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Modern wireless communications via the X channel where each transmitter has an independent
message for the corresponding receiver have become an active topic of research since they can sup-
port various services transmitted from sources to users or obtain different types of data transmitted
from users to sources. However, interference is the important phenomenon that occurs unavoidably
in these wireless communications and affects directly on the performance of the system. Coop-
eration is one of several methods that can mitigate the effect of interference and is considered in
several communication scenarios. Unfortunately, the basic comprehension of the X channel with
cooperation is somewhat less.

In this dissertation, we study the two-user Gaussian X channel with limited receiver cooperation
where both receivers exchange messages over the orthogonal receiver-cooperative links through the
perspective of information theory that can be divided into 3 parts as follows: In the first part, we
investigate the fundamental limits of the two-user Gaussian X channel with limited receiver coop-
eration using the Fano’s inequality, the data processing inequality, and the genie-aided techniques.
The obtained result is called an outer bound. In the second part, we characterize the generalized
degrees-of-freedom under the channel symmetric setting by using our proposed outer bound. The
results in this part imply that the performance of our system can be improved when the amount of
exchanged information between both receivers increases. However, the system reaches the satu-
ration point of the receiver cooperation when the normalized capacity of the receiver-cooperative
link κ ≥ 1

2 , 1,
3
2 and 2 for the normalized interference level α ∈ [0, 3

2 ], (
3
2 , 2], (2,

5
2 ], and (5

2 , 3],
respectively. In the final part, we propose the strategies consisting of transmission scheme based
on Han-Kobayashi strategy and cooperative protocol based on quantize-map-and-forward scheme
and then give achievable rate regions based on the proposed strategies for both the general case and
the strong Gaussian X channel type I case where SNR1 > INR2 and SNR2 > INR1. The obtained
results show that our proposed strategy in the strong Gaussian X channel type I case achieves the
capacity region to within 2 bits/s/Hz per message when β and γ in the common rate constraints
at the transmitter are set such that most of the bounds in the achievable rate region reach theirs
maximum value. This constant is independent of the channel parameters.
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CHAPTER I

INTRODUCTION

1.1 Background

In the past two decades, wireless communications have had significant progresses and

made a great impact on human lifestyle, wireless services and wireless industry. Several

commercial standards in mobile telecommunication systems, such as the universal mobile

telecommunications system (UMTS), wideband code division multiple access (WCDMA)

and long-term evolution (LTE), etc., are good examples for these progresses. These stan-

dards have been developed from the modern wireless communication techniques, includ-

ing code division multiple access (CDMA), orthogonal frequency division multiplexing

(OFDM), and multiple-input multiple-output (MIMO), etc., that are based on theoretical

ideas induced by information theory. In addition to the commercial standards, hardware

including smartphones, laptops, tablets, and other mobile nodes are also produced by the

advanced technologies. With the rapidly developed wireless technologies, therefore, we

obtain the better communication services from mobile operators, create the new solutions

for business and then make money from their solutions and have a good health from wire-

less healthcare systems.

In modern wireless communication systems, communications between two or more

transmitter-receiver pairs over a common physical medium cause interference at each re-

ceiver see Figure 1.1. Because of the broadcast and the superposition nature of the wireless

medium, the intended signal at each receiver is superposed by the unintended signals plus

noise. This phenomenon is unavoidable and limits the performance of the wireless sys-

tem. Currently, most wireless systems cope with interference by either orthogonalizing the

communication links in time or frequency so that they do not interfere with each other at

all or treating interference as noise. Unfortunately, two approaches are suboptimal because

there is an a priori loss of degrees of freedom (DoF) in both links for the orthogonalizing

approach and the performance of systems is degraded when the number of interferes grows
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Figure 1.1 Interference in wireless communication network

in the treating interference as noise approach.

1.1.1 Interference Management: Interference Channel and X Channel

To develop the interference management schemes which their performances are better

than two well-known approaches above, several researchers have studied the effect of in-

terference and investigated the fundamental limits of communications in wireless channels.

Interference Channel: The simplest information theory model for studying this point

is the two-user interference channel. However, the problem of characterizing the capacity

region of this channel has been open for over 30 years, except for several special cases

such as the strong and very strong interference channel [5–7] and classes of deterministic

and semi-deterministic interference channel [3, 8]. Recently, significant progress has been

performed by Etkin, Tse and Wang [9] to propose a new approach for approximating the

capacity region of the two-user Gaussian interference without cooperation and then char-

acterize this approximate capacity region to within 1 bit/s/Hz for all values of the channel

parameters by using Han-Kobayashi strategy in transmission scheme with a simple power

split construction. The important benefit of finding the bounded gap-to-optimality

in [9] is to produce an uniform approximation of the capacity region and to ensure cer-

tainly the performance of the proposed scheme [2].

X Channel: Next, the above interference problem is extended to the situation where

each transmitter has an independent message for all receivers in the system. This com-

munication scenario is called the X channel which is introduced initially by Vishwanath,

Jindal and Goldsmith [10]. The X channel is a generalization of the multiuser channels
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studied in information theory, such as the multiple access channel (MAC), the broadcast

channel (BC), the interference channel (IC), the Z-channel (ZC) and the Z-interference

channel (ZIC), etc. It is easily seen that, in the X channel, each receiver obtains several

interference and desired messages at the same time. Hence, the effect of interference on

the receiver in the X channel is more crucial than one in the interference channel due to

several desired and undesired messages.

The practical examples for the X channel such as, in a cellular system, each base station

provides two different services to two users (see Figure 1.2) and, in modern wireless sensor

network for agriculture, each source node can send several measured parameters including

air temperature, relative humidity, soil moisture, and picture of product to the servers (see

Figure 1.3).

Figure 1.2 The two-user Gaussian X channel in cellular network

In the simplest case, it is seen that the two-user Gaussian X channel is physically the

same as the two-user Gaussian interference channel. However, the difference between these

two channels is the message set which leads to encode and decode messages differently at

transmitter and receiver, respectively.

1.1.2 Related works for X channel

The research works about X channel have been studied widely in [11–17] to character-

ize the achievable rate region, sum capacity, upper bounds, generalized degrees of freedom

(GDoF), approximate capacity region, and degrees of freedom (DoF) region, etc., as the

following details:
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Figure 1.3 The X channel in agriculture

• Characterizing the Achievable Rate Region: Koyluoglu, Shahmohammadi and Gamal

[11] give the best known achievable region for the X channel based on the combi-

nation of the Marton’s binning technique for the broadcast channels [18, 19] and

the message splitting for interference channel [20] with joint decoding at receivers.

However, characterization of this rate region is extremely complicated [12]. In the

work [13], Sridhar and Bhashyam considered the two-user Gaussian X channel using

superposition coding [20]. They derived achievable rates of the 6 messages where

each transmitter consists of two private messages and one common message and de-

termined that these messages were useful in maximizing the sum rate for the various

interference conditions.

• Characterizing the Sum Capacity, Upper bounds and Generalized Degrees of Free-

dom (GDoF): Huang, Cadambe and Jafar [14] characterized the sum capacity1 of the

deterministic and Gaussian X channel under a symmetric channel setting. They also

proposed the upper bounds2 for the deterministic and Gaussian X channel. Further-

more, they explored the GDoF of the symmetric Gaussian X channel from their sum

capacity of the Gaussian X channel. Recently, Niesen and Maddah-Ali [15] gave the

1The sum capacity in [14] means that the sum of 4 rates, i.e., R11 + R12 + R21 + R22.
2Huang, Cadambe and Jafar [14] gave the upper bounds for the sum of 3 rates, i.e., R11+R12+R21,R11+

R12 + R22,R11 + R21 + R22,R12 + R21 + R22 and the sum of 4 rates, i.e., R11 + R12 + R21 + R22.
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new upper bounds3 for the deterministic X channel and Gaussian X channel.

• Characterizing the Approximate Capacity Region: Prasad and Chockalingam [12]

provide firstly the approximate capacity region of the X channel which is within

the intersection of 4 outer bounds to the capacity region of the X channel where each

outer bound is derived by removing only one message to obtain the corresponding Z-

channel. Furthermore, they characterized the outer bounds on the capacity region of

the Gaussian X channel for two main classes, i.e., strong and mixed X channel, from

their approximate capacity region. In the general case, however, their outer bound

does not have the closed form to use easily. Hence, characterizing the capacity

region of the general two-user X channel has still been open.

• Characterizing the Capacity to within a Constant Gap: Niesen and Maddah-Ali [15]

used the interference alignment (IA) technique to characterize capacity of the two-

user Gaussian X channel. They proposed a new communication scheme and showed

that it achieved capacity of the Gaussian X channel to within a constant gap. This

is the first constant-gap result for a general fully-connected X network requiring

interference alignment.

• Characterizing the DoF: Jafar and Shamai [16] show that there are 4
3

DoF when the

channel coefficients are time-varying or frequency-selective and drawn from a con-

tinuous distribution. Cadambe and Jafar [21] extend the work [16] into the case of

M transmitters and N receivers of wireless X networks and then showed that the

total DoF of the M ×N X networks is equal to MN
M+N+1

per orthogonal time and fre-

quency dimension when all nodes have a single antenna and all channel coefficients

vary in time or frequency. Very recently, Motahari et.al. [17] developed the idea of

real interference alignment (IA) that is extremely powerful in achieving the sum DoF

of single antenna systems. They showed that the total DoF of the M ×N X network

with real and time invariant channel coefficients is equal to MN
M+N−1

for almost all

channel realizations.
3Niesen and Maddah-Ali [15] proposed the upper bounds for the sum of 5 rates, i.e., 2R11+R12+R21+

R22,R11 + 2R12 + R21 + R22,R11 + R12 + 2R21 + R22,R11 + R12 + R21 + 2R22.
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1.1.3 Cooperation

In the above X channel set-up [11–17], there are no communications between trans-

mitters (receivers). Hence, each receiver has to handle interference on its own messages.

Nowadays, cooperation between transmitters (receivers) which is allowed by exchanging a

certain amount of information at the limited rate due to physical constraints is becoming the

essential part of modern communication systems. It is known that cooperation can alleviate

interference by forming distributed multiple antenna arrays or called distributed multiple-

input multiple-output (MIMO) systems in [2,22,23] and help to achieve large performance

gains in wireless networks [24]. For example, the base stations in a cellular network can be

connected via wireline backhaul links [25] or the mobile nodes are close enough to each

other to be able to establish reliable cooperation links.

1.1.4 Related Works for Cooperation

Conferencing among encoders/decoders, a special case of out-of-band cooperation as

classified in [26, 27] has been investigated in [2, 28–33]. Willems [28] introduced initially

the conferencing among encoders and then characterized the capacity region of multiple

access channels (MAC). In the work [29], the capacity region of the two-user compound

MAC with a common message and unidirectional conferencing between decoders was

characterized. Next, the two-user one-sided Gaussian interference channels with unidi-

rectional and bidirectional rate-limited conferencing between decoders were considered

in [30, 31], respectively. Zhou and Yu characterized the capacity region in strong interfer-

ence regimes and the asymptotic sum capacity at high SNR in [30] and an achievable rate

region was shown to be optimal under certain conditions in [31]. In the work [2], Wang and

Tse considered the two-user Gaussian interference channel with rate-limited receiver coop-

eration and characterized its entire capacity region to within a constant gap. Very recently,

Ashraphijuo, Aggarwal and Wang [32] characterized the approximate capacity region of

the two-user MIMO interference channel with limited receiver cooperation within the total

number of receive antennas of both receivers. In addition, they gave the proposed GDoF

region when all nodes have equal number of antennas. Do, Oechtering and Skoglund [33]

gave a new inner bound for the capacity region of the discrete memoryless two-user inter-
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ference channel with receiver cooperation and an inner bound for the Gaussian interference

channel with orthogonal conference links at the receivers. The latter was equivalent to the

one-round quantize-bin-and-forward inner bound specially designed for the channel model

in [2].

1.2 Two-user Gaussian X channel with limited receiver cooperation

In this section, we introduce two main interesting issues, i.e., fundamental limits and

strategy of communications, for the two-user Gaussian X channel with limited receiver

cooperation and provide the importance for studying these two topics in this dissertation.

1.2.1 Fundamental limits

With the advantages of cooperation in Section 1.1.3, interference management in wire-

less X networks using cooperation is the interesting topic. As mentioned above, the previ-

ous research works of the X channel [11–17] focus on the case of non-cooperation. There-

fore, knowledge of the X channel with cooperation, especially the fundamental limits of the

X channel with cooperation which are the important issue in the perspective of information

theory, has not been well known even in the two-user case. The better understanding of the

fundamental limits leads us to know communication limits and to propose new techniques

based on cooperation in practice efficiently for managing interference in the X channel. In

this dissertation, we consider the two-user Gaussian X channel and focus on the case of

limited receiver cooperation. We give an attempt to understand the fundamental limits of

this channel in terms of an outer bound (or called an approximate capacity region) and then

characterize the generalized degrees of freedom (GDoF) of sum capacity obtained from the

proposed outer bound to further comprehend the effect of limited receiver cooperation on

the two-user Gaussian X channel.

1.2.2 Strategy for Communications

In addition to find the fundamental limits, the strategy for communications in the two-

user Gaussian X channel with limited receiver cooperation is also the interesting issue.

Although research involving this issue has been quite rare, there is the work that can be

a guideline for this dissertation, i.e., Wang and Tse’s work [2]. Based on the work [2],



8

this dissertation proposes strategies also composing of two parts: 1) transmission scheme

based on the Han-Kobayashi (HK) strategy [20] which is used widely in several communi-

cation scenarios [2, 9, 11, 13, 20, 29–31, 33–36], etc., and 2) cooperative protocol based on

quantize-map-and-forward (QMF) scheme [2], for the general case and the strong Gaus-

sian X channel type I case where SNR1 > INR2 and SNR2 > INR1. Furthermore, there are

following two important constraints which are considered in this dissertation: 1) two dif-

ferent messages are sent simultaneously from each transmitter to both receivers and 2) both

receivers are allowed to exchange a certain amount of information between them. Finally,

we evaluate the performance of our proposed strategy in the strong Gaussian X channel

type I case by comparing its achievable rate region with our proposed outer bound.

1.3 Objectives of the Dissertation

The objectives of this dissertation are

1. To propose an outer bound on the capacity region for the two-user Gaussian X chan-

nel with limited receiver cooperation.

2. To characterize the generalized degrees of freedom (GDoF) from our proposed outer

bound region under a symmetric channel setting.

3. To propose the strategy for delivering messages in the two-user Gaussian X channel

with limited receiver cooperation.

4. To evaluate the performance of the proposed strategy in the case of strong Gaussian

X channel type I by comparing its achievable rate region with the proposed outer

bound.

1.4 Scope of the Dissertation

1. We consider the two-user Gaussian X channel with out-of-band (orthogonal) limited

receiver cooperation, that is, signals in transmitter-receiver links do not interfere with

ones in receiver-cooperative links.

2. We focus on the general case and the strong Gaussian X channel type I case, where

the direct channels are stronger than the corresponding cross channels, i.e., SNR1 >

INR2 and SNR2 > INR1.
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3. In our system, each transmitter has a single antenna and each receiver has also a

single antenna.

4. In exchanging information between both receivers, we assign

(a) Both receiver-cooperative links are noiseless with finite capacity from the re-

ceiver i to j, for i , j = 1, 2 and i 6= j .

(b) Information at each receiver is encoded causally in the sense that cooperation

signal from the receiver 1 to 2, u12[n], is only a function of {y1[1], . . . , y1[n − 1],

u21[1], . . . , u21[n − 1]}, for n = 1, . . . ,N . Similarly, u21[n], is only a function

of {y2[1], . . . , y2[n − 1], u12[1], . . . , u12[n − 1]}.

1.5 Organization and Contributions of the Dissertation

The rest of this dissertation is organized as follows:

In Chapter II, we give the basic knowledge of information theory and techniques which

are useful profitably for deriving an outer bound, the generalized degrees-of-freedom (GDoF)

under symmetric channel setting, and achievable rate regions in Chapter IV−VI, respec-

tively. In addition, we provide the example based on the two-user Gaussian multiple-access

channel (Gaussian MAC) for better understanding the capacity region and the example

from [14] to present how to use the genie-aided techniques for finding the sum-rate in the

two-user Gaussian X channel without cooperation that is the important basis to compre-

hend our derived upper bounds in Chapter IV.

