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BACH KIM DO: OPTIMUM PATCH DESIGN FOR REPAIRING CRACKED STEEL 
PLATES USING GENETIC ALGORITHM. ADVISOR: ASSOC. PROF. AKHRAWAT 
LENWARI, Ph.D. {, 119 pp. 

This research presents a design optimization process that combines the finite 
element (FE) method, genetic programming (GP), and optimization solvers, i.e., genetic 
algorithm (GA) and nonlinear programming, for double-sided fiber-reinforced polymer 
(FRP) patches used to repair center-cracked steel plates under tension fatigue. An 
optimization statement is to minimize the patch volume and reduce the stress 
intensity factor (SIF) range at crack tips below the fatigue threshold range. A detailed 
three-dimensional (3D) FE model of patch-repaired cracked plates is developed to 
compute SIF. A total of 864 FE models of patch-repaired cracked plates with different 
combinations of design parameters are then analyzed to obtain a SIF database. Based 
on the database, a symbolic regression via GP analysis is implemented to develop a 
closed-form SIF solution that helps visualize the effects of design parameters on SIF, 
facilitates the repair design, and is used as an inequality constraint in the optimization. 
Finally, optimization solvers are employed to find an optimum solution (patch length, 
width, and thickness) that is then checked for patch rupture and debonding failure 
based on some failure criteria. An example is given to illustrate the design process. 
The example results reveal that the optimum patch design is significantly influenced 
by patch modulus, meanwhile, the effect of adhesive modulus is not pronounced. 
Furthermore, in view of debonding failure, the maximum Tresca and interfacial stresses 
significantly increase when adhesive modulus increases. As both stresses are relatively 
insensitive to patch modulus, the use of high modulus patch and low modulus 
adhesive is recommended for fatigue crack repairs. For large cracks, using a thick and 
high elastic modulus patch is the most effective. 
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CHAPTER 1 
INTRODUCTION 

1.1. Problem statement 

The need of finding an effective technique for strengthening and repairing old metallic 
bridges to ensure that the structures are still in good condition before new 
constructions is perceived. According to a report of United States Department of 
Transportation in 2016 [1] and a survey by Bien, et al. [2], almost half of 614,387 bridges 
in the US and about 70% of metallic bridges in Europe are 50 years or older. 

Fatigue cracks appearing at high-stress zones in old-metallic structural members 
subjected to cyclic loadings are natural phenomena. In a report, Kuehn, et al. [3] 
revealed that fatigue is one of the leading causes of old bridge collapses among the 
other ones, such as the decreased static strength, instability, elastic deformation, and 
environmental conditions ( seawater or industrial environment). In a survey, Fisher and 
Yuceoglu [4] indicated twenty-eight types of metallic bridge details experienced cracks, 
e.g. web gap, cope, eyebar, pin plate, cover plate, etc. These cracks can seriously 
damage the integrity of the structures if they are not detected and repaired in time. 
Fig. 1.1 shows a crack developed from a web gap of a steel girder detected by the red 
dye penetrant inspection [5]. Fig. 1.2 presents a crack initiated at a steel truss member 
of Turnpike Toll Bridge, in the US, that was closed for two months for the repair [6].  

Owing to many good mechanical properties, adhesive-bonded fiber-reinforced 
polymer (FRP) patches have become a suitable choice for strengthening and repairing 
cracked and defective structures. Particularly for cracked structures, by sharing stresses 
in the main structures, FRP patches reduce stress intensity factor (SIF) that characterizes 
the stress and strain fields near the crack tip. As SIF reduces, the service life of repaired-
cracked structures is extended. Therefore, the quantification of SIF values after the 
crack repairs is significant to predict the increased lifetime of repaired structures. 
Particularly for steel plates, however, a closed-form solution for SIF of repaired cracks 
does not exist. This drives a search for finding a correction factor for SIF in this study 
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to take into account the positive effects of FRP patches on SIF reduction. Center-
cracked steel plates under tension fatigue loadings repaired with double-sided FRP 
patches are studied in this research. 

 

Fig. 1.1. A crack was detected in a steel girder using red dye penetrant [5]. 

 

Fig. 1.2. A fracture occurred on a truss member of Turnpike Toll Bridge [6].  

This research also addresses the optimum FRP patch design for repairing 
foregoing cracked steel plates. Thereby, an optimum patch design is defined as a 
combination of design parameters that simultaneously minimizes the patch volume 
and limits SIF range below the fatigue threshold range. Additionally, the optimum 
design must satisfy the failure criteria, described in [7, 8], for the patch and adhesive 
layer. 
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In the study, a general finite element (FE) program ABAQUS/CAE [9], genetic 
programming (GP) in HeuristicLab [10], which is an important application of genetic 
algorithm (GA), and two optimization solvers in MATLAB are executed sequentially in 
a numerical process as follows. First, a detailed FE model of FRP-patched cracked 
plates built with ABAQUS is validated with previously published results [11-13]. 
Secondly, a total of 864 FE models are employed to create a SIF database for FRP-
patched cracked plates. Thirdly, based on SIF database, the HeuristicLab is used to 
perform a symbolic regression via GP analyses to develop an empirical SIF solution to 
be used as an inequality constraint in a minimization problem for patch volume. 
Fourthly, an optimum solution (length, width, and thickness of patch) is obtained using 
GA and nonlinear programming in MATLAB. Finally, the optimum patch design is 
analyzed with ABAQUS to assess the FRP patch rupture and debonding phenomenon. 

1.2. Research objectives  

Following are four major objectives of this study: 

1. To compute SIF of FRP-patched cracked steel plates under tension using FE 
analyses in which the layer-wise theory [14] is applied for modeling FRP 
patches. 

2. To study the effects of geometrical and material properties of FRP patch and 
adhesive layer on SIF of FRP-patched cracked steel plates.  

3. To develop closed-form empirical SIF solutions for cracked steel plates 
repaired with adhesive-bonded double-sided FRP patches under tension for 
ready use of practicing engineers. 

4. To determine the optimum combination of width, length, and thickness of FRP 
patches for repairing center-cracked steel plates under tension fatigue loadings 
when FRP and adhesive material properties are specific. 
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1.3. Scope 

The following statements limit the scope of this study: 

1. Material models of steel and adhesive are linear elastic isotropic, while FRP is 
analyzed as a linear elastic orthotropic material.  

2. Debonding phenomenon that may occur in the adhesive layer, at the steel-
adhesive, or adhesive-patch interface [15] is not included in FE analyses. 
However, the possibility of appearing in this phenomenon is analyzed when 
the optimum patch design has already been accomplished. 

3. Symbolic regression via GP and two optimization solvers are limited in the 
algorithms of HeuristicLab and MATLAB optimization toolbox, respectively. 

1.4. Thesis outline 

The thesis contents are organized as follows: 

Chapter 2 provides a summary of previously published studies on structural 
advantages of bonding composite patches, methods used for determining SIF of FRP-
patched cracked structures, some design criteria for crack patching, and different 
statements of optimization patch design for repairing cracked structures. 

Chapter 3 focuses on the theoretical background used for this research. Two 
novel approaches to deal with crack problems in linear elastic fracture mechanics, the 
method of interaction energy release rate for the computation of SIF, a brief 
introduction to GA and GP methodologies, and the method of Lagrange multipliers for 
solving inequality constrained optimization problems are presented. 

Chapter 4 describes in detail a three-dimensional (3D) FE model built with 
ABAQUS/CAE to compute SIF of center-cracked steel plates repaired with double-sided 
FRP patches under tension. A validation scheme for FE models is then presented at 
the end of the chapter. 

Chapter 5 provides a closed-form SIF solution for FRP-patches cracked plates 
under tension. The solution is a result obtained from a symbolic regression via a GP 
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analysis in HeuristicLab. An independent verification of SIF solution for different 
combinations of design parameters is also introduced. 

Chapter 6 formulates the optimization statement in this study. Two 
optimization solvers in MATLAB are presented briefly. A comparison of an optimum 
patch design with a previous work result is also introduced. 

Chapter 7 presents a design example to illustrate the optimization process. The 
optimum combination of the width, length, and thickness of FRP patches repairing a 
center-cracked steel plate under tension fatigue loadings for predefined FRP and 
adhesive material properties is solved. 

Chapter 8 gives main conclusions of this thesis work, including 
recommendations and perceptions for future works. 
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CHAPTER 2 
LITERATURE REVIEW 

This chapter summarizes previous studies focusing on four aspects of using composite 
patches for cracked structure repairs related to the present study. First, major structural 
advantages of bonding composite patches observed in the literature are listed. 
Secondly, previous works concentrating on characterizing SIF reduction of cracked 
structures due to the presence of composite patches are summarized. Thirdly, some 
design criteria for crack patching used in some aerospace engineering applications are 
provided. Finally, published studies on optimizing composite patch design are 
summarized. 

2.1. Structural advantages of bonding composite patches  

Due to their excellent mechanical properties, i.e., high modulus and strength of 
composite materials, good resistance to damage by fatigue, high formability, easy 
installation [16], adhesive-bonded fiber-reinforced polymer (FRP) patches have been 
considered as a suitable choice for repairing cracked and defective structural members, 
among other techniques, such as hole drilling, welding repair, adding doubler or splice 
plates, and post-tensioning [5]. Their applications have expanded in diverse fields, 
ranging from repairing cracks in aircraft structures to reinforcing old metallic bridges in 
civil engineering and applying to some structural problems in offshore and marine 
infrastructure engineering [17]. In practical application, FRP composite patches are 
usually used to strengthen old and corroded structures of infrastructure systems, such 
as old cast iron bridges, old steel bridges, and onshore and offshore pipelines [18]. In 
academia, many published studies verify that the adhesive-bonded composite patches 
beneficially influence the flexural strength [15, 19-24], lateral-torsional buckling 
capacity [25-28], and fatigue behavior [29-32] of steel structures; successfully oppose 
local buckling in hollow sections [15]; enhance the shear strength of reinforced 
concrete structures [33]; and enhance the strength and ductility of concrete-filled steel 
tubes [24].  
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It is the fact that bonding composite patches into the tension flange of metallic 
girders can significantly increase the flexural capacity and stiffness of these girders. In 
the study by Miller, et al. [19], four 7m-S24x80 steel girders strengthened by adhesive-
bonded 12GPa-carbon fiber reinforced polymer (CFRP) plates increased the stiffness 
from 10% to 37% and ultimate strength from 17% to 25%. Schnerch and Rizkalla [23] 
found that the stiffness and ultimate strength of steel-concrete composite beams 
strengthened by high modulus CFRP strips also increased from 10% to 34% and up to 
46%, respectively. 

The applications of using the adhesive-bonded FRP patches to extend the 
fatigue life of cracked structures subjected to cyclic loadings have been reported for 
both steel plates [29-31, 34, 35] and beams [32, 36-39]. Colombi, et al. [29] concluded 
that fatigue life of a cracked steel plate repaired with different types of CFRP material 
increased by three times when using 174GPa-CFRP and up to 16 times when 216GPa-
CFRP with a pre-stress level of 632 MPa was applied. Liu, et al. [30] conducted a series 
of experiments on cracked steel plates and revealed that elastic modulus of patch 
material and the number of patch layers play an important role in the fatigue life of 
repaired cracked plates. Täljsten et al. [31] performed an experimental program for 
old steel plates with a center notch strengthened by using prestressed and non-
prestressed CFRP laminates and found that using non-prestressed CFRP increased 
fatigue life almost four times while using pre-stressing CFRP completely stopped the 
crack propagation. Jiao, et al. [32] showed that the fatigue life of 1.2m-steel beams 
repaired by using 210GPa-CFRP plates increased about seven times as compared with 
those repaired by welding method only. Colombi, et al. [37-39] demonstrated that 
bonding CFRP strips into the tension flange of cracked steel beams can significantly 
reduce the fatigue crack growth of the structures. 

2.2. Determination of SIF of patch-repaired structures 

A significant SIF reduction of cracked structures after bonding composite patches has 
attracted the attention of many researchers. The literature includes analytical, 
numerical, and experimental studies to characterize this phenomenon. The following 
is a brief summary of these studies. 
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In analytical works by Erdogan and Arin [40] and Ratwani [41], the solutions of 
stresses in the composite patch, SIF, and adhesive shear stresses for patched plates 
were provided using a two-step analysis with treating adhesive layer as two-
dimensional shear springs. In the first step, stress distributions in an uncracked plate 
with the presence of composite patch were computed. The second step then 
introduced a crack into the patched plate to determine SIF values using the computed 
normal stress in the uncracked plate from the first step and two components of 
shearing spring stress that was the solution of a system of two integral equations. Rose 
[42-44] applied the two-step analysis for an infinite orthotropic plate containing a 
center-crack repaired with a bonded elliptical orthotropic patch and an adhesive layer 
considered as a shearing spring in the load direction to determine the solutions of 
tensile stress in the composite patch, the upper bond of SIF, and maximum shear 
stress in the adhesive layer. The aforementioned analytical works, however, are based 
on certain assumptions that may not be suitable for complex problems.  

On the other hand, as a capacity for analyzing complex structures with different 
geometrical and material models and without any assumptions, the FE analysis has 
been popularly used to compute SIF of patch repaired cracks. Sun, et al. [45] presented 
a simple analysis method using Mindlin plate elements for a cracked plate and 
composite patch and three springs for adhesive layer. Naboulsi and Mall [46] proposed 
the three-layer technique in which two-dimensional Mindlin plate elements with the 
transverse shear deformation capability were used for all three parts: cracked plate, 
composite patch, and adhesive layer. Ayatollahi and Hashemi [13] computed SIF 
values for composite patched cracks in pure mode I  and mixed mode I / II  by using 
3D brick elements for the three parts and the quarter point crack tip singular elements 
for crack tip region. Lam, et al. [47] proposed the modified three-layer technique using 
3D brick elements for a cracked plate and conventional shell elements for both a 
composite patch and an adhesive layer. Gu, et al. [48] used 3D hex-dominated 
quadratic elements for all the three parts with collapsed 20 node brick elements for 
crack tip region. Wang, et al. [49] employed 8-node 3D solid elements for both a 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

cracked structure and a composite patch and 3D spring-damper elements for an 
adhesive layer. 

