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CHAPTER 1  

INTRODUCTION 

In this chapter, the motivation and significance of the current research is first presented 

and then the background and review of relevant literatures indicating the historical 

development and recent advances of the scaled boundary finite element method 

(SBFEM) and its applications to the numerical analysis of plate bending problems is 

summarized. Next, research objectives, scope of work, methodology, and research 

procedure are clearly stated. Finally, the outcome and contribution of the present study 

are addressed. 

1.1 Motivation and Significance 

A plate is one of the most frequently encountered structural elements. Its behavior is 

considered quite important to structural designs and analyses. Plate structures are 

widely found in civil engineering applications and are encountered in many fields of 

construction technology. For this type of relatively thin structures, the bending 

mechanism has been found the main factor affecting the deformation perpendicular to 

the plane of the plate under the action of external forces and/or moments. The 

deflections can be determined by solving the differential equations resulting from 

proper plate theories to obtain the analytical solutions; however, these solutions are 

only limited to plates with simple geometries, boundary conditions, and loading 

conditions. To overcome these difficulties and disadvantages, the numerical solutions 

have been developed. The scaled boundary finite element method is one of attractive 

numerical techniques for modeling plate bending problems, which is considered the 

latest numerical technique that has been applied to solve several problems in applied 

mechanics with high achievement. 

 

 

 

 

Figure 1.1: (a) Schematic of flat slab (Photo by GEM NEXUS, 2015 [1]) and (b) 

schematic of corresponding mathematical model (Photo by National Geographic South 

Korea, 2015 [2]) 

 

(a)

  

(b) 
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This research topic still remains popular due to the vast applications of plate 

structures especially found in broad engineering practices.  A mathematical plate 

model, which is defined as a structure possessing one dimension much smaller than the 

other two, is often employed in the modeling because it provides valuable insight into 

the behavior of the structures and is computationally simple. An example of plate 

structures is the flat slab that transfers the load directly to columns without the use of 

beams as shown in Figure 1.1(a) and it can be modeled mathematically as illustrated in 

Figure 1.1(b). Another example of plate structures is a thin element of structural 

members such as web and flange of a beam under in-plane and out-of-plane loading 

conditions which transfers the transverse loads to the supports by bending and shear 

actions. In general, higher stresses are developed in flexural members in comparison 

with axially loaded members with the same level of applied load and the resulting 

deformation due to the bending mode is also much higher. The deflection of a beam 

due to the bending effect is often considered as one of the most significant factors of 

the design criteria. The behavior of the beam under loading as shown in Figure 1.2 has 

a similar characteristic to that of the plate bending theory. 

 

Figure 1.2: Schematic of stiffened web elements and unstiffened flange elements of 

structural steel beam (Adapted from “Steel Structures Design and Behavior”, by 

Charles and John, Book of HarperCollins College Publishers, 1996, fourth edition 

p.328 [3]) 

 

Various mathematical models have been continuously proposed to represent the 

behaviors of objects/bodies under different types of loading and boundary conditions. 

In principle, all models can be reduced to a partial differential equation system, a system 

of integral equations, or both depending mainly upon the type of problems and solution 

procedure to be employed. Nevertheless, the analytical approaches for solving those 

governing equations are commonly limited to problems with simple geometries and 

boundary conditions [4-6]. The need of more powerful solution techniques to overcome 

the limitation of analytical methods brings about the development of numerical 

techniques e.g. the finite element method (FEM) which has been used successfully and 

extensively for solving problems in applied mechanics. However, the FEM also has 

some difficulties associated with its application in certain areas i.e. the static and 

dynamic analysis of large or unbounded domains, problems involving cracks/notches 

and singular fields, and other stress concentration problems [7-12].  

To circumvent the inefficiency of the FEM to solve problems involving 

unbounded domains, another group of numerical techniques termed the boundary 

element method (BEM) has been established. In such group of techniques, the key 
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governing equations of the boundary value problems are expressed in terms of 

boundary integrals containing only unknowns on the boundary of the domain and, as a 

direct consequence, the discretization of the field variable is restricted to the domain 

boundary. It is worth noting that the governing integral equations underlying the BEM 

require the availability of essential fundamental solutions. In addition, the form of 

fundamental solutions is problem dependent and is generally complicated to be 

constructed since they are required to satisfy the governing differential equations 

exactly for the entire domain [13, 14]. Besides the reduction of spatial dimension 

associated with the unknown data, such major disadvantage is found to reduce the 

capability of the boundary element method to solve general boundary value problems 

in comparison to the FEM. 

A novel numerical method capable of modeling the deformation of solids and 

structures, termed the scaled boundary finite element method (SBFEM), was introduced 

and has been widely used for the past three decades. The SBFEM combines the 

advantages and features of both analytical techniques and numerical approximations  

[15, 16], involves the approximation of the solution in the boundary direction, and 

generally yields a set of linear, ordinary, differential equations in the radial direction 

that can be solved analytically via simple schemes found in the theory of differential 

equations, e.g., the method of undetermined coefficients and the representation of 

solutions. The enforcement of boundary conditions and the assemblage of element 

coefficient matrices follow the standard procedure of the finite element method. 

Recently, the SBFEM has been successfully applied to solve several problems of 

continuum/solid mechanics such as electrostatic problems, problems in transient 

elastodynamics and unbounded domains, linear piezoelectric problems, stress analysis 

of cracked bodies and simulations of crack advances, biomaterials and multi-field 

materials, and thin plate and laminated plate problems [17-29]. Adaptive strategies have 

been also incorporated into the SBFEM to enhance its computational efficiency. The 

optimal mesh providing sufficiently accurate results while containing the number of 

degrees of freedom as small as possible is of interest. To ensure the computed result 

quality, the analyses are generally performed on several meshes with different sizes 

which drastically increase the overall cost of modeling and analysis. It is also known 

that the accuracy of approximate solutions depends primarily on the discretization level; 

the higher the level of discretization, the higher the accuracy of predicted results, but 

also the higher the number of degrees of freedom and the more the computational 

expense. An inadequate level of discretization can lead to inaccurate numerical 

solutions. Therefore, it is desirable to use the minimum number of degrees of freedom 

necessary in order to achieve the required level of accuracy preferred. To achieve this 

task in an efficient manner, the stress-recovery and the error estimation techniques were 

integrated into SBFEM along with the h-hierarchical adaptive procedure to solve both 

bounded and unbounded domains for linear elasticity problems [30, 31]. Normally, 

among the adaptive strategies, the h-refinement is the most essential one and it has been 

accomplished by using only a single type of elements.  

Even though the SBFEM has been applied to several problems of applied 

mechanics with high success rate; heretofore, the SBFEM for modeling thin plates 

under transverse loadings and different types of boundary conditions with h-

hierarchical adaptive procedure has not been implemented. This research presents an h-

hierarchical adaptive scaled boundary finite element method for plate bending 
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problems. The governing equation is derived based primarily on Kirchhoff’s plate 

theory while the weak formulation is obtained via a standard weighted residual 

technique. The scaled boundary finite element equations and the solution methodology 

follow the standard procedure of SBFEM. An h-hierarchical adaptive scheme with the 

moment-recovery error estimator is integrated in the implementation to obtain the 

optimal level of discretization for a specified level of accuracy. 

1.2 Background and Review 

In this section, the historical background and review of plate bending problems, 

adaptive procedure, and the scaled boundary finite element method are briefly 

discussed. In addition, applications of the scaled boundary finite element method to 

plate bending problems are also provided. The advantages and disadvantages of the 

scaled boundary finite element method in comparison with the finite element method, 

the boundary element method are also presented in this section. 

1.2.1 Plate bending problems 

The first simulation of plate problems, which was probably done by Euler in 1776, 

involved the free vibration analysis. Later on, Cauchy and Poisson were among the first 

who formulated the problem of plate bending based on theory of linear elasticity [32]. 

A plate theory reduces the full three-dimensional settings to two dimensional problems 

by taking into account the advantage of the disparity in the length scale. To further 

simplify the plate bending problems, Kirchhoff plate theory or thin plate theory was 

also introduced. Kirchhoff model is generally applied for relatively thin plates 

undergoing small deflections, negligible shear energy, and uncoupled membrane-

bending action and also enforcing zero transverse shear strain at a selected location of 

the elements [33]. 

Solutions of plate bending problems can be obtained by means of analytical 

approaches; however, their inherent mathematical difficulties and analytical solutions 

restricted these problems to some simple geometries and boundary conditions [4-6, 34]. 

As mentioned earlier, for many plate problems of considerable practical interest, 

analytical solutions to the governing differential equations cannot be found; thus, 

numerical methods must be engaged to obtain approximate solutions. There are some 

effective numerical methods capable of performing the analysis of plates, such as the 

finite element method [35], the smoothed FEM [36, 37], the boundary element method 

[38, 39], and the Trefftz FEM [40, 41]. Various investigations mentioned earlier have 

led to the significant progress in efficiently modeling the plate bending problems while 

eliminating the locking phenomenon. In order to satisfy the C1-continuity requirement 

in the discretization of plate bending problems, high-order elements must be employed. 

In 1981, Tsach [25] investigated the relationship between the shear locking and the 

order of polynomials used in the approximation of the displacement. This work 

indicated that the lower order displacement-based elements normally produce results of 

stresses/internal-forces with lower accuracy and the high-order elements were less 

prone to shear locking. Zrahia and Bar-Yoseph [26] found similar results in their 

investigation that in comparison with low-order elements, the spectral elements lead to 

higher accuracy and computational efficiency. Similarly, Xenophontos et al. [27] 

developed the p-version mixed interpolation of tensorial component elements. Those 

p-MITC elements were extremely effective for plate problems, even when the curved 



 

 

5 

elements were used, provided that special care was taken in constructing the element 

mappings. In addition, Man et al. [42] employed high-order spectral elements together 

with the SBFEM in the analysis of plate structures and demonstrated that the technique 

yielded higher accuracy and faster convergence in comparison with the SBFEM using 

linear or quadratic elements and the p-MITC using linear or quadratic basis [42]. 

1.2.2 Scaled boundary finite element method 

The primitive work with basic ideas in the scaled boundary finite element method under 

the name exterior finite elements for two-dimensional field problems with open 

boundaries was recognized by Silvester et al. [43]. In the SBFEM, only boundaries were 

discretized so that the modeled spatial dimensions were reduced by one similar to the 

BEM; however, it does not require the fundamental solutions. Figure 1.3 illustrates the 

scaled boundary coordinate system for both bounded and unbounded domains. The 

scaling center for a bounded medium is inside the domain and is generally chosen to be 

coincident with the origin of reference Cartesian coordinate system. The dimensionless 

radial coordinate ξ starts from the origin with ξ = 0 to the boundary where it is 

commonly normalized to unity, i.e., ξ = l. The bounded domain is thus covered by 0 ≤ 

ξ ≤ 1. The s-coordinate coincides with the circumferential direction on the domain 

boundary.  

This method had originally been developed by Wolf and Song [44] to compute 

the dynamic stiffness of an unbounded domain in elastodynamics. Clearly, the 

consistent infinitesimal finite-element cell method does not require a fundamental 

solution. In addition, the free surface and the fixed boundaries and the layer interfaces 

between different materials extending from the structure-medium interface to infinity 

are incorporated automatically with later developments, allowing the analysis of 

incompressible materials and bounded domains [45] and the body loads inclusion [46]. 

The complexity of the original derivation of the technique was formulated by using a 

weighted residual approach and a mechanical-based approach to obtain the scaled 

boundary governing equations [16]. This solution procedure was clearly demonstrated 

by solving both homogenous bounded and unbounded media. Later, Deeks and Wolf 

[47] applied the principle of virtual work to derive the scaled boundary formulation. It 

was found that the semi-analytical SBFEM can be also obtained in a similar manner to 

the standard FEM and has the potential to be used with the great success rendering this 

method more accessible. 

It has been shown that the SBFEM was highly benefits modeling stress 

singularities present at crack-tips by Zhenjun Yang [48] and, in addition, the developed 

methodology was capable of accurately and effectively predicting mixed-mode 

cracking paths and load–displacement relations for a wide range of problems. The 

SBFEM was also extended and employed in the modeling of two- and three-

dimensional stress singularities in piezoelectric multi-material systems [49] and 

analysis of problems in transient elastodynamics [18]. All of the research studies 

indicated above showed that the SBFEM is an alternative, powerful and robust 

numerical technique useful for constructing approximate solutions of problems in 

applied mechanics. The scaled boundary finite element method can be classified as a 

combination of the boundary element method and the finite element method since only 

unknowns on the boundary appear in the key governing equation and the idea of finite 

element approximations is employed in the discretization.  It also has appealing features 

of its own, for instance, the certain straight boundaries passing through the scaling 
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center are not necessary to be discretized. In addition, the SBFEM also combines the 

advantages of both numerical and analytical procedures. Features of the scaled 

boundary finite element method compared with those of the finite element and 

boundary element methods [15, 30] are indicated in Table 1.1. 

 

 

  

 

Figure 1.3: Notation of scaled boundary coordinate system for (a) bounded domain 

with side-faces and (b) unbounded domains with side-faces (figures are taken from the 

work of Deeks and Wolf [47]) 

 

While the SBFEM has been used successfully in the analysis of various classes 

of problems, the method still possesses some limitations and shortcomings. For 

example, the SBFEM has been developed mainly for solving problems with linear 

governing equations, although it was also applied to address nonlinear problems by a 

linearization of the physical problem prior to the SBFEM calculations [50]. The 

technique is also not flexible to deal with arbitrary material property distribution, 

although some specific distribution modes can be addressed. In this regards, the sub-

structuring technique can be applied as a resort, although it introduces extra number of 

degrees of freedom [51]. Apart from this, the SBFEM has been found not competitive 

to the FEM in solving problems concerning bounded domain and when the smooth 

stress variations is present, but it outperforms the FEM in cases that the stress 

singularity appears even though a bounded computational domain is involved. With 

limited cases of drawbacks, the SBFEM has been applied to many engineering fields 

and has the great potential to further expand its applications. 

1.2.3 Scaled boundary finite element method for plate bending problems 

The application of the SBFEM to analyze plate problems under the framework of 

Kirchhoff’s plate theory was first recognized in the work of Dieringer and Becker[23]. 

In their work, the principle of virtual work was employed to derive the scaled boundary 

equation by ignoring the transverse shear deformations and body loads and Hermitian 

polynomials of cubic order were used as the displacement shape functions. According 

to the virtual work equivalence, the scaled boundary equation of the transverse 

displacements was represented by the fourth-order eigenvalue. A system of Euler-

Cauchy, ordinary differential equations, is then obtained from the scaled boundary 

finite element approximations. Applying a discrete form of the Kantorovich reduction 

method leads to a set of ordinary differential equations, which can be further solved in 

(a) (b) 



 

 

7 

a closed form. The assemblage of element stiffness matrices and the solution strategy 

can be preceded following the standard finite element procedure. Along the discretized 

boundaries, the approximation at present corners must be treated specially to ensure the 

satisfaction of the C1-continuity requirement since the gradient of the displacement may 

not be specified uniquely along the corner line of two adjacent elements. Various 

numerical examples have indicated that the SBFEM is efficient for solving plate 

bending problems. In particular, the number of the degrees of freedom used in the 

approximation is reduced drastically in comparison with the FEM but still retains the 

high quality of approximations. As can be seen from Figure 1.4, the scaled boundary 

finite element solution converges rapidly to the reference finite element solution 

generated by a very fine mesh with 30000 degrees of freedom. For a discretization with 

only four elements along the plate boundary, with exactly forty degrees of freedom, the 

relative error is found less than 0.2% [23]. 

 

 

 

Figure 1.4: Comparison of the maximum displacement obtained from SBFEM with 

different discretization and that from FEM with 30,000 degrees of freedom (This graph 

is taken directly from the work of Dieringer and Becker [23]). 

 

Later, Dieringer and Becker [52] applied the SBFEM in the analysis of notches 

and cracks contained in circular Kirchhoff plates. The scaled boundary finite element 

method was used to directly compute the order of singularity for a crack of notched 

circular plate. If the scaling center was selected at the crack tip or notch root, the 

SBFEM enabled the effective and  precise computation of the order of singularity [52]. 

