

วธีิฮิวริสติกคน้แบบนกกาเหวา่และอาณาจกัรผึ้งเทียมแบบเพิ่มประสิทธิภาพส าหรับปัญหาการจดั
เส้นทางเดินรถซ่ึงมีขอ้จ ากดัดา้นรถเท่ียวกลบัและหนา้ต่างเวลา

นายธนวรรธน์ วรวชัร์ทวชียั

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรดุษฎีบณัฑิต

สาขาวชิาคณิตศาสตร์ประยกุตแ์ละวทิยาการคณนา ภาควิชาคณิตศาสตร์และวทิยาการคอมพิวเตอร์

คณะวทิยาศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั

ปีการศึกษา 2560

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั

CUCKOO SEARCH AND ENHANCED ARTIFICIAL BEE COLONY HEURISTIC

 METHODS FOR

VEHICLE ROUTING PROBLEM WITH BACKHAUL AND TIME WINDOW CO

NSTRAINTS

Mr. Tanawat Worawattawechai

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Applied Mathematics and

Computational Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2017

Copyright of Chulalongkorn University

Thesis Title CUCKOO SEARCH AND ENHANCED

ARTIFICIAL BEE COLONY HEURISTIC

METHODS FOR VEHICLE ROUTING

PROBLEM WITH BACKHAUL AND TIME

WINDOW CONSTRAINTS

By Mr. Tanawat Worawattawechai

Field of Study Applied Mathematics and Computational Science

Thesis Advisor Assistant Professor Boonyarit Intiyot, Ph.D.

Thesis Co-Advisor Associate Professor Chawalit Jeenanunta, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

 Chairman

(Assistant Professor Krung Sinapiromsaran, Ph.D.)

 Thesis Advisor

(Assistant Professor Boonyarit Intiyot, Ph.D.)

 Thesis Co-Advisor

(Associate Professor Chawalit Jeenanunta, Ph.D.)

 Examiner

(Associate Professor Phantipa Thipwiwatpotjana, Ph.D.)

 Examiner

(Kitiporn Plaimas, Ph.D.)

 External Examiner

(Associate Professor Jirachai Buddhakulsomsiri, Ph.D.)

 iv

THAI ABST RACT

ธนวรรธน์ วรวชัร์ทวีชัย : วิธีฮิวริสติกค้นแบบนกกาเหว่าและอาณาจักรผึ้ งเทียมแบบเพ่ิม
ประสิทธิภาพส าหรับปัญหาการจดัเส้นทางเดินรถซ่ึงมีขอ้จ ากดัดา้นรถเท่ียวกลบัและหนา้ต่าง
เ ว ล า (CUCKOO SEARCH AND ENHANCED ARTIFICIAL BEE COLONY

HEURISTIC METHODS FOR VEHICLE ROUTING PROBLEM WITH

BACKHAUL AND TIME WINDOW CONSTRAINTS) อ.ท่ีปรึกษาวิทยานิพนธ์หลกั:

ผศ. ดร. บุญฤทธ์ิ อินทิยศ, อ.ท่ีปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร. ชวลิต จีนอนนัต{์, หนา้.

ปัญหาการจดัเส้นทางเดินรถซ่ึงมีขอ้จ ากดัดา้นรถเท่ียวกลบัและหนา้ต่างเวลามีจุดประสงค์เพ่ือ
หาเสน้ทางเดินรถท่ีเป็นไปไดท่ี้ท าใหร้ะยะทางในการเดินทางโดยรวมมีค่านอ้ยท่ีสุด โดยมีขอ้จ ากดัในดา้น
ความจุของรถ รถเท่ียวกลบั และ หนา้ต่างเวลา ในดุษฎีนิพนธ์น้ี ไดน้ าเสนอตวัแบบทางคณิตศาสตร์ของ
ปัญหาการจดัเส้นทางเดินรถซ่ึงมีขอ้จ ากดัดา้นรถเท่ียวกลบัและหนา้ต่างเวลา เพ่ือใชใ้นการหาผลเฉลยท่ี
เหมาะท่ีสุด นอกจากน้ี ยงัได้น าเสนอวิธีฮิวริสติกผูแ้ข่งขันท่ีเร่งด่วนและใกลท่ี้สุด (nearest urgent

candidate หรือ NUC) ซ่ึงใชเ้ทคนิคในการจดัล าดับความเร่งด่วนและการเลือกผูแ้ข่งขนั และวิธีฮิวริ
สติกการเลือกเพ่ือนบา้นใกลท่ี้สุดดว้ยวงลอ้รูเล็ตต์ (nearest neighbor with roulette wheel selection

หรือ NNRW) ซ่ึงเป็นการผสมผสานวิธีการเลือกดว้ยวงลอ้รูเล็ตต์กบัการเลือกเพ่ือนบา้นท่ีใกลท่ี้สุดท่ี
ปรับปรุงแลว้ เพ่ือน ามาใชแ้กปั้ญหาน้ี นอกจากน้ี ยงัไดน้ าเสนอวิธีเมตาฮิวริสติกสองวิธี เพ่ือหาผลเฉลยท่ี
เหมาะท่ีสุดหรือใกล้จะเหมาะท่ีสุด วิธีแรกคือขั้นตอนวิธีค้นแบบนกกาเหว่า (cuckoo search หรือ

CS) ซ่ึงได้ถูกน ามาใช้กับปัญหาน้ีเป็นคร้ังแรก วิธีท่ีสองคือขั้นตอนวิธีอาณาจักรผึ้ งเทียมแบบเพ่ิม
ประสิทธิภาพ (enhanced artificial bee colony หรือ EABC) ซ่ึงใชเ้ทคนิครายช่ือตอ้งห้าม การคน้หา
อย่างเป็นล าดบัของผึ้งเฝ้ารัง และการผสมผสานของเทคนิคต่าง ๆ ในการคน้ค าตอบใกลเ้คียง ผลการวิจยั
เชิงค านวณช้ีให้เห็นว่า ขั้นตอนวิธีท่ีถูกน าเสนอมาทั้งหมดนั้นมีสมรรถภาพท่ีดีในเชิงคุณภาพโดยเฉพาะ
ขั้นตอนวิธีอาณาจกัรผึ้งเทียมแบบเพ่ิมประสิทธิภาพ ซ่ึงได ้33 ผลเฉลยท่ีเทียบเท่าหรือผลเฉลยท่ีดีท่ีสุดอนั
ใหม่จาก 45 ปัญหาโดยเปรียบเทียบกบัผลเฉลยท่ีดีท่ีสุดท่ีรวบรวมมาจากงานวิจยัต่างๆ ดงันั้นขั้นตอนวิธีท่ี
น าเสนอขา้งตน้จึงเป็นวิธีท่ีมีประสิทธิภาพในการแกปั้ญหาการจดัเส้นทางเดินรถซ่ึงมีขอ้จ ากดัดา้นรถเท่ียว
กลบัและหนา้ต่างเวลา

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์

สาขาวิชา คณิตศาสตร์ประยกุตแ์ละวิทยาการ
คณนา

ปีการศึกษา 2560

ลายมือช่ือนิสิต

ลายมือช่ือ อ.ท่ีปรึกษาหลกั
ลายมือช่ือ อ.ท่ีปรึกษาร่วม

 v

ENGLISH ABST RACT

5672859623 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE

KEYWORDS: VEHICLE ROUTING PROBLEMS / BACKHAUL / TIME WINDOW /

HEURISTICS / ARTIFICIAL BEE COLONY / CUCKOO SEARCH

TANAWAT WORAWATTAWECHAI: CUCKOO SEARCH AND ENHANCED

ARTIFICIAL BEE COLONY HEURISTIC METHODS FOR VEHICLE ROUTING

PROBLEM WITH BACKHAUL AND TIME WINDOW CONSTRAINTS.

ADVISOR: ASST. PROF. BOONYARIT INTIYOT, Ph.D., CO-ADVISOR:

ASSOC. PROF. CHAWALIT JEENANUNTA, Ph.D. {, pp.

The vehicle routing problem with backhauls and time windows (VRPBTW) aims to

find a feasible vehicle route that minimizes the total traveling distance while imposing capacity,

backhaul, and time-window constraints. In this dissertation, a mathematical model of VRPBTW

is introduced to obtain an optimal solution. The heuristics, namely the nearest urgent candidate

(NUC), which applies the urgency priority and candidate techniques, and the nearest neighbor

with roulette wheel selection (NNRW) which is a combination of a roulette wheel selection

method and the improved nearest neighbor heuristic, are also presented to solve this problem.

Moreover, two metaheuristic methods are presented to obtain the optimal or near optimal

solutions. The first is a cuckoo search (CS) algorithm, which is applied to this problem for the

first time. The second is the enhanced artificial bee colony (EABC) algorithm which uses a

forbidden list, the sequential search for onlookers, and the combination of neighborhood search

techniques. The computational results indicate that proposed algorithms yield good

performance in terms of solution quality, especially EABC. It obtained 33 ties or new best

known solutions out of 45 instances comparing with the best known solutions found in the

literature. Hence, the proposed algorithms are the effective ways to solve the VRPBTW.

Department: Mathematics and Computer

Science

Field of Study: Applied Mathematics and

Computational Science

Academic Year: 2017

Student's Signature

Advisor's Signature

Co-Advisor's Signature

 vi

ACKNOWLEDGEMENT S

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Assistant Professor Dr.

Boonyarit Intiyot, my dissertation advisor, Associate Professor Dr. Chawalit

Jeenanunta, my dissertation co-advisor, for their kind supervision and

encouragement with their patience and knowledge throughout my dissertation.

Without their constructive suggestions and knowledgeable guidance in this study,

this research would never have successfully been completed.

Sincere thanks and deep appreciation are also extended to Assistant

Professor Dr. Krung Sinapiromsaran, Associate Professor Dr. Phantipa

Thipwiwatpotjana, Dr. Kitiporn Plaimas, and Associate Professor Dr. Jirachai

Buddhakulsomsiri, my dissertation committees, for their comments and suggestions.

Besides, I would like to thank all teachers who have taught me all along.

I am also grateful to Development and Promotion of Science and

Technology Talents Project (DPST) for granting me financial support to do this

research.

In particular, I would like to thank my dear friends for giving me good

advice about my dissertation and experiences at Chulalongkorn University. Finally,

I take this opportunity to express the profound gratitude from my deep heart to my

beloved parents for their love and encouragement throughout my study.

CONTENTS

 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT... v

ACKNOWLEDGEMENTS .. vi

CONTENTS ... vii

LIST OF TABLES ... 1

LIST OF FIGURES ... 2

CHAPTER 1 INTRODUCTION .. 3

1.1 General Vehicle Routing Problem ... 3

1.2 Motivations .. 4

1.3 Research Objectives ... 5

1.4 Scope of the Research .. 5

1.5 Overview of Dissertation ... 6

CHAPTER 2 LITERATURE REVIEW ... 8

2.1 Vehicle Routing Problem .. 8

2.1.1 Vehicle Routing Problem with Backhauls ... 8

2.1.2 Vehicle Routing Problem with Time Windows 10

2.1.3 Vehicle Routing Problem with Backhauls and Time Windows 11

2.2 Solution Approaches to Vehicle Routing Problem .. 15

2.2.1 Exact Approaches ... 15

2.2.1.1 Lagrange Relaxation ... 15

2.2.1.2 Column Generation .. 16

2.2.1.3 Integer Programming .. 16

2.2.2 Heuristic Approach ... 19

2.2.2.1 Two-phase heuristics .. 19

2.2.2.2 Constructive heuristics ... 20

2.2.3 Metaheuristic Approach ... 23

CHAPTER 3 THE VEHICLE ROUTING PROBLEM WITH BACKHAULS

AND TIME WINDOWS ... 26

 viii

 Page

3.1 Problem Description .. 26

3.2 Mathematical Model .. 26

3.3 Heuristic Approach .. 30

3.3.1 Common Elements ... 30

3.3.1.1 Solution Representation ... 30

3.3.1.2 Quality Measure of a Solution .. 31

3.3.1.3 Neighborhood Search ... 31

3.3.2 Nearest Neighbor (NN) Heuristic ... 34

3.3.3 Improved Nearest Neighbor (INN) Heuristic ... 37

3.3.4 Nearest Urgent Candidate (NUC) Heuristic ... 40

3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic 43

3.4 Metaheuristic Approach ... 46

3.4.1 Cuckoo Search (CS) Algorithm ... 46

3.4.1.1 The General Concept of CS .. 46

3.4.1.2 Main Steps of CS .. 47

3.4.2 Artificial Bee Colony (ABC) Algorithm .. 49

3.4.2.1 The General Concept of ABC .. 49

3.4.2.2 Enhanced Artificial Bee Colony (EABC) Algorithm 50

3.4.2.3 Main Steps of EABC .. 52

CHAPTER 4 COMPUTATIONAL EXPERIMENT .. 54

4.1 Test Problems .. 54

4.2 Parameter Setting ... 54

4.2.1 Nearest Neighbor (NN) Heuristic ... 54

4.2.2 Improved Nearest Neighbor (INN) Heuristic ... 55

4.2.3 Nearest Urgent Candidate (NUC) Heuristic ... 55

4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic 55

4.2.5 Cuckoo Search (CS) Algorithm ... 56

4.2.6 Artificial Bee Colony (ABC) Algorithm .. 56

4.3 Results and Comparison .. 57

 ix

 Page

4.4 Rate of Convergence .. 70

4.5 Results Discussion ... 70

CHAPTER 5 CONCLUSION... 73

REFERENCES .. 76

APPENDIX .. 84

VITA .. 145

PUBLICATION ... 146

LIST OF TABLES

 Page

Table 1 Computational results of the model, NUC, NNRW, CS, and EABC for 25

customers in VRPBTW. ... 58

Table 2 Computational results of the model, NUC, NNRW, CS, and EABC for 50

customers in VRPBTW. ... 59

Table 3 Computational results of the model, NUC, NNRW, CS, and EABC for

100 customers in VRPBTW. .. 60

Table 4 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 25 customers in VRPBTW. .. 61

Table 5 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 50 customers in VRPBTW. .. 62

Table 6 Comparison results of the NN, INN, NUC, NNRW, CS, ABC, and EABC

for 100 customers in VRPBTW. .. 63

Table 7 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 25 customers in VRPBTW ... 64

Table 8 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 50 customers in VRPBTW. .. 65

Table 9 Comparison results of the NUC, NNRW, CS, EABC, EGB, and other

heuristics for 100 customers in VRPBTW. .. 66

Table 10 The summary of the result comparisons for each algorithm 67

Table 11 The summary of comparison between each algorithm solutions and best

known solutions .. 69

Table 12 The average number of iterations until the start of the convergence. 70

2

LIST OF FIGURES

 Page

Figure 1 An Example of 1-move ... 32

Figure 2 An Example of operator (1, 0) ... 33

Figure 3 An Example of operator (1, 2) ... 33

Figure 4 Example of case study ... 33

Figure 5 Flowchart of NN algorithm ... 36

Figure 6 Flowchart of INN algorithm .. 39

Figure 7 An Example of candidate list .. 40

Figure 8 Flowchart of NUC algorithm... 42

Figure 9 Flowchart of NNRW algorithm ... 45

Figure 10 Flowchart of CS algorithm .. 48

Figure 11 Flowchart of EABC algorithm .. 53

Figure 12 The relationship between the heuristic solution and ratio of 𝛼 to 𝛽 55

Figure 13 The relationship between fitness value and the ratio of parameters 𝛼, 𝛽,

and 𝛾 ... 56

Figure 14 The relationship between the total distance and parameter , and

comparison -interchange between with and without 1-move intra-route. 57





3

CHAPTER 1

INTRODUCTION

1.1 General Vehicle Routing Problem

Since business has always been a highly competitive environment, many

companies employ strategies for optimizing their logistics system to make their

business more efficient. To effectively improve logistic service quality, several

problems have been studied including vehicle routing problem (VRP).

The vehicle routing problem (VRP) is a transportation problem which is widely

studied in operations research. The objective of VRP is to find an optimal set of routes,

which minimizes total cost, for delivering goods located at the central depot to all

customers who have placed demands for goods. This problem is widely applied in many

applications such as logistics distribution, school bus routing, and mailing system.

Many types of vehicle routing problem models have been developed due to varieties of

real-world situations, namely the capacitated vehicle routing problem (CVRP) [1-2],

the open vehicle routing problem (OVRP) [3-4], the vehicle routing problem with

simultaneous delivery and pickups (VRPDP) [5-6], the vehicle routing problem with

backhauls (VRPB) [6-10], the vehicle routing problem with time window (VRPTW)

[11-18], etc. Since the VRP is an NP-hard combinatorial optimization problem [20], the

exact algorithm is not always possible to find an optimal solution within a limited time.

For larger problems, heuristics and metaheuristics are more appropriate than exact

methods.

 A heuristic is an optimization technique which explores the space of the feasible

solutions to rapidly get satisfactory solution. There are well-known heuristics such as

nearest neighbor algorithm, sweep algorithm, and cluster algorithm. Furthermore, there

are also metaheuristic methods which are higher-level heuristics designed for finding a

near optimal feasible solution. Examples of these algorithms are genetic algorithm

(GA) [14, 21], particle swarm optimization (PSO) [22-23], ant colony optimization

4

(ACO) [19, 24], cuckoo search (CS) [55-56], artificial bee colony algorithm (ABC)

[57-62], and firefly algorithm (FA) [33-34] and bat algorithm (BA) [35-36].

 In this dissertation, a mathematical model of the vehicle routing problem with

backhauls and time windows (VRPBTW) is introduced. Moreover, two new heuristics

and two new metaheuristic methods for solving VRPBTW are proposed and their

solutions to the benchmark problems are compared with those of several other methods.

1.2 Motivations

 Since VRPBTW is one of vehicle routing problem types which is NP-hard

combinatorial optimization problem, it is too difficult to be solved by an exact method

within a limited time. In this dissertation, two heuristics and two metaheuristic methods

for VRPBTW are proposed to solve this problem. The heuristics are used to obtain high

quality feasible initial solutions in the brief time and the metaheuristics explore a larger

area of the solution space to achieve good optimization results.

 The two heuristics are the nearest urgent candidate (NUC) and the nearest

neighbor with roulette wheel selection (NNRW) heuristics. For NUC, the basic idea is

that the most urgent customer should be firstly served. When generating an initial

solution, the urgency of their delivery is considered the first priority while the closeness

is the second one. However, NUC yields only one initial solution which is not suitable

for population-based metaheuristics while NNRW can generate many good initial

solutions. The basic idea of NNRW is to generate routes by using roulette wheel

strategy where the nearer customers have higher probability to be selected as the next

customer in the current route. Although these methods can provide decent feasible

initial solutions and solve the problem in a short time, the solutions obtained from these

methods always get stuck in the local optima.

 The two metaheuristic methods are the cuckoo search (CS), and the enhanced

artificial bee colony algorithm (EABC). CS is inspired by an aggressive breeding

behavior of cuckoo birds. The female cuckoos lay eggs in the nest of other host birds

to let them hatch and brood young cuckoo chicks. To the best of our knowledge, CS

algorithm had never been applied to VRPBTW. Thus, we propose a CS algorithm for

VRPBTW in this dissertation. Moreover, CS is that it requires less parameters

5

compared with other metaheuristics. CS has only 2 parameters while GA [14], ACO

[19], and PSO [22] have 3, 6, 8 parameters respectively. Since the results of

metaheuristics are affected by parameter tuning, the less parameters is more desirable

because it makes parameter tuning easier. However, the disadvantage of CS is that when

there are many duplicated initial solutions, they are not properly dispersed in the

solution space and that can easily lead to trapping in a local optimum. EABC is an

enhanced version of ABC, which is inspired from the intelligent finding food sources

behavior of the honey bees around the hives. Although the original ABC has a strategy

for preventing premature convergence of the solutions, it has the same problems as CS

when there are many duplicated initial solutions. Hence, the enhanced version (EABC)

is proposed to solve this problem by using the strategy called forbidden list. Moreover,

the sequential search strategy, and the intra-route and inter-route exchange combination

strategy are applied in EABC to extend the exploration on the solution space to obtain

better solutions.

1.3 Research Objectives

 The objectives of this research study are stated as follows:

1. To propose a mathematical model of the vehicle routing problem with backhauls

and time windows.

2. To develop heuristic methods for solving the vehicle routing problem with

backhauls and time windows and compare the performance with the existing

heuristics using benchmark problems.

1.4 Scope of the Research

 In this research study, the VRPBTW is the single-trip VRPBTW for each

delivery vehicle. Each vehicle starts from the depot, which is assumed to be the only

one depot located in the city, and then serves a set of customers before going back to

the depot, which is considered as the destination. A time window refers to a fixed time

window in which the associated customer must be served. Note that the traveling time

from customer A to customer B is equal to the Euclidean distance between them. A

vehicle is allowed to pick up the goods from backhaul customers and then back to the

6

depot only after all linehaul customers are served. A vehicle is also allowed to deliver

goods to linehaul customers and then go back to the depot without any pick up. The

aim of our research is to minimize total distance for VRPBTW. Thus, there is no

additional cost for adding vehicles. The performance of the heuristics are measured

based on the benchmark problem sets developed by Gelinas et al. [37].

1.5 Overview of Dissertation

 The dissertation is divided into five chapters, namely introduction, literature

review, VRPBTW and heuristic approaches, computational experiment, and

conclusion.

 The first chapter is the introduction about VRP in general, the research

objectives, and the scope of this research study.

 The second chapter is the literature review about the VRP and its variants

including VRPB, VRPTW, and VRPBTW. Furthermore, we also review the solution

approaches to VRP which can be categorized into mathematical optimization

approaches, heuristic approaches, and metaheuristic approaches.

 The third chapter describes VRPBTW, the proposed mathematical models, and

the solution approaches. Firstly, VRPBTW is described and then a proposed

mathematical model for the problem is introduced. Next, the nearest neighbor

approaches are described including a general nearest neighbor heuristic (NN), an

improved nearest neighbor heuristic (INN), a new nearest urgent candidate heuristic

(NUC), and a new nearest neighbor with roulette wheel selection method (NNRW).

The last two approaches (NUC and NNRW) are our proposed methods in this study.

The last part presents our proposed metaheuristic approaches, which includes the

cuckoo search (CS), and the enhanced artificial bee colony algorithm (EABC).

 The fourth chapter presents the computational experiments and results. Firstly,

the descriptions of test problems are described. Then, a small study on parametrization

is explained in the parameter setting section. Next, the computational results from the

mathematical model, the heuristics, and the metaheuristics are presented. Moreover, the

comparisons of our methods with the existing algorithms for solving the VRPBTW are

7

also shown in the same section. In addition, we also study about rate of convergence

and discuss about results.

The fifth chapter is the conclusion of this study.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Vehicle Routing Problem

 The vehicle routing problem (VRP) is a generalization of the travelling

salesman problem (TSP) which is a non-deterministic polynomial-time hard (NP-hard)

problem in computational complexity theory. It is a combinatorial optimization and

integer programming problem aiming to minimize the total distance or the total number

of vehicles used. The basic VRP consists of a depot, a set of customers who require

goods from the depot, and a fleet of vehicles. Each vehicle starts from the depot and

serves a set of customers before going back to the depot. It was first introduced by

Dantzig and Ramser [38]. The formulation of VRP has been extended with various

constraints to reflect real-world applications such as capacity, time windows, pickup

and delivery, cross-docking, and backhaul.

