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PP-

Two fluorescent compounds with truxene as a fluorophore are synthesized and
developed as turn-off fluorescent sensors for nitroaromatic compounds (T1) and copper(ll) ion (T2).
Six hydrophobic n-butyl groups in T1 and six hydrophilic diglycol chains in T2 prevent pi-pi stacking
of truxene core and enhance their solubilities in organic or aqueous media. The synthesis of each
compound is based primarily on the Sonogashira coupling reactions, which produced the desired
compounds T1 and T2 in the overall yields of 14 and 18 9%, respectively. The photophysical and
sensing properties of T1 depend on the solvents. In chloroform, T1 is selectively quenched by 2-
nitrophenol. However, the quenching is the fluorescence signal of selectively observed with picric
acid in aqueous tetrahydrofuran. The detection limits are determined as 1.54 and 0.15 ppm for 2-
nitrophenol and picric acid, respectively. The considerable overlapping of the absorption spectra
of T1 and that of the analytes, along with the correlation of the fraction of photons absorbed by
T1 and quenching efficiencies, the sensing mechanism significantly involves inner-filter effect, where
the analytes compete with T1 during the absorption process. However, the lower quenching
efficiency at higher temperature suggested that energy transfer via static quenching may also

involve.

Compound T2 can dissolve well in tetrahydrofuran containing up to 70% of water and
shows effective and selective fluorescence quenching towards copper(ll) ion without any
interference from other metal ions. The detection limit of this sensing system is 0.06 ppm. The
mass analysis using a mixture between T2 and copper(ll) ion corresponds to the mass of a 1:1
complex between T2 and copper(ll), as verified by a Job’s plot. Thus, the quenching mechanism
should involves the formation of such non fluorescent ground state complex. In addition, an anion
sensing system is developed from the complex of T2 and copper(ll) ion, which shows fluorescence
recovery upon the addition of hydrogen phosphate and several biological phosphate compounds.
The signal restoration involves the coordination of phosphate group to copper(ll) preventing the

complexation of copper(ll) ion with T2.
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CHAPTER |
INTRODUCTION

1.1 Overview

The contamination of air, soil, and water by pollutants such as heavy metal
ions or nitroaromatic compounds (NACs) has been major environmental concerns.
Therefore, qualitative and quantitative detections of these hazardous compounds in
environmental sources or ecosystem are of great importance. Various analytical
techniques such as gas chromatography coupled mass spectrometry (GC-MS), ion-
mobility spectroscopy (IMS), and surface enhanced Raman spectroscopy (SARS) have
been used for these purposes. However, these techniques usually require costly
equipment, complicated instrument operation, tedious sample preparation, and well-
trained instrument users. In comparison to those techniques, fluorescence
spectroscopy is more user-friendly, requires less expensive instrument, yet provides
high selectivity and comparable sensitivity in short response time. As the portable
fluorometers have become commercially available, the real-time monitoring and on-

site detection can also be performed [1-3].
1.1.1 Nitroaromatic compounds

Nitroaromatic compounds (NACs) such as nitrobenzene (NB), trinitrobenzene
(TNB) and picric acid (PA) are widely used as industrial solvents, insecticides, dyes, and
herbicides, while trinitrotolulene (TNT) is the explosive chemical commonly involves
in terrorist or criminal activities [4-8] (Figure 1.1). For the bioenvironmental issues,
contamination of NACs in water and soil can be seriously dangerous, especially to the
chemically sensitive animals and plants [9-11]. In term of human exposure, NACs are
known to cause the formation of methemoglobin upon acute exposure while the

chronic exposure can cause anemia, bladder tumors, and liver damages [12, 13].
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Figure 1.1 Structure of nitroaromatic compounds

1.1.2 Heavy metals

Heavy metal ions are the cationic forms of transition elements such as copper,
lead, iron, mercury, zinc, and manganese. They have high atomic weights and relatively
high stabilities. Most importantly, they can accumulate in the air, water, soil, and living
organisms through food chains. These metal ions are usually toxic to the environment
and living organisms such as algae, fungi, bacteria or viruses. Their accumulation in
human bodies often lead to sickness or health problems. Common sources of heavy
metal ions contaminated in environment include agricultural and industrial wastes. For
human body, some of these metals are essential to maintain the metabolism or
biological functions of cells and organs, while some are highly toxic. For example, Cu?*
ions are essential for human body. They are distributed in liver, muscle, and bone, and
they can facilitate the process of iron uptake. Therefore, Cu?* deficiency often results
in anemia-like symptoms as well as hypopigmentation, bone abnormalities, impaired
growth, and irregularity in glucose and cholesterol metabolisms. In contrast, excessive
accumulation of copper in tissues can cause Wilson’s disease—an autosomal recessive

genetic disorder [14-18].
1.2 Fluorescence spectroscopy

Fluorescence spectroscopy, also known as fluorometry or spectrofluorometry,
is widely used as analytical techniques in chemical, biological, and environmental

studies. It is a precise quantitative and qualitative technique that have many



advantages over other spectroscopic methods such as simplicity, high sensitivity, high

specificity, inexpensive, easy to operate and can be used as various applications [19].

The fluorescence process is usually illustrated by the Jablonski diagram [19] as
shown in Figure 1.2. Fluorescence occurs when a molecule in ground state (So) absorbs
light. One electron in the highest occupied molecular orbital (HOMO) is then excited
to a higher molecular orbital, causing the molecule to change its electronic state from
ground (S0) to excited states (S;, S,, or S;) depending on the amount of absorbed
energy. At the excited state, the molecule would quickly release energy by internal
conversion (vibration or rotation) to the lowest excited state. After that, the
fluorescence signal is observed when molecule release the last portion of energy when

it changes from the lowest electronic excited state back to the ground state.
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Figure 1.2 Jablonski diagram illustrating the fluorescence process

1.3 Fluorescence chemosensor

A molecular sensor or chemosensor is a molecule that specifically interacts
with an analyte led to changing of fluorescent signal. Three major components in most
of the fluorescent sensors are 1) a receptor which selectively and binds with analyte
of interest, 2) a fluorophore that provides optical communication between sensor and

the outer world, and 3) a spacer (linker) that binds both components together. In terms



of detection modes, fluorescence sensors can be classified into three categories;
quenching of emission by the target (“turn-off”), increase or restoration of emission
(“turn-on”), and changes in the emission wavelength (“ratiometric”) (Figure 1.3). In

this research, the turn-off process will be the chosen mode of detection.
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Figure 1.3 Schematic illustration of a fluorescence sensor device

1.4 Fluorescence quenching

Fluorescence quenching refers to any process which decreases the
fluorescence intensity of a fluorescent material. Several interactions or mechanisms
between fluorophore and the analyte can cause the excited fluorophore to return
from excited state back to ground state without emission of light, for examples the

rotation or vibration decay, photo-induced electron transfer (PET) and energy transfer.
1.4.1 Mechanism of fluorescence quenching

Photo induced electron transfer (PET) process often results in signal
quenching fluorescence from excited fluorophores which described by molecular
orbital energy diagram (Figure 1.4). In the absence of analyte, the electron in the
HOMO of receptor has higher energy than HOMO of fluorophore; as a result, the PET
process can transfer an electron to the acceptor’s HOMO. If the electron pair on the

receptor atom is coordinated to some electron-deficient species such as a transition



metal cation, the energy of the electron pair is lowered and the fluorescence will be

turn on.
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Figure 1.4 Energy level diagrams illustrating PET process in case (a) Free (b) coupled

with analyte [20]

Another mechanism, photo induced energy transfer from the excited state
of fluorophores to quenchers consists of three modes; Forster resonance energy
transfer mechanism (FRET), dynamic (collisional) quenching, and static quenching

(ground-state complex formation).

Forster resonance energy transfer mechanism (FRET) occurs when a donor
molecule in the excited state transfers its excitation energy to a nearby chromophore,
the acceptor molecule in the ground state. If the fluorescence emission spectrum of
the donor molecule overlaps with the absorption spectrum of the acceptor, the energy
transfer will happen as the result of long-range dipole-dipole intermolecular coupling
between the donor and acceptor. The emission signal of the acceptor (solid yellow
arrow, Figure 1.5) appears through the excitation of the donor molecule (solid purple
arrow), while the emission of the donor molecule is reduced (dashed blue arrow). The
donor fluorescence (solid blue arrow) is diminished during the transition to a lower
quantum state. The efficiency of the transferred energy depends on the molecular
distance between 1-10 nm, the extent of spectral overlap of the emission spectrum
of the donor with the absorption of the acceptor, the quantum yield of the donor, the
relative orientation of the donor and acceptor transition dipoles, and the distance

between the donor and acceptor molecules [20].


http://www.google.co.th/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjsodi-qprNAhXFrI8KHZTpCZYQjRwIBw&url=http://pubs.rsc.org/en/Content/ArticleHtml/2009/AN/b912527m&psig=AFQjCNH46-gYFamsmzXZeRTm_LvodqXrlw&ust=1465540582206331
http://www.google.co.th/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjsodi-qprNAhXFrI8KHZTpCZYQjRwIBw&url=http://pubs.rsc.org/en/Content/ArticleHtml/2009/AN/b912527m&psig=AFQjCNH46-gYFamsmzXZeRTm_LvodqXrlw&ust=1465540582206331

Acceptor

Encrgy transfer
.................. i light

light

Energy

ar transfer
*...:.............} ’
clatainoss ciuerchiig of light

Donor
fluorescence fluorescence

Figure 1.5 (left) FERT model and (right) Jablonski diagram showing the energy transfer

between the fluorescence donor and acceptor involved in FRET [20].