Furthermore, Man et al. [22] had developed a unified 3D-based technique for plate 

bending analysis using scaled boundary finite element method. The formulation was 

based on the three-dimensional governing equation without enforcing the same kinds 

of kinematics used in plate theories. Only the in-plane dimensions were discretized into 

a collection of finite elements. Any two-dimensional, displacement-based elements 

could be employed in the approximation. The solution along the thickness was 

expressed analytically by using a matrix function. This technique was in line with the 

three-dimensional theory and applicable to both thick and thin plates without exhibiting 
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the numerical locking phenomenon. The scaled boundary finite element equations for 

displacement of plate structures were in the second-order. Also, the Gauss–Lobatto–

Legendre quadrature was used to discretize the in-plane dimensions of the plate. The 

numerical study on four plate bending problems was applied to the patch test with the 

aim to verify the proposed technique to be able to describe the exact state of a constant 

bending moment [22]. Obtained results indicated that this technique can pass the patch 

test and possesses the high accuracy and the fast convergence compared the FEM. For 

the open-hole square plate subjected to bending loads, the proposed technique was 

found to accurately capture the stress-concentration was observed and computed results 

showed the good agreement with the conventional FEM. 

Recently, Man et al. [42] developed the high-order plate bending analysis based 

on the scaled boundary finite element method which significantly improved the 

prescribed method in terms of efficiency and simplicity for thin to moderately thick 

plates. The SBFEM in this paper was derived for the plate bending problems through 

the principle of virtual work. The scaled boundary formulation was derived directly 

from the three-dimensional, field equations. The in-plane dimensions of the plate were 

modeled by two-dimensional finite elements. The solution along the thickness was 

expressed analytically via the Padé expansion by using the SBFEM. Furthermore, the 

utilization of high-order spectral elements, in turn,  allows the accurate treatment of 

plates with curved boundaries, leads to the high accuracy and convergence rate, and 

remove the shear locking [42]. Results from their study also indicated the high 

computational efficiency and accuracy when compared with analytical and finite 

element solutions. All examples revealed that the proposed technique was able to 

converge to thin plate solutions when reducing the thickness-to-length ratio without 

causing any locking phenomenon. Examples with the curved boundaries also 

underlined the competency of the proposed technique to model curves with minimal 

number of high-order spectral elements. This technique was able to gain high accuracy 

and fast convergence as well as to accurately handle plates with relatively complex 

boundaries.  
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Table 1.1: Comparisons of features among BEM, FEM, and SBFEM 

 

Features BEM FEM SBFEM 

•  No fundamental solution required, expanding the 

scope of application and singular integrals to be 

evaluated 

 X X 

•  Reduction of spatial dimension by one as only 

the boundary is discretized with surface finite 

elements, reducing the data preparation and 

computational efforts 

X  X 

• Radiation condition satisfied exactly for 

unbounded medium  
X  X 

•  Body loads processed without additional domain 

discretization and thus additional approximation 
(X) X X 

•  Symmetric static-stiffness and mass matrices or 

dynamic-stiffness matrix and symmetric dynamic-

stiffness and unit-impulse response matrices for 

unbounded media. 

(X) X X 

•  No approximation other than that of the surface 

finite elements on the boundary. 
X  X 

• Straightforward calculation of stress 

concentrations and intensity factors based on their 

definition 

  X 

•  No discretization od free and fixed boundaries or 

interfaces between different materials 
  X 

• Analytical solution inside domain permitting 

efficient calculation of displacements, stresses, 

and stress-intensity factors 

  X 

•  No fictitious eigen-frequencies for unbounded 

medium 
 X X 

• Straightforward coupling by standard 

assemblage of structure discretized with finite 

elements with unbounded medium  

 

X X 

Note. From “The scaled boundary finite element method” by Wolf, J.P., 2003, Book of 

John Wiley & Sons Ltd, p. 148 [30]. 
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1.2.4 An h-hierarchical adaptive                             

Numerical methods are computationally efficient when error dispersion is taken into 

consideration during the refined model construction. Babuška and Rheinboldt [53] 

introduced adaptive approaches in the finite element analysis. They originally 

developed the posteriori estimate which indicates how the results can be extended to 

the nonlinear case without losing their effectiveness. The error indicators  are very 

effective and optimal approach in the adaptation of finite element meshes [53]. Several 

studies have been reported regarding methods to produce refined finite element and 

boundary element meshes from a considered distribution of errors or the energy norm 

of errors (e.g., [54]). In the h-hierarchical approach, the whole mesh is regenerated from 

the domain-boundary definition and the computed error distribution at each step. The 

h-hierarchical adaptive procedure tries to automatically refine meshes, the connection 

between nodes in each element with interpolations in the same order of the shape 

functions. The entire mesh is the description of the domain boundary which determines 

the error distribution at each step. This type of adaptivity is the most popular one since 

its procedure can be easily implemented in the analysis [55]. Rank et al. [56] 

investigated the computational performance, such as the accuracy and convergence, of 

h-, p-, and h-p adaptivities. Results from their study indicated that the h-p adaptivity is 

the best strategy and exhibits the exponential rate of convergence. It was also concluded 

that the h-adaptive scheme with linear elements is nearly as good as the h-p adaptive 

scheme and the convergence rate also depends on the geometric configuration [56]. 

Deeks and Wolf [31] reviewed applications of error estimator used in the adaptive 

procedures for both finite element and boundary element methods. In the boundary 

element method, the h-hierarchical adaptivity is often derived by adding h-hierarchical 

shape functions to the original elements. This procedure has shown the advantage 

regarding to the build-up of the coefficient matrices in the current iteration and, as a 

result, it can save both the computational time and storage in the next iteration and the 

matrices are simply augmented during the iteration process. Nevertheless, this strategy 

does not work well for the finite element analysis since the banding of the stiffness 

matrix is demolished and the computational time increases more than necessary to 

reduce the coefficient matrices [57, 58].  

1.2.5 An h -hierarchical adaptive for scaled boundary finite element method  

An h-hierarchical adaptive procedure and the stress recovery procedure to obtain the 

error estimation for the scaled boundary finite element method have been developed by 

Deeks and Wolf [59]. The h-hierarchical adaptive scheme has been formulated and 

integrated into the scaled boundary finite element method to further enhance its 

capability. The adaptive procedure results in significant computational time savings 

over a uniform mesh if the discretized boundary contains a singular point. If the 

variation of solutions in the circumferential direction is mild, the procedure can be 

regarded a convenient method to achieve a specified level of error; however, it does not 

lead to the significant saving of computational time. The error estimators are assessed 

based mainly on the energy norm of the stress errors and the computational cost spent 

with the same accuracy level can be compared. Basically, the computed stresses and 

displacements are in very close agreement; however, the scaled boundary finite element 

method can yield results with higher accuracy near points of singularity and for 

unbounded problems [31, 59]. Yang et al. [60] further developed the method by 
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deriving a stress recovery technique that was later adopted in the adaptive h-refinement 

technique applied to structural elasto-dynamics. Results computed by the adaptive 

SBFEM were in good agreement with those from the literature and those calculated 

from the adaptive FEM. An adaptive procedure was devised to be capable of 

automatically identifying an optimal mesh to effectively capture the stress wave 

propagation in each time step. Then effectiveness and accuracy of the developed 

method have been concluded [60]. 

The scaled boundary finite element method has been found to reduce the 

computational effort considerably. Various investigations have shown that the SBFEM 

has several positive features such as the accuracy, simplicity, and efficiency for plate 

bending problem analysis. However, on the basis of extensive literature review, such 

the adaptive schemes have not been implemented for plate bending problems. For 

simplicity, the discussion in the present research is limited only to the h-refinement, 

although any of other refinement methods could be equally applied to the SBFEM with 

the same ease. The SBFEM supplied by the h-adaptivity can be seen as a means to 

automatically generating the optimal refinement by maintaining the level of accuracy. 

1.3 Research Objectives 

The key objectives of the proposed research are to (i) develop the h-hierarchical 

SBFEM for solving plate bending problems and (ii) investigate the computational 

performance of developed technique such as the accuracy and convergence of 

numerical solutions. 

1.4 Scope of Work 

The proposed study is to be carried out within following context: (i) plate is made of a 

homogeneous, isotropic, and linearly elastic material; (ii) plate is assumed initially flat 

and its behavior is completely governed by a Kirchhoff’s plate bending with no corner 

along its entire boundary; (iii) plate is loaded by arbitrarily distributed transverse forces; 

and (iv) both infinite and finite plates are considered.  

1.5 Research Methodology 

The present investigation mainly concerns the development of a numerical technique, 

based on the scaled boundary finite element technique, for solving plate bending 

problems. The computational performance of the implemented technique is fully 

explored to demonstrate its accuracy and convergence. In order to accomplish the key 

objectives indicated above, the following methodology and research procedure are 

proposed. 

(1) A classical theory of plate bending (i.e., Kirchhoff’s plate theory) is utilized to 

derive the governing differential equations of plates subjected to transverse 

loading. 

(2) A conventional weighted residual technique together with the integration by 

parts via Green-Gauss divergence theorem is adopted to construct the weak-

form equation. 

(3) A scaled boundary coordinate transformation is introduced to describe the 

geometry of the plate and, in addition, all differential operators involved in the 
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formulation are transformed into those concerning the scaled boundary 

coordinates. 

(4) The geometry of the plate and the corresponding differential operators are 

approximated via the discretization of the defining curve along with the 

description of the scaled boundary coordinate transformation. 

(5) The weight function and the deflection are approximated in terms of unknown 

nodal functions defined in the scaling coordinate direction by using standard 

element-based basis functions defined in the boundary coordinate direction.         

(6) The scaled boundary finite element equation is established by applying the 

scaled boundary finite element approximation along with the integration by 

parts to the weak-form equation. For this particular step, the weak-form 

equation is properly converted into a system of linear, nonhomogeneous, fourth-

order, ordinary differential equations, and a set of boundary conditions. 

(7) A standard technique in the theory of differential equations is utilized to 

determine a homogeneous solution of the obtained system of linear differential 

equations. The resulting linear eigenvalue problem is then solved numerically 

using a selected efficient Eigen search algorithm. 

(8) A particular solution of the obtained system of linear differential equations 

associated with applied transverse loads and prescribed conditions on the side 

faces is obtained systematically using the method of undermined coefficients. 

(9) The general solution of a particular boundary value problem is obtained directly 

by enforcing prescribed conditions on the boundary of the plate. 

(10) All field quantities of interest such as the deflection, force, and moment 

resultants can be computed using the interpolant involving the nodal basis 

functions in the boundary coordinate direction and the solved unknown nodal 

functions in the scaling coordinate direction.   

(11) An h-adaptive scheme together with the moment recovery technique for 

computing the error estimator is implemented into the developed SBFEM.   

(12) The implemented algorithm is verified with available benchmark solutions for 

certain cases and its computational performance is then fully investigated for 

various scenarios. 

1.6 Anticipated Outcome and Contribution 

This research should offer an alternative, efficient, and accurate numerical technique 

that is capable of performing the analysis of plate bending problems with h-hierarchical 

adaptivity. The integration of the h-adaptivity should enhance the capability of the 

proposed technique to generate results with the optimal mesh within the specified level 

of accuracy. The proposed technique can be considered as a semi-analytical approach 

that only requires the discretization along the boundary direction. This apparently 

renders the significant reduction of the number of degrees of freedom in the 

approximation and also reduces efforts associated with the pre-processing step such as 

the mesh generation and mesh adaptation. One obvious application of this 

computational tool with such integrated features is the use in the modeling/analysis of 
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flat slab and local analysis of thin components of structural members such as web and 

flange under the conditions of in-plane and out-of-plane loading.  



 

 

CHAPTER 2  

PROBLEM FORMULATION 

In this chapter, a clear problem description is first presented and then the integration of 

three basic equations from the well-known Kirchhoff’s plate theory (i.e., kinematics, 

constitutive relations, and equilibrium equations) to form a complete set of linear 

differential equations governing the plate bending problems is addressed. Finally, a 

weak-form statement is derived using a standard weighted residual technique. 

2.1 Problem Description 

The present study focuses on a thin plate of uniform thickness h  with its in-plane 

geometry fully described by a two-dimensional region  . For convenience in further 

reference and presentation of relevant results, a reference Cartesian coordinate system 

1 2 3{ , , }x x x  is introduced such that the 
3x -axis is perpendicular to the plate and directs 

downward whereas Ω  is contained in the 
1 2x x  plane. The boundary of the plate, 

denoted by  , is assumed to be piecewise smooth and the outward unit normal vector 

at any smooth point is denoted by 1 2{ }Tn nn . Further restrictions on the geometry 

of the plate will be clearly addressed further below once the scaled boundary coordinate 

transformation is introduced. For the present investigation, the plate is made of a 

homogeneous, isotropic, and linearly elastic material with the prescribed Young’s 

modulus E  and Poisson’s ratio . The plate is loaded by a sufficiently smooth 

distributed transverse force ( )xp , x , as illustrated in Figure 2.1.  The boundary of 

the plate   can be decomposed into 
n  on which the natural boundary conditions (i.e., 

shear and moment resultants) are fully prescribed, 
e  on which the essential boundary 

conditions (i.e., deflection and rotation) are fully prescribed, and 
m  on which the 

mixed boundary conditions are fully prescribed. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic of thin plate subjected to transverse and in-plane loadings 
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The statement of the problem is to find the solution of the vertical deflection, the 

rotation, and the corresponding internal resultants such as the shear forces, the bending 

moments, and the twisting moments due to the action of the applied loads and 

prescribed boundary conditions.  

2.2 Basic Equations 

Basic field equations governing responses of the plate including the kinematics, the 

moment-curvature relationship, and equilibrium equations are obtained from the well-

known Kirchhoff’s plate theory. The key assumptions and the detailed derivation of all 

equations are standard and can be found from existing literatures (e.g., [61, 62]). The 

rotation vector, denoted by 1 2{ }T θ  where 
1  and 

2  denote the rotations about 

the 
1x  and 

2x -axes, respectively, the curvature-twist vector, denoted by 

11 22 12{ }T  κ  where 
11 , 

22  and 
12  are the curvature about the 

1x -axis,  the 

curvature about  the 
2x -axes and the twisting curvature, respectively, and the vertical 

deflection, denoted by w , at any point of the plate are linearly related by following 

linearized kinematics:  

 

w θ                       (2.1) 

( )w  κ L                  (2.2) 

 

where   and L  are linear differential operators defined by 
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The in-plane moment vector, denoted by 11 22 12{ }TM M MM  where 
11M  and 

22M  

represent the bending moments per unit length about the 
2x -axis and 

1x -axes, 

respectively, whereas 
12M  denotes the twisting moment per unit length, can be linearly 

related to the curvature-twist vector κ  by  

 

M Eκ                  (2.5) 

 

where the matrix E depends primarily on Young’s modulus, Poisson’s ratio, and the 

thickness of the plate given explicitly by  
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By enforcing equilibrium of the plate in its deformed configuration together with the 

infinitesimal deformation assumption, it leads to the following equilibrium equations  

 
T Ν 0                    (2.7) 

T pQ                   (2.8) 
T L M Q                   (2.9) 

 

where I is an identity matrix and the shear force vector Q  is defined by 
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Q                  (2.10) 

 

The vertical force per unit length on the boundary of the plate, denoted byV , can be 

related to the shear force vector Q  generated by  

 
TV  Q n                  (2.11) 

 

where 1 2{ }T n nn  denotes the outward unit normal vector to the boundary of the 

plate and V  is positive if it directs along the 3x -coordinate direction. Similarly, the in-

plane moment vector on the boundary of the plate, denoted by  1 2

T

M M 

 M , can 

also be related to the moment components M  by 

 

  M nM                  (2.12) 

 

where n  is matrix containing components of the outward unit normal vector n  given 

by 

 

1 2

2 1

0

0

n n

n n

 
  

 
n                 (2.13) 

 

By combining equations (2.2), (2.5), and (2.7)-(2.9), it leads to a non-homogeneous, 

linear, fourth-order, partial differential equation governing the vertical deflection of the 

plate w : 

 

( ) ( )T w pL E L                  (2.14) 

 

Now, the problem statement simply reduces to find the vertical deflection ( )xw w  

that satisfies (2.14) intx    and the boundary conditions along = n e m    . 