Meanwhile, experimental works on SIF of the repaired structures have been 
very limited in the literature. Using the experimental methods, SIF can be interpreted 
from the X-ray back reflection [50], caustics method [51, 52], photoelasticity technique 
[53, 54], thermoelasticity technique [55], and piezoelectric sensor measurement [56]. 

2.3. Design criteria for crack patching 

The effectiveness of a crack repair with FRP patches is assessed based on some design 
criteria for the three parts of the repair, i.e. the repaired structure, adhesive layer, and 
FRP patch in terms of design ultimate (DUL) and design fatigue (DFL) loads. 

According to Marioli-Riga, et al. [57], a crack patching is successful if the 
following criteria are satisfied. 

For repaired structure: 

1

1 m

repaired unrepairedK K


 
   

 
 (2.1) 

where 
max minK K K   for cyclic loading;   the ration of life increase; m   Paris’ 

law exponent. 

and 

0.7repaired unrepaired

Vs Vs   (2.2) 

repaired

Ed y   (2.3) 

where repaired

Vs   von Mises stress at points in the structure underneath the patch; 
repaired

Ed   stresses in the structure at the edges of the patch; 
y  yield stress of the 

structure material. 

For the adhesive layer, shear strain is less than the allowable. 
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a al   (2.4) 

For the composite patch, Two criteria are required: stress in the load direction, 

yy , is less than the allowable, al , and some interactive criteria for composite 
materials are satisfied (e.g., Tsai–Hill). 

yy al   (2.5) 

In a book on the theory of composite repair, Duong and Wang [58] provided 
design criteria for a crack patching applied in aerospace engineering whereby the 
repaired structure, adhesive layer, and composite patch must have sufficient static 
strength and fatigue resistance after the crack repair. For the repaired structure, the 
following three design criteria are required: 1) stress concentration factor in the 
repaired structure at patch’s edge due to DUL is below 1.3, 2) SIF must be less than 
80% of fracture toughness of the repaired structure at DUL, and 3) the difference in 
SIF at DFL must be less than the fatigue threshold range. For the composite patch, the 
maximum stress in the patch at DUL is less than 83% of the tensile ultimate strength 
of patch material and the maximum stress in the patch at DFL is less than 40% of the 
strength allowable of patch material. For adhesive layer, the maximum shear strain at 
DUL is below 80% of the maximum allowable strain and the maximum shear strain at 
DFL is less than twice the elastic shear strain limit. 

2.4. Optimization patch design for repairing cracked structures 

Research on composite patch design optimization for repairing cracked structures can 
be classified as two types of the problem formulation: 1) minimizing a structural cost 
function under constraints on mechanical properties and 2) maximizing a mechanical 
property under a constraint on the structural cost. Volume or area of the patch is 
usually used for representing the structural cost while SIF or the fatigue life of repaired 
structures is considered as the mechanical property. However, published studies in this 
field have been very limited.  

Kumar and Hakeem [11] conducted a series of parameter finite element studies 
on different patch configurations to determine a patch shape that has the most effect 
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on SIF reduction. Brighenti [59] developed a tool in which GA was embedded within a 
finite element code to provide a patch topology that minimizes SIF or maximizes 
fatigue life of cracked steel plates. Although his work provided the best geometry of 
the patch by determining its topology, the optimization procedure presented was very 
complicated and almost cannot be applied by practicing engineers who just have a 
scant background of the finite element code, as well as GA. Yala and Megueni [60] 
used the design of experiments method to find an optimum combination of the patch 
and adhesive thicknesses and shear modulus of adhesive to minimize SIF of a 
rectangular center-cracked aluminum plate. Ramji, et al. [61] conducted 3D finite 
element analyses to find an optimum composite patch shape (circular, rectangle, 
square, elliptical, or octagonal) that provides the highest SIF reduction for an inclined 
center crack panel containing a crack inclination angle of 450. Errouane, et al. [62] 
presented a combination of the ANSYS software and first-order optimization method 
to the volume optimization of a composite patch bonded on a cracked aluminum 
sheet to reduce SIF and restrict interfacial shear stress in adhesive layer by some 
constraints. Recently, Rasane, et al. [63] provided optimum patch designs for repairing 
a center-cracked aluminum sheet by using response surface methodology for an 
optimization problem with patch area was considered as an objective function and 
failure stress at aluminum-patch interface was as a constraint.  
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CHAPTER 3 
THEORETICAL BACKGROUND 

In this chapter, two approaches to deal with crack problems in linear elastic fracture 
mechanics, followed by the interaction integral method that is applied to compute SIF 
in ABAQUS/CAE are briefly presented. Basic backgrounds of GA and GP methodologies 
are then introduced. This chapter ends with the method of Lagrange multipliers that 
is used to find the optimum solution of inequality constrained optimization problem 
in the present study. 

3.1. Linear elastic fracture mechanics 

The basic of linear fracture mechanics theory (LEFM) includes energy balance and 
stress intensity factor (SIF) approaches to handle crack problems in structures. In the 
energy approach proposed by Griffith [64], the condition for an unstable crack 
extension in a brittle material is when a critical value of an energy release rate per unit 
crack growth exceeds an increasing rate of surface energy. Meanwhile, Irwin [65] 
proposed using a new quantity called stress intensity factor (SIF) to characterize the 
near crack-tip stress and strain fields. According to Irwin, a fracture occurs if SIF reaches 
a critical value that is related to the critical energy release rate proposed by Griffith 
[64]. 

3.1.1. Energy approach 

Considering a static problem with a deformable body containing a crack in an 
adiabatically closed system, applying the first law of thermodynamics to the body, a 
change in energy per time is represented as 

. . .

ext intW W D   (3.1) 

where the left-hand side of Eq. (3.1) = energy goes into the body per time in terms of 
the work done by external loads (body forces and boundary tractions); right-hand side 
of Eq. (3.1) = energy absorbed by the body per time = the internal energy per time, 
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.

intW , adds ( ) the dissipative energy (surface energy) per time,
.

D , consumed during 
the creation of two new surfaces of the crack. 

The surface energy, needed to create two new crack surfaces, is proportional 
to the crack area, A , with a material constant, , as follow 

2D A  (3.2) 

Now, considering two moments of time of a crack extension 
it  and 

1it 
 where 

at 
it , 

iA A  and at 
1it 

, 
1i iA A A A A       . 

Substituting D  from Eq. (3.2) into Eq. (3.1) and applying the propagation of the 
crack corresponding to the above two moments of time, Eq. (3.1) becomes 

, 1 , 1

1 1 1

2
ext i ext i int,i+1 int,i i i

i i i i i i

W W W W A A

t t t t t t
 

  

  
 

  
 (3.3) 

Eq. (3.3) can be rewritten as 

2ext intW W A      (3.4) 

Based on Eq. (3.4), Griffith [64] provided the energetic fracture criterion, as 
follow 

2ext intW W
G

A


 
 


 (3.5) 

In Eq. (3.5), G  is the energy release rate defined for finite or infinitesimal crack 
extension. Based on this concept, a fracture criterion regarding the energy dissipated 
during the crack extension is produced, whereby a crack propagates if the following 
condition is satisfied 

2ext int
c

W W
G G

A


 
  


 (3.6) 

where 
cG  represents the critical material parameter. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 14 

3.1.2. Stress intensity factor approach 

Fig. 3.1 shows three basic modes of crack extensions in which mode I  is dominant in 
the real world. Each mode is characterized by the displacement of the crack surface 
with respect to the plane of the crack. A polar coordinate system  ,r   is defined 
with the crack tip is referred as the reference point of the system, illustrated in Fig. 3.1. 
The stress field in the vicinity of the crack tip corresponding to three crack extension 
modes are characterized by three stress intensity factor values IK , IIK , and IIIK , 
detailed in Eqs. (3.7) – (3.9). 

 

Fig. 3.1. Three basic modes of fracture mechanics [12]. 
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Mode II , for a plane stress condition 
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Mode III  
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It is seen that the singular stress field described by the three SIF values is 
dominated in a finite region around the crack tip only where r  approaches to 0. If r  
is beyond that region, the higher terms get their influences. 

Based on the concept of SIF, Irwin [65] provided a fracture criterion for a crack 
problem, whereby the crack propagates if the following condition is satisfied (for the 
case of mode I ) 

I ICK K  (3.10) 

where ICK = the critical value of mode I  SIF, namely fracture toughness, representing 
the material resistance against crack initiation under monotonic loadings. 

The relationship between  K
T

I II III
K K K and G is expressed by 

 

2 2 2

2 2 2
2

2

1
2

I II III

s

I II III

s

K K K

E
G

K K K
v

E





 



 

  



plane stress

plane strain
 (3.11) 

where sE  = elastic modulus; v  = Poison’s ratio;  = shear modulus. 

3.2. Computation of SIF with the interaction integral method 

SIF values are extracted in ABAQUS/CAE from the interaction integral method [66]. In 
this method, an auxiliary pure mode I  crack-tip field [Eq. (3.13)] is assumed to 
superimpose onto the mixed-mode actual field [Eq. (3.12)]. An interaction energy 
release rate [Eq. (3.15)] is computed by subtracting the energy release rate of the 
auxiliary and actual fields from the energy release rate of the superimposed field [Eq. 
(3.14)]. SIF values are directly computed from the computed interaction energy release 
rate [66]. Following is a brief summary of the interaction integral method. 
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The energy release rate for the actually mixed-mode crack field is  

 

1 1 1

11 12 13

1
[ 2 2

8

]

I I I II I III

I

G K B K K B K K B K

K



    

 terms not involving
 (3.12) 

where B = pre-logarithmic energy factor matrix [66, 67]. 

The energy release rate for the auxiliary pure mode I  is given by 

1

11

1

8

I

aux I IG k B k


  (3.13) 

The energy release rate of the superimposed field is 

         

 

1 1 1

11 12 13

1
[ 2 2

8

]

I

tot I I I I I II I I III

I I

G K k B K K k B K K k B K

K k



       

 terms not involving or
 (3.14) 

Subtracting the actual and auxiliary energy release rates in Eqs. (3.12) and (3.13) 
from the superimposed energy release rate in Eq. (3.14), the interaction energy release 
rate is given 

1 1 1

11 12 13[ ]
4

I I I
int tot aux I II III

k
G G G G B K B K B K



         (3.15) 

If the foregoing steps are also repeated for mode II  and mode III , a linear 
system of equations results 
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1 1 1
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4

[ ]
4

[ ]
4

I I
int I II III
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III III
int I II III

k
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k
G B K B K B K

k
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





  

  

  


  




  



  


 (3.16) 

If 1I II IIIk k k   , a solution of system (3.16) provides SIF values as 
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4K BG
int

  (3.17) 

where G
T

I II III

int int int int
G G G     

In ABAQUS, the energy release rate is determined using the method of virtual 
crack extensions. For more detail, see section 2.16.1 of ABAQUS theory manual [68]. 

3.3. Genetic algorithm methodology 

Genetic algorithms (GAs) are iterative numerical solvers for optimization problems 
inspired by natural selection and natural genetics [69-71]. Each GA operates on a 
population of candidate solutions of binary strings in a computer program. 

To start a GA, randomly numeric values of independent variables in a solution 
space are encoded to binary strings in a computer program with respect to the 1-to-1 
mapping property in which each binary string in the computer program space 
represents exactly one point in the solution space, and vice versa. For example, Fig. 
3.2 shows four numeric numbers in a solution space that are encoded to become 
corresponding four binary strings of length 10 in a computer program. The opposite 
process of encode is decode that turns binary strings into numeric numbers for the 
assessment and visualization of the algorithm results. 

Immediately after the encode process, the GA determines the fitness of each 
string in the current generation (iteration). The string fitness is the value of a given 
objective function, namely fitness function, at a particular point that corresponds to 
the binary string being considered. The algorithm then arranges all strings 
in descending order of their fitness values. Based on this arrangement, the algorithm 
performs orderly the following three genetic operators: elite transfer [Fig. 3.3(a)], 
crossover [Fig. 3.3(b)], and mutation [Fig. 3.3(c)] to produce a new population of binary 
strings for the next generation. 
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Fig. 3.2. Example of GA candidate solutions. 

 

(a) GA elite transfer 

 

 

(b) GA crossover (c) GA mutation 

Fig. 3.3. Example of GA operators. 

In GA elite transfer scheme [Fig. 3.3(a)], strings that have the best fitness values 
in the current generation are automatically survived to the next generation. Two strings 
will be the elites in this study. Meanwhile, most of the strings in the population are to 
be experienced through the crossover operator [Fig. 3.3(b)]. To implement the 
crossover, each pair of strings is selected randomly; a crossover point is determined at 
a random location of these strings. By exchanging all binary bits coming after the 
crossover point of the two strings, two new crossover offspring are created for the next 
generation. Finally, a small proportion of the population containing strings with the 
worst fitness values can be through the mutation operator [Fig. 3.3(c)] in which a binary 
bit of the mutation string is randomly selected and changed its value from 0  to 1 , or 
vice versa.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19 

As an iterative algorithm, the GA repeats the aforementioned operators for the 
next generation until reaching a stopping criterion that usually is a specific number of 
generations of the algorithm. In MATLAB, some stopping criteria are also applied such 
as the run-time complexity limit, the function and constraint tolerances, etc. The 
designation of the GA solution is determined as the best-so-far binary string that has 
the greatest fitness value stored in the computer cache as soon as the algorithm 
satisfies at least one stopping criterion. 

Focusing on the foundation of GAs, Holland [69] first proposed the schema 
theory that attempted to explain how a GA process directly guided the search for 
improving the fitness of the current GA population. This theory can be able to predict 
the development in the number of a particular schema, namely H , contained within 
a population at a certain time to be increased or decreased after each generation. 