Dynamic quenching is a collision between the quencher and fluorophore. As
shown in Fiqure 1.6A, dynamic quenching takes place when the excited fluorophore
(F*) is deactivated upon contact with quencher (Q) and the fluorophore returns to the
ground state without emission of fluorescence light, while Q is not chemically altered

in the process. On the other hand, Figure 1.6B illustrates the static quenching which

results from the formation of a non-fluorescent complex between the F and Q (F-Q)
in the ground state. When this complex absorbs energy from light, the excited state
immediately returns to ground state without emission of a photon and the molecules
do not emit fluorescent light. A characteristic of static quenching is a change in the

absorption spectra of the two molecules when they form a complex.
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Figure 1.6 Dynamic and static quenching mechanisms



Static and dynamic quenching can be distinguished by their differing

dependence on temperature and fluorescence lifetime decay. First, the lifetime of

static quenching will not change; because, the fluorescence occurs from the

uncomplexed fluorophore which remains the same during the quenching process. In

contrast, the lifetime of dynamic quenching decreases in proportion to the intensity

(Figure 1.7).
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Figure 1.7 Fluorescence life of static and dynamic quenching

Second, the effect of temperature increasing can be used to distinguish the

two forms of quenching. At higher temperature, diffusion rates and the frequency of

collision increase in dynamic quenching. On the other hand, static quenching decrease

due to the dissociation of weakly bound complexed (Figure 1.8).
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Figure 1.8 Temperature effect of static and dynamic quenching



1.4.2 Stern-Volmer equation

Static and dynamic quenching require molecular contract between the
fluorophore and quencher. In case of this quenching, it exhibits a quencher-

concentration that is described by Stern-Volmer equation given by

|
o = 1+K Q]

Where |, and | are the fluorescence intensities observed in the absence and
presence of quencher, respectively. [Q] is the quencher concentration and K, is the
Stern-Volmer quenching constant — a parameter that determines the efficiency of
quenching process. K, obtained from a slope that a plot of I/l verse [Q] would give a
straight line. A linear relationship may indicate either a dynamic or static quenching
modes. The moderate to large binding constants give rise to K, that exceed the rate

achievable at the diffusion limit, and hence, static quenching can be inferred.

1.5 Truxene

Truxene or 10,15- dihidro-5H-dihidro-5H-diindenal[1,2-o;1°,2’-c]-fluorene s
highly hydrophobic and relatively planar heptacyclic polyarene structure (Figure 1.9)
which led to a poor water solubility and lower quantum efficiency due to aggregation.
The structure of truxene has attracted a great deal of interest due to their structural
rigidity, high thermal stability, and strongly emissive properties. Moreover, the truxene
core can easily be functionalized by the alkylation at C2, C7, and C12 positions in order
to extend the m-conjugation system and shift the emission wavelength into the visible
region. Nucleophilic addition at the C5, C10, and C15 carbons of truxene could prevent

the m-wt stacking and enhance the solubility of molecule in organic solvent [21-25].



Figure 1.9 The structure of truxene

1.6 Literature review on Truxene derivatives

In 2009, S.C. Yuan and co-workers [26] designed and synthesized four
monodisperse, well-defined, star-shaped truxene derivatives bearing oligo (fluorene,
ethynylene) (OFE) branches; TOFE1-TOFE4 (Figure 1.10). These molecules show
highly efficient greenish-blue light emissions, and excellent thermal and
electrochemical stabilities. In addition, all compounds can be used as active materials

a light-emitting layer for OLED to give a device emitting blue color.

Figure 1.10 The structure of star-shaped molecules TOFE1-TOFE4 [26]

In 2009, Z. Yang and co-workers [27] synthesized two solution-processable

triphenylamine-based dendrimers with truxene core as hole-transporting materials for
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organic light-emitting diodes; Tr-TPA3 and Tr-TPA9 (Figure 1.11). The dendrimers
showed excellent solubility in organic solvents, high thermal stability, and high glass

transition temperature, Tg, of 110 °C.

Figure 1.11 The structure of Tr-TPA3 and Tr-TPA9 [27]

In 2012, N. Earmrattana and co-workers [28] successfully synthesized two new
water-soluble fluorophores 1 and 2 (Figure 1.12) containing a truxene core and ester-
substituted aryl acetylenes peripheries as turn-off fluorescence sensor for cytochrome
C and myosglobin detection. Both compounds possessed excellent solubility in
aqueous media. They also exhibited outstanding emission quantum efficiencies typical

for truxene derivatives.

Figure 1.12 The structure of fluorophores 1 and 2 [28]
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From the literature reviews, most of truxene derivatives consisting of the =-
conjugated commonly showed highly fluorescent quantum yield. The absorption and
emission in visible range of truxene derivatives benefited its applications as naked-eye.
There are numerous researches containing truxene as core structure for OLEDs, liquid
crystals, organic solar cells but for the application of fluorescence sensor has a few.
Therefore, this research focuses on synthesis of fluorescence chemosensors by using

truxene as a core for detection of nitroaromatic compounds and metal ions.

1.7 Literature reviews on nitroaromatic compounds and metal ions applications

In 2010, Lee and co-workers [29] designed a dipyrenylcalix [4] arene (L)
containing a calix [4] arene as core structure and two pyrene peripheries for the
detection of nitroaromatic species at low concentration in CH;CN (Figure 1.13). L
molecule exhibited a selective fluorescent quenching with TNT and TNB; but, TNB can
quench the fluorescence more effective than TNT. The mechanism, in which TNB that
has the greater the number of electron-withdrawing nitro (-NO,) group on the toluene
core occurs intermolecular m-r interaction with the two pyrene moieties as the result

of a charge-transfer process.

" ty-Niiyx100

Quenching efficiency (%)

SEIES b

Figure 1.13 (left) Structure of dipyrenyl calix [4] arene (L) (right) Quenching efficiency
of L towards various analytes in CH5CN [29]

In 2012, Bhalla and co-workers [30] successfully synthesized novel

pentacenequinone derivative that incorporate a pentacenequinone as donor and
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thiophene as acceptor unit causing the intramolecular charge-transfer (ICT) process
resulting in itself is weakly fluorescence. Interestingly, this compound exhibited
fluorescent organic nanoaggregates in solvent mixture of H,O/THF (9:1) due to its
aggregation-induced emission enhancement attributes. Then, pentacenequinone
derivative was applied to detect nitroaromatic compounds. The compound showed a
selective fluorescence quenching in the presence of picric acid (PA) with a detection

limit of 500 ppb (Figure 1.14).
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Figure 1.14 (left) Structure of pentacenequinone derivative (right) A) Change in
fluorescence spectra of compound (10 M) with the addition of PA in H,O/THF (9:1)

mixture; B) Stern-Volmer plot in response to PA. Inset: Stern-Volmer plot obtained at

lower concentration of PA [30]

In 2012, Park and co-workers [31] reported a new fluorescent macrocyclic host,
calix-[2]pyreno[2]-pyrrole, and its guest binding properties. This molecule exhibited
high binding affinity for polynitroaromatic compounds including TNT. Accordingly, they
carried out the fluorescent titration of this molecule with 2,4,6-trinitrotoluene (TNT) in
toluene. As shown in Figure 1.15, the gradual addition of TNT resulted in complete
quenching of fluorescence with the Stern-volmer constant (K,) of 1.2x10° M. They
suggested that the quenching mechanism is the n-w interaction between electron rich-
pi system with electron deficient or electron poor (TNT), which was further confirmed
by a Job’s plot analysis. From a job’s plot data was found to exhibit a maximum at

0.5 molar fractions which was consistent the formation of a 1:1 complex. These results
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indicated the complex formation between calix [2]pyreno[2]-pyrrole and nitroaromatic

was directed by electronic nature of the host and guest.
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Figure 1.15 (left) Structure of Calix[2]pyreno[2]pyrrole (Right) Fluorescence spectral

changing of this compound upon addition of TNT and (inset) a Job’s plot experiment
(31]

In 2013, Bhally and co-workers [12] designed and synthesized m-electron rich
triphenylene derivatives 3 and 5 as chemosensors for various elctron deficient
nitroaromatic explosives such as picric acid, trinitrotoluene, dinitrotolulene and
dinitrobenzene in a THF: H,O (9.5:0.5). Derivative 5 showed a more sensitive response
towards the nitroaromatic derivatives than derivative 3 due to the spectral overlap
between the emission spectrum of derivative 5 and the absorption spectrum of picric
acid is much more than that in derivative 3. The calculated Stern-Volmer constant (K,)
of 3 and 5 were found to be 2.91x10° and 2.93 x10° M" for PA, respectively. The
quenching of the fluorescence involves the energy transfer from photo-excited m-
electron rich both derivatives to ground state electron deficient picric acid. Moreover,
the solution coated strips of derivative 3 and gel coated strips of derivative 5 can

detect easily to picric acid by the naked eye which was up to 14 pg cm™? (Figure 1.16).
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Figure 1.16 (above) Structure of triphenylene derivatives 3 and 5 (bottom)
Fluorescence emission spectra of 3 and 5 (5 M) upon the addition of PA (0-50 equiv.)
in a THF : H,O (9.5 : 0.5) mixture. The inset shows the fluorescence of both 3 and 5
before (A) and after (B) the addition of picric acid [12]

In 2013, Niamnont and co-workers [32], had successfully synthesized four novel
triphenylamine derivatives (TEP, TAP, TEP and TAC) containing an electron donating
triphenylamine core and three ethylnylpyrene or ethynylcorannulene peripheries
(Figure 1.17). The fluorescence quenching of TAP and TAC showed clearly much more
sensitive than TEP and TEC. The results suggested that hydrogen of the triazole bridge
can interact with the nitro group which confirmed by ‘H-NMR titration. TAP showed the
higher sensitivity toward TNT than TAC in CHCl; due to the shape geometry of the
corannulene does not well accommodate m-m interaction with TNT causing no PET
process. The Kg, value at 5°C to 45°C of TAP were 1.4 x10* M™* and 2.0 x 10* M,
respectively. The increasing of K, value upon temperature indicated that it is kind of
dynamic quenching. Furthermore, TAP has the level of the visual detecting of TNT
down to 0.58 ng mm? which is about ten times lower than the lowest number

previously reported.



