การวิเคราะห์ลักษณะการแสดงออกของยีนและการถ่ายภาพรังสีด้วยไมโครคอมพิวเตทโทโมกราฟฟี ในกระดูกปลูกถ่ายไร้โปรตีนจากวัวและกระดูกแช่แข็งจากมนุษย์



## นางสาวธันยาพร กังวานณรงค์กุล

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

> วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประดิษฐ์ ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2558 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

GENE EXPRESSION AND MICRO-COMPUTED TOMOGRAPHY ANALYSIS OF GRAFED BONE USING DEPROTENIZED BOVINE BONE AND FREEZE-DRIED HUMAN BONE

Miss Thanyaporn Kangwannarongkul



**CHULALONGKORN UNIVERSITY** 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Prosthodontics Department of Prosthodontics Faculty of Dentistry Chulalongkorn University Academic Year 2015 Copyright of Chulalongkorn University

| Thesis Title   | GENE EXPRESSION AND MICRO-COMPUTED |  |  |
|----------------|------------------------------------|--|--|
|                | TOMOGRAPHY ANALYSIS OF GRAFED BONE |  |  |
|                | USING DEPROTENIZED BOVINE BONE AND |  |  |
|                | FREEZE-DRIED HUMAN BONE            |  |  |
| Ву             | Miss Thanyaporn Kangwannarongkul   |  |  |
| Field of Study | Prosthodontics                     |  |  |
| Thesis Advisor | Jaijam Suwanwela, D.D.S., Ph.D.    |  |  |

Accepted by the Faculty of Dentistry, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

\_\_\_\_\_Dean of the Faculty of Dentistry

(Assistant Professor Suchit Poolthong, D.D.S., Ph.D.)

THESIS COMMITTEE

Chairman

(Assistant Professor Keskanya Subbalekha, D.D.S., Ph.D.)

\_\_\_\_\_Thesis Advisor

(Jaijam Suwanwela, D.D.S., Ph.D.)

Examiner

(Philaiporn Vivatbutsiri, D.D.S., Ph.D.)

.....External Examiner

(Pisaisit Chaijareenont, D.D.S., Ph.D.)

อันยาพร กังวานณรงค์กุล : การวิเคราะห์ลักษณะการแสดงออกของยีนและการถ่ายภาพรังสีด้วยไม โครคอมพิวเตทโทโมกราฟฟีในกระดูกปลูกถ่ายไร้โปรตีนจากวัวและกระดูกแช่แข็งจากมนุษย์ (GENE EXPRESSION AND MICRO-COMPUTED TOMOGRAPHY ANALYSIS OF GRAFED BONE USING DEPROTENIZED BOVINE BONE AND FREEZE-DRIED HUMAN BONE) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: อ. ทญ. ดร. ใจแจ่ม สูวรรณเวลา, 95 หน้า.

วัตถุประสงค์ การทำศัลยกรรมปลูกกระดูกเป็นขั้นตอนหนึ่งที่มีความสำคัญในทันตกรรมรากเทียมใน ปัจจุบันมีกระดูกปลูกถ่ายหลายชนิดที่นำมาใช้ในทางทันตกรรม การศึกษานี้ใช้กระดูกปลูกถ่าย 2 ชนิด ได้แก่ กระดูกปลูกถ่ายไร้โปรตีนจากวัว (Bio-Oss<sup>®</sup>) และ กระดูกแช่แข็งจากมนุษย์ (DFDBA) ซึ่งให้ผลการรักษาที่ดี ในทางคลินิกมาเป็นระยะเวลานาน อย่างไรก็ตามการศึกษาในสิ่งมีชีวิตถึงกระบวนการซ่อมสร้างของกระดูกใน ระดับโมเลกุลยังคงมีอยู่น้อย ในการศึกษานี้มีวัตถุประสงศ์คือศึกษาลักษณะการสร้างกระดูกขึ้นใหม่และการ แสดงออกของยีนในกะโหลกศีรษะของหนูด้วยกระดูกปลูกถ่าย 2 ชนิด คือ Bio-Oss<sup>®</sup> และ DFDBA เปรียบเทียบ กับลักษณะการหายของกระดูกปกติ ที่ระยะเวลา 1 และ 3 เดือน

วิธีการทดลอง หนู C57BL/6 จำนวน 36 ตัว แบ่งออกเป็น 3 กลุ่ม คือ กลุ่มที่ 1 กลุ่มควบคุม หนูไม่มี การใส่กระดูกปลูกถ่าย กลุ่มที่ 2 หนูใส่กระดูกปลูกถ่าย Bio-Oss<sup>®</sup> และ กลุ่มที่ 3 หนูใส่กระดูกปลูกถ่าย DFDBA กระดูกปลูกถ่ายถูกใส่บนช่องว่างบนกะโหลกศีรษะพารัยทอลขนาด 3 มิลลิเมตร ทั้งด้านซ้ายและด้านขวา ก่อน นำมาประเมินการสร้างกระดูกขึ้นใหม่ด้วยไมโครซีทีและการแสดงออกของยีนด้วยเทคนิคเรียลทาม พีซีอาร์ที่ ระยะเวลา 1 และ 3 เดือน

ผลการทดลอง จากการวิเคราะห์การสร้างกระดูกด้วยไมโครซีที่หนูที่มีการปลูกถ่ายกระดูกด้วย Bio-Oss<sup>®</sup> บริเวณกะโหลกศีรษะพารัยทอลมีปริมาตรกระดูกมากกว่ากลุ่มที่ปลูกถ่ายด้วย DFDBA และ กลุ่มควบคุม ทั้งในระยะเวลา 1 และ 3 เดือนอย่างมีนัยสำคัญทางสถิติ ด้านการแสดงออกของยีนพบว่าทั้ง Bio-Oss<sup>®</sup> และ DFDBA มีระดับการแสดงออกของยีนที่เกี่ยวข้องกับการสร้างกระดูกมากกว่ากลุ่มควบคุมในระยะเวลา 3 เดือน การแสดงออกของยีน Runx2 และ Osx ในกลุ่ม Bio-Oss<sup>®</sup> และ DFDBA มีระดับการแสดงออกที่มากกว่ากลุ่ม ควบคุม อย่างมีนัยสำคัญทางสถิติอีกด้วย

สรุปผล ผลการทดลองแสดงให้เห็นว่ากระดูกปลูกถ่ายช่วยส่งเสริมการสร้างกระดูกขึ้นใหม่และกระดูก ปลูกถ่าย Bio-Oss<sup>®</sup> มีคุณสมบัติออสทิโอคอนดักชั่นสูง

ภาควิชา ทันตกรรมประดิษฐ์ สาขาวิชา ทันตกรรมประดิษฐ์ ปีการศึกษา 2558

| ลายมือชื่อนิสิต            |  |
|----------------------------|--|
| ลายมือชื่อ อ.ที่ปรึกษาหลัก |  |

# # 5575809732 : MAJOR PROSTHODONTICS

KEYWORDS: REAL-TIME PCR / DFDBA / CALVARIAL DEFECT / MICE / MICRO-CT / BIO-OSS

THANYAPORN KANGWANNARONGKUL: GENE EXPRESSION AND MICRO-COMPUTED TOMOGRAPHY ANALYSIS OF GRAFED BONE USING DEPROTENIZED BOVINE BONE AND FREEZE-DRIED HUMAN BONE. ADVISOR: JAIJAM SUWANWELA, D.D.S., Ph.D., 95 pp.

Objectives: Bio-Oss<sup>®</sup> and DFDBA are two commercial bone grafts that have been associated with clinical success for many years. However, there are few *in vivo* studies regarding their healing mechanism. The purpose of this study was to investigate bone forming characteristics and gene expression in mouse calvarium at 1 and 3 months after bone grafting with deproteinized bovine bone and freeze-dried human bone, and compare them to natural bone healing.

Methods: Thirty-six mice were divided into three groups (n = 6/group) according to the type of bone graft used: group 1 (control) -an empty defect without bone graft, group 2 - treatment with deproteinized bovine xenograft (Bio-Oss<sup>®</sup>) and group 3 - treatment with freeze-dried bone allograft (DFDBA). The bone graft was inserted into two 3-mm calvarium defects created on both sides of the parietal bone. At 1 and 3 months, the mice were dissected, and bone volume was evaluated using micro-CT and gene expression analysis.

Results: Micro-CT analysis demonstrated that the parietal bone of mice grafted with Bio-Oss<sup>®</sup> had significantly greater bone volume than both the DFDBA and control groups at both 1 and 3 months. The bone marker genes were increased in both Bio-Oss<sup>®</sup> and DFDBA groups at 3 months. Runx2 and Osx had significantly higher expression in the Bio-Oss<sup>®</sup> and DFDBA group compared to the control at 3 months.

Conclusion: These results showed that both bone graft materials promoted bone regeneration. Bio-Oss<sup>®</sup> demonstrated high osteoconductive properties.

Department:ProsthodonticsField of Study:ProsthodonticsAcademic Year:2015

| Student's Signature |  |
|---------------------|--|
| Advisor's Signature |  |

#### ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisor Dr.Jaijam Suwanwela for her invaluable advice and support throughout this research study. Furthermore, I would like to thank Dr.Philaiporn Vivatbutsiri for her all her suggestions and teachings on operating on mice. I would also like to extend thanks to my thesis committee; Assistant Professor Dr. Keskanya Subbalekha and Dr. Pisaisit Chaijareenont for their encouragement and insightful comments.

Additionally, I would like to acknowledge the service from the Biomaterial testing center of Chulalongkorn University for their help in taking care of the animals.



Chulalongkorn University

## CONTENTS

| Page                                                         |
|--------------------------------------------------------------|
| THAI ABSTRACT iv                                             |
| ENGLISH ABSTRACTv                                            |
| ACKNOWLEDGEMENTSvi                                           |
| CONTENTSvii                                                  |
| LIST OF TABLES ix                                            |
| LIST OF FIGURES                                              |
| CHAPTER I INTRODUCTION                                       |
| CHAPTER II REVIEW OF LITERATURE                              |
| Type of bone graft2                                          |
| The socket bone healing process5                             |
| The calvarial defect model                                   |
| Micro-computed tomography or micro-CT8                       |
| Quantitative Real-time polymerase chain reaction (qRT- PCR)9 |
| CHAPTER III RESEARCH METHODOLOGY                             |
| Animals12                                                    |
| Surgical procedure                                           |
| Micro-computed tomography (Micro-CT) imaging15               |
| Data analysis                                                |
| RNA extraction and Real-time polymerase chain reaction       |
| Data analysis                                                |
| CHAPTER IV RESULTS                                           |
| Micro-CT imaging of bone regeneration23                      |

# viii

## Page

| Gene expression of bone markers25         |
|-------------------------------------------|
| CHAPTER V DISCUSSION                      |
| CHAPTER VI CONCLUSION                     |
| REFERENCES                                |
| APPENDIX                                  |
| Nucleic acid concentration and purity     |
| Average C <sub>t</sub> value in qRT-PCR40 |
| Statistics test                           |
| Animal care93                             |
| VITA                                      |

## LIST OF TABLES

| <b>Table 1</b> Showed the filling of bone grafts into the cavariae. $C = control, B = Bio-Oss^{\text{e}}$ |    |
|-----------------------------------------------------------------------------------------------------------|----|
| D = DFDBA                                                                                                 | 14 |
| Table 2 Reverse-transcription reaction components                                                         | 19 |
| Table 3 The specific primers for Real-time PCR                                                            | 20 |
| Table 4 KAPA SYBR <sup>®</sup> FAST qPCR Master Mix                                                       | 20 |
| Table 5 qPCR protocol                                                                                     | 21 |



จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

## LIST OF FIGURES

| Figure 1 Anatomical landmarks of mouse cavarium12                                                                   |
|---------------------------------------------------------------------------------------------------------------------|
| Figure 2 Location of created the defect13                                                                           |
| Figure 3 Showed bone grafts filled into the calvariae Bio-Oss $^{\scriptscriptstyle (\! 8\!)}$ on the left side and |
| DFDBA on the right side13                                                                                           |
| Figure 4 SCANCO Medical AG, uCT 3515                                                                                |
| Figure 5 Location of collected sample bone                                                                          |
| Figure 6 Bone sample and storage                                                                                    |
| Figure 7 The homogenization tube with metal beads (left) and homogenization (right) . 17                            |
| Figure 8 Three-dimensional micro-CT images of defects with (a) control (b) Bio-Oss $^{^{\otimes}}$                  |
| and (c) DFDBA 1 month after implantation24                                                                          |
| Figure 9 Three-dimensional micro-CT images of defects with (a) control (b) Bio-Oss $^{^{(\! R)}}$                   |
| and (c) DFDBA 3 months after implantation24                                                                         |
| Figure 10 The mean bone formation (mm <sup>3</sup> ) of bone grafts at 1 and 3 months.                              |
| (* indicated significant difference in bone volume at p<0.05)24                                                     |
| Figure 11 The expression of bone markers gene among groups. Value present by                                        |
| means ± SD                                                                                                          |
| Figure 12 The expression of bone markers gene between 1 and 3 months. Value                                         |
| present by means $\pm$ SD. (** Indicated significant difference in relative gene                                    |
| expression at p< 0.05)27                                                                                            |
| Figure 13 Regulation of gene expression in osteoblasts                                                              |

#### CHAPTER I INTRODUCTION

Nowadays, the combination of the conventional prosthesis and implant placement is considered one of the first choice prosthodontic treatments in edentulous patients. However, the main problem for patients with long-term tooth loss is a lack of bone quality and quantity. Dimensional changes of the residual ridge also occur, especially during the first 6 months after tooth extraction [1-3]. Without ridge preservation, the extraction site may lose up to 50% of its width within the first year [4]. As a result, many grafting materials have been used both in oral and maxillofacial surgery including autograft, allograft, xenograft and alloplast. Autografts are well known as the "gold standard" of grafting materials due to its osteoconductive, osteoinductive, osteogenic properties, and its non-immunological response [5]. However, it comes in limited quantity, requires a secondary surgical site, prolongs operation time, and may cause higher risk of donor site morbidity [6, 7]. Therefore, the use of alternative bone materials such as allograft and xenograft have increased [8, 9].

Clinically, the different healing patterns of natural bone and bone grafts can be distinguished by radiographic examination. However, there is still a lack of research on the possible role of gene expression in the different radiographic patterns. Therefore, this study aims to investigate bone regeneration in an animal model after placing two types of commonly used bone grafts, namely xenograft (Bio-oss<sup>®</sup>) and human allograft (Oragraft<sup>®</sup>), and compare them to the healing of normal bone. Bio-oss<sup>®</sup> is a deproteinized bovine bone composed of calcium and phosphate in a ratio of approximately 2:1; whereas Oragraft<sup>®</sup> is a freeze-dried human bone allograft without inorganic component.

#### CHAPTER II REVIEW OF LITERATURE

#### **Review literature**

Bone grafting is an important procedure performed prior to pre-prosthetic or implant placement. It is done for patients who lack bone quality and quantity after tooth extraction. It is known that the alveolar ridge dramatically resorbs during the first 6 months post-extraction and continues to resorb for up to 2 years [2, 10, 11]. Tallgren 1972 found that patients who wore complete dentures for 15 and 25 years had four times more resorption at the lower anterior edentulous ridge than the upper edentulous ridge[3]. Pietrokovski 1967 used study casts to demonstrate that buccal bone had greater bone loss compared to the palatal and lingual bone [12]. As the alveolar ridge becomes shorter and thinner it increases the difficulty in reconstruction; thus bone grafting is one commonly used solution for this problem [13].

#### Type of bone graft

- Autograft or autogenous bone graft
- Allograft or allogenic bone graft
- Xenograft or xenogenic bone graft
- Alloplast or alloplastic bone graft

#### Autograft or autogenous bone graft

Autograft is a bone graft that is harvested from another site, either intra- or extraoral, in the same host. At present, autograft remains the gold standard as it is the only bone graft that has osteogenic properties [6,9,14,15]. Hydroxyapatite and collagen, from the graft, acts as a framework for osteoblast cells and growth factors (ie. BMP, TGF- $\beta$ ) in bone formation.

The advantages of this graft are that it provides osteoprogenitor cells, does not induce an immune response or transmit disease. However, only few cells survive as there are merely 300 microns of blood vessels during the first 2 weeks. The cells that lack nutrition die and provide osteoconduction. Osteoclasts degrade the dead cells and slowly replace them with new bone. This process is known as "creeping substitution".

The disadvantages of autogenous bone grafts are the need for a second operative site, risk of morbidity, limited host bone, and the unpredictable resorption rate of the bone graft. Therefore, it is preferable in cases of large defects to combine autografts with other bone grafts [6, 7].

#### Allograft or allogenic bone graft

Allograft is a human bone graft that is harvested from another person in the same species. The freeze-dried process is done to preserve its contents and sterilize the material. This graft can be divided into 3 subtypes according to the manufacturing process.

- Fresh frozen allograft is bone that is collected from a host and kept in temperatures below -60°C to prevent enzyme degradation and maintain biological and physiological properties before use. This type of bone graft is rarely used because of the increased risk of infection and graft rejection.
- Freeze-dried bone allograft (FDBA) is a bone graft that is dehydrated, frozen, sterilized, and then kept it in a vacuum. This process does not change cell components. It has been suggested that this type of allograft still has osteoinductive properties.
- Demineralized freeze-dried bone allograft (DFDBA) is a bone graft that is immersed in 0.6 molar hydrochloric acid for 6 to 16 hours before frozen,

resulting in complete removal of inorganic contents. Bone morphogenic proteins (BMPs) do not dissolve in acid and provide the osteoinductive properties in this graft. Urist et al. 1960 claimed that DFDBA possessed osteoinductive properties different from FDBA [16]. This contradicted a study in 1996, in which no osteoinductive properties were found from both grafts [17]. Histological analysis by Wood and Mealey [18] revealed that bone grafted with DFDBA showed significantly greater new bone formation and lower amounts of residual bone graft than FDBA after grafting in human for 19 weeks. Presently, the osteoinductive properties of FDBA and DFDBA are still unclear.

The advantages of allograft are that it is available in large quantity and it reduces the number of surgeries. However, there have been 2 case reports of HIV infection from patients who received fresh frozen grafts.

#### Xenograft or xenogenic bone graft

Xenograft is bone graft taken from another species ie. bovine or pig [19]. It undergoes a heating process under 300°C to remove cells and organic contents [20]. Only osteoconductive properties are found in this bone graft. One product readily available in the market is Bio-Oss<sup>®</sup>. It comes from bovine bone, has a porous structure similar to human bone, and can resist compressive forces of up to 35 mega pascals. Moreover, it does not induce a host response. Bio-Oss<sup>®</sup> was widely used for its high osteoconductive properties, slow resorption rate, and biocompatibility. Bio-Oss<sup>®</sup> can be used in patients with oral maxillofacial defects and in dental implants, especially in maxillary sinus floor augmentation [21-24]. The advantages of this graft are its capacity for maintaining load-bearing bone volume, biocompatibility, and reduced complication. This material is considered as the material of choice for maxillary sinus floor augmentation [22, 25].

#### Alloplast or alloplastic bone graft

Alloplast is a synthetic material. There are many kinds available in various density, porosity, and shapes. It is compatible with soft tissue. Alloplasts are often used in combination with other bone grafts and are thus called "composite graft". They serve to increase bone volume and improve bone density. Examples of materials used in clinic are hydroxyapatite etc.