In Chapter III, we introduce the channel model for the two-user Gaussian X channel

with out-of-band (orthogonal) limited receiver cooperation. Next, the definitions of strate-

gies, achievable rates, and capacity region are provided. Third, the classification of the

two-user Gaussian X channel from [12] is mentioned and the modified version for the

strong Gaussian X channel type I is introduced. Finally, the notations are given for using

throughout in the rest of this dissertation.

In Chapter IV, we provide the knowledge to better comprehend the fundamental limits

of the two-user Gaussian X channel with limited receiver cooperation.

• The contribution of this chapter is to propose an outer bound on the capacity region

for the two-user Gaussian X channel with limited receiver cooperation and also give
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the details for deriving all upper bounds which are contained in our proposed outer

bound.

In Chapter V, the effect of receiver cooperation on the two-user Gaussian X channel

can be further understood by using the GDoF.

• The contribution of this chapter is to characterize the GDoF with our proposed outer

bound from Chapter IV under a symmetric channel setting.

In Chapter VI, we propose the strategies for communications in the two-user Gaussian

X channel with limited receiver cooperation for the general case and the strong Gaussian

X channel type I case.

• The contributions of this chapter are

1. To provide the achievable rate regions for the two-user Gaussian X channel with

limited receiver cooperation in both the general case and the strong Gaussian X

channel type I case.

2. To characterize the capacity region of the two-user Gaussian X channel with

limited receiver cooperation in the strong Gaussian X channel type I to within

2 bits/b/s per message to the proposed outer bound in Chapter IV.

Finally, the conclusion of this dissertation is given in Chapter VII.



CHAPTER II

BASIC KNOWLEDGE OF INFORMATION THEORY

AND TECHNIQUES

In this chapter, we provide the basic knowledge of information theory and techniques

which are used profitably for finding an outer bound, the generalized degrees-of-freedom

(GDoF) under symmetric channel setting, and achievable rate regions in Chapter IV−VI,

respectively. Next, we provide the definition of the capacity region and give the example

based on the two-user Gaussian multiple-access channel (Gaussian MAC) for better un-

derstanding our result in Chapter IV. In addition, we introduce the two-user Gaussian X

channel and give the example from [14] to present how to use the genie-aided techniques

for finding the sum-rate. Finally, we show one of the results from [2] that specifies two

regions considering the gain from limited receiver cooperation.

2.1 Entropy

This section gives the definition of entropy that is a measure of the uncertainty of a

random variable [1].

Let X be a discrete random variable with alphabet X and probability mass function

(pmf) p(x ) = Pr{X = x}, x ∈ X . The entropy H (X ) of a discrete random variable X is

defined as

H (X ) = −
∑
x∈X

p(x ) log p(x ) = −E log p(x ). (2.1)

where E denotes expectation.

The important properties of the entropy H (X ) are nonnegative and concave function

in log p(x ).
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2.2 Differential Entropy, Joint Differential Entropy, Conditional Dif-

ferential Entropy and Mutual information

In this section, we provide the basic definitions of the differential entropy, joint dif-

ferential entropy, conditional differential entropy and mutual information for continuous

random variables [1, 37] that are useful to derive an outer bound in Chapter IV and an

achievable rate region in Chapter VI.

First, we present the differential entropy. Let X be a random variable and its cumulative

distribution function is F (x ) = Pr(X ≤ x ). X is a continuous random variable if F (x )

is continuous. Let f(x) be the derivative of F (x ), i.e., f (x ) = F ′(x ) and is called the

probability density function with
∫∞
−∞f (x ) = 1.

• The differential entropy h(X ) of a continuous random variable X with probability

density function (pdf) f (x ) is defined as

h(X ) = −
∫

f (x ) log f (x )dx (2.2)

For example,

1. Uniform distribution: If X ∼ Unif[a, b], then

h(X ) = log(b − a)

2. Normal distribution: If X ∼ N (µ, σ2), then

h(X ) =
1

2
log(2πeσ2)

The maximum differential entropy of a continuous random variable X ∼ f (x ) with the

average power constraints E (X 2) ≤ P is

max
f (x):E(X 2)≤P

h(X ) =
1

2
log(2πeP)

and if X ∼ N (0,P), then we obtain

h(X ) = h(X − E{X }) =
1

2
log(2πeVar(X )).

Next, the definition of differential entropy of one random variable is extended to several

random variables.
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• The differential entropy of jointly distributed random variables X1,X2, ...,Xn is de-

fined as

h(X1,X2, ...,Xn) = −
∫

f (xn) log f (xn)dxn (2.3)

where f (xn) = f (x1, x2, ..., xn) is the joint pdf.

• Let X ,Y be two random variables that have a joint density function f (x , y). The

conditional differential entropy h(X |Y ) is defined as

h(X |Y ) = −
∫

f (x , y) log f (x |y)dxdy (2.4)

From the relationship f (x |y) = f (x , y)/f (y), we obtain

h(X |Y ) = h(X ,Y )− h(Y )

• Mutual information I (X ;Y ) between two random variables with joint density f (x ; y)

is defined as

I (X ;Y ) =

∫
f (x , y) log

f (x , y)

f (x )f (y)
dxdy . (2.5)

= h(X )− h(X |Y ) (2.6)

= h(Y )− h(Y |X ) (2.7)

= h(X ) + h(Y )− h(X ,Y ) (2.8)

Properties of Differential Entropy and Mutual Information

• h(X + a) = h(X ) when a denotes any constant (Translation).

• h(bX ) = h(X ) + log |b| when b denotes any nonzero constant (Scaling).

• h(X |Y ) ≤ h(X ) with equality iff X and Y are independent.

• h(X1,X2, ...,Xn) =
∑n

i=1 h(Xi |X1,X2, ...,Xi−1) (Chain rule for differential en-

tropy)

• h(X1,X2, ...,Xn) ≤
∑n

i=1 h(Xi) with equality iff X1,X2, ...,Xn are independent.

• I (X ;Y ) ≥ 0 with equality iff X and Y are independent.
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2.3 Asymtotic Equipartition Property for Continuous Random Vari-

ables

This section defines the typical set and characterizes the behavior of typical sequences

for a continuous random variable [1]. The typical set is used to derive the error probability

in Section 6.4.2.

Let X1,X2, ...,Xn be a sequence of i.i.d random variables according to the probability

density function f (x ). Therefore

− 1

n
log f (X1,X2, ...,Xn)→ E [− log f (X )] = h(X ) in probability (2.9)

For ε > 0 and any n, the typical set A(n)
ε with respect to f (x ) is defined as follows:

A(n)
ε =

{
(x1, x2, ..., xn) ∈ S n :

∣∣∣∣∣ 1n log f (x1, x2, ..., xn)− h(X )

∣∣∣∣∣ ≤ ε

}
, (2.10)

where f (x1, x2, ..., xn) =
∏n

i=1 f (xi).

The volume Vol (A) of the typical set for continuous random variables A ⊂ Rn is

defined as follows:

Vol(A) =

∫
A

dx1dx2 · · · dxn . (2.11)

Properties of the typical set A(n)
ε consist of

1. Pr(A
(n)
ε ) > 1− ε for n adequately large.

2. Vol(A
(n)
ε ) ≤ 2n(h(X )+ε) for all n.

3. Vol(A
(n)
ε ) ≥ (1− ε)2n(h(X )+ε) for all n adequately large.

2.4 Fano’s Inequality

Suppose that we wish to estimate a random variable X with with a distribution p(x ).

We observe a random variable Y that is related to X by the conditional distribution p(y |x ).

From Y , we calculate a function g(Y ) = X̂ , where X̂ is an estimate of X and takes on

value in X̂ . We will not restrict the alphabet X̂ to be equal to X , and we will also allow the
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function g(Y ) to be random. We wish to bound the probability that X̂ 6= X . We observe

that X → Y → X̂ forms a Markov chain. Define the probability of error

Pe = Pr{X̂ 6= X }. (2.12)

Theorem 2.1 (Fano’s Inequality) For any estimator X̂ such that X → Y → X̂ , with

Pe = Pr(X 6= X̂ ), we have

H (Pe) + Pe log |X | ≥ H (X |X̂ ) ≥ H (X |Y ). (2.13)

where H (·) denotes entropy.

This inequality can be weakened to

1 + Pe log |X | ≥ H (X |Y ). (2.14)

or

Pe ≥
H (X |Y )− 1

log |X |
. (2.15)

Proof: See all details in [1].

Remark 2.2 Note that from (2.13) Pe = 0 implies that H (X |Y ) = 0 , as intuition sug-

gests.

2.5 Data Processing Inequality

Definition 2.3 Random variables X ,Y ,Z are said to form a Markov chain in that order

(denoted by X → Y → Z ) if the conditional distribution of Z depends only on Y and

is conditionally independent of X . Specifically, X ,Y and Z from a Markov chain X →

Y → Z if the joint probability mass function can be written as

p(x , y , z ) = p(x )p(y |x )p(z |y). (2.16)

Some simple consequences are as follows:

• X → Y → Z if and only if X and Z are conditionally independent given Y .

• X → Y → Z implies that Z → Y → X . Thus, the condition is sometimes written

X ↔ Y ↔ Z .
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• if Z = f (Y ), then X → Y → Z .

The next theorem shows that no processing of Y , deterministic or random, can increase

the information that Y contains about X.

Theorem 2.4 (Data Processing Inequality [1]) If X → Y → Z , then I (X ;Y ) ≥ I (X ;Z ).

Proof: By the chain rule, we can expand mutual information in two different ways:

I (X ;Y ,Z ) = I (X ;Z ) + I (X ;Y |Z ) (2.17)

= I (X ;Y ) + I (X ;Z |Y ) (2.18)

Since X and Z are conditionally independent given Y , we have I (X ;Z |Y ) = 0 . Since

I (X ;Y |Z ) ≥ 0, we have

I (X ;Y ) ≥ I (X ;Z ) (2.19)

We have equality if and only if I (X ;Y |Z ) = 0 (i.e., X → Z → Y forms a Markov

chain). Similarly, one can prove that I (Y ;Z ) ≥ I (X ;Z )

2.6 Genie-Aided Techniques

Genie-aided techniques are used to derive the upper bounds in various communica-

tion scenarios, i.e., interference channel without cooperation [9], interference channel with

cooperation [2], X channel without cooperation [14, 15].

The key feature of these techniques is to provide the side information by the genie to

the receivers for compensating the damage from interference on the other link.

2.7 Han-Kobayashi Strategy

The Han-Kobayashi (HK) strategy [20] involves splitting the transmitted information

at each transmitter into two parts as shown in Figure 2.1: private message mip which can

be decoded only at the intended receiver and common message mic which can be decoded

at both receivers, for i = 1, 2. Each transmitter generates a common codeword xN
ic and a

private codeword xN
ip using messages mic and mip . The power for codewords xN

ic and xN
ip
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Figure 2.1 The HK strategy in the two-user interference channel

are Qic and Qip , respectively. Then, we obtain the transmitted codeword xN
1 with its power

= 1 = Qic+Qip . Finally, each receiver decodes only its corresponding private information

xN
ip and two common information xN

1c , xN
2c , i.e., obtaining mip ,m1c,m2c .

The original HK strategy [20] allows arbitrary splits of each user’s transmit power into

the private and common information portions (as well as time sharing between multiple

such splits). However, there are the problems for finding the HK region as follows:

1. Optimizing a great number of possibilities for each user’s transmit power is not well-

understood.

2. Time-sharing over many choices of each user’s transmit power may be required.

In the work [9], Etkin, Tse and Wang propose a simple HK type scheme achieving rates

within 1 bit/s/Hz of the capacity of the channel, independent of channel parameters.

The key concept of their scheme [9] is to set the power of the private information of

each user such that it is received at the level of the Gaussian noise at the other receiver as

depicted in Fig. 2.2.

This strategy is used widely in several communication scenarios, i.e., Gaussian inter-

ference channel [9, 20], X channel [11, 13], Gaussian interference channel with coopera-

tion [2, 22, 33], Compound multiple access channel with cooperation [29], Z interference

channel with cooperation [30, 31], Gaussian interference relay channel [34], Z-channel

with cooperation [35, 36], etc.
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Figure 2.2 A simple Han-Kobayashi type scheme in the two-user interference channel

Figure 2.3 Quantize-map-and-forward (QMF) scheme in the relay model

2.8 Cooperative Protocol

This section describes the concept of quantize-map-and-forward (QMF) scheme [38]

and then indicates its features. After that, cooperative protocol based on QMF scheme

proposed by the work [2] is reported.

2.8.1 Quantize-Map-and-Forward (QMF) Scheme

The QMF scheme [38] is a recently proposed scheme that allows to approximately

achieve the capacity of arbitrary wireless relay networks.

In this scheme, the relay (R) quantizes its received signal at noise level, randomly maps

it to a codeword and forwards it to the destination (see in Figure 2.3).

2.8.2 Features of QMF scheme

• The quantization and mapping are performed without regard to quality of forward

channel at the relay. This reduces the channel estimation and feedback overhead for

the link.
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Figure 2.4: Two-round cooperative protocol base on QMF scheme in the two-user Gaussian

interference channel

• QMF uses joint decoding of the message (from the transmitter) and side information

(from the relay) because mapping at relay is performed without any knowledge of

forward channel strength and side information from relays cannot be decoded at the

destination independently.

• QMF performs within bounded gap from capacity for networks having an arbitrary

number of relays [38].

2.8.3 Cooperative protocol based on QMF scheme

In the work [2], Wang and Tse proposed the two-round QMF strategy for cooperating

between two receivers in the two-user Gaussian interference channel (see in Figure 2.4).

Remind that [2] uses HK strategy in the transmission scheme.

For simplicity, we describe this strategy with the processing order Rx2 → Rx1 → Rx2

consisting of three stages as follows:

1. Quantize-Binning: Receiver 2 first quantizes its received signal yN
2 into ŷN

2 by a

pregenerated Gaussian quantization codebook with certain distortion which equal to

the aggregate power level of the noise and user 2’s private signal and then sends out

a bin index determined by a pregenerated binning function l21 = b2(ŷN
2 ).

2. Decode-Binning: After receiver 1 retrieves the receiver-cooperative side informa-

tion, that is, the bin index l21, it decodes two common messages and its own private

message (m1c,m2c,m1p), by searching in transmitters’ codebooks for a codeword

triple (indexed by user 1 and user 2’s common messages and user 1’s own private
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message) that is jointly typical with its received signal and some quantization point

(codeword) in the given bin. After receiver 1 decodes, it uses two pregenerated bin-

ning functions to bin the two common messages (l
(ic)
12 = b

(ic)
1 (mic), for i = 1, 2)

and sends out these two bin indices to receiver 2.

3. Decoding: After receiving these two bin indices, (l1c12 ,l2c12 ), receiver 2 decodes two

common messages and its own private message (m1c,m2c,m2p), by searching in the

corresponding bins (containing common messages) and user 2’s private codebook

for a codeword triple that is jointly typical with its received signal yN
2 .

2.8.4 Advantage of cooperative protocol based on QMF scheme

In the work [2], Wang and Tse reveal that strategies based on the compress-forward or

decode-forward scheme which are used in [29, 30] are not proper for receiver cooperation

to mitigate interference in certain regimes because both schemes do not achieve the opti-

mal GDoF universally. However, they show that their proposed cooperative protocol which

consists of an improved compress-forward and decode-forward scheme achieves the opti-

mal number of GDoF for all value of the normalized interference (α) and the normalized

capacity of the receiver-cooperative link (κ).

Therefore, from the key advantage above, we adopt the cooperative protocol of

the work [2] in our cooperative protocol for the two-user Gaussian X channel with

limited receiver cooperation.

In the next section, we introduce the capacity region based on the Gaussian multiple-

access channel.

2.9 Capacity Region

To understand capacity region more clearly, this section gives the well-known sim-

ple example, i.e., the capacity region for the two-user Gaussian multiple-access channel

(Gaussian MAC) [1].