15

06
2

(J
" o'Q
NS 2
g B
N
N-N® NN’ DSQ

” S
%\Nﬂéu{\, @: N'\R‘/O NO\[':‘N
" P T 0y
"

Figure 1.17 Structure of fluorophores [32]

In 2011, Zhang and co-workers [18] reported a novel fluorescence PPi sensor
pbased on 1,8-naphthalimide bearing two dipicolylamine arms. Fluorescence
enhancement and a 29 nm red-shift were observed when Zn?* was added to this novel
compound solution. The result could be explained by the coordination of Zn** and a
lone pair electron of the tertiary amine (DPA), leading to suppression of photoinduced
electron transfer process (PET). A binding mode of 1,8-naphtalimide derivative with
Zn** studied by Job’s plot analysis was 1:2 ratio. Moreover, the complex 1,8-
naphthalimide derivative -Zn*" was selectively quenched by addition of PPi and a 23
nm blue-shift emission (from 505 to 481 nm) in CH;CN-HEPES buffer (0.02 M, pH 7.4)
with a detection limit of 1.5 pM (Figure 1.18).
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Figure 1.18 Proposed binding modes of 1,8-naphthalimide derivative and Zn** with
PPi [18]
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In 2012, Yuan and co-workers [24] successfully designed and synthesized two
truxene derivatives (C3B; and N,S;) as fluorescent probes for fluoride anion (F )

detection. C3B; that containing three branches of demesitylboryl as acceptors displays
selective turn-off fluorescence probe with F~ which was resulting from the strong
binding of trivalent organic boron with the most electronegative F . In contrast, N,S;

exhibited the fluorescence enhancement upon the addition of F, thus, it is a turn-on
fluorescence probe. N,S; consist of two diphenylamine as donors and demesitylboryl

as acceptors resulting in photon induced electron transfer (PET) quenching and cave a

low fluorescence signal. When F was added to the solution of the complex, the

fluorescence signal was increased since PET process was inhibited as shown in Figure.
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Figure 1.19 Schematic illustration of F sensing process of C3Bs and NyS; and their

fluorescenct changes [24]

Until now, there have been various researches working on design and synthesis
of small molecules containing of receptor unit which specifically interacts with analyte
and used as fluorescence sensor for detection of nitroaromatic compounds and metal
ions. Interestingly, there are not many reports about the application of truxene
derivative as chemosensor and no report that used as a fluorescent sensor for

nitroaromatic compounds and metal ions.
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Therefore, in our current study, we designed and synthesis of water-soluble
and -insoluble truxene derivatives used as metal ions and nitroaromatic compounds

sensor, respectively.

1.8 Objective of this research

(1) To synthesize novel fluorophores composed of truxene as core structure
connecting to three ethylnyl pyrene (T1) or dipicolylamine (T2) as receptors (Figure
1.20).

T1 T2

Figure 1.20 The target molecules (T1 and T2)

(2) To characterize and study photophysical properties of the target molecules.

(3) To apply these novel fluorophores as nitroaromatic compounds and metal

ion sensors by using UV-vis spectrometry and fluorescence spectrometry.



CHAPTER Il
EXPERIMENTAL

2.1 Chemicals and materials

All reagents and solvents used in the reactions were standard analytical grade
purchased from Sigma-Aldrich (USA), Fluka® (Switzerland), or Merck® (Germany) and

other chemical suppliers.

Laboratory grade solvents, dichloromethane, ethyl acetate, and hexane were

usually redistilled before use.

In anhydrous reactions, solvents such as tetrahydrofuran (THF) and tolulene

were dried and distilled before use according to the standard procedures.
2.2 Instrumentation

Melting points were measured on a Fisher John Apparatus, Electrothermal MEL-

TEMP®,

ALl 'H NMR and °C NMR spectra were determined on a Varian Mercury NMR
spectrometer, which operated at 400 MHz for 'H and 100 MHz for **C nuclei (Bruker
400 MHz NMR spectrometer). All chemical shifts were reported in parts per million,
ppm (0 scale) relative to tetramethylsilane (TMS) as an internal reference.
Deuterochloroform (CDCls) was used as solvent. The following abbreviations are used
for multiplicity: s=singhlet, d=doublet, t=triplet, g=quartet, brs=broad singlet,
dd=double of doublet, dt=double of triplet, and m=multiplet. Coupling constants (J)

are reported in Hertz (Hz).

Mass spectra were recorded on a Microflex MALDI-TOF mass spectrometer
(Bruker Daltonics) using doubly recrystallized a-cyano-4-hydroxycinnamic acid (CCA)
and dithranol as a matrix. The HRMS was obtained by using Mass spectrometer

(microTOF, Bruker Daltonics) at an electron impact (El) of 70 ev.
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Fourier transform infrared spectra (FTIR) were obtained on Nicolet 6700 FTIR
spectrometer equipped with a mercury-cadmium telluride (MCT) detector (Nicolet

USA).

All absorption spectra were measured by using Shimadzu UV-2550 UV-Vis
spectrophotometer (Varian, USA). Fluorescence spectra were recorded on a Varian Cary
Eclipse spectrofluorometer. The maximum absorption wavelength was used as the
excitation wavelength of each fluorophore and the emission was recorded from the
wavelength at 390 to 600 nm. The solution of fluorophores were prepared in CHCl,
and aqueous THF for nitroaromatic sensing and 30%THF-HEPES buffer (0.002M, pH 7.4)

for metal ion sensing.
2.3 Chromatographic System

Analytical thin layer chromatography (TLC) was carried out on Merck Kieselgel
60, Fsq, Imm aluminium-backed silica plates (Merck KgaA, Darmstadt, Germany)
impregnated with 254 nm fluorescent indicator. The chromatogram was visualized

under 254 nm ultraviolet (UV) light and 356 nm Black light.

Column chromatography was performed on glass column using Merck silica gel
60 (60-230 mesh). The size of the chromatographic column used depended on the
amount (weight) of the sample. The ratio of sample and the adsorbent was about 1:40-
80 by weight. The column was eluted with some suitable solvents which best
separated the sample and each fraction was monitored by Thin-Layer Chromatography

(TLO).

Flash column chromatography was performed using Merck Kieselgel 60G silica

gel and eluting with the solvent system stated.

Preparative Thin Layer Chromatography (PLTC) was prepared by spreading

aqueous slurry of silica gel PF,s4,365 ONto plate which was then left standing at room

temperature to dry and subsequently activated for 2 h at 120°C in the oven.

Milli-Q water was used in all experiments unless specified otherwise. The most

reactions were carried out under positive pressure of N, filled in rubber balloons.
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2.4 Synthesis of fluorophores and Characterizations