In this study, we selected 2 commercial bone grafts, Bio-Oss<sup>®</sup>, Oragraft<sup>®</sup>, as they are often used at Faculty of Dentistry, Chulalongkorn University. We hope that this study will be beneficial to the organization.

#### The socket bone healing process

Following tooth extraction, the socket immediately fills with blood and blood clot formation begins. This is the primary step of the bone healing process. The blood clot carries growth factors to the wound site and then gradually resorbs. Within a few days, it is replaced by granulation tissue. After 1 week, soft tissue remodeling and bone remineralization begins. After 2-4 weeks, the socket is filled with granulation tissue (rich in newly formed blood vessels) and a provisional matrix (collagen fibers and mesenchymal stem cells). During 6-8 weeks, the granulation tissue is replaced by matrix and woven bone. The immature woven bone continues to dominate till the late stages of healing. After 24 weeks, bone organization and architecture is still incomplete [26]. Although there are numerous studies concerning socket healing [11,19, 26], to date we still face problems with the loss of alveolar bone. For many years, clinicians have found good clinical results in using bone graft materials for the restoration of function and esthetics. In this study, micro-computed tomography and realtime PCR were performed to study bone microarchitecture and molecular characterization in grafted bone and compare it to natural bone healing using a mouse model.

Furthermore, in terms of gene expression, medical research has found that, after babies are born, the bones still have mesenchymal stem cells. These cells can differentiate into specific cells if they are stimulated or in the appropriate environment. An in vitro study and animal experimental study found that the differentiation of mesenchymal stem cells into osteoblast cells can be divided into 3 stages (Stage 1 Cell proliferation, Stage 2 Matrix maturation, Stage 3 Matrix mineralization). Gene expression in each stage is different. The specific genes for osteoblasts include alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) and bone sialoprotein (BSP) etc [27]. There are high expressions of ALP in the early stages of matrix maturation and its levels decrease in the late stages. OPN has increased expression during cell proliferation and matrix maturation, before the expression of BSP and OCN. BSP has short expression in early stages of matrix maturation and is expressed again in mature osteoblasts. The expression of OCN can be found in the late stages of matrix maturation [28]. The complete regulation of osteoblast differentiation requires transcription factors. The transcription factors important for osteoblast differentiation are Runt related transcription factor 2 (Runx2) and Osterix (Osx).

Runx2 or Cbfa1 (Core binding factor-1) is a transcription factor in the Runt domain family. It plays an important role in controlling mesenchymal stem cell differentiation into osteoblasts and chondroblasts. All Runx2 deficient mice died after birth due to a complete lack of osteoblast cells, intramembranous ossification, and endochondral ossification. In embryos, Runx2 expression in mesenchymal stem cells causes transformation into osteoblasts. It can be said that Runx2 is the first transcription factor in osteoblast differentiation [29, 30]. It was found that the specific gene markers to osteoblasts, such as Collagen type I, OPN, and OCN, have a promoter region for Runx2 adhesion. In addition, the increased expression of Runx2 in other cells can induce these cells to transform into osteoblasts themselves. The number of Runx2 genes are decreased in mature osteoblasts [31, 32].

Osterix (Osx) is a zinc finger-containing protein that is also essential in osteoblast differentiation and is more specific to osteoblast cells than Runx2 [33, 34]. Osx deficient mice lack bone formation by both endochondral and intramembranous ossification and have no expression specific gene markers like collagen type I, BSP, OPN and OCN. In mice, if there is no detection of Runx2, there is no expression of Osx. However, if there is no detection of Osx, Runx2 is still expressed normally. Hence, Osx acts downstream to Runx2. It is said that Osx directly affects regulation of preosteoblasts into fully functional osteoblasts.

In 2009, Sollazzo et al. studied the *in vitro* effect of Bio-oss<sup>®</sup> in mesenchymal stem cells using realtime PCR technique [35]. They found that on day 7 Bio-Oss<sup>®</sup> induced increased expression of Runx2 and OPN while decreasing the expression of Osx, OCN, ALP and collagen type I. This explained the decreased Osx, as its effects occur in the late stages of differentiation. In 2012, Shahram Vaziri et al. found that DFDBA induced expression of OPN and OCN in human osteoblast-like cell line. The analysis of gene expression helps to indicate the stage of bone formation [36-38].

#### The calvarial defect model

*In vivo* studies often use animal models to evaluate the bone regeneration process, bone substitute interaction, and physiological or pathological pathway [39-41]. O'Loughlin *et al.* reviewed the use of animal models in bone research over the course of 10 years and found that the most commonly used animal models were rats (38%), rabbits (19%), mice (13%), sheep (11%), dogs(9%), goats(4%) and others(4%) [42]. The

rodent models (rats and mice) were commonly used due to their low cost, high reproducibility, and easy handling and maintenance. In consideration of the implantation site, the calvarial defect serves as a model of intramembranous ossification [43]. This provides several advantages as it is reproducible, does not require internal or external fixation (support is provided by dura mater and skin for implant material), and provides for easy evaluation by radiography and histology.

To use the calvarial model, the defect size must be considered while planning the experiment [44, 45]. Schmitz described the calvarial critical size defect as the smallest wound established intraosseously in a particular bone, which does not report spontaneous healing during the lifetime of the animal. The mouse calvarial critical size defect is grater or equal 5 mm. Aalami *et al* compared bone healing between juvenile( 6 day-old) and adult( 60 day-old) mice with calvarial bone defect sizes 3,4 and 5 mm. After 8 weeks of bone healing, it was concluded that all defect sizes were critical to adult mice [46]. Therefore, in this study two size 3-mm calvarial defects per mouse was selected. This ultimately decreased the amount of mice required to complete this study.

Moreover, the resulting medical trials are uniform as mice are identical to humans in genetics. In other words, their genetic, biological and behavioral characteristics resemble those of human [47].

### Chulalongkorn University

#### Micro-computed tomography or micro-CT

Micro-CT is a highly powerful technique that can be described as a miniaturized form of CT scanning with a high spatial resolution range of 5 to 50 µm. It was developed in the early 1980s. In the past, dental hard tissue development and composition was studied through histology. However, histology required sample destruction and an extended period of time. Micro-CT is increasingly being used in dental research as it is faster, provides greater accuracy, and does not damage the specimen. It allows for 3-dimensional imaging of small dental hard tissues. The technique also discriminates change in dental hard tissue volumes. It is used for evaluation of volume, mineral density, and level of mineralization in hard tissue development [48].

Micro-CT is more efficient in terms of material science and biology such as in animal bones, tooth, medical equipment or electronic devices. Presently, micro-CT is the standard technique used in bone research [43, 49].

#### Quantitative Real-time polymerase chain reaction (qRT- PCR)

Quantitative Real-time polymerase chain reaction (gRT- PCR) is the most commonly used method for studying quantitative gene expression. It can accurately detect low mRNAs expression level. This assay is based on the detection fluorescent signal, which corresponds with the amount of DNA produced in the reaction. The gRT-PCR provides data in the form of cycle thresholds (C<sub>t</sub>). If the messenger RNA (mRNA) of the target gene is high, the C, value will be low. The process of qRT- PCR is divided into 2 steps: 1) Reverse transcriptase conversion of RNA to cDNA as RNA is less stable compared to DNA. 2) The quantification of amplified products by PCR. The fluorescent detection by fluorescent molecules (ie. dyes) that bind to the double-stranded DNA (non-specific detection) or specific probes (specific detection). The non-specific detection is the most simple and cheapest method in realtime PCR. The most widely used fluorescent molecule is SYBR Green, which is a fluorochrome that binds to the minor grooves of the DNA double helix. The fluorescence increase as the product accumulates in each cycle of amplification. The reaction stops when there are no more products for amplification. The realtime PCR assay is fast and efficient. It does not require post-PCR process and is a reproducible method for quantifying gene expression [50, 51].

In this study, we used qRT-PCR method to evaluate the 5 specific genes (Alkaline phosphatase (ALP), Osteopontin (OPN), Osteocalcin (OCN), Runt related transcription factor 2 (Runx-2) and Osterix (Osx)) after bone graft placement using either deproteinized bovine bone and freeze-dried human bone.

#### Research question:

Are there any differences in bone forming characteristics or gene expression between deproteinized bovine bone and freeze-dried human bone, compared to natural bone healing?

#### Research objective:

1. To investigate the bone forming characteristics of deproteinized bovine bone and freeze-dried human bone, and compare them to natural bone healing using micro-CT.

2. To study the expression of 5 marker genes, ALP, OPN, OCN, Runx-2, and Osx, after bone graft placement and compare them to natural bone healing.

#### Hypothesis

 $H_0$ : No difference in bone forming characteristics between the 2 different bone grafts was found from micro-CT.

 $H_A$ : At least one difference in bone forming characteristics between the 2 different bone grafts was found from micro-CT.

 $H_{01}$ : No difference in gene expression of ALP, OPN, OCN, Runx2 and Osx between the 2 different bone grafts was found.

 $H_{A1}$ : At least one difference in gene expression of ALP, OPN, OCN, Runx2 and Osx between the 2 different bone grafts was found.

#### Expected benefit

This study will provide information regarding genetics and bone characteristics after bone grafting that could help in making the pre-prosthesis treatment plan.

Conceptual framework



#### CHAPTER III RESEARCH METHODOLOGY

#### Animals

Thirty-six 8 -week old C57BL/6MLac mice weighing 25-30 g were used in this study. The experiment was approved by the Animal Care and Use Committee of Chulalongkorn University. The mice were housed in light and temperature controlled facilities and given food and water *ad libitum*.

#### Surgical procedure

The sedative, Nembutal<sup>®</sup> (Pentobarbital), was diluted with a phosphate buffered saline in a ratio of 1:10 and a concentration of 4 mg/kg [or 8µL of dilution/wt (g)] was used [52]. After the sedative was injected into the peritoneum layer, the mice's hair was removed with a blade, and the scalp cleaned with alcohol and povidone iodine. Next, 0.2 ml of 1% lidocaine with 1:100,000 epinephrine was injected into the subcutaneous tissue of the skull. The scalpel then provided an incision of 1.5 mm length to visualize the parietal bone. A cavity of 3-mm diameter was created on both the right and left sides of parietal bone using a hand drill and trephine burs with normal saline coolant. The procedure had to be performed gently in order to avoid dura mater injury. The bone graft was then inserted into the skull cavity and stitched up with nylon 3-0.

To create the cavities on mice cavarium, some anatomical landmarks were located. (Figure 1)







The 3-mm cavities created on each side of the parietal bone were located 1.5 mm away from the sagittal suture and 3 mm from the lambdoid suture.



Figure 2 Location of created the defect

The mice were divided into 3 groups according to the type of graft;

Group 1: bare defect as control

Group 2: deprotenized bovine bone [Bio-oss<sup>®</sup>; Geistlich Pharma AG, Wolhusen, Switzerland]

Group 3: demineralized freeze-dried human bone [OraGraft<sup>®</sup>; LifeNet, Virginia, USA]



Figure 3 Showed bone grafts filled into the calvariae Bio-Oss<sup>®</sup> on the left side and DFDBA on the right side.

Bone formation and gene expression were determined at 4 and 12 weeks. Thirty-six mice were used for each examination period (eighteen for micro-CT analysis and the others for PCR) as shown in the below table. (Table 1)

| Mice No.      | Left<br>defect |    | Right<br>defect |
|---------------|----------------|----|-----------------|
| 1, 10, 19, 28 | C1, C7         |    | B1, B7          |
| 2, 11, 20, 29 | C2, C8         | 0  | D1, D7          |
| 3, 12, 21, 30 | B2, B8         | 0  | D2, D8          |
| 4, 13, 22, 31 | B3, B9         | 0  | D3, D9          |
| 5, 14, 23, 32 | C3, C9         | 00 | C4, C10         |
| 6, 15, 24, 33 | C5, C11        | 0  | B4, B10         |
| 7, 16, 25, 34 | C6, C12        | 00 | D4, D10         |
| 8, 17, 26, 35 | B5, B11        | 00 | D5, D11         |
| 9, 18, 27, 36 | B6, B12        | 00 | D6, D12         |

**Table 1** Showed the filling of bone grafts into the cavariae. C = control,  $B = \text{Bio-Oss}^{\circ}$  D = DFDBA

#### Micro-computed tomography (Micro-CT) imaging

Four and twelve weeks after surgery, the animals were dissected. Their calvariae were removed and immediately immersed in 10% formalin overnight (n=6/groups). They were then rinsed with PBS before being analyzed with micro-CT (SCANCO Medical AG, uCT 35, Switzerland (Figure 4)) in a standard resolution scanning mode. To position the calvariae, a holder of 20-mm width and 75-mm height was used. The following micro-CT settings were used: 70 kVp, 114  $\mu$ A, 8 W, voxel size 20  $\mu$ m. A threshold of 212 was used for analysis of mineralization. A reference line was created to determine the analyzed area from the upper border of calvariae to the lower border that covered all of defect by picture of scout view. The mineral deposition in skull cavity and transform this data into bone volume. The morphology was observed and bone volume was also calculated into mean +/- S.D. (mm<sup>3</sup>).

#### Data analysis

The bone volume was analyzed using SPSS version 17.0 (SPSS Inc, Chicago, Illinois, USA). The difference of bone volume among groups was evaluated using a oneway analysis of variance (ANOVA), followed by Post hoc Tukey's Honestly Significance Difference with a significant level of 5%.



Figure 4 SCANCO Medical AG, uCT 35

#### RNA extraction and Real-time polymerase chain reaction

1. Bone samples adjacent to the parietal and coronal suture were collected using a 5-mm diameter trephine bur (Figure 5), and stored in a cryotube that was submerged in liquid nitrogen immediately prior to RNA extraction. (Figure 6)



Figure 5 Location of collected sample bone



Figure 6 Bone sample and storage

2. Total RNA isolation was done using Qiazol<sup>®</sup> reagent (Qiagen, Inc., USA). 500  $\mu$ L were added to the cryotube and then transferred into a homogenization tube, which was prechilled in liquid nitrogen. The bone sample was homogenized using a homogenizer speed 3,500 RPM for 30 seconds [53]. (Figure 7)



Figure 7 The homogenization tube with metal beads (left) and homogenization (right)

3. After homogenization, RNA was extracted using spin-column based method with PureLink<sup>®</sup> RNA Mini Kit, Life Technologies, Inc., USA. This was performed according to the manufacturer instructions, which is stated as followed.

3.1 Transfer the lysate into a clean RNase-free tube, add 200  $\mu$ l chloroform vortex for 15 seconds, incubate 2-3 minutes in room temperature, then centrifuge at 12,000 g for 15 minutes in 4 °C

3.2 Lysate is separated into 2 layers. Pipette transparent layer 150 µl into a new tube, beware of the turbid layer attached, and add 70% alcohol equal volume of cell homogenate. Vortex 10 seconds for a thorough mix.

#### Chulalongkorn Universit

3.3 Transfer the entire sample to the spin cartridge and then centrifuge at 12,000g for 15 seconds. RNA will be bound to the membrane, discard the flow-through and repeat this step 3-4 times.

3.4 Add 700  $\mu$ l of Wash Buffer I to the spin cartridge and centrifuge at 12,000g for 15 seconds. Discard the flow-through and put the spin catridge into a new collection tube.

3.5 Add 500 µl of Wash Buffer II with ethanol to the spin cartridge and centrifuge at 12,000g for 15 seconds. Discard the flow-through and repeat this step once more.

3.6 Centrifuge spin cartridge at 12,000g for 1-2 minutes to dry the membrane with bound RNA and then place the spin cartridge into the new recovery tube.

3.7 Add  $80 \ \mu$ I of RNase-free water into the spin cartridge, incubate at room temperature for 1 minute, and then centrifuge at 12,000g for 2 minute. The RNA was eluted from the membrane into the recovery tube.

3.8 Keep the RNA on ice for immediate use or -80°C for long-term storage.

4. Assessment of RNA purity by Nanodrop spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific, Inc., USA), the spectrophotometer was set to absorb the wave length of interest within the sample. Nucleic acids and proteins have absorbance at a range of 260 and 280 nm. The ratio of these wavelengths were used to determine RNA purity. The A260/280 ratio ~2.0 is accepted as pure for RNA.

#### Real-time polymerase chain reaction

Two-step RT-qPCR was used in this study. Reverse transcription converted RNA to cDNA, which was followed by PCR. The two-step protocol is more sensitive than the one-step protocol. However, this technique offers more control and flexibility. It is considered when amplification of multiple targets from one RNA sample is required.

#### Step 1 Reverse transcription

The Sensiscript RT kit (Sensiscript<sup>®</sup>, Qiagen, Inc., USA) was used per the manufacturer's instruction. The following protocol is used when < 50 ng RNA.

 Thaw template RNA on ice. Thaw 10x Buffer RT, dNTP mix, Oligo DT primer and RNase-free water at room temperature and put on ice immediately after thawing.

- 2. Prepare the master mix according to Table 2. Mix and vortex gently, centrifuge briefly. Keep tube on ice.
- Add the template RNA for the final components to the master mix. Mix and vortex gently, centrifuge briefly.
- 4. Incubate for 60 minute at 37° C
- Keep the reverse-transcription reactions on ice and continue process with PCR or store at -20°C for long-term storage.

| Component                         | Volume/reaction | Final concentration   |
|-----------------------------------|-----------------|-----------------------|
| 10x Buffer RT                     | 2.0 µl          | 1x                    |
| dNTP Mix (5mM each dNTP)          | 2.0 µl          | 0.5mM each dNTP       |
| Oligo-dT primer (10 µM)           | 2.0 µl          | 1 µM                  |
| Sensiscript Reverse Transcriptase | 1.0 µl          |                       |
| RNase-free water                  | Variable        | -                     |
| Template RNA                      | Variable        | <50 ng (per reaction) |
| Total volume                      | 20.0 µl         | -                     |

Table 2 Reverse-transcription reaction components

Step 2 Polymerase chain reactions

1. Primer design and preparation

Primer3 and blast was used for designing primers. (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) the primer sequences are shown in Table 3. 18s rRNA was used as a housekeeping gene to normalize the expression data [54]. Primers were shipped in dry form. Dissolve the primers with RNase free water to stock at 100µM concentration. Keep the stocked primers in -20°C. The stocked primers were diluted in 10  $\mu$ M concentration for use in PCR reaction.

Table 3 The specific primers for Real-time PCR

|          | Forward primer (5'-3')     | Reverse primer (5'-3')     |
|----------|----------------------------|----------------------------|
| Runx2    | TCC TTC ACT CCA AGA CCC TA | TCA GAT ACC ATG GGT GCT TC |
| Osx      | GAT TCC TGG GGT ATG TAG GA | TGG GAA ACA GGA ATA TGG GC |
| ALP      | GGC TCT CTT CAC TCC AAG AT | GAA GGA AGC TAC CAA CTG CT |
| OCN      | TGG GAA ACA GGA ATA TGG GC | GCA GAT TGT GAG ACC TTC AG |
| OPN      | TGA AAG TGA CTG ATT CTG GC | CCT TTT CTT CAG AGG ACA CA |
| 18S rRNA | GTG ATG CCC TTA GAT GTC C  | CCA TCC AAT CGG TAG TAG C  |

2. Set up and run the qPCR reaction

KAPA SYBR<sup>®</sup> FAST qPCR Kits (Kapa Biosystems, Inc., USA) was used with Bio-Rad CFX96<sup>™</sup> real time RT-PCR system (Bio-Rad laboratories, Inc., USA).