The two-user Gaussian multiple-access channel consisting of two transmitters and one

receiver can be modeled as follows (see Figure 2.5):

yi = x1i + x2i + zi (2.20)
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where y ∈ C is the channel output at receiver, x1 and x2 ∈ C are the channel input at

transmitter 1 and 2, respectively, the additive noise processes {zi} are independent and

identically distributed (i.i.d.) CN (0, 1) over time and i denotes the index of time.

Figure 2.5 Gaussian multiple-access channel [1]

Assume that there is an average power constraint Pj at transmitter j , i.e., for each

transmitter, we have

1

N

N∑
i=1

x 2
ji(mj ) ≤ Pj , mj ∈ {1, 2, · · · , 2NRj }, j = 1, 2. (2.21)

Next, we provide the definitions for achievable rates and the capacity region based on

the two-user Gaussian MAC.

Definition 2.5 A rate pair (R1,R2) is said to be achievable for the Gaussian MAC if there

exists a sequence of (2NR1 , 2NR2 ,N ) codes with P
(N )
e approaches to 0, where the average

probability of error

P (N )
e :=

1

2N (R1+R2)
×

∑
(m1,m2)∈M1×M2

Pr
{
d(yN ) 6= (m1,m2) | (m1,m2) are sent

}

Definition 2.6 The capacity region of the Gaussian MAC is the closure of the set of achiev-

able rate pairs (R1,R2).

From [1], the capacity region is the closure of the convex hull of the set of rate pairs

satisfying

R1 ≤ I (x1; y |x2) (2.22)

R2 ≤ I (x2; y |x1) (2.23)

R1 + R2 ≤ I (x1, x2; y) (2.24)
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for some input distribution f1(x1)f2(x2) satisfying the average power constraints E [x 2
1 ] ≤

P1 and E [x 2
2 ] ≤ P2.

Next, finding the mutual information I (x1; y |x2) as follows:

I (x1; y |x2) = h(y |x2)− h(y |x1, x2) (2.25)

= h(x1 + x2 + z|x2)− h(x1 + x2 + z|x1, x2) (2.26)

= h(x1 + z|x2)− h(z|x1, x2) (2.27)
(a)
= h(x1 + z)− h(z) (2.28)
(b)

≤ log(2πe)(P1 + N )− log(2πe)N (2.29)

= log
(

1 +
P1

N

)
, (2.30)

where (a) is due to the fact that z is independent of x1 and x2 and x1 is also independent

of x2, (b) is due to the fact that the normal distribution maximizes the entropy for a given

second moment.

By choosing x1 ∼ CN (0,P1) and x2 ∼ CN (0,P2), therefore, bounds (2.31)−(2.33)

are maximized with these distributions.

Definition 2.7 The channel capacity function is defined as C (x )
∆
= log(1 + x )

With the definition above, the capacity of two-user Gaussian multiple-access channel

(2.31)−(2.33) can be rewritten as follows:

R1 ≤ C
(P1

N

)
(2.31)

R2 ≤ C
(P2

N

)
(2.32)

R1 + R2 ≤ C
(P1 + P2

N

)
(2.33)

Note that the sum of rates in (2.33) can be as large as C (P1+P2

N
). This value is obtained

by a single transmitter sending with a power equal to the sum of the powers.

Using (2.31)−(2.33), the region of the capacity region for Gaussian multiple-access

channel is shown in Figure 2.6.

From Figure 2.6, the corner points have the following interpretation.

• Point A corresponds to the maximum rate achievable from transmitter 1 to the re-

ceiver when transmitter 2 is not transmitting any information.
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Figure 2.6 Gaussian multiple-access channel capacity [1]

• Point B corresponds to the maximum rate at which transmitter 2 can send as long

as transmitter 1 sends at its maximum rate. This is the rate that is obtained if x1 is

considered as noise for the channel from x2 to y.

• Point C corresponds to point B with the role of the transmitter reversed.

• Point D corresponds to point A with the role of the transmitter reversed.

Remark 2.8 Decoding in the Gaussian multiple-access channel corresponding point B

consists of a two-stage process:

1. In the first stage, the receiver decodes the second transmitter by treating the first

transmitter as part of the noise. This decoding will have low probability of error if

R2 < C ( P2

P1+N
).

2. After information of the second transmitter has been decoded successfully, it can be

subtracted out and the first transmitter can be decoded correctly if R1 < C (P1

N
).

Remark 2.9 If (R1,R2) is in the capacity region given above, the probability of error goes

to 0 as N tends to infinity.
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2.10 Gaussian X channel

In this section, we introduce the simple two-user Gaussian X channel without coopera-

tion and show that how to use the genie-aided techniques with the example for deriving the

sum-rate upper bound from the result in [14] which is a useful guideline to understand our

proposed upper bounds in Chapter IV.

The two-user Gaussian X channel that is a communication scenario where each trans-

mitter has an independent message for both receivers can be modeled as follows (see Figure

2.7) [14]:

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2,

where yi is the channel output at receiver i , xi is the channel input at transmitter i and

the additive noise processes {zi [n]} are independent and identically distributed (i.i.d.)

CN (0, 1) over time for i , j = 1, 2 and i 6= j .

Figure 2.7 Gaussian X Channel

In the X channel, there are four independent messages, m11,m12,m21,m22, where mes-

sage mji is sent from transmitter i to receiver j . Hence, transmitter i encodes message mii

and mji into a block codeword {xi [n]}Nn=1 with an average transmit power constraint

1

N

N∑
n=1

|xi [n]|2 ≤ Pi , i = 1, 2,

for arbitrary block length N . The size of the message mij is given by |mij |. For codewords

spanning N symbols, rates Rij =
log |mij |

N
are achievable if the probability of error for all

messages are made arbitrarily small when N is large sufficiently.
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Defining the capacity region C of the X channel is the set of all achievable rate tuples

R = (R11,R12,R21,R22) and the sum capacity of the X channel is denoted by C∑.

Next, we give the example for deriving the upper bound of the X channel from [14].

Example: Deriving the upper bound (103) in [14] using the genie-aided technique as

follows:

First, setting m21 = φ. Letting a genie gives side information yN
1 ,m11 and m12 to

receiver 2. Hence, we can upper bound the sum-rate R11 + R12 + R22 as follows:

N (R11 + R12 + R22) = H(m11,m12) + H(m22)

= I (m11,m12; yN
1 ) + H(m11,m12|yN

1 ) + I (m22; yN
2 ) + H(m22|yN

2 )

(a)

≤ I (m11,m12; yN
1 ) + ε1N + I (m22; yN

2 ) + ε2N
(b)
= I (m11,m12; yN

1 ) + I (m22; yN
2 ) + εN (2.34)

where ε1N → 0 and ε2N → 0 as N → 0. (a) follows from Fano’s inequality, i.e.,

H(m11,m12|yN
1 ) ≤ N (R11 + R12)P

(N )
e1 + H(P

(N )
e1 )

∆
= N ε1N

H(m22|yN
2 ) ≤ N (R22)P

(N )
e2 + H(P

(N )
e2 )

∆
= N ε2N

(b) is due to the fact that εN = ε1N + ε2N .

Then, we rewrite (2.34) as (2.35) and then find the solution as follows:

N (R11 + R12 + R22 − εN ) = I (m11,m12; yN
1 ) + I (m22; yN

2 ) (2.35)
(c)

≤ I (m11,m12; yN
1 ) + I (m22; yN

2 , y
N
1 ,m11,m12) (2.36)

(d)
= I (m11,m12; yN

1 ) + I (m22; yN
2 , y

N
1 |m11,m12) (2.37)

= h(yN
1 )− h(yN

1 |m11,m12) + h(yN
2 , y

N
1 |m11,m12)

− h(yN
2 , y

N
1 |m11,m12,m22)

= h(yN
1 ) + h(yN

2 |yN
1 ,m11,m12)− h(yN

2 , y
N
1 |m11,m12,m22)

(e)
= h(yN

1 ) + h(yN
2 |yN

1 ,m11,m12, x
N
1 ) (2.38)

− h(yN
2 , y

N
1 |m11,m12,m22, x

N
2 , x

N
1 ) (2.39)

(f)
= h(yN

1 ) + h(sN22|sN12)− h(zN2 , z
N
1 ) (2.40)

≤
N∑

n=1

h(y1[n]) +
N∑

n=1

h(s22[n]|s12[n])− h(zN2 , z
N
1 ) (2.41)



26

(g)

≤ N log(1 + h2
11P1 + h2

12P2) + log
(

1 +
h2

22P2

1 + h2
12P2

)
(2.42)

where εN → 0 as N → 0, sN22 = h22x
N
2 + zN2 and sN12 = h12x

N
2 + zN2 . (c) is due to the genie

providing yN
1 ,m11 and m12 to receiver 2. (d) is due to the chain rule and the independence

of all messages m11,m12,m22. (e) In the first summand on the right-hand side, we use the

fact that given m11, x
N
1 is known at receiver 2 because m21 = φ. In the second term, using

the fact that conditioning on xN
1 and xN

2 does not reduce entropy. (f) is due to the fact that

conditioning does not reduce entropy. (g) is due to the fact that i.i.d. Gaussian distribution

maximizes conditional differential entropy subject to conditional variance constraints.

2.11 Generalized Degrees of Freedom

The GDoF introduced by Etkin, Tse and Wang [9] is a natural generalization of the

notion of the DoF in point-to-point communication to multiuser scenarios. This notion

provides a useful tool to approximate interference-limited performance in the high-SNR

regime.

For simplicity, we consider in the symmetric channel case of the two-user Gaussian

interference channel where SNR1 = SNR2 = SNR, INR1 = INR2 = INR. The GDoF of the

sum capacity is defined as

d(α) := lim
fix α

SNR→∞

CΣ(SNR, INR)

log SNR
(2.43)

where CΣ(SNR, INR) is the sum capacity of the two-user Gaussian interference channel,

i.e., CΣ(SNR, INR) = R1 + R2, and

lim
SNR→∞

log INR

log SNR
= α (2.44)

More precisely, we use the following approximations [9] such as

log(1 + SNR + INR) ≈ max(log(SNR), log(INR)) (2.45)

log
(

1 +
SNR

1 + INR

)
≈
(

log
(SNR
INR

))+

(2.46)

to give an expansion of the capacity region of the Gaussian interference channel which is

accurate to the first order terms. Denote that (a)+ := max(0, a).
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2.12 Gain from the limited receiver cooperation

In the work [2], Wang and Tse give a numerical example to show the gain from the

limited receiver cooperation by plotting cooperation rate versus user data rate at the fixed

signal-to-noise ratios (SNR) = 20 dB and interference-to-noise ratios (INR) = 15 dB as

depicted in Figure 2.8 .

Figure 2.8 Gain from limited receiver cooperation [2]

From Figure 2.8, they classify their result into two regions: linear and saturation re-

gions.

• In the linear region, it can be stated that receiver cooperation is efficient because

each user’s data rate and the capacity of receiver-cooperative link are approximately

linear. The gain in this region is provided by distributed MIMO systems and is called

the degrees-of-freedom gain.

• In the saturation region, it can be stated that receiver cooperation is inefficient since

each user’s data rate does not change anymore even though the capacity of receiver-

cooperative link increases. The gain in this region is called the power gain and is

bounded independent of the cooperative rate.



CHAPTER III

THE PROBLEM FORMULATION

This chapter provides the channel model for the two-user Gaussian X channel with

limited receiver cooperation and formulate the problem.

3.1 Channel Model

Since the two-user Gaussian X channel is physically the same as the two-user Gaus-

sian interference channel [14], therefore, we can describe the two-user Gaussian X channel

with limited receiver cooperation using the channel model of the two-user Gaussian inter-

ference channel with limited receiver cooperation in [2] as shown in Figure 3.1. This model

consists of two transmitters and two receivers, where each transmitter has an independent

message for each receiver. They communicate each other via two main non-interference

links1 as follows:

Figure 3.1: Channel model of the two-user Gaussian X channel with limited receiver co-

operation

1We consider the two-user Gaussian X channel with out-of-band (orthogonal) limited receiver coopera-

tion, that is, signals in transmitter-receiver links do not interfere with ones in receiver-cooperative links.
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Transmitter-Receiver Links: These links are modeled as the normalized Gaussian X

channel

y1 = h11x1 + h12x2 + z1

y2 = h21x1 + h22x2 + z2,

where the additive noise processes {zi [n]}, (i = 1, 2), are independent and identically

distributed (i.i.d.) CN (0, 1) over time. For i , j = 1, 2 and i 6= j , suppose that there are four

independent messages, m11,m12,m21,m22, where message mji is sent from transmitter i

to receiver j . Hence, transmitter i encodes message mii and mji into a block codeword

{xi [n]}Nn=1 with an average transmit power constraint

1

N

N∑
n=1

|xi [n]|2 ≤ 1, i = 1, 2,

for arbitrary block length N . Note that the outcome of each encoder depends only on its

own messages. Signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) can be

defined to capture the channel gains as follows:

SNRi = |hii |2, and INRi = |hij |2, i , j = 1, 2, i 6= j .

Receiver-Cooperative Links: These links are noiseless with capacity CB
ij from receiver

i to j , for (i , j ) = (1, 2), (2, 1), where 0 ≤ CB
ij ≤ CB∗

ij and CB∗
ij denotes the maximum

value of the capacity of receiver-cooperative link from receiver i to j . Encoding at each

receiver is causal in the sense that the cooperation signal from receiver i to j , uij [n], is only

a function of the received signal at receiver i , {yi [1], . . . , yi [n − 1]} and the cooperation

signal from receiver j to i, {uji [1], . . . , uji [n − 1]}, for any time index n = 1, 2, . . . ,N .

3.2 Strategies, Achievable Rates, and Capacity Region

We give the definitions for the coding strategies, achievable rate of the strategy, and the

capacity region of the channel.

Definition 3.1 (Strategy and Average Probability of error) An (M11,M12,M21,M22,N)−

strategy for the X channel consists of the following: for i , j = 1, 2, i 6= j ,

• Message setsMii := {1, 2, . . . ,Mii} andMji := {1, 2, . . . ,Mji} for transmitter i ;
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• Message setsMii := {1, 2, . . . ,Mii} andMij := {1, 2, . . . ,Mij} for receiver i ;

• Encoding function e
(N )
i :Mii ×Mji → CN , mii ×mji 7→ xN

i at transmitter i ;

• Set of relay function {r (n)
i }Nn=1 such that uij [n] = r

(n)
i (yn−1

i , un−1
ji ) ∈ {1, 2, . . . , 2CB

ij },

∀n = 1, 2, . . .,N at receiver i ;

• Decoding function d
(N )
i : CN × {1, 2, . . . , 2NCB

ji} → Mii × Mij , (yN
i , u

N
ji ) 7→

m̂ii × m̂ij at receiver i .

The average probability of error

P (N )
e :=

1

M11M12M21M22

×
∑

m11∈M11
m12∈M12
m21∈M21
m22∈M22

Pr

d
(N )
1 (yN

1 , u
N
21) 6= m11 ×m12 or | m11,m12,m21,

d
(N )
2 (yN

2 , u
N
12) 6= m21 ×m22 | m22 are sent



Definition 3.2 (Achievable Rates for the general case) A rate hexatruple (R1c,R2c,R11p ,R12p ,

R21p ,R22p) is said to be achievable if for any small ε > 0 and for all sufficiently large

N, there exists a (M1c,M2c,M11p ,M12p ,M21p ,M22p ,N ) strategy with Mic ≥ 2NRic and

Mijp ≥ 2NRijp , for i, j = 1,2, such that P (N )
e < ε. The achievable rate region is the closure

of the set of achievable rates. This definition is used in Theorem 6.3.

Definition 3.3 (Achievable Rates) A rate quadruple (R11,R12,R21,R22) is said to be achiev-

able if for any small ε > 0 and for all sufficiently large N, there exists a (M11,M12,M21,M22,N )

strategy with Mij ≥ 2NRij , for i, j = 1,2, such that P (N )
e < ε. The achievable rate region is

the closure of the set of achievable rates. This definition is used in Theorem 6.8.