2.4.1 Synthesis of Truxene

0~
PPA h
~~~~COOH 605 1

Ph then 160°C, 8h

Truxene

A mixture of 3-phenylpropionic acid (10.0 g, 66.72 mmol) and polyphosphoric
acid (50 g) was heated at 90 °C for 60 min under nitrogen atmosphere. Water (5 mL)
was then added to the reaction mixture which was allowed to stir at 160 °C for 8 h.
After the reaction was cooled to room temperature, the mixture was poured into ice
water. The gray powder filtered was washed with water, and the crude product was
purified by recrystallization from toluene to yield 3 as a light-yellow crystal (11.17 g,
49%). m.p. >300 °C. IR (KBr) Ve cm'™': 3044, 3024, 2871, 1609, 1469, 1393, 1021, 726.
'"H NMR (400 MHz, CDCl; ppm): 8 7.98 (d, J = 7.1 Hz, 1H), 7.71 (d, J = 6.8 Hz, 1H), 7.51
(t,J = 7.2 Hz, 1H), 7.40 (t, J = 7.0 Hz, 1H), 4.30 (s, 2H). )C NMR (100 Mz, CDCls, ppm): &
143.8, 141.2, 137.0, 135.2, 128.3, 126.9, 126.2, 125.0, 121.9, 36.5. MALDI-TOF calcd for
Co7H1g 342.1409, found: 342.535 (M). [33]

2.4.2 Synthesis of 5,5',10,10",15,15'-hexabutyl truxene (1)

n-BuBr, MaH, OMF
rt, 24 h

]

Truxene
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Truxene (1.5 g, 4.54 mmol) in DMF (50 mL) was stirred at 0°C under nitrogen
atmosphere and sodium hydride (2.2 g, 54.49 mmol) was added. The solution was
allowed to warm until room temperature and stirred for 30 min and then followed by
an addition of n-butyl bromide (5.8 mL). The reaction mixture stirred overnight at room
temperature was poured into water and extracted with EtOAc. The combined organic
layer was dried over MgSQy, filtered, and concentrationed in vacuo. The crude product
was purified by flash column chromatography using hexane as eluent to yield 1 as a
while solid (2.3 g, 75%). m.p. 193-194 °C. IR (KBr) V., cm’™: 2956, 2918, 2858, 1463,
1372, 1033. 'H NMR (400 MHz, CDCls ppm): § 8.38 (d, J = 7.4 Hz, 3H), 7.46 (dd, J = 7.1
and 1.3 Hz, 3H), 7.40-7.35 (m, 6H), 3.02-2.94 (m, 6H), 2.12-2.07 (m, 6H), 0.91-0.85 (m,
12H), 0.52-0.42 (m, 30H). >C NMR (100 Mz, CDCls, ppm): & 153.7, 145.0, 140.4, 138.5,
126.4, 126.0, 124.7, 122.3, 55.6, 36.7, 26.6, 22.9, 13.8. MALDI-TOF calcd for CsiHgg,
678.52, found: 677.85 (M+1). [28]

2.4.3 Synthesis of 5,5',10,10",15,15'-hexabutyl-2,7,12-triiodo-truxene (2)

KIO,. I, 80°C 4 h
ACOH:H, 50, H,O:CCL,

Carbon tetrachloride (CCly) (1 mL) was added dropwise into a solution of 1
(0.26 ¢, 0.38 mmol) in a 100: 40: 1.5 mixture of CH;COOH-H,SO,4-H,O (5 mL). Potassium
iodate (KIO3) (0.08 g, 0.32 mmol) and I, (0.5 ¢, 1.91 mmol) were then added to the
reaction mixture and allowed to heat at 80°C for 4 h. The reaction mixture was cooled
to room temperature and poured into water. The crude product obtained by filtration
was purified by precipitation in ethanol to afford 2 as a white powder (3.7g, 93%). m.p.
312-314 °C. IR (KBr) v cm'™': 2953, 2915, 2849, 1453, 1353, 1180, 873, 823, 788. 'H NMR
(400 MHz, CDCl; ppm): & 8.07 (d, J = 8.4 Hz, 3H), 7.76 (s, 3H), 7.71 (d, J = 8.4 Hz, 3H),
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2.88-2.81 (m, 6H), 2.05-2.00 (m, 6H), 0.92-0.84 (m, 12H), 0.52-0.41 (m, 30H). **C NMR(100
Mz, CDCls, ppm): & 156.4, 145.6, 140.0, 138.2, 135.8, 132.1, 126.8, 93.2, 56.1, 36.9, 26.9,
22.7, 13.8. Elemental analysis: calcd for CsiHgsls: C 57.96, H 6.01, | 36.03, found: C 57.56,
H 6.03, | 36.41.

2.4.4 Synthesis of fluorophore T1

O , P(PPh,),CL,

Cul, DBU, Toluene, rt, ovemight

A mixture of 2 (0.30 g, 0.28 mmol), Pd(PPh5),Cl, (18 mg, 0.03 mmol), Cul (5.0
mg, 0.03 mmol), 1-ethynylpyrene (0.23 g, 1.02 mmol) in tolulene (10 mL) and 1,8-
diazabicyclo[5.4.0Jundec-7-ene (DBU) (0.23 mL) was stirred at room temperature for 24
h. The reaction mixture was concentrated in vacuo, the residue was eluted through a
flash column chromatography using hexane to give T1 as a dark yellow solid (15 mg,
40%). m.p. >300 °C. IR (KBr) Vi cm™: 2918, 2849, 1453, 1374, 840, 710. 'H NMR (400
MHz, CDCl; ppm): 6 8.82 (d, J = 9.1 Hz, 3H), 8.51 (d, J = 8.7 Hz, 3H), 8.35-8.03 (m, 24H),
7.86-7.84 (m, 6H), 3.11-3.04 (m, 6H), 2.30-2.22 (m, 6H), 1.09-0.93 (m, 12H), 0.55-0.49 (m,
30H). **C NMR(100 Mz, CDCls, ppm): & 154.1, 146.4, 140.7, 138.4, 132.1, 131.52, 131.47,
131.36, 130.37, 129.9, 128.6, 128.4, 127.48, 126.45, 125.9, 125.83, 125.78, 125.5, 125.0,
124.8, 124.6, 121.6, 118.2, 96.2, 89.4, 56.0, 36.9, 29.8, 26.8, 23.1, 14.0. MALDI-TOF calcd
for CyosHoe 1351.71, found: 1352.91 (M+1).
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2.4.5 Synthesis of 4-iodo-2,2'-dipicolylamine (3)

NH. Cl 7 |

2

® o K,CO, KI Q\

+ I“‘NHC[ N S-S m N—©—|
_ H,O:CH,CN s

I o

3, 44%

A solution of 2-(Chloromethyl) pyridinium chloride (1.30 g, 8.00 mmol) in water
(3 mL) was added with potassium iodide (0.70 g, 4.80 mmol). Potassium carbonate was
dissolved in water (3 mL) and slowly added to the solution. Then, a solution of 4-
iodoaniline (0.70 g, 4.80 mmol) in acetonitrile (2 mL) was added to the stirred mixture.
The reaction mixture was stirred at room temperature for 4 days. Next step was
addition of water. The organic layer was separated and the aqueous phase was
extracted with dichloromethane (3 X 20 mL) and was then dried over anhydrous
MgSQq. The filtrate was evaporated and the residue was purified by a silica gel column
using gradient solvents starting from 10% EtOAC to CH,Cl, and to EtOAc as eluents to
afford 3 as a yellow needle crystal (0.57 g, 44%). IR (KBr) V,qx el 3269, 2099, 1513,
1435, 1344, 1174, 810, 751. 'H NMR (400 MHz, CDCL,): 8 8.58 (d, J = 4.8 Hz, 2H), 7.62 (t,
J =8.0 Hz, 2H), 7.38 (d, J = 8 Hz, 2H), 7.25-7.10 (m, 2H), 6.48 (d, J = 8 Hz, 2H), 4.79 (s,
4H). °C NMR (100 MHz, CDCly): & 158.2, 149.7, 147.8, 137.8, 136.8, 122.2, 120.7, 114.9,
78.3, 57.3. LR-ESI-MS m/z calcd for CygHgIN5: 401.2442, found: 401.98 (M) [34].

2.4.6 Synthesis of 4-(trimethylsilyl)-ethynyl-2,2'-dipicolylamine (4)

§s )
=7\ =—Si(CH,), PACL(PPh),, Cu = \ _
N N@I A =—SiMe,
C\?/J NEt,, Phivie C\{J

3 4, 75%

A mixture of 3 (0.30 g, 0.75 mmol), Pd(PPh3),Cl, (0.03 g, 0.04 mmol) and Cul
(0.01 g, 0.04 mmol) in mixed solvent (5 mL, NEts/toluene 1:4 v/v) was purged with
nitrogen for 15 min. After that, a portion of trimethylsilylacethylene (TMSA, 0.13 mL,

0.90 mmol) was added into the mixture and the stirring was continued overnight under
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nitrogen atmosphere at room temperature. The solvent was evaporated and the
residue was diluted with dichloromethane (30 mL) and poured into water (20 mL). The
organic layer was washed with saturated solution of sodium chloride and water, dried
over anhydrous MgSQOy, and filtered. The solvent was evaporated and the crude
product was purified by column chromatography on neutral Alumina using hexane as
solvent to afford 4 as a pale yellow solid (0.21 g, 75%). 'H NMR (400 MHz, CDCLs): &
8.39 (d, J = 4.8 Hz, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.06 (d, 8.0 Hz, 2H), 7.01-6.99 (m, 4H),
6.40 (d, J = 8.9 Hz, 2H), 4.62 (s, 4H), 0.00 (s, 9H). °C NMR (100 MHz, CDCls): § 158.65,
150.1, 148.6, 137.5, 133.8, 122.7, 121.4, 112.7, 111.9, 106.3, 92.1, 57.6, 0.5. LR-ESI-MS
m/z calcd for Cy3H,5N5Si: 371.5502, found: 372.07 (M+1).

2.4.7 Synthesis of 4-ethynyl-2,2'-dipicolylamine (5)

JO
2_—0—"'
N
-~

7 _ excess KOH, THRE MeOH M __
N — SilMe, - M = ==

r.t, 30 min [

Q}
\

4 5, 89%
An excess KOH solution in THF/MeOH 1:10 v/v (10 mL) was added into a
solution of 4 (0.24 ¢, 0.65 mmol) in THF/MeOH 1:10 v/v and the mixture was stirred at
room temperature for 30 min. The solvent was removed under reduced pressure and
the residue was dissolved in CH,Cl, (30 mL) and washed with NH,Cl solution, water (20
mL), and brine solution (20 mL). The organic layer was separated and the aqueous
phase was extracted with CH,Cl, (2 x 20 mL) and was then dried over anhydrous MgSOj.
The filtrate was evaporated and the residue was eluted through a neutral alumina
column by using hexane to provide 5 as a pale yellow crystal (0.17 g, 89%). 'H NMR
(400 MHz, CDCls): & 8.57 (d, J = 4.8 Hz, 2H), 7.61 (td, J = 7.7, 1.7 Hz, 2H), 7.29-7.24 (m,
2H), 7.21-7.14 (m, 4H), 6.62 (d, J = 9.0 Hz, 2H), 4.81 (s, 4H), 2.92 (s, 1H). "°C NMR (100
MHz, CDCls): & 158.55, 150.2, 148.8, 137.2, 133.8, 122.5, 121.1, 112.6, 110.5, 84.7, 75.4,
57.6. LR-ESI-MS m/z calcd for CyoHy7N5: 299.1412, found: 300.07 (M+1) [35].
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2.4.8 Synthesis of 5, 5, 10, 10’, 15, 15'-hexa-2-(2-methoxyethoxy)
ethyltruxene (6)

MaH, DhF

MeOCH,CH,OCH,CH,|

Truxene

3

6, 66%

To a stirred solution of truxene (0.10 g, 0.29 mmol) in DMF (10 mL) at 0 °C
under nitrogen, NaH (0.09 g, 2.32 mmol) was added. Then the solution was allowed to
warm to room temperature and stirred for 30 min and then 1-iodo-2-(2-
methoxyethoxy)ethane (0.53 ¢, 2.32 mmol) was added. After stirring for 24 h, the
mixture was poured into water and extracted with EtOAc. The volatile solvents were
removed under reduced pressure and the crude product was purified by column
chromatography on silica gel using with EtOAc as the eluent to yield 6 (182 mg, 66%)
as a white crystalline solid. *H NMR (CDCls, 400 MHz, ppm) d 8.34 (d, J = 8.3, 3H), 7.58
(d, J = 8.3 Hz, 3H), 7.41 (m, 6H), 3.19-3.28 (m, 36H), 3.06 (m, 12H), 2.50-2.72 (m, 18H).
C NMR (CDCL3, 100 MHz, ppm) d 151.5, 143.0, 138.1, 127.4, 127.3, 125.1, 122.8, 71.5,
69.7, 67.1, 58.8, 51.2, 36.0. MALDI-TOF calcd for Cs;H7g015: 955.2220, found: 955.570
(M).
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2.4.9 Synthesis of 2, 7, 12-Triiodo-5, 5', 10, 10, 15, 15’'-hexa-2-(2-

methoxyethoxy) ethyltruxene (7)

KO, |, ACOH

H,50,, H,0, CCL,

6 7, 96%

A solution of 6 (0.20 g, 0.20 mmol) in 20 mL of mixed solvent (CH;COOH : H,SO,

:H20 : CCly = 100 : 5 : 20 : 8) was heated to 40 °C with stirring. After adding KIOs (0.05
g, 0.23 mmol) and I, (0.08 g, 0.32 mmol), the mixture was heated to 80°C and stirred
for 3 h. After the reaction mixture was cooled to room temperature, it was poured into
water and extracted with EtOAc. The volatile solvents were removed under reduced
pressure and the crude product was purified by column chromatography on silica gel
eluting with EtOAC to yield 7 (0.26 g, 93%) as a yellow solid. 'H NMR (CDCls, 400 MHz,
ppm) d 7.97 (d, J = 8.1 Hz, 3H), 7.85 (s, 3H), 7.68 (d, J = 8.1, 3H), 3.01 (m, 18H), 2.63
(m,12H), 2.44 (m, 6H). *C NMR (CDCl;, 400 MHz, ppm) d 154.0, 143.5, 137.4, 137.3,
136.5, 132.4, 126.6, 93.5, 71.6, 69.9, 67.0, 58.9, 51.7, 35.8, 29.7. MALDI-TOF calcd for
Cs7H7513015: 1332.9116, found: 1355.550 (M+Na).