2.1 Prepare the PCR master mix as per Table 4.

| Component                        | Volume/reaction | Final concentration |
|----------------------------------|-----------------|---------------------|
| PCR-grade water                  | 3.6 μl          | N/A                 |
| KAPA SYBR <sup>®</sup> FAST qPCR | 5 µl            | 1x                  |
| Master Mix Universal             |                 |                     |
| 10 µM Forward Primer             | 0.2 µl          | 200 nM              |
| 10 µM Reverse Primer             | 0.2 µl          | 200 nM              |
| Template DNA                     | 1.0 µl          | <20 ng              |
| Total volume                     | 10 µl           | -                   |

Table 4 KAPA SYBR<sup>®</sup> FAST qPCR Master Mix

2.2 Mix PCR master mix gently, centrifuge briefly. Set up the plate reaction.

2.3 Run the qPCR reaction following parameters in Table 5.

Table 5 qPCR protocol

| Step              | Temperature  | Duration             | Cycles                         |
|-------------------|--------------|----------------------|--------------------------------|
| Enzyme activation | 95°C         | 3 min                | Hold                           |
| Denature          | 95°C         | 1-3 sec              | 40                             |
| Anneal/extend     | 60°C         | ≥ 20 sec+ Plate Read |                                |
| Dissociation      | 60 0 05 0 °C | 5 and + Diata Road   | increment 0.5 °C until         |
| (Melt curve)      | 00.0-95.0°C, | J Sec - Flate Reau   | reach 95.0 $^\circ \mathrm{C}$ |

For each gene, all samples were amplified in duplicate in one run. Negative control reactions with no sample (RNase free water) were included in each run. Analysis of relative gene expression was performed using the  $2^{-\Delta\Delta C_t}$  method. This method compared each target gene to a reference gene (housekeeping gene). The mean C<sub>t</sub> values from each gene were provided by Bio-Rad CFX96<sup>TM</sup>. The  $\Delta$ C<sub>t</sub> for each gene was calculated by subtracting the C<sub>t</sub> of the target from the control sample.

The  $2^{-\Delta\Delta C_t}$  method is described in Applied Biosystems User Bulletin No.2 (P/N 4303859).

The relative gene expression =  $2^{-\Delta\Delta C_t}$ 

Whereas 
$$\Delta\Delta C_t = \Delta C_{t \text{ target}} - \Delta C_{t \text{ control}}$$

=  $(C_{t target} - C_{t 18S})_{treatment}$  -  $(C_{t target} - C_{t 18S})_{untreatment}$ 

The threshold cycle ( $C_1$ ) is the fractional cycle number at which the amount of amplified target reaches a fixed threshold. The analyzed data using this equation presented as the fold change in gene expression normalized to an endogenous reference gene and relative to the untreated control [55-57].

#### Data analysis

The data was analyzed using SPSS version 17.0 (SPSS Inc, Chicago, Illinois, USA). The difference of the relative gene expression among groups was evaluated with one-way analysis of variance (ANOVA), followed by Post hoc Tukey's Honestly Significance Difference with a significant level of 5%. The difference of the relative gene expression within each group was evaluated with independent t-test with a significant level of 5%.

, Chulalongkorn University

#### CHAPTER IV RESULTS

One of thirty-six mice treated with Bio-Oss<sup>®</sup> and DFDBA was lost during the operation period. Micro-CT analysis of calvarial defects was performed and the analysis showed new bone formation in all groups.

#### Micro-CT imaging of bone regeneration

Three-dimensional micro-CT images from the 1-month group showed new bone formation in all groups at the defect margins. The Bio-Oss<sup>®</sup> grafts had more remaining particles within the defect compared to the DFDBA grafts (Figure 8). In the 3-month group, bone formation from defect margins were increased in all groups compared to the 1-month group. However, the residual grafts in the defects were markedly decreased, especially in DFDBA group (Figure 9).

At 1 month, mean bone formation was  $0.25\pm 0.08 \text{ mm}^3$  (1.5% bone volume (BV) of the total volume (TV)) in the control group followed by  $0.5\pm 0.12 \text{ mm}^3$  (3.14% BV/TV) in DFDBA and  $2.0\pm 0.45 \text{ mm}^3$  (12.64% BV/TV) in the Bio-Oss<sup>®</sup> group. At 3 months, the results were similar to the first month. Mean bone formation was  $0.33\pm 0.13 \text{ mm}^3$  (1.95% BV/TV) in the control group,  $0.48\pm 0.2 \text{ mm}^3$  (2.47% BV/TV) in DFDBA and  $1.06\pm 0.7 \text{ mm}^3$  (6.26% BV/TV) in Bio-Oss<sup>®</sup> (Figure 10).



Figure 8 Three-dimensional micro-CT images of defects with (a) control (b) Bio-Oss<sup>®</sup> and (c) DFDBA 1 month after implantation.



Figure 9 Three-dimensional micro-CT images of defects with (a) control (b) Bio-Oss<sup>®</sup> and (c) DFDBA 3 months after implantation.



Figure 10 The mean bone formation  $(mm^3)$  of bone grafts at 1 and 3 months. (\* indicated significant difference in bone volume at p<0.05)

#### Gene expression of bone markers

The evaluation of gene expression in grafted bone was performed. Figure 11 shows the relative mRNA levels of bone marker genes (ALP, OPN, OCN, Runx2 and Osx). At 1 month, no difference in bone marker gene expression was found, both in Bio-Oss<sup>®</sup> and DFDBA compared to the control. At 3 months, Bio-Oss<sup>®</sup> had up-regulation of Runx2, Osx and ALP compared to the control and also had significantly increased Runx2 expression compared to DFDBA. DFDBA had up-regulated Osx, ALP and OPN compared to the control. The expression of OPN was significantly up-regulated in the DFDBA group. No difference was observed for OCN in both materials.

Gene expression within each group was evaluated at 1 and 3 months. In the control group, all genes except OPN decreased in 3 months with statistically significant difference in Runx2 and Osx. Bio-Oss<sup>®</sup> up-regulated ALP and OPN significantly in the 3 months group, whereas DFBA up-regulated Osx and OPN significantly in the 3 months group. (Figure 12)

จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University



Figure 11 The expression of bone markers gene among groups. Value present by means  $\pm$  SD. (\* Indicated significant difference in relative gene expression at p< 0.05)






Figure 12 The expression of bone markers gene between 1 and 3 months. Value present by means  $\pm$  SD. (\*\* Indicated significant difference in relative gene expression at p< 0.05)

#### CHAPTER V DISCUSSION

Many bone grafting materials are available in the market today. For grafting procedures, Bio-Oss<sup>®</sup> and DFDBA have been widely used for many years, as they have history of good clinical outcome. Therefore, Bio-Oss<sup>®</sup> and DFDBA were chosen as representative for xenograft and allograft, respectively, and compared in efficiency in bone formation [7,18, 58-60].

From the micro-CT analysis, it was found that new bone formation in all groups started from the defect margins, leaving bone grafting material encapsulated within the new bone. At the end of the experiment, no defect was completely filled with new bone. Bio-oss<sup>®</sup> had the highest percentage of bone volume at both 1 and 3 months. The results of DFDBA were better than those of the control groups at both 1 and 3 months; however, it was not statistically significant. This may be due to the faster resorption of DFDBA particles (3.14% of BV/TV) compared to Bio-Oss<sup>®</sup> (12.64% of BV/TV) at 1 month. At 3 months, Bio-oss<sup>®</sup> had increased resorption (6.26% of BV/TV) compared to 1 month, while DFDBA showed no significant reduction in bone volume (2.47% of BV/TV).

We found that Bio-Oss<sup>®</sup> had greater bone volume than DFDBA at both 1 and 3 months. This corresponds with a previous study in that Bio-Oss<sup>®</sup> showed osteoconductive properties and good biocompatibility with intra-oral tissue. Histomorphometric study of sinus grafting with Bio-Oss<sup>®</sup> in chimpanzees demonstrated that organic bovine bone was resorbed and replaced with new bone within 1.5 years [58]. Some studies reported that organic bovine bone still remains after 44 months in humans [61, 62]. From this study, it was found that, though there was reduction of Bio-Oss<sup>®</sup> graft particles within the first month, new vital host bone gradually occupied this space. However, at 3 months period, Bio-oss<sup>®</sup> particles still remained in the defect sites. The period of time required for the graft to be completely replaced by new bone cannot be predicted due to the time constraints of this study.

The micro-CT results showed that DFDBA particles were rapidly resorbed. Whether the remaining graft residuals stimulate new bone formation or delay normal bone formation is still a topic of controversy. This suggests that this material might have a resorption rate that coincides with the remodeling rate of new bone.

Our further question was whether the grafting materials interfere with or influence the bone healing process. Previous studies have found the relationship between physiological and genetic data to be unclear. This in vivo study placed focus on specific genes related in bone formation using a mouse model. We found that Bio-Oss® and DFDBA had up-regulated ALP in the 3 month group compared to control. ALP was detected in the initial stage of bone formation. Thus, both materials can help promote cell proliferation. Furthermore, Runx2 was significantly up-regulated in the 3 month Bio-Oss<sup>®</sup> group. Runx2 is essential for osteoblast differentiation from mesenchymal stem cells to premature osteoblasts, but inhibits osteoblast maturation [31]. The level of expression of Osx had significant up-regulation at 3 months both in Bio-Oss<sup>®</sup> and DFDBA. Osx is a downstream gene to Runx2 that is required for the differentiation of premature osteoblasts into mature osteoblasts [33]. Runx2 interact with Osx and can upregulate the expression of OCN, a specific bone marker found at the late stage of cell maturation [30]. Monjo 2013 revealed that OCN is the best predictive marker for osseointregration of titanium implants in the animal model [63]. According to our study, Runx2 and Osx had increased expression while no difference in OCN expression was found at 3 months. This may have been due to the short time period of this study.

Another investigated gene, OPN, was significantly increased in the 3 months DFDBA group. The OPN gene is produced by osteoblasts but yields resorptive activity by osteoclasts [64]. This may have caused the high resorption rate of DFDBA particles as shown in microCT. Additionally, it functions to inhibit crystal growth and turn into more mature bone. From these findings, it can be concluded that both Bio-Oss<sup>®</sup> and DFDBA can promote osteoblast differentiation (Figure 13).



Figure 13 Regulation of gene expression in osteoblasts

Comparison of gene expression at 1 and 3 months was performed. Several genes in the control group had decreased expression at 3 months (statistically significant difference was found in Runx2 and Osx). While both Bio-Oss<sup>®</sup> and DFDBA had increased gene expression at 3 months. This implies that the use of bone graft materials can prolong specific bone marker genes in the *in vivo* mouse model.

In clinical studies, Bio-Oss<sup>®</sup> and DFDBA showed efficiency in decreased pocket depths and gains in clinical attachment levels in intrabony defects in humans [60]. However, from our micro-CT results, Bio-Oss<sup>®</sup> had superior bone volume to DFDBA and control groups at both periods. Nowadays, microCT has gained recognition in the use of studying small osseous and soft tissue structures of animals. This technique provides three-dimensional images of bone without destroying its structure and allows for the accurate visualization of the anatomy and morphology of tissues. Furthermore, the process is much faster compared to the processing time required in conventional histological procedures [65]. Therefore, microCT was selected for the examination of the amount and pattern of bone formation in this study. In previous histological studies, Mokbel 2008 found that DFDBA had a significantly greater mean bone formation than Bio-Oss<sup>®</sup> in rat calvarial bone defect models [8]. In another comparative study between Bio-Oss<sup>®</sup> and DFDBA in rabbit calvarias, it was found that DFDBA had a high resorption rate but this did not affect the new bone formation[66]. From our study, micro-CT was used to provide quantitative data of bone volume. However, a histological analysis would be beneficial, as it could provide qualitative data (discriminate immature bone,

inflammatory cells, residual graft particles) and further information from histological analysis to confirm our results.

Although DFDBA had high rerorption rate in micro-CT, it showed high gene expression levels, especially of Osx, a late marker in the osteoblastic pathway. It may be concluded that DFDBA can promote bone regeneration faster than Bio-Oss<sup>®</sup>. This is probably due to the difference in their components. DFDBA removed the mineral contents and has no structural capability while Bio-Oss<sup>®</sup> removed the organic tissues and provided structure and porosity for new bone [67].

The limitation of this study was that it was performed in mouse models. Their small size and low vascularization leads to limitation in surgical precision. Therefore, the amount of bone formation observed in this experiment may be lower compared to the intra-oral situation.

#### CHAPTER VI CONCLUSION

This study comparatively studied two commercially available bone grafts in their physical and biological responses after grafting in bone defect models. It was found that both materials have the potential to increase the expression of osteoblast related genes *in vivo* compared to natural bone healing. Bio-oss<sup>®</sup> has slow graft degradation, resulting in its act as a bone matrix for bone formation. However, further investigation should be performed by histological analysis, to study osteoclast activity and inflammatory response.

#### REFERENCES

- Araujo, M.G., and Lindhe, J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog. <u>J Clin Periodontol</u> 32 (2005): 212-218.
- Atwood, D.A. Bone loss of edentulous alveolar ridges. <u>J Periodontol</u> 50 (1979): 11-21.
- Tallgren, A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. <u>J Prosthet Dent</u> 27 (1972): 120-132.
- Schropp, L., Wenzel, A., Kostopoulos, L., and Karring, T. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study. <u>Int J Periodontics Restorative Dent</u> 23 (2003): 313-323.
- Albrektsson, T., and Johansson, C. Osteoinduction, osteoconduction and osseointegration. <u>Eur Spine J</u> 10 Suppl 2 (2001): S96-101.
- Gazdag, A.R., Lane, J.M., Glaser, D., and Forster, R.A. Alternatives to Autogenous Bone Graft: Efficacy and Indications. <u>J Am Acad Orthop Surg</u> 3 (1995): 1-8.
- Jensen, S.S., Broggini, N., Hjorting-Hansen, E., Schenk, R., and Buser, D. Bone healing and graft resorption of autograft, anorganic bovine bone and betatricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. <u>Clin Oral Implants Res</u> 17 (2006): 237-243.
- Mokbel, N., Bou Serhal, C., Matni, G., and Naaman, N. Healing patterns of critical size bony defects in rat following bone graft. <u>Oral Maxillofac Surg</u> 12 (2008): 73-78.
- Becker, W. Treatment of small defects adjacent to oral implants with various biomaterials. <u>Periodontol 2000</u> 33 (2003): 26-35.

- Hansson, S. , and Halldin, A. Alveolar ridge resorption after tooth extraction: A consequence of a fundamental principle of bone physiology. <u>Journal of Dental Biomechanics</u> 3 (2012): 1758736012456543.
- Van der Weijden, F., Dell'Acqua, F., and Slot, D.E. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. <u>J Clin</u> <u>Periodontol</u> 36 (2009): 1048-1058.
- 12. Pietrokovski, J., and Massler, M. Alveolar ridge resorption following tooth extraction. <u>J Prosthet Dent</u> 17 (1967): 21-27.
- 13. Nevins, M., et al. A study of the fate of the buccal wall of extraction sockets of teeth with prominent roots. Int J Periodontics Restorative Dent 26 (2006): 19-29.
- Calori, G.M., Mazza, E., Colombo, M. , and Ripamonti, C. The use of bone-graft substitutes in large bone defects: any specific needs? <u>Injury</u> 42 Suppl 2 (2011): S56-63.
- Crespi, R., Cappare, P., and Gherlone, E. Dental implants placed in extraction sites grafted with different bone substitutes: radiographic evaluation at 24 months. <u>J Periodontol</u> 80 (2009): 1616-1621.
- Urist, M.R., and Strates, B.S. Bone morphogenetic protein. <u>J Dent Res</u> 50 (1971): 1392-1406.
- Piattelli, A., Scarano, A., Corigliano, M., and Piattelli, M. Comparison of bone regeneration with the use of mineralized and demineralized freeze-dried bone allografts: a histological and histochemical study in man. <u>Biomaterials</u> 17 (1996): 1127-1131.
- Wood, R.A., and Mealey, B.L. Histologic comparison of healing after tooth extraction with ridge preservation using mineralized versus demineralized freeze-dried bone allograft. <u>J Periodontol</u> 83 (2012): 329-336.
- Crespi, R., Cappare, P., Romanos, G.E., Mariani, E., Benasciutti, E., and Gherlone, E. Corticocancellous porcine bone in the healing of human extraction sockets: combining histomorphometry with osteoblast gene expression profiles in vivo. <u>Int J Oral Maxillofac Implants</u> 26 (2011): 866-872.

- 20. Tapety, F.I., Amizuka, N., Uoshima, K., Nomura, S., and Maeda, T. A histological evaluation of the involvement of Bio-Oss in osteoblastic differentiation and matrix synthesis. <u>Clin Oral Implants Res</u> 15 (2004): 315-324.
- Camelo, M., et al. Clinical, radiographic, and histologic evaluation of human periodontal defects treated with Bio-Oss and Bio-Gide. <u>Int J Periodontics</u> <u>Restorative Dent</u> 18 (1998): 321-331.
- 22. Caubet, J., Ramis, J.M., Ramos-Murguialday, M., Morey, M.A., and Monjo, M. Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio-Oss(R) or BoneCeramic(R). <u>Clin Oral Implants Res</u> 26 (2015): 727-735.
- 23. Develioglu, H., Unver Saraydin, S., and Kartal, U. The bone-healing effect of a xenograft in a rat calvarial defect model. <u>Dent Mater J</u> 28 (2009): 396-400.
- Kolerman, R., Samorodnitzky-Naveh, G.R., Barnea, E., and Tal, H.
   Histomorphometric analysis of newly formed bone after bilateral maxillary sinus augmentation using two different osteoconductive materials and internal collagen membrane. <u>Int J Periodontics Restorative Dent</u> 32 (2012): e21-28.
- 25. Lindgren, C., Mordenfeld, A., Johansson, C.B., and Hallman, M. A 3-year clinical follow-up of implants placed in two different biomaterials used for sinus augmentation. Int J Oral Maxillofac Implants 27 (2012): 1151-1162.
- Farina, R., and Trombelli, L. Wound healing of extraction sockets. <u>Endodontic</u> <u>Topics</u> 25 (2011): 16-43.
- Mizuno, M. , and Kuboki, Y. Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J
   <u>Biochem</u> 129 (2001): 133-138.
- Boskey, A.L., Gadaleta, S., Gundberg, C., Doty, S.B., Ducy, P., and Karsenty, G.
   Fourier transform infrared microspectroscopic analysis of bones of osteocalcindeficient mice provides insight into the function of osteocalcin. <u>Bone</u> 23 (1998): 187-196.