As defined by Holland [69], followed by Goldberg [70], a schema H  is a subset 
of strings that have the same values at certain loci. Let all strings in a population are 
constructed from three alphabets  0 1   in which the star   can be either a 1 or a 
0  at a certain locus. For example, 11 1= 0H 1 1  , a schema of length 8, describes a 
subset including the following four strings: 11010101 , 11111101 , 11110101 , and 
11011101.  

Each schema has two properties: schema defining length,  H and schema 
order,  H . The schema defining length is defined as the distance between the first 
and the last locus of given bits of the schema being considered. For example, a schema 
11 1 101   with the first given bit is 1 at locus 1 and the last one is 1  at locus 8 has 

 H   8-1 = 7. The schema order is the numbers of given bits of the schema. For 
example, the schema 11 1 101   with 6 given bits at loci 1, 2, 4, 6, 7, 8 has  H  6. 

According to the schema theory, schemas with above-average fitness, short 
length, and lower order can have more chance to increase their number in future 
generations. 
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3.4. Genetic programming methodology 

Genetic programming (GP) [72, 73] is one important application of GA for regression 
analysis. The major difference between GP and GA is the representation of candidate 
solutions that are binary strings in GA [Fig. 3.2] and are tree structures in GP [Fig. 3.4]. 

x1 x2

+

*

x3/

x2

Terminal nodes

Terminal nodes

Functional nodes

 
Fig. 3.4. Example of a GP individual. 

In this research, GP provides the best fit solution for a new correction factor 
2F  

(see section 5.1) by maximizing the squared Pearson correlation coefficient 2
R  

(Pearson’s 2
R ) [74], as given in Eq. (3.18). The 2

R  is widely used to reveal the linear 
correlation between two quantitative parameters. Here, the two quantitative 
parameters are the validated FE results of the correction factor 

2F  and corresponding 
predictions from a GP analysis. The larger the 2

R  is, the better the GP result is 

      2

2

2 2

1 1 1

/
N N N

i m i m i m i m

i i i

R X X Y Y X X Y Y
  


 

    
 
    (3.18) 

where N  = the number of observations of 
2F  database from FE analyses; 

iY = 
2F  

value of the thi  FE analysis; 
mY  = the mean of all 

iY  values; 
iX  = the prediction value 

of 
iY ; 

mX  = the mean of all 
iX values. 

SIF of the repaired plates is sensitive to the variation of design parameters. 
Thus, traditional regression techniques, namely numeric regression, may not work well 
since it is difficult to predict a regression mathematical model at first with unknown 
coefficients before applying regression theory to determine these coefficients. In this 
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case, simultaneously finding the regression mathematical model and unknown 
coefficients, namely symbolic regression, is a reasonable requirement. The GP allows 
performing the symbolic regression. 

 

(a) GP elite transfer 

  

(b) GP crossover (c) GP mutation 

Fig. 3.5. Example of GP operators [75]. 

A GP analysis consists of the following three steps. First, an initial population 
of a given number of tree structures is randomly created by using atoms from the 
following two given sets: function ( F ) and terminal ( T ). Atoms of the F  set can be 
arithmetic operations, mathematical functions, Boolean operations, conditional 
operators, or any user-defined functions [72]. Within a tree structure, F ’s atoms 
occupy functional nodes that have two arguments, presented Fig. 3.4. Meanwhile, T

’s atoms are independent variables and constants [72]. These atoms are to be located 
at terminal nodes of the GP tree structure that have no argument, illustrated in Fig. 
3.4. Secondly, the GP computes 2

R  values for all tree structures existing in the current 
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generation. Based on these 2
R  values, the algorithm stores all tree structures in a 

column vector and arranges them in a descending order of 2
R  values. After the 

arrangement, the GP performs the following three genetic operators in a sequence: 
elite transfer [Fig. 3.5(a)], crossover [Fig. 3.5(b)], and mutation [Fig. 3.5(c)] to produce a 
new population of tree structures for the next generation. Finally, similarly to GA 
solution definition, the solution of the GP analysis is determined as the best-so-far tree 
structure stored in the cache of the computer program. 

3.5. Symbolic regression via GP with HeuristicLab 

This research uses HeuristicLab for GP analyses [10]. It is an open source software for 
heuristic and evolutionary algorithms developed on C# programming language by 
members of the Heuristic and Evolutionary Algorithms Laboratory in Austria since 2002. 

Symbolic regression in HeuristicLab is a database modeling technique that 
works on a set of examples, namely training set, with identified properties. On the basis 
of the training set, the algorithm works with solution candidates that are tree structure 
representations of symbolic expressions, as presented in section 3.5, and produces a 
formula that maps a vector of object features into one of the given classes. A 
procedure for performing a symbolic regression via GP in HeuristicLab environment is 
introduced in APPENDIX D. 

3.6. MATLAB global optimization toolbox 

Global optimization toolbox [76] provides MATLAB functions that search for global 
solutions to optimization problems. The toolbox includes global search, nonlinear 
programming, genetic algorithm, multi-objective genetic algorithm, pattern search, 
quadratic programming, and simulated annealing solvers. These solvers can be used 
to solve optimization problems where the objective or constraint function is 
continuous, discontinuous, does not have derivatives, or includes simulations [76]. 

For comparison purpose, this study uses two solvers: genetic programming 
(command ga) and nonlinear programming, (command fmincon). Both solvers are 
completely different in the way of searching the optimum solution. While the GA only 
looks at the objective function values at every point in the solution space during the 
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searching process, the fmincon is based on calculating the gradient of the objective 
function. 

Considering the following optimization problem: Min  Xf  such that 

 

 

0

0

X

X

A X b

A X b

X X X

eq

eq eq

L U

c

c

 






 

  


 (3.19) 

where b  and beq  = vectors; A  and A
eq  = matrices;  Xc and  X

eq
c  = functions that 

return vectors;  Xf = a function that returns a scalar; and X
L  and X

U  = lower and 
upper bound vectors, respectively. 

In MATLAB, the genetic algorithm and nonlinear programming commands for 
the optimization are as follows 

X  = ga(  Xf ,size ( X ), A ,b , Aeq ,beq , XL , U
X ,    ,X X

eq
c c   ,options) (3.20) 

X  = fmincon(  Xf , 0
X , A ,b , A

eq ,beq , XL , U
X ,    ,X X

eq
c c   ,options) (3.21) 

The “options” for each solver is clearly described in [76] and in APPENDIX E. 

3.7. Optimization with inequality constraints 

The method of Lagrange multipliers [77] is applied to deal with the inequality-
constrained optimization problem in the present study. The background of this 
method is presented as follows. 

An optimization problem is given as 

Min  Xf  

subject to 
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  0 1 2X , , , ...,
j

g j m   (3.22) 

where  1 2
X , , ...,

T

n
x x x = design parameter vector; n = the number of design 

parameters; and m = the total number of constraints, including explicit lower and 

upper bounds on the design parameters. 

The constraints in Eq. (3.19) is to be transformed to equality constraints by 

adding nonnegative slack variables, j
S , as 

  0 1 2X , , , ...,
j j

g S j m    (3.23) 

Then, the optimization problem becomes 

Min  Xf  

subject to 

    0 1 2X S X , , , ...,
j j j

h , g S j m     (3.24) 

where  1 2
S , , ...,

T

m
S S S  

The new problem can be solved conveniently by the method of Lagrange 
multipliers with the Lagrange function, , is as 

     
1

X S,λ X X S
m

j j

j

, f h ,


   (3.25) 

where  1 2
λ , , ...,

T

m
   = multiplier vector. 

The Karush-Kuhn–Tucker (KKT) conditions that are necessary conditions for a 

global minimum of the above problem are as follows 
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1

0 1 2, , , ...,
m

j

ji i i

f g
i n

x x x




  
   

  
  (3.26) 

0 1 2, , , ...,
j j
g j m    (3.27) 

0 1 2, , , ...,
j

g j m   (3.28) 

0 1 2, , , ...,
j

j m    (3.29) 

 If the optimization problem is convex, the KTT conditions are necessary as 
well as sufficient conditions and any local minimum becomes a global minimum. The 
above optimization problem is convex if  Xf and  X

j
g  are convex functions [77]. 
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CHAPTER 4 
THREE-DIMENSIONAL FINITE ELEMENT MODEL 

In this chapter, a detailed FE model of FRP-patched plates built with ABAQUS/CAE is 
provided. The FE models are then validated with previous studies in the literature for 
two cases of unrepaired and repaired (with single-sided and double-sided patches) 
plates. 

4.1. Element types and mesh density 

A total of 864 three-dimensional (3D) FE models are analyzed with ABAQUS/CAE [9] to 
compute SIF values of FRP-patched plates under tension for different combinations of 
steel plate configuration, crack length, and geometrical and material properties of the 
patch and adhesive layer. Fig. 4.1 shows three element types used in all FE models. A 
20-node quadratic solid element, C3D20, is assigned to the cracked plate and adhesive 
layer elements while an 8-node continuum shell element with reduced integration, 
SC8R, is used for FRP patch. The SC8R element is designed to resemble 8-node solid 
element but has only three displacement degrees of freedom at each node. Kinematic 
assumptions and constitutive relations for the element are similar to the 3D 
conventional shell element given at a reference surface [78]. A layer-wise theory of  
Reddy [14] is applied for modeling FRP patch by stacking SC8R elements through the 
patch thickness with the command with a command *SHELL SECTION, STACK 
DIRECTION = 3, which means the stacking direction and patch thickness are identical. 
Additionally, to capture the square root singularity of stress and strain fields in the 
vicinity of the crack front, a collapsed 3D element, collapsed C3D20, is appointed to a 
small region around the crack front in the steel plate. 

In Fig. 4.2, surrounding the crack front are strips of wedge-shaped elements that 
fill a semi-cylinder with the center at the crack front and the radius, 

e
R , is equal to 

12/a - 5/a . The amount of these strips spanning the radial length of the semi-cylinder 
depends on the crack front element size, 

e
L . To determine an appropriate 

e
L  value, 

a sensitivity analysis [79] is implemented on the 6×90×1300 mm center-cracked steel 
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plate. SIF values in the variation of /
e

a L  ratio ranging from 20 to 100 for two 
normalized crack lengths, i.e. 2 /

s
a W = 0.1 and 0.9 are computed using ABAQUS, 

FE
K .  

These computed results are then compared with referenced handbook solutions [12], 

Ref
K . The sensitivity analysis results show that the ratio of /

FE Ref
K K  for two crack 

length levels approached unity as /
e

a L approached 100, as detailed in Fig. 4.3. 
Therefore, /

e
a L = 100 is chosen for this study. The number of the wedge-shaped strips 

is computed with 
e

R 10a /  and 100
e

a L /  would be equal to 10. Each strip is 
divided into 48 equally sized elements spanning the angular distance from 0 to  . 
The global size of the steel plate, patch, and adhesive elements are 1.5, 1, and 1 mm, 
respectively. 

 

 

Fig. 4.1. Three element types used [9]. 
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Fig. 4.2. FE meshes near the crack front. 

 

Fig. 4.3. Sensitive analysis results. 

4.2. Materials, geometries, and constraints 

Table 4.1 shows material and geometrical properties of steel plates, FRP patches, and 
adhesive layers used in all ABAQUS models. Four different steel plates are used for 
two different purposes. Plate 1=6×90×1300 mm and Plate 2=16×180×2600 mm are 
employed to create a so-called 2F  database to be used to obtain the closed-form SIF 
solution by symbolic regression via GP analyses, see section 5.1. Meanwhile, Plate 
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3=10×100×1500 mm and Plate 4=12×150×2200 mm are used to obtain independent 
results for verification of the developed SIF solutions. The modulus of elasticity, 
Poisson’s ratio, and fatigue threshold SIF range for steel material are 200 GPa, 0.3, and 
6.6 MPa.m1/2

 (taken at stress ratio = 0.13) [80], respectively. Three types of 
unidirectional FRP and adhesive materials are chosen from the literature [30, 58, 81, 
82]. The mechanical behavior of steel and adhesive materials is isotropic and linearly 
elastic. FRP material is assumed to be linear orthotropic under plane stress condition. 

Table 4.1 Material and geometrical properties of steel plates, FRP patches, and 
adhesive layers. 

Material Material  Geometry 

 s
E , p

E , or
a

E  

(MPa) 
2 p

E  
(MPa) 

  s
t , p

t , or 
a

t  

(mm) 
s

W or p
W  

(mm) 
s

L or p
L  

 (mm) 
Steel [30]       
Plate 1 200×103  0.30 6 90 1300 
Plate 2 200×103  0.30 16 180 2600 
Plate 3  200×103  0.30 10 100 1500 
Plate 4  200×103  0.30 12 150 2200 
Patch [81, 
82] 

      

Type 1 210×103 8×103 0.30 1.2  varied varied 
Type 2 300×103 12×103 0.30 1.4 varied varied 
Type 3 460×103 12×103 0.36 2.0 varied varied 
Adhesive 
[58] 

      

FM-73 959  0.35 1.0 varied varied 
FM36 1815  0.35 1.0 varied varied 
FM400 2944  0.36 1.0 varied varied 

here 
s

E  = elastic modulus of steel; p
E  = longitudinal modulus of the patch;  

2 p
E = transverse in-plane modulus of the patch; 

a
E  = elastic modulus of adhesive; 
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p
W  and p

L  = width and length of the patch, respectively; 
s

t , p
t , and 

a
t = thickness 

of the steel plate, patch, and adhesive layer, respectively;   = Poisson’s ratio. 

Debonding phenomenon that may occur in the adhesive layer, at the steel-
adhesive interface, or adhesive-patch interface [15] will be assessed after the optimum 
patch design has been accomplished (see section 7.3). 