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2.4.10 Synthesis of fluorophore T2.

5, Pd(PPh,),CLy, Cul
—_—-
DBU, Phie

T2, 42%

A mixture of 2,7,12-triodo-5,5",10,10",15,15 -hexa-2-(2-methoxyethoxy) ethyl
truxene (7) (0.15 g, 0.11 mmol), Pd(PPh3)Cl, (4 mg, 0.05 mmol), Cul (2 mg, 0.05 mmol),
and compound 5 (0.13 g, 0.45 mmol) was dissolved in toluene (10 mL). Then, 1,8-
diazabicyclo[5.4.0] undec-7-ene (DBU) (0.13 mL) was added into the reaction mixture
and the stirring was continued at room temperature for 24 h. After the combined
filtrate was evaporated and the residue was eluted through a silica gel column by
gradient solvents from dichloromethane chloride to ethyl acetate as the eluents to
give T2 as a yellow solid (0.87 g, 42%). IR (KBr) V. cm': 2921, 2857, 2184, 1590, 1518,
1434, 1347, 1096, 814, 751. 'H NMR (400 MHz, CDCl,): & 8.59 (d, J = 4.5 Hz, 2H), 8.21
(d, J = 8.4 Hz, 1H), 7.66-7.62 (m, 3H), 7.45 (dd, J = 15.2 Hz, 7.1 Hz), 7.39 (d, J = 8.4, 2H),
7.26-7.12 (m, 4H), 6.68 (d, 8.8 Hz, 2H), 4.86 (s, 4H), 3.20-3.16 (m, 12H), 3.07-2.98 (m, 4H),
2.69-2.64 (m, 4H), 2.54-2.47 (m, 4H). *C NMR (100 MHz, CDCL,): & 158.3, 151.9, 149.8,
148.3, 143.9, 137.9, 137.6, 137.2, 133.2, 130.7, 125.8, 125.1, 123.2, 122.4, 121.1, 112.6,
111.5, 91.6, 88.1, 71.7, 70.0, 67.3, 59.0, 57.3, 51.6, 36.2. MALDI-TOF calcd for
Ci17H125NO12: 1846.9325, found: 1844.441 (M+2). HR-ESI-MS m/z calcd for Cy17H123NgO1:
1846.9325, found: 1847.9404 (M+1).
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2.5 Photophysical Property Study

A 100 uM solution of fluorophore T1 in CHCl; and aqueous THF and a 50 uM
solution of fluorophore T2 in 30%THF-HEPES buffer (0.002M, pH 7.4) were prepared at

room temperature for spectrophotometric experiments.
2.5.1 UV-Visible spectroscopy

The UV-Visible absorption spectra of the stock solutions of T1 and T2 were

recorded from the wavelength at 250 nm to 600 nm at ambient temperature.
Molar extinction coefficient (g)

The molar extinction coefficient (g, epsilon) of T1 and T2 were usually based
on concentrations measured from UV-Visible absorption spectra which reported in M
'em™. The maximum absorbance of all fluorophores should not be more than value
of 1. The wavelength of maximum absorbance (A, of each compound was plotted
versus the concentrations (C) at the respective excitation wavelengths (A.,). Each plot
should be a linear line that runs through the origin position (0, 0). The molar extinction
coefficient (¢) can also be calculated from plotting of absorption maximum (A) vs

concentration (C) represented into the following Beer-Lambert law equation:
A = gbc
2.5.2 Fluorescence spectroscopy

The stock solutions of fluorophores T1 and T2 were diluted to the
concentration of 1 u#M and 5 uM, respectively, with their respective solvents. The
emission spectra of fluorophores were recorded from the wavelength at 380 to 600
nm at room temperature using excitation wavelength at 388 nm in CHCl;, and 386 nm
in 10%H,0 in THF for T1, and 3 75 nm in 30%THF-HEPES buffer (0.002M, pH 7.4) for
T2.

Fluorescence quantum yield (®f)

The fluorescence quantum yield of fluorophores was performed in CHCl; and
10% H,0O in THF for T1, and 30%THF-HEPES buffer (0.002M, pH 7.4) for T2 using quinine
sulfate (@ = 0.54 in 0.1 M H,SO,) as the reference according to a previously reported
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method [36]. The UV-Visible absorption spectra of five analytical samples and five
reference samples at various concentrations were recorded. The maximum absorbance
of all samples should not be more than value of 0.1 in order to prevent the interaction
among themselves resulting in the quantum vyield values may be perturbed at high
concentration. The fluorescence emission spectra of the same solutions using
appropriate excitation wavelengths selected were recorded based on the absorption
at the excitation wavelength (A,.,,) of each compound. The graphs of integrated
fluorescence intensities were plotted against the absorbance at the respective
excitation wavelengths. Each plot should be a straight line with a y-intercept at 0, and

gradient m.

Moreover, the fluorescence quantum vyields (®) were determined by

comparison with a standard of known fluorescence quantum yield according to the

Slope, \ [ n>
b, =D
7 A <S lopeST> (ngT

Where the subscripts, X refers to the unknown samples and ST refers to the

following equation.

standard quinine sulfate solution in 0.1 M H,SO,4, whose fluorescence quantum yield
is known to be 0.54 [Ref], ®yis the fluorescence quantum vyield of sample, Slope is
the slope from the plot of integrated fluorescence intensity versus absorbance, and n

is the refractive index of the solvent.
2.6 Fluorescent sensor study
2.6.1 Nitroaromatic sensor studies
2.6.1.1 Selective screening test for nitroaromatic compounds

A solution of the fluorophore T1 was prepared in CHCl; and aqueous THF, and
then adjusted to the concentration of 1 M. The maximum absorption wavelength
was used as the excitation wavelength of T1 at 388 nm in CHCl; solution, and 386 nm
in 10%H,0 in THF and the emission was recorded from the wavelength at 390 to 600
nm. Nitroaromatic compounds such as 2,4,6-trinitrotoluene (TNT), 2,4,6-dinitrotoluene

(DNT), 2,4-dinitrophenol (DNP), picric acid (PA), 2-or 3- or d-nitrophenol (NP),
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nitrobenzene (NB), and 4-nitrobenzoic acid (NBA), and non-nitroaromatic analogs such
as benzoic acid (BA), benzophenol (BP), and 2-chlorobenzoic acid (CBA) were prepared

in CHCl; and H,O at concentrations of 10 mM.
2.6.1.2 Fluorescence titration of T1 with 2-NP in CHCl,

A 1uM CHCL; solution of T1 was prepared through dilution of its 100 M CHCl,
solution. This solution with a volume of 1 mL was pipetted into a 1 cm standard quartz
cell and titrated with stepwise addition of 2-NP at various concentration from 0 #M to
2 mM. The fluorescence emission spectra were measured at room temperature at an

excitation wavelength of 388 nm.
2.6.1.3 Fluorescence titration of T1 with TNP in aqueous THF

5 uM of T1 in a mixture of THF in water (9:1) solution was added to quartz cell
with a 1 mL volumetric pipette and titrated with stepwise addition of TNP at a
concentration from 0 to 100 4M. The fluorescence emission spectra were measured

at room temperature at an excitation wavelength of 386 nm.

2.6.1.4 Effect of water content on fluorescent quenching efficiency of T1

by picric acid

The excitation wavelength was 386 nm and the fluorescence emission was
recorded from the wavelength at 400 to 700 nm at room temperature. 1 uM of T1
solution was prepared in THF. The stock solution of picric acid (PA) was prepared in
water at concentration of 1 mM. The T1 (1 #M) was transferred to the quartz cuvette
in volume 1 mL, and then picric acid (100 #M) was added into the T1 solution. The
final volume of the mixture was adjusted to 1000 L by varied water content between

5%-50% water in THF.
2.6.1.5 pH effect depending on the ionization of PA in aqueous medium

1 M and 100 uM of mixture solution of T1 and PA prepared in THF with 10%
aqueous buffer of various pHs were investicated by measuring the fluorescence

emission spectra of buffer solutions in the pH range of 4 to 12.
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2.6.1.6 LOD (limit of detection)

The detection limit of an individual analytical procedure is the lowest amount
of analytes in a sample which can be detected but not necessarily quantitated as an

exact value.

The limit of detection (LOD) is determined by the analysis of samples with

known concentrations of analyte which may be expressed as:

The limit of detection (LOD) = 36/Kg,

Where; 6 refers to the standard deviation of the blank measurement deriving
from the intensity of fluorophores at 1 uM of 9 samples (n = 9). K,, (Stern-Volmer
constant) is the slope of calibration curve obtained from the fluorescence titration

spectra.

2.6.2 Metal ion sensor studies
2.6.2.1 Effect of water content depending on solubility of T2

The solution of T2 was prepared at concentration of 50 M in THF, then
adjusted to 5 M and added into the 1 mL cuvette. The final volume of the solution
was adjusted to 1mL by varying the ratio of water in THF from 10% to 90% to afford
the final concentration of 5 M of T2. The fluorescence spectra were measured with
an excitation wavelength of 375 nm at room temperature and recorded from the

wavelength at 390 to 700 nm.
2.6.2.2 Cation sensing ability of T2

The solution of fluorophore T2 was prepared at concentration 50 #M in THF
and adjusted to the concentration of 10 M. The excitation wavelength was 374 nm
and the emission spectrum was recorded from the wavelength at 390 to 700 nm. Metal
ions were used as analytes such as K*, Na*, Li*, Ba*, Mg®*, Ca®*, Cu®*, Ni¢*, Zn?*, Al*",

Hg**, Fe’* Co®, Cr’*, Cd**, and Pb?*. All metal stock solutions were prepared in 0.002
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M HEPES buffer pH 7.4 at concentrations of 2 mM. Concentration of each metal
solution was adjusted to 50 #M and was transferred to T2 solution in the cuvette with
a volume of 1 mL. The fluorescence emission spectra were measured at room

temperature at an excitation wavelength of 375 nm.

2.6.2.3 Complexation studies of T2 with various anions in the presence of

copper (II) ion

A mixture of T2 (5 uM) in 30%THF-HEPES buffer (0.002M, pH 7.4) and 10
equivalent of Cu?* ion was prepared and added to the cuvette in volume 1 mL and
stirred for 1 min before adding each anion. The anions selected in this study which
were HPO,, ClO,, HSO, ,NO;~, OAC, SO5", CN™, CO5”, CU”, F, I, and Br were
prepared in water at concentrations of 2 mM. The 10 equivalent of each anionic guest
solution was transferred to the mixture solution of complex in the cuvette and stirred

for 1 min before each scan.



CHAPTER IlI
RESULTS AND DISCUSSION

Our design of new truxene-based chemosensors (T1 and T2) relied on the
reactivity of truxene which can be deprotonated at the position 5, 10, and 15 and react
towards electrophilic reagent at the position 2, 7, and 12. The structures of these
compounds are shown in Figure 3.1. Compound T1 will be decorated with six
hydrophobic n-butyl groups to facilitate its solubility in organic solvent, and three
ethynylpyrene groups as receptors for nitroaromatic analyte. On the other hand,
compound T2 will be alkylated by six diglycol groups to enhance the water solubility.