Definition 3.4 (Capacity Region) The capacity regionC of the X channel is the closure of

the set of the achievable rate (R11,R12,R21,R22).

3.3 Classification of the Two-User Gaussian X Channel

In the work [12], Prasad and Chockalingam classify the two-user Gaussian X channel

into the two broad classes which each class is also divided into two subclasses as follows:

• Strong Gaussian X channel
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1. Type I: the direct channels are stronger than the cross channels, i.e., SNR1 ≥

INR2 and SNR2 ≥ INR1.

2. Type II: the cross channels are stronger than the direct channels, i.e., SNR1 ≤

INR2 and SNR2 ≤ INR1.

• Mixed Gaussian X channel

1. Type I: one of the direct channels is stronger than the corresponding cross chan-

nel and the other cross channel is stronger than the corresponding direct chan-

nel, i.e., SNR1 ≥ INR2 and SNR2 ≤ INR1.

2. Type II: one of the cross channels is stronger than the corresponding direct

channel and the other direct channel is stronger than the corresponding cross

channel, i.e., SNR1 ≤ INR2 and SNR2 ≥ INR1.

In addition to the general case, we also consider the strong Gaussian X channel type

I case in this dissertation. However, we modify the constraints in the strong Gaussian X

channel type I case by replacing the symbol “≥” with “>”, that is, SNR1 > INR2 and

SNR2 > INR1.

3.4 Notations

We use the following notations throughout in the rest of this dissertation.

• h(·) and I (·) denote the differential entropy of a continuous random variable or vec-

tor, and mutual information, respectively.

• For a real number a, (a)+ := max(0, a) denotes its positive part.

• C denotes the set of all complex numbers.

• CN (0, 1) denotes complex Gaussian random variable with zero mean and unit vari-

ance.

• For set A ⊆ Rk in an k-dimensional space, conv{A} denotes the convex hull of the

set A.

• Let xN denote the sequence {x [1], · · · , x [N ]} where [·] denote time indices.

• Unless otherwise stated, all logarithms log(·) are of the base 2.



CHAPTER IV

AN OUTER BOUND ON CAPACITY REGION FOR

THE TWO-USER GAUSSIAN X CHANNEL WITH

LIMITED RECEIVER COOPERATION

In this chapter, we provide an outer bound on the capacity region containing upper

bounds for the two-user Gaussian X channel with limited receiver cooperation in Lemma

4.1. Ideas for proving upper bounds are outlined in Section 4.1 and all details are given in

Section 4.3. This outer bound is used to evaluate the performance of our proposed strategy

in the case of strong Gaussian X channel type I which details are shown completely in

Chapter VI.

4.1 An Outer Bound

For finding an outer bound on the capacity region for the two-user Gaussian X channel

with limited receiver cooperation, we use Fano’s inequality, data processing inequality and

genie-aided techniques, etc. The result is given in the following theorem.

Lemma 4.1 C ⊆ C , where an outer bound on the capacity region of the two-user

Gaussian X channel with limited receiver cooperation C consists of nonnegative rate

quadruple (R11,R12,R21,R22) satisfying the following inequalities.

R11 ≤ log(1 + SNR1) + min
{
CB

21, log
(

1 +
INR2

1 + SNR1

)}
(4.1)

R12 ≤ log(1 + INR1) + min
{
CB

21, log
(

1 +
SNR2

1 + INR1

)}
(4.2)

R21 ≤ log(1 + INR2) + min
{
CB

12, log
(

1 +
SNR1

1 + INR2

)}
(4.3)

R22 ≤ log(1 + SNR2) + min
{
CB

12, log
(

1 +
INR1

1 + SNR2

)}
(4.4)

R11 + R12 ≤ log(1 + SNR1 + INR1) + CB
21 (4.5)

R21 + R22 ≤ log(1 + SNR2 + INR2) + CB
12 (4.6)
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R11 + R12 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
SNR2

1 + INR1

)
(4.7)

R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
SNR1

1 + INR2

)
(4.8)

R11 + R12 + R21 ≤ log(1 + INR2) + log(1 + INR1 +
SNR1

1 + INR2

) + CB
21 + CB

12 (4.9)

R11 + R12 + R22 ≤ log(1 + SNR2) + log(1 + SNR1 +
INR1

1 + SNR2

) + CB
21 + CB

12 (4.10)

R11 + R21 + R22 ≤ log(1 + SNR1) + log(1 + SNR2 +
INR2

1 + SNR1

) + CB
21 + CB

12 (4.11)

R12 + R21 + R22 ≤ log(1 + INR1) + log(1 + INR2 +
SNR2

1 + INR1

) + CB
21 + CB

12 (4.12)

R11 + R12 + R21 ≤ log(1 + SNR1 + INR1) + log
(

1 +
INR2

1 + SNR1

)
+ CB

21 (4.13)

R11 + R12 + R22 ≤ log(1 + SNR1 + INR1) + log
(

1 +
SNR2

1 + INR1

)
+ CB

21 (4.14)

R11 + R21 + R22 ≤ log(1 + SNR2 + INR2) + log
(

1 +
SNR1

1 + INR2

)
+ CB

12 (4.15)

R12 + R21 + R22 ≤ log(1 + SNR2 + INR2) + log
(

1 +
INR1

1 + SNR2

)
+ CB

12 (4.16)

R11 + R12 + R21 ≤ log
(

1 + SNR1

1+INR2
+ INR1 + SNR2 + INR2

1+INR2
+ |h11h22−h12h21|2

1+INR2

)
+ log(1 + INR2)− log

(
1 +

SNR2

1 + INR1

)
+ CB

12 (4.17)

R11 + R12 + R22 ≤ log
(

1 + SNR1 + INR1

1+SNR2
+ SNR2

1+SNR2
+ INR2 + |h11h22−h12h21|2

1+SNR2

)
+ log(1 + SNR2)− log

(
1 +

INR2

1 + SNR1

)
+ CB

12 (4.18)

R11 + R21 + R22 ≤ log
(

1 + SNR1

1+SNR1
+ INR1 + SNR2 + INR2

1+SNR1
+ |h11h22−h12h21|2

1+SNR1

)
+ log(1 + SNR1)− log

(
1 +

INR1

1 + SNR2

)
+ CB

21 (4.19)

R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1

1+INR1
+ SNR2

1+INR1
+ INR2 + |h11h22−h12h21|2

1+INR1

)
+ log(1 + INR1)− log

(
1 +

SNR1

1 + INR2

)
+ CB

21 (4.20)

R11 + R12 + R21 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
SNR2

1 + INR1

)
(4.21)

R11 + R12 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
INR2

1 + SNR1

)
(4.22)
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R11 + R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
INR1

1 + SNR2

)
(4.23)

R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

− log
(

1 +
SNR1

1 + INR2

)
(4.24)

R11 + R12 + R21 + R22 ≤ log
(

1 + SNR1 +
INR1

1 + SNR2

)
+ log

(
1 + SNR2 +

INR2

1 + SNR1

)
+ CB

12 + CB
21 (4.25)

R11 + R12 + R21 + R22 ≤ log
(

1 + INR1 +
SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ CB

12 + CB
21 (4.26)

R11 + R12 + R21 + R22 ≤ log
(

1 + SNR1

1+INR2
+ INR1 + SNR2 + INR2

1+INR2
+ |h11h22−h12h21|2

1+INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
− log

(
1 +

SNR2

1 + INR1

)
+ CB

12 (4.27)

R11 + R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1

1+INR1
+ SNR2

1+INR1
+ INR2 + |h11h22−h12h21|2

1+INR1

)
+ log

(
1 + INR1 +

SNR1

1 + INR2

)
− log

(
1 +

SNR1

1 + INR2

)
+ CB

21 (4.28)

R11 + R12 + R21 + R22 ≤ log

1 + SNR1 + INR1 + SNR2 + INR2

+|h11h22 − h12h21|2

 (4.29)

2R11 + R12 + R21 + R22 ≤ log(1 + SNR1 + INR1) + log
(

1 +
SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
+ CB

12 + CB
21 (4.30)

R11 + 2R12 + R21 + R22 ≤ log(1 + SNR1 + INR1) + log
(

1 +
INR1

1 + SNR2

)
+ log

(
1 + SNR2 +

INR2

1 + SNR1

)
+ CB

12 + CB
21 (4.31)

R11 + R12 + 2R21 + R22 ≤ log(1 + SNR2 + INR2) + log
(

1 +
INR2

1 + SNR1

)
+ log

(
1 + SNR1 +

INR1

1 + SNR2

)
+ CB

12 + CB
21 (4.32)

R11 + R12 + R21 + 2R22 ≤ log(1 + SNR2 + INR2) + log
(

1 +
SNR2

1 + INR1

)
+ log

(
1 + INR1 +

SNR1

1 + INR2

)
+ CB

12 + CB
21 (4.33)
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2R11 + R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log
(

1 +
SNR1

1 + INR2

)
+ log

(
1 + INR2 +

SNR2

1 + INR1

)
− log

(
1 +

SNR2

1 + INR1

)
+ CB

12 (4.34)

R11 + 2R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log
(

1 +
INR1

1 + SNR2

)
+ log

(
1 + SNR2 +

INR2

1 + SNR1

)
− log

(
1 +

INR2

1 + SNR1

)
+ CB

12 (4.35)

R11 + R12 + 2R21 + R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log
(

1 +
INR2

1 + SNR1

)
+ log

(
1 + SNR1 +

INR1

1 + SNR2

)
− log

(
1 +

INR1

1 + SNR2

)
+ CB

21 (4.36)

R11 + R12 + R21 + 2R22 ≤ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log
(

1 +
SNR2

1 + INR1

)
+ log

(
1 + INR1 +

SNR1

1 + INR2

)
− log

(
1 +

SNR1

1 + INR2

)
+ CB

21 (4.37)

2R11 + R12 + R21 + R22 ≤ log
(

1 + SNR1 + INR1

1+INR1
+ SNR2

1+INR1
+ INR2 + |h11h22−h12h21|2

1+INR1

)
+ log(1 + SNR1 + INR1) + CB

21 (4.38)

R11 + 2R12 + R21 + R22 ≤ log
(

1 + SNR1

1+SNR1
+ INR1 + SNR2 + INR2

1+SNR1
+ |h11h22−h12h21|2

1+SNR1

)
+ log(1 + SNR1 + INR1) + CB

21 (4.39)

R11 + R12 + 2R21 + R22 ≤ log
(

1 + SNR1 + INR1

1+SNR2
+ SNR2

1+SNR2
+ INR2 + |h11h22−h12h21|2

1+SNR2

)
+ log(1 + SNR2 + INR2) + CB

12 (4.40)

R11 + R12 + R21 + 2R22 ≤ log
(

1 + SNR1

1+INR2
+ INR1 + SNR2 + INR2

1+INR2
+ |h11h22−h12h21|2

1+INR2

)
+ log(1 + SNR2 + INR2) + CB

12 (4.41)

Proof: All above bounds can be upper bounded by mutual information via Fano’s

inequality and data processing inequality. Next, they are decomposed into two parts: 1)

terms which are similar to ones in Gaussian X channels without cooperation and 2) terms

which indicate the enhancement from cooperation. To upper bound the first part, we use

the genie-aided techniques such as [2,9,14] where genies provide side information signals

that are carefully chosen to the receivers. In the second part, we consider that both co-
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operation signals uN
21 and uN

12 are a function of both received signals (yN
1 , y

N
2 ) and use the

straightforward bounding techniques for others. Details are given thoroughly in Section

4.3.

Next, for i , j = 1, 2 and i 6= j , we give a brief outline for our proposed outer bound as

follows:

First of all, bounds (4.1)−(4.4) are the upper bounds of individual rates. In the genie-

aided channel, a genie gives side information xN
j to receiver i for upper bounds Rii and

xN
i to receiver i for upper bounds Rij . Therefore, there is no interference at receiver i . The

gain of receiver cooperation is the minimum value between CB
ji and log

(
1 +

INRj

1+SNRi

)
for

(4.1) and (4.4) and CB
ij and log

(
1 +

SNRj

1+INRi

)
for (4.2) and (4.3).

Bounds (4.5)−(4.6) on Rii + Rij are straightforward cut-set upper bounds of the sum

of 2 rates by setting mji = mjj = φ. The gain of cooperation from receiver i to j is upper

bounded by CB
ij .

Bounds (4.7)−(4.8) are derived by providing side information yN
i and mji to receiver i .

In these cases, the gain of cooperation from receiver j to i is absorbed into a power gain1.

Bounds (4.9)−(4.12) correspond to the Z-channel bounds. A genie gives interfering

information sNji and mji to receiver i and xN
j and mii to receiver j for bounds (4.9) and

(4.12) and sNjj and mjj to receiver i and xN
i and mij to receiver j for bounds (4.10) and

(4.11). The gain of receiver cooperation is the sum of CB
ij and CB

ji .

Bounds (4.13)−(4.16) also correspond to the Z-channel bounds and the Huang-Cadambe-

Jafar (HCJ) upper bounds for the Gaussian X channel without cooperation [5]. For these

bounds, a genie gives yN
j to receiver i for i , j = 1, 2 and i 6= j . Therefore, the gain from

receiver j to i is absorbed into the power gain and the other gain is upper bounded by CB
ij .

Bounds (4.17) and (4.20) are derived by providing side information yN
j , sNji and mji to

receiver i and xN
j and mii to receiver j . Bounds (4.18) and (4.19) are derived by providing

side information yN
j , sNjj and mjj to receiver i and xN

i and mij to receiver j . Since a genie

gives xN
j and mii to receiver j for (4.17) and (4.20) and xN

i and mij to receiver j for (4.18)

and (4.19), i.e., it means that there is no interference at receiver j , therefore, the cooperation

from receiver j to i provides the power gain. In addition, the gain of cooperation from

receiver i to j is upper bounded by CB
ij .

1The power gain which is identified in [2] occurs in the saturation region where receiver cooperation is

inefficient. This gain is also bounded, regardless of the cooperation rate.
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Bounds (4.21) and (4.22) are derived by giving side information yN
j to receiver i and

yN
i , mii and mij to receiver j . In addition, bounds (4.23) and (4.24) are derived by giving

side information yN
j , mji and mjj to receiver i and yN

i to receiver j . The gain from the

receiver cooperation in both sides is absorbed into a power gain.

Bounds (4.25)−(4.26) correspond to the Etkin-Tse-Wang (ETW) upper bounds for the

interference channel without cooperation [9] which is extended to the Gaussian X channel

without cooperation [5]. In the genie-aided channel, a genie give side information s̃Njj and

mjj to receiver i for (4.25) and s̃Nji and mji to receiver i for (4.26). The gain of receiver

cooperation is upper bounded by CB
12 + CB

21.

Bounds (4.27)−(4.28) on R11 +R12 +R21 +R22 are derived by giving side information

yN
j and s̃Nji to receiver i and s̃Nij to receiver j . Since a genie gives yN

j to receiver i , therefore,

the gain from receiver j to i is absorbed into the power gain and the other gain is upper

bounded by CB
ij .

Bound (4.29) is straightforward cut-set upper bound of the sum of 4 rates.

Bounds (4.30)−(4.33) correspond to the Niesen-Maddah-Ali (NMA) upper bounds for

the Gaussian X channel without cooperation [12]. In the genie-aided channel, the gain of

receiver cooperation is upper bounded by CB
12 + CB

21.

Bounds (4.34) and (4.37) on 2Rii+Rij +Rji+Rjj are derived by giving side information

yN
j to the first receiver i , yN

j and xN
j to the second receiver i and s̃Nij to receiver j . Similarly,

bounds (4.35) and (4.36) on Rii + 2Rij + Rji + Rjj are derived by giving side information

yN
j to the first receiver i , yN

j and xN
i to the second receiver i and s̃Nii to receiver j . In the

genie-aided channel, the structure based on Z-channel is created and thus the gain from one

direction of receiver cooperation is absorbed into the power gain. The other gain is upper

bounded by CB
ij .