- Shimizu, T. Participation of Runx2 in mandibular condylar cartilage development.
   <u>Eur J Med Res</u> 11 (2006): 455-461.
- Tsai, M.-T., Lin, Y.-S., Chen, W.-C., and Ho, C.-H. Runx2 and Osterix Gene Expression in Human Bone Marrow Stromal Cells Are Mediated by Far-Infrared Radiation. <u>Lecture Notes in Engineering and Computer Science</u> (2011):
- 31. Komori, T. Regulation of osteoblast differentiation by Runx2. <u>Adv Exp Med Biol</u>
  658 (2010): 43-49.
- Gilbert, L., et al. Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2alpha A) is inhibited by tumor necrosis factor-alpha. J Biol Chem 277 (2002): 2695-2701.
- 33. Nakashima, K., et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. <u>Cell</u> 108 (2002): 17-29.
- 34. Tu, Q., Valverde, P., Li, S., Zhang, J., Yang, P., and Chen, J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. <u>Tissue Eng</u> 13 (2007): 2431-2440.
- 35. Sollazzo, V., et al. Bio-Oss(R)acts on Stem cells derived from Peripheral Blood. <u>Oman Med J</u> 25 (2010): 26-31.
- Vaziri, S., Vahabi, S., Torshabi, M., and Hematzadeh, S. In vitro assay for osteoinductive activity of different demineralized freeze-dried bone allograft. J <u>Periodontal Implant Sci</u> 42 (2012): 224-230.
- 37. van Houdt, C.I., et al. Bone regeneration and gene expression in bone defects under healthy and osteoporotic bone conditions using two commercially available bone graft substitutes. <u>Biomed Mater</u> 10 (2015): 035003.
- 38. Virolainen, P., Vuorio, E., and Aro, H.T. Gene expression at graft-host interfaces of cortical bone allografts and autografts. <u>Clin Orthop Relat Res</u> (1993): 144-149.
- Gomes, P.S., and Fernandes, M.H. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies.
   <u>Lab Anim</u> 45 (2011): 14-24.

- 40. Spicer, P.P., Kretlow, J.D., Young, S., Jansen, J.A., Kasper, F.K., and Mikos,
   A.G. Evaluation of bone regeneration using the rat critical size calvarial defect.
   <u>Nat Protoc</u> 7 (2012): 1918-1929.
- 41. Szpalski, C., Barr, J., Wetterau, M., Saadeh, P.B., and Warren, S.M. Cranial bone defects: current and future strategies. <u>Neurosurg Focus</u> 29 (2010): E8.
- 42. O'Loughlin, P.F., Morr, S., Bogunovic, L., Kim, A.D., Park, B., and Lane, J.M.
   Selection and development of preclinical models in fracture-healing research. J
   <u>Bone Joint Surg Am</u> 90 Suppl 1 (2008): 79-84.
- Vieira, A.E., et al. Intramembranous Bone Healing Process Subsequent to Tooth Extraction in Mice: Micro-Computed Tomography, Histomorphometric and Molecular Characterization. <u>PLoS ONE</u> 10 (2015): e0128021.
- 44. Cowan, C.M., et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. <u>Nat Biotechnol</u> 22 (2004): 560-567.
- Inoda, H., Yamamoto, G., and Hattori, T. rh-BMP2-induced ectopic bone for grafting critical size defects: a preliminary histological evaluation in rat calvariae.
   <u>Int J Oral Maxillofac Surg</u> 36 (2007): 39-44.
- 46. Wu, X., Downes, S., and Watts, D.C. Evaluation of critical size defects of mouse calvarial bone: An organ culture study. <u>Microsc Res Tech</u> 73 (2010): 540-547.
- Zong, C., et al. Reconstruction of rat calvarial defects with human mesenchymal stem cells and osteoblast-like cells in poly-lactic-co-glycolic acid scaffolds. <u>Eur</u> <u>Cell Mater</u> 20 (2010): 109-120.
- 48. Byzova, B.A.K.a.T.V., <u>MicroCT: An Essential Tool in Bone Metastasis Research</u>, <u>Computed Tomography - Clinical Applications</u>. ed. InTech: 2012.
- Postnov, A., et al. High resolution micro-CT scanning as an innovative tool for evaluation of the surgical positioning of cochlear implant electrodes. <u>Acta</u> <u>Otolaryngol</u> 126 (2006): 467-474.
- Ireland, D. Analysis of gene expression in bone by quantitative RT-PCR.
   <u>Methods Mol Med</u> 80 (2003): 433-440.

- 51. Jozefczuk, J., and Adjaye, J. Quantitative real-time PCR-based analysis of gene expression. <u>Methods Enzymol</u> 500 (2011): 99-109.
- 52. Machida, A., Okuhara, S., Harada, K. , and Iseki, S. Difference in apical and basal growth of the frontal bone primordium in Foxc1ch/ch mice. <u>Congenit Anom</u> (Kyoto) 54 (2014): 172-177.
- 53. Carter, L.E., Kilroy, G., Gimble, J.M., and Floyd, Z.E. An improved method for isolation of RNA from bone. <u>BMC Biotechnol</u> 12 (2012): 5.
- 54. Stephens, A.S., Stephens, S.R., and Morrison, N.A. Internal control genes for quantitative RT-PCR expression analysis in mouse osteoblasts, osteoclasts and macrophages. <u>BMC Res Notes</u> 4 (2011): 410.
- 55. Livak, K.J., and Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. <u>Methods</u> 25 (2001): 402-408.
- 56. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. <u>Nucleic Acids Res</u> 29 (2001): e45.
- 57. Yuan, J.S., Reed, A., Chen, F., and Stewart, N.C. Statistical analysis of real-time PCR data. <u>BMC Bioinformatics</u> 7 (2006): 1-12.
- 58. McAllister, B.S., Margolin, M.D., Cogan, A.G., Buck, D., Hollinger, J.O., and Lynch, S.E. Eighteen-month radiographic and histologic evaluation of sinus grafting with anorganic bovine bone in the chimpanzee. Int J Oral Maxillofac Implants 14 (1999): 361-368.
- 59. lezzi, G., Scarano, A., Mangano, C., Cirotti, B., and Piattelli, A. Histologic results from a human implant retrieved due to fracture 5 years after insertion in a sinus augmented with anorganic bovine bone. <u>J Periodontol</u> 79 (2008): 192-198.
- Richardson, C.R., Mellonig, J.T., Brunsvold, M.A., McDonnell, H.T., and Cochran, D.L. Clinical evaluation of Bio-Oss: a bovine-derived xenograft for the treatment of periodontal osseous defects in humans. <u>J Clin Periodontol</u> 26 (1999): 421-428.

- Skoglund, A., Hising, P., and Young, C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. <u>Int J Oral</u> <u>Maxillofac Implants</u> 12 (1997): 194-199.
- Artzi, Z., Tal, H. , and Dayan, D. Porous bovine bone mineral in healing of human extraction sockets: 2. Histochemical observations at 9 months. <u>J Periodontol</u> 72 (2001): 152-159.
- Monjo, M., Ramis, J.M., Ronold, H.J., Taxt-Lamolle, S.F., Ellingsen, J.E., and Lyngstadaas, S.P. Correlation between molecular signals and bone bonding to titanium implants. <u>Clin Oral Implants Res</u> 24 (2013): 1035-1043.
- Shapses, S.A., et al. Osteopontin facilitates bone resorption, decreasing bone mineral crystallinity and content during calcium deficiency. <u>Calcif Tissue Int</u> 73 (2003): 86-92.
- Cowan, C.M., et al. MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects.
   <u>Tissue Eng</u> 13 (2007): 501-512.
- Ghanavati, F., et al. Bone augmentation potential in rabbit calvaria and ex vivo cytotoxicity of four bone substituting materials. <u>Journal of Periodontology & Implant Dentistry</u> 3 (2011): 1-7.
- 67. Desterro, F.d.P.d., Sader, M.S., Soares, G.D.d.A., and Vidigal Jr, G.M. Can Inorganic Bovine Bone Grafts Present Distinct Properties? <u>Brazilian Dental</u> <u>Journal</u> 25 (2014): 282-288.

### APPENDIX

# Nucleic acid concentration and purity

The total RNA concentration and 260/280 ratio (sample  $x_1x_2$  refer as C = control, B= Bio-Oss, D= DFDBA;  $x_1$  = month after bone grafted,  $x_2$  = number of mice)

| Sample      | Average RNA concentration(ng/µl) | A260  | A280  | 260/280 |
|-------------|----------------------------------|-------|-------|---------|
| C11         | 6.06                             | 0.152 | 0.077 | 1.98    |
| C12         | 20.9                             | 0.522 | 0.274 | 1.91    |
| C15 (left)  | 22                               | 0.55  | 0.289 | 1.90    |
| C15 (right) | 13.4                             | 0.335 | 0.172 | 1.95    |
| C16         | 44.36                            | 1.11  | 0.578 | 1.92    |
| C17         | 34.83                            | 0.871 | 0.455 | 1.91    |
| B11         | 62.6                             | 1.57  | 0.78  | 2.0     |
| B13         | 17.4                             | 0.43  | 0.24  | 1.82    |
| B14         | 95.73                            | 2.393 | 1.232 | 1.94    |
| B16         | 109.96                           | 2.749 | 1.4   | 1.96    |
| B18         | 20.43                            | 0.511 | 0.26  | 1.96    |
| B19         | 36.86                            | 0.921 | 0.45  | 2.04    |
| D12         | 41                               | 1.023 | 0.526 | 1.95    |
| D13         | 24.1                             | 0.603 | 0.318 | 1.9     |
| D14         | 35.6                             | 0.891 | 0.451 | 1.98    |
| D17         | 48.7                             | 1.22  | 0.611 | 2.0     |
| D18         | 42.03                            | 1.051 | 0.532 | 1.98    |
| D19         | 46.1                             | 1.15  | 0.576 | 2.0     |
| C31         | 17.56                            | 0.439 | 0.263 | 1.67    |
| C32         | 14.7                             | 0.368 | 0.213 | 1.73    |
| C35 (left)  | 10.6                             | 0.265 | 0.146 | 1.82    |
| C35 (right) | 12.6                             | 0315  | 0.19  | 1.67    |
| C36         | 13.1                             | 0.327 | 0.183 | 1.79    |
| C37         | 11.16                            | 0.279 | 0.158 | 1.77    |
| B31         | 10.8                             | 0.27  | 0.141 | 1.91    |
| B33         | 12.23                            | 0.31  | 0.16  | 1.94    |
| B34         | 15.76                            | 0.394 | 0.22  | 1.8     |
| B36         | 16.46                            | 0.411 | 0.227 | 1.81    |
| B38         | 17.83                            | 0.446 | 0.258 | 1.73    |
| B39         | 12.1                             | 0.303 | 0.187 | 1.62    |
| D32         | 13.4                             | 0.34  | 0.17  | 2       |
| D33         | 17.5                             | 0.437 | 0.26  | 1.69    |
| D34         | 10                               | 0.25  | 0.145 | 1.72    |
| D37         | 12.73                            | 0.319 | 0.176 | 1.81    |
| D38         | 11.83                            | 0.296 | 0.147 | 2       |
| D39         | 10.76                            | 0.269 | 0.145 | 1.86    |

# Average $C_t$ value in qRT-PCR

The  $C_t$  value are shown in the table below (sample  $x_1x_2$  refer as C = control, B= Bio-Oss, D= DFDBA;  $x_1$  = month after bone grafted,  $x_2$  = number of mice) Runx2 Osx ALP OCN OPN 18S Sample

| C11         | 29.89 | 31.33 | 29.94 | 34.43 | 30.87 | 23.36 |
|-------------|-------|-------|-------|-------|-------|-------|
| C13         | 26.83 | 29.22 | 29.54 | 33.43 | 25.84 | 20.34 |
| C15 (left)  | 25.64 | 27.97 | 27.23 | 30.72 | 22.7  | 19.52 |
| C15 (right) | 25.92 | 27.52 | 27.08 | 30.92 | 23.34 | 18.66 |
| C16         | 25.64 | 26.6  | 26.96 | 30.69 | 24.24 | 18.19 |
| C17         | 25.62 | 27.37 | 26.69 | 29.95 | 22.82 | 18.74 |
| B11         | 27.19 | 30.43 | 29.92 | 34.43 | 25.59 | 21.29 |
| B13         | 28.72 | 30.48 | 30.44 | 33.43 | 27.72 | 22.59 |
| B14         | 29.89 | 25.86 | 26.35 | 30.1  | 25.51 | 18.05 |
| B16         | 25.53 | 26.36 | 26.47 | 31.39 | 26.02 | 18.26 |
| B18         | 25.99 | 28.62 | 28.35 | 32.41 | 23.76 | 19.09 |
| B19         | 26.61 | 28.73 | 29.69 | 32.68 | 24.81 | 19.76 |
| D12         | 27.37 | 29.37 | 29.12 | 32.79 | 29.53 | 20.76 |
| D13         | 28.69 | 32.54 | 32.82 | 33.28 | 26.28 | 24.22 |
| D14         | 27.2  | 28.46 | 28.36 | 33.77 | 27.56 | 19.33 |
| D17         | 27.36 | 29.76 | 27.77 | 31.84 | 24.71 | 19.63 |
| D18         | 25.97 | 26.39 | 26.55 | 33.15 | 27.17 | 18.05 |
| D19         | 26.45 | 27.46 | 27.02 | 31.58 | 29.29 | 19.07 |
| C31         | 30.82 | 31.81 | 30.72 | 32.83 | 27.47 | 21.08 |
| C32         | 29.4  | 31.56 | 28.38 | 32.16 | 24.49 | 19.56 |
| C35 (left)  | 29.15 | 29.75 | 28.55 | 32.49 | 24.67 | 20.16 |
| C35 (right) | 29.77 | 32.04 | 31.09 | 35.23 | 24.35 | 21.19 |
| C36         | 30.43 | 31.08 | 29.92 | 32.84 | 27.06 | 20.46 |
| C37         | 29.54 | 30.99 | 29.89 | 34.09 | 24.94 | 21.63 |
| B31         | 27.7  | 29.53 | 29.38 | 34.7  | 23.24 | 21.78 |
| B33         | 28.57 | 29.55 | 29.38 | 33.54 | 25.73 | 21.86 |
| B34         | 29.19 | 30.45 | 30.52 | 33.98 | 24.99 | 22.71 |
| B36         | 28.13 | 29.51 | 28.97 | 34.71 | 25.09 | 21.69 |
| B38         | 28.95 | 30.11 | 29.35 | 32.82 | 24.29 | 21.18 |
| B39         | 29.67 | 31.28 | 30.6  | 35.61 | 26.39 | 23.11 |
| D32         | 28.16 | 30.62 | 30.27 | 34.05 | 23.54 | 21.95 |
| D33         | 29.27 | 31.51 | 31.52 | 34.44 | 24.26 | 23.25 |
| D34         | 29.23 | 30.59 | 31.4  | 36.18 | 25.59 | 23.52 |
| D37         | 26.88 | 29.22 | 29.66 | 34.67 | 22.96 | 22.13 |
| D38         | 28.02 | 29.56 | 30.01 | 35.06 | 24.36 | 21.26 |
| C31         | 30.82 | 31.81 | 30.72 | 32.83 | 27.47 | 21.08 |

## Statistics test

### MicroCT 1 month (1= control, 2= Bio-Oss, 3= DFDBA)

#### Descriptives

|       |    |          |                |            | 95% Confidence |             |         |         |
|-------|----|----------|----------------|------------|----------------|-------------|---------|---------|
|       | Ν  | Mean     | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum |
| 1     | 6  | .247583  | .0808391       | .0330024   | .162748        | .332419     | .1530   | .3548   |
| 2     | 5  | 2.006700 | .4556135       | .2037565   | 1.440981       | 2.572419    | 1.6195  | 2.6390  |
| 3     | 5  | .500260  | .1221725       | .0546372   | .348563        | .651957     | .3556   | .6586   |
| Total | 16 | .876269  | .8322849       | .2080712   | .432775        | 1.319762    | .1530   | 2.6390  |

# ANOVA

|                | Sum of Squares | df | Mean Square | F      | Sig. |
|----------------|----------------|----|-------------|--------|------|
| Between Groups | 9.468          | 2  | 4.734       | 66.695 | .000 |
| Within Groups  | .923           | 13 | .071        |        |      |
| Total          | 10.390         | 15 |             |        |      |
| . stal         |                |    | AV 111 (23) |        |      |

Multiple Comparisons

Dependent Variable: Bone volume

|            | _         |           |                         |            |      | 95% Confide | ence Interval |
|------------|-----------|-----------|-------------------------|------------|------|-------------|---------------|
|            | (I) Group | (J) Group | Mean Difference (I-J)   | Std. Error | Sig. | Lower Bound | Upper Bound   |
| Tukey HSD  | 1         | 2         | -1.7591167 <sup>*</sup> | .1613235   | .000 | -2.185081   | -1.333152     |
|            |           | 3         | 2526767                 | .1613235   | .294 | 678641      | .173288       |
|            | 2         | 1         | 1.7591167 <sup>*</sup>  | .1613235   | .000 | 1.333152    | 2.185081      |
|            |           | 3         | 1.5064400*              | .1684969   | .000 | 1.061535    | 1.951345      |
|            | 3         | 1         | .2526767                | .1613235   | .294 | 173288      | .678641       |
|            |           | 2         | -1.5064400*             | .1684969   | .000 | -1.951345   | -1.061535     |
| Dunnett T3 | 1         | 2         | -1.7591167 <sup>*</sup> | .2064119   | .002 | -2.513366   | -1.004867     |
|            |           | 3         | 2526767 <sup>*</sup>    | .0638309   | .016 | 449735      | 055618        |
|            | 2         | 1         | 1.7591167 <sup>*</sup>  | .2064119   | .002 | 1.004867    | 2.513366      |
|            |           | 3         | 1.5064400*              | .2109549   | .003 | .763191     | 2.249689      |
|            | 3         | 1         | .2526767*               | .0638309   | .016 | .055618     | .449735       |
|            |           | 2         | -1.5064400*             | .2109549   | .003 | -2.249689   | 763191        |

 $^{\ast}\!.$  The mean difference is significant at the 0.05 level.

### MicroCT 3 month

|         | Descriptives |          |                |            |                |             |         |         |  |  |  |  |  |
|---------|--------------|----------|----------------|------------|----------------|-------------|---------|---------|--|--|--|--|--|
|         |              |          |                |            | 95% Confidence |             |         |         |  |  |  |  |  |
|         | Ν            | Mean     | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum |  |  |  |  |  |
| Control | 6            | .330683  | .1254397       | .0512105   | .199042        | .462324     | .1705   | .4628   |  |  |  |  |  |
| Bio-oss | 6            | 1.062167 | .6923651       | .2826569   | .335574        | 1.788759    | .4505   | 2.3364  |  |  |  |  |  |
| DFDBA   | 6            | .484600  | .2088870       | .0852777   | .265387        | .703813     | .3038   | .8701   |  |  |  |  |  |
| Total   | 18           | .625817  | .5132580       | .1209761   | .370579        | .881054     | .1705   | 2.3364  |  |  |  |  |  |

#### ANOVA

|                | Sum of Squares | df | Mean Square | F     | Sig. |
|----------------|----------------|----|-------------|-------|------|
| Between Groups | 1.785          | 2  | .892        | 4.969 | .022 |
| Within Groups  | 2.694          | 15 | .180        |       |      |
| Total          | 4.478          | 17 |             |       |      |



#### Multiple Comparisons

Dependent Variable: Bone volume

|                                  | -         | -         |                       |            |      | 95% Confide | ence Interval |
|----------------------------------|-----------|-----------|-----------------------|------------|------|-------------|---------------|
|                                  | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound | Upper Bound   |
| Tukey HSD                        | 1         | 2         | 7314833 <sup>*</sup>  | .2446626   | .023 | -1.366987   | 095979        |
|                                  |           | 3         | 1539167               | .2446626   | .807 | 789421      | .481587       |
|                                  | 2         | 1         | .7314833 <sup>*</sup> | .2446626   | .023 | .095979     | 1.366987      |
|                                  |           | 3         | .5775667              | .2446626   | .078 | 057937      | 1.213071      |
|                                  | 3         | 1         | .1539167              | .2446626   | .807 | 481587      | .789421       |
|                                  |           | 2         | 5775667               | .2446626   | .078 | -1.213071   | .057937       |
| Dunnett t (2-sided) <sup>a</sup> | 1         | 3         | 1539167               | .2446626   | .758 | 750696      | .442862       |
|                                  | 2         | 3         | .5775667              | .2446626   | .058 | 019212      | 1.174346      |

\*. The mean difference is significant at the 0.05 level.

a. Dunnett t-tests treat one group as a control, and compare all other groups against it.