The metal-ion receptor units for T2 are dipicolyl anilines. The synthesis of both

compounds are described herein.

T1 T2

Figure 3.1 Structure of fluorophores

3.1 Synthesis and Characterization of fluorophores
3.1.1 Fluorophores T1

The synthesis of fluorophores T1 and T2 began with the preparation of truxene
core as shown in Scheme 3.1. The commercially available dihydrocinnamic acid was
treated with polyphosphoric acid (PPA) at 160°C for 8 h. The reaction generated

indanone in situ, which then underwent aldol condensation to provide truxene as a



34

lisht-yellow solid in 49% vyield after recrystallization in tolulene. The structure of

truxene was verified by comparing the 'H-NMR data with the literature report [28].

=0

PRA, 90°C 1 h

g
’
o
I
f

then H,0, 160°C, 8 h

Truxene
49%
Q
indancne

Scheme 3.1 Synthesis of Truxene

The 'H NMR spectrum of truxene in CDCl; (Figure 3.2) shows a signal for
methylene protons (e) at 4.30 ppm as a singlet. The four signals at 7.98 (d), 7.71 (a),
7.51 (b), and 7.40 (c) ppm correspond to the four aromatic protons.

d a be

iy N T
= EZE =
v . 1 . ' . 1 . , . v . ¥ T
8.0 7.5 7.0 65 6.0 55 5.0 3.5 3.0 2.5 2.0

4.5 4.0
f1 (ppm)

Figure 3.2 '"H NMR spectrum of Truxene (400 MHz, in CDCls)

Since its structure is relatively planar and it is highly hydrophobic, truxene has
poor solubility in most common solvents and tends to aggregate at high concentration

which lead to poor optical properties. To overcome this issue, the methylene positions
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(C-5, C-10 and C-15) of truxene was alkylated by either hydrophobic n-butyl groups or
hydrophilic 2-(2"-methoxy) ethoxyethyl groups. This structural modification should
hinder molecular aggregation via m-m stacking resulting in better solubility in nonpolar

and polar solvents.

Hexa-alkylation at the 5, 10 and 15-positions of truxene was achieved by
treatment with NaH and n-butyl bromide to provide the hexabutylated truxene core
1 in 75% vyield. The compound was obtained as a white solid after a simple
chromatography on silica gel column. Regioselective iodination of 1 with KIO;and I, in
a mixed solvent of CH;COOH, H,SO, H,O, and CCl, afforded the triiodo 2 in an

excellent yield of 93% after crystallization in ethanol (Scheme 3.2).

n-BuBr, KNaH, DMF
it 24 h

Truxens

KIO,, 1, 80°C 4 h
AcOH:H,S0,:H,0:CCL,

2, 93%

Scheme 3.2 Synthesis of the hexabutylated truxene 1 and the triiodo truxene 2

The 'H-NMR spectrum of 1 and 2 in CDCl; are shown in Figure 3.3. Compound
1 showed three signals for aromatic protons at 8.38 (d, J = 7.4 Hz), 7.46 (dd, J = 7.1
and 1.3 Hz) and 7.40-7.35 (m) ppm. Signals for the methylene groups closest to the
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aromatic rings are separated into two groups as the truxene structure is not completely
flat. All of the aliphatic protons appeared around 0.4 to 3.0 ppm. The "H-NMR spectrum
of 2 shows one singlet signal at 7.76 and two doublets signals at 8.07, 7.71 for the
aromatic protons. The multiplet in the range 0.4-2.8 ppm can be assigned to all of

methyl and methylene protons on the butyl chains.
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Figure 3.3 'H NMR spectrum of 1 and 2 (400 MHz, in CDCls)

The synthesis of target molecule T1 is shown in Scheme 3.3. Sonogashira
coupling of the trilodo truxene 2 with 1-ethylnylpyrene was achieved using Pd(PPhs),Cl,

and Cul catalytic system. Fluorophore T1 was obtained in 40% yield after a silica gel

column chromatography as a yellow solid (m.p. >300 °Q).
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O , PA(PPh,),CL,

Cul, DBU, Toluene, rt, overnight

T1, 40%
Scheme 3.3 Synthesis of fluorophore T1
Fluorophore T1 was identified by IR, 'H NMR, *C NMR and MALDI-TOF-MS. The

MALDI-TOF-MS analysis revealed a molecular ion peak [M+H]" at m/z 1352.91 which

validated the molecular formula of CyysHg (Figure 3.4).
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Figure 3.4 MALDI-TOF Mass spectrum of T1

The 'H NMR spectrum of T1 is shown in Figure 3.5. The signals of pyrene
groups appeared as a doublet at 8.82 (3H) and multiplet signals at 8.35-8.03 (24H) ppm.
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The aromatic protons of truxene core appeared at 8.51 (3H) and 7.86-7.84 (m, 6H) ppm.
The signals at 0.49 to 3.11 ppm belonged to the butyl chain. The appearance of both
truxene and pyrene fragments in the 'H-NMR spectrum of T1 suggested that the

coupling reaction was successful.
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Figure 3.5 'H NMR spectrum of T1 (400 MHz, in CDCls)

3.1.2 Fluorophores T2
3.1.2.1 Synthesis of water-soluble truxene core

To enhance the water solubility of the truxene fluorophore, six hydrophilic 2-

(2"-methoxy) ethoxyethyl groups were installed at the methylene positions of truxene
core (Scheme 3.4). Hexa-alkylation of truxene was accomplished by treatment with
NaH and 2-(2"-methoxy) ethoxyethyl iodide in DMF at room temperature with stirring
for 24 h. The product was purified by silica gel column chromatography to give the
hexaalkylated truxene core 6 in 66% yield as a white solid. The selective iodination of
6 using KIO5 and I, in mixed solvent between CH;COOH, H,SO4, H,O, and CCl, gave rise

to the 2,7,12-triiodo 7 as a single regiosiomer in excellent yield of 96% as yellow solid.
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This synthetic method was prepared following a literature reported previously by

Earmrattana et al. [28].

NaH, DMF

MeQCH,CH,0CH,CH,|

Truxene

KIO,, 1, ACOH

H,50,, H,0, CCl,

Scheme 3.4 Synthesis of hydrophilic truxene core

The compound 6 and 7 was characterized by 'H NMR and C NMR
spectroscopy which were in good agreement with the literature reports. The *H NMR
spectrum of 6 showed characteristic peaks of the glycol chains signal in the range of
2.5 to 3.7 ppm (m, 66H) and the aromatic protons appeared as at 7.41 (m, 6H, H-b and
H-c), 8.34 (d, 3H, H-d) and 7.58 ppm (d, 3H, H-a) (Figure 3.6). For compound 7, there is
a new low-field signal at 7.85 ppm (s, 3H, H-a), 7.97 (d, 3H), and 7.68 ppm (d, 3H) which
was identified as aromatic protons. The multiplet signal in the regions of 2.44 to 3.01

were assigned as methylene and methyl protons of the diglycol chains (Figure 3.7).
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Figure 3.6 "H-NMR spectrum of 5,5',10,10',15,15'-Hexa-2-(2-methoxyethoxy) ethane-
truxene 6 (400 MHz, in CDCls)
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Figure 3.7 'H-NMR spectrum of 2,7,12-Triiodo-5,5',10,10',15,15',-hexa-2-(2-methoxy
ethoxy) ethanetruxene 7 (400 MHz, in CDCl,)
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3.1.2.2 Synthesis of the peripheral group

Synthetic pathway of the peripheral group (compound 5) was outlined in
Scheme 3.5. Starting from a reaction between the commercially available 4-iodoamine
and 2-(chloromethyl) pyridinium chloride in a mixture of H,O and CH;CN according to
a published procedure [16], the disubstituted p-iodoaniline product 3 was obtained
after stirring at room temperature for 4 days as a yellow needle crystal in 44% vyield.
It should be noted that there was a side product (15%) in this reaction which was
identified as monosubstituted p-iodoaniline. Next, the Sonogashira cross coupling
between compound 3 and trimethylsilylacetylene using Pd complex and Cul as
catalyts provided trimethylsiyl dipicolyl amine 4 in 75% yield [16, 35]. The desilylation
was achieved using excess KOH (in THF/MeOH 1:10 v/v) at room temperature to afford
the aryl acetylene 5 as a pale yellow crystal in 89% vyield. Compound 5 was then

used for coupling with the 2,7,12-triiodo 7 to generate fluorophore T2.

T R,OCHCN NEt,, Phie
44% 75%

NH, |/Cl
N L Aee K,CO, K =5i(CH,), PACL(PPh,),, Cul
7 @HCL Q/

\/ \ 7
=00 Py, excess KOH, THE/MeOH .
I =—SiMe, - W 4 — H

N
(- 899 |

S
— ——

Scheme 3.5 Synthesis of peripheral group

Characterizations of 3-5 by IR, NMR, and HR-MS confirmed the successful
synthesis of these compounds. For 3, a singlet signal at 4.85 ppm belonged to the
methylene protons of dipicolyl moieties, while the aromatic protons resonated at 6.46
to 8.59 ppm (Figure 3.8). After a successful Sonogashira coupling, a singlet signal of
trimethylsilyl group at 0 ppm appeared in the "H-NMR spectrum of 4. This signal then
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disappeared after the silylation to afford the terminal alkyne 5 (Figure 3.9 and Figure

3.10).
G353 88 RRYR2Z2CSER
MO NNANN AN AN MAMNAMAMNANN OO -
(222 :
JNN_ =y
| N
b
a
I
S ea:+db
] [ ] \
_l_UU ) B
T T T T T
100 75 50 25 00
ppm (1)

012
992
980
963
418
397
4629

a+f

0.000

Ppm (1)

Figure 3.9 H-NMR spectrum of 4 (400 MHz, in CDCls)
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Figure 3.10 'H-NMR spectrum of 5 (400 MHz, in CDCls)

3.1.2.3 Final assembly of T2

The synthesis of target molecule T2 also relied on the Sonogashira coupling
between the 2,7,12-triiodo 7 and terminal alkyne 5. The reaction was carried out using
Pd(PPh3),Cl, and Cul catalytic system to provide T2 as a yellow solid in 42% yield
(Scheme 3.6). The formation of T2 was verified by several spectroscopic techniques

involving IR, 'H-NMR, *C-NMR, MALDI-TOF, and HR-MS.
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Scheme 3.6 Synthesis of target molecule T2

The '"H NMR spectrum of fluorophore T2 (Figure 3.11) exhibited the signals of
dipicolyl groups at 4.86, 7.12, 7.26, 7.66 and 8.59 ppm. The aromatic protons of phenyl
groups appeared as doublets at 6.68 and 7.39 ppm. Signals of the aromatic protons
on the truxene core appeared at 7.45, 7.62 and 8.21, whereas the aliphatic proton

signals of hydrophilic chains displays in the regions of 2.98 to 3.2 ppm.
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Figure 3.11 "H-NMR spectrum of T2 (400 MHz, in CDCls)
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The MALDI-TOF and HR-MS mass analysis confirmed the structure of T2 by
showing an apparent molecular ion peak at 1847.949 [M+H]", which confirmed the

molecular mass of compound with a molecular formula of Cy17H1,3NO;, (Figure 3.12

and 3.13).
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Figure 3.12 MALDI-TOF Mass spectrum of T2
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Figure 3.13 HR-MS spectrum of T2
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3.2 Nitroaromatic sensor