Fig. 4.4 shows a quarter section of the model of a center-cracked steel plate 
repaired with adhesive-bonded double-sided FRP patches. Displacement symmetric 
constraints, i.e., Xsym and Ysym are applied on corresponding symmetric planes. To 
enforce the geometric compatibility conditions along steel-adhesive and adhesive-
patch interfaces, tie constraints, with a command *TIE, NAME = CONSTRAINT NAME 
“Enter key” SLAVE SURFACE NAME, MASTER SURFACE NAME, are used. A master 
surface and a slave surface must be designated for the definition of each tie constraint, 
as shown in Fig. 4.5. 

Finally, SIF values at crack tips of FRP-patched cracked plates are computed in 
ABAQUS/CAE based on the methodology of the interaction integral method [66], 
detailed in section 3.2. A command used in ABAQUS for computing SIF is *CONTOUR 
INTEGRAL, CONTOURS = n, TYPE = K FACTORS, where n = number of contours. 

A matrix of 864 rows for all FE models is constructed for two steel plate 
configurations, three levels of crack length, three patch types, four levels of patch 
width, four levels of patch length, and three levels of the adhesive modulus. Material 
and geometrical properties for each FE model are taken from each row of this matrix. 
Once the SIF database has been created, the so-called correction factor 

2F  can be 
obtained by normalizing SIF values with applied tensile stress, crack length, and the 
finite-width correction factor. 
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Fig. 4.4. A-quarter finite element model in ABAQUS. 

 

Fig. 4.5. Tie constraint regions in the finite element model. 

4.3. Validation of FE models 

An accuracy of FE models to represent both unrepaired and repaired plates is validated 
against published results from Tada et al. [12] (unrepaired), Ayatollahi and Hashemi 
[13] (single-sided patch), and Kumar and Hakeem [11] (double-sided patch). The 
validation consists of two steps. First, the calculated SIF for two cracked steel plates 
(Plates 1 and 2) without bonded FRP patches are compared with the handbook 
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solutions [12]. Secondly, the validation is then performed on cracked aluminum plates 
repaired with different configurations of single-sided composite patches, in Ayatollahi 
and Hashemi [13] and double-sided composite patches, in Kumar and Hakeem [11]. In 
a comparison, the materials, geometries, and loadings used in FE models are the same 
as those described in the related original studies [11, 13]. 

Figs. 4.6, 4.7, and 4.8 show that SIF values obtained from ABAQUS for both 
unrepaired and patch-repaired cases are in very good agreement with published 
results. In Fig. 4.6, the average difference between the FE results and the handbook 
solutions [12] with for unrepaired plates is 0.3%, demonstrating a suitability of element 
sizes used for the steel plate, especially near the crack front region. Fig. 4.7 shows that 
the numerical models also can accurately capture the singular stress field in the vicinity 
of the crack front for cracked aluminum plates with single-sided patches. The average 
difference between the FE results and Ayatollahi and Hashemi solutions [13] is 1.64%. 
For cracked aluminum plates with double-side patches as in Kumar and Hakeem [11], 
the mean difference is 1.9%, as illustrated in Figs. 4.8(a)-(c). Obviously, the FE models 
predict the effects of patch material [Fig. 4.7] and patch geometry [Figs. 4.8(a)-(c)] on 
the fluctuation of SIF values which are identical to ones observed in the original papers 
[11, 13]. Databases represented by Figs. 4.6-4.8 are given in APPENDIX B. 
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Fig. 4.6. Comparison of FE results with referenced solutions [12] (unrepaired). 

 

Fig. 4.7. Comparison of FE results with published solutions [13] (single-sided patch). 
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(a) rectangular patch with variation in patch length 

 

(b) rectangular patch with variation in patch width 
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(c) square patch with variations in patch length and patch thickness 

Fig. 4.8. Comparison of FE results with previously published results [11] 
 (double-sided patch). 
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CHAPTER 5 
STRESS INTENSITY FACTOR SOLUTIONS FOR PATCH-REPAIRED CENTER-

CRACKED PLATES 

This chapter introduces a new correction factor to SIF solution for FRP-patched cracked 
plates to take into account the positive effect of FRP patch on the SIF reduction. The 
solution is then tested for its capability to predict SIF of FRP-patched cracked steel 
plates under tension. 

5.1. Stress intensity factor solutions 

SIF solutions for finite-width center-cracked plates subjected to a remote tensile stress 
can be found in Tada et al. [12]. The solutions are expressed as 

 
1/2

1K F a   (5.1) 

where  

     
2 4

1 1 0.025 2 / 0.06 2 / sec /s s sF a W a W a W   
 

 (5.2) 

and K  = stress intensity factor; 1F  = correction factor for finite-width of steel plates 
given in Eq. (5.2) ; a  = one-half of the crack length; sW  = width of steel plates; and 
 = remote tensile stress. 

In the case of FRP-patched cracked plates, a new correction factor 
2F , namely 

patching correction factor that takes into account the positive effects of material and 
geometrical properties of the patch and adhesive layer on SIF reduction is proposed. 
Therefore, Eq. (5.1) becomes 

     
1/2

1 1 2 1 2 3 4, , ,K F x F x x x x a   (5.3) 

where  
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 
1 2 3 4

22
; ; ;

2

p p a ap p

s s s s

E t E tW La
x x x x

W W a E t


     (5.4) 

A process for determining 
2F  function expressed will be described in the 

subsequent sections of this chapter. 

5.2. Symbolic regression via genetic programming in HeuristicLab 

In HeuristicLab [10], the 
2F  database is randomly shuffled into four groups for GP 

analyses, i.e. 1, 2, 3, and 4 to avoid the bias of GP performance on a certain group. 
Each group has four subgroups, i.e. A, B, C, D and each subgroup contains 216 data 
points (25% database). In Table 5.1, each subgroup is sequentially used as a test set 
(25% database) and the remaining three groups are training set (75% database). This is 
consistent with the principle of separating a database in the data mining where most 
of the database will be assigned as the training set and a smaller portion of the 
database will be the test set. The training set creates an approximate model while the 
test set measures the generalization ability of that model [83]. In this research, four 
different functions of 

2F  corresponding to the four groups are achieved and the best 
one with the largest 2

R  value is selected. 

The function and terminal sets for the GP analyses in this research are 

 F ,  ,  *,  ,  , }{   lexponentia square power  and   1 2 3 4T ,  ,  ,  ,  10,10x x x x  . Here, the 
independent variable atoms are 1x , 2x , 3x , and 4x  given in Eq. (5.4) while the constant 
atoms are initially generated in the interval  10,10 . Additional control parameters 
defined at the beginning of each GP analysis are given in Table 5.2. The termination 
for all GP analyses is at 2000 generations of the algorithm. All GP analyses are 
performed on Intel ® Core ™ i7-7700HQ CPU @ 2.80-2.81Ghz. 

Fig. 5.1 shows the variation of Pearson’s 2
R  during four GP analyses. Table 5.3 

provides the training 2
R  values at several generations of these GP analyses. It is seen 

that Pearson’s 2
R  is improved or remained constant after each GP generation. After 

2000 generations, the training 2
R  values corresponding to the four groups are 0.902, 

0.901, 0.899, and 0.906, respectively. Fig. 5.2 shows the scatter diagram of 
2F  at the 
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2000th generation in the case of 2
R  = 0.906 (Group 4) is plotted that demonstrates a 

high correlation between ABAQUS and GP results. 

Table 5.1 Groups and subgroups used for GP analyses. 

GP analysis 
group 

Training set Testing set 

Subgroup 
Number of 
data points 

Subgroup 
Number of 
data points 

1 A, B, C 648 D 216 
2 A, B, D 648 C 216 
3 A, C, D 648 B 216 
4 B, C, D 648 A 216 

 

Table 5.2 Control parameters used for GP analyses (HeuristicLab). 

Parameter Value 
Number of tree structures 10 000 
Probability of mutation 25% 
Elite count (reproduction option) 2 
Maximum number of tree depth 10 
Maximum number of tree length 30 
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Table 5.3 Person’s 2
R  values at several generations from GP analyses. 

Generation 
Group 1 
Training 2

R  

Group 2 
Training 2

R  
Group 3 
Training 2

R  
Group 4 
Training 2

R  

0 0.769 0.757 0.789 0.766 
250 0.902 0.888 0.897 0.899 
500 0.902 0.893 0.898 0.903 
750 0.902 0.898 0.898 0.905 
1000 0.902 0.900 0.898 0.905 
1250 0.902 0.901 0.898 0.905 
1500 0.902 0.901 0.898 0.905 
1750 0.902 0.901 0.898 0.906 
2000 0.902 0.901 0.899 0.906  

 

 

Fig. 5.1. Pearson’s 2
R  versus generation for four GP analyses. 
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Fig. 5.2. Scatter plot of 
2F  at 2000th generation with 2

R  = 0.906 (Group 4). 

5.3. Correction factor
2F  function 

Fig. 5.3 shows the GP tree structure corresponding to 2
R  = 0.906 selected to represent 

the correction factor 
2F  in Eq. (5.3). 

 

Fig. 5.3. GP tree structure from the GP analysis for Group 4. 
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The mathematical function corresponding to the above GP tree structure is 
written as 

2
4 1 3 6 2 7 4 8 1 2

2 0 1 1 4 2 1 2 3 2 5 9

c x x c x c x c x x
F c x c x c x x c x e c e e e c       (5.5) 

where 

0c , 1c ,…, 9c  = constant coefficients given in Table 5.4. 

Table 5.4 Constant coefficients of 
2F  function. 

0c  1c  2c  3c  4c  
-0.25088 -0.16051 -0.31411 0.42158 -2.10910 

5c  6c  7c  8c  9c  
0.22110 -2.83052 0.94722 -3.31392 0.80261 

 

Substituting 
2F  in Eq. (5.5) into Eq. (5.3), a closed-form empirical SIF solution is 

obtained. The application range of Eq. (5.5) is shown in Table 5.5. 
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Table 5.5 Application range of closed-form SIF solution. 

 Unit Min Max 

Steel plate    

s
E  GPa 200 200 

s
W  mm 90 180 

s
t   mm 6 16 

2 /
s

a W   0.1 0.9 
FRP patch    

p
E  GPa 210 460 

/
sp

W W   0.2 1.0 
2/

p
L a   1 16 

p
t  mm 1.2 2.0 
Adhesive layer    

a
E  MPa 959 2944 

a
t  mm 1 1 

 

5.4. Verification of proposed SIF solution 

First, the accuracy of proposed SIF solution is compared with the one from FE analysis. 
In Table 5.6, Plate 3 (10×100×1500 mm) and Plate 4 (12×150×2200 mm) with four 
combinations of crack length and material and geometrical properties of FRP patch 
and adhesive layer are used to verify the proposed 

2F  solution given in Eq. (5.5) for 
FRP-patched cracked plates. The correction factor 

2F  values are computed using Eq. 
(5.5) and ABAQUS. Figs. 5.4(a)-(d) show that the correction factor 

2F .values from Eq. 
(5.5) and ABAQUS are in a good agreement. For Plate 3, the average differences 
between both methods for case 1, case 2, case 3, and case 4 respectively are 3%, 5%, 
3%, and 5%, while they are 2%, 4%, 2%, 7% for Plate 4. As shown in Fig. 5.4(d), the 
difference became bigger when the patch width does not cover the crack entirely. 
Effects of design parameters on the fluctuation of SIF from both methods are identical. 
Databases represented by Figs. 5.4(a)-(d) are given in four tables in APPENDIX C. 
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Table 5.6 Cases for verification of SIF solution. 

Verification 
cases 

Plate 3 Plate 4 

Case 1 

Effect of a  
2 0.1 0.9  s sa W W   

 100 400 1.2 1 (mm)    p p p aW L t t     
3210 10 959 (MPa) p aE E         

2 0.1 0.9  s sa W W   

 150 250 1.4 1 (mm)    p p p aW L t t     
3300 10 1815 (MPa) p aE E        

Case 2 

Effect of

p
L  

2 0.5  sa W  
2 16 2pL a a    

 100 1.2 1 (mm)   p p aW t t     
3210 10 959 (MPa) p aE E         

2 0.5  sa W  
2 16 2pL a a    

 150 1.4 1 (mm)   p p aW t t     
3300 10 1815 (MPa) p aE E        

Case 3 

Effect of 

p
W  

2 0.5 sa W  
0.2 p s sW W W   

 400 1.2 1 (mm)   p p aL t t     
3210 10 959] (MP[ a) p aE E     

2 0.5 sa W  
0.2 p s sW W W   

 250 1.4 1 (mm)   p p aL t t     
3300 10 1815 (MPa) p aE E         

Case 4 

Effect of 

p
W  

2 0.9 sa W  
0.2 p s sW W W   

 400 1.2 1 (mm)   p p aL t t     
3210 10 959] (MP[ a) p aE E     

2 0.9 sa W  
0.2 p s sW W W   

 250 1.4 1 (mm)   p p aL t t     
3300 10 1815 (MPa) p aE E        
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(a) case 1 (b) case 2 

  

(c) case 3 (d) case 4 

Fig. 5.4. Comparison of 
2F  results from proposed solution and ABAQUS. 

Second, the accuracy of the proposed SIF solution is compared with a result 
of a fatigue test in Wang et al. [34]. The configuration of a repaired specimen with a 
central crack is shown in Fig. 5.2. The specimen having sE  = 200 GPa is subjected to 
a constant amplitude loading with 

min  = 30 MPa and 
max  = 150 MPa and repaired 

with a double-sided FRP patch having 
pE = 165 GPa, 

pW  = 100 mm, 
pL  = 500 mm, 

and 
pt  = 1.4 mm. The crack grows from its initial length, 

02a  = 19 mm, to a critical 
one, 2 ca  = 108.6 mm [34]. Fatigue life of the repaired specimen is calculated using 
the proposed SIF solution in Eq. (5.3) and compared with the fatigue test result. To 
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calculate the fatigue life of the repaired specimen, Paris’ law in Eq. (5.6) [84] is 
employed. Fatigue life of the specimen is predicted by the integration given in Eq. (5.7). 