2.3 Weak Formulation 

The weak statement of the linear partial differential equation (2.14), which is essential 

for the development of the scaled boundary finite element method presented in the next 
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chapter, can be accomplished by applying the standard weighted residual technique 

together with the integration by parts via Green-Gauss divergence theorem. By 

multiplying the equilibrium equation (2.8) by an arbitrary, sufficiently smooth weight 

function 1 2( , )v v x x  and then integrating the result over the entire domain, it yields 

 
Tv wdA vpdA

 

  Q                 (2.15) 

 

By performing the integration by parts of the first integral of (2.15) using Green-Gauss 

divergence theorem and then applying the relation (2.11) to treat the boundary term, it 

gives rise to 

 

( )Tv dA vpdA vV dl

  

   Q               (2.16) 

 

By applying the relation (2.9) to the second integral of (2.16), then performing the 

integration by parts via Green-Gauss divergence theorem, and finally employing the 

condition (2.12), it results in 

 

( ) ( )T Tv dA vpdA vV dl v dl 

   

      L M M              (2.17)

 
 

Finally, by substituting the moment vector M  in terms of the vertical deflection w  via 

the moment-curvature relationship (2.5) and the linearized kinematics(2.2), the weak-

form equation becomes 

 

( ) ( )Tv w dA


 L E L   ( )TvpdA vV dl v dl 

  

     M                        (2.18) 

 

It should be evident from the derivation that there is no restriction placed on the choice 

of the weight function v  except that it must be sufficiently smooth rendering all 

involved integrals exist in an ordinary sense. To ensure the integrability of all terms 

contained in the weak-form equation(2.18), the weight function must satisfy the 

condition 

 
2( ) ( ) ( )T Tv v dA v vdA v dA

  

     L L                (2.19)

 
 

By defining V  as a space of all functions satisfying the condition (2.19), the problem 

statement can be changed to find the vertical displacement ( )xw w  such that the 

weak-form equation (2.18) is satisfied v V  and the boundary conditions along 

= n e m     are satisfied.  



 

 

CHAPTER 3  

SCALED BOUNDARY FINITE ELEMENT FORMULATION 

This chapter clearly presents the scaled boundary finite element formulation for general 

plate bending problems. The chapter begins with the introduction of the scaled 

boundary coordinate transformation and the description of two-dimensional regions in 

terms of scaled boundary coordinates. Next, the discretization of the plate geometry, 

the solution, and the weight function based on the scaled boundary finite element 

approximation are presented. Finally, such approximations are utilized together with 

the integration by parts via Green-Gauss divergence theorem to deduce the boundary 

finite element equation. 

3.1 Scaled Boundary Coordinate Transformation 

Let 0 10 20( , )x x x  be a point in 2  and C  be a simple, piecewise smooth curve in 2  

such that it does not contain the point 0x . The curve C  is parameterized by a vector 

valued function 10 1 20 2
ˆ ˆ: [ , ] ( ( ), ( ))s a b x x s x x s   r  as illustrated in Figure 3.1 and 

r  is a given one-to-one function on an open interval ( , )a b . Let ( )s  be a swept angle 

of any point ( )sr  on the curve C  measured in a counter clockwise direction from a line 

connecting a point 0x  and a point ( )ar  to a line connecting a point 0x  and a point ( )sr

. In the present study, the curve C  can be either closed (i.e., ( ) ( )a br r ) or opened (i.e.,

( ) ( )a br r ) and is limited to those satisfying the following conditions: (i) ( ) 2b   

and (ii) ( )s  is a monotonically increasing function of s  (i.e., / 0 ( , )d ds s a b    ). 

Later, the point 0x  is known as the scaling center and the curve C  is termed the 

defining curve.  

Let us, now, introduce the following two-dimensional coordinate transformation 

relating the Cartesian coordinates 1 2{ , }x x  and the so-called scaled boundary 

coordinates { , }s  such that    

 

0
ˆ ( )x x x s                                 (3.1) 

 

where {1,2}   and 0  . This particular coordinate transformation simply scales the 

defining curve C  in the radial direction with respect to the scaling center 0x  using the 

coordinate , which is commonly termed the scaling coordinate. Any point along a 

scaled curve S  associated with 0   can be completely described by the coordinate 

s  which is known as the boundary coordinate. It can also be pointed out that a straight 

line 0,a s b     and a straight line 1,a s b     in the s   plane are mapped to 

the scaling center 0x  and the defining curve C  in the 1 2x -x  plane, respectively. In 

addition, any straight line 0, 0s s    in the s   plane is mapped to a radial line 

0( )L s s  passing through the scaling center and the defining curve C . 
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Figure 3.1: Schematic of scaling center  and defining curve  used in the scaled 

boundary coordinate transformation 

 

It is apparent from the coordinate transformation (3.1) that partial derivatives with 

respect to the scaled boundary coordinates { , }s  can be related to those with respect to 

the Cartesian coordinates 1 2{ , }x x  by 

 

1

2

1

x

s x





   
      

   
    

       

J                   (3.2) 

 

where J  is the Jacobian matrix of transformation given by 

 

1 2

1 2

1 2
1 2

ˆ ˆ

ˆ ˆ
1 1

x x
x x

dx dx
x x

ds ds
s s

 

 

  
       
   
    

J                            (3.3) 

 

By inverting the relation (3.2), it gives rise to 

 

0x C
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2
2

1 1

1
1

2

ˆ
ˆ

1

ˆ1 1
ˆ

dx
x

x ds

dxJ
x

x s sds

 

 



        
             

        
        

             

J                          (3.4) 

 

where 1 2 2 1
ˆ ˆ ˆ ˆdetJ x dx ds x dx ds  J / / . Based on the transformation (3.1), it can also be 

verified that an infinitesimal element d  along any straight line with a constant s  in 

the s   plane is mapped to an infinitesimal element dl  in the 1 2x x  plane such that   

 

2 2 2 2

1 2 1 2
ˆ ˆ ˆ ˆ( ) ,   ( )dl x x d J s d J s x x                     (3.5) 

 

Similarly, an infinitesimal element ds  along any straight line with the constant   in 

the s   plane is mapped to an infinitesimal element dl  in the 1 2x x  plane such that 

 

       
2 2 2 2

1 2 1 2
ˆ ˆ ˆ ˆ/ / ( ) ,   ( ) / /s sdl dx ds dx ds ds J s ds J s dx ds dx ds     

         (3.6) 

 

In addition, the an infinitesimal rectangular area d ds  in the s   plane is mapped to 

an infinitesimal area dA  in the 1 2x x  plane such that 

 

dA J d ds                     (3.7) 

 

Now, by applying the relation (3.4), the linear differential operators   and L  defined 

in the 1 2x x  plane by (2.3) and (2.4), respectively, can be expressed in terms of 

derivative with respect to the scaled boundary coordinates by  

 

1 2

1ˆ ˆ( ) ( )s s
s 

 
 

 
L b b                  (3.8) 

3 4

1ˆ ˆ( ) ( )s s
s 

 
  

 
b b                  (3.9) 

 

where the matrices 1b̂ , 2b̂ , 3b̂  and 4b̂  depends only on the boundary coordinate and 

are given explicitly by 

 

2 2

1 1 2 1

1 2 1 2

ˆ ˆ0 0
1 1ˆ ˆˆ ˆ( ) 0 ( ) 0

ˆ ˆ ˆ ˆ

dx ds x

s dx ds s x
J J

dx ds dx ds x x

   
   

  
   
       

/

b /    ,    b

/ /

           (3.10) 

2 2

3 4

1 1

ˆ ˆ1 1ˆ ˆ( ) ( )
ˆ ˆ

dx ds x
s s

dx ds xJ J

   
    

   

/
b     ,   b

/
             (3.11) 
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By applying the relations (3.8) and (3.9), the product operator L  can also be 

expressed in terms of the scaled boundary coordinates by 

 
2 2 2

5 6 7 8 92 2 2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆ
s s s      

    
     

     
L b b b b b                       (3.12) 

 

where the matrices 5b̂ , 6b̂ , 7b̂  and 8b̂  are defined in terms of the matrices 1b̂ , 2b̂ , 3b̂  

and 4b̂  by 

 

3
5 2

ˆ
ˆ ˆ d

ds


b
b b , 4

6 2 1 4

b
b b b b

ˆ
ˆ ˆ ˆ ˆd

ds
  , 7 1 3

ˆ ˆ ˆb b b , 8 2 4
ˆ ˆ ˆb b b , 9 1 4 2 3

ˆ ˆ ˆ ˆ ˆ b b b b b               (3.13) 

 

It should be noted that if 1̂x  and 2x̂  are linear functions of s , the matrix 5b̂  identically 

vanishes. It is ready, now, to pose the restriction on the geometry of the plate. In the 

present study, the in-plane geometry   must be completely described by a rectangular 

region 1 2 1 2[ , ] [ , ]s s    in the s   plane via the scaled boundary coordinate 

transformation (3.1). The scaling center 0x  and the defining curve C  must exist. Based 

on the description of   in the scaled boundary coordinate system, the geometry is said 

to be closed if the defining curve is closed and opened if the defining curve is opened. 

For the opened geometry, portions of   associated with 1s s  and 2s s  are termed 

the side faces. The geometry   is said to be unbounded if 2   ; otherwise, it is 

bounded. The region contains the scaling center 0x  if 1 0  . 

3.2 Scaled Boundary Finite Element Approximation 

In this section, the discretization of the geometry , the vertical deflection w , and the 

weight function v  based on the scaled boundary finite element approximation is 

introduced. 

3.2.1 Approximation of Geometry 

Since the geometry   is completely described via the transformation (3.1) once the 

scaling center and the defining curve are selected, its discretization can directly be 

achieved by approximating the geometry of the defining curve. The defining curve is 

first discretized into n elements and m nodes with the coordinates 

( ) 0 ( )
ˆ , 1,2,..,x x xi i i m    where ( )x̂ i  can be viewed as the coordinates of the ith node 

relative to the scaling center. The coordinates of any point on the defining curve 

0
ˆ( )x x x s   can be approximated by 

 

0 0 ( ) ( ) 0

1

ˆ ˆ( ) ( ) ( ) N X
m

h h G

i i

i

x s x x s x s x x      


                            (3.14) 

where the superscript “h” is used to indicate the approximation, ( ) ( ) ( )i i s   is the nodal 

basis function defined in terms of the boundary coordinate, (1) (2) ( ){ }N
G

m    
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is a vector containing the nodal basis functions used in the geometry approximation, 

and (1) (2) ( )
ˆ ˆ ˆ{ }X

T

mx x x     is a vector containing the relative coordinates of 

all nodes. The discretization of the geometry   can now be achieved by using the 

transformation (3.1) along with the chosen scaling center and the discretized defining 

curve, and the discretized geometry is denoted by h . With the approximation (3.14), 

the derivatives ˆdx ds /  can be approximated by 

 

ˆh
Gdx

ds


 B X                 (3.15) 

 

where (1) (2) ( )/ { / / / }G G T

md ds d ds d ds d ds   B N . Then, the parameter J  and 

the matrices 1b̂ , 2b̂ , 3b̂ , and 4b̂  can be approximated by 

 

1 2 2 1N X B X N X B X
h G G G GJ                 (3.16) 

2

1 1

1 2

0
1ˆ 0

G

h G

h

G G
J

 
 

  
  

B X

b B X

B X B X

               (3.17) 

2

2 1

1 2

0
1ˆ 0

G

h G

h

G G
J

 
 

  
  

N X

b N X

N X N X

               (3.18) 

2

3

1

1ˆ
G

h

h GJ

 
  

 

B X
b

B X
                (3.19) 

2

4

1

1ˆ
G

h

h GJ

 
  

 

N X
b

N X
                           (3.20) 

 

The approximation of the matrices 5b̂ , 6b̂ , 7b̂ , and 8b̂  can be obtained using (3.13)

(3.13) and (3.16)-(3.20). Finally, the approximate linear differential operator L , and 

L  are given by  

 

1 2

1ˆ ˆh h h

s 

 
 

 
L b b                 (3.21) 

3 4

1ˆ ˆh h h

s 

 
 

 
b b                 (3.22) 

2 2 2

5 6 7 8 92 2 2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆh h h h h h h

s s s      

    
    

     
L b b b b b           (3.23) 
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3.2.2 Approximation of Solution and Weight Function 

By employing the scaled boundary coordinate transformation along with the 

approximation (3.14), the vertical deflection ( , )w w s  can be approximated by 

 

( )

( ) ( ) ( )

1 1

( , ) ( ) ( ) ( ) ( )

hm m
ih h h S h

i i i

i i

w
w w s s w s

s
    

 


   


  N W           (3.24) 

 

where ( ) ( )h

iw  and ( ) ( )/h

iw s   are the vertical deflection and its gradient along the line 

( )is s , ( ) ( )i s and ( ) ( )i s  are nodal basis functions defined in terms of the boundary 

coordinate,  (1) (1) (2) (2) ( ) ( ){ }S

m m     N  is a vector containing all 

nodal basis functions, and  (1) (1) (2) (2)( ) ( )/ ( ) ( )/  h h h h hw w s w w s       W  

( ) ( )( ) ( )/
T

h h

m mw w s   is a vector containing all functions ( ) ( )h

iw  and ( ) ( )/h

iw s  . 

Note that the basic functions ( ) ( )i s and ( ) ( )i s  can be constructed locally based on 

Hermitian polynomials of a cubic order defined on each element (e.g., [63, 64]) and 

this, therefore, ensures the satisfaction of the 1C  -continuity and integrability 

requirement. 

Now, the in-plane moment vector ( )w M E L  and the gradient of the 

deflection w  can also be approximated by 

 
2 2 2

5 6 7 8 92 2 2 2

1 1 1 1ˆ ˆ ˆ ˆ ˆ( )h h h h h h h h h S hw
s s s      

     
        

      
M E L E b b b b b N W    

           
2

68 59 72 2

1 1 h h
h d d

d d   

 
    

 

W W
       E B W B B               (3.25)  

3 4 4 3

1 1ˆ ˆ
h

h h h h S h h d
w

s d   

  
    

  

W
b b N W B W B            (3.26) 

 

where the matrices 3B , 4B , 59B , 68B  and 7B  are given by 

 

3 3
ˆ h SB b N                  (3.27) 

4 4
ˆ

S
h d

ds


N
B b                  (3.28) 

59 5 9
ˆ ˆ

S
h S h d

ds
 

N
B b N b                 (3.29) 

2

68 6 8 2
ˆ ˆ

S S
h hd d

ds ds
 

N N
B b b                (3.30) 

7 7
ˆ h SB b N                                           (3.31) 
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Similarly, the weight function v  and the corresponding quantities vL  and v  can 

be discretized using the same basis functions 

 

( )

( ) ( ) ( )

1 1

( , ) ( ) ( ) ( ) ( )

hm m
ih h h S h

i i i

i i

v
v v s s v s

s
    

 


   


  N V            (3.32) 

2 2 2

5 6 7 8 92 2 2 2

2

68 59 72 2

1 1 1 1ˆ ˆ ˆ ˆ ˆ

1 1

h h h h h h h h S h

h h
h

v
s s s

d d

d d

      

   

     
     

      

  

L b b b b b N V

V V
           B V B B



         (3.33) 

3 4 4 3

1 1ˆ ˆ
h

h h h h S h h d
v

s d   

  
    

  

V
b b N V B V B            (3.34) 

 

where ( ) ( )h

iv  and ( ) ( )/h

iv s   are arbitrary function defined along the line ( )is s  and 

(1) (1) (2) (2) ( ) ( ){ ( ) ( )/ ( ) ( )/ ( ) ( )/ }h h h h h h h T

m mv v s v v s v v s           V is an 

arbitrary vector containing all functions ( ) ( )h

iv  and ( ) ( )/h

iv s  . 

3.3 Scaled Boundary Finite Element Equations 

In this section, a set of scaled boundary finite element equations are formulated for a 

representative plate with a general geometry   shown in Figure 3.2. The boundary of 

the domain   is assumed consisting of four parts resulting from the scaled boundary 

coordinate transformation (3.1) with the scaling center 0x  and defining curveC : the 

inner boundary 1  , the outer boundary 2 , the side-face-1 1

s  and the side-face-2 2

s . 

The approximate geometry  h  is achieved via the discretization of the defining curve 
hC  along with the mapping region    1 2 1 2, ,s s    in the s   plane. More specifically, 

the approximate inner boundary 1

h , the approximate outer boundary 2

h , the side-face-

1 1

s , and the side-face-2 2

s  are fully described by a curve 1 1 2,s s s    , a curve, a 

straight line 1 1 2,s s      , and a straight line 2 1 2,s s      , respectively;

2 1 2, s s s    . 