 The capacitated vehicle routing problem (CVRP) is a classical version of VRP.

The objective of CVRP is to find an optimal route set which minimizes the total cost

for a fleet of homogeneous vehicles to serve a set of customers while being restricted

by the capacity of vehicles. All vehicle routes begin and end at the depot and all

customers are visited. Each customer is visited exactly once by exactly one vehicle. The

total demand of each route must not exceed the vehicle capacity. More details of CVRP

can be found in a VRP textbook such as [39].

2.1.1 Vehicle Routing Problem with Backhauls

 The vehicle routing problem with backhauls (VRPB) is one of the interesting

variations of VRP where a vehicle does not only deliver goods to the linehaul customers

but also picks up goods from the backhaul customers before going back to the depot. A

vehicle is also allowed to deliver goods to linehaul customers and then goes back to the

depot without any pick up. The benefit of doing so is to utilize the unused capacity of

empty vehicle on the way back to the depot after delivery. For example, a coffee

9

company delivers the goods to its customers and picks up their raw materials on their

way back to its factory [40].

Toth and Vigo [7] proposed a heuristic which used the information of a

Lagrangian relaxation to obtain the formation of clusters of customers for generating

feasible routes. To improve the quality of the solution, intra-route and inter-route

methods were applied.

Osman and Wassan [8] presented a reactive tabu search which was a new way

to exchange neighborhood structures for VRPB. In their study, two algorithms were

used to find the initial solutions, namely the saving-insertion heuristic (SIH), and the

saving-assignment heuristic (SAH). For SIH heuristic, a set of vehicle routes for

linehauls was constructed by using saving algorithm, and then backhauls were inserted

into those routes while preserving the vehicle constraints. SAH started by generating

two sets of vehicle routes: one for linehauls and another for backhauls. The initial

solutions were constructed by using the 2-opt and 3-opt improvement heuristics to

merge linehauls routes and backhauls routes. In their tabu search algorithm, the 𝜆-

interchange was used as the neighborhood search. The results showed that this

algorithm was robust, and gave the better solutions than Toth and Vigo [7].

Brandao [9] presented a new tabu search algorithm (TSA) for the VRPB. For

the initial solution construction, two methods were introduced. The first method was

the open initial solution (TSA-open), which considered the two sets of customers

(linehauls and backhauls) separately, each with their own VRP, and then linked the two

solutions from both VRPs to form the initial solutions. The second method was the K-

tree initial solution (TSA-K-tree), which selected the best 10 lower bounds from

Lagrangian relaxation to create 10 initial solutions. The computational results showed

that TSA algorithm outperformed the heuristic of Toth and Vigo [7] and the average

results of TSA-open were almost identical to Osman and Wassan (2002).

A memetic algorithm with different local search methods was presented by

Tavakkoli-Moghaddam et al. [10]. The concept of this algorithm was the simple

population was used instead of complicated structured populations. Many types of

evolutionary operators were used in this algorithm, namely partial-mapped crossover

(PMX), order crossover (OX), position based crossover (PBX), and order-based

10

crossover (OBX). The results showed that this algorithm was better than the heuristic

of Toth and Vigo [7].

Gajpal and Abad [11] presented multi-ant colony system which used pheromone

data to generate the solutions. They divided ants into two types, namely vehicle-ants

and route-ants, to construct a feasible solution. Each elitist ant was equally important

and distinct to prevent trapping at a local minimum. Moreover, the solutions (elitist

ants) were abandoned when the solutions were not improved in limited time. This

algorithm gave some better solutions than the others and five new best known solutions

for the benchmark problem instances available in the literature.

2.1.2 Vehicle Routing Problem with Time Windows

 The vehicle routing problem with time windows (VRPTW) is a VRP with a

specified time slot that a delivery is allowed for each customer. A waiting time occurs

if a vehicle arrives before the specified time window. VRPTW is commonly found in

distribution planning, material transportation, and E-grocery delivery.

Chiang and Russell [12] proposed a reactive tabu search metaheuristic for the

VRPTW. They applied the intensification and diversification strategies to obtain the

high-quality solutions. To improve the solutions, the 𝜆-interchange was used as the

neighborhood search. Large scale for real-world problems and test problems from the

literature were used in computational results report.

Berger and Barkaoui [13] presented a new memetic algorithm in the serial and

parallel versions to address the VRPTW. Later, they presented a new parallel hybrid

genetic algorithm for VRPTW [14]. Two sets of populations (solutions) were evolved

in different directions; the first one focuses on minimizing total distance, and the second

one focuses on minimizing temporal constraint violation to find a new feasible solution.

The master–slave message–passing paradigm was used for parallel method. The master

processing element controlled the parent selection process while reproduction and

mutation operators were managed by the slave processing elements. The results showed

that this algorithm was highly competitive and provided some new best known

solutions.

11

Bräysy and Gendreau [15] presented research survey on the tabu search

algorithms for VRPTW. In the comparison with the current best approaches by using

Solomon’s benchmarks [16], they concluded that tabu search algorithm is one of the

best techniques to tackle this problem.

Gong et al. [17] proposed a two-generation (father and children) ant colony

system for VRPTW. In the children generation, the sub-routes were generated by

minimizing the total distance while preserving the time window constraints. Then, the

feasible solutions were composed from sub-tours in the father generation. For small test

problems, this algorithm reduced the vehicles in use but it increased the total distance

and a little break of the time window when comparing with the ant colony algorithm in

other literature.

A hybrid version which consisted of ant colony optimization (ACO) and tabu

search (TS) was presented by Yu et al. [18]. The initial solutions were constructed by

using ACO, and TS maintained the diversity of the current solutions as well as explores

the new solutions. Using Solomon’s test problems [16], this algorithm obtained 41 best

known solutions out of 56 instances. They concluded that this hybrid version was an

effective tool for VRPTW.

Ding et al. [19] presented the hybrid ant colony optimization (HACO) for

VRPTW. The ACO was combined with the saving algorithm and λ-interchange

mechanism to increase the convergence speed. Furthermore, the strategy of candidate

list was adopted to reduce the time to compute the transition probabilities when ants

selected the next customer in construction phase. In addition, the pheromone approach,

which was based on Min-Max ant system, and a disaster operator were applied to

prevent trapping in local optima. The results indicated that HACO was competitive with

existing heuristics in literature and also found new best known solutions for some

instances.

2.1.3 Vehicle Routing Problem with Backhauls and Time Windows

 The vehicle routing problem with backhauls and time windows (VRPBTW) is

an extension of the vehicle routing problem with backhaul (VRPB) by imposing a

specific service time window for each customer. There are three main types of

12

constraints in this problem: capacity, time window, and backhaul. The capacity

constraints ensure that the total demand in each vehicle does not exceed its capacity.

The time window constraints confirm that each vehicle arrives at each customer within

his or her specified time slot. The backhaul constraints guarantee that each vehicle

serves linehaul customers before backhaul customers and eventually goes back to the

depot.

An increasing number of publications on heuristic approaches for vehicle

routing problem have been developed for the past two decades. However, only few

studies have been devoted to the VRPBTW.

Gelinas et al. [37] proposed a new branching strategy for branch-and-bound

approaches based on column generation for the VRPTW. Two main strategies were

time window divisions and branching strategies. For time window division, time

window was divided into two subintervals to create two new problems, and then some

conditions were added to each problem to eliminate routes. For branching strategies,

there were two techniques to choose a network node on which to branch, namely

choosing a time window division, choice of the network node for branching

(elimination of cycles, number of visits, and flow values). To test these strategies, 45

benchmarks for VRPBTW were constructed based on Solomon data set [16]. Results

showed that this method successfully solved 34 problems optimally with up to 100

customers.

Thangiah et al. [41] introduced a heuristic approach to VRPBTW called the

push-forward insertion heuristic (PFIH), which was used for generating routes one by

one. A customer which was nearest to depot was selected to be a customer seed for

current route, and then unassigned customers were inserted at the best feasible

positions. If there were no feasible insertion places in the current route, the algorithm

would repeat by finding a new customer seed to generate a new route. To improve the

solutions, the λ-interchange and 2-opt* methods were used as the local search. For the

computational results, PFIH solutions were compared against known optimal solutions,

and were within 2.5% of the optima on the average.

Potvin et al. [21] proposed a genetic algorithm (GA) for VRPBTW. The initial

solutions were constructed using the greedy insertion heuristic, which was derived from

Solomon’s work [16], during the route construction. For recombination, the OX, MX1,

13

MX2, and 1X operators were applied. The techniques called remove-and-reinsert,

swap, and last-will-be-first were introduced for mutation. The computational results

showed that the solutions of GA were within 1% of the optima on average.

Duhamel et al. [42] presented a tabu search heuristic for the VRPBTW. They

focused on the minimization of fleet sizes first and the minimization of schedule times

(which include travel times, service times, and waiting times) next while Thangiah et

al. [41] considered the minimization travel times only as the second goal. An initial

solution was generated by using insertion heuristic [16]. To improve the solution, tabu

search and local search and enhance algorithms were applied. The tabu search heuristic

is tested on problems where customers were distributed normally over the service area.

For the computational results, the solutions of this method were within 0.5% of the

optima on average, and better than GA [21] and PFIH [41].

Reimann et al. [43] presented the insertion based ant system for the VRPBTW.

The core of this algorithm was the incorporation of insertion heuristic [16] as the

solution construction method within the ant system. The swap and move operators were

applied as the solution improvement. The computational result showed that this

algorithm outperforms a custom-made heuristic proposed by Thangiah et al. [41].

Zhong and Cole [44] presented a guided local search heuristic (GLSA) to solve

the VRPBTW. The algorithm was divided into two phases based on the idea of a cluster-

first route-second algorithm. For the first phase, an initial solution was generated by

sweep algorithm, and then a guided local search heuristic (2-opt, 1-move, and 1-

exchange) was used to improve the solution. For the second phase, a new strategy called

section planning was applied which inserted new routes until a feasible solution was

obtained and arranged customers within routes to decrease the total distance. In this

phase, the feasibility constraints were soft in early iterations and hard later. For

experiment results, although GLSA underperformed GA [21] algorithm for VRPBTW

problems, GLSA did find a better solution than GA [21] for some instances.

Pisinger and Ropke [45] proposed a unified heuristic called ALNS to solve

several variants of the VRP including the VRPBTW. The VRPBTW was transformed

into the VRPB while the routes were ordered according to time window constraints.

The results showed that it can improve 183 best known solutions out of 486 benchmark

tests especially in large problems.

14

Aghdaghi and Jolai [46] presented a goal programming approach and a heuristic

algorithm to solve the vehicle routing problem with backhauls and soft time windows

(VRPSBTW). The different between the soft time window and the hard time window

was the lower and upper bounds of the time window was not necessary to be met, but

could be violated with the penalty. The proposed heuristic was a two-phase algorithm

based on the idea of a cluster-first route-second algorithm. During the first phase, the

partition sets of customers, called zones, were created. In the second phase, the feasible

routes were generated by using input data from the first phase. For computational

results, this algorithm results were close to the optimal results for some instances.

Liu et al. [47] presented a genetic algorithm and a tabu search method to solve

the vehicle routing problem with mixed backhauls and time windows (VRPMBTW).

For VRPMBTW, a vehicle could serve linehauls and backhauls in a mixed order. The

algorithms were tested on benchmark problems and better than the best-known

solutions in the literature.

Küçükoğlu and Öztürk [48] proposed a differential evolution algorithm which

is similar to a genetic algorithm. The main difference between the genetic algorithm

and the differential evolution algorithm was the process of creating the improved

solution: genetic algorithm relied on crossover while differential evolution relies on

mutation. The results showed that this algorithm could obtain some new best known

solutions. However, this algorithm lost to more than half of the current best known

solutions for the large problems. Later, Küçükoğlu and Öztürk [49] proposed an

advanced hybrid meta-heuristic algorithm for VRPBTW. This algorithm was a

structured combination of simulated annealing which helped to escape from local

optima and tabu search which helped to avoid cycling. The algorithm was tested on the

benchmark set of Gélinas et al. [37]. The results indicated that this algorithm had

superior performance compared with the existing algorithms in the literature. However,

one of the disadvantages of the hybrid algorithm was that it took a lot of computational

time.

15

2.2 Solution Approaches to Vehicle Routing Problem

2.2.1 Exact Approaches

 Since the VRP is an NP-Hard problem, it is complicated to find the optimal

solution especially for large problems. However, various exact methods have been

developed to solve this problem. The exact methods for the VRP is divided into three

categories, namely Lagrange relaxation-based methods, column generation, and integer

programming.

2.2.1.1 Lagrange Relaxation

 Lagrange relaxation method is a method which relaxes the original problem by

reducing some hard inequality constraints and adding Lagrange multiplier in the

objective function to penalize violations of the constraints. Generally, the relaxed

problem is easier than the original one.

Koul and Madsen [50] introduced an optimization algorithm based on the

Lagrange relaxation for solving VRPTW. The constraints that ensured each customer

was served exactly once are relaxed. The Lagrange multiplier was added to the

objective function to enforce that every customer was serviced once. This algorithm

could solve several previously unsolved problems with competitive computational

times.

Fisher et al. [51] presented two optimization algorithms for solving VRPTW.

The problem was formulated as a K-tree problem with degree 2K on the depot and

degree 2 on the customers. The relaxation constraints were the constraints which

ensured that exactly one vehicle visits and leaves each customer. The problem was

solved by a K-tree relaxation and a Lagrangain decomposition with variable splitting

where the problem was divided into two sub-problems, namely a series of shortest path

problems and a semi-assignment problem. This method was tested on the Solomon

benchmark problems [16] with up to100 customers and it was very effective with

clustered problems.

16

2.2.1.2 Column Generation

 Column generation is an efficient method to solve a larger linear programming

problem. The algorithm splits the problem into two problems: the (restricted) master

problem and the sub-problem. The (restricted) master problem is the original problem

which considers only a subset of variables. After the master problem is solved, the

information of dual prices for each of the constraints in the master problem is utilized

in the objective function of the sub-problem to identify a new entering variable. When

the sub-problem is solved, the negative reduced cost variables are added to the master

problem. The master problem is re-solved to obtain new information of dual prices for

the re-solving sub-problem. This process is repeated until no negative reduced cost

variables are identified.

Agarwal et al. [52] proposed an exact algorithm based on the set-partitioning

formulation for VRP. The column generation was applied for solving this problem. The

results showed that the optimal results were slightly different from optimal solution

because all distance data in this program were represented in integer.

Desrochers et al. [53] proposed the column generation approach for VRPTW

for the first time, and later the improved version of the same model was presented by

Desrochers et al. [54]. They concluded that the column generation approach is capable

of solving large problems.

2.2.1.3 Integer Programming

 Integer programming is a technique which can be used to solve a complex

problem by breaking it down into a number of sub-problems. In this way, the optimal

solutions of a large problem can be obtained from the smaller sub-problems. Branch

and bound technique is a general algorithm for solving various discrete optimization

problems. It consists of a systematic enumeration of all candidate solutions which

formed as a rooted tree. The subsets of solution are branches of the tree. Each branching

solution is checked by lower and upper estimated bound. If the solution is not better

than the old one, it will be discarded.

The name “branch and bound” first appeared in the work of Little et al. [55] and

used to solve the traveling salesman problem. All feasible solutions are divided into

17

small subsets. This process is called branching. Then a lower bound on the length

(objective value) of the feasible solutions is calculated therein in each subset. This

process repeats until a subset contains a single feasible solution whose length is less

than or equal to some lower bound for every feasible solution. Their method can

reasonably solve the extended problem size without using special techniques.

Christofides and Eilon [56] proposed a branch and bound method for the CVRP.

They suggested using a shortest spanning 1-tree bound instead of computing bound at

every node of the search tree. The efficacy of this technique was tested by two CVRP

problems: a 6-city problem and a 13-city problem. They compared three approaches,

namely the branch-and-bound approach, the savings approach, the 3-optimal tour

method. The result reported that the 3-optimal tour method was superior to the other

two methods.

An exact branch-and-bound algorithm was proposed by Fischetti et al. [57] for

solving an asymmetric capacitated vehicle routing problem. They presented the two

new additive approach bounding procedures, namely ADD_DISJ and ADD_FLOW.

Each procedure computed a sequence of non-decreasing lower bounds by solving

different relaxation problems. For branching technique, they adapted of the well-known

scheme called subtour elimination [58]. Their method was tested on both real-world

and random test problems and compared with the previous algorithms from the

literature. The result showed that all instances were solved to optimality by this

algorithm within acceptable computing time.

Baldacci and Mingozzi [59] proposed a new branch-and-cut algorithm for the

CVRP to find the optimal solution. A branch-and-cut algorithm was the method which

was applied the cutting plane to decrease the feasible solution space in the linear

programming relaxations while running a branch and bound algorithm. The

computational results showed the instances are solved to optimality by this method, and

it obtained new lower bounds which were better than the best lower bounds reported in

the literature.

Cordeau [60] presented a branch-and-cut algorithm for the dial-a-ride problem

which minimized the vehicle routes while preserving the capacity, time window, and

ride time constraints. For the computational results, the branch-and-cut method could

solve small- and medium-sized problems. It explored fewer nodes and uses less

18

computational time than the branch-and-bound method appearing in the version 8.1 of

CPLEX.

Dell'Amico et al. [61] introduced a branch-and-price algorithm for the vehicle

routing problem with simultaneous distribution and collection for the first time. A

branch-and-price was a hybrid method between branch and bound and column

generation methods. Each branch of a tree was applied with a column generation

method to improve the linear programming relaxation. The bi-directional search and

bounded number of steps were used to enhance the algorithm performance. Various

branching strategies were also studied. In computational experiments, the exact

programming and state space relaxation were compared in small- and medium-sized

problems. They concluded that branch and price was a practicable approach to solve

the vehicle routing problem with simultaneous distribution and collection for small-

and medium-sized problems.

Gutiérrez-Jarpa et al. [62] presented a branch-and-price algorithm for the VRP

with deliveries, selective pickups and time windows. The algorithm was an extension

version of the algorithm proposed by Dell'Amico et al. [40]. This algorithm was applied

to solve five variants of the problem, namely single demands with mixed routes, single

demands with backhauls, combined demands with single visits, combined demands

with multiple visits and mixed routes, and combined demands with multiple visits and

backhauls. They found the optimal solutions for the instances containing up to 50

customers.

Ropke and Cordeau [63] introduced a new branch-and-cut-and-price algorithm

for the pickup and delivery problem with time windows. A branch-and-cut-and-price

algorithm was similar to branch-and-price but cutting planes were also applied to

tighten LP relaxations within a branch-and-price algorithm. An elementary and a non-

elementary shortest path problems were considered in the column generation algorithm

as the pricing sub-problems. The results of adding valid inequalities indicating the 2-

path cut was the most successful among the valid inequalities tested. Computational

experiments showed the branch-and-cut-and-price algorithm outperforms a recent

branch-and-cut algorithm.

Pessoa et al. [64] presented robust branch-cut-and-price algorithms for vehicle

routing problems. This robust version would not change the structure of the pricing sub-

19

problem and kept its pseudo-polynomial pricing complexity. They were quite

successful on current typical instances up to 100 customers.

2.2.2 Heuristic Approach

 A heuristic method is simply an algorithm which is sufficient to find immediate

solutions but may not guarantee the optimal solution. This method is suitable for

solving a complex problem because it speeds up the process and obtains satisfactory

solutions.

2.2.2.1 Two-phase heuristics

 Two-phase heuristics divide a problem into two phases. The first phase is a

cluster phase, which groups customers into subsets. Then, the second phase builds

routes on each subset.

Gillett and Miller [65] introduced sweep algorithm for solving medium- and

large-scale vehicle-dispatch problems. The polar-coordinate angle for each customer

was used to build up each route by rotating the line centered at the depot in a circle.

Each customer which touched the line was added to the route. A new route was started

when the customer could not be added because of constraint violations. The results

reported that the algorithm results were slightly better than Christofides and Eilon's

results [56]. However, its computationally efficiency was slightly less so than

Christofides and Eilon's [56].

Solomon [16] adapted the sweep method for solving VRPTW. The cluster phase

of the algorithm was the same as the original version of the sweep algorithm [65]

without scheduling. For the route phase, scheduling solution was created in each sector

using some insert heuristic criteria. The computational results indicated that the

algorithm was very efficient in terms of the quality for the cluster instance type, but

other types were quite disappointing.

Fisher and Jaikumar [66] presented a generalized assignment heuristic for

vehicle routing problems based on the idea of two-phase process. The algorithm started

by clustering the customers using generalized assignment problem. It then created the

routes by applying means of a travelling salesman problem algorithm on each cluster.

20

The results indicated that it outperformed the best existing heuristics on a sample of

standard test problems.

Another heuristic called route first–cluster second was presented by Beasley

[67]. The algorithm first formed a giant tour in the route phase to ensure that the

customers who were in close proximity to one another were also near one another in

the giant tour. In the clustering phase, an algorithm for the shortest path problem was

applied. They found that five out of ten problems were the great solutions which three

of them are optimal solutions.

2.2.2.2 Constructive heuristics

 Constructive heuristics is a method which creates a solution by repeating some

processes until the solution is completed.

Clarke and Wright [68] introduced the saving heuristic for scheduling vehicles

from a central depot to a number of delivery points. In this heuristic, the saving value

between any two customers was defined as the distance that was saved due to putting

them in the same route instead of having them in separate routes. The routes with largest

saving value were connected if they did not violate the constraints. The process would

be repeated again and again. This algorithm was simple because no parameters are

required. It also speeded up the selection of an optimum or near-optimum route.

Solomon [16] presented the nearest-neighbor heuristic. It started by adding an

unassigned customer which was closest to the depot. Then, the next unassigned

customer which was closest to the previous customer was added to the route if the

constraints were still preserved. If this violates the constraints, the heuristic started a

new route. The closeness in this paper was computed by the following formula:

  = + +ij ij ij ijcloseness c h v , where 1  + + = , , , 0    ,
ijc denoted the

distance expressed as time from customer i to customer j ,
ijh denoted the idle time

before servicing customer j after customer i , and
ijv denoted the urgency of delivery

to customer j after customer i expressed as the time remaining until the vehicle’s last

possible service started for customer j . In addition, the insertion heuristic was also

introduced as a constructive heuristic. There were three types of insertion criteria. The

21

insertion criteria type (i) focused on minimizing the extra distance and extra time

required after insertion. The insertion criteria type (ii) focused on minimizing total

distance and time. The last insertion criteria type (iii) focused on the urgency of

servicing a customer. Moreover, the saving heuristic [68] was adapted in this method

to handle VRPTW. The computational results indicated that the insertion heuristic type

(i) showed excellent performance both in terms of quality and computational time.

However, type (ii) and (iii) did not perform well in general and the results were quite

disappointing.

Potvin and Rousseau [69] presented insertion heuristic for the vehicle routing

and scheduling problem with time windows (VRSPTW). The heuristic was a parallel

version of Solomon’s insertion heuristic type (i) [15]. The measure of a gap between

the best and the second best insertion places for a customer overall routes was a criterion

for choosing the next customer to be inserted on the route. The Computational results

reported that the parallel approach was better than the sequential approach all instances

especially on pure clustered problems.

