i]].lasttime)
{
TempRoute[count4TempRoute] = LineTempPlayer[i];
capacityCount = capacityCount +
Node[LineTempPlayer[i]].demand;
timelLeave = Math.Max(timelLeave +
dis[TempRoute[count4TempRoute - 1], LineTempPlayer[i]],
Node[LineTempPlayer[i]].earlytime)+ Node[LineTempPlayer[i]].servicetime;
LineTempPlayer = LineTempPlayer.Except(new int[] {
LineTempPlayer[i] }).ToArray();

count4TempRoute++;
}
else
{
break;
}
}
else
{

break;

144

}
}
// backhual

for (int i = @; i < BackTempPlayer.Length; i++)

{
if (capacityCount + Node[BackTempPlayer[i]].demand <= cap)

{
if (timelLeave + dis[TempRoute[count4TempRoute - 1],
BackTempPlayer[i]] <= Node[BackTempPlayer[i]].lasttime)

{
TempRoute[count4TempRoute] = BackTempPlayer[i];

capacityCount = capacityCount +
Node[BackTempPlayer[i]].demand;

timeLeave = Math.Max(timelLeave +
dis[TempRoute[count4TempRoute - 1], BackTempPlayer[i]],
Node[BackTempPlayer[i]].earlytime) + Node[BackTempPlayer[i]].servicetime;

BackTempPlayer = BackTempPlayer.Except(new int[] {

BackTempPlayer[i] }).ToArray();

count4TempRoute++;
}
else
{
break;
}
}
else
{
break;
}

}
//Add new route to NewIndex

int countTemp = 0;
while (countTemp<TempRoute.Length && TempRoute[countTemp] != @)

{
NewIndex[count4Index] = TempRoute[countTemp];
countTemp++;
countd4Index++;

}

NewIndex[count4Index] = 0;

count4Index++;

} //end while

//Improve solution before return

NewIndex = Training(NewIndex, cap, numVehicle, Node, dis);
//Simplify Sol

NewIndex = SimplifyForm(NewIndex, numVehicle);

return NewIndex;

145

VITA

Mr. Tanawat Worawattawechai was born in June 28, 1987, in Uttaradit. He
received a bachelor degree in Mathematics from Department of Mathematics,
Faculty of science, ChiangMai University, Thailand 2009, and a master degree in
Applied Mathematics and Computational Science from Department of Mathematics
and Computer Science, Faculty of Science, Chulalongkorn University, Thailand
2012. He has been financially supported by the Development and Promotion of

Science and Technology talents project (DPST).

146

PUBLICATION

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, Heuristic Approach to Vehicle
Routing Problem with Backhauls and Time Windows : International
Conference on Applied Statistics 2016, Phuket, Thailand, July 13 — 15, 2016.
Proceedings, W. Panichkitkosolkul and P. Srisuradetchai, Editors. Thammasat
University, Pathum Thani. p. 121-128.

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, Cuckoo search algorithm for the
vehicle routing problem with backhauls and time windows. Panyapiwat
Journal, 2016. 8: p.136-149.

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, An artificial bee colony
algorithm for the vehicle routing problem with backhauls and time windows.

Songklanakarin Journal of Science and Technology, [in press].

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 General Vehicle Routing Problem
	1.2 Motivations
	1.3 Research Objectives
	1.4 Scope of the Research
	1.5 Overview of Dissertation

	CHAPTER 2 LITERATURE REVIEW
	2.1 Vehicle Routing Problem
	2.1.1 Vehicle Routing Problem with Backhauls
	2.1.2 Vehicle Routing Problem with Time Windows
	2.1.3 Vehicle Routing Problem with Backhauls and Time Windows

	2.2 Solution Approaches to Vehicle Routing Problem
	2.2.1 Exact Approaches
	2.2.1.1 Lagrange Relaxation
	2.2.1.2 Column Generation
	2.2.1.3 Integer Programming

	2.2.2 Heuristic Approach
	2.2.2.1 Two-phase heuristics
	2.2.2.2 Constructive heuristics

	2.2.3 Metaheuristic Approach

	CHAPTER 3 THE VEHICLE ROUTING PROBLEM WITH BACKHAULS AND TIME WINDOWS
	3.1 Problem Description
	3.2 Mathematical Model
	3.3 Heuristic Approach
	3.3.1 Common Elements
	3.3.1.1 Solution Representation
	3.3.1.2 Quality Measure of a Solution
	3.3.1.3 Neighborhood Search

	3.3.2 Nearest Neighbor (NN) Heuristic
	3.3.3 Improved Nearest Neighbor (INN) Heuristic
	3.3.4 Nearest Urgent Candidate (NUC) Heuristic
	3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

	3.4 Metaheuristic Approach
	3.4.1 Cuckoo Search (CS) Algorithm
	3.4.1.1 The General Concept of CS
	3.4.1.2 Main Steps of CS

	3.4.2 Artificial Bee Colony (ABC) Algorithm
	3.4.2.1 The General Concept of ABC
	3.4.2.2 Enhanced Artificial Bee Colony (EABC) Algorithm
	3.4.2.3 Main Steps of EABC

	CHAPTER 4 COMPUTATIONAL EXPERIMENT
	4.1 Test Problems
	4.2 Parameter Setting
	4.2.1 Nearest Neighbor (NN) Heuristic
	4.2.2 Improved Nearest Neighbor (INN) Heuristic
	4.2.3 Nearest Urgent Candidate (NUC) Heuristic
	4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic
	4.2.5 Cuckoo Search (CS) Algorithm
	4.2.6 Artificial Bee Colony (ABC) Algorithm

	4.3 Results and Comparison
	4.4 Rate of Convergence
	4.5 Results Discussion

	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDIX
	VITA
	PUBLICATION