# One-way ANOVA and Post hoc Tukey's HSD of the gene expression among groups

PCR 1 month Runx2 (1= control, 2= Bio-Oss, 3= DFDBA)

Descriptives

| gene  | gene |            |                |            |                |             |         |          |  |  |  |  |  |
|-------|------|------------|----------------|------------|----------------|-------------|---------|----------|--|--|--|--|--|
|       |      |            |                |            | 95% Confidence |             |         |          |  |  |  |  |  |
|       | Ν    | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |  |  |  |  |  |
| 1     | 6    | 1.05234362 | .358076313     | .146184043 | .67656558      | 1.42812167  | .632878 | 1.591073 |  |  |  |  |  |
| 2     | 6    | 1.00987835 | .645993397     | .263725700 | .33194985      | 1.68780684  | .030151 | 1.851036 |  |  |  |  |  |
| 3     | 6    | 1.12856483 | 1.201606809    | .490553925 | 13244418       | 2.38957384  | .456388 | 3.526735 |  |  |  |  |  |
| Total | 18   | 1.06359560 | .766593845     | .180687902 | .68237745      | 1.44481375  | .030151 | 3.526735 |  |  |  |  |  |

ANOVA

gene

| 9              |                |    |             |      |      |  |  |  |  |  |  |
|----------------|----------------|----|-------------|------|------|--|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F    | Sig. |  |  |  |  |  |  |
| Between Groups | .043           | 2  | .022        | .033 | .968 |  |  |  |  |  |  |
| Within Groups  | 9.947          | 15 | .663        |      |      |  |  |  |  |  |  |
| Total          | 9.990          | 17 |             |      |      |  |  |  |  |  |  |
|                |                | 16 | N.          |      |      |  |  |  |  |  |  |

Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | .042465276            | .470151869 | .996 | -1.17874022             |
|            |           | 3         | 076221223             | .470151869 | .986 | -1.29742672             |
|            | 2         | 1         | 042465276             | .470151869 | .996 | -1.26367077             |
|            |           | 3         | 118686499             | .470151869 | .966 | -1.33989199             |
|            | 3         | 1         | .076221223            | .470151869 | .986 | -1.14498427             |
|            |           | 2         | .118686499            | .470151869 | .966 | -1.10251899             |
| Dunnett T3 | 1         | 2         | .042465276            | .301531125 | .998 | 85444329                |
|            |           | 3         | 076221223             | .511871981 | .998 | -1.72070383             |
|            | 2         | 1         | 042465276             | .301531125 | .998 | 93937384                |
|            |           | 3         | 118686499             | .556950981 | .995 | -1.78237268             |
|            | 3         | 1         | .076221223            | .511871981 | .998 | -1.56826138             |
|            |           | 2         | .118686499            | .556950981 | .995 | -1.54499968             |

#### PCR 1 month Osx

#### Descriptives

| gene  |    |            |                |            |                |             |         |          |
|-------|----|------------|----------------|------------|----------------|-------------|---------|----------|
|       |    |            |                |            | 95% Confidence |             |         |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |
| 1     | 6  | 1.02897023 | .256934081     | .104892899 | .75933445      | 1.29860601  | .790041 | 1.484524 |
| 2     | 6  | 1.07666410 | .502381768     | .205096498 | .54944677      | 1.60388143  | .501157 | 1.650992 |
| 3     | 6  | .89123104  | .332066252     | .135565480 | .54274888      | 1.23971320  | .330640 | 1.159364 |
| Total | 18 | .99895512  | .364176525     | .085837230 | .81785440      | 1.18005585  | .330640 | 1.650992 |

ANOVA

| gene           |                |    |             |      |       | 2 |
|----------------|----------------|----|-------------|------|-------|---|
|                | Sum of Squares | df | Mean Square | F    | Sig.  |   |
| Between Groups | .111           | 2  | .056        | .389 | .684  |   |
| Within Groups  | 2.143          | 15 | .143        |      |       |   |
| Total          | 2.255          | 17 |             |      |       |   |
|                |                |    | 1/2         |      | all a | R |

#### Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | 047693865             | .218243131 | .974 | 61457391                |
|            |           | 3         | .137739162            | .218243131 | .806 | 42914088                |
|            | 2         | 1         | .047693865            | .218243131 | .974 | 51918617                |
|            |           | 3         | .185433027            | .218243131 | .679 | 38144701                |
|            | 3         | 1         | 137739162             | .218243131 | .806 | 70461920                |
|            |           | 2         | 185433027             | .218243131 | .679 | 75231307                |
| Dunnett T3 | 1         | 2         | 047693865             | .230362961 | .995 | 74062595                |
|            |           | 3         | .137739162            | .171407476 | .807 | 35259487                |
|            | 2         | 1         | .047693865            | .230362961 | .995 | 64523822                |
|            |           | 3         | .185433027            | .245850719 | .834 | 52930654                |
|            | 3         | 1         | 137739162             | .171407476 | .807 | 62807320                |
|            |           | 2         | 185433027             | .245850719 | .834 | 90017260                |

#### PCR 1 month ALP

#### Descriptives

| gene  |    |            |                |            |                |             |         |          |
|-------|----|------------|----------------|------------|----------------|-------------|---------|----------|
| _     |    |            |                |            | 95% Confidence |             |         |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |
| 1     | 6  | 1.20565581 | .880840934     | .359601806 | .28126994      | 2.13004168  | .469761 | 2.887858 |
| 2     | 6  | .73716333  | .333330774     | .136081719 | .38735414      | 1.08697252  | .282241 | 1.193336 |
| 3     | 6  | .82069377  | .206173905     | .084170144 | .60432753      | 1.03706002  | .526681 | 1.113422 |
| Total | 18 | .92117097  | .563435147     | .132802938 | .64098126      | 1.20136068  | .282241 | 2.887858 |

ANOVA

| gene           |                                          |                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|----------------|------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Sum of Squares | df                                       | Mean Square                                                                                              | F                                                                                                                                                                 | Sig.                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| .749           | 2                                        | .375                                                                                                     | 1.209                                                                                                                                                             | .326                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
| 4.647          | 15                                       | .310                                                                                                     |                                                                                                                                                                   |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 5.397          | 17                                       |                                                                                                          |                                                                                                                                                                   |                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
|                | Sum of Squares<br>.749<br>4.647<br>5.397 | Sum of Squares         df           .749         2           4.647         15           5.397         17 | Sum of Squares         df         Mean Squares           .749         2         .375           4.647         15         .310           5.397         17         . | Sum of Squares         of         Mean Squares         F           .749         2         .375         1.209           4.647         15         .310         .           5.397         17         .         .         . |  |  |  |  |  |  |  |

#### Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | .468492482            | .321368187 | .338 | 36625182                |
|            |           | 3         | .384960464            | .321368187 | .472 | 44978384                |
|            | 2         | 1         | 468492482             | .321368187 | .338 | -1.30323679             |
|            |           | 3         | 083532018             | .321368187 | .964 | 91827632                |
|            | 3         | 1         | 384960464             | .321368187 | .472 | -1.21970477             |
|            |           | 2         | .083532018            | .321368187 | .964 | 75121229                |
| Dunnett T3 | 1         | 2         | .468492482            | .384488872 | .567 | 73538242                |
|            |           | 3         | .384960464            | .369321044 | .673 | 82456072                |
|            | 2         | 1         | 468492482             | .384488872 | .567 | -1.67236739             |
|            |           | 3         | 083532018             | .160008778 | .934 | 55255164                |
|            | 3         | 1         | 384960464             | .369321044 | .673 | -1.59448165             |
|            |           | 2         | .083532018            | .160008778 | .934 | 38548760                |

#### PCR 1 month OCN

#### Descriptives

| gene  |    |            |                |            |                |             |         |          |
|-------|----|------------|----------------|------------|----------------|-------------|---------|----------|
|       |    |            |                |            | 95% Confidence |             |         |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |
| 1     | 6  | 1.14084729 | .582148643     | .237661189 | .52991976      | 1.75177483  | .435275 | 1.765406 |
| 2     | 6  | .77747078  | .660535926     | .269662663 | .08428084      | 1.47066072  | .370702 | 2.068139 |
| 3     | 6  | 1.27621407 | 1.864172872    | .761045388 | 68011538       | 3.23254352  | .107942 | 5.022248 |
| Total | 18 | 1.06484405 | 1.138883594    | .268437437 | .49849056      | 1.63119753  | .107942 | 5.022248 |

ANOVA

| gene           |                |    |             |      |       |
|----------------|----------------|----|-------------|------|-------|
|                | Sum of Squares | df | Mean Square | F    | Sig.  |
| Between Groups | .798           | 2  | .399        | .282 | .758  |
| Within Groups  | 21.252         | 15 | 1.417       |      |       |
| Total          | 22.050         | 17 |             |      |       |
|                |                |    | 1/2         |      | X III |

#### Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | .363376509            | .687212179 | .859 | -1.42163668             |
|            |           | 3         | 135366791             | .687212179 | .979 | -1.92037998             |
|            | 2         | 1         | 363376509             | .687212179 | .859 | -2.14838970             |
|            |           | 3         | 498743300             | .687212179 | .752 | -2.28375649             |
|            | 3         | 1         | .135366791            | .687212179 | .979 | -1.64964640             |
|            |           | 2         | .498743300            | .687212179 | .752 | -1.28626989             |
| Dunnett T3 | 1         | 2         | .363376509            | .359445117 | .684 | 65628648                |
|            |           | 3         | 135366791             | .797290986 | .997 | -2.68528737             |
|            | 2         | 1         | 363376509             | .359445117 | .684 | -1.38303950             |
|            |           | 3         | 498743300             | .807408217 | .897 | -3.04646994             |
|            | 3         | 1         | .135366791            | .797290986 | .997 | -2.41455379             |
|            |           | 2         | .498743300            | .807408217 | .897 | -2.04898334             |

#### PCR 1 month OPN

#### Descriptives

| gene  |    |            |                |            |                |             |         |          |
|-------|----|------------|----------------|------------|----------------|-------------|---------|----------|
|       |    |            |                |            | 95% Confidence |             |         |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |
| 1     | 6  | 1.50699491 | 1.387419118    | .566411483 | .05098784      | 2.96300198  | .197510 | 3.972370 |
| 2     | 6  | .95234480  | .658898279     | .268994096 | .26087347      | 1.64381614  | .165702 | 1.823445 |
| 3     | 6  | 1.36037563 | 2.355837776    | .961766745 | -1.11192450    | 3.83267575  | .030116 | 6.090947 |
| Total | 18 | 1.27323845 | 1.544182596    | .363967328 | .50533451      | 2.04114239  | .030116 | 6.090947 |

ANOVA

| gene           |                |    |             |      |       |
|----------------|----------------|----|-------------|------|-------|
|                | Sum of Squares | df | Mean Square | F    | Sig.  |
| Between Groups | .923           | 2  | .462        | .170 | .845  |
| Within Groups  | 40.800         | 15 | 2.720       |      |       |
| Total          | 41.723         | 17 |             |      |       |
|                |                |    | 1/2         |      | A III |

#### Multiple Comparisons

|            |           |           |                       |             |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|-------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error  | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | .554650107            | .952188363  | .831 | -1.91863084             |
|            |           | 3         | .265421231            | .952188363  | .958 | -2.20785972             |
|            | 2         | 1         | 554650107             | .952188363  | .831 | -3.02793105             |
|            |           | 3         | 289228876             | .952188363  | .951 | -2.76250982             |
|            | 3         | 1         | 265421231             | .952188363  | .958 | -2.73870218             |
|            |           | 2         | .289228876            | .952188363  | .951 | -2.18405207             |
| Dunnett T3 | 1         | 2         | .554650107            | .627040503  | .763 | -1.35105906             |
|            |           | 3         | .265421231            | 1.134740584 | .993 | -3.09217552             |
|            | 2         | 1         | 554650107             | .627040503  | .763 | -2.46035927             |
|            |           | 3         | 289228876             | 1.019397886 | .988 | -3.58908884             |
|            | 3         | 1         | 265421231             | 1.134740584 | .993 | -3.62301798             |
|            |           | 2         | .289228876            | 1.019397886 | .988 | -3.01063109             |

#### PCR 3 month Runx2

#### Descriptives

| gene  |    |            |                |            |                |             |          |          |
|-------|----|------------|----------------|------------|----------------|-------------|----------|----------|
|       |    |            |                |            | 95% Confidence |             |          |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum  | Maximum  |
| 1     | 6  | 1.15159345 | .708049015     | .289059800 | .40854158      | 1.89464532  | .574349  | 2.394957 |
| 2     | 6  | 6.14835998 | 2.211133178    | .902691340 | 3.82791802     | 8.46880194  | 2.642066 | 9.524654 |
| 3     | 6  | 1.85818642 | .973276477     | .397338458 | .83679539      | 2.87957744  | .924450  | 3.723519 |
| Total | 18 | 3.05271328 | 2.650567412    | .624744730 | 1.73461712     | 4.37080945  | .574349  | 9.524654 |

#### ANOVA

| gene           |                |    |             |        |        |  |  |  |  |  |  |
|----------------|----------------|----|-------------|--------|--------|--|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F      | Sig.   |  |  |  |  |  |  |
| Between Groups | 87.745         | 2  | 43.873      | 20.767 | .000   |  |  |  |  |  |  |
| Within Groups  | 31.689         | 15 | 2.113       |        |        |  |  |  |  |  |  |
| Total          | 119.434        | 17 |             |        |        |  |  |  |  |  |  |
|                |                |    |             |        | 111 63 |  |  |  |  |  |  |

#### Multiple Comparisons

|            | -         | -         |                           |             |      | 95% Confidence Interval |
|------------|-----------|-----------|---------------------------|-------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J)     | Std. Error  | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | -4.731542183 <sup>*</sup> | 1.230328902 | .004 | -7.92728491             |
|            |           | 3         | -5.952045201*             | 1.230328902 | .001 | -9.14778793             |
|            | 2         | 1         | 4.731542183 <sup>*</sup>  | 1.230328902 | .004 | 1.53579946              |
|            |           | 3         | -1.220503019              | 1.230328902 | .593 | -4.41624574             |
|            | 3         | 1         | 5.952045201*              | 1.230328902 | .001 | 2.75630248              |
|            |           | 2         | 1.220503019               | 1.230328902 | .593 | -1.97523971             |
| Dunnett T3 | 1         | 2         | -4.731542183              | .715252397  | .001 | -6.91644511             |
|            |           | 3         | -5.952045201*             | 1.359255429 | .015 | -10.41560851            |
|            | 2         | 1         | 4.731542183*              | .715252397  | .001 | 2.54663925              |
|            |           | 3         | -1.220503019              | 1.477148032 | .795 | -5.68991758             |
|            | 3         | 1         | 5.952045201               | 1.359255429 | .015 | 1.48848189              |
|            |           | 2         | 1.220503019               | 1.477148032 | .795 | -3.24891154             |

#### PCR 3 month Osx

#### Descriptives

| gene  |    |            |                |             |                |             |          |           |
|-------|----|------------|----------------|-------------|----------------|-------------|----------|-----------|
|       |    |            |                |             | 95% Confidence |             |          |           |
|       | Ν  | Mean       | Std. Deviation | Std. Error  | Lower Bound    | Upper Bound | Minimum  | Maximum   |
| 1     | 6  | 1.19012845 | .729098768     | .297653326  | .42498622      | 1.95527068  | .360982  | 2.250117  |
| 2     | 6  | 5.92167063 | 1.593088489    | .650375652  | 4.24982679     | 7.59351447  | 3.020945 | 7.135428  |
| 3     | 6  | 7.14217365 | 3.248671561    | 1.326264611 | 3.73290193     | 10.55144537 | 3.617518 | 10.966262 |
| Total | 18 | 4.75132424 | 3.314183748    | .781160601  | 3.10321944     | 6.39942905  | .360982  | 10.966262 |

#### ANOVA

| gene           |                |    |             |          |        |    |  |  |  |  |  |
|----------------|----------------|----|-------------|----------|--------|----|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F        | Sig.   |    |  |  |  |  |  |
| Between Groups | 118.608        | 2  | 59.304      | 13.059   | .001   | 00 |  |  |  |  |  |
| Within Groups  | 68.117         | 15 | 4.541       |          |        |    |  |  |  |  |  |
| Total          | 186.725        | 17 |             |          |        |    |  |  |  |  |  |
|                |                |    |             | 1 martin | 111/28 |    |  |  |  |  |  |

#### Multiple Comparisons

|            | -         | -         |                           |             |      | 95% Confidence Interval |
|------------|-----------|-----------|---------------------------|-------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J)     | Std. Error  | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | -4.731542183 <sup>*</sup> | 1.230328902 | .004 | -7.92728491             |
|            |           | 3         | -5.952045201*             | 1.230328902 | .001 | -9.14778793             |
|            | 2         | 1         | 4.731542183 <sup>*</sup>  | 1.230328902 | .004 | 1.53579946              |
|            |           | 3         | -1.220503019              | 1.230328902 | .593 | -4.41624574             |
|            | 3         | 1         | 5.952045201*              | 1.230328902 | .001 | 2.75630248              |
|            |           | 2         | 1.220503019               | 1.230328902 | .593 | -1.97523971             |
| Dunnett T3 | 1         | 2         | -4.731542183*             | .715252397  | .001 | -6.91644511             |
|            |           | 3         | -5.952045201*             | 1.359255429 | .015 | -10.41560851            |
|            | 2         | 1         | 4.731542183*              | .715252397  | .001 | 2.54663925              |
|            |           | 3         | -1.220503019              | 1.477148032 | .795 | -5.68991758             |
|            | 3         | 1         | 5.952045201               | 1.359255429 | .015 | 1.48848189              |
|            |           | 2         | 1.220503019               | 1.477148032 | .795 | -3.24891154             |

#### PCR 3 month ALP

#### Descriptives

| gene  |    |            |                |            |                |             |          |          |
|-------|----|------------|----------------|------------|----------------|-------------|----------|----------|
|       |    |            |                |            | 95% Confidence |             |          |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum  | Maximum  |
| 1     | 6  | 1.09822499 | .507573678     | .207216087 | .56555908      | 1.63089089  | .566442  | 1.765406 |
| 2     | 6  | 2.75038457 | .550352636     | .224680523 | 2.17282490     | 3.32794424  | 1.876876 | 3.478182 |
| 3     | 6  | 2.10152927 | .643347818     | .262645647 | 1.42637714     | 2.77668139  | 1.255562 | 2.924791 |
| Total | 18 | 1.98337961 | .880728488     | .207589695 | 1.54540363     | 2.42135558  | .566442  | 3.478182 |

ANOVA

| gene           |                |    |             |        |         |   |  |  |  |  |  |
|----------------|----------------|----|-------------|--------|---------|---|--|--|--|--|--|
|                | Sum of Squares | df | Mean Square | F      | Sig.    |   |  |  |  |  |  |
| Between Groups | 8.315          | 2  | 4.157       | 12.799 | .001    |   |  |  |  |  |  |
| Within Groups  | 4.872          | 15 | .325        |        |         |   |  |  |  |  |  |
| Total          | 13.187         | 17 |             |        |         |   |  |  |  |  |  |
|                |                |    |             |        | 111/122 | • |  |  |  |  |  |

#### Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | -1.652159587*         | .329041618 | .000 | -2.50683540             |
|            |           | 3         | -1.003304279          | .329041618 | .021 | -1.85798009             |
|            | 2         | 1         | 1.652159587*          | .329041618 | .000 | .79748377               |
|            |           | 3         | .648855308            | .329041618 | .153 | 20582051                |
|            | 3         | 1         | 1.003304279           | .329041618 | .021 | .14862846               |
|            |           | 2         | 648855308             | .329041618 | .153 | -1.50353112             |
| Dunnett T3 | 1         | 2         | -1.652159587*         | .305646600 | .001 | -2.51778711             |
|            |           | 3         | -1.003304279*         | .334546323 | .040 | -1.95881239             |
|            | 2         | 1         | 1.652159587*          | .305646600 | .001 | .78653207               |
|            |           | 3         | .648855308            | .345635752 | .233 | 33305776                |
|            | 3         | 1         | 1.003304279*          | .334546323 | .040 | .04779617               |
|            |           | 2         | 648855308             | .345635752 | .233 | -1.63076837             |

#### PCR 3 month OCN

#### Descriptives

| gene  |    |            |                |            |                |             |         |          |
|-------|----|------------|----------------|------------|----------------|-------------|---------|----------|
|       |    |            |                |            | 95% Confidence |             |         |          |
|       | Ν  | Mean       | Std. Deviation | Std. Error | Lower Bound    | Upper Bound | Minimum | Maximum  |
| 1     | 6  | 1.09960411 | .455866259     | .186106621 | .62120181      | 1.57800641  | .366021 | 1.790050 |
| 2     | 6  | 1.48839290 | .720324281     | .294071156 | .73245893      | 2.24432687  | .743979 | 2.502436 |
| 3     | 6  | 1.03725433 | .857377877     | .350023053 | .13749143      | 1.93701723  | .135216 | 2.434007 |
| Total | 18 | 1.20841711 | .687109468     | .161953255 | .86672561      | 1.55010861  | .135216 | 2.502436 |

# AN 11/10 -

| ANOVA          |                |    |             |      |      |   |  |  |  |  |
|----------------|----------------|----|-------------|------|------|---|--|--|--|--|
| gene           |                | -  |             | -    |      |   |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F    | Sig. |   |  |  |  |  |
| Between Groups | .714           | 2  | .357        | .733 | .497 |   |  |  |  |  |
| Within Groups  | 7.302          | 15 | .487        |      |      |   |  |  |  |  |
| Total          | 8.016          | 17 |             |      |      | à |  |  |  |  |

#### Multiple Comparisons

|            |           |           |                       |            |      | 95% Confidence Interval |
|------------|-----------|-----------|-----------------------|------------|------|-------------------------|
|            | (I) Group | (J) Group | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | 388788791             | .402815154 | .609 | -1.43508917             |
|            |           | 3         | .060849779            | .402815154 | .988 | 98545060                |
|            | 2         | 1         | .388788791            | .402815154 | .609 | 65751159                |
|            |           | 3         | .449638569            | .402815154 | .519 | 59666181                |
|            | 3         | 1         | 060849779             | .402815154 | .988 | -1.10715016             |
|            |           | 2         | 449638569             | .402815154 | .519 | -1.49593895             |
| Dunnett T3 | 1         | 2         | 388788791             | .348013677 | .621 | -1.40592690             |
|            |           | 3         | .060849779            | .396121481 | .998 | -1.12407699             |
|            | 2         | 1         | .388788791            | .348013677 | .621 | 62834932                |
|            |           | 3         | .449638569            | .456896485 | .701 | 84960194                |
|            | 3         | 1         | 060849779             | .396121481 | .998 | -1.24577655             |
|            |           | 2         | 449638569             | .456896485 | .701 | -1.74887908             |

#### Descriptives

| gene  | jene |            |                |             |                |             |          |           |  |  |  |  |  |
|-------|------|------------|----------------|-------------|----------------|-------------|----------|-----------|--|--|--|--|--|
|       |      |            |                |             | 95% Confidence |             |          |           |  |  |  |  |  |
|       | Ν    | Mean       | Std. Deviation | Std. Error  | Lower Bound    | Upper Bound | Minimum  | Maximum   |  |  |  |  |  |
| 1     | 6    | 1.46709220 | 1.247223428    | .509176832  | .15821148      | 2.77597291  | .291183  | 3.160165  |  |  |  |  |  |
| 2     | 6    | 4.46809429 | 3.121935807    | 1.274524956 | 1.19182359     | 7.74436499  | 1.927414 | 10.243712 |  |  |  |  |  |
| 3     | 6    | 9.66674382 | 4.631998646    | 1.891005529 | 4.80575936     | 14.52772828 | 3.286761 | 15.852810 |  |  |  |  |  |
| Total | 18   | 5.20064344 | 4.667281732    | 1.100088854 | 2.87965883     | 7.52162804  | .291183  | 15.852810 |  |  |  |  |  |

ANOVA

| ANOVA          |                |    |             |       |      |   |  |  |  |  |  |  |
|----------------|----------------|----|-------------|-------|------|---|--|--|--|--|--|--|
| gene           |                |    |             |       |      |   |  |  |  |  |  |  |
|                | Sum of Squares | df | Mean Square | F     | Sig. |   |  |  |  |  |  |  |
| Between Groups | 206.533        | 2  | 103.266     | 9.457 | .002 |   |  |  |  |  |  |  |
| Within Groups  | 163.787        | 15 | 10.919      |       |      | 0 |  |  |  |  |  |  |
| Total          | 370.320        | 17 |             |       |      | à |  |  |  |  |  |  |
| Second Second  |                |    |             |       |      |   |  |  |  |  |  |  |

#### Multiple Comparisons

|            | -         |           |                           | 1           |      |                         |
|------------|-----------|-----------|---------------------------|-------------|------|-------------------------|
|            |           |           |                           |             |      | 95% Confidence Interval |
|            | (I) Group | (J) Group | Mean Difference (I-J)     | Std. Error  | Sig. | Lower Bound             |
| Tukey HSD  | 1         | 2         | -3.001002091              | 1.907804466 | .287 | -7.95646744             |
|            |           | 3         | -8.199651621*             | 1.907804466 | .002 | -13.15511697            |
|            | 2         | 1         | 3.001002091               | 1.907804466 | .287 | -1.95446326             |
|            |           | 3         | -5.198649530 <sup>*</sup> | 1.907804466 | .039 | -10.15411488            |
|            | 3         | 1         | 8.199651621 <sup>*</sup>  | 1.907804466 | .002 | 3.24418627              |
|            |           | 2         | 5.198649530 <sup>*</sup>  | 1.907804466 | .039 | .24318418               |
| Dunnett T3 | 1         | 2         | -3.001002091              | 1.372470368 | .172 | -7.26955915             |
|            |           | 3         | -8.199651621*             | 1.958357208 | .017 | -14.54729339            |
|            | 2         | 1         | 3.001002091               | 1.372470368 | .172 | -1.26755497             |
|            |           | 3         | -5.198649530              | 2.280420087 | .131 | -11.81320273            |
|            | 3         | 1         | 8.199651621*              | 1.958357208 | .017 | 1.85200985              |
|            |           | 2         | 5.198649530               | 2.280420087 | .131 | -1.41590367             |

# Independent T-test of the gene expression between 1 and 3 month Control

| Group Statistics |                                             |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Month            | Ν                                           | Mean                                                                                                                                                                                                                                                                                                                                                                            | Std. Deviation                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Std. Error Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| 1                | 6                                           | 1.05234362                                                                                                                                                                                                                                                                                                                                                                      | .358076313                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .146184043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                | 6                                           | .22097649                                                                                                                                                                                                                                                                                                                                                                       | .135865821                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .055466989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 1                | 6                                           | 1.02897023                                                                                                                                                                                                                                                                                                                                                                      | .256934081                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .104892899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                | 6                                           | .29811074                                                                                                                                                                                                                                                                                                                                                                       | .182766693                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .074614190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 1                | 6                                           | 1.20565581                                                                                                                                                                                                                                                                                                                                                                      | .880840934                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .359601806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                | 6                                           | .55871081                                                                                                                                                                                                                                                                                                                                                                       | .258222955                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .105419080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 1                | 6                                           | 1.14084729                                                                                                                                                                                                                                                                                                                                                                      | .582148643                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .237661189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                | 6                                           | .67610421                                                                                                                                                                                                                                                                                                                                                                       | .280294603                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .114429792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 1                | 6                                           | 1.50699491                                                                                                                                                                                                                                                                                                                                                                      | 1.387419118                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .566411483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
| 3                | 6                                           | 1.86558256                                                                                                                                                                                                                                                                                                                                                                      | 1.585993216                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .647479019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                  | Month 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 | Month         N           1         6           3         6           1         6           3         6           1         6           3         6           1         6           3         6           1         6           3         6           1         6           3         6           1         6           3         6           1         6           3         6 | Group Statistic           Month         N         Mean           1         6         1.05234362           3         6         .22097649           1         6         1.02897023           3         6         .29811074           1         6         1.20565581           3         6         .55871081           1         6         1.14084729           3         6         .67610421           1         6         1.50699491           3         6         1.86558256 | Group Statistics           Month         N         Mean         Std. Deviation           1         6         1.05234362         .358076313           3         6         .22097649         .135865821           1         6         1.02897023         .256934081           3         6         .29811074         .182766693           1         6         1.20565581         .880840934           3         6         .55871081         .258222955           1         6         1.14084729         .582148643           3         6         .67610421         .280294603           1         6         1.50699491         1.387419118           3         6         1.86558256         1.585993216 |  |  |  |  |  |  |  |

Independent Samples Test

|                                                           | Levene<br>Equality o | 's Test for<br>of Variances | t-test for Equality of Means |             |                    |                          |                          |                          |                            |
|-----------------------------------------------------------|----------------------|-----------------------------|------------------------------|-------------|--------------------|--------------------------|--------------------------|--------------------------|----------------------------|
| Runx2                                                     | Runx2                |                             |                              |             |                    |                          |                          | 95% Confide<br>of the Di | ence Interval<br>fference  |
|                                                           | F                    | Sig.                        | t                            | df          | Sig.<br>(2-tailed) | Mean<br>Difference       | Std. Error<br>Difference | Lower                    | Upper                      |
| Equal variances assumed<br>Equal variances not<br>assumed | 5.905                | .035                        | 5.317<br>5.317               | 10<br>6.410 | .000               | .831367127<br>.831367127 | .156353322               | .482990216<br>.454644611 | 1.179744038<br>1.208089644 |

|                                                           | Levene's<br>Equality of | Test for<br>Variances | t-test for Equality of Means |             |                    |                          |                          |                          |                            |
|-----------------------------------------------------------|-------------------------|-----------------------|------------------------------|-------------|--------------------|--------------------------|--------------------------|--------------------------|----------------------------|
| Osx                                                       |                         |                       |                              |             |                    |                          |                          | 95% Co<br>Interval of th | nfidence<br>e Difference   |
|                                                           | F                       | Sig.                  | t                            | df          | Sig.<br>(2-tailed) | Mean<br>Difference       | Std. Error<br>Difference | Lower                    | Upper                      |
| Equal variances assumed<br>Equal variances not<br>assumed | .248                    | .629                  | 5.678<br>5.678               | 10<br>9.029 | .000               | .730859488<br>.730859488 | .128723726<br>.128723726 | .444045153<br>.439806482 | 1.017673823<br>1.021912494 |

#### Independent Samples Test

|                             | Levene's<br>Equality of \ | Test for<br>/ariances | t-test for Equality of Means                           |    |                    |                    |                          |                           |                          |  |
|-----------------------------|---------------------------|-----------------------|--------------------------------------------------------|----|--------------------|--------------------|--------------------------|---------------------------|--------------------------|--|
| ALP                         |                           |                       |                                                        |    |                    |                    |                          | 95% Cor<br>Interval of th | nfidence<br>e Difference |  |
|                             | F                         | Sig.                  | t                                                      | df | Sig.<br>(2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                     | Upper                    |  |
| Equal variances assumed     | 2.453                     | .148                  | 1.726                                                  | 10 | .115               | .646945002         | .374735428               | 188017565                 | 1.481907568              |  |
| Equal variances not assumed |                           |                       | 1.726 5.853 .136 .646945002 .374735428275607117 1.5694 |    |                    |                    |                          |                           |                          |  |
|                             |                           |                       |                                                        |    |                    |                    |                          |                           |                          |  |

#### Independent Samples Test

|                                                        | Levene's<br>Equality of V | Test for<br>/ariances | t-test for Equality of Means |             |                    |                          |                          |                           |                            |
|--------------------------------------------------------|---------------------------|-----------------------|------------------------------|-------------|--------------------|--------------------------|--------------------------|---------------------------|----------------------------|
| OCN                                                    |                           |                       |                              |             |                    |                          |                          | 95% Coi<br>Interval of th | nfidence<br>e Difference   |
|                                                        | F                         | Sig.                  | t                            | df          | Sig.<br>(2-tailed) | Mean<br>Difference       | Std. Error<br>Difference | Lower                     | Upper                      |
| Equal variances assumed<br>Equal variances not assumed | 12.467                    | .005                  | 1.762<br>1.762               | 10<br>7.200 | .109<br>.120       | .464743081<br>.464743081 | .263774559<br>.263774559 | 122983262<br>155489157    | 1.052469424<br>1.084975319 |

#### Chulalongkorn University

|                             | Levene's<br>Equality of V | Test for<br>/ariances |     |       |                    |                    |                          |                           |                          |
|-----------------------------|---------------------------|-----------------------|-----|-------|--------------------|--------------------|--------------------------|---------------------------|--------------------------|
| OPN                         |                           |                       |     |       |                    |                    |                          | 95% Coi<br>Interval of th | nfidence<br>e Difference |
|                             | F                         | Sig.                  | t   | df    | Sig.<br>(2-tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                     | Upper                    |
| Equal variances assumed     | .398                      | .542                  | 417 | 10    | .686               | 358587647          | .860262198               | -2.275371273              | 1.558195978              |
| Equal variances not assumed |                           |                       | 417 | 9.826 | .686               | 358587647          | .860262198               | -2.279975288              | 1.562799993              |

## **Bio-Oss**

|       |       |   | Group Statistic | s              |                 |
|-------|-------|---|-----------------|----------------|-----------------|
|       | Month | N | Mean            | Std. Deviation | Std. Error Mean |
| Runx2 | 1     | 6 | 1.63110333      | 1.043375158    | .425956125      |
|       | 3     | 6 | 1.90554230      | .685289707     | .279768351      |
| Osx   | 1     | 6 | 1.10437864      | .515313638     | .210375912      |
|       | 3     | 6 | 1.53085494      | .411841106     | .168133428      |
| ALP   | 1     | 6 | 1.11346500      | .503486996     | .205547706      |
|       | 3     | 6 | 2.11105870      | .422423369     | .172453618      |
| OCN   | 1     | 6 | 1.24705678      | 1.059494384    | .432536771      |
|       | 3     | 6 | 1.46113426      | .707132158     | .288685495      |
| OPN   | 1     | 6 | 1.40726033      | .973640439     | .397487045      |
|       | 3     | 6 | 8.40545722      | 5.873040307    | 2.397658665     |
|       |       |   |                 |                |                 |

#### Independent Samples Test

|                                                           | Levene<br>Equality o | 's Test for<br>of Variances | t-test for Equality of Means |             |                                             |                        |                          |                              |                          |
|-----------------------------------------------------------|----------------------|-----------------------------|------------------------------|-------------|---------------------------------------------|------------------------|--------------------------|------------------------------|--------------------------|
| Runx2                                                     |                      |                             |                              |             | 95% Confidence Interva<br>of the Difference |                        |                          |                              |                          |
|                                                           | F                    | Sig.                        | t                            | df          | Sig.<br>(2-tailed)                          | Mean<br>Difference     | Std. Error<br>Difference | Lower                        | Upper                    |
| Equal variances assumed<br>Equal variances not<br>assumed | .996                 | .342                        | 539<br>539                   | 10<br>8.637 | .602                                        | 274438974<br>274438974 | .509616474<br>.509616474 | -1.409935239<br>-1.434698921 | .861057291<br>.885820973 |

|                                                           | Levene's<br>Equality of | Test for<br>Variances | t-test for Equality of Means |             |                    |                        |                          |                              |                          |
|-----------------------------------------------------------|-------------------------|-----------------------|------------------------------|-------------|--------------------|------------------------|--------------------------|------------------------------|--------------------------|
| Osx                                                       |                         |                       |                              |             |                    |                        |                          | 95% Co<br>Interval of th     | nfidence<br>e Difference |
|                                                           | F                       | Sig.                  | t                            | df          | Sig.<br>(2-tailed) | Mean<br>Difference     | Std. Error<br>Difference | Lower                        | Upper                    |
| Equal variances assumed<br>Equal variances not<br>assumed | 1.764                   | .214                  | -1.584<br>-1.584             | 10<br>9.537 | .144<br>.146       | 426476300<br>426476300 | .269308139<br>.269308139 | -1.026532228<br>-1.030508947 | .173579627<br>.177556347 |

Independent Samples Test

|                                                        | Levene's<br>Equality of <sup>v</sup> | Test for<br>/ariances |                  |             |                    | is                     |                          |                              |                          |
|--------------------------------------------------------|--------------------------------------|-----------------------|------------------|-------------|--------------------|------------------------|--------------------------|------------------------------|--------------------------|
| ALP                                                    |                                      |                       |                  |             |                    |                        |                          | 95% Cor<br>Interval of th    | nfidence<br>e Difference |
|                                                        | F                                    | Sig.                  | t                | df          | Sig.<br>(2-tailed) | Mean<br>Difference     | Std. Error<br>Difference | Lower                        | Upper                    |
| Equal variances assumed<br>Equal variances not assumed | .333                                 | .576                  | -3.718<br>-3.718 | 10<br>9.707 | .004               | 997593694<br>997593694 | .268309727<br>.268309727 | -1.595425022<br>-1.597880974 | 399762366<br>397306414   |

# Independent Samples Test

|                                                        | Levene's<br>Equality of V | Test for<br>/ariances |            | t-test for Equality of Means |                    |                        |                          |                              |                          |  |  |  |
|--------------------------------------------------------|---------------------------|-----------------------|------------|------------------------------|--------------------|------------------------|--------------------------|------------------------------|--------------------------|--|--|--|
| OCN                                                    |                           |                       |            |                              |                    |                        |                          | 95% Coi<br>Interval of th    | nfidence<br>e Difference |  |  |  |
|                                                        | F                         | Sig.                  | t          | df                           | Sig.<br>(2-tailed) | Mean<br>Difference     | Std. Error<br>Difference | Lower                        | Upper                    |  |  |  |
| Equal variances assumed<br>Equal variances not assumed | .251                      | .627                  | 412<br>412 | 10<br>8.717                  | .689<br>.691       | 214077477<br>214077477 | .520026320<br>.520026320 | -1.372768324<br>-1.396306577 | .944613370<br>.968151623 |  |  |  |