Balakrishnan [70] introduced three heuristics which were based on nearest-

neighbor and Clarke-Wright savings algorithm [68] for the vehicle routing problem

with soft time windows (VRPSTW). Each heuristic differed only in the way the first

customer was chosen for a route and the way the next customer was chosen during the

route construction. The different measures were used to compare the cost of waiting

and potential penalty which was a linear function of the amount of time window

violation. The best solutions from the three heuristics had smaller number of vehicles

used and total distances than the solutions from other methods in the literature.

Dullaert [71] introduced a new time insertion criteria to solve the VRPTW with

relatively few customers per route. The results indicated that the algorithm saved the

cost but it increased the number of customers per route. They concluded that the

algorithm can improve the quality of the heuristic for short-routed VRPTW.

Ioannou et al. [72] presented a greedy look-ahead heuristic for the VRPTW.

They introduced new criteria for choosing and inserting customers which were based

on a greedy look-ahead heuristic which proposed by Atkinson [73]. The results showed

that the algorithm suits the problems which required the number of vehicles used, and

daily real-life scheduling problems.

22

Pang [74] presented an adaptive parallel route construction heuristic for the

VRPTW. The heuristic was motivated from nearest-neighbor heuristic [16] which

considered three cost factors: distance, urgency and waiting cost. The weights of the

cost factors were adjusted based on the problem characteristics which were randomly

uniform distribution, clustered distribution, and the mixture of random and clustered

distribution. The results indicated that the algorithm was useful for the initial route

construction.

The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery

problem was presented by Sheridan et al. [75]. They introduced new policy that

maintained closest customer-to-vehicle assignments because of its ability to divert/re-

assign vehicles when another vehicle became available or a new customer call arrived.

The results showed that this algorithm outperformed the existing NN, and it could

minimize the longest customer waiting times in realistic scenarios.

 A nearest neighbor heuristic is one of classical route construction heuristics

which is easy to implement and fast to execute. The algorithm starts by adding the

closest unassigned customer to the depot into the route and then repeats adding the next

closest unassigned customer until some constraint is violated. If it fails to add any

customers into the route because of some infeasibility, it will start a new route from the

depot and continue the process until all customers are scheduled on some routes.

Solomon [17] proposed a time-oriented nearest-neighbor heuristic that

considered both the capacity constraints and the time window constraints. In this

approach, he computed the “closeness” from three factors, namely the direct distance

between the two customers, the urgency of the delivery of the next customer, and the

time remaining until the vehicle’s last possible service starting.

Küçükoğlu and Öztürk [49] also applied nearest-neighbor algorithm, called

improved nearest-neighbor heuristic, as a constructive heuristic to solve VRPBTW.

This heuristic was computed the closeness using the same three factors as a time-

oriented nearest-neighbor heuristic proposed by Solomon [16]. This is an inspiration to

propose new algorithms based on nearest-neighbor heuristic in this dissertation, namely

a nearest urgent candidate heuristic (NUC), in which all customers are ordered

according to the urgency of their delivery, and a nearest neighbor with roulette wheel

23

selection (NNRW) method which is a combination of a roulette wheel selection method

and the improved nearest-neighbor heuristic.

2.2.3 Metaheuristic Approach

 A metaheuristic method is the optimization technique that explores a larger area

of the solution space to achieve good optimization results. It has proven to be the

methods of choice for many researchers to get an approximate, and near-optimal

solutions. The main difference between metaheuristic and heuristic is the metaheuristic

is a high-level problem-independent algorithm which guides the search process while

heuristic is a problem-dependent algorithm.

 Metaheuristic methods are divided into three types, namely local search (e.g.

tabu search, simulated annealing), population search (e.g. cuckoo search, artificial bee

colony), and learning mechanism (e.g. neural network, swarm intelligence). Two

metaheuristics, namely cuckoo search (CS) algorithm, and artificial bee colony (ABC)

algorithm, are used to solve VRPBTW in this dissertation. Thus, only the literature

reviews on the two methods will be discussed.

 CS is a metaheuristic method introduced by Yang and Deb [25]. It is inspired

from aggressive breeding behavior of cuckoo birds. Although this algorithm was

originally designed for solving continuous problem, a hybrid cuckoo search algorithm

with greedy randomized adaptive search procedure was first proposed by Zheng et al.

[26] to solve discrete problems like VRP. A path relinking strategy which was used as

a way of exploring trajectories between high-quality solutions was applied to CS

instead of Lévy flight in the original CS. Moreover, swap and inversion strategies were

also used in a local search. The results showed that this algorithm was effective for

solving the VRP. However, the computational time of the algorithm increased

significantly in the large-scale problems.

 ABC is inspired by the intelligent food source finding behavior of the honey

bees around the hives and was proposed by Karaboga [27]. It was firstly applied to the

CVRP by Szeto et al. [28] with some enhancements. The results showed that the

enhanced version of ABC algorithm outperformed the original one, and it could

produce good solutions when compared with the existing heuristics. Alzaqebah et al.

24

[29] presented the modified ABC for the VRPTW. In this study, the list of abandoned

solutions was used to generate new solutions. The results showed that the modified

ABC algorithm obtained good results when compared with the best-known results. An

improved artificial bee colony algorithm for a real case in Dalian was introduced by Yu

et al. [30]. In this version of ABC algorithm, three strategies were applied, namely an

adaptive strategy, a crossover operation, and a mutation operation. The results showed

that some solutions were better than the best-known solutions when tested on

benchmark problems [16] for VRPTW.

 There are many reasons that motivate us to apply the CS and ABC algorithm to

solve VRPBTW in this dissertation. Firstly, these algorithms were successfully applied

to VRP as described [26, 28-30]. Secondly, these algorithms are metaheuristics, which

means the exploring area of the solution space is larger than non-metaheuristics (e.g.

PFIH, unified heuristic). Thus, they can achieve good optimization results, especially

in the large-sized problems. Thirdly, these algorithms are a population-based heuristic

which starts with a number of initial solutions. Therefore, they can explore more in the

solution space and have more chance to obtain the better solutions than non-population-

based heuristic (e.g. HMA). Moreover, a population-based heuristic can be enhanced

with parallel computing or distributed computing. Finally, these algorithms can prevent

the search from premature convergence problem which is the weakness of other

population-based heuristics (e.g. GA and DEA). This is because, for ABC algorithm in

the scout bee stage, the stalled solutions are removed from the population and new

randomly generated solutions are added to the population; and, for CS algorithm, the

solutions are abandoned with a probability and then completely new solutions are built.

This process also amplifies global search capability.

 To the best of our knowledge, CS algorithm had never been applied to

VRPBTW. Thus, we propose a CS algorithm for VRPBTW in this dissertation.

Although ABC algorithm was successfully applied to several variations of the VRP

[28-30], there are a few studies [31-32] that apply ABC for solving VRPBTW.

Tuntitippawan and Asawarungsaengkul [31] applied ABC to small and medium

problems and Tuntitippawan and Asawarungsaengkul [32] applied ABC to small,

medium, and large problems. However, the results showed that it still underperformed

the existing heuristics in many instances, especially in the large-scale problems. It is

25

necessary to extend the exploration on the solution space or, equivalently, to expand

the capability of the neighborhood search. Therefore, we propose the enhanced artificial

bee colony algorithm (EABC) by applying a forbidden list strategy to prevent

duplicated initial solutions (which initially extends the exploration on the solution

space), the sequential search strategy for onlookers to explore the neighborhood near

the high-quality food source, and the intra-route and inter-route exchange combination

strategy to obtain the better solutions.

26

CHAPTER 3

THE VEHICLE ROUTING PROBLEM

WITH BACKHAULS AND TIME WINDOWS

3.1 Problem Description

 The vehicle routing problem (VRP) is a well-known combinatorial optimization

problem designed to find the minimum distance or fleet size required to satisfy the

demands located at a set of geographically dispersed customers from one or more

depots. Many variations of VRP have been formulated by applying constraints to add

realism such as capacity, time windows, pickup and delivery, cross-docking, and

backhaul constraints. In this dissertation, we focus on the VRP with backhaul and time

window (VRPBTW). Here, customers either require items to be delivered from the

depot (linehauls) or they need items returned to the depot (backhauls). Moreover, there

are restrictions on the times that a vehicle can arrive at the customers. The VRPBTW

has three main constraints: 1) the capacity constraints where the total demand in each

vehicle does not exceed its capacity, 2) the time window constraints where each vehicle

arrives at each customer within the customer’s specified time window, and 3) the

backhaul constraints that ensures linehauls customers are served before backhauls

customers.

3.2 Mathematical Model

 We propose a mathematical model for VRPBTW which are modified from

mathematical formulation for fleet size and mixed vehicle routing problem with

backhauls (FSMVRPB) proposed by Salhi et al. [76] and vehicle routing problem with

backhauls and time windows (VRPBTW) presented by Küçükoğlu and Öztürk [49].

The VRPBTW can be formulated into a mixed-integer program model as follows. (Note

that the depot is considered a node indexed by 0.)

Notations:

27

L = number of linehaul customers (indexed by 1, , L).

B = number of backhaul customers (indexed by 1, ,L n+).

n = total number of customers (L B+).

K = number of vehicles (indexed by 1, , K)

ku = capacity of vehicle : {1, , }k k K .

id = demand of customer i .

ijc = distance between node i and node j .

ia = earliest arrival time at customer i .

ib = latest arrival time at customer i .

is = service time for customer i .

ijt = travel time between node i and node j .

M = a large scalar.

maxT = maximum route time allowed for every vehicle.

ij = the vehicle load on the arc from customer i to customer j .

k

iw = service start time of vehicle k for customer i . (
0

kw means the time that vehicle

k returns to the depot.)

k

ijx = 1 if vehicle k travels from customer i to customer j , 0 otherwise.

The model:

Min
1 0 0

K n n
k

ij ij

k i j

c x
= = =

 (1)

Subject to

0 1

1
n K

k

ij

i k

x
= =

= , 1, ,j n= (2)

0 1

1
n K

k

ij

j k

x
= =

= , 1, ,i n= (3)

0 0

n n
k k

ip pj

i j

x x
= =

=  , 1, ,k K= 0, ,p n= (4)

28

0 0

L n

ij jl j

i l

d 
= =

= +  , 1, ,j L= (5)

0

1 1

n n

jl j j ij

l L i

d  
= + =

+ = +  , 1, ,j L n= + (6)

0ij = , 0, ,i L= 0j = & 1, ,j L n= + (7)

0ii = , 0, ,i n= (8)

0

1 1

n n

i i

i L i L

d
= + = +

=  (9)

1 1

L L

oj j

j j

d
= =

=  (10)

0k

ijx = , 1, ,i L n= + ; 1, ,j L= ; 1, ,k K= (11)

1

K
k k

ij ij

k

x u
=

 , 0, ,i j n = (12)

0 0(1)k k

j j jt w M x−  − , 1, ,j n= ; 1, ,k K= (13)

0 0 0(1)k k k

i i i iw s t w M x+ + −  − , 1, ,i n= ; 1, ,k K= (14)

(1)k k k

i i ij j ijw s t w M x+ + −  − , 1, ,i n= ; 1, ,j n= ; 1, ,k K= (15)

k

i i ia w b  , 1, ,i n= ; 1, ,k K= (16)

0 max0 kw T  , 1, ,k K= (17)

{1,0}k

ijx  , 0, ,i n= ; 0, ,j n= ; 1, ,k K= (18)

0ij  , 0, ,i n= ; 0, ,j n= (19)

0k

iw  , 0, ,i n= ; 1, ,k K= (20)

 In the above model, equation (1) is the objective function which refers to

minimizing the total route distances. Constraints (2) and (3) ensure that each customer

is visited exactly once and by one vehicle only. Constraint (4) guarantees that a vehicle

leaves from the same customer it has entered. Constraint (5) confirms the precedence

relationship and the delivery satisfies the demands of linehaul customers. Constraint (6)

is also a precedence constraint which ensures that the backhaul pickups are satisfied.

29

For example, we assume that the next linehaul customer is A, its demand equals 25,

and the vehicle load before serving customer A is 75. After servicing customer A, the

vehicle load becomes 50. On the other hand, if A is a backhaul customer, the vehicle

load becomes 100 after picking up the goods from customer A. Constraint (7) ensures

that the load carrying from linehaul customers to backhaul customers or the depot is

empty. Constraint (8) confirms that there is no load between the same customers.

Constraint (9) guarantees that the total of the loads on vehicles returning from backhaul

customers to the depot is equal to the sum of the demands of the backhaul customers.

Constraint (10) ensures that the total of the loads on vehicles departing from the depot

is equal to the sum of the demands of the linehaul customers. Constraint (11) prevents

vehicles from going from a backhaul customer to a linehaul customer. Constraint (12)

ensures that the vehicle load from customer i to customer j does not exceed the

capacity of the vehicle going from node i to node j . Constraint (13) guarantees that if

there is a vehicle from the depot to a customer, the travelling time between the depot

and customer j must not exceed the start service time at node j . Constraint (14) states

that, if a vehicle is traveling from node i to the depot, the arrival time at the depot must

be greater than summation of the start service time at node i , service time at node i ,

and travelling time between node i and the depot. Constraint (15) states that, if a

vehicle is traveling from node i to node j , the arrive time at node j must be greater

than summation of the start service time at node i , service time at node i , and travelling

time between node i and node j . Constraints (16) and (17) ensure that the time window

requirements are satisfied. Finally, constraints (18), (19), and (20) define the restrictions

on the decision variables.

 We use this model to obtain the exact optimal solutions using CPLEX version

12.6. The exact solutions are used for comparison with heuristic solutions and

metaheuristic solutions in terms of their quality and computational times.

30

3.3 Heuristic Approach

 The VRPBTW belongs to the class of NPC (Nondeterministic Polynomial-time

Complete) problems because it is an extension of the traveling salesman problem which

has been shown to belong to the class of NPC problems [41]. This means that all known

algorithms that define an optimal solution require exponentially increasing

computational time as the number of customers increases. Therefore, heuristic methods

which provide approximate solutions are justified and are required for realistic-sized

problems. In this section, we introduce the heuristics which are based on nearest

neighbor algorithm, namely a nearest neighbor heuristic (NN), an improved nearest

neighbor heuristic (INN), a nearest urgent candidate heuristic (NUC), and a nearest

neighbor with roulette wheel selection method (NNRW). Note that the NUC and

NNRW heuristics are new proposed algorithms in this study.

3.3.1 Common Elements

 The heuristics explained in this section share the following common elements:

solution representation, quality measure of a solution, and neighborhood search.

3.3.1.1 Solution Representation

 A solution of the VRPBTW contains the tour for each vehicle. A tour is a path

from a depot to a subset of customers and then back to the depot. Assume there are N

customers which are denoted by integers 1 through N, and the depot denoted by 0. Also,

assume that there are K vehicles to deliver the products. A solution, which consist of

K tours, is described by a vector of length (N+K+1) that contains each customer exactly

once and (K+1) zeros that indicates the start of a new tour (a solution always starts with

a zero). The sequence of integers between two zeros represents one vehicle tour in the

solution. For example, if there are 6 customers (N=6) and 3 vehicles (K=3), a possible

solution is represented by the vector (0, 1, 2, 0, 3, 4, 5, 0, 6, 0). Notice the length is 10

(N+K+1=10) and it means that the first vehicle serves customers 1 and 2, the second

vehicle serves customers 3, 4, and 5, and the last vehicle serves only customer 6.

31

3.3.1.2 Quality Measure of a Solution

 The quality measure of a solution is determined by the reciprocal of fitness

function which is represented by a real number. In this dissertation, the fitness value of

a solution is the total traveled distance where the distance between any customers a

and b is the Euclidian distance between them, which is calculated by the following

formula [50],

2 210 () ()

10

a b a b

ab

x x y y
c

 − + −
 =

where (,)i ix y is the Cartesian coordinate of customer i . This formula is designed to

round down the distance to one decimal place. Therefore, the quality measure of a

solution is represented by

1

1

(total distance traveled by vehicle)
k

k

k

−

=

 
 
 


3.3.1.3 Neighborhood Search

 In VRPBTW, a neighbor of a solution is generated by changing the order of

visited customers. A neighborhood search (also known as a local search) is a heuristic

method for finding neighbors of a solution that are feasible and have better quality. In

this dissertation, the 1-move intra-route exchange (Chiang and Russell [12]) and the

-interchange (Osman [8]) are used.

1-move Intra-route Exchange

 The idea of 1-move intra-route exchange is to randomly remove one customer

(linehaul or backhaul) from a route and insert it back to the same route in a different

position. The solution is accepted if it can reduce the total cost while the capacity

constraints, the time windows constraints, and the backhaul constraints are not violated.

An example of 1-move is shown in Figure 1.



32

Figure 1 An Example of 1-move

-interchange

 The -interchange local search heuristic is one of the best methods to solve the

VRP problem types. The -interchange is an effective technique because it combines

many methods such as insertion (randomly choose a customer from a route and then

insert him/her in a different route), swap (randomly select two customers from different

routes and then swap their positions), insert section (randomly choose a subset of

customers from a route and then insert the subset in a different route), and swap section

(randomly select two subsets of customers from different routes and then swap their

positions).

 The idea of -interchange is to interchange customers between routes where

is a number of customers that are exchanged. In this method, the operator (,) on

routes (p, q) is defined as exchanging customers on route p with customers on

route q, where . The customers on each route are selected either systematically

or randomly. The improved solution is accepted if the total cost is decreased while

maintaining the capacity feasibility, time window feasibility, and backhaul feasibility.

In order to simplify the mechanism, we accept the first improved solution with the cost

lower than the current solution. An example of the operator (1, 0) which removes

customer 4 in the first route and then adds it in another route is given in Figure 2. This

operator is similar to the insertion algorithm. As shown in Figure 3, the operator (1, 2)

exchanges customer 4 in the first route with customer 8 and customer 9 in the second

route. This operator is similar to the swap section algorithm.







 

1 2

1 2

1 2,  

Depot Linehaul Customer Backhaul Customer

3

2

4

1

5
0

3

2

4

1

5
0

33

Figure 2 An Example of operator (1, 0)

Figure 3 An Example of operator (1, 2)

Figure 4 Example of case study

3

2

7

1 5

6 4

0

Depot Linehaul Customer Backhaul Customer

3

2

7

1

0

5

6 4

Depot Linehaul Customer Backhaul Customer

7

6

8

5
0

1

3

4 9 2

7

6

8

5
0

1

3

4 9 2

34

 Since the -interchange is the method which interchange customers between

routes, it cannot improve the solution in some cases. For example, in Figure 4, we

assume that the first solution is represented by the vector (0, 1, 3, 2, 0, 4, 5, 6, 0) and

the second solution which is a better solution compared with the first one is represented

by the vector (0, 1, 3, 2, 0, 4, 5, 6, 0). When we try to apply -interchange to improve

the first solution, we can notice that any operators of -interchange cannot be applied

to improve solution without violating constraints. Thus, the first solution will be our

result in stead of the second one which its total distance is less than the first one. To

solve this problem, 1-move intra-route exchanges should be applied in this case. Hence,

in this dissertation, we propose the intra-route and inter-route exchange combination

strategy to obtain the better solutions.

3.3.2 Nearest Neighbor (NN) Heuristic

 The nearest neighbor (NN) heuristic is one of the classic methods for solving

the VRPBTW. This method finds a solution by choosing the closest customer to the

last node to be next customer in the route while preserving the capacity, time windows,

and backhaul feasibilities.

 Main steps of NN

 The steps of the NN algorithm for solving the VRPBTW problem can be

described as follows:

Step 1 Build a new route by starting from the depot. Add the closest unassigned

customer to the route.

Step 2 Consider the closest unassigned customer to the currently assigned customer

i to be next node in the route by checking the feasibility constraints. If they are

not violated, the customer is added to the route. The closeness of customer i to

customer , denoted by
ijcloseness , is set to be the reciprocal of

ijproximity ,

which is defined as:
ij ijproximity c= , where

ijc denotes the Euclidean distance

expressed as time from customer i to customer .

Step 3 Repeat Step 2 until no more customers can be added to the current route, in

which case the route is finished.

Step 4 If there remain unassigned customers, go back to Step 1. Otherwise, go to Step 5.







j

j

j

35

Step 5 Improve the solution by the 1-move intra-route exchange, and the -

interchange where the algorithm is operated with = 4. The solution is accepted

if the total cost is lower than the current best one while maintaining the

capacity feasibility, time window feasibility, and backhaul feasibility.

Step 6 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.





36

Figure 5 Flowchart of NN algorithm

Start

Create a new route

Are all

customers

visited?

Is there a

feasible

customer?

Find a closest feasible

unvisited customer

()

Add the closest

customer to the route

Yes

Yes

No

No

Improve the solution by

neighborhood search

End

maximum

number of

iterations

reached?

Yes

No

37

3.3.3 Improved Nearest Neighbor (INN) Heuristic

 Solomon [16] proposed a time-oriented nearest-neighbor heuristic that

considers not only the capacity constraints but also the time window constraints for

VRP with time window (VRPTW). In this approach, the closeness is computed from

three factors, namely the direct distance between the two customers, the urgency of the

delivery of the next customer, and the time remaining until the vehicle’s last possible

service start. This algorithm was later improved and applied to VRPBTW by

Küçükoğlu and Öztürk [49]. It is called an improved nearest neighbor heuristic (INN).

The closeness in INN is computed from the same three factors as a time-oriented

nearest-neighbor heuristic proposed by Solomon [16]. However, it considers not only

the capacity constraints and the time window constraints but also the backhaul

constraints.

 Main steps of INN

 The steps of the INN algorithm for solving the VRPBTW problem can be

described as follows:

Step 1 Build a new route by starting from depot. Add the closest unassigned in the

route.

Step 2 Consider the closest unassigned customer to the currently assigned customer

i to be next node in the route by checking the feasibility constraints. If they are

not violated, the customer is added to the route. The closeness of customer i to

customer , denoted by
ijcloseness , is set to be the reciprocal of

ijproximity ,

which is defined as:
ij ij ij ijproximity c h v  = + + , where 1  + + = ,

, , 0    ,
ijc denotes the distance expressed as time from customer i to

customer ,
ijh denotes the idle time before servicing customer after

customer i , and
ijv denotes the urgency of delivery to customer after customer

i expressed as the time remaining until the vehicle’s last possible service start

for customer .

Step 3 Repeat Step 2 until no more customers can be added to the current route, in

which case the route is finished.

j

j

j j

j

j

38

Step 4 If there remain unassigned customers, go back to Step 1. Otherwise, go to step

5.

Step 5 Improve the solution by 1-move intra-route exchange, and -interchange

where the algorithm is operated with = 4. The solution is accepted if the total

cost is lower than the current best one while maintaining the capacity

feasibility, time window feasibility, and backhaul feasibility.

Step 6 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.





39

Figure 6 Flowchart of INN algorithm

Start

Create a new route

Are all

customers

visited?

Is there a

feasible

customer?

Find a closest feasible unvisited

customer

()

Add the closest

customer to the route

Yes

Yes

No

No

Improve the solution by

neighborhood search

End

maximum

number of

iterations

reached?