Bounds (4.38) and (4.41) on 2Rii+Rij +Rji+Rjj are derived by giving side information

yN
j to the first receiver i and yN

i and s̃Nij to receiver j . Similarly, bounds (4.39) and (4.40)

on Rii + 2Rij + Rji + Rjj are derived by giving side information yN
j to the first receiver i

and yN
i and s̃Nii to receiver j . In the genie-aided channel, the point-to-point MIMO channel

is created and thus the gain from both directions of receiver cooperation is absorbed into

the multiple-antenna systems. The other gain is upper bounded by CB
ij .

Note that the derivation of all bounds works for all SNR’s and INR’s.
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Remark 4.2 (Dependence on Phases) The sum-rate upper bounds on (4.7)−(4.8), (4.17)−

(4.24), (4.27)− (4.29) and (4.34)−(4.41) not only depend on SNR’s and INR’s but also on

the phases of channel coefficients, i.e., |h11h22 − h12h21|2. When these upper bounds are

active, an outer bound depends on phases [2].

Next, the effectiveness of our proposed outer bound is given in the following section.

4.2 Effectiveness of the proposed outer bound

To test the effectiveness of an outer bound proposed in Lemma 4.1, we compare this

result with the existing results [2–4, 14, 15, 31] in the two ways as follows:

1. Comparison of some upper bounds in Lemma 4.1 with the known results in the fol-

lowing two cases:

• Non-cooperation case:

(a) Substituting CB
12 = CB

21 = 0 in the upper bounds (4.13)−(4.16) and (4.25)−

(4.26), it is easily seen that these upper bounds are identical to the results

of Lemma 5.2 and Theorem 5.3, respectively, in [14]. In addition, the up-

per bounds (4.30)−(4.33) with setting CB
12 = CB

21 = 0 are also the same as

the result of Lemma 10 in [15].

(b) Considering the case where each transmitter has only one message by let-

ting m12 = m21 = φ, i.e., R12 = R21 = 0, and substituting CB
12 = CB

21 = 0

in the upper bounds (4.1), (4.4), (4.14)−(4.15), (4.26), (4.30) and (4.33),

it is easily seen that these bounds are the same as all upper bounds in an

outer bound on the capacity region for the two-user deterministic interfer-

ence channel in [3, 4].

• Receiver cooperation case:

(a) Considering the case where each transmitter has only one message by let-

ting m12 = m21 = φ, i.e., R12 = R21 = 0, it is easily seen that the

set of the upper bounds consisting of (4.1), (4.4), (4.14)−(4.15), (4.26),

(4.29)−(4.30), (4.33), (4.38) and (4.41) is identical to an outer bound on
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the capacity region for the two-user Gaussian interference channel with

limited receiver cooperation, i.e, Lemma 5.1 in [2].

(b) Considering the case where each transmitter has only one message by let-

ting m12 = m21 = φ, i.e., R12 = R21 = 0, and letting that receiver 1

suffers from interference and noise but receiver 2 suffers only from noise,

it is easily seen that the set of the upper bounds consisting of (4.1) with

CB
21 = 0, (4.4), (4.14) and (4.29) with some modifications and disappear-

ance of h12 is the same as an outer bound on the capacity region for the

two-user asymmetric interference channel with limited receiver coopera-

tion, i.e., Theorem 2 in [31].

(c) Comparing (4.29) with (9) in Lemma 5.1 [2] without setting any parame-

ters in our channel model as (i) and (ii) above, we see obviously that both

upper bounds from the different channel model are the same.

Conclusion: With considerations above, it can be easily seen that some of the pro-

posed upper bounds in Lemma 4.1 are the same as the existing results [2–4,14,15,31]

by setting a certain set of parameters. This means that these bounds are more gener-

alized than those in several communication scenarios.

2. Comparison of the region of the proposed outer bound with the region of an outer

bound of the two-user Gaussian interference channel with limited receiver cooper-

ation [2] and that of the two-user Gaussian interference without receiver coopera-

tion [3, 4] through some numerical examples.

In this comparison, it consists of the following 3 steps:

(a) Defining parameters: In order to compare our result with the existing results [2–

4] properly, we define the following parameters. Let

• R1 = R11 + R12;

• R2 = R21 + R22;

• R1 + R2 = R11 + R12 + R21 + R22;

• 2R1 + R2 = 2R11 + 2R12 + R21 + R22;

• R1 + 2R2 = R11 + R12 + 2R21 + 2R22.
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Remind that SNRi = |hii |2 and INRi = |hij |2 for i , j = 1, 2 and i 6= j .

(b) Calculating parameters: Based on the assigned parameters in the first step, we

can calculate each parameter from our results as follows:

• R1 = min{(4.1) + (4.2), (4.5), (4.7)};

• R2 = min{(4.3) + (4.4), (4.6), (4.8)};

• R1 + R2 = min{(4.25), (4.26), (4.27), (4.28), (4.29)};

• 2R1 + R2 = min{(4.25) + (4.5), (4.26) + (4.5), (4.27) + (4.5),

(4.28)+(4.5), (4.29)+(4.5), (4.25)+(4.7), (4.26)+(4.7), (4.27)+(4.7),

(4.28)+(4.7), (4.29)+(4.7), (4.30)+(4.2), (4.31)+(4.1), (4.34)+(4.2),

(4.35)+(4.1), (4.38)+(4.2), (4.39)+(4.1), (4.9)+(4.10), (4.13)+(4.14),

(4.17) + (4.18), (4.21) + (4.22)};

• R1 + 2R2 = min{(4.25) + (4.6), (4.26) + (4.6), (4.27) + (4.6),

(4.28)+(4.6), (4.29)+(4.6), (4.25)+(4.8), (4.26)+(4.8), (4.27)+(4.8),

(4.28)+(4.8), (4.29)+(4.8), (4.32)+(4.4), (4.33)+(4.3), (4.36)+(4.4),

(4.37)+(4.3), (4.40)+(4.4), (4.41)+(4.3), (4.11)+(4.12), (4.15)+(4.16),

(4.19) + (4.20), (4.23) + (4.24)}.

(c) Plotting the region: Following the same method in [20], we can plot the region

of the proposed outer bound from the received results in the second step.

Next, using the three steps above, we compare the region of our obtained result with

the region of the outer bounds in the two-user Gaussian interference channel with

limited receiver cooperation [2] and without cooperation [3,4] in the following three

cases.

• Case 1: We consider the symmetric case where SNR1 = SNR2 = 20 dB,

INR1 = INR2 = 15 dB and CB
12 = CB

21 = 2. The received result (see Figure

4.1) shows that our proposed outer bound is a superset of the outer bounds [2]

and [3, 4]. Furthermore, we observe that the maximum gap between our pro-

posed outer bound and the outer bounds [2] and [3,4] are 2 and 2.393 bits/s/Hz,

respectively.

• Case 2: We consider the symmetric case where SNR1 = SNR2 = 20 dB,

INR1 = INR2 =7 dB and CB
12 = CB

21 = 2. In this case, the values of INR1
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Figure 4.1: Comparison of our proposed outer bound with outer bounds [2] and [3,4] where

SNR1 = SNR2 = 20 dB, INR1 = INR2 = 15 dB and CB
12 = CB

21 = 2

and INR2 are reduced from 15 dB in the first case to 7 dB. The obtained re-

Figure 4.2: Comparison of our proposed outer bound with outer bounds [2] and [3,4] where

SNR1 = SNR2= 20 dB, INR1 = INR2 = 7 dB and CB
12 = CB

21 = 2
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Figure 4.3: Comparison our proposed outer bound with outer bounds [2] and [3, 4] where

SNR1 = 20 dB, SNR2 = 15 dB, INR1 = 5 dB, INR2 = 7 dB, CB
12 = 1 and CB

21 = 2

sult (see Figure 4.2) shows that our proposed outer bound is a superset of the

outer bounds [2] and [3, 4]. Furthermore, we observe that the maximum gap

between our proposed outer bound and the outer bounds [2] and [3, 4] are 2

and 2.04 bits/s/Hz, respectively. However, there is a region (indicated by the

dashed ellipse) where the gap between our outer bound and the outer bound [2]

approaches to zero.

• Case 3: We consider the asymmetric case where SNR1 = 20 dB, SNR2 =

15 dB, INR1 = 7 dB, INR2 = 5 dB, CB
12 = 1, CB

21 = 1. The received result

(see Figure 4.3) shows that our proposed outer bound is a superset of the outer

bounds [2] and [3,4]. Furthermore, we observe that the maximum gap between

our proposed outer bound and the outer bounds [2] and [3, 4] are 1.073 and

1.206 bits/s/Hz, respectively. The result in this case is similar to the result in

the second case, i.e., there is a region (indicated by the dashed ellipse) where

the gap between our outer bound and the outer bound [2] closes to zero.

Conclusion: From three comparison cases above, based on defining parameters in

the first stage for reducing our results from 4 dimensions to 2 dimensions, it is obvi-
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ously seen that the outer bounds in the two-user Gaussian interference channel with

limited receiver cooperation [2] and without cooperation [3,4] are obviously subsets

of our proposed outer bound.

Next, in addition to compare between our proposed outer bound and the outer bound [2],

we compare above two outer bound with an achievable rate region from our result in Chap-

ter VI and an achievable rate region [2].

Comparisons of outer bounds and achievable rate regions

For better understanding comparisons, we first define Outerproposed, OuterIC−RC ,

Achievableproposed andAchievableIC−RC as our proposed outer bound, the outer bound [2],

an achievable rate region from our result in Chapter VI and an achievable rate region in [2],

respectively. Comparisons of outer bound and achievable rate region of our work with those

of the work [2] have details as follows:

• When comparing our proposed outer bound with the outer bound [2] as shown in

the three cases above (see Figure 4.1– Figure 4.3), the obtained results can be con-

cluded that our proposed outer bound is a superset of the outer bound [2], i.e.,

Outerproposed ⊇ OuterIC−RC . Especially, the first symmetric case, the maximum

gap between our proposed outer bound and the outer bound [2] is 2 bps/Hz.

• When comparing our proposed outer bound and an achievable rate region of our

proposed strategy in the strong Gaussian X channel type I case (see more details in

Chapter VI) with the same defining parameters in the the first step, we obtain that

the maximum gap of this comparison is 3 bps/Hz. This gap value is larger than

the maximum gap of comparing between our proposed outer bound and the outer

bound [2] in the first symmetric case. Therefore, we can state that our proposed

outer bound and the outer bound [2] are a superset of an achievable rate region of our

proposed strategy in the strong Gaussian X channel type I case, i.e., Outerproposed ⊇

OuterIC−RC ⊇ Achievableproposed.

• When comparing the outer bound and an achievable rate region in [2], Wang and

Tse [2] show that the gap between them is equal to 2 bits/s/Hz/user at the most,

independent of channel parameters. Hence, we obtain that the outer bound in [2] is a

superset of an achievable rate region in [2], i.e., OuterIC−RC ⊇ AchievableIC−RC .
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The results from three comparisons above can be concluded that

Outerproposed ⊇ OuterIC−RC ⊇ Achievableproposed ⊇ AchievableIC−RC .

Remark 4.3 All upper bounds in Lemma 4.1 have the following relationship:

A = B ∪ C = Cc ∪ C

where A, B and C denote the set of all upper bounds (4.1)−(4.41), the set of upper bounds

(4.5)−(4.12), (4.27)−(4.28), and (4.34)−(4.41) which is the novel result and the set of

upper bounds (4.1)−(4.4), (4.13)− (4.26) and (4.30)−(4.37) which is also the novel result

and can cover the previous results in [2,4,14], respectively, by specifying some parameters

suitably in these bounds.

Remark 4.4 (Benefit of Our Result) The obtained outer bound tells us about communica-

tion limits of the two-user Gaussian X channel with limited receiver cooperation. In ad-

dition, it can be used to assess the performance of any proposed methods for transmitting

messages in this channel.

4.3 Proof of Lemma 4.1
In this section, we give the details for proving Theorem 4.1 which are based on the

genie-aided techniques [2, 9, 14]. For this proof, we define auxiliary information sij and

side information s̃ij as follows:

sij := hij xj + zi , s̃ij := hij xj + z̃i

where, for i , j = 1, 2, zi and z̃i are i.i.d CN (0, 1) and independent of everything else. Both

sij and s̃ij have the same marginal distribution.

Bounds (4.1) on R11, (4.2) on R12, (4.3) on R21 and (4.4) on R22:

Proof: We compute the upper bound on (4.1) by using Fano’s inequality, data pro-
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cessing inequality, and chain rule: if R11 is achievable,

N (R11 − εN )
(a)

≤ I (m11; yN
1 , u

N
21)

(b)

≤ I (m11; yN
1 , u

N
21, x

N
2 )

(c)

≤ I (m11; yN
1 , u

N
21|xN

2 )

(d)
= I (m11; yN

1 |xN
2 ) + I (m11; uN

21|yN
1 , x

N
2 )

= h(yN
1 |xN

2 )− h(yN
1 |xN

2 ,m11) + I (m11; uN
21|yN

1 , x
N
2 )

≤ h(yN
1 |xN

2 )− h(yN
1 |xN

1 , x
N
2 ) + I (m11; uN

21|yN
1 , x

N
2 )

(e)

≤ N log
(
1 + SNR1

)
+ I (m11; uN

21|yN
1 , x

N
2 )

where εN → 0 as N →∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to a genie providing side information xN
2 to receiver 1. (c) is due to the fact

that m11 and xN
2 are independent. (d) is due to chain rule. (e) is due to the fact that i.i.d.

Gaussian distribution maximizes differential entropy under covariance constraints.

Next, we upper bound term I (m11; uN
21|yN

1 , x
N
2 ) which is the augmentation from coop-

eration by using the relationship uN
21 is a function of (yN

1 , y
N
2 ) as follows:

I (m11; uN
21|yN

1 , x
N
2 ) = h(m11|yN

1 , x
N
2 )− h(m11|xN

2 , y
N
1 , u

N
21)

(a)

≤ h(m11|yN
1 , x

N
2 )− h(m11|xN

2 , y
N
1 , u

N
21, y

N
2 )

(b)
= h(m11|yN

1 , x
N
2 )− h(m11|xN

2 , y
N
1 , y

N
2 )

= I (m11; yN
2 |yN

1 , x
N
2 )

= h(yN
2 |yN

1 , x
N
2 )− h(yN

2 |yN
1 , x

N
2 ,m11,m21)

≤ h(yN
2 |yN

1 , x
N
2 )− h(yN

2 |yN
1 , x

N
2 , x

N
1 )

= h(sN21|sN11)− h(zN2 |zN1 )

≤ N log
(

1 +
INR2

1 + SNR1

)
where (a) is due to the fact that conditioning reduces entropy. (b) is due to the fact that

uN
21 is a function of (yN

1 , y
N
2 ). In addition, we can see that term I (m11; uN

21|yN
1 , x

N
2 ) ≤

H (uN
21) ≤ NCB

21.

Hence, similarly if a genie provides side information xN
1 to receiver 1 for R12, xN

2 to

receiver 2 for R21 and xN
2 to receiver 2 for R22, we have bounds (4.1)−(4.4).
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Bounds (4.5) on R11 + R12 and (4.6) on R21 + R22:

Proof: In this proof, we show only bound (4.5) and the other bound can be shown

similarly. To upper bound (4.5), we set m21 = m22 = φ. If (R11,R12) is achievable, we

can write

N (R11 + R12 − εN )
(a)

≤ I (m11,m12; yN
1 , u

N
21)

(b)

≤ I (m11,m12; yN
1 ) + I (m11,m12; uN

21|yN
1 )

(c)

≤ h(yN
1 )− h(yN

1 |m11,m12) + H(uN
21)

(d)

≤ N log(1 + SNR1 + INR1) + NCB
21

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule. (c) is due to the fact that I (m11; uN
21|yN

1 , x
N
2 ) ≤ H (uN

21). (d) is due

to the fact that i.i.d. Gaussian distribution maximizes differential entropy under covariance

constraints and H (uN
21) ≤ NCB

21.

Hence, similarly for R21 + R22, we have bounds (4.5)−(4.6).