By focusing on the representative geometry   shown in Figure 3.2 along with 

the boundary decomposition  1 2 1 2

s s       , the weak-form equation (2.18) 

becomes  

 

1 2 1 2

( ) ( )
s s

Tv w dA vpdA vV dl vV dl vV dl vV dl   

     

         L E L 

   1 2 1 2

( ) ( ) ( ) ( )
s s

T T T Tv dl v dl v dl v dl   

   

      M M M M                       (3.35) 
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Figure 3.2: Schematic of a representative  and its approximation . The dashed 

lines are used to represent the approximation of the defining curve, the inner and outer 

boundaries. 

 

By applying the transformation eq.(3.1) along with the relations (3.5)-(3.7) to the weak-

from equation (3.35), it yields 

 
2 2 2 2 2 2

1 2

1 1 1 1 1 1

2 2 2 2

1 21 2

1 1 1 1

1 1 2 2

1 1 2 2 1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )s s

s s s s

T s s

s s s s

s s

s s T s T s

s s

v w Jd ds vp Jd ds vV J s ds v V J s ds

v V J d v V J d v J s ds v J s ds

 

 

 

 

 

     

   

 

  

  

   

     

   

L E L

M M

 

 

        
2 2

1 2

1 1

1 1 2 2( ) ( )s s

s T s Tv J d v J d

 

 

 

 
 

  M M              (3.36) 

 

where 1v , 2v , 
1

sv , and 
2

sv are the restriction of the weight function v  on the boundaries 

1  , 2 , 1

s , and 2

s , respectively; 
1

V ,
2

V ,
1
sV


, and 

2
sV


 are the vertical force per unit 

length on the boundaries 1  , 2 , 1

s , and 2

s , respectively; 
1M ,

2M ,
1
s

M , and 
2

s
M  

are the in-plane moments on the boundaries 1  , 2 , 1

s , and 2

s ,  respectively; 

1 1( )J J s  ; and 2 2( )J J s  . Next, by applying the approximation (3.25) and (3.33) 

along with the geometry discretization, the first integral on the left-hand side of (3.36)

, denoted by 1I , becomes 

 

2 2

1 1

1 68 59 , 7 , 68 59 , 7 ,2 2

1 1 1 1
Ts

h h h h h h

s

Jd ds



   



 
   

   
       

   
  B V B V B V E B W B W B WI

    
                  (3.37) 

 

 h
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where ,( )   denotes the derivative with respect to the scaling coordinate  . By 

manipulating the involved matrix algebra, the integral 1I  can be expressed as 

 
2

1

2

1

1 5 4 , 2 ,3 2

, 4 3 , 1 ,2

1 1 1
( )

1 1
    ( )

h T h T h T h

h T h h T h

d

d



 





  




  


 

 
   

 

 
   

 





V E W E W E W

V E W E W E W

I

2

1

, 2 1 , 0 ,

1
    ( )h T h h h d



  



 


 
   

 
 V E W E W E W              (3.38)  

 

where the matrices 0E , 1E , 2E , 3E , 4E  and 5E  are defined by 

 
2

1

0 7 7( )

s

T

s

Jds E B EB                 (3.39) 

2

1

1 7 59( )

s

T

s

Jds E B EB                 (3.40) 

2

1

2 7 68( )

s

T

s

Jds E B EB                 (3.41) 

2

1

3 59 59( )

s

T

s

Jds E B EB                 (3.42) 

2

1

4 59 68( )

s

T

s

Jds E B EB                 (3.43) 

2

1

5 68 68( )

s

T

s

Jds E B EB                 (3.44) 

 

It is evident that the matrices 0E , 3E  and 5E  are symmetric. Now, by integrating the 

second and third integrals of (3.38) by parts with respect to the scaling coordinate, it 

leads to 

 
2

1

2

1

1 4 5 3 4 4 , 2 3 , 1 ,3 2

, 2 2 , 0 1 , 0 ,2

1 1 1
( ) (2 ( ) ( )

1 1
    ( ) ( )

h T h T h T h T h

h T h h h h

d

d



  





   




  

 
 

 
        

 

 
      

 





V E E )W E E E W E E W E W

V E W E W E E W E W

I

2 2

1 1

4 3 , 1 , , 2 1 , 0 ,2

1 1 1
    ( ) ( )h T h h T h h T h h h

 

    

 


  

   
        

   
V E W E W E W V E W E W E W

                        (3.45) 
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By further performing the integration by parts of the second integral of (3.45), it finally 

gives rise to 

 

 

 

 

2

1

2

1

2 3 4

1 0 1 , 2 , 3 , 0 ,3

2

0 1 , 2 , 0 , 2

1

0 1 , 2 , 0 , 1

2 2

, 2 1 , 0 ,

1
( )

    ( )

    ( )

1
    ( )

h T h h h h h

h T h h h h

h T h h h h

h T h h h

d



   



    

    

  

    













     

    

   


   



 V W W W W E W

V W W W E W

V W W W E W

V E W E W E W M

E E E E F

G G G P

G G G +P

I


2

2

 


1

1 12

, 2 1 , 0 ,

1
    ( )h T h h h

    


 


   


V E W E W E W M               (3.46) 

 

where 
1

1( )h h   V V ,
2

2( )h h   V V , 
1

, , 1( )h h

    V V  and 
2

, , 2( )h h

    V V .  

Now, the integral associated with the prescribed transverse load p  on the right hand 

side of (3.36), denoted by 2I , can be approximated by 

 
2 2 2

1 1 1

2 ( ) ( )

s

S h T h T p

s

p Jd ds d

 

 

      N V V FI              (3.47) 

 

where p
F  is a prescribed matrix defined by 

 
2

1

( )

s

p S T

s

pJds F N                 (3.48) 

 

Similarly, all the boundary terms associated with the vertical force in the weak-form 

equation (3.36), denoted by 3I , can be approximated by 

 

 
2

1

1 1 2 2 1 2

3 ( ) ( ) ( )h T h T h T V V d





   V P V P V F FI             (3.49) 

 

where the matrices 
1

P , 
2

P , 
1V

F , and 
2V

F  are given by 

 
2

1

1

1

1( ) ( )

s

S T s

s

V J s ds P N                (3.50)

2

2

1

2

2( ) ( )

s

S T s

s

V J s ds P N                (3.51) 

1

1 1 1

1( ) ( ) s

V V S T V J 


 F F N                (3.52) 
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2

2 2 2

2( ) ( ) s

V V S T V J 


 F F N                (3.53) 

 

and 
1

1( )S S s s N N , 
2

2( )S S s s N N . By following the same procedure, all the 

boundary terms associated with the moment in the weak-form equation, denoted by 4I

, can be approximated by 

 

2 2

1 2

1 1

1 1 2 2

4 4 3 , 1 4 3 , 2

1 2

1 1
( ) ( )

T Ts s

h h s h h s

s s

J s ds J s ds  
 

 

   
      

   
 B V B V M B V B V MI

2 2

1 2

1 1

1 1 2 2

4 3 , 1 4 3 , 2

1 1
    s s

T T

h h h hJ d J d

 

 

 

 

 
  

   
      

   
 B V B V M B V B V M           (3.54) 

 

where
1

3 3 1( )s s B B , 
2

3 3 2( )s s B B , 
1

4 4 1( )s s B B , and 
2

4 4 2( )s s B B . By 

manipulating the matrix operations and performing the integration by parts of terms 

associated with ,

h

V , (3.54) reduces to 

 

 
2

1

1 11 1 12 2 21 2 22

4 , ,

11 21 12 22

, ,

( ) ( ) ( ) ( )

    ( )

h T h T h T h T

h T M M M M d

 



 





   

   

V M V M V M V M

V F F F F

I

   
2 1

2 12 22 1 12 22    ( ) ( )h T M M h T M M

    
   V F F V F F

            

(3.55) 

 

where all the matrices 
11

M , 
12

M , 
21

M , 
22

M , 
11M

F , 
12M

F , 
21M

F , and 
22M

F  are defined 

explicitly by 

 
2 2

1 1

1 1

11 12

4 3 1( ) ( ) ,    ( ) ( )

s s

T s T s

s s

J s ds J s ds   M B M M B M                        (3.56) 

2 2

2 2

1 1

21 22

4 3 2( ) ( ) ,    ( ) ( )

s s

T s T s

s s

J s ds J s ds   M B M M B M            (3.57) 

1 1

11 11 1 12 12 1

4 1 3 1

1
( ) ( ) ,    ( ) ( )s s

M M T M M TJ J  
  

   F F B M F F B M           (3.58) 

2 2

21 21 2 22 22 2

4 2 3 2

1
( ) ( ) ,    ( ) ( )s s

M M T M M TJ J  
  

   F F B M F F B M                      (3.59) 

 

By substituting the approximate integrals 1I , 2I , 3I , and 4I  into the weak-form 

equation(3.36), it finally gives 
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 

 

 

2

1

2

1

2 3 4

0 1 , 2 , 3 , 4 ,3

2

0 1 , 2 , 3 , 2

1

0 1 , 2 , 3 , 1

2

, 2

1
( )

             ( )

             ( )

1
             ( )

h T h h h h h

h T h h h h

h T h h h h

h T h

d



   



    

    



    








    

    

   



 V W W W W W

V W W W W

V W W W W

V E W

E E E E E F

G G G G P

G G G G +P

2

22

1 , 0 ,

h h

 

 




 
   

 
E W E W M

1

1 12

, 2 1 , 0 ,

1
             ( ) 0h T h h h

  

 






 
     

 
V E W E W E W M           (3.60) 

 

where the matrices F , 0E , 1E , 2E , 3E , 4E , 0G , 1G , 2G , 3G , 1P  and 2P  are given by 

 
4 3 1 2 11 21 12 22( )

, ,

p V V M M M M

        F F F F F F FF                                           (3.61)        

0 2 4 52 2  E E EE                 (3.62)

  

1 2 3 4 42 T    E E E EE                (3.63)

 

2 2 2 3

T  E E EE                 (3.64)

 

3 0 1 12 T  E E EE                 (3.65)

 
4 0 EE                  (3.66)

 
2

0 2 4( ) /  E EG                 (3.67)

 
1 2 3( ) /  E EG                 (3.68)

 

2 0 1 1

T   E E EG                 (3.69)

 
3 0  EG                  (3.70)

 
1 11 12 22

1

M M   P M F FP                (3.71)

 
2 21 12 22

2

M M P M + F + FP                (3.72) 

 

Now, by employing the arbitrariness of h
V  and its values and gradient on the boundary, 

it can be concluded from (3.60) that 

 
2 3 4

0 1 , 2 , 3 , 4 , 1 2   ( , )h h h h h

               W W W W WE E E E E F          (3.73) 
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11

12

1

22

22

2

( )

( )

( )

( )

h

h

h

h









   
   

   
   

   
     

M

M

Pq

m

Pq

m

                 (3.74) 

 

where the matrices 
hq  and hm , known as the nodal internal force and moment, are 

given by 

 

0 1 , 2 , 3 ,( )h h h h h

      W W W Wq G G G G              (3.75)

 

2 1 , 0 ,

1
( )h h h h

  


  E W E W E Wm               (3.76) 

 

A system of equations (3.73)-(3.74) is commonly known as the scaled boundary finite 

element equations governing the unknown nodal functions ( )h h W W . The first 

equation (3.73) is a system of linear, fourth-order, non-homogeneous, ordinary 

differential equations whereas the remaining four equations constitute the boundary 

conditions on the inner and outer boundaries of the plate.  



 

 

CHAPTER 4  

SOLUTION METHODOLOGY 

This chapter presents the procedure for obtaining the analytical solution of a linear 

system, fourth-order, ordinary differential equations, nonhomogeneous(3.73) and the 

boundary conditions(3.74). A corresponding nonlinear eigenvalue problem is first 

solved to determine the homogeneous solution. A particular solution of the obtained 

system of linear differential equations using the method of undetermined coefficient 

with the distributed transverse loads and the prescribed conditions on the side faces. 

The general solution is obtained, the boundary conditions on the boundary of the plate 

are enforced to determine all involved constants. Finally, the post-process for all field 

quantities of interest such as the vertical deflection, internal shear forces and bending 

moments are presented. 

4.1 Determination of Homogeneous Solution 

The homogenous solution of a system of Euler-Cauchy differential equations (3.73), 

denoted by 
h

hW , is obtained by solving a system of Euler-Cauchy ordinary differential 

equations 

 
2 3 4

0 1 , 2 , 3 , 4 , 0h h h h h

h h h h h          W W W W WE E E E E             (4.1) 

 

It is well known that 
h

hW  must admit the following form 

 

1

i

N
h

h i i

i

c




 W                     (4.2)  

 

where N  denotes the number of solution terms, 
i

  denotes the thi  modal scaling factor 

for the radial direction, and 
i

  represents the thi  independent deformation mode. By 

substituting (4.2) into(4.1), it leads to a fourth-order eigenvalue system governing both  

i
  and

i
  :  

 
4 3 2

4 3 4 2 3 4 1 2 3 4 4
[ ( 6 ) ( 3 11 ) ( 2 6 ) ] 0

i i i i i
             E E E E E E E E E E E           (4.3) 

 

This eigenvalue problem (4.3) can be solved numerically by a selected efficient Eigen 

search algorithm (e.g., QZ factorization, polynomial root search, etc.). The 

homogeneous solution now can be expressed as  

 

   h

h w

         W C C F C                    (4.4) 
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where ( )
w

 F ΦΠ , Φ  is a matrix whose thi  column containing the eigenvector 
i

 , Π  

is a diagonal matrix containing i ; C  is a vector containing unknown constants;  

and    are matrices whose columns containing eigenvectors associated with 

eigenvalues with the positive real part and negative real part, respectively;  and 

are diagonal matrices whose the diagonal containing function i  for eigenvalues with 

the positive real part and negative real part, respectively; and C and C  are arbitrary 

constants.  Note that the arbitrary constants C
 and C

 reflect the weightings of the 

corresponding modal deformation due to the boundary conditions. It is apparent that 

the diagonal entries of   and   become infinite when     and 0  , 

respectively. As a result, C  is taken to 0  to ensure the boundedness of the solution 

for unbounded bodies and, similarly, the condition C 0   is enforced for bodies 

containing the scaling center. Once the homogeneous solution
 

h

hW  is
 
obtained, by 

substituting (4.4) into (3.75)-(3.76), the corresponding nodal internal force and bending 

moment, denoted by ( )h

h q  and ( )h

h m , respectively, are given by 

 

          0 1 2 3, , ,
( )h

h w w w w q  
         F F F F C F Cq G G G G            (4.5) 

       2 1 0, ,

1
( )h

h

w w w m 
     



 
    

 
E F E F E F C F Cm            (4.6) 

4.2 Determination of Particular Solution 

A particular solution of the obtained system of linear differential equations (3.73) 

associated with applied transverse loads and prescribed conditions on the side faces, 

denoted by ( )h

p W , is obtained systematically using the method of undermined 

coefficients. In the present study, the transverse load p , the vertical forces on the side-

face-1 
1
sV


, the vertical forces on the side-face-2 

2
sV


, the in-plane moment vector on 

the side-face-1 
1
s

M , and the in-plane moment vector on the side-face-2 
2
s

M of the 

plate are assumed to admit the form 

 

   
*

, j

j

jp s p s




 


                     (4.7)

 

 
1 1

*

j

s s
j

j

V V




 
 



                    (4.8)  

 
2 2

*

j

s s
j

j

V V




 
 



                   (4.9) 

 
1 1

*

j

s s
j

j





 
 



 M M                (4.10) 

 
2 2

*

j

s s
j

j





 
 



 M M                (4.11) 
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where *  denotes a set of non-negative real numbers,  jp s  are prescribed functions 

of s  and 
1
s

j

V


, 
2
s

j

V


, 
1
s

j
M  and 

2
s

j
M  are prescribed constants. Substituting (4.7) into 

(3.48), (4.8) into (3.52), (4.9) into (3.53), (4.10) into (3.58) and (4.11) into (3.59) yields 

 

*

j

j

p p

j








 F F                (4.12) 

*

1 1j

j

j

V V






 F F                 (4.13) 

*

2 2j

j

V V

j








 F F                (4.14) 

11 12

* *

1 111 12

,  ,,    
M M

j j

j j

M M

j j j

 

 

 

  
 

 

  F F F F            (4.15) 

21 22

* *

1 121 22

 ,,    
M M

j j

j j

M M

j j j

 



 

  
 

 

  F F F F            (4.16) 

 

where 
p

jF  is defined, in terms of the prescribed data, by  

 

     

    

2

1

(1) (1)

( ) ( )