Yes

No

40

3.3.4 Nearest Urgent Candidate (NUC) Heuristic

 We propose a nearest urgent candidate (NUC) heuristic, in which all customers

are ordered according to the urgency of their delivery. This idea comes from a common-

sense management that the most urgent customer is served before the others. However,

the cost, which consists of the traveling time and waiting time, must be taken into

account as well. Thus, we use a candidate technique [14] to maintain our concept and

reduce the cost in the same time. We speculate that a high quality initial solution will

be obtained from this algorithm.

Figure 7 An Example of candidate list

 NUC starts with sorting the customers by their urgency (latest arrival times) in

ascending order. The customers that have urgent due times will be considered first but

they must compete using their closeness to be assigned into the current route. Our

version of closeness is computed from only two factors, which are the direct distance

from the current customer i to the next customer , , and the maximum idle time

between servicing customers i and , . Since we suppose that the traveling time

between customer i and customer are equal to the direct distance between them, we

can assume the direct distance is the traveling time. Formally,
ijcloseness =

, where , , . The number of urgent customers allowed to compete

must be limited. Otherwise, all customers can compete and the urgency becomes

meaningless. Therefore, a candidate technique [14] is applied to solve this problem. In

this technique, a candidate list of a fixed size is created. The list contains the chosen

customers allowed to compete for the next node in the route. However, the proper size

j
ijc

j
ijh

j

ij ijc h +

1 + = 0  0 

Current Node

Candidate Node

Non-Candidate Node

41

of the list depends on the problem being considered. Figure 6 depicts an example of a

problem with 25 customers and a candidate list of size 3.

 Main steps of NUC

 The steps of the NUC algorithm for solving the VRPBTW problem can be

described as follows:

Step 1 Order all customers according to latest arrival time from the most urgency of

delivery to the least. The NUC algorithm considers customers to add into a route

by this order.

Step 2 Build a new route by starting from depot. Choose the first customer in the

sequence to be the first customer in this route.

Step 3 Consider the next customer in the sequence to be a potential next node in the

route after the currently assigned customer i by checking the feasibility

constraints. If they are not violated, the customer is added to candidate list.

Consider the next customer in the sequence until the predetermined number of

candidates is reached, or no further candidate is found. Compute the closeness

value of each candidate from the latest customer i in the route according to

the following formula:

ijcloseness =

where , , . The closest candidate is then selected as the next

node to be visited in the route and also removed from the urgency sequence.

Step 4 Repeat Step 3 until no more customers can be added to the route, in which case

the route is finished.

Step 5 If there are unassigned customers, go back to Step 2. Otherwise, go to Step 6.

Step 6 Improve the solution by 1-move intra-route exchange, and -interchange

where the algorithm is operated with = 4. The solution is accepted if the total

cost is lower than the current best one while maintaining the capacity

feasibility, time window feasibility, and backhaul feasibility.

Step 5 Repeat Step 5 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

j

j

ij ijc h +

1 + = 0  0 





42

Figure 8 Flowchart of NUC algorithm

No

Yes

Yes

Start

Create a new route

Are all

customers

visited?

Is there a

feasible

customer?

Add first n feasible unvisited

customers to candidate list

Add the closest customer from

the candidate list to the route

()

No

Improve the solution by

neighborhood search

End

maximum

number of

iterations

reached?

Yes

No

Order all customers according

to latest arrival time

Define the number of

candidates, say n

43

3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

We propose a nearest neighbor with roulette wheel selection (NNRW) method

which is a combination of a roulette wheel selection method [77] and the INN heuristic

[49] for generating the initial solutions. The idea of NNRW is to combine the advantage

of INN, which finds the next customer by choosing the best closeness one, and roulette

wheel selection, which finds the next customer by giving a chance to all customers with

more probability for the customers with better closeness. Moreover, NNRW is a

population-based heuristic. Therefore, it can explore more in the solution space and get

more chance to obtain the better solutions than a heuristic with a single initial solution.

In this algorithm, the
ijcloseness , which is the reciprocal of

ijproximity , is

defined the same way the INN heuristic describes. The NNRW heuristic can be

explained as follows.

During a route construction where customer i is our current customer, let
jp

be the selection probability of customer to be served next after customer i . Let U

be the set of all unassigned customers with arbitrary order, say, {1,2, , }U N= where

N U= . Then, for j U , jp is calculated by:

ij

j

ihh U

closeness
p

closeness


=


We define
1

j

j h

h

q p
=

= for j U . Then a random number r which ranges between 0

and 1 is selected for spinning the roulette wheel. If
jr q , then choose the first

customer in U to be the next customer for the vehicle. Otherwise, if
1j jq r q−   , then

choose the
thj customer in U to be the next customer where 2 j U  . The

assigned customers are discarded from U to prevent duplicate customers in a route.

 The initial solution construction always starts a route with the depot, and then

finds the next customer by the nearest neighbor with roulette wheel selection method.

If the next customer violates the constraints (the capacity constraints, the time windows

constraints, and the backhaul constraints), we spin the roulette wheel again to find a

j

44

new one. If the new one is still not feasible, we end this route and begin a new route.

This process is repeated until all customers are served.

 Main steps of NNRW

 The steps of the NNRW algorithm for solving the VRPBTW problem can be

described as follows:

Step 1 Build a new route by starting from depot. Set the current “customer” to be the depot.

Step 2 Find the next customer to be the next node in the route after the currently

assigned customer i by spinning the roulette wheel, which can be described as

follows. Select a random number r which ranges between 0 and 1. Compute
jp

and
jq according to the following formulas:

ij

j

ihh U

closeness
p

closeness


=


 and
1

j

j h

h

q p
=

= for j U

 where U is the set of all unassigned customers, and
ijcloseness is defined the

same way the INN heuristic describes. If 1r q , then choose the first customer

in U to be the next potential customer for the route. Otherwise, if

1j jq r q−   , then choose the
thj customer in U to be the next potential

customer where 2 j U  .

Step 3 If the next potential customer is feasible, assign it to the route, delete the new

assigned customer from U and go back to Step 2. Otherwise, go to Step 4.

Step 4 Repeat Step 2 one time to find a new next potential customer. If the new one is

still not feasible, we end this route and go to Step 5. Otherwise, go to Step 3.

Step 5 If there remain unassigned customers, go back to Step 1. Otherwise, go to Step 6.

Step 6 Improve the solution by 1-move intra-route exchange, and -interchange

where the algorithm is operated with = 4. The solution is accepted if the total

cost is lower than the current best one while maintaining the capacity

feasibility, time window feasibility, and backhaul feasibility.

Step 7 Repeat Step 6 until the number of iterations reaches the maximum, in which

case the algorithm finishes.

j





45

Figure 9 Flowchart of NNRW algorithm

Start

Create a new route

Are all

customers

visited?

Is there a

feasible

customer?

Compute all closest feasible

unvisited customer

()

Yes

Yes

No

No

Improve the solution by

neighborhood search

End

maximum

number of

iterations

reached?

Yes

No

Spin the roulette wheel to select a
next customer to add to the route

(More high closeness value, more

high chance to be selected)

46

3.4 Metaheuristic Approach

 Bio-inspired intelligence known as metaheuristic methods is widespread for

solving the class of NPC including VRPBTW. Metaheuristic algorithms, which are

the optimization technique that explore a larger area of the solution space to achieve

good optimization results with independence of the problem, have been proven to

be the methods of choice for many researchers to get an approximate, and near-

optimal in some cases, solutions. In this section, we present metaheuristics, namely

a cuckoo search algorithm, and an artificial bee colony algorithm to solve the

VRPBTW.

 The common elements described in Section 3.3.1 (the solution

representation, the quality measure of solution, and the neighborhood search) are

also used in the following metaheuristics.

3.4.1 Cuckoo Search (CS) Algorithm

 CS is a metaheuristic method introduced by Yang and Deb [27]. Inspiration of

this algorithm is the parasitic spawn behavior of some cuckoo species. This algorithm

was originally designed for solving continuous problem. Although discrete versions of

CS have been applied to the travelling salesman problem (Ouaarab et al. [78]) and VRP

(Zheng et al. [26]), to the best of our knowledge, it had never been applied to VRPBTW.

 There are three reasons that we propose the CS algorithm for VRPBTW in this

research study. First, To the best of our knowledge, CS algorithm had never been

applied to VRPBTW. Second, the CS requires fewer parameters compared with other

metaheuristics, so its solution is less affected by parameter tuning. The last reason is

the CS has a process of generating new solutions which prevents the search from

premature convergence problem.

 3.4.1.1 The General Concept of CS

 A cuckoo is an extraordinary bird because of its aggressive breeding behavior.

The female cuckoos lay eggs in the nest of other host birds to let them hatch and brood

young cuckoo chicks. If the host birds discover that the eggs are not theirs, they can

47

either get rid of the cuckoo eggs or abandon their nests and build new ones. However,

some cuckoo species can mimic color and pattern of eggs in a few chosen host species

to reduce chance of their eggs being abandoned. In addition, a cuckoo chick always

mimics the call of the host chick to gain more feeding opportunity.

 The cuckoo search starts by generating a number of host eggs (initial solutions)

and assign them to nests. In the simplest approach, each nest can always have only a

single egg. A cuckoo randomly selects a host nest and lays its egg (neighborhood

search) into the nest. The aim is to replace a not-so-good solution with a new and better

solution (cuckoo egg). A cuckoo egg will be abandoned and the host bird will build a

completely new one (generating a new solution) when it discovers the egg is not its

own. In summary, there are three ideal rules for this: (1) each cuckoo lays one egg at a

time and selects a nest randomly; (2) the best nest with a high quality egg will be carried

over to the next generation; (3) the number of host nests is fixed and a cuckoo egg is

discovered by the host with a probability [0,1]ap  .

 3.4.1.2 Main Steps of CS

The steps of the CS can be described as follows:

Step 1 Generate a set of initial solutions (host eggs) by the NNRW method (Section

3.3.4) and assign each egg to a host nest.

Step 2 Evaluate the fitness of each solution and record the global best solution.

Step 3 Choose randomly a host nest and then apply the neighborhood search on the

host egg to generate a cuckoo egg. The host egg will be replaced with the cuckoo

egg if the new cuckoo egg is better.

Step 4 With the probability ap , abandon the worse nest and generate a new one.

Step 5 Update the global best solution if a solution has better quality than the current

best one and go to Step 3. Otherwise, the algorithm ends and returns the global

best solution in hand.

48

Figure 10 Flowchart of CS algorithm

Start

Choose randomly a host nest and

then apply the neighborhood

search on the host egg to

generate a cuckoo egg

Replace a host egg with the

cuckoo egg if the new cuckoo

egg is better than old one

Evaluate the fitness of each

solution and record the global

best solution, called Best2

Abandon the worse nest with the

probability, and generate a new one

End Best2<Best1?
Yes No

Generate initial solutions,

called host eggs, by using

NNRW method

Evaluate the fitness of each

solution and record the global

best solution, called Best1

49

3.4.2 Artificial Bee Colony (ABC) Algorithm

 Artificial bee colony (ABC) algorithm is another metaheuristic method that

has been applied to VRP. There are a few studies (Tuntitippawan and

Asawarungsaengkul [31-32]) that apply ABC algorithm for solving VRPBTW. Hence,

we propose an enhanced ABC algorithm by applying a forbidden list strategy to prevent

duplicated initial solutions (which initially extends the exploration on the solution

space), the sequential search strategy for onlookers to explore the neighborhood near

the high-quality food source, and the intra-route and inter-route exchange combination

strategy to obtain the better solutions.

 There are three main reasons that the EABC is proposed in this research study.

First, the EABC algorithm applies the combination of intra-route and inter-route

exchange as the neighborhood search. Thus, this strategy can extend the regions of the

search space to increase the chance for finding a better solution. Second, the high-

quality solutions are used more often than the low-quality ones to produce an improved

solution in the onlooker bee stage through sequential search technique. Therefore, the

regions of the search space are searched in detail. Third, the stalled solutions are

removed from the population and a new randomly generated solution is added to the

population in the scout bee stage. This process provides global search ability and

prevents the search from premature convergence problem.

 3.4.2.1 The General Concept of ABC

The artificial bee colony is inspired by the intelligent finding food sources

behavior of the honey bees around the hives proposed by Karaboga [27]. A colony of

the bees consists of three types of bees: employed bees, onlookers and scouts. The

employed bees search for available nectar sources and share this information with the

onlookers via a waggle dance at the dancing area. The onlookers select the food sources

by evaluating quality of nectar sources from the waggle dance to be further explored.

When the quality of food sources is not improved within a time limit, the employed

bees abandon the food source and turn into scout bees to find new food sources.

 The ABC algorithm starts by generating a number of nectar sources (initial

solutions) and assigning an employed bee to each food source. Each employed bee

50

explores a new food source near its original food source (neighborhood search) and

measures the nectar amounts (fitness value). If the nectar quality of the new source is

better than the old one, the old one will be replaced by the new one. After the employed

bees update the food sources, they return to the hive with the information of the food

sources. The information is shared with the onlookers by the waggle dance. Each

onlooker selects a food source with a probability that depends on the nectar amounts

(the roulette wheel method). In particular, a food source with higher nectar amounts has

a higher probability to be selected by an onlooker than ones with lower nectar amounts.

After selecting a food source, each onlooker finds a new food source around the selected

food sources (neighborhood search) and evaluates the amount of nectar. The employed

bee will abandon its old food source and go to the new one if it has more nectar. In the

case that the quality of food source is not improved within a time limit, the employed

bee will also abandon the old food source and become a scout bee that searches for the

new food source by randomly generating a new solution. After the scout bee finds a

new food source, it becomes an employed bee again. This process will repeat until a

stopping criterion is reached.

 3.4.2.2 Enhanced Artificial Bee Colony (EABC) Algorithm

 Since the ABC algorithm was successfully to applied in VRP and VRPTW,

these motivate us to apply this algorithm to solving the VRPBTW in this dissertation.

Although the ABC algorithm was firstly applied to the VRPBTW by Tuntitippawan

and Asawarungsaengkul [31-32], the computational results show that it underperforms

the existing heuristics in many instances, especially in the large-scale problem. Since

the ABC is often easily trapped in local optima, it is necessary to extend the exploration

on the solution space and, equivalently, to expand the capability of neighborhood

search. Therefore, in this dissertation, we introduce the enhanced artificial bee colony

(EABC) algorithm by applying a forbidden list strategy to prevent the duplicated initial

solution which extends the exploration on the solution space, and the sequential search

strategy for onlookers to explore the neighborhood near the high-quality food source.

51

Forbidden List Strategy

 In the process of generating the initial solution, a forbidden list strategy was

applied in this section to prevent the duplication of the initial solution. After a feasible

initial solution is obtained, the solution will be checked with the forbidden list of

solutions. If the solution is not in the list, then add it to the list. Otherwise, the solution

will be abandoned. The process repeats until the number of solutions in the forbidden

list reaches the defined number. This strategy is applied to EABC algorithm whereas

original version is executed without this strategy.

Sequential Search Strategy for Onlookers

In the onlooker bee process of the original version, if there are many onlooker

bees selecting the same food source, each onlooker individually searches for a new food

source and the old food source is replaced by the best of those new food sources. In

EABC algorithm, if there are many onlooker bees selecting the same food source, each

onlooker searches for a new food source in sequence as follows. If the previous

onlooker bee finds a new food source, the next onlooker bee will start from the newly

found food source and look for a better one. Otherwise, the next onlooker bee will start

from the same food source as the previous one. In this way, the quality food source will

be given opportunities to be further explored in good regions of the solution.

Intra-route and Inter-route Exchange Combination Strategy

 The local search in the ABC proposed by Tuntitippawan and

Asawarungsaengkul [32] only uses the -interchange, which is an inter-route operator

that considers two routes at once. To extend the search ability, the EABC can either

randomly apply -interchange or 1-move intra-route exchange, which work on a single

route, for its neighborhood search. Since the 1-move operator improves the solution by

deleting a customer and then inserting it into the same route, it helps rearranging the

customer in the route. The experimental parameter testing discussed in Section 4.2.6

indicates that this setting gives better solution than using -interchange alone (See

Figure 13).







52

 3.4.2.3 Main Steps of EABC

The steps of the EABC algorithm for solving the VRPBTW model can be

described as follows:

Step 1 Generate a set of initial solutions (food sources) by the NNRW method (Section

3.3.4). The forbidden list strategy is also applied in this process. Then assign

each food source to each employed bee.

Step 2 Evaluate the fitness of each solution and record the global best solution.

Step 3 Apply the neighborhood search on each food source. An employed bee

abandons its old food source if a new one with better fitness is found. Otherwise,

increment the time counter of the food source.

Step 4 For each onlooker, select a food source by using the fitness-based roulette wheel

selection method and improve the food source by the neighborhood search. If

the onlooker bee finds a new one with better fitness, the employed bee

associated with the food source abandons the old food source and go to the new

one.

Step 5 Check the time counter of each food source. If it reaches the predetermined

limit, the food source is replaced by a new randomly generated solution.

Step 6 Update the global best solution if a solution has better quality than the current

best one and go to Step3. Otherwise, the algorithm ends and returns the global

best solution in hand.

53

Figure 11 Flowchart of EABC algorithm

Start

Apply the neighborhood search on each food

source and abandons its old food source

Select a food source by using the

fitness-based roulette wheel selection

method and improve the food source

by the neighborhood search

Replace by a new

randomly generated

solution and set ti = 0

Abandon abandons the old food

source, then replace with a new one

End

Best2<Best1?
Yes

No

Generate initial solutions, called food

sources, by using NNRW method, and then

assign each food source to each employed

bee

Evaluate the fitness of each solution and

record the global best solution, called Best1

Does new food

source better

then old one?
ti = ti + 1

ti limit

time?

Set the time counter of the food source

to zero, ti = 0

Evaluate the fitness

of each solution and

record the global

best solution, called

Best2

a

a

Yes

No

54

CHAPTER 4

COMPUTATIONAL EXPERIMENT

 The proposed mathematical model for the VRPBTW and heuristic method was

programed in CPLEX version 12.6 and in Microsoft Visual C# 2010 Express

respectively. They were executed on a computer PC with 2.4 GHz Intel i7 Duo Core

CPU and 8 GB memory.

4.1 Test Problems

The EGBA was tested on the widely accepted set of benchmark instances for

VRPBTW proposed by Gelinas at el. [37] that were modified from R101-105 of

Solomon’s R1-type problems [16]. These problems had 100 customers that were

located uniformly over the service area. They had a short scheduling horizon and the

vehicle capacity was 200 units. Problems were generated by randomly selecting 10%,

30% and 50% of the 100 customers to be backhaul customers without any changes to

the other attributes. Moreover, smaller problems were obtained by considering the first

25 and 50 customers.

4.2 Parameter Setting

 A small study on parametrization of our algorithm is shown in this section. The

crucial parameters are varied and their solutions are compared by carrying out on the

large problem R101 with 10% backhauls selected randomly.

4.2.1 Nearest Neighbor (NN) Heuristic

 The parameters were assigned as follows: the size of -interchange operator =

4, and maximum number of iterations = 300.



55

4.2.2 Improved Nearest Neighbor (INN) Heuristic

 The parameters 𝛼, 𝛽, and 𝛾 , which are the weights associated with distance,

idle time, and urgency of delivery, respectively, are set to 𝛼 =0.4, 𝛽 =0.3, 𝛾 =0.3

following Küçükoğlu and Öztürk [49]. The other parameters are assigned as follows:

the size of -interchange operator = 4, and maximum number of iterations = 300.

4.2.3 Nearest Urgent Candidate (NUC) Heuristic

 Recall that the parameters 𝛼, and 𝛽 are the weights associated with distance, and

idle time, respectively. In Figure 11, the relationship between the heuristic solution and

ratio of 𝛼 to 𝛽 indicates that the heuristic solution is relatively better when the ratios of

𝛼 to 𝛽 are 0.5: 0.5, 0.6: 0.4, and 0.7: 0.3. Hence, we select the values 𝛼 = 0.6 and 𝛽 =

0.4 for our parameters in all instances. The other parameters are assigned as follows:

the size of -interchange operator = 4, and maximum number of iterations = 300.

Figure 12 The relationship between the heuristic solution and ratio of 𝛼 to 𝛽

4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

 Recall that the parameters 𝛼, 𝛽, and 𝛾 are the weights associated with distance,

idle time, and urgency of delivery, respectively, in the calculation of proximity that

drives the probability in the roulette wheel used to generate solutions to start EGBA.

From the suggestions of Küçükoğlu and Öztürk [49], the relationship of these

parameters should be 𝛼+𝛽+𝛾 = 1 where 𝛼=0.4, 𝛽=0.3, 𝛾=0.3. To evaluate this fact, the

experiments based on the ratio of these parameters were performed and the results are

shown in Figure 12. The results indicate that the performance of this algorithm is better





640

645

650

655

660

665

0 1 2 3 4 5 6 7 8 9 10 11 12

0.0
:1.
0

0.1
:0.
9

0.2
:0.
8

0.3
:0.
7

0.4
:0.
6

0.5
:0.
5

0.6
:0.
4

0.7
:0.
3

0.8
:0.
2

0.9
:0.
1

Ratio of Parameter 𝛼 to 𝛽

665

660

655

650

645

640 He
uri
sti
c S

olu
tio
n

56

when parameter 𝛼 is weighted more than the others. It produced the best solution when

𝛼=0.4, 𝛽=0.3, 𝛾=0.3 as suggested in [49]. Thus, these parameters are set as 𝛼 =0.4,

𝛽=0.3, 𝛾=0.3 for the remaining of this dissertation. The other parameters are assigned

as follows: the size of -interchange operator = 4, and maximum number of iterations

= 300.

Figure 13 The relationship between fitness value and the ratio of parameters 𝛼, 𝛽, and 𝛾

4.2.5 Cuckoo Search (CS) Algorithm

 The CS algorithm parameters are assigned as follows: the number of host nests

= 15, 𝛼 = 0.4, 𝛽 = 0.3, 𝛾 = 0.3 (the weights associated with distance, idle time, and

urgency of delivery, respectively), ap = 0.25 (the suggestions of Yang and Deb [27]),

the size of  -interchange operator = 4, maximum number of iterations = 300.

4.2.6 Artificial Bee Colony (ABC) Algorithm

 The relationship between the fitness value and parameter is shown in Figure

13. The smaller is, the more difficult it is for our algorithm to obtain a better solution

since the number of customers to be exchanged between routes is limited. Thus, the

value of parameter = 4 is set in this paper. Moreover, the comparison of -

interchange with and without 1-move intra-route is also shown in this figure. The

experiment indicated that the -interchange with 1-move intra-route can produce

better solution when compared with the -interchange without 1-move intra-route.

Thus, the 1-move intra-route can help improve the algorithm performance.







 





1798
1800
1802
1804
1806
1808
1810
1812
1814
1816
1818

F
it

n
es

s
v
al

u
e

Ratio of parameters (α :β: γ)

57

 The number of employed bees and the number of onlooker bees are set to be the

same, which is 50. This idea is recommended on the performance of artificial bee

colony (ABC) algorithm which proposed by Karaboga and Basturk [79]. The

𝑡ℎ𝑒 𝑙𝑖𝑚𝑖𝑡 𝑡𝑖𝑚𝑒 parameter was set as 20.

Figure 14 The relationship between the total distance and parameter , and

comparison -interchange between with and without 1-move intra-route.