Bounds (4.7) on R11 + R12 and (4.8) on R21 + R22:

Proof: In this proof, we show only bound (4.7) and the other bound can be shown

similarly. To upper bound (4.7), a genie provides side information yN
2 and m21 to receiver

1. If (R11,R12) is achievable, we can write

N (R11 + R12 − εN )
(a)

≤ I (m11,m12; yN
1 , u

N
21)

(b)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 ,m21)

(c)
= I (m11,m12; yN

1 , u
N
21, y

N
2 |m21)

(d)
= I (m11,m12; yN

1 , y
N
2 |m21)

= h(yN
1 , y

N
2 |m21)− h(yN

1 , y
N
2 |m11,m12,m21)

= h(yN
1 , y

N
2 )− h(sN12, s

N
22|m12)

= h(yN
1 , y

N
2 )− h(sN12|m12)− h(sN22|sN12,m12)

≤ h(yN
1 , y

N
2 )− h(zN1 )− h(sN22|sN12)

(e)

≤ N {RHS of (4.7)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to a genie providing side information yN
2 and m21 to receiver 1. (c) is due to
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Figure 4.4 Side information structure for bound (4.9)

the fact that m11, m12 and m21 are independent. (d) is due to the fact that uN
21 is a function

of (yN
1 , y

N
2 ). (e) is due to the fact that i.i.d. Gaussian distribution maximizes differential

entropy under covariance constraints.

Hence, similarly if a genie provides yN
1 and m12 to receiver 2 for R21 + R22, we have

bounds (4.7)−(4.8).

Bounds (4.9) on R11 +R12 +R21, (4.10) on R11 +R12 +R22, (4.11) on R11 +R21 +R22

and (4.12) on R12 + R21 + R22:

Proof: In this proof, we show only (4.9) and other bounds can be shown similarly. To

upper bound R11 +R12 +R21, we set message m22 = φ. A genie gives side information sN21

and m21 to receiver 1 and xN
2 and m11 to receiver 2 (refer to Figure 4.4). If (R11,R12,R21)

is achievable, we can write

N (R11 + R12 + R21 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 ) + I (m11,m12; uN

21|yN
1 ) + I (m21; yN

2 ) + I (m21; uN
12|yN

2 )

(c)

≤ I (m11,m12; yN
1 ) + H (uN

21) + I (m21; yN
2 ) + H (uN

12)

(d)

≤ I (m11,m12; yN
1 , s

N
21,m21) + I (m21; yN

2 , x
N
2 ,m11) + NCB

21 + NCB
12

= I (m11,m12; yN
1 , s

N
21|m21) + I (m21; yN

2 |xN
2 ,m11) + NCB

21 + NCB
12

= I (m11,m12; sN21|m21) + I (m11,m12; yN
1 |sN21,m21) + I (m21; yN

2 |xN
2 ,m11) + NCB

21 + NCB
12
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= h(sN21|m21)− h(sN21|m21,m11,m12) + h(yN
1 |sN21,m21)− h(yN

1 |sN21,m21,m11,m12)

+ h(yN
2 |xN

2 ,m11)− h(yN
2 |xN

2 ,m11,m21) + NCB
21 + NCB

12

≤ h(sN21|m21)− h(zN2 ) + h(yN
1 |sN21)− h(zN1 ) + h(sN21|m11)− h(zN2 ) + NCB

21 + NCB
12

(e)

≤ N {RHS of (4.9)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule. (c) is due to the fact that I (m11,m12; uN
21|yN

1 ) ≤ H (uN
21) and

I (m21; uN
12|yN

2 ) ≤ H (uN
12). (d) is due to the fact that a genie provides side information sN21

and m21 to receiver 1 and xN
2 and m11 to receiver 2 and H (uN

ij ) ≤ NCN
ij . (e) is due to

the fact that i.i.d. Gaussian distribution maximizes differential entropy under covariance

constraints.

Hence, similarly if a genie provides side information sN22 and m22 to receiver 1 and xN
1

and m12 to receiver 2 for R11 +R12 +R22 (with setting m21 = φ), xN
2 and m21 to receiver 1

and sN11 and m11 to receiver 2 for R11 + R21 + R22 (with setting m12 = φ), and xN
1 and m22

to receiver 1 and sN12 and m12 to receiver 2 for R12 + R21 + R22 (with setting m11 = φ), we

have shown bounds (4.9)−(4.12).

Bounds (4.13) on R11 +R12 +R21, (4.14) on R11 +R12 +R22, (4.15) on R11 +R21 +R22

and (4.16) on R12 + R21 + R22:

Proof: In this proof, we show only (4.13) and other bounds can be shown similarly.

To upper bound R11+R12+R21, we set message m22 = φ. Let a genie give side information

yN
1 , m11 and m12 to receiver 2 (refer to Figure 4.5). If (R11,R12,R21) is achievable, we

obtain

N (R11 + R12 + R21 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 ) + I (m11,m12; uN

21|yN
1 ) + I (m21; yN

2 , u
N
12, y

N
1 ,m11,m12)

(c)

≤ I (m11,m12; yN
1 ) + H (uN

21) + I (m21; yN
2 , u

N
12, y

N
1 |m11,m12)

(d)

≤ I (m11,m12; yN
1 ) + NCB

21 + I (m21; yN
1 , y

N
2 |m11,m12)

= h(yN
1 )− h(yN

1 |m11,m12) + h(yN
1 , y

N
2 |m11,m12)− h(yN

1 , y
N
2 |m11,m12,m21) + NCB

21
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Figure 4.5 Side information structure for bound (4.13)

= h(yN
1 )− h(yN

1 |m11,m12) + h(yN
1 |m11,m12) + h(yN

2 |yN
1 ,m11,m12)

− h(yN
1 , y

N
2 |m11,m12,m21) + NCB

21

≤ h(yN
1 ) + h(yN

2 |yN
1 ,m11,m12, x

N
2 )− h(yN

1 , y
N
2 |m11,m12,m21, x

N
1 , x

N
2 ) + NCB

21

≤ h(yN
1 ) + h(sN21|sN11)− h(zN1 , z

N
2 ) + NCB

21

(e)

≤ N {RHS of (4.13)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule and a genie providing side information yN
1 , m11 and m12 to receiver

2. (c) is due to the fact that I (m11,m12; uN
21|yN

1 ) ≤ H (uN
21) and messages m11,m12 and

m21 are independent. (d) is due to the fact that uN
21 is a function of (yN

1 , y
N
2 ) and H (uN

21) ≤

NCN
21. (e) is due to the fact that i.i.d. Gaussian distribution maximizes differential entropy

under covariance constraints.

Hence, similarly if a genie provides side information yN
1 , m11 and m12 to receiver 2 for

R11 +R12 +R22 (with setting m21 = φ), yN
2 , m21 and m22 to receiver 1 for R11 +R21 +R22

(with setting m12 = φ), and yN
2 , m21 and m22 to receiver 1 for R12 +R21 +R22 (with setting

m11 = φ), we have shown bounds (4.13)−(4.16).

Bounds (4.17) on R11 +R12 +R21, (4.18) on R11 +R12 +R22, (4.19) on R11 +R21 +R22

and (4.20) on R12 + R21 + R22:

Proof: In this proof, we show only (4.17) and other bounds can be shown similarly.

Let a genie give side information yN
2 , sN21 and m21 to receiver 1 and xN

2 and m11 to receiver
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Figure 4.6 Side information structure for bound (4.17)

2 (refer to Figure 4.6). If (R11,R12,R21) is achievable, we obtain

N (R11 + R12 + R21 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21; yN

2 ) + I (m21; uN
12|yN

2 )

(c)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 , s

N
21,m21) + I (m21; yN

2 , x
N
2 ,m11) + H(uN

12)

(d)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 , s

N
21|m21) + I (m21; yN

2 |xN
2 ,m11) + NCB

12

(e)

≤ I (m11,m12; sN21|m21) + I (m11,m12; yN
1 , u

N
21, y

N
2 |sN21,m21) + I (m21; yN

2 |xN
2 ,m11) + NCB

12

(f)

≤ I (m11,m12; sN21|m21) + I (m11,m12; yN
1 , y

N
2 |sN21,m21) + I (m21; yN

2 |xN
2 ,m11) + NCB

12

= h(sN21|m21)− h(sN21|m21,m11,m12) + h(yN
1 , y

N
2 |sN21,m21)− h(yN

1 , y
N
2 |sN21,m21,m11,m12)

+ h(yN
2 |xN

2 ,m11)− h(yN
2 |xN

2 ,m11,m21) + NCB
12

= h(sN21|m21)− h(zN2 ) + h(yN
1 , y

N
2 |sN21)− h(sN12, s

N
22|m12) + h(sN21|m11)− h(zN2 ) + NCB

12

= h(yN
1 , y

N
2 |sN21)− h(sN12|m12)− h(sN22|sN12,m12) + h(sN21|m21)− h(zN2 ) + h(sN21|m11)

− h(zN2 ) + NCB
12

≤ h(yN
1 , y

N
2 |sN21)− h(zN2 )− h(sN22|sN12) + h(sN21)− h(zN2 ) + NCB

12

(g)

≤ N {RHS of (4.17)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule. (c) is due to the fact that a genie provides side information yN
2 , sN21
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Figure 4.7 Side information structure for bound (4.21)

and m21 to receiver 1 and xN
2 and m11 to receiver 2 and I (m21; uN

12|yN
2 ) ≤ H (uN

12). (d) is

due to the fact that messages m11,m12 and m21 are independent and m11,m21 and xN
2 are

also independent and H (uN
12) ≤ NCB

21. (e) is due to chain rule. (f) is due to the fact that uN
21

is a function of (yN
1 , y

N
2 ). (g) is due to the fact that i.i.d. Gaussian distribution maximizes

differential entropy under covariance constraints.

Hence, similarly if a genie provides side information yN
2 , sN22 and m22 to receiver 1 and

xN
1 and m12 to receiver 2 for R11 + R12 + R22, xN

2 and m21 to receiver 1 and yN
1 , sN11 and

m11 to receiver 2 for R11 + R21 + R22, xN
1 and m22 to receiver 1 and yN

1 , sN12 and m12 to

receiver 2 for R12 + R21 + R22, we have shown bounds (4.17)−(4.20).

Bounds (4.21) on R11 +R12 +R21, (4.22) on R11 +R12 +R22, (4.23) on R11 +R21 +R22

and (4.24) on R12 + R21 + R22:

Proof: In this proof, we show only (4.21) and other bounds can be shown similarly.

Let a genie gives side information yN
2 to receiver 1 and yN

1 , m11 and m12 to receiver 2 (refer

to Figure 4.7). If (R11,R12,R21) is achievable, we obtain

N (R11 + R12 + R21 − εN )
(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 ) + I (m21; yN

2 , u
N
12, y

N
1 ,m11,m12)

(c)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 ) + I (m21; yN

2 , u
N
12, y

N
1 |m11,m12)

(d)

≤ I (m11,m12; yN
1 , y

N
2 ) + I (m21; yN

2 , y
N
1 |m11,m12)

= I (m11,m12,m21; yN
1 , y

N
2 )
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Figure 4.8 Side information structure for bound (4.25)

= h(yN
1 , y

N
2 )− h(yN

1 , y
N
2 |m11,m12,m21)

= h(yN
1 , y

N
2 )− h(sN12, s

N
22|m12)

= h(yN
1 , y

N
2 )− h(sN12|m12)− h(sN22|sN12)

= h(yN
1 , y

N
2 )− h(zN1 )− h(sN22)

(e)

≤ N {RHS of (4.21)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to a genie providing side information yN
2 to receiver 1 and yN

1 , m11 and m12 to

receiver 2. (c) is due to the fact that m11,m12 and m21 are independent. (d) is due to the

fact that uN
ij is a function of (yN

1 , y
N
2 ). (e) is due to the fact that i.i.d. Gaussian distribution

maximizes differential entropy under covariance constraints.

Hence, similarly if a genie provides side information yN
2 to receiver 1 and yN

1 , m11 and

m12 to receiver 2 for R11 + R12 + R22, yN
2 , m21 and m22 to receiver 1 and yN

1 to receiver 2

for R11 + R21 + R22 and R12 + R21 + R22, we have shown bounds (4.21)−(4.24).

Bounds (4.25)−(4.26) on R11 + R12 + R21 + R22:

Proof: To upper bound (4.25), a genie gives side information s̃N22 and m22 to receiver

1 and s̃N11 and m11 to receiver 2 (refer to Figure 4.8). If (R11,R12,R22,R22) is achievable,
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we have

N (R11 + R12 + R21 + R22 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21,m22; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 ) + I (m11,m12; uN

21|yN
1 ) + I (m21,m22; yN

2 ) + I (m21,m22; uN
12|yN

2 )

(c)

≤ I (m11,m12; yN
1 ) + I (m21,m22; yN

2 ) + H(uN
21) + H(uN

12)

(d)

≤ I (m11,m12; yN
1 , s̃

N
22,m22) + I (m21,m22; yN

2 , s̃
N
11,m11) + NCB

21 + NCB
12

(e)
= I (m11,m12; yN

1 , s̃
N
22|m22) + I (m21,m22; yN

2 , s̃
N
11|m11) + NCB

21 + NCB
12

(f)
= I (m11,m12; s̃N22|m22) + I (m11,m12; yN

1 |m22, s̃
N
22) + I (m21,m22; s̃N11|m11)

+ I (m21,m22; yN
2 |m11, s̃

N
11) + NCB

21 + NCB
12

(g)

≤ h(s̃N22|m22)− h(s̃N22|xN
2 ,m11) + h(yN

1 |s̃N22,m22)− h(yN
1 |s̃N22, x

N
2 ,m11) + h(s̃N11|m11)

− h(s̃N11|xN
1 ,m22) + h(yN

2 |s̃N11,m11)− h(yN
2 |s̃N11, x

N
1 ,m22) + NCB

21 + NCB
12

≤ h(s̃N22|m22)− h(z̃N2 ) + h(yN
1 |s̃N22)− h(sN11|m11) + h(s̃N11|m11)− h(z̃N1 ) + h(yN

2 |s̃N11)

− h(sN22|m22) + NCB
21 + NCB

12

= h(yN
1 |s̃N22)− h(z̃N2 ) + h(yN

2 |s̃N11)− h(z̃N1 ) + NCB
21 + NCB

12

(h)

≤ N {RHS of (4.25)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule. (c) is due to the fact that I (mii ,mij ; u
N
ji |yN

i ) ≤ H (uN
ji ). (d) is due

to the fact that a genie provides side information s̃Nii and mii to receiver j , for i , j = 1, 2

and H (uN
ji ) ≤ NCB

ji . (e) is due to the fact that m11,m12,m21 and m22 are independent.

(f) is due to chain rule. (g) is due to the fact that xN
i is a function of messages (mii ,mji ).

(h) is due to the fact that i.i.d. Gaussian distribution maximizes differential entropy under

covariance constraints.

Hence, similarly if a genie gives side information s̃N21 and m21 to receiver 1 and s̃N12 and

m12 to receiver 2 for the other bound, we have shown bounds (4.25)−(4.26).

Bounds (4.27)−(4.28) on R11 + R12 + R21 + R22:

Proof: To upper bound (4.27), a genie gives side information yN
2 and s̃N21 to receiver

1 and s̃N12 to receiver 2 (refer to Figure 4.9). If (R11,R12,R22,R22) is achievable, we obtain
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Figure 4.9 Side information structure for bound (4.27)

N (R11 + R12 + R21 + R22 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m21,m22; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 , s̃

N
21) + I (m21,m22; yN

2 , s̃
N
12) + I (m21,m22; uN

12|yN
2 )

(c)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 |s̃N21) + I (m11,m12; s̃N21) + I (m21,m22; yN

2 , s̃
N
12) + H(uN

12)

(d)

≤ I (m11,m12; yN
1 , y

N
2 |s̃N21) + h(s̃N21)− h(s̃N21|m11,m12) + h(yN

2 , s̃
N
12)

− h(yN
2 , s̃

N
12|m21,m22) + NCB

12

≤ h(yN
1 , y

N
2 |s̃N21)− h(yN

1 , y
N
2 |s̃N21,m11,m12) + h(s̃N21)− h(z̃N2 ) + h(s̃N12) + h(yN

2 |s̃N12)

− h(sN21, z̃
N
1 ) + NCB

12

≤ h(yN
1 , y

N
2 |s̃N21)− h(sN12, s

N
22) + h(s̃N21)− h(z̃N2 ) + h(s̃N12) + h(yN

2 |s̃N12)− h(sN21)

− h(z̃N1 ) + NCB
12

= h(yN
1 , y

N
2 |s̃N21) + h(yN

2 |s̃N12)− h(sN22|sN12)− h(z̃N2 )− h(z̃N1 ) + NCB
12

(e)

≤ N {RHS of (4.27)}

where εN → 0 as N →∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule and a genie providing side information yN
2 and s̃N21 to receiver 1 and

s̃N12 to receiver 2. (c) is due to chain rule and the fact that I (m21,m22; uN
12|yN

2 ) ≤ H(uN
12).