( ) ( ) ( )

                                         ( ) ( )

o o

i i

o o

i i

s
s s

p S T

j j j j
s s

s

T
s s

j j j j
s s

p s Jds s p s Jds s p s Jds

s p s Jds s p s Jds

 

 

   

 

F N

        (4.17) 

 

and 
1

j

V
F , 

2V

jF , 
11M

jF , 
12M

jF , 
21M

jF  and 
22M

jF  can be defined as follows. Without loss of 

generality, the first node  1 and the last node  j  resulting from the discretization of 

opened bodies are taken as a node on the side-face-1 and a node on the side-face-2, 

respectively, and this applies in what follows. It should be remarked from the Kronecker 

property of the nodal basis function that (1) 1( ) 1s  , (j) 1( ) 0s  , (1) 1( ) 0s  , (j) 1( ) 0s 

2j  , (1) 2( ) 0s  , (j) 2( ) 0s  , (1) 2( ) =1 s and (j) 2( ) 0s  2j m   . Now, both 

the matrices 1S
Ν  and 2S

Ν  clearly contain many zero entries and simply take the form 

 

 S1
I 0 0 0

m×m m×m m×m m×m
N               (4.18) 

 S 2
0 0 I 0

m×m m×m m×m m×m
N               (4.19) 

 

Substituting (4.18) into (4.13) and (4.19) into (4.14) leads to 
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 
1 1

1 1

1 1( )j s s
j j

T
V S TV J V J 

 
 F N 0 0 0             (4.20) 

 
2 2

2 2

2 2( ) s s
j j

T
V S T

j V J V J 

 
 F N 0 0 0 0             (4.21) 

11

1

1

4 1( )
M

s
j

T

j J 


F B M                  (4.22) 

12

1

1

 , 3 1( )
M

s
j

T

j J 

 
F B M                 (4.23) 

21

2

2

4 2( )
M

s

T

j J 


F B M                 (4.24) 

22

2

2

 , 3 2( )
M

s

T

j J 

 
F B M                 (4.25) 

 

Based on this form of prescribed data, the particular solution  h

p W must take the 

form 

 

 
* * * * *

4 1 13 1 2 11 21j j j j j

j j j j j

h p V V M M

p j j j j jc c c c c
    

    

      
  

    


    


    W

 

* *

1 112 22j j

j j

dM dM

j j j jc c
 

 

   
 

 


  


                           (4.26) 

 

where 
p

jc , 
1V

jc , 
2V

jc , 
11M

jc , 
12dM

jc , 
21M

jc ,
12dM

jc and 
22dM

jc  are vectors of unknown 

constants. By substituting (4.12)-(4.16) and (4.26) into(3.73), it leads to 

 

         

    

         

    

        

*

*

1

*

4

0 1 2 3

4

3

0 1 2 3

1

4

3

0 1 2 3

4 4 3 4 3 2

4 3 2 1

3 3 2 3 2 1

3 2 1

3 3 2 3 2

j

j

p

j

j

V

j

j

j j j j j j

p

j j j j j j

j j j j j j

V

j j j j j j

j j j j j j

c

c













      

   

      

   

      













        

      


        

     


       







F

F

E E E E

E

E E E E

E

E E E E  

    
22

4

1

3 2 1
VV

j j j j j jc   



     


FE
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        

    

        

    

*

11

*

21

2

0 1 2 3

11

4

2

0 1 2 3

21

4

2 2 1 2 1

2 1 1  

2 2 1 2 1

2 1 1   

j

j

M

j

j

M

j j j j j j

M

j j j j j j

j j j j j j

M

j j j j j j

c

c









      

   

      

   









       

     


       

    






F

F

E E E E

E

E E E E

E

        

   

        

*

12

*

2 2

0 1 2 3

2 12

4  ,

2 2

0 1 2 3

2 2 1 2 1

2 1 1

2 2 1 2 1

j

j

M

j

j

j j j j j j j j j

dM

j j j j j j

j j j j j j j j j

c











         

   

         









        


     


        






F

E E E E

E

E E E E

   
222 22

4  ,2 1 1 0
MdM

j j j j j jc          


FE                      (4.27) 

 

Equation (4.27) can be satisfied 1 2( , )    if and only if 

 

         0 1 2 34 4 3 4 3 2j j j j j j             E E E E
  

    4 4 3 2 1
pp

j j j j j jc         FE              (4.28) 

         0 1 2 33 3 2 3 2 1j j j j j j             E E E E
 

    
11

4 3 2 1
VV

j j j j j jc        FE              (4.29) 

         0 1 2 33 3 2 3 2 1j j j j j j             E E E E
  

    
22

4 3 2 1
VV

j j j j j jc        FE              (4.30)

        0 1 2 32 2 1 2 1j j j j j j            E E E E   

    
1111

4 2 1 1  
MM

j j j j j jc       = FE              (4.31) 

        0 1 2 32 2 1 2 1j j j j j j            E E E E

    
2121

4 2 1 1  
MM

j j j j j jc        FE                     (4.32) 

        2

0 1 2 32 2 1 2 1j j j j j j j j j               E E E E

   
122 12

4  ,2 1 1 0
MdM

j j j j j jc         FE                  (4.33) 

        2

0 1 2 32 2 1 2 1j j j j j j j j j               E E E E

   
222 22

4  ,2 1 1 0
MdM

j j j j j jc         FE                   (4.34) 
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A system of linear algebraic equations (4.28)-(4.34) is sufficient for determining all 

unknown constant vectors
p

jc , 
1V

jc , 
2V

jc , 
11M

jc , 
21M

jc 12dM

jc and 
22dM

jc . Once the particular 

solution
 

 h

p W is
 
obtained, the corresponding particular the nodal internal force and 

moment, denoted by ( )h

p q and ( )h

p m  respectively, are given by
 

 

0 1 , 2 , 3 ,( )h h h h h

p p p p p      W W W Wq G G G G                   (4.35)

 

2 1 , 0 ,

1
( )

hh h h

p p p p  


  E W E W E Wm             (4.36) 

4.3  Final General Solution 

The general solution ( )h W  of the system of differential equations (3.73) and the 

corresponding general nodal internal force ( )h q  and general nodal bending moment 

( )h m  are then given by 

 

         h h h h

h p w p       W W W F C W            (4.37) 

 ( ) ( )+ ( )= + ( )h p p

h h h h

q     F Cq q q q             (4.38) 

 ( ) ( ) ( )= ( )h h h h

h p m p      F Cm m m m             (4.39) 

 

where ( )h

h q , ( )h

h m , ( )p

h q  and ( )h

p m  are given by (4.5), (4.6), (4.35) and (4.36), 

respectively. To determine the constants contained in C , the boundary conditions on 

both inner and outer boundaries are enforced. By substituting (4.38) and (4.39) into 

(3.74), it results in  

 

 

 

 

 

 

 

 

 

1 1, ,

3 2 1 0 3 2 1 0
1 1, , 1

12
0 1 2 0 1 21 1, ,

1 1

1 1
0 0

h

w p

h

w p

h

w p

h

w p

 

 

 

 

 

  
 

 

  
     
                             

   

F W

F W
C

E E E E E E MF W

F W

G G G G G G G G
P

                     (4.40) 

 

 

 

 

 

 

 

 

2 2, ,

3 2 1 0 3 2 1 0
2 2, , 2

22
0 1 2 0 1 22 2, ,

2 2

 1 1
0 0

h

w p

h

w p

h

w p

h

w p

 

 

 

 

 

  
 

 

  
     
                            

   

F W

F W
C

E E E E E E MF W

F W

G G G G G G G G
P

                  (4.41) 

The two systems of equations (4.40) and (4.41) can be combined to obtain 
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 

 

 

 

1 11

12

1 1

2 22

22

2 2

( )

( )
=

( )

( )

p

p

h

q

h

m p

f fph

q

h

m p

 

 

 

 

    
          
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Similarly, kinematical conditions on both inner and outer boundaries of the domain can 

be also obtained as   
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where 
c

F  and cp
F  are defined by 
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From the relation (4.43), the constant vector C  can be expressed as 

 
1 1

c c cp

  C F U F F                 (4.45) 

 

where the vector U is defined by 
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By substituting (4.45) into the relation (4.42), it leads to a well-known system of linear 

algebraic equations 

 

=P KU                 (4.47) 

 

where the load vector P  and the stiffness matrix K  are defined by 
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By enforcing both essential and natural boundary conditions on the inner and outer 

boundaries of the plate, the system of linear algebraic equations (4.47) can be solved to 

obtain all unknowns on the boundary. Once (4.47) is solved, the constant vector C  and 

the general solution ( )h W  can be obtained from equations (4.45) and (4.37), 

respectively.  

4.4 Post-Process for Field Quantities  

Once the approximate general solution ( )h W  is obtained, the approximate transverse 

displacement at any point ( , )s  can be obtained from (3.24) as 

 

( , ) ( ) ( )W Wh S h S h h

h pw s      N W N             (4.50) 

 

The approximate in-plane moment h
M  can be also computed from (3.25) as 
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CHAPTER 5  

H-HIERARCHICAL ADAPTIVITY 

A level of discretization in the boundary direction has the significant effect on the 

accuracy of approximation solutions by the scaled boundary finite element method. An 

insufficient discretization level can lead to incorrect numerical results [65]. Since the 

exact solution is unknown a priori, the error of approximate solutions must be estimated 

in a certain fashion. In the present study, a moment-recovery error estimator is 

developed to control the adaptive procedure and to provide a solution with an optimal 

error within a prescribed cost range. The discretization along the boundary direction is 

adapted automatically and the solution procedure described above is repeated until the 

estimated error is less than the target error. To specify exact values of all displacements 

or moments under a specified tolerance, the general criterion used for indicating total 

error in engineering use is the energy norm. It is required that the error does not exceed 

a specified percentage of the total energy norm of the solution. However, using a 

moments-recovery of error estimator, it is possible to adaptively refine the mesh in 

order to acquire the accuracy of certain quantities of interest. The h-refinement with the 

same class of elements but different in size, either larger or smaller in some locations, 

is introduced in order to provide optimal economy in achieving the desired solution. 

5.1 Moments-recovery and Error Estimation  

An error estimator is determined based on the recovered moment field and the bending 

energy norm specialized for plate bending problems using the SBFEM. The procedure 

is analogous to that employed by [31] for linear elasticity problems. In this approach, a 

recovery procedure is utilized to construct an approximation of an exact moment field 

within the plate. The recovery total error estimator  
*  can be defined as 
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where ( )sM* ,  is the recovered moment field, ( ) ( ) ( )h

M
s s s   Μ Μ

* *
e , , ,  is the 

error function of the approximate moment field ( )h sΜ , , and 
A

|| ||  is a properly 

selected norm. The approximate moment ( )h sΜ ,  given by (3.25), which is a weighted 

sum of the modal vertical deflections, can be re-written as 
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where the modal moment ( ),
i

sm  is defined by 
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A recovered modal moment, denoted by ( )*
,

i
sm , is sought in a form  

 
2

( )* *
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i i
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where 
*

i
m  denotes the recovered modal moment at the boundary nodes. In the present 

study, a procedure analogous to the work of [31] together with the least square 

technique is employed to construct 
*

i
m . It is evident from (5.4) that each modal moment 

field is 2C -continuous in radial and circumferential directions. The total recovered 

moment field can be formed by multiplying each recovered modal moment field by the 

corresponding modal participation factor 
i

c  by 
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The recovery error function is then obtained as 
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In the present study,   
A

  is chosen as the total energy norm defined for any function 

( )f ,s  such that  

 

 
1 2

1

/

f , f f
T

A
A

s dA 
 

  
 
 E                                           (5.7)   

 

The energy norm of the error function ( )
M

s*
e ,  can then be obtained by substituting 

(3.7) and (5.6) into (5.7) and the result is given by  
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where n is the number of elements in the discretization, ( )*
e ,

M e
s  denotes the energy 

norm of the error in moment within the region modeled by an element e. By using (5.6)

, it leads to 
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where ( , )
i j

I    is a constant resulting from the direct integration of the function 

3i j 


 
 in the radial direction. It is evident that the value of ( , )

i j
I    depends on the 

values of eigenvalues ,
i j

   and the range of integration from the inner to outer 

boundaries. The energy norm of the recovered moment field can be also computed in 

the same way as 
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where ( )*

j
sm  denotes the recovered modal moment on the boundary and ( )*

e
jM

s  is the 

modal moment error on the boundary. Equations (5.9) and (5.10) can be substituted into 

(5.1) to determine the total error estimator 
* .  

5.2 An h-hierarchical Adaptive Procedure 

In general, the size of elements used in the approximation is reduced in regions 

possessing large error under the h-hierarchical adaptive scheme. The whole mesh is 

regenerated from the definition of the domain boundary and the profile of computed 

errors at each analysis step. This type of adaptive procedure can be simply incorporated 

into the existing scaled boundary finite element method [59]. The basic algorithm for 

the adaptivity is straightforward and can be illustrated in Figure 5.1. 

The shape functions from the coarser meshes are retained as the basis for 

constructing the shape functions for the finer meshes in the h-hierarchical scheme. A 

simple method to achieve this is to subdivide any elements in which its error is higher 

than the target error at each analysis step in the adaptive process. Every subsequent 

mesh always contains all nodes of the previous mesh. In addition, the mesh structure 

can be demonstrated efficiently by a tree structure as illustrated in Figure 5.2. Ideally, 

such approach is suitable for object-oriented programming and recursive techniques. 

For one-dimensional elements, a binary tree may be utilized in order to describe the 

refined mesh. A basic example is shown in Figure 5.2. The aim of all adaptive procedure 

is to offer the user a specified level of accuracy at a minimal computational cost. In the 

present investigation, the following optimal criterion is employed 
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( ) ( ) /* * *
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M e
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where 
*  denotes the target error in the energy norm of each element. When the initial 

coarse mesh is built, a first scale boundary finite element analysis is performed and the 

energy norm of the error for a region described by each element ( )*
e ,

M e
s  is 

computed. Each element will be refined if the above criterion (5.11) is not satisfied. 

The analysis process is repeated until the estimated error of each element becomes less 

than the target error for the entire discretization.  
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Figure 5.1: Diagram indicating algorithm for h–hierarchical adaptive scheme in scaled 

boundary finite element method (Adapted from “The scaled boundary finite element 

method” by Wolf, J.P., 2003, Book of John Wiley & Sons Ltd, p. 336 [30]) 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Local refinement strategies; an h-hierarchical refinement is related to a 

binary tree of two-node line elements (Adapted from “The scaled boundary finite 

element method” by Wolf, J.P., 2003, Book of John Wiley & Sons Ltd, p. 336 [30]) 
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CHAPTER 6  

NUMERICAL RESULTS 

The proposed scaled boundary finite element method together with the h–hierarchical 

adaptive scheme has been successfully implemented in terms of an in-house computer 

code. In this chapter, results of various representative examples are reported to not only 

verify the formulation and numerical implementation but also demonstrate the accuracy 

and computational efficiency of the developed SBFEM. In the verification, plate 

problems with existing reference and analytical solutions are considered. 

6.1 Verifications 

Several problems with analytical or reference solutions are presented in this section to 

verify the implemented SBFEM without using the adaptive algorithm. Standard two-

node elements with Hermite cubic shape functions are employed in the discretization 

of the trial and test functions whereas standard two-node, linear, straight and circular-

arc elements are utilized to discretize the straight and circular-arc defining curves, 

respectively. 

6.1.1 Circular plate with concentric hole under transverse shear 

First, consider a circular elastic plate containing a concentric circular hole as shown 

schematically in Figure 6.1. The thickness, outer radius and inner radius of the plate are 

given by t , b and a, respectively, and Young modulus and Poisson ratio of the 

constituting material are given by E = 200,000 N/mm2 and   = 0.3. The plate is fully 

fixed against the movement along the entire outer boundary whereas its inner boundary 

is subjected to a uniform transverse shear load V  = 10 N/cm. For this particular 

problem, the analytical solution for the deflection and the bending moment can be 

readily constructed using results from the work of [66]. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Schematic of circular plate containing concentric circular hole clamped 

along its entire outer boundary and loaded by uniform transverse shear load along its 

entire inner boundary 
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Figure 6.2: Schematic of uniform meshes with 4, 8, 16, 32 and 64 two-node elements 

used in discretization of defining curve  

 

The center of the plate and the outer boundary are chosen as the scaling center and the 

defining curve, respectively. Meshes of the defining curve used in the analysis are 

shown in Figure 6.2. The computed numerical results are reported in Table 6.1-Table 

6.3 for the deflection at a point A, the bending moment at a point B and the radial 

rotation at a point A, respectively. It can be seen that numerical solutions generated by 

the proposed technique for all meshes are in good agreement with the analytical 

solutions. The convergence of numerical results is investigated and confirmed, and the 

percent error of field quantities is also plotted against the number of elements used in 

the discretization in Figure 6.3. Obtained results indicate that the rate of convergence 

for the bending moment is lower than that of the deflection. It is evident from results 

shown in Figure 6.4 that the proposed technique exhibit excellent convergence 

characteristics to analytical solutions as the number of elements in the discretization 

increases; the discretization with only four elements can accurately capture the solution 

with error less than 61 10 % in comparison with the analytical solution. 