 /
m

da dN C K   (5.6) 

 
0

1 ca

m

a

da
N

C K



  (5.7) 

where Paris law constants are C  = 2.427 × 10-12 (MPa, m units) and m  = 3.3 [85]. 

 

Fig. 5.5. Geometry and configuration of repaired specimen [34]. 

Table 5.7 shows the calculation of the fatigue crack life of the repaired 
specimen. In Fig. 5.6, the total number of cycles required to propagate the crack from 
19 mm to 108.6 mm is 735,412, 9% larger than the experimental test result with 
672,200 cycles. The fatigue life prediction becomes less accurate as the crack length 
is larger. 

Table 5.7 Fatigue crack growth calculation. 

0a  
mm 

ca  
mm 

K  
MPa m1/2 

N  
cycles 

N  
cycles 

9.5 11.0 14.78  77,391.8 77,391.8 
11.0 12.5 15.67  64,745.1 142,136.9 
12.5 14.0 16.47  55,571.6 197,708.5 
14.0 15.5 17.19  48,646.7 246,355.2 
15.5 17.0 17.85  43,248.8 289,604.0 
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0a  
mm 

ca  
mm 

K  
MPa m1/2 

N  
cycles 

N  
cycles 

17.0 18.5 18.46  38,927.9 328,531.9 
18.5 20.0 19.03  35,389.8 363,921.7 
20.0 21.5 19.56  32,434.7 396,356.4 
21.5 23.0 20.07  29,922.3 426,278.7 
23.0 24.5 20.54  27,751.5 454,030.2 
24.5 26.0 21.00  25,847.4 479,877.6 
26.0 27.5 21.45  24,153.2 504,030.7 
27.5 29.0 21.88  22,625.1 526,655.8 
29.0 30.5 22.31  21,228.7 547,884.6 
30.5 32.0 22.75  19,936.3 567,820.9 
32.0 33.5 23.18  18,725.4 586,546.3 
33.5 35.0 23.63  17,577.2 604,123.5 
35.0 36.5 24.09  16,476.0 620,599.5 
36.5 38.0 24.57  15,408.5 636,008.0 
38.0 39.5 25.08  14,362.9 650,370.9 
39.5 41.0 25.64  13,329.3 663,700.2 
41.0 42.5 26.25  12,298.9 675,999.1 
42.5 44.0 26.92  11,264.0 687,263.1 
44.0 45.5 27.68  10,218.1 697,481.2 
45.5 47.0 28.56  9,156.1 706,637.4 
47.0 48.5 29.58  8,074.3 714,711.7 
48.5 50.0 30.81  6,971.2 721,682.9 
50.0 51.5 32.33  5,847.9 727,530.8 
51.5 53.0 34.27  4,710.0 732,240.8 
53.0 54.3 36.84  3,170.9 735,411.6 
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Fig. 5.6. Crack propagation curves of the specimen. 
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CHAPTER 6 
PATCH VOLUME OPTIMIZATION 

This chapter formulates the optimization statement. Two optimization solvers in 
MATLAB are presented. A comparison of an optimum patch design with a previous 
work result is also introduced. 

6.1. Optimization problem statement 

When the crack length, FRP and adhesive material properties, and the adhesive 
thickness are specific, the correction factor 2F  in Eq. (5.5) and SIF formulation in Eq. 
(5.3) become functions of FRP patch geometries. The SIF solution in Eq. (5.3) can be 
rewritten as 

   
1/2

1 2 1 2 3, , ,X
s s

a a
K F F X X X a

W W
 

   
    

   
 (6.1) 

where 

   1 2 2 3 3 4; 2 ; 2 / 2s p p s s a a p pX W x W X ax L X E t x E t E t        (6.2) 

and 2x , 
3x , 4x  = given in Eq. (5.4); 1F  = given in Eq. (5.2); 2F  = given in Eq. (5.5). 

The optimization statement is developed and analyzed in the context of patch 
volume optimization as follows 

Minimize  XpV , subject to 

X X XL U   (6.3) 

 X thK K    (6.4) 

where 
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 1 2 3X
TT

p p pX X X W L t      (6.5) 

  1 2 3XpV X X X  (6.6) 

and  XK = given in Eq. (6.1); XL  and XU = lower and upper bound of design 
parameters, respectively. 

   0.2 2 1.2X
T

L smm W a  (6.7) 

 ( ) 16 2 2X
T

U smm W a   (6.8) 

thK  6.6 MPa.m1/2 =  threshold SIF range of the steel material (ASTM A572 - Grade 
60) [80]. 

Fig. 6.1(a) shows three surfaces of 
2F  values corresponding to pt = 2 mm,  

Surf 1, pt = 1.2 mm, Surf 2, and SIF = threshold, Surf 3, for the visualization of the 
inequality constraint given in Eq. (6.4). As shown in Figs. 6.1(b) and (c), the under-
threshold area (blued area) of Surf 1 is larger than the one of Surf 2 as the SIF reduction 
is greater if the thicker FRP patch is used. The thicker the FRP patch layer is, the larger 
the solution space is. When the FRP patch thickness increases from 1.2 mm to 2 mm, 
the solution space expands from the smallest value [Fig. 6.1(b)] to the largest one  
[Fig. 6.1(c)]. When the crack length is too long or the remote tensile stress is too large, 
Surf 3 may lie completely under Surf 1 and Surf 2 and no feasible solution can be 
found. Changing material properties, increasing the number of FRP patch layers, 
reducing the thickness of the adhesive layer, or loosening the constraint in Eq. (6.4) 
can be selected. 

6.2. MATLAB optimization solver input and default values 

Using MATLAB r2018a [76], the GA (command ga) and nonlinear programming, 
(command fmincon) are employed to solve the minimization of FRP patch volume. 
For a comparison, the input is identical for both solvers as follows: initial point = 
upper bound, function tolerance = 10-20, constraint tolerance = 10-15, and maximum 
number of generations (iterations) = 100. Both solvers used the method of Lagrange 
multipliers, presented in section 3.5, to deal with the inequality-constrained 
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optimization problem in this study. Two MATLAB functions of both solvers are given 
in APPENDIX E.  

 

(a) 
2F  surfaces in the cases of pt  = 1.2 mm, pt  = 2 mm, and SIF = threshold 

 
 

(b) top view, pt = 1.2 mm (c) top view, pt  = 2 mm 

Fig. 6.1. Visualization of the inequality constraint. 
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6.3. A comparison of an optimum patch design with a previous work solution 

A comparison between an optimum patch design for a cracked steel plate and the 
one a from a fatigue test [86, 87] is performed. The optimum patch volume is then 
compared with the patch volume used in the test. The width, length, and thickness of 
the cracked plate are 

sW  = 100 mm, 
sL  = 700 mm, and 

st  = 10 mm. In the fatigue 
test, the plate having 

sE  = 210 GPa is repaired with a double-sided FRP patch with 

pE = 320 GPa, 
pW  = 100 mm, 

pL  = 300 mm, 
pt  = 1.4 mm, and 

pV  = 42,000 mm3 and 
tested under a constant amplitude loading with 

min  = 60 MPa and 
max  = 150 MPa. 

The adhesive used is Araldite 2015 with 
pE = 2430 MPa and 

pt = 1 mm.  

In the fatigue test, a crack needs over three million load cycles to grow from 
an initial value, 

02a  = 6 mm, to a critical value. Thus, a runout can be assumed to 
occur. The optimum patch design is determined by solving the optimization problem 
in section 6.1 for the FRP-patched cracked steel plate in the fatigue test. The fatigue 
threshold SIF range is assumed to equal to 6.1 MPa.m1/2 (lower bound) [88] in the case 
of 

min max/   = 0.4. 

Fig. 6.2 shows the convergence history of a GA analysis for the optimum patch 
design. The calculated optimum patch volume is 

pV  = 38,200 mm3 (
pW  = 100 mm, 

pL  = 191 mm, and 
pt  = 2 mm) that is 10% smaller than the one in the test, 42,000 

mm3. Furthermore, using closed-form SIF solution in Eq. (5.3), SIF ranges in the cases 
of using the patch geometries in the fatigue test and the optimum one are calculated. 
Consequently, 6.28K   MPa.m1/2, larger than 

thK , for the test and 6.1K   
MPa.m1/2, equal to 

thK , for the optimum solution. The result indicates the developed 
optimization process is capable of providing an optimum patch design that can stop 
the crack propagation and is better than another one used in a fatigue test in terms of 
patch volume minimization. 
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Fig. 6.2. Evolution of patch volume in GA analysis. 
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CHAPTER 7 
DESIGN EXAMPLE 

In this chapter, a design example of an FRP-patched cracked steel plate is presented 
to illustrate the optimization process. Basic criteria for composite patch rupture and 
debonding phenomenon when using the optimum patch design for the crack repair 
are also checked. 

7.1. Problem definition 

Fig. 7.1 shows the center-cracked steel plate in the example. The plate thickness is st

= 10 mm. Properties of steel material are the modulus of elasticity, sE = 200 GPa, 
Poisson’s ratio,   = 0.3, and fatigue threshold SIF range, thK = 6.6 MPa.m1/2 = 209 
MPa.mm1/2 [80]. The plate is subjected to a constant amplitude fatigue loading with

max = 55 MPa and min  = 0 MPa. Two crack length levels are considered, i.e. 
2 0 2.

s
a W  and 0.3 sW . For each crack length level, FRP patch and adhesive materials 

are specific. The adhesive layer thickness, at , is 1 mm.  

 

Fig. 7.1. Cracked steel plate in the design example (dimension in mm). 
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7.2. Design optimization results 

A total of nine combinations of FRP patch and adhesive layer materials are investigated 
to consider the effects of material properties on optimum patch geometry at the 
specific crack length. For each combination, GA is performed twice to examine its 
stochastic property. Then, these GA’s solutions are compared with the fmincon 
solution. 

For GA solver, the fitness function is the patch volume function in Eq. (6.6). 
Based on lower and upper bounds of design parameters, given in Eqs. (6.7) and (6.8), 
a total of 500 binary strings are randomly initiated. A string represented a point in the 
solution space and had a particular fitness value. Therefore, there are 500 different 
fitness values in each GA generation. The lowest and mean values refer to the best 
fitness and mean fitness. For the patch volume minimization, the mean fitness is 
always larger than or equal to the best fitness. 

Figs. 7.2(a) and (b) show the convergence histories of the 1st and 2nd GA analyses 
in the case of a small crack ( 2 0 2.

s
a W , p

E = 460 MPa, and a
E = 2944 MPa). The best 

and mean fitness (patch volume) values are plotted versus GA’s generation. Although 
the mean fitness values at the beginning of both analyses are much larger than the 
optimum ones, GA is possible to quickly achieve the solutions, i.e., at the 8th and 7th 
generation for the 1st and 2nd GA analyses, respectively. A signal to recognize GA 
solutions is when the best fitness started to coincide with the mean one as, at that 
time, the cache of a computer program has been occupied by identical binary strings. 
Furthermore, the difference in solutions between two GA analyses is about 0.5% due 
to the stochastic property of GA. GA solutions in Figs. 7.2(a) and (b) are all near-optimal 
solutions. 

In Figs. 7.3(a) and (b), the fmincon needs 23 iterations to achieve the optimum 
solution as well as zero value of the first-order optimality that is the first condition in 
Eq. (3.23) of KKT conditions (see section 3.7). The obtained patch volume is less than 
GA solutions in Figs. 7.2(a) and (b) by 0.6%. 
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(a) p
V  versus GA generation, 1st GA analysis 

 

(b) p
V  versus GA generation, 2nd GA analysis 

Fig. 7.2. Evolution of patch volume in GA analyses for 2 0 2.
s

a W , 
p

E = 460 MPa, 
and a

E  = 2944 MPa. 
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(a) p
V  versus fmincon iteration 

 

(b) First-order optimlity evaluation 

Fig. 7.3. Evolution of patch volume in fmincon analysis for 2 0 2.
s

a W , 

p
E = 460 MPa, and 

a
E = 2944 MPa. 

For a larger crack ( 2 0.3 sa W ), the same conclusions can be drawn. Figs. 7.4 
and 7.5 show that the way GA searching for optimum solutions is smoother than 
fimincon The fmincon in Fig. 7.5, again, needs more time to come up with the optimum 
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solution as compared with GAs in Figs. 7.4(a) and (b). The fmincon solution is lower 
than GA solution by 2.2%.  

In Figs. 7.3 (a), 7.4(b), and 7.5(a), the patch volume values at the 7th, 1st, and 
2nd iterations are less than the optimum ones but not the optimum solutions because 
at least one of KTT conditions is violated. For example, at the 7th iteration in Fig. 7.3 
and the 2nd

 iteration in Fig. 7.5, the first-order optimality values are not equal to zero, 
as detailed in Figs. 7.3(b) and 7.5(b). 

Tables 7.1 and 7.2 show the optimum patch solutions for the different patch 
and adhesive materials at two crack length levels. Typically, GA provides solutions 
having volumes equal to or slightly higher than fimincon solutions. The maximum 
difference between two solvers is 0.6% for 2 0 2.

s
a W  and 2.2% for 2 0 3.

s
a W . The 

stochastic property of GA is not pronounced as the difference between two GA 
solutions for the same combination is trivial. 

In the case of 2 0 2.
s

a W , the optimum patch width increases from 0.75 to 0.9 
times the steel plate width, while optimum patch length varies from 4.4 to 6.1 times 
the crack length. The optimum patch thickness equals to 1.2 mm. The optimum patch 
volume is 10565 mm3 in the case of p

E  = 210 GPa. It decreases by 18.4% and 40.1% 
when p

E  = 300 GPa and p
E = 460 GPa, respectively. The patch volume takes the 

smallest value of 6337 mm3, roughly 1.4% of steel plate volume, when p
E  = 460 GPa 

and 
a

E = 2944 MPa. Conversely, the optimum patch volume is almost unchanged with 
the modulus of adhesive material, as shown in Fig. 7.6(a). Although 

a
E  increases 

significantly from 89% (from 959 to 1815 MPa) to 207% (from 959 to 2944 MPa), 
optimum patch volume slightly decreases from 0.1% to 0.2%. 