4.3 Results and Comparison

 In Tables 1-6, the first column represents the number of customers. The second

column shows the problem name. BH. (%) denotes the percentage of backhauls.

Distance shows the total distance of solution. Best Distance means the total distance of

the best solution from 20 replications performed using different starting solutions. NV

indicates the number of vehicles used and time represents the computational time in

seconds.

 The computational results of the mathematical model, NUC, NNRW, CS and

EABC for 25, 50, 100 customers for VRPBTW are reported in Tables 1-3 respectively.

The empty slots mean the results cannot be found within 2 hours by solving the

problems with CPLEX program. Some optimal solutions are found only in the small-

sized problems, and its computational time is much higher than all proposed methods.

This indicates that the exact method is too difficult to solve the VRPBTW within a

reasonable time. Moreover, the NUC used the lowest computational time whereas the

NNRW used the highest computational time.

1805

1815

1825

1835

1845

1855

1865

1875

1 2 3 4

D
is

ta
n
ce

Lamda

with 1-move intra-

route exchange

without 1-move

intra-route

exchange





58

59

60

61

a

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

*
N

U
C

 is
 s

ig
n

if
ic

an
tl

y
b

et
te

r
th

an
 N

N
R

W
 (

at
 9

5
%

 c
o

n
fi

d
en

ce
 le

ve
l)

EA
B

C
 is

 s
ig

n
if

ic
an

tl
y

b
et

te
r

th
an

 C
S

(a
t

9
5

%
 c

o
n

fi
d

en
ce

 le
ve

l)

62

a

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

*
N

U
C

 is
 s

ig
n

if
ic

an
tl

y
b

et
te

r
th

an
 N

N
R

W
 (

at
 9

5
%

 c
o

n
fi

d
en

ce
 le

ve
l)

EA
B

C
 is

 s
ig

n
if

ic
an

tl
y

b
et

te
r

th
an

 C
S

(a
t

9
5

%
 c

o
n

fi
d

en
ce

 le
ve

l)

63

a

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

*
N

U
C

 is
 s

ig
n

if
ic

an
tl

y
b

et
te

r
th

an
 N

N
R

W
 (

at
 9

5
%

 c
o

n
fi

d
en

ce
 le

ve
l)

EA
B

C
 is

 s
ig

n
if

ic
an

tl
y

b
et

te
r

th
an

 C
S

(a
t

9
5

%
 c

o
n

fi
d

en
ce

 le
ve

l)

64

a

O

b
ta

in
ed

 f
ro

m
 P

o
tv

in
 e

t
al

.
[2

1
]

d

O
b

ta
in

ed
 f

ro
m

K

ü
çü

k
o

ğ
lu

 a
n

d
 Ö

zt
ü

rk
 [

4
8
]

b

O
b

ta
in

ed
 f

ro
m

 T
h

an
g
ia

h
 e

t
al

.
[4

1
]

e

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

c
 O

b
ta

in
ed

 f
ro

m
 K

ü
çü

k
o

ğ
lu

 a
n

d
 Ö

zt
ü

rk
 [

4
9
]

65

a

O

b
ta

in
ed

 f
ro

m
 P

o
tv

in
 e

t
al

.
[2

1
]

d

O
b

ta
in

ed
 f

ro
m

K

ü
çü

k
o

ğ
lu

 a
n

d
 Ö

zt
ü

rk
 [

4
8
]

b

O
b

ta
in

ed
 f

ro
m

 T
h

an
g
ia

h
 e

t
al

.
[4

1
]

e

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

c
 O

b
ta

in
ed

 f
ro

m
 K

ü
çü

k
o

ğ
lu

 a
n
d

 Ö
zt

ü
rk

 [
4
9
]

66

a

O

b
ta

in
ed

 f
ro

m
 P

o
tv

in
 e

t
al

.
[2

1
]

d

O
b

ta
in

ed
 f

ro
m

K

ü
çü

k
o

ğ
lu

 a
n

d
 Ö

zt
ü

rk
 [

4
8
]

b

O
b

ta
in

ed
 f

ro
m

 T
h

an
g
ia

h
 e

t
al

.
[4

1
]

e

O

b
ta

in
ed

 f
ro

m
 T

u
n

ti
ti

p
p

aw
an

 a
n

d
 A

sa
w

ar
u

n
g
sa

en
g
k
u

l
[3

2
]

c
 O

b
ta

in
ed

 f
ro

m
 K

ü
çü

k
o

ğ
lu

 a
n

d
 Ö

zt
ü

rk
 [

4
9
]

f
O

b
ta

in
ed

 f
ro

m
 P

is
in

g
er

 a
n

d
 R

o
p

k
e

[4
5
]

67

Tables 4-6 report comparison results of proposed algorithms (NUC, NNRW, CS,

EABC) and the other methods (NN, INN, ABC [32]) for VRPBTW with 25, 50, and

100 customers, respectively. The %Gap_IMP column denotes the gap percentage

between the considered solution and the compared solution. A negative number in this

column means the considered solution is better than the compared solution, zero value

indicates that both are equal, and a positive value indicates the considered solution is

worse than the compared solution. Specifically, the %Gap_IMP is computed by the

formula:

%Gap_IMP =
(𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)−(𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100.

The numbers in bold face font in these tables indicate that the considered solution is

equivalent or better comparing with compared solution for the same problem. Note that

the empty slots in ABC [32] column mean the results were not reported in their paper.

The results obtained from the comparison in Tables 4-6 can be summarized in Table

10.

Table 10 The summary of the result comparisons for each algorithm.

versus NN INN NNRW NUC ABC CS EABC

NN - 1/ 45

(2.22%)

1/ 45

(2.22%)

0/ 45

(0.00%)
- - -

INN 44/ 45

(97.78%)

- 1/ 45

(2.22%)

0/ 45

(0.00%)
- - -

NNRW 44 / 45

(97.78%)

44 / 45

(97.78%)
- 10/ 45

(22.22%)
- - -

NUC 45 / 45

(100%)

45 / 45

(100%)

30/ 45

(66.67%)
- - - -

ABC - - - - - 5/ 34

(14.71%)

0/ 45

(0.00%)

CS - - - - 29 / 34

(85.29%)
- 4/ 45

(8.89%)

EABC - - - - 34 / 34

(100%)

41 / 45

(91.11%)
-

 Each fraction x/y in Table 10 means that the row algorithm obtained x

equivalent or better solutions out of the total y instances when compared with the

column algorithm. Moreover, these fractions are also shown as percentages in

parentheses. For example, in the entry (NUC, NNRW) shows the fraction 30/45. This

means, the NUC obtained 30 equivalent or better solutions out of 45 problems (66.67%)

68

when compared with the NNRW solution. The bold numbers in this table highlight the

outcomes with at least 50%.

To determine if the considered solution and compared solutions are significantly

different from each other, the Mann–Whitney U test is applied. This test is a

nonparametric test which does not require a special distribution of the dependent

variable in the analysis. The Mann–Whitney U value is the smaller value of 𝑈1 and 𝑈2

which are computed from the formula:

𝑈1 = 𝑅1 −
𝑛1(𝑛1+1)

2
 , 𝑈2 = 𝑅2 −

𝑛2(𝑛2+1)

2

where 𝑅1 and 𝑅2 are the sum of the ranks in samples 1 and 2, respectively; and 𝑛1 and

𝑛2 are the number of samples 1 and 2, respectively. In this dissertation, we used a two-

tailed test with confidence interval at the 95% confidence so U critical value when 𝑛1 =

20, and 𝑛2 = 20 is 𝑈0 = 105. The number which is marked with the star symbol (*) in

Tables 4-6 indicates that the NUC solution is significantly better than the NNRW

solution at 95% confidence level, and the number which is marked with the octothorpe

symbol (#) indicates that the EABC solution is significantly better than the CS solution

at 95% confidence level. In Tables 4-6 report that there are 18 problems that the NUC

is significantly better than the NNRW, whereas there are 17 problems that that the

EABC is significantly better than the CS.

To evaluate the efficiency of the proposed algorithms, the comparison between

the solutions obtained from the proposed algorithms in this dissertation and the best

known solutions in the literature is also shown in %Gap_BKS column of Tables 7-9.

The %Gap_BKS in these tables is the relative difference in percentage between the

considered solution and the best known solution. %Gap_BKS is computed by:

%Gap_BKS =
(𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)−(𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛)

𝑡ℎ𝑒 𝑏𝑒𝑠𝑡𝑘𝑛𝑜𝑤𝑛 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
× 100.

The %Gap_BKS can be negative, zero, or positive. Since this is a minimization

problem, if %Gap_BKS is negative, the considered solution is better than the best

known solution. If it is zero, the two are equal. If it is positive, the best known solution

is better. For example, in the %Gap_BKS column, the negative numbers in the EGBA

69

sub-columns means the EABC obtained better solutions than the current best known

solutions. The results obtained from the comparison can be summarized in Table 11.

Each fraction x/y in Table 11 means that the algorithm obtained x equivalent or

better solutions out of the total y instances when compared with the best known

solutions. Moreover, these fractions are also shown as percentages in parentheses. For

example, the EABC obtained 33 equivalent or better solutions out of 45 problems

(73.33%) when compared with the best known solutions. The bold numbers in this table

highlight outcomes from the proposed algorithms. These results indicate that the EABC

algorithm outperformed the other proposed algorithms in terms of solution quality in

many problems.

Table 11 The summary of comparison between each algorithm solutions and best

known solutions

Algorithm solution Best known solution

EABC 33/45 (73.33%)

HMA 29/45 (64.44%)

CS 23/45 (51.11%)

NUC 16/45 (35.56%)

NNRW 12/45 (26.67%)

DEA 6/45 (13.33%)

 In order to evaluate the potentiality of EABC algorithm, from Tables 8-10, the

EABC algorithm is also compared with the DEA, which is a population-based heuristic,

and the HMA, which is a non-population-based heuristic. The results obtained from the

comparison can be summarized as follows.

• When compared with the DEA, the EABC algorithm obtained 38 equivalent or

better solutions out of 45 problems (84.44%).

• When compared with the HMA, the EABC algorithm obtained 37 equivalent or

better solutions out of 45 problems (82.22%).

 In summary, the EABC outperformed the existing algorithms in terms of

solution quality in many problems as it obtained 33 equivalent or new best known

solutions out of 45 instances (73.33%) while others did not perform as well (NN 0.00%,

INN 6.67%, NNRW 26.67%, NUC 35.56%, CS 51.11%, HMA 53.33%, and DEA

70

13.33%). In addition, EGB algorithm obtained 15 new best known solutions, and found

the optimal solutions for some instances. Moreover, EABC still displayed superior

performance on the problems where the optimal solution is still unknown.

4.4 Rate of Convergence

 In order to consider the convergence of the proposed algorithms, the graphs

between the fitness value and the number of iterations for each instance are plotted in

section A of the appendix. The results obtained from those graphs can be summarized

in Table 12.

Table 12 The average number of iterations until the start of the convergence.

Proposed

algorithms

The average number of iterations until the start of convergence

Small problem

(25 customers)

Medium Problem

(50 customers)

Large problem

(100 customers)

Overall

(45problems)

NNRW 16.20 25.27 29.93 23.80

NUC 12.93 24.27 34.13 23.78

CS 5.93 8.07 8.27 7.42

EABC 2.47 5.00 5.93 4.47

 In Table 12, on average, the proposed algorithm which used the least number of

iterations was EABC for all sizes of problems. The NNRW used the most number of

iterations on average in all sizes of problems except large problems where NUC used

the most number of iterations. For overall problems, the NUC and the NNRW have

approximately the same convergent rate while EABC has faster convergent rate than

CS by 60.18 % on average.

4.5 Results Discussion

 The computational results show that the optimal solution from mathematical

model cannot be found in many instances, especially the medium- and large-sized

problems, and its computation time is much higher than other heuristics. This is because

the VRPBTW is an NP-hard combinatorial optimization problem, thus, the exact

method is not always possible to find an optimal solution within a limited time.

71

 The proposed heuristics (NUC, NNRW) perform better than NN and INN. We

speculate that a candidate technique in NUC helps to obtain a good initial solution by

properly selecting the customers in construction phase, while roulette wheel selection

in NNRW helps to extend the exploration on the solution space by increasing the

number of initial solutions. The computational time of NNRW algorithm is also the

highest among the other heuristics with this reason. However, the NNRW

underperforms the NUC in many problems. This may be concluded that good initial

construction is more important than the extension of the exploration on the solution

space by increasing the number of initial solutions.

 The CS results indicate that it is better than other presented heuristics in this

dissertation except for EABC. It can produce better solutions than the best-known

solutions for the majority of small- and medium-sized instances. However, it does not

perform as well for large problems. We speculate that EABC algorithm contains many

techniques to extend the exploration on the solution space and to escape from local

optima while the CS does not.

 When comparing the results of enhanced version of ABC with the original one

proposed by Tuntitippawan and Asawarungsaengkul [32], the EABC algorithm is

superior to original ABC algorithm in terms of the solution quality. We speculate that

the forbidden list strategy in generating process, the sequential search strategy for

onlooker bees, and the intra-route and inter-route exchange combination strategy for

the local search in the EABC algorithm indeed helps extend the exploration on the

solution space to obtain the better solutions. Note that although the sequential search of

onlookers increases the chance of finding great solutions, it also leads to larger

computational time. Further study is needed to analyze the tradeoffs and compare the

computational time with the original ABC algorithm.

 When comparing the results of EABC algorithm with the other methods in terms

of solution quality, we find that the performance of our algorithm is better than the

HMA and DEA for small- and medium-sized problems while comparable with the

HMA and the DEA in the large-sized problems. We speculate that there are four main

reasons EABC algorithm contributes the successful results. First, the EABC algorithm

is a population-based heuristic which starts with a number of unduplicated initial

solutions. Therefore, it can explore more in the solution space and get more chance to

72

obtain the better solutions. Second, the EABC algorithm applied the combination of

intra-route and inter-route exchange as the neighborhood search. Hence, this strategy

can extend the regions of the search space to increase the chance for finding a better

solution. Third, the high-quality solutions are used more often than the low-quality ones

to produce an improved solution in the onlooker bee stage. Thus, the regions of the

search space are searched in shorter time and in detail. Forth, the stalled solutions are

removed from the population and a new solution from random generating is added to

the population in the scout bee stage. This process provides global search ability and

prevents the search from premature convergence problem.

73

CHAPTER 5

CONCLUSION

 The vehicle routing problem with backhauls and time windows (VRPBTW) is

an extension of the vehicle routing problem with backhaul (VRPB) by imposing a

specific service time window for each customer. The objective of this problem is to find

a set of feasible vehicle routes that minimizes the total distance while imposing

capacity, backhaul, and time window constraints. In this dissertation, a mathematical

model of VRPBTW is introduced to obtain an optimal solution. It is formulated as a

mixed-integer programming model by modifying the mathematical formulation for

fleet size and mixed vehicle routing problem with backhauls (FSMVRPB) proposed by

Salhi et al. [76] and adding time window constraints from [49]. The aim of this model

is to minimize total distance for VRPBTW. (There is no additional cost for adding

vehicles.) The VRPBTW model is solved using CPLEX. However, the optimal

solutions of many problems (especially the medium- and large-sized problems) cannot

be found within two hours because the complexity of VRPBTW depends on the number

of customers in the problem. Hence, the alternative methods, which are heuristic and

metaheuristic methods, are presented to solve this issue.

For NUC algorithm, all customers are initially ordered according to the urgency

of delivery. The closeness is computed from only two factors, namely, the direct

distance and the waiting time. With a candidate list, we can preserve the urgency order

while constructing the initial solutions. Then, the local search heuristics, i.e. 1-move

and the λ-interchange, are applied to improve the solution.

NNRW heuristic is a combination of a roulette wheel selection method and the

INN heuristic for generating the initial solutions. The closeness is computed from three

factors in the same way as described in the INN heuristic.

 Moreover, two metaheuristic methods are studied to obtain the optimal or near

optimal solutions.

74

The first metaheuristic is the cuckoo search (CS) algorithm. It starts by

generating a number of initial solutions called host eggs by applying NNRW algorithm.

Then the algorithm assigns the host eggs to nests. In this dissertation, a nest always

contains only a single host egg. The neighborhood search is randomly applied to a host

egg to create a cuckoo egg. A solution (host egg) is replaced by a new solution (cuckoo

egg) if the new one is better. A cuckoo egg will be abandoned, and the host bird will

build a completely new one (generating a new solution) when it discovers the egg is not

its own.

Second one is an enhanced artificial bee colony (EABC) algorithm. The ABC

algorithm starts by generating a number of initial solutions called nectar sources by

NNRW. Then the algorithm assigns an employed bee to each food source. The

neighborhood search is applied to each solution before it is selected by a roulette wheel

selection method. When the quality of a solution is not improved within a time limit,

the employed bee abandons the food source (an old solution) and turn into a scout bee

to find a new food source (generating a new solution). Three strategies are proposed in

EABC, which are a forbidden list, the sequential search for onlookers, and the

combination of the 1-move intra-route exchange and the λ-interchange technique.

The proposed algorithms were tested on the classical set of benchmark instances

(25, 50, 100 customers) proposed by Gélinas at el. [37] to evaluate the efficiency of

each algorithm.

For heuristics, NNRW and NUC algorithms are compared with the general

nearest neighbor algorithm (NN) and the improved nearest neighbor algorithm (INN)

through the benchmark instances. The results show that both proposed heuristics are

superior to NN and INN heuristic in terms of solution quality. In addition, in terms of

quality, the NUC outperforms the NNRW in many problems, and its computational

time is also lower than the NNRW algorithm. Although the convergent rate of NNRW

is the slowest in the small and medium problem sizes, the NNRW has the same

convergent rate as NUC in overall problems.

For metaheuristics, the enhanced version of ABC is superior to original version

in terms of solution quality in all problems. Moreover, the results indicate that EABC

algorithm outperforms the cuckoo search in terms of solution quality in many problems.

In addition, the comparison between the solutions of the proposed algorithms (EABC

75

and CS) and the best known solutions in the literature is made. Results show that

proposed algorithms yield the best results for most instances, especially EABC, which

obtained 33 equivalent or new best known solutions out of 45 problems (73.33%).

There are 15 new best known solutions found and the optimal solutions are obtained

for some instances. Furthermore, the convergent rate of EABC is the fastest among the

proposed algorithms. Hence, the proposed algorithms are effective ways to solve the

VRPBTW.

Although the results in dissertation shows that the proposed algorithms are

effective choices for solving VRPBTW, they were only tested on the set of benchmark

instances so it could not guarantee that it would work as well on the real-world problems

or other non-VRPBTW problems. To be more realistic, the problems should be

extended by adding some factors such as multi-depot, mixed size of the vehicle fleet,

traffic congestion levels, driver behavior, etc. Moreover, the algorithms also could be

enhanced by adding some techniques or combining with other algorithms to reduce

their disadvantages and improve their performance in the future work.

REFERENCES

[1] Jin, J., T.G. Crainic, and A. Løkketangen, A parallel multi-neighborhood

cooperative tabu search for capacitated vehicle routing problems. European

Journal of Operational Research, 2012. 222(3): p. 441-451.

[2] Santos, L., J. Coutinho-Rodrigues, and J.R. Current, An improved heuristic for

the capacitated arc routing problem. Computers & Operations Research, 2009.

36(9): p. 2632-2637.

[3] Atefi, R., et al., The open vehicle routing problem with decoupling points.

European Journal of Operational Research, 2018. 265(1): p. 316-327.

[4] Yu, V.F., P. Jewpanya, and A.A.N.P. Redi, Open vehicle routing problem with

cross-docking. Computers & Industrial Engineering, 2016. 94: p. 6-17.

[5] Gajpal, Y. and P. Abad, An ant colony system (ACS) for vehicle routing problem

with simultaneous delivery and pickup. Computers & Operations Research,

2009. 36(12): p. 3215-3223.

[6] Zachariadis, E.E., C.D. Tarantilis, and C.T. Kiranoudis, A hybrid metaheuristic

algorithm for the vehicle routing problem with simultaneous delivery and pick-

up service. Expert Systems with Applications, 2009. 36(2): p. 1070-1081.

[7] Toth, P. and D. Vigo, A heuristic algorithm for the symmetric and asymmetric

vehicle routing problems with backhauls. European Journal of Operational

Research, 1999. 113(3): p. 528-543.

[8] Osman, I.H. and N.A. Wassan, A reactive tabu search meta-heuristic for the

vehicle routing problem with back-hauls. Journal of Scheduling, 2002. 5(4): p.

263-285.

[9] Brandão, J., A new tabu search algorithm for the vehicle routing problem with

backhauls. European Journal of Operational Research, 2006. 173(2): p. 540-

555.

[10] Tavakkoli-Moghaddam, R., A.R. Saremi, and M.S. Ziaee, A memetic algorithm

for a vehicle routing problem with backhauls. Applied Mathematics and

Computation, 2006. 181(2): p. 1049-1060.

77

[11] Gajpal, Y. and P.L. Abad, Multi-ant colony system (MACS) for a vehicle routing

problem with backhauls. European Journal of Operational Research, 2009.

196(1): p. 102-117.

[12] Chiang, W.-C. and R.A. Russell, A reactive tabu search metaheuristic for the

vehicle routing problem with time windows. INFORMS Journal on computing,

1997. 9(4): p. 417-430.

[13] Berger, J. and M. Barkaoui. A memetic algorithm for the vehicle routing

problem with time windows. in The 7th International Command and Control

Research and Technology Symposium. 2002.

[14] Berger, J. and M. Barkaoui, A parallel hybrid genetic algorithm for the vehicle

routing problem with time windows. Computers & Operations Research, 2004.

31(12): p. 2037-2053.

[15] Bräysy, O. and M. Gendreau, Tabu search heuristics for the vehicle routing

problem with time windows. Top, 2002. 10(2): p. 211-237.

[16] Solomon, M.M., Algorithms for the vehicle routing and scheduling problems

with time window constraints. Operations research, 1987. 35(2): p. 254-265.

[17] Gong, W., X. Liu, J. Zhang, and Z. Fu, Two-Generation Ant Colony System for

Vehicle Routing Problem with Time Windows. in 2007 International Conference

on Wireless Communications, Networking and Mobile Computing. 2007.

[18] Yu, B., Z.Z. Yang, and B.Z. Yao, A hybrid algorithm for vehicle routing

problem with time windows. Expert Systems with Applications, 2011. 38(1): p.

435-441.

[19] Ding, Q., X. Hu, L. Sun, and Y. Wang, An improved ant colony optimization

and its application to vehicle routing problem with time windows.

Neurocomputing, 2012. 98: p. 101-107.

[20] Tasan, A.S. and M. Gen, A genetic algorithm based approach to vehicle routing

problem with simultaneous pick-up and deliveries. Computers & Industrial

Engineering, 2012. 62(3): p. 755-761.

[21] Potvin, J.-Y., C. Duhamel, and F. Guertin, A genetic algorithm for vehicle

routing with backhauling. Applied Intelligence. 6(4): p. 345-355.

78

[22] Ai, T.J. and V. Kachitvichyanukul, Particle swarm optimization and two

solution representations for solving the capacitated vehicle routing problem.

Computers & Industrial Engineering, 2009. 56(1): p. 380-387.

[23] Goksal, F.P., I. Karaoglan, and F. Altiparmak, A hybrid discrete particle swarm

optimization for vehicle routing problem with simultaneous pickup and delivery.