#### **เ**าลงกรณมหาวทยาลย

|                                                        | Levene's<br>Equality of | s Test for<br>Variances |                  |             |                    | t-test for Eq                | uality of Mea              | าร                               |                           |
|--------------------------------------------------------|-------------------------|-------------------------|------------------|-------------|--------------------|------------------------------|----------------------------|----------------------------------|---------------------------|
| OPN                                                    |                         |                         |                  |             |                    |                              |                            | 95% Confidence<br>the Diffe      | ce Interval of<br>rence   |
|                                                        | F                       | Sig.                    | t                | df          | Sig.<br>(2-tailed) | Mean<br>Difference           | Std. Error<br>Difference   | Lower                            | Upper                     |
| Equal variances assumed<br>Equal variances not assumed | 7.545                   | .021                    | -2.879<br>-2.879 | 10<br>5.275 | .016               | -6.998196891<br>-6.998196891 | 2.430383308<br>2.430383308 | -1.241342837E1<br>-1.314911539E1 | -1.582965417<br>847278388 |

## DFDBA

|       | Group Statistics |   |              |                |                 |  |  |  |  |  |
|-------|------------------|---|--------------|----------------|-----------------|--|--|--|--|--|
|       | Month            | N | Mean         | Std. Deviation | Std. Error Mean |  |  |  |  |  |
| Runx2 | 1                | 6 | 1.38142380   | 1.470831061    | .600464266      |  |  |  |  |  |
|       | 3                | 6 | 2.50920193   | 1.314263838    | .536545965      |  |  |  |  |  |
| Osx   | 1                | 6 | 1.08714027   | .405060638     | .165365313      |  |  |  |  |  |
|       | 3                | 6 | 2.19065639   | .996436584     | .406793532      |  |  |  |  |  |
| ALP   | 1                | 6 | 1.01884433   | .243112779     | .099250376      |  |  |  |  |  |
|       | 3                | 6 | 1.34081130   | .410466815     | .167572376      |  |  |  |  |  |
| OCN   | 1                | 5 | .79971696    | .555679622     | .248507482      |  |  |  |  |  |
|       | 3                | 6 | 1.64663541   | 1.357787553    | .554314447      |  |  |  |  |  |
| OPN   | 1                | 5 | 1.16749313   | 1.903235149    | .851152634      |  |  |  |  |  |
|       | 3                | 6 | 1.06918178E2 | 5.123181736E1  | 2.091530186E1   |  |  |  |  |  |
|       |                  |   | 1 day        |                |                 |  |  |  |  |  |

#### Independent Samples Test

|                                                           | Levene<br>Equality o | 's Test for<br>of Variances |                  | t-test for Equality of Means |                    |                                              |                          |                              |                          |  |  |  |
|-----------------------------------------------------------|----------------------|-----------------------------|------------------|------------------------------|--------------------|----------------------------------------------|--------------------------|------------------------------|--------------------------|--|--|--|
| Runx2                                                     |                      |                             |                  |                              |                    | 95% Confidence Interval<br>of the Difference |                          |                              |                          |  |  |  |
|                                                           | F                    | Sig.                        | t                | df                           | Sig.<br>(2-tailed) | Mean<br>Difference                           | Std. Error<br>Difference | Lower                        | Upper                    |  |  |  |
| Equal variances assumed<br>Equal variances not<br>assumed | .043                 | .840                        | -1.401<br>-1.401 | 10<br>9.876                  | .192               | -1.127778130<br>-1.127778130                 | .805257044<br>.805257044 | -2.922002636<br>-2.925062343 | .666446377<br>.669506084 |  |  |  |

|                                                           | Levene's<br>Equality of | Test for<br>Variances |                  | t-test for Equality of Means |                                              |                              |                          |                              |                        |  |  |
|-----------------------------------------------------------|-------------------------|-----------------------|------------------|------------------------------|----------------------------------------------|------------------------------|--------------------------|------------------------------|------------------------|--|--|
| Osx                                                       |                         |                       |                  |                              | 95% Confidence<br>Interval of the Difference |                              |                          |                              |                        |  |  |
|                                                           | F                       | Sig.                  | t                | df                           | Sig.<br>(2-tailed)                           | Mean<br>Difference           | Std. Error<br>Difference | Lower                        | Upper                  |  |  |
| Equal variances assumed<br>Equal variances not<br>assumed | 10.330                  | .009                  | -2.513<br>-2.513 | 10<br>6.609                  | .031<br>.042                                 | -1.103516118<br>-1.103516118 | .439120330<br>.439120330 | -2.081937186<br>-2.154469370 | 125095050<br>052562866 |  |  |

#### Independent Samples Test

|                                                        | Levene's<br>Equality of <sup>v</sup> | Test for<br>/ariances |                  | t-test for Equality of Means |                    |                        |                          |                           |                          |  |  |
|--------------------------------------------------------|--------------------------------------|-----------------------|------------------|------------------------------|--------------------|------------------------|--------------------------|---------------------------|--------------------------|--|--|
| ALP                                                    |                                      |                       |                  |                              |                    |                        |                          | 95% Coi<br>Interval of th | nfidence<br>e Difference |  |  |
|                                                        | F                                    | Sig.                  | t                | df                           | Sig.<br>(2-tailed) | Mean<br>Difference     | Std. Error<br>Difference | Lower                     | Upper                    |  |  |
| Equal variances assumed<br>Equal variances not assumed | 3.166                                | .106                  | -1.653<br>-1.653 | 10<br>8.124                  | .129<br>.136       | 321966974<br>321966974 | .194759180<br>.194759180 | 755917470<br>769895744    | .111983522<br>.125961797 |  |  |

# Independent Samples Test

|                                                        | Levene's<br>Equality of \ | Test for<br>/ariances |                  | t-test for Equality of Means |                    |                        |                          |                              |                          |  |  |  |
|--------------------------------------------------------|---------------------------|-----------------------|------------------|------------------------------|--------------------|------------------------|--------------------------|------------------------------|--------------------------|--|--|--|
| OCN                                                    |                           |                       |                  |                              |                    |                        |                          | 95% Cor<br>Interval of th    | nfidence<br>e Difference |  |  |  |
|                                                        | F                         | Sig.                  | t                | df                           | Sig.<br>(2-tailed) | Mean<br>Difference     | Std. Error<br>Difference | Lower                        | Upper                    |  |  |  |
| Equal variances assumed<br>Equal variances not assumed | 3.667                     | .088                  | -1.298<br>-1.394 | 9<br>6.865                   | .227<br>.207       | 846918449<br>846918449 | .652583470<br>.607470555 | -2.323164821<br>-2.289096059 | .629327923<br>.595259161 |  |  |  |

#### หาลงกรณมหาวทยาลย

|                             | Levene's<br>Equa<br>Varia | s Test for<br>lity of<br>Inces |        |       |                        | IS                 |                          |                          |                           |
|-----------------------------|---------------------------|--------------------------------|--------|-------|------------------------|--------------------|--------------------------|--------------------------|---------------------------|
| OPN                         |                           |                                |        |       |                        |                    |                          | 95% Confider<br>the Diff | nce Interval of<br>erence |
|                             | F                         | Sig.                           | t      | df    | Sig.<br>(2-<br>tailed) | Mean<br>Difference | Std. Error<br>Difference | Lower                    | Upper                     |
| Equal variances assumed     | 8.342                     | .018                           | -4.571 | 9     | .001                   | -1.057506845E2     | 2.313549721E1            | -1.580868152E2           | -5.341455375E1            |
| Equal variances not assumed |                           |                                | -5.052 | 5.017 | .004                   | -1.057506845E2     | 2.093261361E1            | -1.595063064E2           | -5.199506252E1            |

Control\_Month 1\_Mouse 1



| VOI               | x      | У      | z      | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|--------|---------------------------|
| Position [p]      | 360    | 500    | 15     | of TV (Apparent) - 6.6958 |
| Dimension [p]     | 164    | 160    | 100    | of BV (Material) 658.4879 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                           |

| Direct (No            | model)           | TRI(Plate mdel)         | Anisotropy                  |  |  |
|-----------------------|------------------|-------------------------|-----------------------------|--|--|
| TV [mm <sup>3</sup> ] | 15.7536          | TV [mm <sup>3</sup> ] - | H1  [mm] -                  |  |  |
| BV [mm <sup>3</sup> ] | 0.2149           | BV [mm <sup>3</sup> ] - | H2  [mm] -<br>   H3  [mm] - |  |  |
| BV/TV [1]             | 0.0136           | BV/TV [1] -             |                             |  |  |
| Conn.D. [1/mm         | <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                      |  |  |
| SMI [1]               | -                | BS/TV [1/mm] -          |                             |  |  |
| Tb.N* [1/mm]          | -                | Tb.N [1/mm] -           | Segmentation: 0.8/1/220     |  |  |
| Tb.Th* [mm]           | -                | Tb.Th [mm] -            |                             |  |  |
| Tb.Sp* [1/mm]         | -                | Tb.Sp [1/mm] -          |                             |  |  |



Control\_Month1\_Mouse 2



| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm]   |
|-------------------|--------|--------|--------|----------------------------|
| Position [p]      | 362    | 512    | 10     | of TV (Apparent) - 11.6720 |
| Dimension [p]     | 164    | 160    | 105    | of BV (Material) 646.9069  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                            |

| Direct (No            | model)             | TRI(Plate mdel)         | Anisotropy              |  |  |
|-----------------------|--------------------|-------------------------|-------------------------|--|--|
| TV [mm <sup>3</sup> ] | 16.5413            | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |  |
| BV [mm <sup>3</sup> ] | 0.1530             | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |  |
| BV/TV [1]             | 0.0092             | BV/TV [1] -             | to of front             |  |  |
| Conn.D. [1/mm         | າ <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                  |  |  |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                         |  |  |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |  |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                         |  |  |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                         |  |  |



Control\_Month1\_Mouse 5 (left)



| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|--------|---------------------------|
| Position [p]      | 362    | 512    | 10     | of TV (Apparent) 0.9947   |
| Dimension [p]     | 164    | 160    | 105    | of BV (Material) 633.9688 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                               |  |
|--------------------------------|---------|-------------------------|------------------------------------------|--|
| TV [mm <sup>3</sup> ]          | 15.2810 | TV [mm <sup>3</sup> ] - | H1  [mm] -<br> H2  [mm] -<br> H3  [mm] - |  |
| BV [mm <sup>3</sup> ]          | 0.3079  | BV [mm <sup>3</sup> ] - |                                          |  |
| BV/TV [1]                      | 0.0201  | BV/TV [1] -             |                                          |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                                   |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                                          |  |
| Tb.N* [1/mm] -                 |         | Tb.N [1/mm] -           | Segmentation: 0.8/1/220                  |  |
| Tb.Th* [mm] -                  |         | Tb.Th [mm] -            |                                          |  |
| Tb.Sp* [1/mm] -                |         | Tb.Sp [1/mm] -          |                                          |  |



Control\_Month1\_Mouse 5 (right)



| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|--------|---------------------------|
| Position [p]      | 450    | 218    | 2      | of TV (Apparent) -21.8958 |
| Dimension [p]     | 164    | 160    | 114    | of BV (Material) 655.7736 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                               |  |
|--------------------------------|---------|-------------------------|------------------------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.5951 | TV [mm <sup>3</sup> ] - | H1  [mm] -<br> H2  [mm] -<br> H3  [mm] - |  |
| BV [mm <sup>3</sup> ]          | 0.3548  | BV [mm <sup>3</sup> ] - |                                          |  |
| BV/TV [1]                      | 0.0198  | BV/TV [1] -             | the state of the second                  |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                                   |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                                          |  |
| Tb.N* [1/mm] -                 |         | Tb.N [1/mm] -           | Segmentation: 0.8/1/220                  |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                                          |  |
| Tb.Sp* [1/mm] -                |         | Tb.Sp [1/mm] -          |                                          |  |


Control\_Month1\_Mouse 6



| VOI               | x      | У      | z         | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|-----------|---------------------------|
| Position [p]      | 416    | 512    | 6 8 9 9 6 | of TV (Apparent) 10.1329  |
| Dimension [p]     | 164    | 160    | 109       | of BV (Material) 655.8641 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200    |                           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |  |
|--------------------------------|---------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.1714 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ]          | 0.2854  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]                      | 0.0166  | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm]                  | -       | Tb.Sp [1/mm] -          |                         |  |



Control\_Month1\_Mouse 7



| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm]   |
|-------------------|--------|--------|--------|----------------------------|
| Position [p]      | 382    | 624    | 20     | of TV (Apparent) - 16.1958 |
| Dimension [p]     | 164    | 160    | 96     | of BV (Material) 641.6593  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |
|--------------------------------|---------|-------------------------|-------------------------|
| TV [mm <sup>3</sup> ]          | 15.1234 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |
| BV [mm <sup>3</sup> ]          | 0.1695  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |
| BV/TV [1]                      | 0.0112  | BV/TV [1] -             |                         |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |
| Tb.Sp* [1/mm]                  | -       | Tb.Sp [1/mm] -          |                         |



Bio-Oss\_Month1\_Mouse 1



| VOI               | x      | У      | z        | Mean/Density [mg HA/ccm]   |
|-------------------|--------|--------|----------|----------------------------|
| Position [p]      | 452    | 360    | 13 ยาลัย | of TV (Apparent) 180.4098  |
| Dimension [p]     | 164    | 160    | 103      | of BV (Material) 1119.3755 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200   |                            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |
|--------------------------------|---------|-------------------------|-------------------------|
| TV [mm <sup>3</sup> ]          | 16.2262 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |
| BV [mm <sup>3</sup> ]          | 2.6309  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |
| BV/TV [1]                      | 0.1626  | BV/TV [1] -             |                         |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |
| Tb.N* [1/mm                    | ı] -    | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |
| Tb.Sp* [1/mn                   | n] -    | Tb.Sp [1/mm] -          |                         |



Bio-Oss\_Month1\_Mouse 3



|                   | 48     |        |        |                            |
|-------------------|--------|--------|--------|----------------------------|
| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm]   |
| Position [p]      | 378    | 502    | 8      | of TV (Apparent) 90.6570   |
| Dimension [p]     | 164    | 160    | 107    | of BV (Material) 1077.7563 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |
|--------------------------------|---------|-------------------------|-------------------------|
| TV [mm <sup>3</sup> ]          | 16.8563 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |
| BV [mm <sup>3</sup> ]          | 1.7870  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |
| BV/TV [1]                      | 0.1060  | BV/TV [1] -             |                         |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |
| SMI [1]                        | -       | BS/TV [1/mm] -          | [-]                     |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                         |



Bio-oss\_Month1\_Mouse 6



| VOI               | ×      | У      | z      | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|--------|---------------------------|
| Position [p]      | 350    | 300    | 26     | of TV (Apparent) 90.2951  |
| Dimension [p]     | 164    | 160    | 89     | of BV (Material) 998.6798 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |  |
|--------------------------------|---------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ]          | 14.0207 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ]          | 1.6534  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]                      | 0.1179  | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm]                  | ] -     | Tb.Sp [1/mm] -          |                         |  |



Bio-oss\_Month1\_Mouse 8



|                   |        |        | 1651   | -                |            |
|-------------------|--------|--------|--------|------------------|------------|
| VOI               | x      | у      | z      | Mean/Density [r  | ng HA/ccm] |
| Position [p]      | 318    | 418    | 12 200 | of TV (Apparent) | 91.9237    |
| Dimension [p]     | 164    | 160    | 104    | of BV (Material) | 1079.3849  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                  |            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |
|--------------------------------|---------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ]          | 16.3837 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ]          | 1.6195  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]                      | 0.0988  | BV/TV [1] -             |                           |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm]                  | -       | Tb.Sp [1/mm] -          |                           |

#### Bio-Oss\_Month1\_Mouse 9



| VOI               | x      | У      | Z      | Mean/Density [m  | g HA/ccm] |
|-------------------|--------|--------|--------|------------------|-----------|
| Position [p]      | 370    | 380    | 11     | of TV (Apparent) | 148.0191  |
| Dimension [p]     | 164    | 160    | 101    | of BV (Material) | 1136.7471 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                  |           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy               |  |
|--------------------------------|---------|-------------------------|--------------------------|--|
| TV [mm <sup>3</sup> ]          | 15.9111 | TV [mm <sup>3</sup> ] - | H1  [mm] -               |  |
| BV [mm <sup>3</sup> ]          | 2.3346  | BV [mm <sup>3</sup> ] - | H2  [mm] -               |  |
| BV/TV [1]                      | 0.1467  | BV/TV [1] -             |                          |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                   |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                          |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation : 0.8/1/220 |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                          |  |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                          |  |



DFDBA\_Month1\_Mouse 2

Element size [mm]

0.0200

| , <u>1mm</u>                  |            |            |           | y, x                                 |                     |
|-------------------------------|------------|------------|-----------|--------------------------------------|---------------------|
|                               |            |            | B         |                                      |                     |
| VOI                           | x          | y y        | an Z      | Mean/Density [n                      | ng HA/ccm]          |
| Position [p]<br>Dimension [p] | 394<br>164 | 354<br>160 | 10<br>105 | of TV (Apparent)<br>of BV (Material) | -0.3624<br>702.5500 |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |
|--------------------------------|---------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ]          | 16.5413 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ]          | 0.6586  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]                      | 0.0398  | BV/TV [1] -             |                           |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm]                  | -       | Tb.Sp [1/mm] -          |                           |

0.0200

0.0200



**µСТ 35** 

#### DFDBA\_Month1\_Mouse 3



| VOI               | x      | у      | อิทธิกลัย | Mean/Density [m  | ig HA/ccm] |  |
|-------------------|--------|--------|-----------|------------------|------------|--|
| Position [p]      | 422    | 324    | 15        | of TV (Apparent) | 23.6139    |  |
| Dimension [p]     | 164    | 160    | 101       | of BV (Material) | 757.7407   |  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200    |                  |            |  |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                  |  |
|--------------------------------|---------|-------------------------|-----------------------------|--|
| TV [mm <sup>3</sup> ]          | 15.9111 | TV [mm <sup>3</sup> ] - | H1  [mm] -                  |  |
| BV [mm <sup>3</sup> ]          | 0.5122  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br>   H3  [mm] - |  |
| BV/TV [1]                      | 0.0322  | BV/TV [1] -             |                             |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                      |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                             |  |
| Tb.N* [1/mm]                   | ] -     | Tb.N [1/mm] -           | Segmentation: 0.8/1/220     |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                             |  |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                             |  |



| VOI               | x      | У      | z      | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|--------|---------------------------|
| Position [p]      | 410    | 304    | 18     | of TV (Apparent) -3.5291  |
| Dimension [p]     | 164    | 160    | 98     | of BV (Material) 697.3928 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 | I Y                       |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |  |
|--------------------------------|---------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ]          | 15.4385 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ]          | 0.4061  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]                      | 0.0263  | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                         |  |



#### DFDBA\_Month1\_Mouse 8



| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |
|--------------------------------|---------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ]          | 16.2262 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ]          | 0.5688  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]                      | 0.0351  | BV/TV [1] -             |                           |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm]                  | ] -     | Tb.Sp [1/mm] -          |                           |



SCANCO MEI



| VOI               | ×      | у      | วิทศักลัย | Mean/Density [m  | g HA/ccm] |
|-------------------|--------|--------|-----------|------------------|-----------|
| Position [p]      | 288    | 310    | 21        | of TV (Apparent) | 10.9472   |
| Dimension [p]     | 164    | 160    | 95        | of BV (Material) | 749.7788  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200    |                  |           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |  |
|--------------------------------|---------|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ]          | 14.9659 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ]          | 0.3556  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1]                      | 0.0238  | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm²] -              | DA [1]                    |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm                    | ] -     | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm                   | ı] -    | Tb.Sp [1/mm] -          |                           |  |