(d) is due to the fact that uN
21 is a function of (y1, y2) and H(uN

12) ≤ NCB
12. (e) is due to

the fact that i.i.d. Gaussian distribution maximizes differential entropy under covariance

constraints.
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Figure 4.10 Side information structure for bound (4.30)

Hence, and similarly if a genie gives side information yN
1 and s̃N12 to receiver 2 and s̃N21

to receiver 1 for the other bound, we have shown bounds (4.27)−(4.28).

Bound (4.29) on R11 + R12 + R21 + R22:

Proof: This is the straightforward cut-set upper bound: if (R11,R12,R22,R22) is

achievable, we obtain

N (R11 + R12 + R21 + R22 − εN ) ≤ I (m11,m12,m21,m22; yN
1 , y

N
2 )

= h(yN
1 , y

N
2 )− h(zN1 , z

N
2 )

≤ N {RHS of (4.29)}

where εN → 0 as N →∞.

Hence, we have shown bounds (4.29).

Bounds (4.30) on 2R11 + R12 + R21 + R22, (4.31) on R11 + 2R12 + R21 + R22, (4.32)

on R11 + R12 + 2R21 + R22 and (4.33) on R11 + R12 + R21 + 2R22:

Proof: In this proof, we show only (4.30) and other bounds can be shown similarly.

Now, let a genie gives side information yN
2 and xN

2 to the second receiver 1 and s̃N12 to

receiver 2 (refer to Figure 4.10). If (R11,R12,R21,R22) is achievable, we get
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N (2R11 + R12 + R21 + R22 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m11; yN

1 , u
N
21) + I (m21,m22; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 ) + I (m11,m12; uN

21|yN
1 ) + I (m11; yN

1 , u
N
21, y

N
2 , x

N
2 ) + I (m21,m22; yN

2 , s̃
N
12)

+ I (m21,m22; uN
12|yN

2 )

(c)

≤ I (m11,m12; yN
1 ) + I (m11; yN

1 , u
N
21, y

N
2 |xN

2 ) + I (m21,m22; yN
2 , s̃

N
12) + H(uN

21) + H(uN
12)

(d)

≤ I (m11,m12; yN
1 ) + I (m11; yN

1 , y
N
2 |xN

2 ) + I (m21,m22; yN
2 , s̃

N
12) + NCB

21 + NCB
12

= h(yN
1 )− h(yN

1 |m11,m12) + h(yN
1 , y

N
2 |xN

2 )− h(yN
1 , y

N
2 |xN

2 ,m11) + h(yN
2 , s̃

N
12)

− h(yN
2 , s̃

N
12|m21,m22) + NCB

21 + NCB
12

≤ h(yN
1 )− h(sN12) + h(sN11, s

N
21)− h(zN1 , z

N
2 ) + h(yN

2 , s̃
N
12)− h(sN21, z̃

N
1 ) + NCB

21 + NCB
12

= h(yN
1 ) + h(sN11|sN21) + h(yN

2 |s̃N12)− h(zN1 )− h(zN2 )− h(z̃N1 ) + NCB
21 + NCB

12

(e)

≤ N {RHS of (4.30)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule and the fact that a genie gives side information yN
2 and xN

2 to the

second receiver 1 and s̃N12 to receiver 2. (c) is due to the fact that m11 and xN
2 are independent

and I (mii ,mij ; u
N
ji |yN

i ) ≤ H(uN
ji ). (d) is due to the fact that uN

21 is a function of (y1, y2) and

H(uN
ij ) ≤ NCB

ij . (e) is due to the fact that i.i.d. Gaussian distribution maximizes differential

entropy under covariance constraints.

Hence, and similarly if a genie provides side information yN
2 and xN

1 to the second

receiver 1 and s̃N11 to receiver 2 for R11 + 2R12 + R21 + R22, yN
1 and xN

2 to the second

receiver 2 and s̃N22 to receiver 1 for R11 + R12 + 2R21 + R22 and yN
1 and xN

1 to the second

receiver 2 and s̃N21 to receiver 1 for R11 + R12 + R21 + 2R22, we have shown bounds

(4.30)−(4.33).

Bounds (4.34) on 2R11 + R12 + R21 + R22, (4.35) on R11 + 2R12 + R21 + R22, (4.36)

on R11 + R12 + 2R21 + R22 and (4.37) on R11 + R12 + R21 + 2R22:

Proof: In this proof, we show only (4.34) and other bounds can be shown similarly.

Now, let a genies give side information yN
2 to the first receiver 1, yN

2 and xN
2 to the second

receiver 1 and s̃N12 to receiver 2 (refer to Figure 4.11). If (R11,R12,R21,R22) is achievable,
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Figure 4.11 Side information structure for bound (4.34)

we obtain

N (2R11 + R12 + R21 + R22 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m11; yN

1 , u
N
21) + I (m21,m22; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 ) + I (m11; yN

1 , u
N
21, y

N
2 , x

N
2 ) + I (m21,m22; yN

2 , s̃
N
12)

+ I (m21,m22; uN
12|yN

2 )

(c)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 ) + I (m11; yN

1 , u
N
21, y

N
2 |xN

2 ) + I (m21,m22; yN
2 , s̃

N
12) + H(uN

12)

(d)

≤ I (m11,m12; yN
1 , y

N
2 ) + I (m11; yN

1 , y
N
2 |xN

2 ) + I (m21,m22; yN
2 , s̃

N
12) + NCB

12

= h(yN
1 , y

N
2 )− h(yN

1 , y
N
2 |m11,m12) + h(yN

1 , y
N
2 |xN

2 )− h(yN
1 , y

N
2 |xN

2 ,m11) + h(yN
2 , s̃

N
12)

− h(yN
2 , s̃

N
12|m21,m22) + NCB

12

≤ h(yN
1 , y

N
2 )− h(sN12, s

N
22) + h(sN11, s

N
21)− h(zN1 , z

N
2 ) + h(s̃N12) + h(yN

2 |s̃N12)− h(sN21)

− h(z̃N1 ) + NCB
12

(e)

≤ N {RHS of (4.34)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule and the fact that a genie gives side information yN
2 to the first

receiver 1, yN
2 and xN

2 to the second receiver 2 and s̃N12 to receiver 2. (c) is due to the

fact that m11 and xN
2 are independent and I (m21,m22; uN

12|yN
2 ) ≤ H(uN

12). (d) is due to the

fact that uN
21 is a function of (y1, y2) and H(uN

12) ≤ NCB
12. (e) is due to the fact that i.i.d.
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Figure 4.12 Side information structure for bound (4.38)

Gaussian distribution maximizes differential entropy under covariance constraints.

Hence, and similarly if a genie provides side information yN
2 to the first receiver 1,

yN
2 and xN

1 to the second receiver 2 and s̃N11 to receiver 2 for R11 + 2R12 + R21 + R22,

yN
1 to the first receiver 2, yN

1 and xN
2 to the second receiver 2 and s̃N22 to receiver 1 for

R11 +R12 + 2R21 +R22 and yN
1 to the first receiver 2, yN

1 and xN
1 to the first receiver 2 and

s̃N21 to receiver 1 for R11 + R12 + R21 + 2R22, we have shown bounds (4.34)−(4.37).

Bounds (4.38) on 2R11 + R12 + R21 + R22, (4.39) on R11 + 2R12 + R21 + R22, (4.40)

on R11 + R12 + 2R21 + R22 and (4.41) on R11 + R12 + R21 + 2R22:

Proof: In this proof, we show only (4.38) and other bounds can be shown similarly.

Now, let a genie gives side information yN
2 and s̃N12 to the first receiver 1 and yN

1 and s̃N12 to

receiver 2 (refer to Figure. 4.12). If (R11,R12,R21,R22) is achievable, we can write

N (2R11 + R12 + R21 + R22 − εN )

(a)

≤ I (m11,m12; yN
1 , u

N
21) + I (m11; yN

1 , u
N
21) + I (m21,m22; yN

2 , u
N
12)

(b)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 , s̃

N
12) + I (m11; yN

1 ) + I (m11; uN
21|yN

1 )

+ I (m21,m22; yN
2 , u

N
12, y

N
1 , s̃

N
12)

(c)

≤ I (m11,m12; yN
1 , u

N
21, y

N
2 |s̃N12) + I (m11,m12; s̃N12) + I (m21,m22; yN

2 , u
N
12, y

N
1 |s̃N12)

+ I (m21,m22; s̃N12) + I (m11; yN
1 ) + H(uN

21)
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(d)

≤ I (m11,m12; yN
1 , y

N
2 |s̃N12) + I (m11,m12; s̃N12) + I (m21,m22; yN

2 , y
N
1 |s̃N12) + I (m21,m22; s̃N12)

+ I (m11; yN
1 ) + NCB

21

(e)
= I (m11,m12; yN

1 , y
N
2 |s̃N12) + I (m11,m12; s̃N12) + I (m21,m22; yN

2 , y
N
1 |s̃N12,m11,m12)

+ I (m21,m22; s̃N12|m11,m12) + I (m11; yN
1 ) + NCB

21

= I (m11,m12,m21,m22; yN
1 , y

N
2 |s̃N12) + I (m11,m12,m21,m22; s̃N12) + I (m11; yN

1 ) + NCB
21

= h(yN
1 , y

N
2 |s̃N12)− h(yN

1 , y
N
2 |s̃N12,m11,m12,m21,m22) + h(s̃N12)− h(s̃N12|m11,m12,m21,m22)

+ h(yN
1 )− h(yN

1 |m11) + NCB
21

≤ h(yN
1 , y

N
2 |s̃N12)− h(zN1 , z

N
2 ) + h(s̃N12)− h(z̃N1 ) + h(yN

1 )− h(sN12) + NCB
21

(f)

≤ N {RHS of (4.38)}

where εN → 0 as N → ∞. (a) is due to Fano’s inequality and data processing in-

equality. (b) is due to chain rule and a genie giving side information yN
2 and s̃N12 to the

first receiver 1 and yN
1 and s̃N12 to receiver 2. (c) is due to chain rule and the fact that

I (m11; uN
21|yN

1 ) ≤ H(uN
21). (d) is due to the fact that uN

ij is a function of (y1, y2) and

H(uN
21) ≤ NCB

21. (e) is due to the fact that conditioning reduces entropy and (m11,m12) and

(m21,m22) are independent. (f) is due to the fact that i.i.d. Gaussian distribution maximizes

differential entropy under covariance constraints.

Hence, and similarly if a genie provides side information yN
2 and s̃N11 to the first receiver

1 and yN
1 and s̃N11 to receiver 2 for R11 + 2R12 + R21 + R22, yN

1 and s̃N22 to the first receiver

2 and yN
2 and s̃N22 to receiver 1 for R11 + R12 + 2R21 + R22 and yN

1 and s̃N21 to the first

receiver 2 and yN
2 and s̃N21 to receiver 1 for R11 +R12 +R21 + 2R22, we have shown bounds

(4.38)−(4.41).



CHAPTER V

GENERALIZED DEGREES OF FREEDOM

CHARACTERIZATION

In this chapter, we can earn further comprehensions with the effect of receiver coop-

eration on the two-user Gaussian X channel by characterizing the generalized degrees of

freedom (GDoF), a natural generalization of the notion of degrees of freedom (DoF) in

point-to-point communication to multiuser scenarios, of the sum capacity from Lemma 4.1

in the symmetric channel setting where SNR1 = SNR2 = SNR, INR1 = INR2 = INR

and CB
21 = CB

12 = CB. Furthermore, we also show the behavior of the gain from receiver

cooperation under the symmetric channel setting.

5.1 Generalized Degrees of Freedom

We use the notation of the GDoF that is initially proposed in [9] to characterize the

asymptotic behavior of the capacity region with respect to growth of SNR as fixing α and

κ in symmetric channel setting case. The GDoF of the sum capacity [2, 9] is defined as

d(α, κ) := lim
fix α,κ

SNR→∞

CΣ(SNR, INR,CB)

log SNR
(5.1)

where

lim
SNR→∞

log INR

log SNR
= α, lim

SNR→∞

CB

log SNR
= κ.

and CΣ(SNR, INR,CB) is the sum capacity of the two-user Gaussian X channel with lim-

ited receiver cooperation, i.e., CΣ(SNR, INR,CB) = R11 + R12 + R21 + R22.

Note that α and κ are called the normalized interference level and the normalized ca-

pacity of the receiver-cooperative link, respectively.
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We also use approximations [9] such as

log(1 + SNR + INR) ≈ max(log(SNR), log(INR)) (5.2)

log

(
1 +

SNR

1 + INR

)
≈

(
log

SNR

INR

)+

(5.3)

to give an expansion of the capacity region of the Gaussian X channel with receiver coop-

eration which is accurate to the first order approximation. Both (5.2)−(5.3) are very useful

in the derivation of the generalized degrees of freedom region.

Remark 5.1 The limit of (5.1) does not exist since it has different values due to certain

channel realizations. This event occurs when α = 1, where the phase of the channel gains

has the effect on both inner and outer bounds [9].

Next, we provide sum capacity under the symmetric channel setting from the results in

Chapter IV.

5.2 Approximate Symmetric Sum Capacity

This section gives an approximate symmetric sum capacity as follows:

Corollary 5.2 (Approximate Symmetric Sum Capacity):

CΣ ≤ 2log
(
1 + SNR) + 2log

(
1 + INR)

+ min
{

4CB, 2log
(

1 +
SNR

1 + INR

)
+ 2log

(
1 +

INR

1 + SNR

)}
(5.4)

CΣ ≤ 2log
(
1 + INR + SNR) + 2CB (5.5)

CΣ ≤ 2log
(

1 + 2SNR + 2INR + |h11h22 − h12h21|2
)
− 2 log

(
1 +

SNR

1 + INR

)
(5.6)

CΣ ≤
1

3

 2log(1 + SNR) + 2log
(

1 + SNR + INR
1+SNR

)
+2log(1 + INR) + 2log

(
1 + INR + SNR

1+INR

)
+ 8CB

 (5.7)

CΣ ≤
1

3

[
4log(1 + SNR + INR) + 2log

(
1 + INR

1+SNR

)
+ 2log

(
1 + SNR

1+INR

)
+ 4CB

]
(5.8)

CΣ ≤
1

3



2log
(

1 + SNR
1+INR

+ INR + SNR + INR
1+INR

+ |h11h22−h12h21|2
1+INR

)
+2log

(
1 + SNR + INR

1+SNR
+ SNR

1+SNR
+ INR + |h11h22 − h12h21|2

)
+2log(1 + SNR) + 2log(1 + INR)− 2log

(
1 + INR

1+SNR

)
−2log

(
1 + SNR

1+INR

)


(5.9)
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CΣ ≤
1

3

4log
(

1 + 2SNR + 2INR + |h11h22 − h12h21|2
)
− 2 log

(
1 + INR

1+SNR

)
−2log

(
1 + SNR

1+INR

)
 (5.10)

CΣ ≤ 2log
(

1 + SNR +
INR

1 + SNR

)
+ 2CB (5.11)

CΣ ≤ 2log
(

1 + INR +
SNR

1 + INR

)
+ 2CB (5.12)

CΣ ≤ log
(

1 + SNR
1+INR

+ INR + SNR + INR
1+INR

+ |h11h22−h12h21|2
1+INR

)
+ log

(
1 + INR +

SNR

1 + INR

)
− log

(
1 +

SNR

1 + INR

)
+ CB (5.13)

CΣ ≤ log
(

1 + 2SNR + 2INR + |h11h22 − h12h21|2
)

(5.14)

CΣ ≤
1

5


2 log

(
1 + INR + SNR

1+INR

)
+ 2 log

(
1 + SNR

1+INR

)
+2 log

(
1 + SNR + INR

1+SNR

)
+ 2 log

(
1 + INR

1+SNR

)
+4 log(1 + SNR + INR) + 8CB

 (5.15)

CΣ ≤
1

5

 4 log
(

1 + 2SNR + 2INR + |h11h22 − h12h21|2
)

+2 log
(

1 + INR + SNR
1+INR

)
+ 2 log

(
1 + SNR + INR

1+SNR

)
+ 4CB

 (5.16)

CΣ ≤
1

5


2 log

(
1 + SNR + INR + INR

1+INR
+ SNR

1+INR
+ |h11h22−h12h21|2

1+INR

)
+2 log

(
1 + SNR + INR + INR

1+SNR
+ SNR

1+SNR
+ |h11h22−h12h21|2

1+SNR

)
+4 log(1 + SNR + INR) + 4CB

 (5.17)

Note that the symmetric sum capacity (5.4)–(5.17) can be obtained by calculating the

sum rate CΣ from our proposed outer bound in Lemma 4.1 as follows:

• Sum capacity CΣ (5.4) is obtained by adding (4.1)−(4.4).