In the case of 2 0 3.
s

a W  and p
E  = 210 GPa, no feasible patch volume exists 

because the threshold surface (Surf 3) is completely under Surf 1 and Surf 2, as shown 
in Fig. 6.1(a). The optimum patch, however, can be achieved when elastic modulus of 
patch material increases from p

E  = 210 to 300 and 460 GPa. The patch volume 
decreases roughly two times from 31616 mm3 to 15568 mm3 when p

E increases from 
300 GPa to 460 GPa. Again, as shown in Fig. 7.6(b), the impact of adhesive modulus on 
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optimum patch volume is negligible. In summary, the optimum FRP patch for 
2 0 3.

s
a W  has the geometry as patch width = 0.96 to 1 times the steel plate width, 

patch length = 3.3 to 6.6 times the crack length, and patch thickness = 2 mm.  

 

(a) p
V  versus GA generation, 1st GA analysis 

 

(b) p
V versus GA generation, 2nd GA analysis 

Fig. 7.4. Evolution of patch volume in GA analyses for 2 0 3.
s

a W , 
p

E = 460 MPa, 
and 

a
E = 2944 MPa. 
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(a) p
V  versus fmincon iteration 

 

(b) First-order optimlity evaluation 

Fig. 7.5. Evolution of patch volume in fmincon analysis for 2 0 3.
s

a W ,  

p
E = 460 MPa, and 

a
E = 2944 MPa 
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(a) 2 0 2.
s

a W  (b) 2 0 3.
s

a W  

Fig. 7.6. Optimum patch volumes for different material combinations. 
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 Table 7.1 Optimum FRP patch for different material combinations, 
2 0 2.

s
a W . 

Given parameters 
Optimization solution 

1st GA analysis 2nd  GA analysis 

2 /
s

a W  pE  

GPa 

aE  

MPa 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 

0.2 

210 959 81.56 108.34 1.20 10615.5 79.7 110.94 1.20 10610.43 

210 1815 80.24 109.96 1.20 10590.27 80.56 109.54 1.20 10589.33 

210 2944 81.05 108.64 1.20 10566.49 79.97 109.52 1.21 10620.57 

300 959 72.37 99.72 1.20 8660.30 73.14 98.61 1.20 8654.73 

300 1815 72.26 99.61 1.20 8653.66 72.91 98.78 1.20 8642.77 

300 2944 73.57 97.63 1.20 8626.43 74.41 96.59 1.20 8627.13 

460 959 67.32 78.06 1.21 6372.46 65.97 79.94 1.21 6361.56 

460 1815 65.67 79.85 1.21 6361.47 65.94 80.22 1.20 6347.63 

460 2944 66.04 79.48 1.21 6346.47 65.61 78.41 1.24 6376.86 
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Table 7.1. Optimum FRP patch for different material combinations,  
2 0 2.

s
a W  (cont.). 

Given parameters 
Optimization solution 

Nonlinear programming 

2 /
s

a W  pE  

GPa 

aE  

MPa 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 
/p sW W  / 2pL a  

0.2 

210 959 80.64 109.6 1.20 10606.66 0.90 6.09 

210 1815 80.58 109.51 1.20 10588.99 0.90 6.08 

210 2944 80.49 109.39 1.20 10565.18 0.89 6.08 

300 959 73.64 97.93 1.20 8653.79 0.82 5.44 

300 1815 73.59 97.85 1.20 8640.96 0.82 5.44 

300 2944 73.53 97.73 1.20 8623.61 0.82 5.43 

460 959 66.28 79.90 1.20 6354.93 0.74 4.44 

460 1815 66.26 79.83 1.20 6347.28 0.74 4.44 

460 2944 66.23 79.73 1.20 6336.86 0.74 4.43 
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Table 7.2 Optimum FRP patch for different material combinations,  
2 0 3.

s
a W . 

Given parameters 
Optimization solution Optimization solution 

1st GA analysis 2nd  GA analysis 

2 /
s

a W  pE  

GPa 

aE  

MPa 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 

0.3 

210 959 n/a n/a n/a n/a n/a n/a n/a n/a 

210 1815 n/a n/a n/a n/a n/a n/a n/a n/a 

210 2944 n/a n/a n/a n/a n/a n/a n/a n/a 

300 959 90.00 183.14 1.98 32674.38 90.00 177.6 2.00 31965.31 

300 1815 90.00 176.76 2.00 31815.06 90.00 176.73 2.00 31810.88 

300 2944 90.00 175.79 2.00 31633.78 90.00 175.64 2.00 31616.04 

460 959 86.22 90.54 2.00 15612.72 86.02 90.76 2.00 15614.04 

460 1815 86.38 90.27 2.00 15593.46 85.94 90.74 2.00 15596.06 

460 2944 86.86 89.62 2.00 15567.89 85.37 91.23 2.00 15576.74 

n/a: not available 
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Table 7.2. Optimum FRP patch for different material combinations,  
2 0 3.

s
a W (cont.). 

Given parameters 
Optimization solution 

Nonlinear programming 

2 /
s

a W  pE  

GPa 

aE  

MPa 

pW  

mm 

pL  

mm 

pt  

mm 

pV  

mm3 

/p sW W  / 2pL a  

0.3 

210 959 n/a n/a n/a n/a n/a n/a 

210 1815 n/a n/a n/a n/a n/a n/a 

210 2944 n/a n/a n/a n/a n/a n/a 

300 959 90.00 177.56 2.00 31960.67 1.00 6.58 

300 1815 90.00 176.73 2.00 31810.88 1.00 6.55 

300 2944 90.00 175.64 2.00 31616.02 1.00 6.51 

460 959 86.79 89.93 2.00 15611.09 0.96 3.33 

460 1815 86.76 89.87 2.00 15592.75 0.96 3.33 

460 2944 86.70 89.77 2.00 15567.78 0.96 3.32 

n/a: not available 
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7.3. Assessment of composite patch and adhesive layer failures 

To assess the possibility of FRP rupture and debonding failures, FE analyses on the 
optimum patch-repaired cracked plates in Tables 7.1 and 7.2 are conducted.  

The rupture failure of FRP patch is assessed using the Tsai-Hill failure criterion 
[8], given as  

2 2 2

11 11 22 22 12

2 2 2 2

11 11 22 12

1
s

T
S S S S

    
      (7.1) 

where s
T  = Tsai-Hill failure index; 11

 , 22
 , and 12

 = longitudinal, transverse, and 
shear stresses in the patch, respectively; 11

S , 22
S , and 12

S  = ultimate longitudinal, 
transverse, and shear stresses of patch material, respectively, taken from [89, 90]. The 
FRP rupture occurs if the condition in Eq. (7.1) is satisfied. 

The debonding failure is assessed using some criteria described in [7]. 
Especially, the debonding occurs when at least one of the following condition is 
satisfied. 

Failure in adhesive layer by the maximum shearing stress at the steel-adhesive 
interface where Tresca reaches a maximum, as shown in Fig. 7.7. 

1 3
  Tresca  (7.2) 

1
2

ay

ay

T
p

 
Tresca  (7.3) 

Debonding occurs at the steel-adhesive interface by maximum normal stress 

33 1
as

as

T
p


   (7.4) 

Debonding occurs at the adhesive-patch interface by maximum normal stress 

33 1
ap

ap

T
p


   (7.5) 

where ay
T , as

T , ap
T  = adhesive failure indexes; 1 , 3 = maximum and minimum 

principal stresses in the adhesive layer, respectively; 33  = normal stress; 
ay

p , as
p , 
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and 
ap

p  = the shear strength of the adhesive material, peeling strengths of the 
adhesive-cracked structure interface, and peeling strengths adhesive-patch interface, 
respectively. Values of 

ay
p and a

p  are taken from [91]. Assuming 
as ap

p p , 
as ap

T T

because the maximum normal stresses at steel-adhesive interface obtained from FE 
analyses are larger than ones at the adhesive-patch interface. 

 

Fig. 7.7. Distribution of Tresca along adhesive thickness  
( 2 0 2.

s
a W , 2944

a
E  MPa). 

In Table 7.3, all failure indexes s
T , 

ay
T , and 

as
T  are less than one which 

indicates that FRP rupture and debonding failures are not possible for the optimum 
patch solution given in Tables 7.1 and 7.2. s

T  values are quite low. Meanwhile, the 
maximum Tresca values in adhesive layer, detailed in Eq. (7.2), are pronounced, 
especially when high modulus adhesive is used, s

T  = 0.58 for 2 0 2
s

a W . and 0.64 for 
2 0 3

s
a W . . If loading magnitude increases, failure in adhesive layer can occur as s

T  
increases. A function 3

F  related to the debonding phenomenon can be added to the 
right-hand side of Eq. (5.3) in future works. 

SIF value for the repaired plate when optimum patch design is used for the 
repair is numerically computed using ABAQUS and compared with the result obtained 
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from closed-form SIF solution as well as the fatigue threshold SIF range, as shown in 
Table 7.3. In some cases, SIFs from FE results violate the constraint in Eq. (6.4) with 
the maximum constraint violation is 4%. 

Figs. 7.8 and 7.9 demonstrate the effects of elastic modulus of patch on the 
longitudinal stress in FRP patch and on Tresca in the adhesive layer, respectively. Figs. 
7.10 and 7.11 show the effects of elastic modulus of adhesive material on Tresca and 
interfacial stresses in the adhesive layer at the two different crack lengths. Generally, 
a higher patch modulus causes more load transmitted from the structure to the patch 
[Fig. 7.8] but does not significantly influence the maximum Tresca in adhesive layer 
[Fig. 7.9]. A higher adhesive modulus causes an increase in maximum Tresca, shear 
stress, and normal stress in adhesive layer [Figs. 7.10 and 7.11]. In summary, the use 
of a high modulus patch and low modulus adhesive is recommended in this example. 
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Table 7.3 Failure indexes for optimum patch design solutions 

2 /
s

a W  p
E

GPa 
a

E

MPa 

SIF-Eq. (5.3) 

MPa.mm1/2 

SIF- FE 

MPa.mm1/2 

s
T  

Eq. (7.1) 

ay
T  

Eq. (7.3) 

as
T  

Eqs. (7.4) 

0.2 

210 959 209.00 214.40 0.002 0.2164 0.0741 

210 1815 209.00 208.30 0.002 0.3826 0.1329 

210 2944 209.00 199.50 0.001 0.5814 0.2191 

300 959 209.00 212.30 0.002 0.2133 0.0724 

300 1815 209.00 201.00 0.002 0.3690 0.1271 

300 2944 208.92 190.60 0.002 0.5519 0.2063 

460 959 209.00 213.20 0.002 0.2162 0.0726 

460 1815 209.00 198.50 0.003 0.3642 0.1239 

460 2944 209.00 190.20 0.003 0.5298 0.2067 

0.3 

210 959 n/a n/a n/a n/a n/a 

210 1815 n/a n/a n/a n/a n/a 

210 2944 n/a n/a n/a n/a n/a 

300 959 209.00 211.20 0.002 0.2593 0.0728 

300 1815 209.00 198.80 0.002 0.4348 0.1237 

300 2944 209.00 197.60 0.001 0.6368 0.1974 

460 959 209.00 217.50 0.002 0.3001 0.0829 

460 1815 208.99 206.60 0.002 0.4703 0.1315 

460 2944 209.00 195.80 0.003 0.6432 0.1960 

n/a = not available 
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(a) 210
p

E GPa , / 0.89p sW W  , 2 6 08
p

L a / .  

  

(b) 300
p

E GPa , / 0.82p sW W  ,
2 5 43

p
L a / .  

(c) 460
p

E GPa , / 0.74p sW W  ,
2 4 43

p
L a / .  

Fig. 7.8. Effect of patch modulus on longitudinal stress in FRP patch 
 ( 2 0 2.

s
a W , 2944

a
E  MPa). 
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(a) 210
p

E GPa , / 0.89p sW W  , 2 6 08
p

L a / .  

  

(b) 300
p

E GPa , / 0.82p sW W  ,
2 5 43

p
L a / .  

(c) 460
p

E GPa , / 0.74p sW W  ,
2 4 43

p
L a / .  

Fig. 7.9. Effect of patch modulus on Tresca in adhesive layer 
 ( 2 0 2.

s
a W , 2944

a
E  MPa). 
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(a) Tresca along 1-1 

 

(b) Interfacial stresses along 1-1 

Fig. 7.10. Effect of adhesive modulus on Tresca and interfacial stresses in adhesive 
layer ( 2 0 2.

s
a W , 460

p
E  GPa). 
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(a) Tresca along 2-2 

 

(b) Interfacial stresses along 2-2 

Fig. 7.11. Effect of adhesive modulus on Tresca and interfacial stresses in adhesive 

layer ( 2 0 3.
s

a W , 460
p

E  GPa).  
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CHAPTER 8 
CONCLUSIONS 

8.1. Conclusions 

This research introduces the numerical process that combines the finite element 
method, the genetic programming, and two optimization solvers for the design 
optimization of adhesive-bonded FRP patches used to repair cracked structures. An 
example design of double-sided FRP patches for repairing center-cracked steel plates 
subjected to tension fatigue loadings is used to illustrate the design process. The 
optimization problem has formulated and analyzed in the context of volume 
minimization of the FRP patch. The main conclusions are as follows: 

1. FE model using continuum shell elements stacked through FRP patch thickness 
and tie constraints to represent the geometric compatibility conditions along 
steel-adhesive and adhesive-patch interfaces can characterize SIF of FRP-
patched steel plates. 