 

Table 6.1: Deflection at point A for circular plate containing concentric circular hole 

clamped along its outer boundary and loaded by uniform transverse shear load along 

inner boundary for various ratios of t b . 

 

 

 

 

 

 

 

 

0.1 (e-3) 0.05  (e-2) 0.02 0.005

4 (8) 0.1271928833 0.1017543068 0.0158991104 1.0175430620

8 (16) 0.1271928829 0.1017543063 0.0158991104 1.0175430639

16 (32) 0.1271928830 0.1017543064 0.0158991104 1.0175430642

32 (64) 0.1271928832 0.1017543065 0.0158991104 1.0175430638

64 (128) 0.1271928829 0.1017543061 0.0158991104 1.0175430645

Analytical sol. 0.1271928830 0.1017543064 0.0158991104 1.0175430639

t/b
Elem. (Dof.)



 

 

45 

Table 6.2: Radial bending moment at point B (
210rM  ) for circular plate containing 

concentric circular hole clamped along its outer boundary and loaded by uniform 

transverse shear load along inner boundary for various ratios of t b . 

 

 
 

 Table 6.3: Radial rotation at point A ( r ) for circular plate containing concentric 

circular hole clamped along its outer boundary and loaded by uniform transverse shear 

load along inner boundary for various ratios of t b . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1 0.05 0.02 0.005

4 (8) -2.3793796522 -2.3793796788 -2.3793796813 -2.3793796846

8 (16) -2.3793796581 -2.3793796798 -2.3793796838 -2.3793797197

16 (32) -2.3793796235 -2.3793796585 -2.3793796423 -2.3793796749

32 (64) -2.3793794513 -2.3793794449 -2.3793795144 -2.3793795784

64 (128) -2.3793802323 -2.3793802683 -2.3793807904 -2.3793796653

Analytical sol. -2.3793796765 -2.3793796765 -2.3793796765 -2.3793796765

Elem. (Dof.)
t/b

0.1 (e-5) 0.05 (e-4) 0.02 (e-3) 0.005 (e-2)

4 (8) -0.4236789258 -0.3389431402 -0.5295986603 -3.3894314393

8 (16) -0.4236789281 -0.3389431423 -0.5295986603 -3.3894314251

16 (32) -0.4236789284 -0.3389431427 -0.5295986606 -3.3894314265

32 (64) -0.4236789286 -0.3389431434 -0.5295986604 -3.3894314265

64 (128) -0.4236789282 -0.3389431410 -0.5295986602 -3.3894314286

Analytical sol. -0.4236789283 -0.3389431426 -0.5295986603 -3.3894314261

Elem. (Dof.)
t/b
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Figure 6.3: Percent error of numerical solutions versus number of elements for circular 

plate containing concentric circular hole clamped along its outer boundary and loaded 

by uniform transverse shear load along inner boundary  0.05t b  . 
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Figure 6.4: Deflection at point A, radial bending moment at point B, and radial rotation 

at point A of circular plate containing concentric circular hole clamped along its outer 

boundary and loaded by uniform transverse shear load along inner boundary

 0.05t b  . 
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6.1.2 Circular plate under applied moment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: Schematic of simply-supported, elastic, circular plate subjected to moments 

along its boundary 

 

Now, consider a simply-supported, elastic, circular plate of radius 20 cma   and 

thickness 0 2 cm.t   as shown in Figure 6.6. The plate is made of an isotropic, linearly 

elastic material with Young modulus E  = 200,000 N/mm2 and Poison ratio   = 0.3 

and subjected to the distributed moment 275 N-cm/cmM  . The scaling center is 

chosen at the center of the plate and the outer boundary is treated as the defining curve. 

For this particular problem, the analytical solution for the transverse displacement is 

given, again, by [66].  
 

Table 6.4: Deflection for simply-supported, elastic, circular plate subjected to 

distributed moments along its boundary. 

 

 
 

0 0.25 0.5 0.75 1

2(4) 2.8586169 2.7070244 2.1656213 1.2632802 0.0000000

4 (8) 2.8586444 2.7070306 2.1656240 1.2632808 0.0000000

8 (16) 2.8640574 2.7070500 2.1656298 1.2632825 0.0000000

16 (32) 2.8641574 2.7070300 2.1656264 1.2632825 0.0000000

Analytical sol. 2.8875000 2.7070312 2.1656250 1.2632813 0.0000000

Elem. (Dof.)
r/a
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Figure 6.6: (a) Plot of deflection for simply-supported, elastic, circular plate subjected 

to distributed moments along its boundary and (b) mesh containing 4 elements. 
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Figure 6.7: Error in deflection of simply-supported, elastic, circular plate subjected to 

distributed moments along its boundary 

 

The scaled boundary finite element mesh used in the analysis is shown in Figure 6.6(b). 

The transverse deflection along the radial direction of the plate is reported in Table 6.4 

for various values of the ratio r a  and, as illustrated in Figure 6.6(a), the maximum 

deflection occurs at the center of the plate. The percent error of computed deflection 

along the x1-direction is also shown in Figure 6.7 for four different levels of 

discretization. Clearly, the maximum error in deflection occurs at the scaling center. 

 

(a)     (b) 
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6.1.3  Circular plate with concentric hole under applied moment   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Schematic of circular plate containing concentric circular hole and 

subjected to uniform moments along its inner boundary 

 

Consider, next, an elastic circular plate containing a concentric circular hole and fully 

clamped along its outer boundary as shown in Figure 6.8. The thickness t, the inner 

radius a, and the outer radius b of the plate are taken as 5 cmt  , 50 cma  , and 

100 cmb  , respectively. The plate is made of an isotropic, linearly elastic material 

with Young modulus E  = 200,000 N/mm2 and Poison ratio   = 0.3 and subjected to 

uniformly distributed moment 250 N-cm/cmM   along its entire inner boundary. The 

closed form solution for the transverse displacement for this particular case is obtained 

by the method of superposition along with results reported by [66]. In the analysis, the 

scaling center and the defining curve are chosen at the center of the plate and the outer 

boundary, respectively, and six meshes containing 4, 8, 16, 32, 64 and 128 two-node 

elements are adopted as indicated in Figure 6.9.  

The computed deflections along the radial direction of the plate for different 

levels of discretization are reported in Figure 6.10 and Table 6.5 in comparison with 

the analytical solution. The percent error of the computed deflection along the x1-

direction is also shown in Figure 6.11. It is evident from these results that the 

discretization with only four elements can accurately capture the solution with error 

less than 0 0004. %  in comparison with the analytical solution. The maximum deflection 

of the plate occurs along the inner boundary of the plate for this particular loading 

condition as can be seen in Figure 6.12(a). In addition, profiles of the bending moments

11

hM , 22

hM  and 12

hM  obtained from the mesh with 8 elements are also shown in Figure 

6.12(b)-(c). 
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Figure 6.9: Schematic of six meshes containing 4, 8, 16, 32, 64 and 128 elements used 

in discretization of defining curve. 
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Figure 6.10: Deflections along the radial direction of circular plate containing 

concentric circular hole and subjected to uniform moments along its inner boundary for 

different levels of discretization. 
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Figure 6.11: Percent error in deflection along the radial direction of circular plate 

containing concentric circular hole and subjected to uniform moments along its inner 

boundary. 

 

Table 6.5: Deflection along radial direction of circular plate containing concentric 

circular hole and subjected to uniform moments along its inner boundary. 

 

 

 

 

 

 

0.5 0.6 0.7 0.8 0.9 1

4 (8) 0.0008473576 0.0005082475 0.0002708022 0.0001149090 0.0000275940 0.0000000001

8 (16) 0.0008473578 0.0005082477 0.0002708021 0.0001149091 0.0000275941 0.0000000000

16 (32) 0.0008473578 0.0005082478 0.0002708024 0.0001149092 0.0000275942 0.0000000000

32 (64) 0.0008473579 0.0005082478 0.0002708025 0.0001149092 0.0000275942 0.0000000000

64 (128) 0.0008473579 0.0005082478 0.0002708025 0.0001149092 0.0000275943 0.0000000000

128(256) 0.0008473580 0.0005082478 0.0002708025 0.0001149092 0.0000275943 0.0000000000

Analytical sol. 0.0008473579 0.0005082478 0.0002708025 0.0001149092 0.0000275943 0.0000000000

Elem. (Dof.)
r/b
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Figure 6.12: Plots of (a) deflected shape, (b) moment 11

hM , (c) moment 22

hM , and (d) 

moments 12

hM  of circular plate containing concentric circular hole and subjected to 

uniform moments along its inner boundary obtained from mesh with 8 element. 

 

6.1.4  Circular plate with concentric hole under applied moments  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Schematic of elastic, circular plate containing concentric circular hole and 

subjected moments along its inner and outer boundaries. 

(a).   (b).   

(c).  (d).  
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Consider, next, an elastic, circular plate containing a concentric circular hole and 

simply-supported along its outer boundary as shown in Figure 6.13.The thickness t, the 

inner radius a, and the outer radius b of the plate are taken as 5 cmt  , 50 cma  , and 

100 cmb  , respectively. The plate is made of an isotropic, linearly elastic material 

with Young modulus E  = 200,000 N/mm2 and Poison ratio   = 0.3 and subjected to 

uniformly distributed moment 1
500 N-cm/cmM   along its entire inner boundary and 

2
250 N-cm/cmM   along its entire outer boundary. Again, the reference solution for 

the transverse displacement for this particular case is generated by using results 

reported by [66] and the method of superposition. In the numerical study, the scaling 

center and the defining curve are chosen at the center of the plate and the outer 

boundary, respectively, and six meshes containing 4, 8, 16, 32, 64 and 128 two-node 

elements are adopted as indicated in Figure 6.9. 

The computed deflection for various locations along the radial direction of the 

plate is reported in Table 6.6 for 0.05t b  . Clearly, as the number elements used in 

the discretization of the defining curve increases, numerical results converge rapidly to 

the benchmark solution. In addition, the plots of the maximum deflection versus the 

number of elements and the percent error of computed deflections along the x1-

direction are presented in Figure 6.14 and Figure 6.15, respectively. To further 

demonstrate the accuracy of the computed numerical solutions, the bending moments 

11

hM , 22

hM  and 12

hM   along the circumferential direction for   = 0.5, 0.6, 0.7, 0.8, 0.9 

and 1 are plotted in Figure 6.16. The deflected shape of the plate and its contour plot 

are shown in Figure 6.17. As is evident from this set of results, the maximum deflection 

occur within the plate approximately =0.75. 

 

Table 6.6: Deflection for circular plate containing concentric circular hole and 

subjected moments along its inner and outer boundaries for 0.05t b   

 

 
 

 

0.5 0.6 0.7 0.8 0.9 1

4 (8) 5.78E-11 0.00031707 0.000445178 0.000420299 0.000266301 9.66E-11

8 (16) 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663012 0.0000000000

16 (32) 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663012 0.0000000000

32 (64) 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663011 0.0000000000

64 (128) 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663012 0.0000000000

128(256) 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663012 0.0000000000

Analytical sol. 0.0000000000 0.0003170704 0.0004451780 0.0004202988 0.0002663012 0.0000000000

Elem. (Dof.)
r/b 
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Figure 6.14 : Maximum deflection of circular plate containing concentric circular hole 

and subjected moments along its inner and outer boundaries versus the number of 

elements used in discretization of defining curve for 0.05t b   
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Figure 6.15: Percent error of computed deflection of circular plate containing 

concentric circular hole and subjected moments along its inner and outer boundaries for 

0.05t b   



 

 

55 

 
 

Figure 6.16: Bending moments 11

hM , 22

hM  and 12

hM  along circumferential direction of 

circular plate containing concentric circular hole and subjected moments along its inner 

and outer boundaries for  =0.5, 0.6, 0.7, 0.8, 0.9 and 1. 

 

 
 

Figure 6.17: Deflected shape and contour plot of the deflection of circular plate 

containing concentric circular hole and subjected moments along its inner and outer 

boundaries obtained from mesh with 8 element and 0.005t b  . 

 

6.1.5  Trapezoidal plate under transverse shear 

Consider, as the final example used in the verification process, a trapezoidal plate of 

thickness 1 mmt   and clamped along its inner boundary with all other sides free as 

shown schematically in Figure 6.18. The plate is made of an isotropic material with 

Young modulus = 210,000 N/mm2 and Poison ratio = 0.3 and loaded by a uniform 

transverse shear force 10 N/mm along the outer boundary. 
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Figure 6.18: Schematic of trapezoidal plate clamped along the inner boundary and 

loaded by uniform transverse shear along the outer boundary. 

 

For this particular problem, the scaling center is located outside the plate at the origin 

of the 
1 2

x x  reference coordinate system and the free outer boundary is chosen as the 

defining curve. Results reported by Dieringer and Becker [23] are employed as the 

reference solution. The spectrum of all eigenvalues obtained by solving the fourth-order 

eigenvalue system is reported in Figure 6.20 for the discretized plate with 10 elements 

along its outer boundary. It is evident that the spectrum plot is symmetric with respect 

to both vertical and horizontal axes and show the good agreement with that reported in 

[23].   

 

 
 

 
 

 

 

Figure 6.19: Schematic of six meshes used in discretization of defining curve of 

trapezoidal plate 

(a). 1 elements (b). 2 element (c). 4 elements 

(d). 6 elements (e). 8 element (f). 16 element 
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Figure 6.20: Spectrum of eigenvalues for the discretization of plate with 10 elements 
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Figure 6.21: Maximum transverse displacement of trapezoidal plate versus number of 

elements used in discretization of defining curve. 
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Table 6.7: Transverse displacement at points A, B and C of trapezoidal plate (mm) 

loaded by uniform transverse shear force along the outer boundary. 
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Figure 6.22: (a) Deflections along the straight line = 8 mm for different levels of 

discretization and (b) deflections along the radial boundary for different levels of 

discretization. 

 

To demonstrate the convergence of the computed numerical solutions, the maximum 

deflection of the plate (occurring at the corners on the outer boundary, i.e., points A and 

C) is reported for different levels of discretization in Figure 6.21. It is evident from this 

set of results that the computed solutions converge rapidly to the reference result 

reported by Dieringer and Becker [23] as the number of elements in the discretization 

increases; the discretization with only four elements can accurately capture the solution 

with error less than 1 % in comparison with the reference solution. The deflections 

along the straight line = 8 mm and along the radial boundary are also reported for 

different levels of discretization in Figure 6.22, and the same convergence behavior is 

observed. The percent error of computed deflection at points A, B, and C (as indicated 

in Figure 6.18) versus the number of elements used to discretize the defining curve is 

also reported in Figure 6.23. These results additionally confirm the convergence of 

numerical solutions. In particular, the percent error of the computed deflection at point 

A and C are less than 0.2% and at point B is less than 1 % when the mesh with 8 

elements is employed. The values of the computed deflection at points A, B and C  are 

also reported in Table 6.7 along with the reference solutions generated by Dieringer 

and Becker [23]. It can be seen that the proposed SBFEM can yield very accurate 

deflection; the discrepancy relative to the reference solution is less than 2% and 0.9% 

for discretization with 4 and 10 elements, respectively. These results confirm the good 

convergence behavior as the mesh is refined. It should be noted also that the high quality 

1 2 4 6 8 10 20

A 0.076742 0.081179 0.081603 0.081613 0.081620 0.081628 0.081681 0.081692

B 0.031661 0.029377 0.029929 0.030039 0.030099 0.030137 0.030225 0.030390

C 0.076742 0.081179 0.081603 0.081608 0.081620 0.081628 0.081683 0.081692

At point Ref. [20]
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of the approximate solution should stem from the analytical feature of the solution along 

the scaling direction. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Percent error of computed deflection of trapezoidal plate clamped along 

the inner boundary and loaded by uniform transverse shear along the outer boundary at 

points A, B and C. 