Control\_Month3\_Mouse 1

| 1mm        | 1   |     |   | Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>Z<br>X |
|------------|-----|-----|---|--------------------------------------|
| VOI        | x   | у   | z | Mean/Density [mg HA/ccm]             |
| sition [p] | 356 | 513 | 2 | of TV (Apparent) -43.0673            |

|                   | างพาสงา | 1 3 FR Y N | างทยาละ |                  | -        |
|-------------------|---------|------------|---------|------------------|----------|
| Position [p]      | 356     | 513        | 2 TERS  | of TV (Apparent) | -43.0673 |
| Dimension [p]     | 164     | 160        | 95      | of BV (Material) | 662.2880 |
| Element size [mm] | 0.0200  | 0.0200     | 0.0200  |                  |          |
|                   |         |            |         |                  |          |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |  |
|--------------------------------|---------|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.7988 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ]          | 0.1705  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1] 0.0096               |         | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm] -                  |         | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm] -                |         | Tb.Sp [1/mm] -          |                           |  |



Control\_Month3\_Mouse 2

| <u>⊢ 1mm</u> | <br>y x |
|--------------|---------|

| VOI               | x      | у      | Z      | Mean/Density [m  | ig HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 450    | 579    | 2 TERS | of TV (Apparent) | -30.4911   |
| Dimension [p]     | 164    | 160    | 113    | of BV (Material) | 668.4404   |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                  |            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |  |
|--------------------------------|---------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.7988 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ]          | 0.1872  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1] 0.0105               |         | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm                    | i] -    | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm] -                  |         | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm] -                |         | Tb.Sp [1/mm] -          |                         |  |



Control\_Month3\_Mouse 5 (Left)

| 1mi                           | n          |            |           |                                                       |
|-------------------------------|------------|------------|-----------|-------------------------------------------------------|
| VOI                           | x          | у          | an z na s | Mean/Density [mg HA/ccm]                              |
| Position [p]<br>Dimension [p] | 371<br>164 | 295<br>160 | 2<br>113  | of TV (Apparent) -3.4386<br>of BV (Material) 699.3834 |
|                               | 0.0200     | 0.0200     | 0.0200    |                                                       |

| Direct (No model)                 |     | TRI(Plate mdel)         | Anisotropy                |  |
|-----------------------------------|-----|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ] 17.8016     |     | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| <b>BV [mm<sup>3</sup>]</b> 0.4449 |     | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1] 0.0250                  |     | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] -    |     | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]                           | -   | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm]                      | ] - | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm] -                     |     | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm] -                   |     | Tb.Sp [1/mm] -          |                           |  |



µCT 35 SCANCO MEDIC

Control\_Month3\_Mouse 5 (Right)

| 1mm | _ |  |         | y x |
|-----|---|--|---------|-----|
|     |   |  | Maan/Da |     |

| VOI               | x      | у      | Z       | Mean/Density [mg HA/ccm]  |
|-------------------|--------|--------|---------|---------------------------|
| Position [p]      | 415    | 499    | 11 WERS | of TV (Apparent) -1.1767  |
| Dimension [p]     | 164    | 160    | 99      | of BV (Material) 693.1404 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200  |                           |

| Direct (No model)                  |        | TRI(Plate mdel)         | Anisotropy                |  |
|------------------------------------|--------|-------------------------|---------------------------|--|
| <b>TV [mm<sup>3</sup>]</b> 15.5961 |        | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ]              | 0.3474 | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1] 0.0223                   |        | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] -     |        | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]                            | -      | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm]                       | -      | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm] -                      |        | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm] -                    |        | Tb.Sp [1/mm] -          |                           |  |

Control\_Month3\_Mouse 6

|     | e<br>e   |     |
|-----|----------|-----|
| 1mm | <u> </u> | y x |

|                   | And I  |        |           |                           |
|-------------------|--------|--------|-----------|---------------------------|
| VOI               | x      | у      | อิทธิกลัย | Mean/Density [mg HA/ccm]  |
| Position [p]      | 469    | 591    | 2 VERS    | of TV (Apparent) 9.2281   |
| Dimension [p]     | 164    | 160    | 108       | of BV (Material) 706.1691 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200    |                           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |  |
|--------------------------------|---------|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.0139 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ]          | 0.3713  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1]                      | 0.0218  | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                           |  |



Control\_Month3\_Mouse 7



| VOI               | x      | у      | อิท Zhất | Mean/Density [m  | g HA/ccm] |
|-------------------|--------|--------|----------|------------------|-----------|
| Position [p]      | 412    | 529    | 2 TERS   | of TV (Apparent) | -5.7910   |
| Dimension [p]     | 164    | 160    | 114      | of BV (Material) | 703.3643  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200   |                  |           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |  |
|--------------------------------|---------|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.9564 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ]          | 0.4628  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1]                      | 0.0258  | BV/TV [1] -             |                           |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                           |  |



HCT 35

Bio-Oss\_Month3\_Mouse 1



| VOI               | x      | У      | Z      | Mean/Density [n  | ng HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 568    | 449    | 9      | of TV (Apparent) | 72.0188    |
| Dimension [p]     | 164    | 160    | 114    | of BV (Material) | 1064.5468  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                  |            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                   |
|--------------------------------|---------|-------------------------|------------------------------|
| TV [mm <sup>3</sup> ]          | 16.6963 | TV [mm <sup>3</sup> ] - | H1  [mm] -                   |
| BV [mm <sup>3</sup> ]          | 1.1890  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] -    |
| BV/TV [1]                      | 0.0712  | BV/TV [1] -             |                              |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                       |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                              |
| Tb.N* [1/mm                    | ] -     | Tb.N [1/mm] -           | Segmentation : 0.8 / 1 / 220 |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                              |
| Tb.Sp* [1/mm                   | ı] -    | Tb.Sp [1/mm] -          |                              |

Bio-Oss\_Month3\_Mouse 3



| VOI               | x      | у      | อิทธิกลัย | Mean/Density [m  | g HA/ccm] |
|-------------------|--------|--------|-----------|------------------|-----------|
| Position [p]      | 376    | 605    | 2 TERS    | of TV (Apparent) | 106.5809  |
| Dimension [p]     | 164    | 160    | 103       | of BV (Material) | 1056.0420 |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200    |                  |           |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |
|--------------------------------|---------|-------------------------|-------------------------|
| TV [mm <sup>3</sup> ]          | 17.0113 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |
| BV [mm <sup>3</sup> ]          | 2.3364  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |
| BV/TV [1]                      | 0.1373  | BV/TV [1] -             | to of front             |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                         |
| Tb.N* [1/mm]                   | ] -     | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                         |



#### Bio-Oss\_Month3\_Mouse 4



| VOI               | x      | у      | z      | Mean/Density [mg HA/ccm] |           |  |
|-------------------|--------|--------|--------|--------------------------|-----------|--|
| Position [p]      | 405    | 577    | 2 TERS | of TV (Apparent)         | -104.5009 |  |
| Dimension [p]     | 164    | 160    | 97     | of BV (Material)         | 1024.2230 |  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                          |           |  |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy                |
|--------------------------------|---------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ]          | 15.2810 | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ]          | 0.6057  | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]                      | 0.0396  | BV/TV [1] -             |                           |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]                        | -       | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm                    | ] -     | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm                   | ] -     | Tb.Sp [1/mm] -          |                           |



Bio-Oss\_Month3\_Mouse 6



| VOI               | x      | У      | z      | Mean/Density [n  | ng HA/ccm] |
|-------------------|--------|--------|--------|------------------|------------|
| Position [p]      | 459    | 525    | 2      | of TV (Apparent) | 60.6188    |
| Dimension [p]     | 164    | 160    | 113    | of BV (Material) | 1195.3759  |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200 |                  |            |

| Direct (No model)              |         | TRI(Plate mdel)         | Anisotropy              |  |
|--------------------------------|---------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ]          | 17.8016 | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ]          | 1.1388  | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]                      | 0.0640  | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm <sup>3</sup> ] - |         | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]                        | -       | BS/TV [1/mm] -          | [-]                     |  |
| Tb.N* [1/mm]                   | -       | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]                    | -       | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm]                  | -       | Tb.Sp [1/mm] -          |                         |  |



Bio-Oss\_Month3\_Mouse 8



| 101               | จหวลง  | ารณ์มห | เวิทยิาลัย | , ,,             | <b>5</b> • <b>1</b> |
|-------------------|--------|--------|------------|------------------|---------------------|
| Position [p]      | 356    | 481    | 2          | of TV (Apparent) | 6 .3329             |
| Dimension [p]     | 164    | 160    | 108        | of BV (Material) | 777.6456            |
| Element size [mm] | 0.0200 | 0.0200 | 0.0200     |                  |                     |

| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy              |
|-----------------------|--------------------|-------------------------|-------------------------|
| TV [mm <sup>3</sup> ] | 17.0139            | TV [mm <sup>3</sup> ] - | H1  [mm] -              |
| BV [mm <sup>3</sup> ] | 0.6516             | BV [mm <sup>3</sup> ] - | H2  [mm] -              |
| BV/TV [1]             | 0.0383             | BV/TV [1] -             |                         |
| Conn.D. [1/mm         | າ <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                  |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                         |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                         |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                         |



Bio-Oss\_Month3\_Mouse 9

Г



| VOI                           | x          | у          | z        | Mean/Density [mg HA/ccm]                               |
|-------------------------------|------------|------------|----------|--------------------------------------------------------|
| Position [p]<br>Dimension [p] | 500<br>164 | 509<br>160 | 2<br>108 | of TV (Apparent) 11.2186<br>of BV (Material) 1060.4753 |
| Element size [mm]             | 0.0200     | 0.0200     | 0.0200   |                                                        |

| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy              |  |
|-----------------------|--------------------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ] | 17.8016            | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ] | 0.4505             | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]             | 0.0253             | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm         | າ <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                         |  |



٦



| VOI                           | x          | У          | z        | Mean/Density [mg HA/ccm]                             |   |
|-------------------------------|------------|------------|----------|------------------------------------------------------|---|
| Position [p]<br>Dimension [p] | 414<br>164 | 455<br>160 | 2<br>113 | of TV (Apparent) 5.8805<br>of BV (Material) 719.4691 | ] |
| Element size [mm]             | 0.0200     | 0.0200     | 0.0200   |                                                      |   |

| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy                |
|-----------------------|--------------------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ] | 17.7988            | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ] | 0.3038             | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]             | 0.0171             | BV/TV [1] -             |                           |
| Conn.D. [1/mr         | n <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                           |





| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy                |  |
|-----------------------|--------------------|-------------------------|---------------------------|--|
| TV [mm <sup>3</sup> ] | 17.7988            | TV [mm <sup>3</sup> ] - | H1  [mm] -                |  |
| BV [mm <sup>3</sup> ] | 0.3564             | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |  |
| BV/TV [1]             | 0.0200             | BV/TV [1] -             |                           |  |
| Conn.D. [1/mr         | n <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                    |  |
| SMI [1]               | -                  | BS/TV [1/mm] -          | [-]                       |  |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |  |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                           |  |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                           |  |





| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy                  |  |
|-----------------------|--------------------|-------------------------|-----------------------------|--|
| TV [mm <sup>3</sup> ] | 17.8016            | TV [mm <sup>3</sup> ] - | H1  [mm] -                  |  |
| BV [mm <sup>3</sup> ] | 0.8101             | BV [mm <sup>3</sup> ] - | H2  [mm] -<br>   H3  [mm] - |  |
| BV/TV [1]             | 0.0455             | BV/TV [1] -             |                             |  |
| Conn.D. [1/mr         | n <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                      |  |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                             |  |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220     |  |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                             |  |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                             |  |



DFDBA\_Month3\_Mouse 7

| Imm_  |  |  |  |
|-------|--|--|--|
| ⊥ 1mm |  |  |  |
|       |  |  |  |

| VOI                           | x          | у          | z        | Mean/Density [mg HA/ccm]                               |
|-------------------------------|------------|------------|----------|--------------------------------------------------------|
| Position [p]<br>Dimension [p] | 422<br>164 | 337<br>160 | 2<br>113 | of TV (Apparent) -24.1577<br>of BV (Material) 721.3691 |
| Element size [mm]             | 0.0200     | 0.0200     | 0.0200   |                                                        |

| Direct (No model)     |                  | TRI(Plate mdel)         | Anisotropy              |  |
|-----------------------|------------------|-------------------------|-------------------------|--|
| TV [mm <sup>3</sup> ] | 17.8016          | TV [mm <sup>3</sup> ] - | H1  [mm] -              |  |
| BV [mm <sup>3</sup> ] | 0.3711           | BV [mm <sup>3</sup> ] - | H2 [mm] -<br> H3 [mm] - |  |
| BV/TV [1]             | 0.0208           | BV/TV [1] -             |                         |  |
| Conn.D. [1/mm         | <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                  |  |
| SMI [1]               | -                | BS/TV [1/mm] -          |                         |  |
| Tb.N* [1/mm]          | -                | Tb.N [1/mm] -           | Segmentation: 0.8/1/220 |  |
| Tb.Th* [mm]           | -                | Tb.Th [mm] -            |                         |  |
| Tb.Sp* [1/mm]         | -                | Tb.Sp [1/mm] -          |                         |  |



| , 1mm |   |   |   | Ž<br>V<br>X              |
|-------|---|---|---|--------------------------|
|       | 8 |   |   |                          |
| VOI   | x | у | z | Mean/Density [mg HA/ccm] |

| VOI               | x      | y<br>NG QLU Y | เวิทยาลัย |                  | ig HA/comj |
|-------------------|--------|---------------|-----------|------------------|------------|
| Position [p]      | 440    | 399           | 4         | of TV (Apparent) | 8.9567     |
| Dimension [p]     | 164    | 160           | 112       | of BV (Material) | 849.0316   |
| Element size [mm] | 0.0200 | 0.0200        | 0.0200    |                  |            |

| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy                |
|-----------------------|--------------------|-------------------------|---------------------------|
| TV [mm <sup>3</sup> ] | 17.6440            | TV [mm <sup>3</sup> ] - | H1  [mm] -                |
| BV [mm <sup>3</sup> ] | 0.4445             | BV [mm <sup>3</sup> ] - | H2  [mm] -<br> H3  [mm] - |
| BV/TV [1]             | 0.0252             | BV/TV [1] -             |                           |
| Conn.D. [1/mn         | n <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                    |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                           |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220   |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                           |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                           |



| 1mm                           |            |            |        | v<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |
|-------------------------------|------------|------------|--------|--------------------------------------------------------------------------------------------------|
| VOI                           | x          | у          | z      | Mean/Density [mg HA/ccm]                                                                         |
| Position [p]<br>Dimension [p] | 425<br>164 | 427<br>160 | 2      | of TV (Apparent) -6.3339<br>of BV (Material) 698.6595                                            |
| Element size [mm]             | 0.0200     | 0.0200     | 0.0200 |                                                                                                  |

| Direct (No model)     |                    | TRI(Plate mdel)         | Anisotropy                  |
|-----------------------|--------------------|-------------------------|-----------------------------|
| TV [mm <sup>3</sup> ] | 17.8016            | TV [mm <sup>3</sup> ] - | H1  [mm] -                  |
| BV [mm <sup>3</sup> ] | 0.5617             | BV [mm <sup>3</sup> ] - | H2  [mm] -<br>   H3  [mm] - |
| BV/TV [1]             | 0.0316             | BV/TV [1] -             |                             |
| Conn.D. [1/mm         | າ <sup>3</sup> ] - | BS [mm <sup>2</sup> ] - | DA [1]                      |
| SMI [1]               | -                  | BS/TV [1/mm] -          |                             |
| Tb.N* [1/mm]          | -                  | Tb.N [1/mm] -           | Segmentation: 0.8/1/220     |
| Tb.Th* [mm]           | -                  | Tb.Th [mm] -            |                             |
| Tb.Sp* [1/mm]         | -                  | Tb.Sp [1/mm] -          |                             |



#### Animal care

Husbandry consideration:

1 Housing Place: building Preclinical building, Faculty of Dentistry, Chulalongkorn University Animal located on 7<sup>th</sup> floor

2 Experimental Place: building Preclinical building, Faculty of Dentistry,

```
Chulalongkorn University Animal located on 7<sup>th</sup> floor
```

3 Housing System:

| Conventional             | O Strictly hygienic conventional |
|--------------------------|----------------------------------|
| O Barrier                | O Containment                    |
| O Others, please specify | /                                |
|                          |                                  |

#### 4 Caging:

|          | Solid bottom,                                                      | open top          | O Static filtered top cages        |  |
|----------|--------------------------------------------------------------------|-------------------|------------------------------------|--|
|          | O Metabolic cages                                                  |                   | O Individual ventilated cage (IVC) |  |
|          | O Environmenta                                                     | l chamber         | O Isolator                         |  |
|          | O Others, please                                                   | e specify         |                                    |  |
| 5 Cagin  | g materials:                                                       |                   |                                    |  |
|          | O Plastic                                                          | Stainless stee    | I O Others, please specify         |  |
| 5.1. Cag | ge size (W x L x H                                                 | ) ALLER           | 36x22x15 cm <sup>3</sup> .         |  |
| 5.2 Num  | ber of animals / c                                                 | age               | 3                                  |  |
| 5.3 Envi | ronmental require                                                  | ments:            |                                    |  |
|          | Temperature                                                        | 25 ± 2 °C         |                                    |  |
|          | Humidity                                                           |                   | DI I T                             |  |
|          | Light:                                                             | Standard fluor    | rescent                            |  |
|          |                                                                    | Others, please sp | pecify                             |  |
|          | Light cycle:                                                       | Standard 12 :12   |                                    |  |
|          |                                                                    | Others, please sp | pecify                             |  |
| 5.4 Food | d:                                                                 |                   |                                    |  |
|          | Type of food: Sta                                                  | indard diet       |                                    |  |
|          | Source/Vendor: National Laboratory Animal Center of Salaya Campus, |                   |                                    |  |
|          | Mahidol University                                                 |                   |                                    |  |
|          | Feeding schedule:                                                  |                   |                                    |  |

🗹 Ad libitum

O Others, please specify.....meal(s)/day

5.5 Water (if needed):

| Type of water:          | ☑ Tap water                       |
|-------------------------|-----------------------------------|
|                         | O Hyperchlorinatedppm             |
|                         | O Acidified, pH                   |
|                         | O RO-UV                           |
|                         | OOthers, please specify           |
| Water Provided:         |                                   |
|                         | Ad libitum                        |
|                         | O Others, please specify          |
| 5.6 Bedding/housing med | lia:                              |
|                         | O No                              |
|                         | Yes , please specify Wood shaving |
|                         |                                   |

All procedures will be performed under aseptic technique to prevent contamination. The surgeons will wear face mask, sterile gloves, and clean lab coats and follow the rodent surgery policy. The rodent survival surgery policy will be performed according to the guidelines of National Research Council, Institute of Laboratory Animal Resources, Commission on Life Sciences, USA.

94

VITA

Miss Thanyaporn Kangwannarongkul was born on September 7, 1985 in Bangkok, Thailand. She graduated with the Degree of Doctor surgery (D.D.S.) from the Faculty of Dentistry, Prince of SongKhla University in 2010. After graduation, she worked at Si Kao hospital, Trang from 2010-2012. She started her post-graduated study in 2012 for the Master of Science Program (M.Sc.) in Prosthodontics at the Department of Prosthodontics Faculty of Dentistry, Chulalongkorn University. At present, she works in the private dental clinic.



จุฬาลงกรณมหาวิทยาลิย Chulalongkorn University