2. A symbolic regression via GP provides a nonlinear mathematical function of 
sufficient accuracy to predict a sensitive physical quantity, i.e., SIF, for patch-
repaired cracked plates. This technique can be applied to other problems to 
provide an approximate model of a structural behavior in terms of design 
parameters. However, to obtain an effective prediction, the sufficiency property 
of the function and terminal sets of GP [72, 73] requires an engineer to have 
basic knowledge of the problem being treated. 

3. Closed-form empirical solution for calculation of SIF of center-cracked steel 
plates repaired with two-sided adhesive-bonded FRP patches with sufficient 
accuracy are proposed for practicing engineers. The proposed solutions will 
help visualize the effects of design parameters on SIF which facilitates the repair 
design. 

4. GA provides the near-optimal solutions for an inequality constrained 
optimization problem faster than nonlinear programming in this study. 
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5. For center-cracked steel plates under tension, the optimum patch design is 
significantly influenced by patch modulus. A significant reduction of patch 
volume can be achieved using high modulus FRP patches. Meanwhile, the 
effect of adhesive modulus is not pronounced. In the view of debonding failure, 
the maximum Tresca, and interfacial stresses significantly increase when 
adhesive modulus increases. As both stresses are relatively insensitive to patch 
modulus, the use of a high modulus patch and low modulus adhesive is 
recommended for fatigue crack repairs. For large cracks, the use of thick and 
high elastic modulus patch is the most effective  

8.2. Recommendations for future works 

Investigated ranges of the design parameters should be extended. The present 
research can be extended by investigating various crack types, structures, patch shapes, 
and loading conditions. 

The debonding phenomenon should be considered by using coupled cohesive 
zone model, described in [92], to be assigned to the steel plate-adhesive and adhesive-
patch interfaces where the phenomenon is prone to occur. SIF solution in Eq. (5.3) will 
be included the debonding by adding a new function 3

F  into the right-hand side. 

The genetic algorithm can be embedded in FE code to direct the FRP patch 
from a random initial configuration to an optimum one. 
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APPENDIX A  
THREE-DIMENSIONAL FINITE ELEMENT MODELING 

The following are the main code of ABAQUS input file to compute SIF for a 3D model 
of a center-cracked steel plate repaired with double-sided FRP patch under tension. 
Related figures that represent the results in a graphical user interface of each step are 
also given. 

Step 1: Start the program 

*Heading 
** Job name: Job-OP1 Model name: Model-1 
** Generated by: Abaqus/CAE  
*Preprint, echo=NO, model=NO, history=NO, contact=NO 
Step 2: Create four parts of the FE model  

** PARTS 
Two adhesive parts 

*Part, name="Adhesive 1" 
*End Part 
*Part, name="Adhesive 2" 
*End Part 
Two FRP patch parts 

*Part, name="CFRP 1" 
*End Part 
*Part, name="CFRP 2" 
*End Part 
Steel plate part 

*Part, name="Steel plate" 
*End Part 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

85 

 
(a) Create part dialogue 
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(b) Sketching geometry of the steel plate 

 

(c) Five parts for the FE models created 

Fig. A.1. Creating parts for FE model. 
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Step 3: Assembling created parts 

** ASSEMBLY 
*Assembly, name=Assembly 
*Instance, name="Steel plate-1", part="Steel plate" 
*Node 
Node number, x, y, z 

 

Fig. A.2. Assemblage of five parts of FE model. 

*Element, type=C3D20 
Element number, node 1, node 2, node 3, …, node 20 
*Nset, nset=Set-3, generate 
     1,  73302,      1 
*Elset, elset=Set-3, generate 
     1,  59185,      1 
** Section: Section-Steel 
*Solid Section, elset=Set-3, material=Steel 
, 
*End Instance 
*Instance, name=Adhesive 1-1, part="Adhesive 1" 
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          0.,           5.,          10. 
*Node 
Node number, x, y, z 
*Element, type=C3D20 
Element number, node 1, node 2, node 3, …, node 20 
*Nset, nset=Set-2, generate 
     1,  18204,      1 
*Elset, elset=Set-2, generate 
     1,  13200,      1 
** Section: Adhesive 
*Solid Section, elset=Set-2, material="Adhesive" 
, 
*End Instance 
*Instance, name=Adhesive 2-1, part="Adhesive 2" 
          0.,           5.,          -1 
*Node 
Node number, x, y, z 
*Element, type=C3D20 
Element number, node 1, node 2, node 3, …, node 20 
*Nset, nset=Set-3, generate 
     1,  12432,      1 
*Elset, elset=Set-3, generate 
    1,  8910,     1 
** Section: Adhesive 
*Solid Section, elset=Set-3, material="Adhesive" 
, 
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Fig. A.3. Creating steel and adhesive sections. 

*End Instance 
*Instance, name="CFRP 1-1", part="CFRP 1" 
        -12.,         -2.5,          11. 
*Node 
Node number, x, y, z 
*Element, type=SC8R 
Element number, node 1, node 2, node 3, …, node 8 
** Region: (CompositeLayup-1-1: Generated from Layup) 
*Elset, elset=CompositeLayup-1-1, generate 
     1,  13200,      1 
** Section: CompositeLayup-1 
*Shell Section, elset=CompositeLayup-1, composite, stack direction=3, 
layup=CompositeLayup-1 
0.1, 3, "Laminate", 90., Ply-1 
0.1, 3, "Laminate", 90., Ply-2 
0.1, 3, "Laminate", 90., Ply-3 
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0.1, 3, "Laminate", 90., Ply-4 
0.1, 3, "Laminate", 90., Ply-5 
0.1, 3, "Laminate", 90., Ply-6 
0.1, 3, "Laminate", 90., Ply-7 
0.1, 3, "Laminate", 90., Ply-8 
0.1, 3, "Laminate", 90., Ply-9 
0.1, 3, "Laminate", 90., Ply-10 
0.1, 3, "Laminate", 90., Ply-11 
0.1, 3, "Laminate", 90., Ply-12 
*End Instance 
*Instance, name="CFRP 2-1", part="CFRP 2" 
        -12.,         22.5,         -2.2 
*Node 
Node number, x, y, z 
*Element, type=SC8R 
Element number, node 1, node 2, node 3, …, node 8 
** Region: (CompositeLayup-1: Generated From Layup) 
*Elset, elset=CompositeLayup-1, generate 
     1,  13200,      1 
** Section: CompositeLayup-1 
*Shell Section, elset=CompositeLayup-1, composite, stack direction=3, 
layup=CompositeLayup-1 
0.1, 3, "Laminate ", 90., Ply-1 
0.1, 3, "Laminate", 90., Ply-2 
0.1, 3, "Laminate", 90., Ply-3 
0.1, 3, "Laminate", 90., Ply-4 
0.1, 3, "Laminate", 90., Ply-5 
0.1, 3, "Laminate", 90., Ply-6 
0.1, 3, "Laminate", 90., Ply-7 
0.1, 3, "Laminate", 90., Ply-8 
0.1, 3, "Laminate", 90., Ply-9 
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0.1, 3, "Laminate", 90., Ply-10 
0.1, 3, "Laminate", 90., Ply-11 
0.1, 3, "Laminate", 90., Ply-12 
*End Instance 
 

 

(a) Define the stacking direction and ply orientiation for FRP patch 
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(b) Local coordinate of FRP path 

Fig. A.4. Creating composite layup for FRP patch. 

Step 4: Create sets of FE model 

Example for Set-4 

*Nset, nset=Set-4, instance="Steel plate-1" 
node 1, node 2,…. 
*Nset, nset=Set-4, instance=Adhesive 1-1 
node 1, node 2,…. 
*Nset, nset=Set-4, instance="CFRP 1-1", generate 
node 1, node 2,…. 
*Nset, nset=Set-4, instance=Adhesive 2-1, generate 
node 1, node 2,…. 
*Nset, nset=Set-4, instance="CFRP 2-1", generate 
node 1, node 2,…. 
*Elset, elset=Set-4, instance="Steel plate-1" 
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element 1, element 2,…. 
*Elset, elset=Set-4, instance=Adhesive 1-1 
element 1, element 2,…. 
*Elset, elset=Set-4, instance="CFRP 1-1", generate 
element 1, element 2,…. 
*Elset, elset=Set-4, instance=Adhesive 2-1, generate 
element 1, element 2,…. 
*Elset, elset=Set-4, instance="CFRP 2-1", generate 
element 1, element 2,…. 
 

 

(a) Creating mesh instance for crack front region 
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(b) Define global mesh size for ech part 

 

(c) Define crack mesh size of front elements 
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(d) Meshed model of repaired plate 

Fig. A.5. Meshing FE model. 

Step 5: Define surfaces 

Four adhesive surfaces: Surf-Adhesive1_1, Surf-Adhesive1_2, Surf-Adhesive2_1, 
and Surf-Adhesive2_2. 

*Elset, elset=_Surf-Adhesive1_1_S1, internal, instance=Adhesive 1-1, generate 
    1,  4400,     1 
*Surface, type=ELEMENT, name=Surf-Adhesive1_1 
_Surf-Adhesive1_1_S1, S1 
*Elset, elset=_Surf-Adhesive1_2_S2, internal, instance=Adhesive 1-1, generate 
  8801,  13200,      1 
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Fig. A.6. Defining surfaces for tie constraints. 

 

*Surface, type=ELEMENT, name=Surf-Adhesive1_2 
_Surf-Adhesive1_2_S2, S2 
*Elset, elset=_Surf-Adhesive2_1_S2, internal, instance=Adhesive 2-1, generate 
 5941,  8910,     1 
*Surface, type=ELEMENT, name=Surf-Adhesive2_1 
_Surf-Adhesive2_1_S2, S2 
*Elset, elset=_Surf-Adhesive2_2_S1, internal, instance=Adhesive 2-1, generate 
    1,  2970,     1 
*Surface, type=ELEMENT, name=Surf-Adhesive2_2 
_Surf-Adhesive2_2_S1, S1 
Two patch surfaces: CFRP 1-1 and CFRP 2-1 

*Elset, elset=_Surf-CFRP1_S1, internal, instance="CFRP 1-1", generate 
    1,  4400,     1 
*Surface, type=ELEMENT, name=Surf-CFRP1 
_Surf-CFRP1_S1, S1 
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*Elset, elset=_Surf-CFRP2_S2, internal, instance="CFRP 2-1", generate 
  8801,  13200,      1 
*Surface, type=ELEMENT, name=Surf-CFRP2 
_Surf-CFRP2_S2, S2 
*Elset, elset=_Surf-Steel1_S6, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Elset, elset=_Surf-Steel1_S4, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Elset, elset=_Surf-Steel1_S2, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Surface, type=ELEMENT, name=Surf-Steel1 
_Surf-Steel1_S6, S6 
_Surf-Steel1_S4, S4 
_Surf-Steel1_S2, S2 
*Elset, elset=_Surf-Steel2_S1, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Elset, elset=_Surf-Steel2_S4, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Elset, elset=_Surf-Steel2_S6, internal, instance="Steel plate-1" 
element 1, element 2,…. 
*Surface, type=ELEMENT, name=Surf-Steel2 
_Surf-Steel2_S1, S1 
_Surf-Steel2_S4, S4 
_Surf-Steel2_S6, S6 
 

Step 6: Define tie constraints 

** Constraint: Constraint-1 
*Tie, name=Constraint-1, adjust=yes 
Surf-Adhesive1_1, Surf-Steel1 
** Constraint: Constraint-2 
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*Tie, name=Constraint-2, adjust=yes 
Surf-Adhesive2_1, Surf-Steel2 
** Constraint: Constraint-3 
*Tie, name=Constraint-3, adjust=yes 
Surf-CFRP1, Surf-Adhesive1_2 
** Constraint: Constraint-4 
*Tie, name=Constraint-4, adjust=yes 
Surf-CFRP2, Surf-Adhesive2_2 
*End Assembly 

 

Fig. A.7. Creating four tie constraints. 

 

Step 7: Material properties 

** MATERIALS 
*Material, name="Adhesive Type1" 
*Elastic 
 958.77, 0.35 
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*Material, name="Laminate Type1" 
*Elastic, type=LAMINA 
210000.,8000.,0.3,5000.,5000.,5000. 
*Material, name=Steel 
*Elastic 
200000., 0.3 
 

 

(a) Adhesive material properties 
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(b) FRP patch material properties 

Fig. A.8. Material properties. 

Step 8: Boundary conditions 

** BOUNDARY CONDITIONS 
** Name: BC-1 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-4, XSYMM 
** Name: BC-2 Type: Symmetry/Antisymmetry/Encastre 
*Boundary 
Set-5, YSYMM 
** Name: BC-3 Type: Displacement/Rotation 
*Boundary 
Set-6, 3, 3 
Set-6, 4, 4 
Set-6, 5, 5 
Set-6, 6, 6 
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Fig. A.9. Assigning boundary conditions. 

Step 9: Analysis step 

** STEP: Step-1 
*Step, name=Step-1, nlgeom=NO 
*Static 
0.01, 1., 1e-06, 1. 
Step 10: Assign loads 

** LOADS 
** Name: Load-1   Type: Pressure 
*Dsload 
Surf-11, P, -55. 
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Fig. A.10. Creating tension load. 

Step 11: Stress intensity factor extraction 

** OUTPUT REQUESTS 
*Restart, write, frequency=0 
** FIELD OUTPUT: F-Output-1 
*Output, field, variable=PRESELECT 
*Output, history, frequency=0 
** HISTORY OUTPUT: H-Output-1 
*Contour Integral, crack name=H-Output-1_Crack-1, contours=5, crack tip nodes, 
type=K FACTORS, direction=MERR, symm 
_PickedSet219-1_, _PickedSet220-1_, 1., 0., 0. 
_PickedSet219-2_, _PickedSet220-2_, 1., 0., 0. 
_PickedSet219-3_, _PickedSet220-3_, 1., 0., 0. 
_PickedSet219-4_, _PickedSet220-4_, 1., 0., 0. 
_PickedSet219-5_, _PickedSet220-5_, 1., 0., 0. 
_PickedSet219-6_, _PickedSet220-6_, 1., 0., 0. 
*End Step 
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(a) Assign crack front 
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(b) Define crack extension direction (q vector) 

 

(c) Assign collapsed element 
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(d) SIF output 

Fig. A.11. Creating a crack and SIF output. 
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APPENDIX B  
COMPARISON OF FINITE ELEMENT WITH PREVIOUS FE STUDY RESULTS 

Tables B.1, B.2, and B.3 are comparisons between SIF values obtained from ABAQUS 
for both unrepaired and repaired cases (with a single-sided and a double-sided patch) 
and corresponding previous FE study results, respectively. Visualizations of the 
information in these tables correspond to Figs. 4.6, 4.7, and 4.8 in section 4.3. 