Computers & Industrial Engineering, 2013. 65(1): p. 39-53.

[24] Yu, B., Z.-Z. Yang, and B. Yao, An improved ant colony optimization for

vehicle routing problem. European Journal of Operational Research, 2009.

196(1): p. 171-176.

[25] Yang, X.-S. and S. Deb. Cuckoo search via Lévy flights. in Nature &

Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on.

2009. IEEE.

[26] Zheng, H., Y. Zhou, and Q. Luo, A hybrid Cuckoo Search Algorithm-GRASP

for Vehicle Routing Problem. Journal of Convergence Information Technology,

2013. 8(3): p. 821-828.

[27] Karaboga, D., An idea based on honey bee swarm for numerical optimization.

2005, Technical report-tr06, Erciyes university, engineering faculty, computer

engineering department.

[28] Szeto, W.Y., Y. Wu, and S.C. Ho, An artificial bee colony algorithm for the

capacitated vehicle routing problem. European Journal of Operational

Research, 2011. 215(1): p. 126-135.

[29] Alzaqebah, M., S. Abdullah, and S. Jawarneh, Modified artificial bee colony for

the vehicle routing problems with time windows. SpringerPlus, 2016. 5(1): p.

1298.

[30] Yu, S., et al., An improved artificial bee colony algorithm for vehicle routing

problem with time windows: A real case in Dalian. Advances in Mechanical

Engineering, 2016. 8(8): p. 1687814016665298.

[31] Tuntitippawan, N., and Asawarungsaengkul, K. 2016a. An Artificial Bee

 Colony Algorithm for the Vehicle Routing Problem with Backhauls and Time

 Windows: International Conference on Industrial Engineering and Operations

 Management, Kuala Lumpur, Malaysia. p.2788

79

[32] Tuntitippawan, N. and K. Asawarungsaengkul, An artificial bee colony

algorithm with local search for vehicle routing problem with backhauls and

time windows. Engineering and Applied Science Research, 2016. 43: p. 404-

408.

[33] Pan, F., et al., Research on the Vehicle Routing Problem with Time Windows

Using Firefly Algorithm. Journal of Computers, 2013. 8(9).

[34] Goel, R. and R. Maini, A hybrid of ant colony and firefly algorithms (HAFA)

for solving vehicle routing problems. Journal of Computational Science, 2018.

25: p. 28-37.

[35] Wang, G. and L. Guo, A Novel Hybrid Bat Algorithm with Harmony Search for

Global Numerical Optimization. Journal of Applied Mathematics, 2013. 2013:

p. 1-21.

[36] Zhou, Y., J. Xie, and H. Zheng, A Hybrid Bat Algorithm with Path Relinking

for Capacitated Vehicle Routing Problem. Mathematical Problems in

Engineering, 2013. 2013: p. 1-10.

[37] Gelinas, S., et al., A new branching strategy for time constrained routing

problems with application to backhauling. Annals of Operations Research,

1995. 61(1): p. 91-109.

[38] Dantzig, G.B. and J.H. Ramser, The truck dispatching problem. Management

science, 1959. 6(1): p. 80-91.

[39] Toth, P. and D. Vigo, Vehicle routing: problems, methods, and applications.

Vol. 18. 2014: Siam.

[40] Casco, D., B. GOLDEN, and E. WASIL, Vehicle routing with backhauls:

Models, algorithms and case studies. Vehicle Routing: Methods and Studies.

Studies in management science and systems-Volume 16. Publication of:

Dalctraf.

[41] Thangiah, S.R., J.-Y. Potvin, and T. Sun, Heuristic approaches to vehicle

routing with backhauls and time windows. Computers & Operations Research,

1996. 23(11): p. 1043-1057.

[42] Duhamel, C., J.-Y. Potvin, and J.-M. Rousseau, A Tabu Search Heuristic for the

Vehicle Routing Problem with Backhauls and Time Windows. Transportation

Science, 1997. 31(1): p. 49-59.

80

[43] Reimann, M., K. Doerner, and R.F. Hartl, Insertion Based Ants for Vehicle

Routing Problems with Backhauls and Time Windows, in Ant Algorithms: Third

International Workshop, ANTS 2002 Brussels, Belgium, September 12–14, 2002

Proceedings, M. Dorigo, G. Caro, and M. Sampels, Editors. 2002, Springer

Berlin Heidelberg: Berlin, Heidelberg. p. 135-148.

[44] Zhong, Y. and M.H. Cole, A vehicle routing problem with backhauls and time

windows: a guided local search solution. Transportation Research Part E:

Logistics and Transportation Review, 2005. 41(2): p. 131-144.

[45] Pisinger, D. and S. Ropke, A general heuristic for vehicle routing problems.

Computers & Operations Research, 2007. 34(8): p. 2403-2435.

[46] Aghdaghi, M. and F. Jolai, A goal programming model for vehicle routing

problem with backhauls and soft time windows. Journal of Industrial

Engineering, International, 2008. 4(6): p. 7-18.

[47] Liu, R., X. Xie, V. Augusto, and C. Rodriguez, Heuristic algorithms for a

vehicle routing problem with simultaneous delivery and pickup and time

windows in home health care. European Journal of Operational Research, 2013.

230(3): p. 475-486.

[48] Küçükoğlu, İ. and N. Öztürk, A differential evolution approach for the vehicle

routing problem with backhauls and time windows. Journal of Advanced

Transportation, 2014. 48(8): p. 942-956.

[49] Küçükoğlu, İ. and N. Öztürk, An advanced hybrid meta-heuristic algorithm for

the vehicle routing problem with backhauls and time windows. Computers &

Industrial Engineering, 2015. 86: p. 60-68.

[50] Kohl, N. and O.B. Madsen, An optimization algorithm for the vehicle routing

problem with time windows based on Lagrangian relaxation. Operations

Research, 1997. 45(3): p. 395-406.

[51] Fisher, M.L., K.O. Jörnsten, and O.B. Madsen, Vehicle routing with time

windows: Two optimization algorithms. Operations Research, 1997. 45(3): p.

488-492.

[52] Agarwal, Y., K. Mathur, and H.M. Salkin, A set‐partitioning‐based exact

algorithm for the vehicle routing problem. Networks, 1989. 19(7): p. 731-749.

81

[53] Desrosiers, J., F. Soumis, and M. Desrochers, Routing with time windows by

column generation. Networks, 1984. 14(4): p. 545-565.

[54] Desrochers, M., J. Desrosiers, and M. Solomon, A new optimization algorithm

for the vehicle routing problem with time windows. Operations research, 1992.

40(2): p. 342-354.

[55] Little, J.D.C., K.G. Murty, D.W. Sweeney, C. Karel, An Algorithm for the

Traveling Salesman Problem. Operations research, 1963. 11(6): p. 972-989.

[56] Christofides, N. and S. Eilon, An algorithm for the vehicle-dispatching problem.

Journal of the Operational Research Society, 1969. 20(3): p. 309-318.

[57] Fischetti, M., P. Toth, and D. Vigo, A Branch-and-Bound Algorithm for the

Capacitated Vehicle Routing Problem on Directed Graphs. Operations

Research, 1994. 42(5): p. 846-859.

[58] Bellmore, M. and J.C. Malone, Pathology of traveling-salesman subtour-

elimination algorithms. Operations Research, 1971. 19(2): p. 278-307.

[59] Baldacci, R., E. Hadjiconstantinou, and A. Mingozzi, An Exact Algorithm for

the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network

Flow Formulation. Operations Research, 2004. 52(5): p. 723-738.

[60] Cordeau, J.-F., A branch-and-cut algorithm for the dial-a-ride problem.

Operations Research, 2006. 54(3): p. 573-586.

[61] Dell'Amico, M., G. Righini, and M. Salani, A branch-and-price approach to the

vehicle routing problem with simultaneous distribution and collection.

Transportation Science, 2006. 40(2): p. 235-247.

[62] Gutiérrez-Jarpa, G., G. Desaulniers, G. Laporte, and V. Marianov, A branch-

and-price algorithm for the Vehicle Routing Problem with Deliveries, Selective

Pickups and Time Windows. European Journal of Operational Research, 2010.

206(2): p. 341-349.

[63] Ropke, S. and J.-F. Cordeau, Branch and cut and price for the pickup and

delivery problem with time windows. Transportation Science, 2009. 43(3): p.

267-286.

[64] Pessoa, A., M.P. De Aragão, and E. Uchoa, Robust branch-cut-and-price

algorithms for vehicle routing problems, in The vehicle routing problem: Latest

advances and new challenges. 2008, Springer. p. 297-325.

82

[65] Gillett, B.E. and L.R. Miller, A Heuristic Algorithm for the Vehicle-Dispatch

Problem. Operations Research, 1974. 22(2): p. 340-349.

[66] Fisher, M.L. and R. Jaikumar, A generalized assignment heuristic for vehicle

routing. Networks, 1981. 11(2): p. 109-124.

[67] Beasley, J.E., Route first—cluster second methods for vehicle routing. Omega,

1983. 11(4): p. 403-408.

[68] Clarke, G. and J.W. Wright, Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points. Operations Research, 1964. 12(4): p. 568-581.

[69] Potvin, J.-Y. and J.-M. Rousseau, A parallel route building algorithm for the

vehicle routing and scheduling problem with time windows. European Journal

of Operational Research, 1993. 66(3): p. 331-340.

[70] Balakrishnan, N., Simple Heuristics for the Vehicle Routeing Problem with Soft

Time Windows. Journal of the Operational Research Society, 1993. 44(3): p.

279-287.

[71] Dullaert, W., A sequential insertion heuristic for the vehicle routing problem

with time windows with relatively few customers per route. 2000.

[72] Ioannou, G., M. Kritikos, and G. Prastacos, A greedy look-ahead heuristic for

the vehicle routing problem with time windows. Journal of the Operational

Research Society, 2001. 52(5): p. 523-537.

[73] Atkinson, J.B., A greedy look-ahead heuristic for combinatorial optimization:

an application to vehicle scheduling with time windows. Journal of the

Operational Research Society, 1994. 45(6): p. 673-684.

[74] Pang, K.-W., An adaptive parallel route construction heuristic for the vehicle

routing problem with time windows constraints. Expert Systems with

Applications, 2011. 38(9): p. 11939-11946.

[75] Sheridan, P.K., E. Gluck, Q. Guan, T. Pickles, B. Balcıog˜lu, and B. Benhabib,

The dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery

problem. Transportation Research Part A: Policy and Practice, 2013. 49: p. 178-

194.

[76] Salhi S, Wassan N, Hajarat M. The fleet size and mix vehicle routing problem

with backhauls: Formulation and set partitioning-based heuristics.

Transportation Research Part E, 2013; 56: p. 22-35.

83

[77] Holland, J.H., Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence. 1992:

MIT press.

[78] Ouaarab, A., B. Ahiod, and X.-S. Yang, Discrete cuckoo search algorithm for

the travelling salesman problem. Neural Computing and Applications, 2014.

24(7-8): p. 1659-1669.

[79] Karaboga, D. and B. Basturk, On the performance of artificial bee colony

(ABC) algorithm. Applied soft computing, 2008. 8(1): p. 687-697.

APPENDIX

85

A. The 45 plots showing the relationship between the fitness value of

each proposed algorithm and its number of iterations for each

instance

Small problems (25 customers)

600

650

700

750

800

850

900

950

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r101A

NNRW NUC CS EABC

700

750

800

850

900

950

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r101B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

86

650

700

750

800

850

900

950

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r101C

NNRW NUC CS EABC

550

600

650

700

750

800

850

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r102A

NNRW NUC CS EABC

iterations

fitness value

fitness value

iterations

87

600

650

700

750

800

850

900

950

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r102B

NNRW NUC CS EABC

550

600

650

700

750

800

850

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r102C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

88

450

500

550

600

650

700

750

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r103A

NNRW NUC CS EABC

450

500

550

600

650

700

750

800

850

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r103B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

89

450

500

550

600

650

700

750

800

850

900

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r103C

NNRW NUC CS EABC

400

450

500

550

600

650

700

750

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r104A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

90

450

500

550

600

650

700

750

800

850

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r104B

NNRW NUC CS EABC

400

450

500

550

600

650

700

750

800

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r104C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

91

550

600

650

700

750

800

850

900

950

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r105A

NNRW NUC CS EABC

600

650

700

750

800

850

900

950

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r105B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

92

Medium problems (50 customers)

550

600

650

700

750

800

850

900

950

1000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

r105C

NNRW NUC CS EABC

1100

1200

1300

1400

1500

1600

1700

1800

1 6 11 16 21 26 31 36 41 46 51 56

r101A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

93

1100

1200

1300

1400

1500

1600

1700

1800

1 6 11 16 21 26 31 36 41 46 51 56

r101B

NNRW NUC CS EABC

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1 6 11 16 21 26 31 36 41 46 51 56

r101C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

94

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 6 11 16 21 26 31 36 41 46 51 56

r102A

NNRW NUC CS EABC

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1 6 11 16 21 26 31 36 41 46 51 56

r102B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

95

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

1 6 11 16 21 26 31 36 41 46 51 56

r102C

NNRW NUC CS EABC

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1 6 11 16 21 26 31 36 41 46 51 56

r103A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

96

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 6 11 16 21 26 31 36 41 46 51 56

r103B

NNRW NUC CS EABC

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1 6 11 16 21 26 31 36 41 46 51 56

r103C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

97

600

800

1000

1200

1400

1600

1800

1 6 11 16 21 26 31 36 41 46 51 56

r104A

NNRW NUC CS EABC

700

900

1100

1300

1500

1700

1 6 11 16 21 26 31 36 41 46 51 56

r104B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

98

700

800

900

1000

1100

1200

1300

1400

1500

1600

1 6 11 16 21 26 31 36 41 46 51 56

r104C

NNRW NUC CS EABC

900

1100

1300

1500

1700

1900

1 6 11 16 21 26 31 36 41 46 51 56

r105A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

99

1000

1200

1400

1600

1800

2000

1 6 11 16 21 26 31 36 41 46 51 56

r105B

NNRW NUC CS EABC

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1 6 11 16 21 26 31 36 41 46 51 56

r105C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

100

Large problems (100 customers)

1700

1900

2100

2300

2500

2700

2900

3100

3300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r101A

NNRW NUC CS EABC

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

R101B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

101

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r101C

NNRW NUC CS EABC

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r102A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

102

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r102B

NNRW NUC CS EABC

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r102C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

103

1300

1500

1700

1900

2100

2300

2500

2700

2900

3100

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r103A

NNRW NUC CS EABC

1300

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79

r103B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

104

1300

1500

1700

1900

2100

2300

2500

2700

2900

3100

3300

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r103C

NNRW NUC CS EABC

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r104A

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

105

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r104B

NNRW NUC CS EABC

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r104C

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

106

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r105A

NNRW NUC CS EABC

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r105B

NNRW NUC CS EABC

fitness value

fitness value

iterations

iterations

107

B. Code of CPLEX program for mathematical model

int NumCus = ...;

int NumCusLine=...;

int NumVeh = ...;

range Cus = 1..(NumCus+1); //Cus+Depot

range CusLine=1..(NumCusLine+1);//CusLine+Depot

range CusBack=(NumCusLine+2)..(NumCus+1);//Cusback

range Veh = 1..NumVeh;

int VehCapa[Veh] = ...;

int CusDemand[Cus] = ...;// CusDemand[Depot] = 0

float Dis[Cus,Cus] = ...;

dvar boolean X[Cus,Cus,Veh]; // Customer Selection

dvar int+ Y[Cus,Cus];

float e[Cus]=...;

float l[Cus]=...;

float w[Cus]=...;

//dvar boolean Y[Veh]; // Veh Selection

dexpr int VehCapaUse[k in Veh] = sum(i,j in Cus)

CusDemand[j]*X[i][j][k];

dvar float+ t[Cus,Veh];

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

3400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

r105C

NNRW NUC CS EABC

fitness value

iterations

108

dexpr float OBJ = sum(i,j in Cus, k in Veh)

(Dis[i][j]*X[i][j][k]);

//-----------------------Main------------------------------

minimize OBJ;

subject to {

 con1:

 forall(j in Cus : j != 1)

 sum(i in Cus, k in Veh) X[i][j][k] == 1;

 con2:

 forall(i in Cus : i != 1)

 sum(j in Cus, k in Veh) X[i][j][k] == 1;

 con3:

 forall(s in Cus, k in Veh) //: s != 1 may not use

 sum(i in Cus) X[i][s][k] - sum(j in Cus) X[s][j][k]

== 0;

 con4:

 forall(j in CusLine: j != 1)

 sum(i in CusLine) Y[i][j]== sum(l in Cus)

Y[j][l]+CusDemand[j];

 con5:

 forall(j in CusBack)//:j != 1 may not use

 sum(l in CusBack) (Y[j][l])+Y[j][1]== CusDemand[j]+sum(i

in Cus:i!=1) Y[i][j];

 con6:

 forall(i in CusLine, j in CusBack)

 Y[i][j]==0;

 con7:

 forall(i in CusLine)

 Y[i][1]==0;

 con8:

 forall(i in Cus)

 Y[i][i]==0;

 con9:

 sum(i in CusBack) Y[i][1] == sum(i in CusBack)

CusDemand[i];

 con10:

 sum(j in CusLine:j!=1) Y[1][j] == sum(j in

CusLine:j!=1) CusDemand[j];

109

 con11:

 forall(i in CusBack,j in CusLine:j!=1, k in Veh)

 X[i][j][k]==0;

 con12:

 forall(i in Cus,j in Cus:i!=j)

 Y[i][j]<=sum(k in Veh) X[i][j][k]*VehCapa[k];

 con13:

 forall(k in Veh,j in Cus:j!=1)

 Dis[1][j] - t[j][k]<=10000000*(1-X[1][j][k]);

 con14:

 forall(k in Veh, i in Cus:i!=1)

 t[i][k]+w[i]+Dis[i][1]-t[1][k] <=10000000*(1-

X[i][1][k]);

 con15:

 forall(k in Veh,i in Cus:i!=1, j in Cus:j!=1)

 t[i][k]+w[i]+Dis[i][j]-t[j][k] <=10000000*(1-

X[i][j][k]);

 con16_1:

 forall(k in Veh, i in Cus:i!=1)

 e[i]<=t[i][k];

 con16_2:

 forall(k in Veh, i in Cus:i!=1)

 t[i][k]<=l[i];

 con17_1:

 forall(k in Veh)

 0<=t[1][k]; //T min

 con17_2:

 forall(k in Veh)

 t[1][k]<=l[1]; //T max

}

C. Code of C# program for NN heuristic

//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
};

110

int[] seqCus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };
 int[,] vehicle = new int[numVehicle + 1, NumCusForIndex];
 double alpha = 1.0;
 // set u
 int[] vehicleTemp = new int[NumCusForIndex];
 int countIndexVehicle = 1;
 int u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 double TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 double TotalCapLine = 0;
 double TotalCapBack = 0;
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 }
 int k = 1; // num of vehicle use
 while (seqCus.Length != 0)
 {
 // build temp seq
 int[] seqCusTemp = new int[seqCus.Length];
 for (int i = 0; i < seqCus.Length; i++)
 {
 seqCusTemp[i] = seqCus[i];
 }
 // find the proper v for adding route after u
 int BestV = 0; // v that is properly
 double TimeAvirreAtBestV = 0;
 double MinCost = 10000;
 bool ExistV = false;
 while (seqCusTemp.Length != 0)
 {
 if (Node[u].type == true) // u-line
 {
 int v = seqCusTemp[0];
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 // check cap fesibility
 if (Node[v].type == true) // v-line
 {
 if (TotalCapLine + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);

111

 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v];
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 }
 }// end if time

 }// end if cap
 }
 else // v-back
 {
 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v];
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;

 }
 }// end if time

 }// end if cap
 }
 }
 else // u-back
 {
 int v = seqCusTemp[0]; ;
 while (Node[v].type == true)
 {
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (seqCusTemp.Length == 0)
 {
 v = 0;
 break;

112

 }
 v = seqCusTemp[0];
 }
 if (v == 0)
 {
 break;
 }
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0, Node[v].earlytime
 - TimeArriveAtV);
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v];
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 }
 }// end if time
 }// end if cap
 }// end else
 }// end
 // update veh temp
 if (ExistV == true)
 {
 countIndexVehicle++;
 vehicleTemp[countIndexVehicle] = BestV;
 seqCus = seqCus.Except(new int[] { BestV }).ToArray();
 // set new u
 u = BestV;
 TimeArriveAtU = TimeAvirreAtBestV;
 if (Node[u].type == true)
 {
 TotalCapLine = TotalCapLine + Node[BestV].demand;
 }
 else
 {
 TotalCapBack = TotalCapBack + Node[BestV].demand;
 }
 }
 else //can't add any more
 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;

113

 }
 //start new vehicle
 k++;
 //set u
 countIndexVehicle = 1;
 u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 TotalCapBack = 0;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 TotalCapLine = 0;
 }
 }
 } // end while seq
 //add last veh temp to real veh
 if (seqCus.Length == 0)
 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;
 }
 }
 // build index
 int[] index = new int[NumCusForIndex];
 int count3 = 1;
 for (int i = 1; i <= k; i++)
 {
 int count1 = 1;
 while (vehicle[i, count1] != 0)
 {
 index[count3] = vehicle[i, count1];
 count1++;
 count3++;
 }
 count3++;
 }
 // updated time arrive and capacity
 double[] capForindex = new double[index.Length];
 double[] timeArrive = new double[index.Length];
 double temp2 = 0;
 int count15 = 1;
 int count16 = 0;
 for (int m = 1; m <= numVehicle; m++)
 {
 temp2 = 0;
 while (index[count15] != 0)

114

 {
 temp2 = temp2 + Node[index[count15]].demand;
 if (index[count15 - 1] == 0)
 {
 if (Node[index[count15]].earlytime == 0)
 //Setup arrive timeArrive for first customer
 {
 timeArrive[count15] = dis[index[count15 - 1],
 index[count15]];
 }
 else
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 }
 else
 {
 double wait = Math.Max(Node[index[count15]].earlytime -
 (timeArrive[count15 - 1] + Node[index[count15 - 1]].servicetime +
 dis[index[count15 - 1], index[count15]]), 0);
 if (wait != 0.0)
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 else
 {
 timeArrive[count15] = timeArrive[count15 - 1] +
Node[index[count15 - 1]].servicetime + dis[index[count15 - 1], index[count15]];
 }
 }
 count15++;
 }
 if (index[count15] == 0)
 {
 timeArrive[count15] = 0.0;
 }
 for (int n = count16; n < count15; n++)
 {
 capForindex[n] = temp2;
 }
 count16 = count15;
 count15++; // skip depot
 }
 //backhaul
 for (int i = 1; i <= numVehicle; i++)
 {
 int count2 = 2;
 while (index[count2] != 0)
 {
 int n1 = index[count2 - 1];
 int n2 = index[count2];
 if (Node[n1].type == false && Node[n2].type == true)
 {
 Console.WriteLine("\n -*-*-*-*-*-*Infeasible-
 Backhauls*-*-*-*-*-*- ");
 }
 count2++;