3.2.1 Photophysical properties of T1

The UV-Spectrum of T1 in CHCl; and 10% H,O in THF was studies. From the
normalized absorption and emission spectra in both solvents are relatively similar.
They show two maximum absorption peaks at 388 and 412 nm in CHCl; solution, and
386 and 410 nm when dissolved in 10% H,O in THF (Figure 3.14 and Table 3.1).
However, the molar extinction coefficients in two solvents are significantly different,
probably due to the lower solubility of the compound in aqueous THF. The two
absorption maxima suggested two distinctly different conformations due to the
rotation of the bond between the truxene and pyrene pendant which may allow a full
or partial conjugation. The fluorophore also possesses two maximum emission peaks
at 414 to 442 nm in CHCl; solution with high quantum vyield of 71%. The emission
spectrum of fluorophore in 10% H,O in THF remained quite similar to that of the CHCl;
solution but the quantum efficiency decreased to 53%. This indicated that the
compound may aggregated in aqueous solution resulting in self-quenching and lower
quantum yield. In addition, the higher polar solvent could stabilize the fluorophore in
the excited state, causing higher degree of geometrical relaxation and loss of energy
in non-radiative pathways. In comparison with the parent truxene, the absorption and
emission of fluorophore T1 shifted towards visible range which can benefit its
applications as naked-eye fluorescent chemosensor for detection of nitroaromatic

compounds.
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Figure 3.14 Normalized absorption and emission spectra of T1 in CHCls and aqueous

THF

Table 3.1 Photophysical property of truxene and T1 in CHCl5 and 10% H,O in THF

Compound Absorption Emission

Armax (NM) log e M*cm™)  Amax (NnM) D (%)

Truxene (CHCls) 275 421 359 < 0.01
Truxene (THF-H,0) 273 4.23 357 6°
T1 (CHCl,) 388, 412 5.27 415, 442 71°
T1 (THF-H,0) 386, 410 4.95 415, 440 53°

92-Aminopyridine in 0.1 M H,SO4 (® = 60%) was used as the standard.
®Quinine sulfate in 0.1 M H,SO4 (® = 54%) was used as the standard.

3.2.2 Selectivity screening for nitroaromatic compounds

Next, the sensing selectivity of T1 in CHCl; (1 #M) and aqueous THF towards
various analytes including nitroaromatic compounds such as 2,4,6-trinitrotolulene
(TNT), 2,4-dinitrotolulene (DNT), 2,4-dinitrophenol (DNP), picric acid (PA), 2- or 3- or 4-

nitrophenol (NP), nitrobenzene (NB), 4-nitrobenzoic acid (NBA), and non-nitroaromatic
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analogs such as benzoic acid (BA), benzophenol (BP) and 2-chlorobenzoic acid (CBA)
was investigated. The fluorescence signal of T1 in CHCl; could be selectively quenched
by 2-NP (Figure 3.15), whereas the selectivity towards PA was observed for the
aqueous THF solution (Figure 3.16).
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Figure 3.15 Fluorogenic responses and emission spectra (inset) of T1 (1 uM) towards

various analytes (1 mM) in CHCl;
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Figure 3.16 Fluorogenic responses and emission spectra (inset) of T1 (1 1LM) towards

various analytes (0.1 mM) in 10% H,O in THF
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3.2.3 Effect of water content on fluorescent quenching efficiency of T1

by picric acid (PA)

On the other hands, the quenching efficiency by PA in aqueous THF could be
enhanced by the addition of water but the water content above 50% led to
detrimental aggregation that diminished the initial fluorescence signal (Figure 3.17).
Upon an optimization of the water content, the highest quenching efficiency was

obtained when 10% H,0 in THF was used as the solvent (Figure 3.18).
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Figure 3.17 Fluorescent spectra of T1 in THF with various water contents
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Figure 3.18 Effect of water content in THF on fluorescent quenching efficiency of T1

(1 uM) by picric acid (0.1 mM)
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3.2.4 pH effect depend on the ionization of PA in aqueous medium

In addition, the fluorescent quenching efficiencies of T1 in THF with 10% buffer
of various pHs were investigated. Data from Figure 3.19 indicated that the sensitivity
was independent to the pH of the medium. This suggested that this sensing system
could be operated under a pH range of 4.4-12.4. Since the pKa of picric acid is around
0.4, the sensing mechanism in aqueous THF may involve the absorption of excitation

lisht by picrate anion.

12 1

10 +

) L] 1 L 1 4] 1 L I L
H0 pH 4.4 pH 5.4 pH7.4 pH12.4
Figure 3.19 Fluorogenic responses of T1 by picric acid in THF with 10% aqueous

buffer of various pHs.

In order to access a quantitative measurement of the fluorescence quenching,
Stern-Volmer plots were made from the fluorescence data. Thus, the fluorescence
intensity of T1 (1 uM) in CHCl; and in aqueous THF with varied concentrations of 2-NP
and PA was performed, respectively (Figure 3.20 and Figure 3.21). A Stern-Volmer plot
revealed a linear relationship between the fluorescence quenching ratio (Io/l) and the
concentration of 2-NP and PA in the range below 250 M and 16 uM, respectively.
From the plots in Figure 3.22 and Figure 3.23, the Stern-Volmer constants of T1 in

CHCl; and in aqueous THF were 3.2 X 10> M and 3.6 X 10* M}, respectively. The
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limits of detection of 2-NP and PA at three-time noise were determined as 1.54 ppm

and 0.15 ppm, respectively.
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Figure 3.20 The fluorescence intensity of T1 (1 M) with 2-NP titration (0-2 mM) in
CHCls
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Figure 3.21 The fluorescence intensity of T1 (1 M) with PA titration (0-0.1 mM) in
aqueous THF
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Figure 3.22 Stern-Volmer plot for fluorescence quenching of T1 (1 #M) by 2-NP in
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Figure 3.23 Stern-Volmer plot for fluorescence quenching of T1 (1 M) by PA in 10%

H,0 in THF
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3.2.5 Investigation of sensing mechanism

From the absorption spectra of T1 and 2-NP in CHCl; and absorption spectra
of T1 and PA in 10% H,O in THF. As the result, both absorption spectra of 2-NP and
PA overlap with absorption of T1 might result from the inner filter effect (IFE) or the

competitive absorption Figure 3.24.
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Figure 3.24 (left) Absorption spectra of T1, 2-nitrophenol in CHCl; (Right) Absorption
spectra of T1, picric acid in 10% H,O in THF

We thus performed an empirical analysis in order to determine whether the
fluorescence quenching was caused solely by the IEE. Hence, we constructed a plot
between the absorbance of T1 (Ar/(Ari+Awac)) [37] against the ratios of emission
integals in the presence and absence of analytes (Figure 3.25). The data indicated that
the fluorescent response decreased when fraction of photons absorbed by T1 was
lowered, but the decreasing rates of these two parameters were unequal. Therefore,
there should be other quenching mechanisms apart from the competitive absorption
taking place in these systems, for instance, p-stacking and subsequent photo-induced

energy transfer.
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Figure 3.25 A plot between fraction of photons absorbed by T1 versus the quenching

efficiencies calculated by the integrated emission intensities in the absence and

presence of analytes

Moreover, the quenching mechanism of T1 interacted with 2-NP and PA was
further examined from the Stern-Volmer plots at different temperature (Figure 3.26

and Figure 3.27). It was found that the quenching efficiency decreased as the

temperature increased from 25 to 50°C. This suggested a static mode of quenching in
which the pyrene units in the fluorophore may interact with electron-deficient analyst
by means of m-stacking. This complex may dissociate upon increasing of the

temperature, thus resulting in lower quenching efficiency.
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Figure 3.26 Stern-Volmer plots for the fluorescent responses of T1 towards 2-nitro
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Figure 3.27 Stern-Volmer plots for the fluorescent responses of T1 towards picric

acid in 10% H,O in THF at 25 and 50 °C.
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3.3 Metal ion sensor
3.3.1 Photophysical properties of T2

Normalized absorption-emission spectra of T2 were recorded in 30% THF-
HEPES buffer (0.002 M, pH 7.4) as shown Figure 3.28 and Table 3.2. Compound T2
exhibited characteristic absorption band of phenylacetylene-conjugated truxene at 375
nm with the molar extinction coefficient of 4.85 M'cm™. Upon excitation at the
absorption maxima, T2 showed emission peak at 474 nm in 30% THF-HEPES buffer
(0.002 M, pH 7.4) with an outstanding quantum yield of 58%. This compound has a
large stoke shift (99 nm) due to the rotation of the three dipicoyl peripheries resulting

in non-radiative energy loss of the excited fluorophore.
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Figure 3.28 Normalized absorption and emission spectra of T2 in 30% THF-HEPES
buffer (0.002 M, pH 7.4).
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Table 3.2 Photophysical property of T2 in 30% THF-HEPES buffer (0.002 M, pH 7.4)

Compound Absorption Emission

Amax (NM) log e M cm™)  Apax (NnM) D (%)
7 (core unit) 306, 317 4.23,4.49 364, 378 0.47¢
5 (periphery) 212 3.86 - -
T2 375 4.85 474 58"

@ 2-aminopyridine in 0.1 M H,SO4 (® = 60%) was used as the standard.
% Quinine sulfate in 0.1 M H,SO4 (® = 54%) was used as the standard.

3.3.2 Effect of water content on solubility of T2

Since the incorporation of three hydrophobic peripheries on one hydrophilic
truxene core may decrease the overall polarity of T2 molecule, the solubility and
emission properties of this compound must be investigated. The water solubility was
studied by varying the water content in THF from 10 to 90% (Figure 3.29). The results
showed when the water contents were below 70%, the fluorescence intensities of T2
remained relatively equal. When the water content was higher than 70 %, the
fluorescence signal significantly dropped due to its poor solubility. Therefore, 70% of

water in THF was chosen to be the solution media in further studies.