 

Table B.1 Comparison of SIF from FE and handbook solutions [12] (unrepaired). 

2 /
s

a W  

Plate 1  Plate 2 

SIF, FE 
MPa mm1/2 

SIF, [12] 
MPa mm1/2 

Diff. 
% 

 SIF, FE 
MPa mm1/2 

SIF, [12] 
MPa mm1/2 

Diff. 
% 

0.1 570.13 567.36 0.49  800.77 802.36 0.20 
0.2 823.54 817.13 0.78  1156.67 1155.60 0.09 
0.3 1033.67 1033.06 0.06  1463.67 1460.97 0.18 
0.4 1250.67 1250.99 0.03  1765.33 1769.16 0.22 
0.5 1493.33 1495.99 0.18  2110.63 2115.65 0.24 
0.6 1795.33 1799.73 0.24  2538.67 2545.20 0.26 
0.7 2212.00 2219.39 0.33  3128.00 3138.69 0.34 
0.8 2880.00 2894.24 0.49  4072.67 4093.08 0.50 
0.9 4345.87 4359.64 0.32  6111.44 6165.47 0.88 
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Table B.2 Comparison of SIF from FE and solutions [13] (one-sided patch). 

2 /
s

a W  

Boron/epoxy  Graphite/epoxy 

SIF, FE 
MPa m1/2 

SIF, [13] 
MPa m1/2 

Diff. 
% 

 SIF, FE 
MPa m1/2 

SIF, [13] 
MPa m1/2 

Diff. 
% 

0.1 12.45 12.50 0.40  12.01 12.25 1.99 

0.2 15.64 16.13 3.04  16.98 17.25 1.57 

0.3 17.98 18.25 1.47  19.06 19.50 2.32 

0.4 19.56 20.00 2.18  21.12 21.25 0.64 

0.5 21.86 21.50 1.67  22.94 23.25 1.35 

0.6 24.51 24.00 2.13  24.97 24.75 0.87 

 

Table B.3 Comparison of SIF from FE results and solutions [11] (two-sided patch). 

Patch shape 

 Patch dimensions  SIF, FE 
MPa m1/2 

SIF, [11] 
MPa m1/2 

Diff. 
% 

pW  
(mm) 

pL  
(mm) 

pt  
(mm) 

 

Rectangular 

72 24 2.25  5.33 5.33 0.14 

72 36 2.25  4.05 3.95 2.53 

72 48 2.25  3.77 3.65 3.16 

48 48 2.25  4.38 4.35 0.64 

72 48 2.25  3.77 3.65 3.16 

96 48 2.25  3.53 3.40 3.86 

Square 

60 60 2.25  4.08 4.03 1.22 

72 72 2.25  3.95 3.91 1.06 

84 84 2.25  3.85 3.78 2.11 

72 72 1.50  5.26 5.30 0.80 

84 84 1.50  5.16 5.13 0.60 
96 96 1.50  5.06 4.98 1.62 

file:///C:/Users/dokim/Desktop/5970367021Final.docx%23_ENREF_13
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APPENDIX C  
VERIFICATION OF CLOSED-FORM SIF SOLUTION 

The following four tables are comparisons between proposed SIF solutions and FE 
results for four verification cases in Table 5.6. Visualizations of the information in these 
tables correspond to Figs. 5.4a), b), c), and d) in section 5.4. 

 

Table C.1 Comparison of the proposed 
2F  solution and ABAQUS for case 1. 

2 /
s

a W  
2F , plate 3  

2F , plate 4 

Eq. (5.5) FE error (%)  Eq. (5.5) FE error (%) 

0.1 0.718 0.718       0.04   0.715 0.713       0.34  
0.2 0.658 0.680       3.32   0.655 0.659       0.66  
0.3 0.599 0.575       4.12   0.596 0.598       0.35  
0.4 0.541 0.532       1.61   0.538 0.541       0.65  
0.5 0.483 0.462       4.57   0.480 0.486       1.37  
0.6 0.425 0.425       0.04   0.422 0.432       2.19  
0.7 0.368 0.383       3.81   0.365 0.383       4.57  
0.8 0.311 0.331       6.05   0.308 0.318       3.28  
0.9 0.254 0.264       3.53   0.251 0.267       5.99  
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Table C.2 Comparison of the proposed 
2F  solution and ABAQUS for case 2. 

/ 2pL a  2F , plate 3   
2F , plate 4 

Eq. (5.5) FE error (%)  Eq. (5.5) FE error (%) 

1 0.630 0.657 4.16  0.614 0.569 8.01 
4 0.489 0.519 5.84  0.473 0.486 2.66 
7 0.483 0.506 4.52  0.467 0.483 3.19 
10 0.483 0.506 4.55  0.467 0.483 3.25 
13 0.483 0.506 4.55  0.467 0.483 3.25 
16 0.483 0.506 4.55  0.467 0.483 3.25 

 

Table C.3 Comparison of the proposed 
2F  solution and ABAQUS for case 3. 

pW / sW  
2F , plate 3 

2 0.5 sa W   

 
2F , plate 4 

 2 0.5 sa W  

Eq. (5.5) FE error (%)  Eq. (5.5) FE error (%) 

0.2 0.754 0.732 3.03  0.756 0.762 0.78 
0.3 0.693 0.667 3.92  0.691 0.685 0.96 
0.4 0.643 0.621 3.66  0.639 0.621 2.96 
0.5 0.603 0.590 2.22  0.598 0.574 4.14 
0.6 0.571 0.571 0.04  0.565 0.549 2.97 
0.7 0.544 0.556 2.12  0.538 0.530 1.66 
0.8 0.521 0.542 3.86  0.516 0.513 0.56 
0.9 0.501 0.529 5.32  0.497 0.499 0.37 
1.0 0.483 0.517 6.63  0.480 0.486 1.37 
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Table C.4 Comparison of the proposed 
2F  solution and ABAQUS for case 4. 

pW / sW  
2F , plate 3  

2 0.9 sa W  

 
2F , plate 4 

2 0.9 sa W  
Eq. (5.5) FE error (%)  Eq. (5.5) FE error (%) 

0.2 0.621 0.645 3.64  0.622 0.648 3.97 
0.3 0.543 0.510 6.63  0.540 0.503 7.44 
0.4 0.479 0.437 9.60  0.474 0.438 8.28 
0.5 0.427 0.397 7.64  0.421 0.378 11.46 
0.6 0.384 0.363 5.89  0.378 0.341 10.68 
0.7 0.347 0.334 4.11  0.341 0.303 12.56 
0.8 0.314 0.309 1.83  0.309 0.297 4.18 
0.9 0.284 0.287 1.18  0.279 0.273 2.26 
1.0 0.254 0.264 3.53  0.251 0.267 5.99 
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APPENDIX D  
SYMBOLIC REGRESSION VIA GENETIC PROGRAMMING IN HEURISTICLAB 

Step 1: Data preparation 

The input for GP analyses in this study is a database containing five columns, 

as shown in Fig. D.1. 
1 4

x x are variables given in Eq. (5.4) and y  is the correction 

factor 
2

F . A comma separated values text file (.csv) with Excel is used as the 

input file. 

 

Fig. D.1. Database for GP analyses. 

 

Step 2: Start HeuristicLab > Select Genetic Programming Symbolic Regression. 
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Fig. D.2. Starting HeuristicLab. 

Step 3: Load the database > Shuffle the data > Define the target variable, as shown 
in Fig. D.2. 

 

Fig. D.3. Import the database and define the target variable in HeuristicLab. 
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Step 4: Define the maximum numbers of tree depth (10) and tree length (30), as 
mentioned in Table 5.2 > Define the function and terminal sets for the GP analysis, 
detailed in Figs. D.3 and D.4. 

 

Fig. D.4. Define the maximum numbers of tree depth and tree length. 
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Fig. D.5. Definite function and terminal sets for GP.  

Step 5: Define some control parameters for GP algorithm such as a number of the 
elites, mutation probability, GP population size, maximum number of GP generations, 
and run the program, detailed in Fig. D.5. 
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Fig. D.6. Define some control parameters for GP algorithm.  
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APPENDIX E  
OPTIMIZATION SOLVERS IN MATLAB 

E.1. Genetic algorithm 

In this study, the “options”, mentioned in section 3.6, for GA is described as the 
following MATLAB commands. 

%% Start with the default options 

options = gaoptimset; 

 
%% creates a structure called options that contains the parameters  

%% for the genetic algorithm and sets parameters to [], indicating  

%% default values will be used 

 

%% Modify options setting 
options = gaoptimset(options,'PopulationSize', PopulationSize_Data); 
options = gaoptimset(options,'EliteCount', EliteCount_Data); 
options = gaoptimset(options,'Generations', Generations_Data); 
options = gaoptimset(options,'TolFun', TolFun_Data); 
options = gaoptimset(options,'TolCon', TolCon_Data); 
options = ... 

gaoptimset(options,'InitialPopulation',InitialPopulation_Data); 

options = gaoptimset(options,'SelectionFcn', @selectionroulette); 

 

%% including the population size (PopulationSize), number of elite  

%% strings (EliteCount), maximum number of generations (Generations), 

%% function and constraint tolerances (TolFun and TolCon), vector 

%% specifying the range of the individuals in the initial population 

%% (InitialPopulation), and selection function (@selectionroulette). 

 

%% Plot option 
options = gaoptimset(options,'PlotFcns', {@gaplotbestf}); 

 

%% GA command 
[x,fval] = ... 

ga(@VolumeFun,nvars,[],[],[],[],lb,ub,@NonlconstraintFun,[],options); 

 

%% x    : solution vector 
%% fval   : objective function value at the solution 
%% @VolumeFun   : objective function (patch volume function) 
%% nvars   : number of design parameters 
%% lb    : lower bound vector of design parameters 
%% ub    : upper bound vector of design parameters 

%% @NonlconstraintFun : nonlinear constraint function (SIF) 
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E.2. Nonlinear programming 

The “options” in section 3.6 for nonlinear programming is described as the following 
MATLAB commands. 

%% Start with the default options, detailed in reference [76] 
options = optimoptions('fmincon'); 

 
%% Modify options setting 
options = optimoptions(options,'Display', 'iter'); 
options = optimoptions(options,'TolFun', TolFun_Data); 
options = optimoptions(options,'TolX', TolX_Data); 
options = optimoptions(options,'PlotFcns', {@optimplotfval ... 

@optimplotfirstorderopt }); 
options = optimoptions(options,'MaxProjCGIter', MaxProjCGIter_Data); 
options = optimoptions(options,'TolCon', TolCon_Data); 
options = optimoptions(options,'TolProjCG', TolProjCG_Data); 
options = optimoptions(options,'TolProjCGAbs', TolProjCGAbs_Data); 

  

%% 'Display','iter': displays output at each iteration, and gives the 

%% default exit message 

%% TolFun, TolX, and TolCon: function, variable, and constraint 

%% tolerances 

%% 'PlotFcns',{@optimplotfval @optimplotfirstorderopt}: plot the 

%% function value and maximum constraint violation 

%% TolProjCG: a stopping criterion for projected conjugate gradient 

%% algorithm 

%% TolProjCGAbs: a stopping criterion for projected conjugate  

%% gradient algorithm 

 

%% nonlinear programming command 
[x,fval] = ... 
fmincon(@VolumeFun,x0,[],[],[],[],lb,ub,@NonlconstraintFun,options); 

 

%% x    : solution vector 

%% fval   : objective function value at the solution 

%% @VolumeFun  : objective function (patch volume function) 
%% x0    : initial point to start the algorithm 

%% lb    : lower bound vector of design parameters 

%% ub    : upper bound vector of design parameters 

%% @NonlconstraintFun : nonlinear constraint function (SIF) 
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E.3. A comparison between GA and nonlinear programming solutions 

A comparison between the optimum solutions of Rastrigin’s function obtained from 
GA and nonlinear programming is presented. Rastrigin’s function has many local 
minima and a global minimum at (0,0) [76], as follow: 

2 2

1 2 1 2 21( , ) 20 10(cos 2 cos 2 )Ras x x x x x x       (E.1) 

The following are MATLAB commands and solutions for both GA and nonlinear 
programming solvers. Note that these solvers start at (20,30), which is quite far from 
the global minimum (0,0).  

GA commands: 
>> rf2 = @(x)rastriginsfcn(x/10); % objective function 

>> x0 = [20,30]; % start point away from the minimum 

>> initpop = 10*randn(20,2) + repmat([10 30],20,1); 

>> opts =gaoptimset('InitialPopulation',initpop); 

>> [x,feval] = ga(rf2,2,[],[],[],[],[],[],[],opts); 

GA solution: 
x = 

   -0.0173    0.0443 

feval = 

    0.0045 

Nonlinear programming commands: 
>> rf2 = @(x)rastriginsfcn(x/10); % objective function 

>> x0 = [20,30]; % start point away from the minimum 

>> [x,feval] = fmincon(rf2,x0) 

Nonlinear programming solution: 
x = 

   19.8991   29.8486 

feval = 

   12.9344 

The above results show that GA works better than nonlinear programming for 
Rastrigin’s function that has many local minima even the initial population (or starting 
point) of the algorithm is far from the real solution. 
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