115

 }
 count2 = count2 + 2;
 }
 //NN end here

D. Code of C# program for INN heuristic

//INN start here
//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
};
int[] seqCus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };
 int[,] vehicle = new int[numVehicle + 1, NumCusForIndex];
 double alpha = 0.4;
 double beta = 0.3;
 double gramma = 0.3;
 // set u
 int[] vehicleTemp = new int[NumCusForIndex];
 int countIndexVehicle = 1;
 int u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 double TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 double TotalCapLine = 0;
 double TotalCapBack = 0;
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 }
 int k = 1; // num of vehicle use
 while (seqCus.Length != 0)
 {
 // build temp seq
 int[] seqCusTemp = new int[seqCus.Length];
 for (int i = 0; i < seqCus.Length; i++)
 {
 seqCusTemp[i] = seqCus[i];
 }

 // find the proper v for adding route after u
 int BestV = 0; // v that is properly
 double TimeAvirreAtBestV = 0;

116

 double MinCost = 10000;
 bool ExistV = false;
 while (seqCusTemp.Length != 0)
 {
 if (Node[u].type == true) // u-line
 {
 int v = seqCusTemp[0];
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 // check cap fesibility
 if (Node[v].type == true) // v-line
 {
 if (TotalCapLine + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);
 double urgent = Node[v].lasttime -
 TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v] + beta *
 WaittingTime+gramma*urgent;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 }
 }// end if time

 }// end if cap
 }
 else // v-back
 {

 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);
 double urgent = Node[v].lasttime -
 TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {

117

 double cost = alpha * dis[u, v] + beta *
 WaittingTime+gramma * urgent;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 }
 }// end if time

 }// end if cap

 }
 }
 else // u-back
 {
 int v = seqCusTemp[0]; ;
 while (Node[v].type == true)
 {
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (seqCusTemp.Length == 0)
 {
 v = 0;
 break;
 }
 v = seqCusTemp[0];
 }
 if (v == 0)
 {
 break;
 }
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0, Node[v].earlytime
 - TimeArriveAtV);
 double urgent = Node[v].lasttime - TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v] + beta *
 WaittingTime+gramma * urgent;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 }
 }// end if time

118

 }// end if cap

 }// end else

 }// end

 // update veh temp
 if (ExistV == true)
 {
 countIndexVehicle++;
 vehicleTemp[countIndexVehicle] = BestV;
 seqCus = seqCus.Except(new int[] { BestV }).ToArray();
 // set new u
 u = BestV;
 TimeArriveAtU = TimeAvirreAtBestV;
 if (Node[u].type == true)
 {
 TotalCapLine = TotalCapLine + Node[BestV].demand;
 }
 else
 {
 TotalCapBack = TotalCapBack + Node[BestV].demand;
 }
 }
 else //can't add any more
 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;
 }
 //start new vehicle
 k++;
 //set u
 countIndexVehicle = 1;
 u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 TotalCapBack = 0;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 TotalCapLine = 0;
 }
 }
 } // end while seq
 //add last veh temp to real veh
 if (seqCus.Length == 0)

119

 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;
 }
 }
 // build index
 int[] index = new int[NumCusForIndex];
 int count3 = 1;
 for (int i = 1; i <= k; i++)
 {
 int count1 = 1;
 while (vehicle[i, count1] != 0)
 {
 index[count3] = vehicle[i, count1];
 count1++;
 count3++;
 }
 count3++;
 }
 // updated time arrive and capacity
 double[] capForindex = new double[index.Length];
 double[] timeArrive = new double[index.Length];
 double temp2 = 0;
 int count15 = 1;
 int count16 = 0;
 for (int m = 1; m <= numVehicle; m++)
 {
 temp2 = 0;
 while (index[count15] != 0)
 {
 temp2 = temp2 + Node[index[count15]].demand;
 if (index[count15 - 1] == 0)
 {
 if (Node[index[count15]].earlytime == 0)
 //Setup arrive timeArrive for first customer
 {
 timeArrive[count15] = dis[index[count15 - 1],
 index[count15]];
 }
 else
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 }
 else
 {
 double wait = Math.Max(Node[index[count15]].earlytime -
(timeArrive[count15 - 1] + Node[index[count15 - 1]].servicetime +
dis[index[count15 - 1], index[count15]]), 0);
 if (wait != 0.0)
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 else

120

 {
 timeArrive[count15] = timeArrive[count15 - 1] +
Node[index[count15 - 1]].servicetime + dis[index[count15 - 1], index[count15]];
 }
 }
 count15++;
 }
 if (index[count15] == 0)
 {
 timeArrive[count15] = 0.0;
 }
 for (int n = count16; n < count15; n++)
 {
 capForindex[n] = temp2;
 }
 count16 = count15;
 count15++; // skip depot
 }
 //backhaul
 for (int i = 1; i <= numVehicle; i++)
 {
 int count2 = 2;
 while (index[count2] != 0)
 {
 int n1 = index[count2 - 1];
 int n2 = index[count2];
 if (Node[n1].type == false && Node[n2].type == true)
 {
 Console.WriteLine("\n -*-*-*-*-*-*Infeasible-
 Backhauls*-*-*-*-*-*- ");
 }
 count2++;
 }
 count2 = count2 + 2;
 }
 //INN end here

E. Code of C# program for NUC heuristic

//NUC start here
//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
};
int[] seqCus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };
 int[,] vehicle = new int[numVehicle + 1, NumCusForIndex];
 int NumCadidate = 3;
 double alpha = 0.4;
 double beta = 0.3;
 // set u
 int[] vehicleTemp = new int[NumCusForIndex];

121

 int countIndexVehicle = 1;
 int u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 double TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 double TotalCapLine = 0;
 double TotalCapBack = 0;
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 }
 int k = 1; // num of vehicle use
 while (seqCus.Length != 0)
 {
 // build temp seq
 int[] seqCusTemp = new int[seqCus.Length];
 for (int i = 0; i < seqCus.Length; i++)
 {
 seqCusTemp[i] = seqCus[i];
 }

 // find the proper v for adding route after u
 int count1 = 0; // count for cadidate
 int BestV = 0; // v that is properly

 double TimeAvirreAtBestV = 0;
 double MinCost = 10000;
 bool ExistV = false;
 while (seqCusTemp.Length != 0 && count1 < NumCadidate)
 {
 if (Node[u].type == true) // u-line
 {
 int v = seqCusTemp[0];
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 // check cap fesibility
 if (Node[v].type == true) // v-line
 {
 if (TotalCapLine + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);
 double urgent = Node[v].lasttime -
 TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility

122

 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v] + beta *
 WaittingTime+gramma*urgent;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 count1++; // count v be cadidate
 }
 }// end if time

 }// end if cap
 }
 else // v-back
 {

 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0,
 Node[v].earlytime - TimeArriveAtV);
 double urgent = Node[v].lasttime -
 TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v] + beta *
 WaittingTime;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 count1++; // count v be cadidate
 }
 }// end if time

 }// end if cap

 }
 }
 else // u-back
 {
 int v = seqCusTemp[0]; ;
 while (Node[v].type == true)
 {
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (seqCusTemp.Length == 0)
 {

123

 v = 0;
 break;
 }
 v = seqCusTemp[0];
 }
 if (v == 0)
 {
 break;
 }
 seqCusTemp = seqCusTemp.Except(new int[] { v
 }).ToArray();
 if (TotalCapBack + Node[v].demand <= cap)
 {
 double TimeArriveAtV = TimeArriveAtU +
 Node[u].servicetime + dis[u, v];
 double WaittingTime = Math.Max(0, Node[v].earlytime
 - TimeArriveAtV);
 double urgent = Node[v].lasttime - TimeArriveAtV;
 if (WaittingTime != 0)
 {
 TimeArriveAtV = Node[v].earlytime;
 }
 //check time fesibility
 if (TimeArriveAtV <= Node[v].lasttime)
 {
 double cost = alpha * dis[u, v] + beta *
 WaittingTime;
 if (cost < MinCost)
 {
 ExistV = true;
 MinCost = cost;
 BestV = v;
 TimeAvirreAtBestV = TimeArriveAtV;
 count1++; // count v be cadidate
 }
 }// end if time

 }// end if cap

 }// end else

 }// end cadidate

 // update veh temp
 if (ExistV == true)
 {
 countIndexVehicle++;
 vehicleTemp[countIndexVehicle] = BestV;
 seqCus = seqCus.Except(new int[] { BestV }).ToArray();
 // set new u
 u = BestV;
 TimeArriveAtU = TimeAvirreAtBestV;
 if (Node[u].type == true)
 {
 TotalCapLine = TotalCapLine + Node[BestV].demand;
 }
 else
 {
 TotalCapBack = TotalCapBack + Node[BestV].demand;

124

 }

 }
 else //can't add any more
 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;
 }
 //start new vehicle
 k++;
 //set u
 countIndexVehicle = 1;
 u = seqCus[0];
 vehicleTemp[countIndexVehicle] = u;
 seqCus = seqCus.Except(new int[] { u }).ToArray();
 TimeArriveAtU = dis[0, u];
 if (TimeArriveAtU < Node[u].earlytime)
 {
 TimeArriveAtU = Node[u].earlytime;
 }
 if (Node[u].type == true)
 {
 TotalCapLine = Node[u].demand;
 TotalCapBack = 0;
 }
 else
 {
 TotalCapBack = Node[u].demand;
 TotalCapLine = 0;
 }
 }

 } // end while seq

 //add last veh temp to real veh
 if (seqCus.Length == 0)
 {
 //update to real veh
 for (int i = 1; i < vehicleTemp.Length; i++)
 {
 vehicle[k, i] = vehicleTemp[i];
 vehicleTemp[i] = 0;
 }
 }

 // build index
 int[] index = new int[NumCusForIndex];
 int count3 = 1;
 for (int i = 1; i <= k; i++)
 {
 int count1 = 1;
 while (vehicle[i, count1] != 0)
 {

125

 index[count3] = vehicle[i, count1];
 count1++;
 count3++;
 }
 count3++;
 }

 // updated time arrive and capacity
 double[] capForindex = new double[index.Length];
 double[] timeArrive = new double[index.Length];
 double temp2 = 0;
 int count15 = 1;
 int count16 = 0;
 for (int m = 1; m <= numVehicle; m++)
 {
 temp2 = 0;
 while (index[count15] != 0)
 {
 temp2 = temp2 + Node[index[count15]].demand;
 if (index[count15 - 1] == 0)
 {
 if (Node[index[count15]].earlytime == 0)
 //Setup arrive timeArrive for first customer
 {
 timeArrive[count15] = dis[index[count15 - 1],
 index[count15]];
 }
 else
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 }
 else
 {
 double wait = Math.Max(Node[index[count15]].earlytime -
(timeArrive[count15 - 1] + Node[index[count15 - 1]].servicetime +
dis[index[count15 - 1], index[count15]]), 0);
 if (wait != 0.0)
 {
 timeArrive[count15] =
 Node[index[count15]].earlytime;
 }
 else
 {
 timeArrive[count15] = timeArrive[count15 - 1] +
Node[index[count15 - 1]].servicetime + dis[index[count15 - 1], index[count15]];
 }
 }
 count15++;
 }
 if (index[count15] == 0)
 {
 timeArrive[count15] = 0.0;
 }
 for (int n = count16; n < count15; n++)
 {
 capForindex[n] = temp2;
 }

126

 count16 = count15;
 count15++; // skip depot
 }
 //backhaul
 for (int i = 1; i <= numVehicle; i++)
 {
 int count2 = 2;
 while (index[count2] != 0)
 {
 int n1 = index[count2 - 1];
 int n2 = index[count2];
 if (Node[n1].type == false && Node[n2].type == true)
 {
 Console.WriteLine("\n -*-*-*-*-*-*Infeasible-
 Backhauls*-*-*-*-*-*- ");
 }
 count2++;
 }
 count2 = count2 + 2;
 }
 //NUC end here

F. Code of C# program for NNRW heuristic

//NNRW start here
//int[] seqCus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25};
//int[] seqCus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50
};
int[] seqCus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100 };
double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int[] index = new int[NumCusForIndex];
 int CountRunIndex = 0;
 double timeArriveV = 0;
 double totalCap = 0;
 while (Cus.Length != 0)
 {
 int u = index[CountRunIndex];
 double timeArriveU = timeArriveV;
 int[] FeasibleCustomer = new int[Cus.Length];
 double[] UrgentTimeFeasibleCus = new double[Cus.Length];
 double[] WaitingTimeFeasibleCus = new double[Cus.Length];
 int count = 0;

 for (int i = 0; i < Cus.Length; i++)
 {
 int v = Cus[i];
 bool feasible = true;
 double waitingTime = 0;

127

 // -*-*-check feasibility*-*-*
 //---backhauls fesibility---
 if (Node[u].type == false)
 {
 if (Node[v].type == true)
 {
 feasible = false;
 }
 }
 //---time window fesibility---
 if (feasible == true)
 {
 timeArriveV = timeArriveU + Node[u].servicetime +
 dis[u, v];
 if (timeArriveV < Node[v].earlytime)
 {
 waitingTime = Node[v].earlytime - timeArriveV;
 timeArriveV = Node[v].earlytime;
 }
 if (timeArriveV > Node[v].lasttime)
 {
 feasible = false;
 }
 }
 //---capacity---
 if (feasible == true)
 {
 if (totalCap + Node[v].demand > cap)
 {
 feasible = false;
 }
 }
 //*-*-We can use this v*-*-*-Add to Array
 if (feasible == true)
 {
 FeasibleCustomer[count] = v;
 UrgentTimeFeasibleCus[count] = Node[v].lasttime -
 timeArriveV;
 WaitingTimeFeasibleCus[count] = waitingTime;
 count++;
 }

 }// end for to fine feasivle cus

 // construction of wheel
 count = 0;
 FeasibleCustomer = FeasibleCustomer.Except(new int[] { 0
 }).ToArray();
 if (FeasibleCustomer.Length != 0)
 {
 Random random = new Random(seedRand);
 double[] prob = new double[FeasibleCustomer.Length];
 double[] cumuprob = new double[FeasibleCustomer.Length];
 double[] cost = new double[FeasibleCustomer.Length]; ;
 double totalDist = 0;
 for (int i = 0; i < FeasibleCustomer.Length; i++)
 {
 cost[i] = alpha * dis[u, FeasibleCustomer[i]] + beta *
 WaitingTimeFeasibleCus[i] + gramma * UrgentTimeFeasibleCus[i];

128

 totalDist = totalDist + (1 / (cost[i]));
 }
 // compute prob
 for (int i = 0; i < FeasibleCustomer.Length; i++)
 {
 prob[i] = (1 / cost[i]) / totalDist;
 }
 // compute q = cumulative prob
 cumuprob[0] = prob[0];
 for (int i = 1; i < FeasibleCustomer.Length; i++)
 {
 cumuprob[i] = cumuprob[i - 1] + prob[i];
 }
 double r1 = random.NextDouble();
 count = 0;
 bool found = true;
 while (found == true)
 {
 if (r1 <= cumuprob[count])
 {
 break;
 }
 count++;
 }
 // run index
 CountRunIndex++;
 //input new cus to index
 index[CountRunIndex] = FeasibleCustomer[count];
 // del assinged cus from Cus
 Cus = Cus.Except(new int[] { index[CountRunIndex]
 }).ToArray();
 // update time and cap
 timeArriveV = timeArriveU + Node[u].servicetime + dis[u,
 index[CountRunIndex]];
 if (timeArriveV < Node[index[CountRunIndex]].earlytime)
 {
 timeArriveV = Node[index[CountRunIndex]].earlytime;
 }
 totalCap = totalCap + Node[index[CountRunIndex]].demand;
 }
 else // means can't add anymore -> new veh
 {
 CountRunIndex++;
 // set initial
 index[CountRunIndex] = 0;
 timeArriveV = 0;
 totalCap = 0;

 }

 } // end while
 //NNRW end here

Code of C# program for CS heuristic

double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int NumOfSolution = 15;

129

int[] index = new int[NumCusForIndex];
int[,] Sol = new int[NumOfSolution, NumCusForIndex];
double[] objFeasible = new double[NumOfSolution];
//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };
//int[] Cus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50};
int[] Cus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100 };
//wheel for initial Sol.
 for (int j = 0; j < NumOfSolution; j++)
 {
 index = ContByRouletteWheel(alpha, beta, gramma, Cus,
 NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
 double obj = 0;
 for (int l = 0; l < index.Length; l++)
 {
 if (l != index.Length - 1)
 {
 obj = obj + dis[index[l], index[l + 1]];
 }
 }
 //objFeasible[j] = obj;
 Console.Write(" " + obj);
 for (int i = 0; i < index.Length; i++)
 {
 Sol[j, i] = index[i];
 }
 seedRand++;
 }// end for numofSol

 //Cuckoo Search**
 double BestKnownOld = 100001;
 double BestKnownNew = 100000;
 int[] NotImprove = new int[NumOfSolution];
 int[] BestSolOld = new int[NumCusForIndex];
 int[] BestSolNew = new int[NumCusForIndex];
 while (BestKnownNew < BestKnownOld)
 {
 //check best known solution
 int MinIndex = -1;
 double MinValue = 100000;
 for (int i = 0; i < NumOfSolution; i++)
 {
 double obj = 0; // compute all fitness
 for (int l = 0; l < NumCusForIndex; l++)
 {
 if (l != NumCusForIndex - 1)
 {
 obj = obj + dis[Sol[i, l], Sol[i, l + 1]];
 }
 }
 objFeasible[i] = obj;
 if (obj < MinValue)

130

 {
 MinValue = obj;
 MinIndex = i;
 }
 }
 // updated best sol
 if (MinValue < BestKnownNew)
 {
 BestKnownOld = BestKnownNew;
 BestKnownNew = MinValue;
 for (int j = 0; j < NumCusForIndex; j++)
 {
 BestSolOld[j] = BestSolNew[j];
 BestSolNew[j] = Sol[MinIndex, j];
 }
 }

 // randomly lay cuckoo egg
 int[] nest = new int[15] { 0,1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14 };
 Random rnd = new Random(seedRand);

 for (int i = 0; i < 15; i++) //num cuckoo=15
 {
 int RandChoosePosition = rnd.Next(0, nest.Length);
 int NestRChoosen = nest[RandChoosePosition];

 int[] index3 = new int[NumCusForIndex];
 for (int j = 0; j < NumCusForIndex; j++)
 {
 index3[j] = Sol[NestRChoosen, j];
 }

 index3=CuckooEgg(index3, cap, numVehicle,Node, dis);
 //build cuckoo egg

 for (int j = 0; j < NumCusForIndex; j++)
 // replace cukoo egg to ole egg
 {
 Sol[i, j] = index3[j];
 }

 }

 // abandon worst nest Pc=0.25 of 15 is 3 nest
 // find all obj
 double[] TeamObj = new double[NumOfSolution];
 for (int j = 0; j < NumOfSolution; j++)
 {
 for (int k = 0; k < NumCusForIndex; k++)
 {
 if (k != NumCusForIndex - 1)
 {
 TeamObj[j] = TeamObj[j] + dis[Sol[j,
 k], Sol[j, k + 1]];
 }
 }
 }

131

 //find max obj/ worst sol
 for (int j = 0; j < 3; j++)
 {
 // find best
 double m = TeamObj.Max();
 int maxIndex = Array.IndexOf(TeamObj, m);
 TeamObj[maxIndex] = -1;
 //bulid new nest
 int[] indexTemp = new int[NumCusForIndex];
 indexTemp = ContByRouletteWheel(alpha, beta, gramma,
Cus, NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
 seedRand++;
 for (int i = 0; i < indexTemp.Length; i++)
 {
 Sol[maxIndex, i] = indexTemp[i];
 }
 }

 }//end while

G. Code of C# program for EABC heuristic

int NumOnlookerBee = 25;
int NumLimit = 20;
int seedRand = 0;
double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int NumOfSolution = 25;
int[] index = new int[NumCusForIndex];
int[,] Sol = new int[NumOfSolution,NumCusForIndex];
double[] objFeasible=new double[NumOfSolution];
//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };
//int[] Cus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50};
int[] Cus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100 };

for (int j = 0; j < NumOfSolution; j++)
 {
 bool CheckDuplicated = true;
 while (CheckDuplicated == true)
 {
 index = ContByRouletteWheel(alpha, beta, gramma, Cus,
 NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
 double obj = 0;
 for (int l = 0; l < index.Length; l++)
 {
 if (l != index.Length - 1)
 {

132

 obj = obj + dis[index[l], index[l + 1]];
 }
 }

 // check duplication
 bool ExistRepeat = false;
 for (int i = 0; i < objFeasible.Length;i++)
 {
 if (obj == objFeasible[i])
 {
 seedRand++; // at least one duplication
 ExistRepeat = true;
 break;
 // break for to repeat while loop check duplication
 }
 }
 if (ExistRepeat == false)// if no-duplication
 {
 CheckDuplicated = false;
 }
 if (CheckDuplicated == false)
 // collect sol if not duplicated
 {
 //objFeasible[j] = obj;
 Console.Write(" " + obj);
 for (int i = 0; i < index.Length; i++)
 {
 Sol[j, i] = index[i];
 }
 seedRand++;
 break;
 }
 }// end while check duplicated
 }// end for numofSol

 //EABC**
 double BestKnownOld = 100001;
 double BestKnownNew = 100000;
 int[] NotImprove = new int[NumOfSolution];
 int[] BestSolOld = new int[NumCusForIndex];
 int[] BestSolNew = new int[NumCusForIndex];
 while (BestKnownNew < BestKnownOld)
 {
 //check best known solution
 int MinIndex = -1;
 double MinValue = 100000;
 for (int i = 0; i < NumOfSolution; i++)
 {
 double obj = 0; // compute all fitness
 for (int l = 0; l < NumCusForIndex; l++)
 {
 if (l != NumCusForIndex - 1)
 {
 obj = obj + dis[Sol[i, l], Sol[i, l + 1]];
 }
 }
 objFeasible[i] = obj;
 if (obj < MinValue)
 {

133

 MinValue = obj;
 MinIndex = i;
 }
 }
 // updated best sol
 if (MinValue < BestKnownNew)
 {
 BestKnownOld = BestKnownNew;
 BestKnownNew = MinValue;
 for (int j = 0; j < NumCusForIndex; j++)
 {
 BestSolOld[j] = BestSolNew[j];
 BestSolNew[j] = Sol[MinIndex, j];
 }
 }
 // woker bee improve food source
 int[] index3 = new int[NumCusForIndex];
 for (int i = 0; i < NumOfSolution; i++)
 {
 for (int j = 0; j < NumCusForIndex; j++)
 {
 index3[j] = Sol[i, j];
 }
 double objBegin = 0; // compute all fitness
 for (int l = 0; l < NumCusForIndex; l++)
 {
 if (l != NumCusForIndex - 1)
 {
 objBegin = objBegin + dis[Sol[i, l], Sol[i, l +
 1]];
 }
 }
 Apply neighborhood search here
 for (int j = 0; j < NumCusForIndex; j++)
 {
 Sol[i, j] = index3[j];
 }
 double objEnd = 0; // compute all fitness
 for (int l = 0; l < NumCusForIndex; l++)
 {
 if (l != NumCusForIndex - 1)
 {
 objEnd = objEnd + dis[Sol[i, l], Sol[i, l + 1]];
 }
 }
 if (objBegin == objEnd) // not improve?
 {
 NotImprove[i] = NotImprove[i] + 1;
 }
 int[] index4 = new int[NumCusForIndex];
 if (NotImprove[i] >= NumLimit)// reach limit
 {
 //build new
 seedRand++;
 Console.Write("new-");
 index4 = ContByRouletteWheel(alpha, beta, gramma, Cus,
 NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
 for (int j = 0; j < NumCusForIndex; j++)
 {