 

6.2 Results from h-hierarchical adaptive SBFEM  

In the particular section, three examples are presented to demonstrate the accuracy and 

computational performance of the implemented h-hierarchical adaptive scaled 

boundary finite element method (denoted, for convenience, by ASBFEM). 

6.2.1 Circular plate with concentric hole under transverse shear 

Consider, again, the circular plate containing a concentric circular hole and subjected 

to the uniformly distributed transverse shear along its entire inner boundary as shown 

in Figure 6.1. In the analysis, the initial mesh containing four elements which is the 

same as that indicated in Figure 6.2 and the target allowable error in the energy norm 
*  = 0.001% are employed. The energy norm of the analytical moment obtained from 

[66] can be also computed using equation (5.7) and denoted by 
A

M . Intermediate 

meshes resulting from the ASBFEM are reported in Figure 6.24 along with the 

corresponding maximum error in each element, denoted by 
*

m
 . It is evident that five 

analysis steps are required to achieve the target error and the final mesh contains 64 

elements of equal size. The obtained final uniform mesh is anticipated since the 



 

 

60 

problem data is axisymmetric. The plots of energy norms of the recovered moment for 

all five analysis steps of ASBFEM and the analytical moment 
A

M  are also shown in 

Figure 6.25. It is evident that as the analysis progresses, the energy norm of the 

recovered moment converges to the benchmark solution and this additionally confirm 

the validity of the proposed scheme. The total error estimate 
*

  computed from (5.1) 

versus the computational time associated with the SBFEM with the uniform refinement 

scheme (denoted, here and in what follows, by USBFEM) and the ASBFEM is reported 

in Figure 6.26. It can be seen that numerical results generated by the proposed technique 

obtained from the final mesh are in good agreement with the analytical solutions. It is 

worth noting that the improvement of computational efficiency from using the 

ASBFEM is insignificant for this particular case since there is no variation of the 

solution in the circumferential direction. Converged bending moments along the 

circumferential direction at   =1 (along the defining curve) is also shown in Figure 

6.27. As can be seen from these results, the bending moments are smooth along the 

discretized direction.  

 

 

 

 

 

 

Figure 6.24: Sequence of meshes resulting from the analysis by ASBFEM for target 

error 
* = 0.001%. 

 

(a) Mesh 1(4elem.) 11.871*

m
%      (b) Mesh 2(8elem.) 0.736*

m
%       (c) Mesh 3(16elem.) 0.047*

m
%   

(b)  

(d)   Mesh 4 (32elem.) 0.003*

m
%       (e) Mesh 5 (64elem.) 2 53 4*

m
. %e         

 

(c)  
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Figure 6.25: The energy norms of recovered moment and analytical moment obtained 

from [63].   
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Figure 6.26: Relationship between total error estimate 
*

  and the computational time 

using USBFEM and ASBFEM. 
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Figure 6.27: Bending moment along circumferential direction at   =1 of circular plate 

with concentric circular hole loaded by transverse shear along its entire inner boundary. 

 

6.2.2  Circular plate with concentric hole under partially loaded transverse shear  

Consider, next, a circular elastic plate containing a concentric circular hole as shown 

schematically in Figure 6.28. The thickness t , the outer radius b and the inner radius a 

of the plate are chosen such that t  = 0.5 cm, b  = 100 cm, and a  = 50 cm, respectively, 

and Young modulus and Poisson ratio of the constituting material are given by E = 

200,000 N/mm2 and   = 0.3. The plate is fully fixed against the movement along the 

entire outer boundary whereas its inner boundary is subjected to a uniform transverse 

shear load  175 mV  N/c  along /6 /6      where   denotes the angle measured 

relative to the 
1

x -axis. Again, the center of the plate and its outer boundary are taken as 

the scaling center and the defining curve in the analysis, respectively. 

Results for the maximum computed deflection obtained from the ASBFEM with 

USBFEM are reported in Table 6.8. These results indicate that use of ASBFEM can 

significantly reduce the computational time and number of degrees of freedom to 

achieve the same level of accuracy in comparison with the USBFEM. Meshes resulting 

from the sequence of analysis steps required in the ASBFEM to achieve the target error 
* = 1% of the energy norm of the moment error are illustrated in Figure 6.29. The 

bending moments obtained from the final mesh of the ASBFEM with 1* %   are 

smooth in the circumferential direction as can be seen in Figure 6.30. It is apparent from 

the sequence of refinements that the discretization is concentrated in the region where 

the load applied. The total error estimate of computed moments 
*

  versus the number 

of degrees of freedom and the computational time is reported in Figure 6.31 and Figure 

6.32, respectively for both USBFEM and ASBFEM. As can be seen from these results, 

the ASBFEM yields the higher rate of convergence and requires less computational 
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time to achieve the same level of accuracy in comparison with the USBFEM. The 

deflected shape of the plate and the contour plot of the transverse deflection obtained 

from the final mesh for the target error 1* %   are also shown in Figure 6.33. 

 

Table 6.8: Comparison of computational performance of USBFEM and ASBFEM for 

circular plate with concentric hole under partially loaded transverse shear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.28: Schematic of circular plate containing concentric hole, clamped at its outer 

boundary and subjected to transverse shear along 6  to 6  

USBFEM 80 1498 4 4.222552

ASBFEM 22 195 3 4.694672

USBFEM 160 3102 5 5.840132

ASBFEM 46 730 5 5.727749

USBFEM 320 4545 6 5.846216

ASBFEM 122 1725 7 5.841390

Max. disp

(cm.)
Refine mesh

5.00

1.00

0.10

Dof.
computation time

(sec.)

The target error

* %
iteration
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Figure 6.29: Sequence of meshes resulting from the analysis by ASBFEM for target 

error 
* = 1%. 

 

 
 

Figure 6.30: Bending moment along circumferential direction at the defining curve 

after adaptive process to target error.  

(a) Mesh 1(5elem.) 42.811*

m
%     (b) Mesh 2(10elem.) 23 544*

m
. %      (c) Mesh 3(16elem.) 4 664*

m
. %   

(d)  Mesh 4(20elem.) 1 947*

m
. %      (e) Mesh 5(23elem.) 0 954*

m
. %        

(e)  
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Figure 6.31: Relationship between total error estimate of computed moment and the 

number of degrees of freedom using USBFEM and ASBFEM. 
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Figure 6.32: Relationship between total error estimate of computed moment and the 

computational time using USBFEM and ASBFEM. 
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Figure 6.33: Deflected shape and contour plot of transverse deflection for circular plate 

containing concentric circular hole, clamped at its outer boundary and subjected to 

partial transverse shear obtained from final mesh for target error 1* %  .  

 

6.2.3  Semi-circular plate subjected to sinusoidal transverse shear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.34: Schematic of semi-circular plate containing concentric semi-circular hole, 

clamped at its inner boundary and subjected to sinusoidal transverse shear at the outer 

boundary along 5 /6    . 

 

Consider, as a final example, a semi-circular plate containing a concentric semi-circular 

hole as shown schematically in Figure 6.28. The thickness t , the outer radius b and the 

inner radius a of the plate are chosen such that t  = 2 cm, b  = 100 cm, and a  = 30 cm, 

respectively, and Young modulus and Poisson ratio of the constituting material are 

given by E = 200,000 N/mm2 and   = 0.3. The plate is fully fixed against the movement 

along the entire inner boundary whereas its outer boundary is subjected to a sinusoidal 

transverse shear load 
245 [2 sin(2 )]V    N/cm for 5 /6     where   denotes 

the angle measured relative to the x1-axis. Again, the center of the plate and its outer 
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boundary are taken as the scaling center and the defining curve in the analysis, 

respectively. 

In the analysis, the initial mesh containing two elements as indicated in Figure 

6.35(a) is employed. The computational performance of the proposed technique is 

investigated, again, by comparing results with those of the USBFEM. Meshes resulting 

from the analysis by the ASBFEM with the target error 1* %   are illustrated in Figure 

6.35. The relationship between the total error estimate and the number of degrees of 

freedom and the computational time using both USBFEM and ASBFEM is illustrated 

in Figure 6.36 and Figure 6.37, respectively. This set of results additionally confirms 

the advantage gained by using the ASBFEM. The final mesh obtained adaptively to 

achieve the specified target error contains only 32 degrees of freedom, while a uniform 

mesh with the same number of degrees of freedom achieves total error of 4.62%. It is 

evident, from results in Figure 6.38 and Figure 6.38, that rate of decreasing in the error 

estimate, for the ASBFEM, increases as the number of degrees of freedom used in the 

approximation the computational time consumed increases. The deflected shape and 

contour plot of the transverse deflection of the plate obtained from the final mesh with 

the target error are reported in Figure 6.38. 

 

Table 6.9: Comparison of computational performance of USBFEM and ASBFEM for 

semi-circular plate with concentric semi-circular hole under sinusoidal transverse shear 

 

 

 

 

 

 

 

 

 

 

USBFEM 18 234 3 0.549631

ASBFEM 14 125 4 0.551464

USBFEM 66 1636 5 0.547434

ASBFEM 32 724 9 0.542825

USBFEM 130 2686 6 0.542434

ASBFEM 58 1064 6 0.542729

Max. disp
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Figure 6.35 : Sequence of meshes resulting from the analysis by ASBFEM for target 

error 
* = 1%. 

        (e)  Mesh 5(10elem.) 3 35*

m
%.             (f)  Mesh 6(11elem.) 2 16*

m
%.   

(f)  

(g) Mesh 7(12elem.) 1 85*

m
%.                       (h)  Mesh 8(14elem.) 1 33*

m
%.     

(g)  

(a) Mesh 1(2elem.) 14.12*

m
%                        (b)  Mesh 2(3elem.) 12 51*

m
%.      

(c)   Mesh 3(5elem.) 8 76*

m
%.                         (d)  Mesh 4(7elem.) 5 49*

m
%.   

(i) Mesh 9(15elem.) 0 92*

m
%.   
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Figure 6.36: Relationship between total error estimate of computed moment and the 

number of degrees of freedom using USBFEM and ASBFEM. 
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Figure 6.37: Relationship between total error estimate of computed moment and the 

computational time using USBFEM and ASBFEM. 
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Figure 6.38: Deflected shape and contour plot of transverse deflection for semi-circular 

plate containing concentric semi-circular hole, clamped at its inner boundary and 

subjected to sinusoidal transverse shear obtained from final mesh for target error

1* %  . 

 

6.2.4 Trapezoidal plate under partially loaded transverse shear 

Consider, as the final example, a trapezoidal plate of thickness 1 cm t  and clamped 

along a shorter paralleled side as clearly indicated in Figure 6.39. The plate is made of 

an isotropic material with Young modulus E = 210,000 N/mm2 and Poison ratio   = 

0.3 and loaded by a linearly distributed transverse force
2

10  N/cmS x , 
2

[0,-10 cm]x   

along a longer paralleled side. 

 

 

 

 

 

 

 

 

 

Figure 6.39: Schematic of trapezoidal plate clamped along shorter paralleled side and 

subjected to linearly distributed transverse shear along longer paralleled side. 

 

To describe the geometry of the plate, the scaling center is located outside the plate at 

the origin of the 
1 2

x x  reference coordinate system (see Figure 6.39) and the free outer 

boundary is chosen as the defining curve. In the analysis, the initial mesh containing 

only two elements as indicated in Figure 6.40(a) is employed. The computational 

performance of the proposed technique is investigated, again, by comparing obtained 

results with those of the USBFEM. Meshes resulting from the analysis steps of the 

ASBFEM with the target error 0 1*
. %   is shown in Figure 6.40. The relationship 

between the total error estimate versus the number of degrees of freedom used in the 
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approximation and the computational time consumed for both USBFEM and ASBFEM 

is illustrated in Figure 6.41 and Figure 6.42, respectively. This set of results additionally 

confirms the computational advantage of using the ASBFEM. The final mesh obtained 

adaptively to achieve the specified target error 0 1*
. %   contains only 26 degrees of 

freedom, while a uniform mesh with about the same number of degrees of freedom 

achieves only total error of 2.01%. The deflected shape and the contour plot of the 

transverse deflection of the plate obtained from the final mesh with the target error 

0 1*
. %   are also reported in Figure 6.43. 

 

 
 

 
 

 

Figure 6.40: Sequence of meshes resulting from the analysis by ASBFEM for target 

error 
* = 0.1%. 

 

Table 6.10: Comparison of computational performance of USBFEM and ASBFEM for 

trapezoidal plate clamped along shorter paralleled side and subjected to linearly 

distributed transverse shear along longer paralleled side 

 

 

 

USBFEM 18 23 3 0.049738708

ASBFEM 10 11 3 0.046612868

USBFEM 34 83 4 0.045199153

ASBFEM 14 18 4 0.045152133

USBFEM 66 499 5 0.042808039

ASBFEM 26 59 6 0.042853386

Refine mesh Dof.
computation time

(sec.)

The target error

* %
iteration

Max. disp

(cm.)

5

1

0.1

(a) Mesh 1(2elem.) 13 513*

m
. %     (b) Mesh 2(3elem.) 8 324*

m
. %      (c) Mesh 3(4elem.) 3 591*

m
. %   

(h)  

(d) Mesh 4(6elem.) 0 499*

m
. %     (e) Mesh 5(9elem.) 0 221*

m
. %      (f) Mesh 6(12elem.) 0 078*

m
. %   

(i)  
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Figure 6.41: Relationship between total error estimate of computed moment and the 

number of degrees of freedom using USBFEM and ASBFEM. 
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Figure 6.42: Relationship between total error estimate of computed moment and the 

computational time using USBFEM and ASBFEM. 
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Figure 6.43: Deflected shape and contour plot of transverse deflection for trapezoidal 

plate clamped along shorter paralleled side and subjected to linearly distributed 

transverse shear along longer paralleled side obtained from final mesh for target error

0 1*
. %  .   



 

 

CHAPTER 7  

CONCLUSIONS AND REMARKS  

The efficient computational procedure, based upon the scaled boundary finite element 

method (SBFEM) and the h–hierarchical adaptive scheme, has been established to solve 

plate bending problems. In the formulation, the Kirchhoff’s plate theory has been 

adopted along with the standard weighted residual technique and the scaled boundary 

approximation to form a complete set of scaled boundary finite element equations. The 

resulting system of linear, non-homogeneous, fourth-order ordinary Euler-Cauchy 

differential equations has been successfully solved using conventional techniques such 

as the solution representations and method of undetermined coefficients to obtain the 

general solution. The involved fourth-order Eigen problem has been solved by an 

efficient Eigen search algorithm to obtain all Eigen pairs. The prescribed conditions on 

the boundary of the plate have been enforced to establish a system of linear algebraic 

equations governing all unknowns on the domain boundary. Other field quantities of 

interest have been readily post-processed from the general solution of the transverse 

displacement of the plate. An extensive numerical study on various scenarios has 

indicated that the proposed technique can yield highly accurate numerical solutions 

even when relatively coarse meshes with few degrees of freedom are employed to 

discretize solutions along the scaled boundary direction and, in addition, the good 

convergence behavior is observed as the mesh is refined. To further enhance the 

computational efficiency and corresponding cost, the h–hierarchical adaptivity has been 

integrated into the scaled boundary finite element method to automatically obtain an 

adequate and optimal level of refinement within the specified error tolerance. The 

smoothing process via the least square technique has been adopted to obtain the 

reference solution for the internal bending moment used in the error estimation for each 

analysis step. The implemented adaptive procedure has led to the significant 

improvement in the computational time over the use of uniform meshes. 

Results obtained from the analysis of several examples have indicated that the h-

hierarchical adaptive procedure implemented in the scaled boundary finite element 

method for solving Kirchhoff’s plate bending problems can significantly reduce the 

number of degrees of freedom and the computational time in comparison with that using 

the uniform mesh. This significant improvement becomes more apparent when 

problems possessing significant spatial variation of the solution are considered. In 

particular, the proposed technique has been found able to reduce the computational time 

by approximately 40 percent of that spent by the SBFEM with uniform meshes. Using 

the h-hierarchical adaptivity has automatically identified regions requiring the mesh 

refinement and finally led to the level of discretization that is commonly termed 

optimal. While the h-hierarchical adaptive SBFEM has been successfully established, 

its development is still restricted to certain settings. Extension of the present work to 

treat corner effects, multiple scaling centers, and non-zero prescribed data on the side-

face is considered essential since it can further enhance the capability of the technique 

to model more general plate bending problems. 