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Figure 3.29 Fluorescence spectra of T2 (5 M) in THF with various water content.

3.3.3 T2 as cation sensor

The sensing abilities of T2 toward various metal ions (K*, Na*, Li*, Ba®*, Mg**,
Ca?*, Cu®", Ni**, Zn%, A", Hg*, Fe®" Co®, Cr**, Cd?** and Pb*") were investigated in 30%
THF-HEPES buffer (0.002M, pH 7.4) by UV-Vis and fluorescence spectrophotometry.
Unlike other cations, the addition of copper (Il) ion caused an absorption spectral shift
from 375 nm to 336 nm (Figure 3.30). This possibly resulted from a selective and

stronger coordination between Cu?* and dipicolylamine moiety.
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Figure 3.30 Absorbance spectra of T2 (5 M) in the presence of various metal ions

(25 um)
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Based on the emission spectra (Figure 3.31), it was clear that the fluorescence
signal of T2 (5 M) in 30% THF-HEPES buffer (0.002 M, pH 7.4) could be selectively

quenched by Cu* (25 LIM). The fluorogenic responses of T2 towards various metal

ions along with the corresponding images of each solution mixture are shown in Figure

3.32.
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Figure 3.31 Fluorescence spectra of T2 (5 uM) in 30% THF-HEPES buffer (0.002 M, pH

7.4) with metal ions (5 eq)
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Figure 3.32 Fluorescence responses of T2 (5 uM) upon the addition of various metal

ions (25 pM) in 30% THF-HEPES buffer (0.002M, pH 7.4). Inset: photos of T2 (5 pM)
upon the addition of various metal ions (50 ¢M) in 30% THF-HEPES buffer (0.002M,
pH 7.4).

3.3.4 Spectral titration of T2 by Cu?* ion

The UV-vis and fluorescence titration experiments were carried out using
solution of T2 in 30% THF-HEPES buffer (0.002M, pH 7.4). From Figure 3.33, the
addition of Cu®* caused the UV-vis spectra shift from 377 nm to 336 nm with an
isobestic point at 357 nm. When Cu®* was added to 20 equivalents, the change in
absorption spectra was nearly negligible. Results from the fluorescence titrations in
Figure 3.34 display gradual decrease in fluorescence intensity as the Cu?

concentration increased and the signal was almost completely quenched by addition

of Cu®* up to 20 equivalents.
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3.3.5 Proposed sensing mechanism

In order to determine the binding stoichiometry between T2 with Cu?*, a Job’s
plot was established (Figure. 3.35). The result suggested that the maximum quenching
efficiency was observed at 0.5 molar fraction of Cu®*, indicating that the stoichiometry
of binding between T2 and Cu®" is 1:1. However, this information is contradicted to
presence of three binding sites in T2. Therefore, it might be possible that the first

binding between T2 and Cu”" is the only event that causes fluorescence quenching.

120 -
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I-1(1-X_ =)

40 -

0 T T T T T T T T T I
0.0 0.2 0.4 0.6 0.8 1.0

mole fraction of Cu™ (X_.)

Figure 3.35 Job’s plot of the complexation between T2 and Cu?* in 1:1

Stoichiometry with Cu®*

In order to validate the stoichiometry of binding mentioned above, a mixture
of T2 (10 M) and Cu®* (100 #M) was subjected to MALDI-TOF analysis. A molecular
ion with m/z of 1910.704 was detected (Figure 3.36). This corresponds to the
molecular mass of T2+Cu?* (1910.8265).
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Figure 3.36 MALDI-TOF Mass spectrum of T2+Cu**

Furthermore, we investigated the optimal concentration of T2 for the detection
of Cu®*. When the concentration of T2 in 30% THF-HEPES buffer (0.002M, pH 7.4) was
varied between 5 to 50 M, the addition of Cu®** at 5 equivalent led to different
quenching efficiencies (Figure 3.37). The highest sensitivity (Io/l) was observed when
the concentration of T2 was at 10 4M or 20 uM. Higher concentration of T2 resulted
in lower quenching efficiency because the sensor became less soluble. Thus, the

concentration of T2 at 10 xM was selected for further studies.
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3.3.6 Detection limit of Cu** by T2

The increase of Cu®* concentrations resulted in fluorescence quenching of T2
as shown in Figure 3.38. The non-linearity of this plot suggested that the quenching
mechanism involves several phenomena. At higher Cu?* concentrations, higher
quenching efficiencies were observed. Since the absorption maxima of aqueous Cu®*
solution appeared at 263 nm, it is less likely that the signal quenching was caused by
competitive absorption by Cu?*. Therefore, we postulate that the sudden increase in

quenching efficiency was probably due to the high ionic strength of sample media

forcing T2 to aggregate via hydrophobic interaction.

The Stern-Volmer plot between (/1) and the concentration of Cu®* in the range
below 7 uM showed a linear plot with a slope of 5.4x10* M (K,,) (Figure 3.39). The

limit of detection (LOD = 36/K) of Cu®" at three-time-noise was determined as 0.06
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3.3.7 Anion sensing ability of T2-Cu?*

The selective fluorescence quenching of T2 by Cu*" led us to investigate the
use of T2-Cu®" mixture as an anion sensor. We thus added various anions such as
HPO,™, ATP, ADP, AMP, ClO,, SO,*, NO5 , OAc , SO5*~, CN™, CO5*, Cl", F, " and Br_
to solution composed of T2 (10 M) and Cu** (100 M) in 30% THF-HEPES buffer

(0.002M, pH 7.4). Interestingly, both UV-vis absorption and fluorescence spectra (Figure
3.40 to 3.41) showed that the signal of T2-Cu®* could be altered by HPO,™ and other

biological phosphate substances such as ATP, ADP and AMP. It appeared that HPO,
and the biological phosphates could bind with Cu®* and release T2 from the T2-Cu®*

complex.
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Figure 3.40 Absorbance spectra of complex (T2-Cu®") (10 M) in the presence of
various anions (100 M, 10 eq.) in 30% THF-HEPES buffer (0.002M, pH 7.4)
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Figure 3.42 The bar represent the fluorescence enhancement ratio (I/l;) of complex

(T2-Cu?") (10 uM), after addition of each anions (100 M, 10 eq.) in 30% THF-HEPES
buffer (0.002M, pH 7.4). The photograph below shows the fluorescence appearance
under black light of complex (T2-Cu?) (10 M) upon addition of anions (100 zM, 10

eq.)
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3.3.8 Studying the pH effect for sensing anions

Due to the amphoteric properties of HPO, , we also decided to investigate the

pH effect on sensitivity of T2- Cu** complex towards HPO, . For this study, HEPES
buffer at pH 6.6, 7.4 and 8.8 were prepared and used as sensing media along with THF.
Figure 3.43 reveals that the fluorescence intensity of T2 was slightly lower in acidic
pH due to partial protonation on the dipicolyl groups. Upon addition of Cu®*, the
intensity was lowered most at pH 6.6 and 7.4 while the signal was quenched by 2/3 at
pH 8.8. This data indicates that some Cu?" forms hydroxide salt under basic pH, leaving

some free T2 in the solution. When mixtures of T2 and Cu®" were added anions, it is
obvious that only the HPO, could enhance the fluorescence intensity at every pH.
However, the maximum sensitivity of HPO, sensing (lro.cusmpos / lrascy) could be
observed at pH 7.4.

800
700
600
500
400

300

Intensity (a.u.)

200

100

Figure 3.43 The fluorescence intensity of T2 (5 uM) before and after the addition of
Cu?* (50 M) and various anions (50 #M) in 30% THF-HEPES buffer at various pH



CHAPTER IV
CONCLUSION

Two fluorescence sensors containing truxene as signal transducer were
successfully synthesized using Sonogashira coupling. The selectivities of these sensors
depend on the interaction between peripheral groups and targeted analytes. For the
nitroaromatic sensor, sensor T1 was decorated by hydrophobic butyl groups on the
truxene core and 1-ethynylpyrenes at the peripheries. The synthesis was accomplished
in an overall yield of 14% from 4-step process. The compound exhibits the absorption
and emission maxima at longer wavelengths than the parent pyrene due to the
extended conjugated systems. In comparison with the parent truxene, the quantum
efficiency of T1 is also enhanced to 71 and 53% in CHCl; and aqueous THF,
respectively. As a CHCl; solution, T1 displayed a selective fluorescence turn off
towards 2-nitrophenol with a detection limit of 1.54 ppm. In aqueous THF, on the
other hands, its fluorescent signal was selectively quenched by picric acid with the
detection limit of 0.15 ppm. An investigation on the fractions of photons absorbed by
the fluorophore in the presence of analytes versus the quenching efficiencies
suggested that the inner filter effect was responsible for the fluorescence quenching;
however, several other mechanisms might also take place. The Stern-Volmer plots at
different temperatures revealed that the signal turn-off involved a static quenching,

presumably due to the m-r interaction between the T1 and analytes.

As a metal ion sensor used in aqueous media, sensor T2 comprises hydrophilic
diglycol units on the truxene core and dipicolyl amine as binding sites for cation. The
greater synthetic efficiency was witnessed as T2 was produced in the overall yield of
42% after 4 steps. T2 exhibits the absorption maxima at 375 nm and the emission
maxima at 474 nm with an outstanding quantum efficiency of 58%. The sensor showed
a selective fluorescence response to Cu?* by exhibiting a blue-shift of absorption band
from 375 to 336 nm and a quenching of emission signal. The fluorescent quenching
possibly resulted from a selective and stronger coordination between Cu? and the

dipicolylamine moiety. The Stern-Volmer constant (K,) was calculated to be 5.4x10*
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M with the detection limit of 0.06 ppm. Interestingly, the T2-Cu?* exhibited selective
fluorescence enhancement in the presence of HPO, and other biological phosphate
substances such as adenosine triphosphate (ATP), adenosine diphosphate (ADP) and
adenosine monophosphate (AMP). The increase of fluorescent signal of T2-Cu®* was
presumably due to the fact that HPO, and the other biological phosphates could

bind with Cu”* and consequently led to the removal of Cu?** from the complex.
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Figure A.18 MALDI-TOF Mass spectrum of 7
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