134

 Sol[i, j] = index4[j];
 }
 NotImprove[i] = 0;
 }

 }

 // roulet wheel by onlooker bees
 int[] index2 = new int[NumCusForIndex];
 double[] probSol = new double[NumOfSolution];
 double[] cumuprobSol = new double[NumOfSolution];
 double TotalFitness = 0;
 for (int i = 0; i < NumOfSolution; i++)
 {
 TotalFitness = TotalFitness + (1 / (objFeasible[i]));
 }
 for (int i = 0; i < NumOfSolution; i++)
 {
 probSol[i] = (1/objFeasible[i])/TotalFitness;
 }
 cumuprobSol[0] = probSol[0];
 for (int i = 1; i < NumOfSolution; i++)
 {
 cumuprobSol[i] = cumuprobSol[i - 1] + probSol[i];
 }
 Random randomSol = new Random(1);
 //try to find repeat sol.******************test
 Console.WriteLine("round " + countIteration);
 for (int i = 0; i < NumOnlookerBee; i++)
 {
 double r1 = randomSol.NextDouble();
 int count = 0;
 bool found = true;
 // onlooker choose food source
 while (found == true)
 {
 if (r1 <= cumuprobSol[count])
 {
 break;
 }
 count++;
 }
 Console.Write(" "+count); // **********************test
 for (int j = 0; j < NumCusForIndex; j++)
 {
 index2[j] = Sol[count, j];
 }
 //improve food source
 Apply neighborhood search here
 for (int j = 0; j < NumCusForIndex; j++)
 {
 Sol[count, j] = index2[j];
 }
 } //end for select and improv

 }//end

135

H. Code of C# program for EGB heuristic

int NumLimit = 5;
int seedRand = 0;
double alpha = 0.4;
double beta = 0.3;
double gramma = 0.3;
int NumOfSolution = 48;
int[] index = new int[NumCusForIndex];
int[,] Sol = new int[NumOfSolution,NumCusForIndex];
double[] objFeasible=new double[NumOfSolution];
//int[] Cus = new int[25] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25 };
//int[] Cus = new int[50] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50};
int[] Cus = new int[100] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75,
76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100 };
for (int j = 0; j < NumOfSolution; j++)
 {
 bool CheckDuplicated = true;
 while (CheckDuplicated == true)
 {
 index = ContByRouletteWheel(alpha, beta, gramma, Cus,
 NumCusForIndex, cap, seedRand, numVehicle, Node, dis);
 double obj = 0;
 for (int l = 0; l < index.Length; l++)
 {
 if (l != index.Length - 1)
 {
 obj = obj + dis[index[l], index[l + 1]];
 }
 }

 // check duplication
 bool ExistRepeat = false;
 for (int i = 0; i < objFeasible.Length;i++)
 {
 if (obj == objFeasible[i])
 {
 seedRand++; // at least one duplication
 ExistRepeat = true;
 break;
 // break for to repeat while loop check duplication
 }
 }
 if (ExistRepeat == false)// if no-duplication
 {
 CheckDuplicated = false;
 }
 if (CheckDuplicated == false)
 // collect sol if not duplicated
 {
 //objFeasible[j] = obj;
 Console.Write(" " + obj);

136

 for (int i = 0; i < index.Length; i++)
 {
 Sol[j, i] = index[i];
 }
 seedRand++;
 break;
 }
 }// end while check duplicated
 }// end for numofSol

 //*************Divided Team*************************************
 int numberMembers=8;
 int numberTeams = 6;
 int count4Sol = 0;
 int[,,] TEAM = new int[numberTeams,numberMembers, NumCusForIndex];
 for (int i = 0; i < numberTeams; i++)
 {
 for (int j = 0; j < numberMembers; j++)
 {
 for (int k = 0; k < NumCusForIndex;k++)
 {
 TEAM[i, j, k] = Sol[count4Sol, k];
 }
 count4Sol++;
 }
 }
 //*************End-Divided Team********************************

 double previousBest = 1000000; // previous Best
 double presentBest = 999999; // presentBest
 int NumSeason = 1;
 while (presentBest<previousBest)
 {
 Console.WriteLine("\n\n =||=||=|| Season " + NumSeason + "
 ||=||=||=||=");
 previousBest = presentBest;
 double[] Score = new double[numberTeams]; //test
 //a season divided 2 part
 for (int m = 0; m < 2; m++)
 {
 //*************-Training-**********************************
 for (int i = 0; i < numberTeams; i++)
 {
 for (int j = 0; j < numberMembers; j++)
 {
 int[] indexTemp = new int[NumCusForIndex];
 // copy to index Temp
 for (int k = 0; k < NumCusForIndex; k++)
 {
 indexTemp[k] = TEAM[i, j, k];
 }
 // improve sol
 indexTemp = Training(indexTemp, cap, numVehicle,
 Node, dis);
 // updated
 for (int k = 0; k < NumCusForIndex; k++)
 {
 TEAM[i, j, k] = indexTemp[k];
 }

137

 }
 }
 //*************End-Training-***************************

 //*************Re-Arrange sol and choose captain*******
 //Simplify Sol
 for (int i = 0; i < numberTeams; i++)
 {
 for (int j = 0; j < numberMembers; j++)
 {
 int[] indexTemp = new int[NumCusForIndex];
 for (int k = 0; k < NumCusForIndex; k++)
 {
 indexTemp[k] = TEAM[i, j, k];
 }
 indexTemp = SimplifyForm(indexTemp, numVehicle);
 // updated
 for (int k = 0; k < NumCusForIndex; k++)
 {
 TEAM[i, j, k] = indexTemp[k];
 }
 }
 }
 // Arrange Sol in team (Best obj is captain *index=0*)
 TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,
 NumCusForIndex, dis);

 //print test Arrange player in each team
 Console.WriteLine("\n\n ===> After Training :=");
 for (int i = 0; i < numberTeams; i++)
 {
 Console.WriteLine("\n TEAM :" + i);
 for (int j = 0; j < numberMembers; j++)
 {
 double TeamObj = 0;
 for (int k = 0; k < NumCusForIndex; k++)
 {
 if (k != NumCusForIndex - 1)
 {
 TeamObj = TeamObj + dis[TEAM[i, j, k],
 TEAM[i, j, k + 1]];
 }
 }
 Console.Write(" " + TeamObj);
 }
 }

 //*************End--Re-Arrange sol and choose captain***

 //************-Custom Trianing-*************************
 int CountForVehicle = 0;
 Random random = new Random(seedRand);
 bool check = false;
 int[] IndexCap = new int[NumCusForIndex];
 int[] IndexPlay = new int[NumCusForIndex];
 int[] NewIndex = new int[NumCusForIndex];
 for (int l = 0; l < numberTeams; l++)
 {
 for (int j = 1; j < numberMembers; j++)

138

 {
 int countLimit = 0;
 while (countLimit < NumLimit)
 {
 for (int i = 0; i < index.Length; i++)
 {
 IndexCap[i] = TEAM[l, 0, i];
 IndexPlay[i] = TEAM[l, j, i];
 }
 // fine the number of vehicles
 double NumOfCapVehicle =
 CountNumOfVehicles(IndexCap);
//random to select the number of vehicles that will be duplicated from captain
 int Min =
 Convert.ToInt32(Math.Floor(NumOfCapVehicle * 40 / 100));
 int Max =
 Convert.ToInt32(Math.Floor(NumOfCapVehicle * 80 / 100));

 CountForVehicle = random.Next(Min, Max + 1);
 //plus 1 because it is a form
 //Train by captain
 NewIndex = CustomTraining(IndexCap, IndexPlay,
cap, CountForVehicle, numVehicle, Node, dis);
 check = NewBetterThanOld(NewIndex, IndexPlay,
dis);
 if (check == true)
 {
 for (int i = 0; i < index.Length; i++)
 {
 TEAM[l, j, i] = NewIndex[i];
 }
 break;
 }
 else
 {
 countLimit++;
 }
 }//end while
 }//end for j
 }//end for l

 // Arrange Sol again*** in team (Best obj is captain *index=0*)
 TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,
 NumCusForIndex, dis);

 //print test
 Console.WriteLine("\n\n ===> After Custom train := ");
 for (int i = 0; i < numberTeams; i++)
 {
 Console.WriteLine("\n TEAM :" + i);
 for (int j = 0; j < numberMembers; j++)
 {
 double TeamObj = 0;
 for (int k = 0; k < NumCusForIndex; k++)
 {
 if (k != NumCusForIndex - 1)
 {
 TeamObj = TeamObj + dis[TEAM[i, j, k],
 TEAM[i, j, k + 1]];

139

 }
 }
 Console.Write(" " + TeamObj);
 }
 }

 //************-End-Custom*****************************

 //************-Start Match-***************************
 //compute obj
 double[,] ObjAll = new double[numberTeams, numberMembers];
 for (int i = 0; i < numberTeams; i++)
 {
 Console.Write(" \n ");
 for (int j = 0; j < numberMembers; j++)
 {
 double TempObj = 0;
 for (int l = 0; l < NumCusForIndex; l++)
 {
 if (l != NumCusForIndex - 1)
 {
 TempObj = TempObj + dis[TEAM[i, j, l],
 TEAM[i, j, l + 1]];
 }
 }
 ObjAll[i, j] = TempObj;
 //Console.Write(" " + TempObj);
 }
 }
 // competition
 for (int i = 0; i < numberTeams; i++) // Team A
 {
 for (int ii = i + 1; ii < numberTeams; ii++) //Team B
 {
 int ScoreA = 0;
 int ScoreB = 0;
 for (int k = 0; k < numberMembers; k++) //Member
 {
 if (ObjAll[i, k] < ObjAll[ii, k])
 {
 ScoreA++;
 }
 else if (ObjAll[i, k] > ObjAll[ii, k])
 {
 ScoreB++;
 }
 else
 {
 ScoreA++;
 ScoreB++;
 }
 }
 if (ScoreA > ScoreB)
 {
 Score[i] = Score[i] + 3;
 }
 else if (ScoreA < ScoreB)
 {
 Score[ii] = Score[ii] + 3;

140

 }
 else
 {
 Score[i]++;
 Score[ii]++;
 }
 }
 }

 //************-End Match-****************************

 //************-Exchange-*****************************
 // find best score
 int[] OrderedTeamByScore = new int[numberTeams];
 for (int i = 0; i < numberTeams; i++)
 {
 double ScoreMax = Score.Max();
 int MaxScoreIndex = Array.IndexOf(Score, ScoreMax);
 OrderedTeamByScore[i] = MaxScoreIndex;
 Score[MaxScoreIndex] = -1; // never choosing again
 }
 //exchange
 for (int i = 0; i < numberTeams / 2; i++)
 {
 int Temp = 0;
 for (int j = 0; j < NumCusForIndex; j++)
 {
 Temp = TEAM[OrderedTeamByScore[i], numberMembers -
1 - i, j];
 TEAM[OrderedTeamByScore[i], numberMembers - 1 - i,
j] = TEAM[OrderedTeamByScore[numberTeams - 1 - i], i, j];
 TEAM[OrderedTeamByScore[numberTeams - 1 - i], i, j]
= Temp;
 }
 }
 //************-End Exchange-*************************

// Arrange Sol again after exchange players*** in team (Best obj is captain
index=0)
 TEAM = ArrangePlayers(TEAM, numberTeams, numberMembers,
 NumCusForIndex, dis);

 //***************************-END-*******************
 NumSeason++;
 }// end while

//***
public static int[] SimplifyForm(int[] index, int numVehicle)
 {
 int[,] Vehicle = new int[numVehicle, index.Length];
 int count1 = 1;
 for (int k = 0; k < numVehicle; k++) // seperated vehicles
 {
 int count2 = 1;
 while (index[count1] != 0)
 {
 Vehicle[k, count2] = index[count1];
 count2++;
 count1++;

141

 }
 count1++; // skip depot
 }
 // re-arrange
 int count3=1;
 int[] index2 = new int[index.Length];
 for (int i = 0; i < numVehicle; i++)
 {
 if (Vehicle[i, 1] != 0)
 {
 int count4=1;
 while (Vehicle[i, count4] != 0)
 {
 index2[count3] = Vehicle[i, count4];
 count4++;
 count3++;
 }
 index2[count3] = 0;
 count3++;
 }
 }
 return index2;
 }

//***
public static int[, ,] ArrangePlayers(int[, ,] TEAM, int numberTeams, int
numberMembers, int NumCusForIndex, double[,] dis)
 {
 for (int i = 0; i < numberTeams; i++)
 {
 double[] TeamObj = new double[numberMembers];
 for (int j = 0; j < numberMembers; j++)
 {
 for (int k = 0; k < NumCusForIndex; k++)
 {
 if (k != NumCusForIndex - 1)
 {
 TeamObj[j] = TeamObj[j] + dis[TEAM[i, j, k],
 TEAM[i, j, k + 1]];
 }
 }
 }
 int[,] TempTeam = new int[numberMembers, NumCusForIndex];
 for (int j = 0; j < numberMembers; j++)
 {
 // find best player
 double m = TeamObj.Min();
 int minIndex = Array.IndexOf(TeamObj, m);
 TeamObj[minIndex] = 10000000;
 //record new ordered
 for (int k = 0; k < NumCusForIndex; k++)
 {
 TempTeam[j, k] = TEAM[i, minIndex, k];
 }
 }
 //updated
 for (int j = 0; j < numberMembers; j++)
 {
 for (int k = 0; k < NumCusForIndex; k++)

142

 {
 TEAM[i, j, k] = TempTeam[j, k];
 }
 }
 }

 return TEAM;
 }

//***
public static int[] CustomTraining(int[] IndexCap, int[] IndexPlay, int cap,
int CountForVehicle, int numVehicle, Data[] Node, double[,] dis)
 {
 //copy some part of captain
 int[] NewIndex = new int[IndexCap.Length];
 int[] DelIndex = new int[IndexCap.Length];
 int count4Run = 1, count4Index = 1;

 while (CountForVehicle != 0)
 {
 while (IndexCap[count4Run] != 0)
 {
 NewIndex[count4Index] = IndexCap[count4Run];
 DelIndex[count4Index] = IndexCap[count4Run];
 count4Run++;
 count4Index++;
 }
 NewIndex[count4Index] = 0;
 count4Index++;
 count4Run++;
 CountForVehicle--;
 }
 //delete depot to get deleting seq
 DelIndex = DelIndex.Except(new int[] { 0 }).ToArray();
 //copy player to tempPlayer
 int[] TempPlayer = new int[IndexCap.Length];
 for (int i = 0; i < IndexCap.Length; i++)
 {
 TempPlayer[i] = IndexPlay[i];
 }
 //del duplicate customer from tempPlayer
 TempPlayer = TempPlayer.Except(new int[] { 0 }).ToArray();
 for (int i = 0; i < DelIndex.Length; i++)
 {
 TempPlayer = TempPlayer.Except(new int[] { DelIndex[i]
 }).ToArray();
 }
 // devide the rest of customer --> 2vars
 int countLine = 0, countBack = 0;
 int[] LineTempPlayer = new int[TempPlayer.Length];
 int[] BackTempPlayer = new int[TempPlayer.Length];
 for (int i = 0; i < TempPlayer.Length; i++)
 {
 if (Node[TempPlayer[i]].type == true)
 {
 LineTempPlayer[countLine] = TempPlayer[i];
 countLine++;
 }
 else

143

 {
 BackTempPlayer[countBack] = TempPlayer[i];
 countBack++;
 }
 }
 //Build fesible vehicle
 LineTempPlayer = LineTempPlayer.Except(new int[] { 0 }).ToArray();
 BackTempPlayer = BackTempPlayer.Except(new int[] { 0 }).ToArray();
 while (LineTempPlayer.Length != 0 || BackTempPlayer.Length != 0)
 {
 int[] TempRoute = new int[TempPlayer.Length];
 double timeLeave = 0;
 double capacityCount = 0;
 int count4TempRoute = 1;
 if (LineTempPlayer.Length != 0)
 {
 TempRoute[0] = LineTempPlayer[0];
 capacityCount = Node[TempRoute[0]].demand;
 LineTempPlayer = LineTempPlayer.Except(new int[] {
 LineTempPlayer[0] }).ToArray();
 timeLeave = Math.Max(dis[0, TempRoute[0]],
 Node[TempRoute[0]].earlytime) + Node[TempRoute[0]].servicetime;
 }
 else
 {
 TempRoute[0] = BackTempPlayer[0];
 capacityCount = Node[TempRoute[0]].demand;
 BackTempPlayer = BackTempPlayer.Except(new int[] {
 BackTempPlayer[0] }).ToArray();
 timeLeave = Math.Max(dis[0, TempRoute[0]],
 Node[TempRoute[0]].earlytime) + Node[TempRoute[0]].servicetime;
 }
 //linehual
 for (int i = 0; i < LineTempPlayer.Length; i++)
 {
 if (capacityCount + Node[LineTempPlayer[i]].demand <= cap)
 {
 if (timeLeave + dis[TempRoute[count4TempRoute - 1],
 LineTempPlayer[i]] <=
Node[LineTempPlayer[i]].lasttime)
 {
 TempRoute[count4TempRoute] = LineTempPlayer[i];
 capacityCount = capacityCount +
 Node[LineTempPlayer[i]].demand;
 timeLeave = Math.Max(timeLeave +
 dis[TempRoute[count4TempRoute - 1], LineTempPlayer[i]],
Node[LineTempPlayer[i]].earlytime)+ Node[LineTempPlayer[i]].servicetime;
 LineTempPlayer = LineTempPlayer.Except(new int[] {
LineTempPlayer[i] }).ToArray();
 count4TempRoute++;
 }
 else
 {
 break;
 }
 }
 else
 {
 break;

144

 }
 }
 // backhual
 for (int i = 0; i < BackTempPlayer.Length; i++)
 {
 if (capacityCount + Node[BackTempPlayer[i]].demand <= cap)
 {
 if (timeLeave + dis[TempRoute[count4TempRoute - 1],
BackTempPlayer[i]] <= Node[BackTempPlayer[i]].lasttime)
 {
 TempRoute[count4TempRoute] = BackTempPlayer[i];
 capacityCount = capacityCount +
Node[BackTempPlayer[i]].demand;
 timeLeave = Math.Max(timeLeave +
dis[TempRoute[count4TempRoute - 1], BackTempPlayer[i]],
Node[BackTempPlayer[i]].earlytime) + Node[BackTempPlayer[i]].servicetime;
 BackTempPlayer = BackTempPlayer.Except(new int[] {
BackTempPlayer[i] }).ToArray();
 count4TempRoute++;
 }
 else
 {
 break;
 }
 }
 else
 {
 break;
 }
 }
 //Add new route to NewIndex
 int countTemp = 0;
 while (countTemp<TempRoute.Length && TempRoute[countTemp] != 0)
 {
 NewIndex[count4Index] = TempRoute[countTemp];
 countTemp++;
 count4Index++;
 }
 NewIndex[count4Index] = 0;
 count4Index++;
 } //end while

 //Improve solution before return
 NewIndex = Training(NewIndex, cap, numVehicle, Node, dis);
 //Simplify Sol
 NewIndex = SimplifyForm(NewIndex, numVehicle);
 return NewIndex;
 }

145

VITA

VITA

Mr. Tanawat Worawattawechai was born in June 28, 1987, in Uttaradit. He

received a bachelor degree in Mathematics from Department of Mathematics,

Faculty of science, ChiangMai University, Thailand 2009, and a master degree in

Applied Mathematics and Computational Science from Department of Mathematics

and Computer Science, Faculty of Science, Chulalongkorn University, Thailand

2012. He has been financially supported by the Development and Promotion of

Science and Technology talents project (DPST).

146

PUBLICATION

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, Heuristic Approach to Vehicle

 Routing Problem with Backhauls and Time Windows : International

 Conference on Applied Statistics 2016, Phuket, Thailand, July 13 – 15, 2016.

 Proceedings, W. Panichkitkosolkul and P. Srisuradetchai, Editors. Thammasat

 University, Pathum Thani. p. 121-128.

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, Cuckoo search algorithm for the

 vehicle routing problem with backhauls and time windows. Panyapiwat

 Journal, 2016. 8: p.136-149.

Worawattawechai, T., B. Intiyot, and C. Jeenanunta, An artificial bee colony

 algorithm for the vehicle routing problem with backhauls and time windows.

 Songklanakarin Journal of Science and Technology, [in press].

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	1.1 General Vehicle Routing Problem
	1.2 Motivations
	1.3 Research Objectives
	1.4 Scope of the Research
	1.5 Overview of Dissertation

	CHAPTER 2 LITERATURE REVIEW
	2.1 Vehicle Routing Problem
	2.1.1 Vehicle Routing Problem with Backhauls
	2.1.2 Vehicle Routing Problem with Time Windows
	2.1.3 Vehicle Routing Problem with Backhauls and Time Windows

	2.2 Solution Approaches to Vehicle Routing Problem
	2.2.1 Exact Approaches
	2.2.1.1 Lagrange Relaxation
	2.2.1.2 Column Generation
	2.2.1.3 Integer Programming

	2.2.2 Heuristic Approach
	2.2.2.1 Two-phase heuristics
	2.2.2.2 Constructive heuristics

	2.2.3 Metaheuristic Approach

	CHAPTER 3 THE VEHICLE ROUTING PROBLEM WITH BACKHAULS AND TIME WINDOWS
	3.1 Problem Description
	3.2 Mathematical Model
	3.3 Heuristic Approach
	3.3.1 Common Elements
	3.3.1.1 Solution Representation
	3.3.1.2 Quality Measure of a Solution
	3.3.1.3 Neighborhood Search

	3.3.2 Nearest Neighbor (NN) Heuristic
	3.3.3 Improved Nearest Neighbor (INN) Heuristic
	3.3.4 Nearest Urgent Candidate (NUC) Heuristic
	3.3.5 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic

	3.4 Metaheuristic Approach
	3.4.1 Cuckoo Search (CS) Algorithm
	3.4.1.1 The General Concept of CS
	3.4.1.2 Main Steps of CS

	3.4.2 Artificial Bee Colony (ABC) Algorithm
	3.4.2.1 The General Concept of ABC
	3.4.2.2 Enhanced Artificial Bee Colony (EABC) Algorithm
	3.4.2.3 Main Steps of EABC

	CHAPTER 4 COMPUTATIONAL EXPERIMENT
	4.1 Test Problems
	4.2 Parameter Setting
	4.2.1 Nearest Neighbor (NN) Heuristic
	4.2.2 Improved Nearest Neighbor (INN) Heuristic
	4.2.3 Nearest Urgent Candidate (NUC) Heuristic
	4.2.4 Nearest Neighbor with Roulette Wheel Selection (NNRW) Heuristic
	4.2.5 Cuckoo Search (CS) Algorithm
	4.2.6 Artificial Bee Colony (ABC) Algorithm

	4.3 Results and Comparison
	4.4 Rate of Convergence
	4.5 Results Discussion

	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDIX
	VITA
	PUBLICATION