   



 

 

REFERENCES 

 

1]. A reinforced concrete building with flat plate system under construction, 

Kenya (K. Jaiswal). [Online] GEM NEXUS: Available from: 

https://www.nexus.globalquakemodel.org/gem-building-

taxonomy/overview/glossary/flat-slab-plate-or-waffle-slab--lfls [2015,4 July]. 

[2]. The Sampoong Department Store collapse  [Online] Available from: 

http://jsy2125.tistory.com/32 [ 2015, 12 April ]: National Geographic South 

Korea. 

[3]. Charles, G.S. and E.J. John, Steel Structures Design and Behavior. Fourth 

edition ed. 1996, University of Wisconsin-Madison: HarperCollins College 

Publishers, . p.327-358. 

[4]. Levinson, M., The simply supported rectangular plate: An exact, three 

dimensional, linear elasticity solution. Journal of Elasticity, 1985. 15(3): p. 

283-291. 

[5]. Reddy, J.N., Theory and analysis of elastic plates and shells. 2006: CRC 

press. 

[6]. Batista, M., New analytical solution for bending problem of uniformly loaded 

rectangular plate supported on corner points. The IES Journal Part A: Civil & 

Structural Engineering, 2010. 3(2): p. 75-84. 

[7]. Zienkiewicz, O.C. and R.L. Taylor, The finite element method. Vol. 3. 1977: 

McGraw-hill London. 

[8]. Swenson, D. and A. Ingraffea, Modeling mixed-mode dynamic crack 

propagation nsing finite elements: theory and applications. Computational 

Mechanics, 1988. 3(6): p. 381-397. 

[9]. Yang, Z., J. Chen, and D. Proverbs, Finite element modelling of concrete 

cover separation failure in FRP plated RC beams. Construction and Building 

Materials, 2003. 17(1): p. 3-13. 

[10]. Dasgupta, G., A finite element formulation for unbounded homogeneous 

continua. Journal of Applied Mechanics, 1982. 49(1): p. 136-140. 

[11]. Rybicki, E.F. and M. Kanninen, A finite element calculation of stress intensity 

factors by a modified crack closure integral. Engineering Fracture Mechanics, 

1977. 9(4): p. 931-938. 

[12]. White, W., I.K. Lee, and S. Valliappan, Unified boundary for finite dynamic 

models. Journal of the Engineering Mechanics Division, 1977. 103(5): p. 949-

964. 

[13]. Brebbia, C.A. and J. Dominguez, Boundary elements: an introductory course. 

1996: WIT press. 

[14]. Brebbia, C.A. and D.J. Danson, The Boundary Element Technique for the 

Analysis of Automotive Structures. 1984, SAE Technical Paper. 

[15]. Song, C. and J.P. Wolf, The scaled boundary finite-element method—alias 

consistent infinitesimal finite-element cell method—for elastodynamics. 

Computer Methods in applied mechanics and engineering, 1997. 147(3): p. 

329-355. 

[16]. Wolf, J.P. and C. Song, The scaled boundary finite-element method–a primer: 

derivations. Computers & Structures, 2000. 78(1): p. 191-210. 

 

https://www.nexus.globalquakemodel.org/gem-building-taxonomy/overview/glossary/flat-slab-plate-or-waffle-slab--lfls
https://www.nexus.globalquakemodel.org/gem-building-taxonomy/overview/glossary/flat-slab-plate-or-waffle-slab--lfls
http://jsy2125.tistory.com/32


 

 

76 

[17]. Liu, J. and G. Lin, A scaled boundary finite element method applied to 

electrostatic problems. Engineering Analysis with Boundary Elements, 2012. 

36(12): p. 1721-1732. 

[18]. Yang, Z. and A. Deeks, A frequency-domain approach for modelling transient 

elastodynamics using scaled boundary finite element method. Computational 

Mechanics, 2007. 40(4): p. 725-738. 

[19]. Man, H., et al., Semi-analytical analysis for piezoelectric plate using the 

scaled boundary finite-element method. Computers & Structures, 2014. 137: p. 

47-62. 

[20]. Yang, Z. and A. Deeks, Fully-automatic modelling of cohesive crack growth 

using a finite element–scaled boundary finite element coupled method. 

Engineering fracture mechanics, 2007. 74(16): p. 2547-2573. 

[21]. Song, C., A matrix function solution for the scaled boundary finite-element 

equation in statics. Computer Methods in Applied Mechanics and 

Engineering, 2004. 193(23): p. 2325-2356. 

[22]. Man, H., et al., A unified 3D‐based technique for plate bending analysis using 

scaled boundary finite element method. International Journal for Numerical 

Methods in Engineering, 2012. 91(5): p. 491-515. 

[23]. Dieringer R, H.R., Becker W, The scaled boundary finite element method for 

plate bending problems. CMM-2011 – Computer Methods in Mechanics, May 

2011. PaperID: 50: p. 169–170. 

[24]. Hebel, J. and W. Becker, Analysis of thin laminated plates by means of the 

scaled boundary finite element method. PAMM, 2008. 8(1): p. 10285-10286. 

[25]. Tsach, U., Locking of thin plate/shell elements. International Journal for 

Numerical Methods in Engineering, 1981. 17(4): p. 633-644. 

[26]. Zrahia, U. and P. Bar‐Yoseph, Plate spectral elements based upon Reissner–

Mindlin theory. International journal for numerical methods in engineering, 

1995. 38(8): p. 1341-1360. 

[27]. Xenophontos, C., J. Kurtz, and S. Fulton, A p-version MITC finite element 

method for Reissner–Mindlin plates with curved boundaries. Journal of 

computational and applied mathematics, 2006. 192(2): p. 374-395. 

[28]. Chowdhury, M.S., C. Song, and W. Gao, Probabilistic fracture mechanics by 

using Monte Carlo simulation and the scaled boundary finite element method. 

Engineering Fracture Mechanics, 2011. 78(12): p. 2369-2389. 

[29]. Li, C., et al., Fracture analysis of piezoelectric materials using the scaled 

boundary finite element method. Engineering Fracture Mechanics, 2013. 97: p. 

52-71. 

[30]. Wolf, J.P., The scaled boundary finite element method. 2003: John Wiley & 

Sons. 

[31]. Deeks, A.J. and J.P. Wolf, Stress recovery and error estimation for the scaled 

boundary finite‐element method. International journal for numerical methods 

in engineering, 2002. 54(4): p. 557-583. 

[32]. Euler, L., De motu vibratorio tympanorum. Novi Commentari Acad Petropolit, 

1766. 10: p. 243–260  

[33]. Vlasov, V.Z., General theory of shells and its applications in engineering. 

Vol. 99. 1964: National Aeronautics and Space Administration. 



 

 

77 

[34]. S.Timoshenko, Theory of Plates and Shells, ed. E.M. Series. 1940, M cGraw-

Hill.: Pitman. Hallert, B. Shewell, HAL. . 

[35]. Zienkiewicz, O., Cheung, YK, The finite element method in structural and 

continuum mechanics. Numerical Solution of Problems in Structural and 

Continuum Mechanics, 1967: p. 245. 

[36]. Cui, X., et al., A smoothed finite element method (SFEM) for linear and 

geometrically nonlinear analysis of plates and shells. Comput Model Eng Sci, 

2008. 28(2): p. 109-125. 

[37]. Liu, G., K. Dai, and T. Nguyen, A smoothed finite element method for 

mechanics problems. Computational Mechanics, 2007. 39(6): p. 859-877. 

[38]. Zozulya, V., Numerical solution of the Kirchhoff plate bending problem with 

BEM. ISRN Mechanical Engineering, 2011. 2011. 

[39]. Providakis, C.P. and D.E. Beskos, Dynamic analysis of plates by boundary 

elements. Applied Mechanics Reviews, 1999. 52(7): p. 213-236. 

[40]. Jin, W., Y. Cheung, and O. Zienkiewicz, Trefftz method for Kirchhoff plate 

bending problems. International Journal for Numerical Methods in 

Engineering, 1993. 36(5): p. 765-781. 

[41]. Jirousek, J., Hybrid‐Trefftz plate bending elements with p‐method capabilities. 

International journal for numerical methods in engineering, 1987. 24(7): p. 

1367-1393. 

[42]. Man, H., et al., High‐order plate bending analysis based on the scaled 

boundary finite element method. International Journal for Numerical Methods 

in Engineering, 2013. 95(4): p. 331-360. 

[43]. Silvester, P., et al. Exterior finite elements for 2-dimensional field problems 

with open boundaries. in Proceedings of the Institution of Electrical 

Engineers. 1977. IET. 

[44]. Song, C. and J.P. Wolf, CONSISTENT INFINITESIMAL FINITE‐ELEMENT 

CELL METHOD: THREE‐DIMENSIONAL VECTOR WAVE EQUATION. 

International Journal for Numerical Methods in Engineering, 1996. 39(13): p. 

2189-2208. 

[45]. Wolf, J.P. and C. Song, Finite-element modelling of unbounded media. 1996: 

Wiley Chichester. 

[46]. Song, C. and J.P. Wolf, Body loads in scaled boundary finite-element method. 

Computer Methods in Applied Mechanics and Engineering, 1999. 180(1): p. 

117-135. 

[47]. Deeks, A. and J. Wolf, A virtual work derivation of the scaled boundary finite-

element method for elastostatics. Computational Mechanics, 2002. 28(6): p. 

489-504. 

[48]. Yang, Z., Fully automatic modelling of mixed-mode crack propagation using 

scaled boundary finite element method. Engineering Fracture Mechanics, 

2006. 73(12): p. 1711-1731. 

[49]. Mayland, W. and W. Becker, Scaled boundary finite element analysis of stress 

singularities in piezoelectric multi‐material systems. PAMM, 2009. 9(1): p. 

99-102. 

[50]. Song, H. and L. Tao, An efficient scaled boundary FEM model for wave 

interaction with a nonuniform porous cylinder. International journal for 

numerical methods in fluids, 2010. 63(1): p. 96-118. 



 

 

78 

[51]. Doherty, J.P., A.J. Deeks, and G.T. Houlsby, Scaled Boundary Finite Element 

Analysis od non-homogeous elastic half-space. International Journal for 

Numerical Methods in Engineering, 2003. 57: p. 955-973. 

[52]. Dieringer, R. and W. Becker, Analysis of notches and cracks in circular 

Kirchhoff plates using the scaled boundary finite element method. PAMM, 

2012. 12(1): p. 189-190. 

[53]. Babuška, I. and W. Rheinboldt, Adaptive approaches and reliability 

estimations in finite element analysis. Computer Methods in Applied 

Mechanics and Engineering, 1979. 17: p. 519-540. 

[54]. Zhu, J., Z. Taylor, and O. Zienkiewicz, The finite element method: its basis 

and fundamentals. 2013: Elsevier. 

[55]. Deeks, A., An adaptive h-hierarchical finite element system. Adv. FE 

Procedures and Techniques, Civil-Comp, Edinburgh, 1998: p. 115. 

[56]. Rank, E. and I. Babuška, An expert system for the optimal mesh design in the 

hp‐version of the finite element method. International journal for numerical 

methods in engineering, 1987. 24(11): p. 2087-2106. 

[57]. Guiggiani, M. and F. Lombardi, Self-adaptive boundary elements with h-

hierarchical shape functions. Advances in Engineering Software, 1992. 15(3): 

p. 269-277. 

[58]. Charafi, A., A. Neves, and L. Wrobel, h‐Hierarchical adaptive boundary 

element method using local reanalysis. International journal for numerical 

methods in engineering, 1995. 38(13): p. 2185-2207. 

[59]. Deeks, A.J. and J.P. Wolf, An h‐hierarchical adaptive procedure for the 

scaled boundary finite‐element method. International Journal for Numerical 

Methods in Engineering, 2002. 54(4): p. 585-605. 

[60]. Yang, Z., et al., An h-hierarchical adaptive scaled boundary finite element 

method for elastodynamics. Computers & Structures, 2011. 89(13): p. 1417-

1429. 

[61]. Bauchau, O. and J. Craig, Kirchhoff plate theory, in Structural Analysis. 2009, 

Springer. p. 819-914. 

[62]. Timoshenko, S., S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory 

of plates and shells. Vol. 2. 1959: McGraw-hill New York. 

[63]. Bittencourt, M.L. and C. Pereiray, Procedures for Teaching Variational 

Formulation and Finite Element Approximation of Mechanical Problems 

applied to the Kirchhoff Plate Model. Department of Mechanical Design, State 

University of Campinas, Campinas, Brazil, 2004. 

[64]. Reddy, J.N., An introduction to the finite element method. 1993: McGraw-Hill 

International Editions. 

[65]. Craig, A., Accuracy estimates and adaptive refinements in finite element 

computations, I. Babuška, OC Zienkiewicz, J. Gago, ER deA. Oliviera (eds.), 

Wiley, Chichester, 1986. No. of pages: 408. Price:£ 49.50/$87.15. ISBN 0–471 

908622. 1987, Wiley Online Library. 

[66]. Timoshenko, S., Theory of Plates and Shells,(1940). Engineering Monographs 

Series. Schwidefsky, K.—'An outline of Photogrammetry'. Pitman. Hallert, B. 

Shewell, HAL. 

 



 

 

79 

 

 

 
VITA 
 

VITA 

 

Name: Miss. Siriporn  Thongpaknum 

Date of birth: February 07, 1990  

Education:  

2008-2012 Bachelor’s degree in Civil Engineering, 2nd Class Honor, 

Faculty of Engineering, Thammasat University, Bangkok, Thailand.  

2010-2011 Student exchange in Japan, Short-Term Exchange Program of  

Engineering, Saitama University, Japan 

2013-2016 Master’s degree student in Structural Engineering, Department 

of Civil Engineering,  Faculty of Engineering, Chulalongkorn University, Bangkok, 

Thailand. 

Publications: 

S. Thongpaknum and J. Rungamornrat (2016). An h-hierarchical adaptive 

scaled boundary finite element method (SBFEM)  for Kirchhoff’s plate bending 

problems. Paper presented at the 21th National Convention on Civil engineering, 

June 28 - 30, 2016, BP Samila Beach Hotel, Songkhla 

 


	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1   INTRODUCTION
	1.1 Motivation and Significance
	1.2 Background and Review
	1.2.1 Plate bending problems
	1.2.2 Scaled boundary finite element method
	1.2.3 Scaled boundary finite element method for plate bending problems
	1.2.4 An h-hierarchical adaptive
	1.2.5 An h -hierarchical adaptive for scaled boundary finite element method

	1.3 Research Objectives
	1.4 Scope of Work
	1.5 Research Methodology
	1.6 Anticipated Outcome and Contribution

	CHAPTER 2   PROBLEM FORMULATION
	2.1 Problem Description
	2.2 Basic Equations
	2.3 Weak Formulation

	CHAPTER 3   SCALED BOUNDARY FINITE ELEMENT FORMULATION
	3.1 Scaled Boundary Coordinate Transformation
	3.2 Scaled Boundary Finite Element Approximation
	3.2.1 Approximation of Geometry
	3.2.2 Approximation of Solution and Weight Function

	3.3 Scaled Boundary Finite Element Equations

	CHAPTER 4   SOLUTION METHODOLOGY
	4.1 Determination of Homogeneous Solution
	4.2 Determination of Particular Solution
	4.3  Final General Solution
	4.4 Post-Process for Field Quantities

	CHAPTER 5   H-HIERARCHICAL ADAPTIVITY
	5.1 Moments-recovery and Error Estimation
	5.2 An h-hierarchical Adaptive Procedure

	CHAPTER 6   NUMERICAL RESULTS
	6.1 Verifications
	6.1.1 Circular plate with concentric hole under transverse shear
	6.1.2 Circular plate under applied moment
	6.1.3  Circular plate with concentric hole under applied moment
	6.1.4  Circular plate with concentric hole under applied moments
	6.1.5  Trapezoidal plate under transverse shear

	6.2 Results from h-hierarchical adaptive SBFEM
	6.2.1 Circular plate with concentric hole under transverse shear
	6.2.2  Circular plate with concentric hole under partially loaded transverse shear
	6.2.3  Semi-circular plate subjected to sinusoidal transverse shear
	6.2.4 Trapezoidal plate under partially loaded transverse shear


	CHAPTER 7   CONCLUSIONS AND REMARKS
	REFERENCES
	VITA