• Sum capacity CΣ (5.5) is obtained by adding (4.5)−(4.6).

• Sum capacity CΣ (5.6) is obtained by adding (4.7)−(4.8).

• Sum capacity CΣ (5.7) is obtained by adding (4.9)−(4.12).

• Sum capacity CΣ (5.8) is obtained by adding (4.13)−(4.16).

• Sum capacity CΣ (5.9) is obtained by adding (4.17)−(4.20)

• Sum capacity CΣ (5.10) is obtained by adding (4.21)−(4.24)

• Sum capacity CΣ (5.11)−(5.12) are the symmetric case of (4.25)−(4.26), respec-

tively.
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• Sum capacity CΣ (5.13) is the symmetric case of (4.27) or (4.28).

• Sum capacity CΣ (5.14) is the symmetric case of (4.29).

• Sum capacity CΣ (5.15) is obtained by adding (4.30)−(4.33).

• Sum capacity CΣ (5.16) is obtained by adding (4.34)−(4.37).

• Sum capacity CΣ (5.17) is obtained by adding (4.38)−(4.41).

where CΣ = R11 + R12 + R21 + R22.

Remark 5.3 Our results in Lemma 4.1 and Corollary 5.2 show that the sum rates rely on

the phases of the channel gains considerably when a capacity of the receiver-cooperative

link CB is so large that MIMO sum-rate cut-set or MIMO sum-rate based on genie-aided

bounds are active.

Next, we explore the GDoF from the results in Colloraly 5.2.

5.3 Generalized Degrees of Freedom of the Symmetric Sum Capacity

Before computing the GDoF of the sum capacity, we first consider the important point,

i.e., phases in MIMO situations, and then propose the method to solve this problem as

follows:

In general, the characterization of the GDoF in several communication scenarios, i.e.,

interference channel [9], or X channel [14], etc., cannot consider the impact of phases

in MIMO situations. For solving this problem, Wang and Tse [2] propose the following

lemma which uses an i.i.d. uniform distribution on the phases of the channel gains instead

of claiming that the limit of (5.1) exists for all channel realizations.

Lemma 5.4 ( [2] ) Let

|hij | = gij , ∠hij = Θij ,∀i , j ∈ {1, 2}

where gij ’s are deterministic and Θij ’s are i.i.d. uniformly distributed over [0, 2π].

Proof: See Appendix E in [2].
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In this dissertation, we use Lemma 5.4 to consider the term A1 := log(1 + 2SNR +

2INR+ |h11h22− h12h21|2) that appears in (5.6), (5.10), (5.14) and (5.16). Then, we obtain

the limit L1(α, κ) := lim fix α,κ
SNR→∞

A1

log SNR
. Furthermore, we extend the concept of Lemma 5.4

to manage the terms A2 := log(1+ SNR
1+INR

+ INR+SNR+ INR
1+INR

+ |h11h22−h12h21|2
1+INR

) and A3 :=

log(1+SNR+ INR
1+SNR

+ SNR
1+INR

+ INR+ |h11h22−h12h21|2
1+SNR

) in (5.9), (5.13), (5.17). Then, we also

get the limit for both L2(α, κ) := lim fix α,κ
SNR→∞

A2

log SNR
and L3(α, κ) := lim fix α,κ

SNR→∞

A3

log SNR
.

Hence, with considerations above, it is seen that the limit of (5.1) exists almost surely.

After solving the phases issue above, we give the GDoF of the sum capacity with

symmetric channel setting in the following theorem.

Theorem 5.5 (Generalized Degrees of Freedom of the Symmetric Sum Capacity) The GDoF

of the sum capacity for the two-user Gaussian X channel with limited receiver cooperation

in symmetric channel setting is given as follows:

For 0 ≤ α < 1,

d(α, κ) = min
{
2 + 2α+ 4κ, 4, 2 + 2κ, 2− 2α

3
+

4κ

3
, 2max(α, (1− α)+) + 2κ,

1

3

[
4 + max(4α, 2α+ 2(1− α)+) + 8κ

]
,
1

3

[
2(2− α)+ + 2 + 4α

]
,

1

3

[
6 + 2α

]
, (2− α)+ +max(α, (1− α)+)− (1− α)+ + κ, 2,

1

5

[
8− 2α+ 2max(α, (1− α)+) + 8κ

]
,
1

5

[
10 + 2max(α, (1− α)+) + 4κ

]
,

1

5

[
2(2− α)+ + 6 + 4κ

]}
(5.18)

For α ≥ 1,

d(α, κ) = min
{
2 + 2α+ 4κ, 4α, 2α+ 2κ, 2α− 2

3
+

4κ

3
, 2max(1, (α− 1)+) + 2κ,

1

3

[
4α+max(4, 2 + 2(α− 1)+) + 8κ

]
,
1

3

[
2α+ 2(2α− 1)+ + 4

]
,

1

3

[
6α+ 2

]
, 2α− (1− α)+ + κ, 2α,

1

5

[
8α− 2 + 2max(1, (α− 1)+) + 8κ

]
,

1

5

[
10α+ 2max(1, (α− 1)+) + 4κ

]
,
1

5

[
2(2α− 1)+ + 6α+ 4κ

]}
(5.19)

Note that the GDoFs in (5.18)–(5.19) are calculated directly from Corollary 5.2 together

with solving the issue of phases in MIMO situations above as follows:

1. Using the approximations (5.2)−(5.3) with (5.4)−(5.17) to obtain the approximate

version of them.
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2. Substituting the approximate version of (5.4)−(5.5), (5.7)−(5.8), (5.11)−(5.12) and

(5.15) obtained from the first step in (5.1)

3. Substituting the approximate version of (5.6), (5.9)−(5.10), (5.13)−(5.14) and

(5.16)−(5.17) in (5.1) where terms involving |h11h22 − h12h21|2 in these inequalities

are solved using the concept of Lemma 5.4.

In the next section, we show the characterization of the GDoF of the symmetric sum

capacity with respect to the normalized interference level (α) and the normalized capacity

of the receiver-cooperative link (κ).

5.4 Results and Discussion

First, the GDoFs (d(α, κ)) of the sum capacity for the symmetric two-user Gaussian

X channel with and without limited receiver cooperation from (5.18)−(5.19) versus the

normalized interference level (α) are plotted in Figure 5.1.

Figure 5.1: The GDoF for the symmetric two-user Gaussian X channel with/without re-

ceiver cooperation

From Figure 5.1, the result shows that

1. Our system obtains the gain from the receiver cooperation for α ∈ [0, 3] when

we compare the GDoF between the receiver cooperation case (κ > 0) and non-
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cooperation case (κ = 0)1. This implies that the performance of our system can be

improved when amount of exchanged information between both receivers increases.

However, the obtained gains from the receiver cooperation at the different values of

α do not equal.

2. Our system achieves the full receiver cooperation. To consider this issue, we divide

the considered range of α into 2 parts as follows:

(a) For 0 ≤ α < 1: As shown in Figure 5.2, the GDoF increases with varying

gain value when κ increases and equals 2 for all α’s ∈ [0, 1) at κ = 1
2
. For the

GDoF curve, we see that it changes from a sawtooth curve to a linear line with

a slope of 0 when κ increases from 0 to 1
2

(see in Figure 5.2 (b)). However, the

GDoF still equals 2 with a slope of the GDoF curve = 0 even though κ > 1
2

(see in Figure 5.2 (a)). This implies that there is no more gain in the GDoF

when κ > 1
2

since full receiver cooperation performance is obtained. Note that

in Figure 5.2(b), we observe that

• d(α, κ = 1
3
) = 2 when 0 ≤ α ≤ 0.3 and α = 2

3
and

• d(α, κ = 1
6
) = 2 when 0 ≤ α ≤ 0.1

(b) For 1 ≤ α ≤ 3: As shown in Figure 5.3, the GDoF increases with varying

gain value when κ increases. The GDoF curve changes from a step to a linear

line with a slope of 2 when κ increases from 0 to 2. Furthermore, we observe

that the GDoF saturates since full receiver cooperation performance is achieved

when κ ≥ κ∗ in the following subrange of α.

i. For 1 < α ≤ 3
2
, we obtain κ∗ = 1

2

ii. For 3
2
< α ≤ 2, we obtain κ∗ = 1

iii. For 2 < α ≤ 5
2
, we obtain κ∗ = 3

2

iv. For 5
2
< α ≤ 3, we obtain κ∗ = 2

In addition, from Figure 5.4, when we use α = 4
3

as the line for dividing the GDoF

curves into 2 areas, we easily see that, at each κ, the GDoF in the range 4
3
≤ α ≤ 3 is

larger than or equal to the GDoF in the range 0 ≤ α ≤ 4
3
. This result shows that the

1The GDoF of the symmetric Gaussian X channel defined in Section 3.1 is the same as the result in [14],

i.e., the solid line in Figure 5.1.
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(a)

(b)

Figure 5.2: Characteristic of the GDoF for the symmetric two-user Gaussian X channel

with receiver cooperation (a) Considering 0 ≤ α < 1 and max(κ) = 3 (b) Zooming Figure

5.2(a) by focusing on 0 ≤ α < 1 and max(κ) = 1
3

performance of this system is improved considerably when it is at medium to high

interference environments.
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Figure 5.3: Characteristic of the GDoF for the symmetric two-user Gaussian X channel

with receiver cooperation when 1 ≤ α ≤ 3

Figure 5.4: Comparison between the GDoF for 0 ≤ α ≤ 4
3

and the GDoF for 4
3
≤ α ≤ 3

when 0 ≤ κ < 3
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Remark 5.6 The interesting notice of the obtained results in Figure 5.1 is a growth of the

GDoF (d(α, κ)) without bound when

• α ≥ 2 at κ = 0, 1
6
, 1

2
.

• α ≥ 1 at κ = 3
4
, 1, 4

3
, 3

2
, 2, 3.

In the case κ = 0 corresponding to the two-user Gaussian X channel without receiver

cooperation, our received result is identical to d(α, κ = 0) = 2α−2 for α ≥ 2 in Theorem

3.2 [14]. For κ ≥ 0, tendency of d(α, κ) is similar to the case κ = 0, i.e., d(α, κ) grows

as α increases.

Second, we present the behavior of the obtained gain from limited receiver cooperation

by plotting the GDoF (d(α, κ)) at α = 1
2
, 2

3
, 3

2
, 2, 5

2
and 3 versus the normalized capacity of

the receiver-cooperative link κ. The result is shown in Figure 5.5.

Figure 5.5 Gain from receiver cooperation when considering at α = 1
2
, 2

3
, 3

2
, 2, 5

2
and 3

From Figure 5.5, we see that

• At α = 1
2
: The GDoF curve increases linearly and its slope = 2 when κ increases

from 0 to 1
2

and we obtain the GDoF value d(α = 1
2
, κ = 1

2
) = 2. However, when

κ ≥ 1
2
, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

i.e., d(1
2
, κ) = 2 for 1

2
≤ κ ≤ 4.
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• At α = 2
3
: The GDoF curve increases linearly and its slope = 2 when κ increases

from 0 to 1
3

and we obtain the GDoF value d(α = 2
3
, κ = 1

3
) = 2. However, when

κ ≥ 1
3
, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

i.e., d(2
3
, κ) = 2 for 1

3
≤ κ ≤ 4.

• At α = 3
2
: The GDoF curve increases linearly and its slope = 2 when κ increases

from 0 to 1
2

and we obtain the GDoF value d(α = 3
2
, κ = 1

2
) = 3. However, when

κ ≥ 1
2
, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

i.e., d(3
2
, κ) = 3 for 1

2
≤ κ ≤ 4.

• At α = 2: The GDoF curve increases linearly and its slope = 2 when κ increases

from 0 to 1 and we obtain the GDoF value d(α = 2, κ = 1
)

= 4. However, when

κ ≥ 1, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

i.e., d(2, κ) = 4 for 1 ≤ κ ≤ 4.

• At α = 5
2
: The GDoF curve increases linearly and its slope = 2 and 1 when κ

increases from 0 to 1
2

and 1
2

to 3
2
, respectively, and we obtain the GDoF value d(α =

5
2
, κ = 3

2
) = 5. However, when κ ≥ 3

2
, the GDoF curve’s the slope changes to 0 and

the GDoF value does not change, i.e., d(5
2
, κ) = 5 for 3

2
≤ κ ≤ 4.

• At α = 3: The GDoF curve increases linearly and its slope = 1
2

when κ increases

from 0 to 2 and we obtain the GDoF value d(α = 3, κ = 2) = 6. However, when

κ ≥ 2, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

i.e., d(3, κ) = 6 for 2 ≤ κ ≤ 4.

From the results above, it is clear that the receiver cooperation is obviously efficient in

“the linear region” as defined in [2], i.e, the region which the GDoF is proportional to the

normalized capacity of the receiver-cooperative link (κ) with a positive slope until it gets

full receiver cooperation performance at a specific point κ = κ∗ as shown in Figure 5.5,

where

1. κ∗ = 1
3

for α = 2
3

2. κ∗ = 1
2

for α = 1
2
, 3

2

3. κ∗ = 1 for α = 2.
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4. κ∗ = 3
2

for α = 5
2

5. κ∗ = 2 for α = 3

Note that this result corresponds to the obtained result in Figure 5.2 and Figure 5.3.



CHAPTER VI

ACHIEVABLE RATE REGIONS FOR THE TWO-USER

GAUSSIAN X CHANNEL WITH LIMITED RECEIVER

COOPERATION

In this chapter, we propose the strategies which consist of transmission schemes based

on HK strategy and cooperative protocol based on QMF scheme and then derive the achiev-

able rate regions for the two-user Gaussian X channel with limited receiver cooperation in

both the general case and the strong Gaussian X channel type I case. We show that our

strategy in the strong Gaussian X channel type I case achieving the capacity region univer-

sally to within 2 bit/s/Hz per message, regardless of channel parameters, for the two-user

Gaussian X channel with limited receiver cooperation.

6.1 Motivation of Strategy

Before providing our strategy for the two-user Gaussian X channel with limited receiver

cooperation, we first give the idea for transmission scheme and then reveal the reason why

we choose the two-round strategy based on QMF scheme as our cooperative protocol in

this section.

6.1.1 Idea for Transmission Scheme

The idea for our transmission scheme comes from the objective of sending and receiv-

ing messages from each transmitter to the corresponding receivers. Therefore, we divide

all transmitted messages {mij} into two groups as follows:

1. In the first group, message mii is sent from transmitter i to receiver i , for i = 1, 2.

2. In the second group, message mij is sent from transmitter i to receiver j , for (i , j ) =

(1, 2) or (2, 1).
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Figure 6.1: Idea for transmission scheme in the two-user Gaussian X channel with receiver

cooperation, (a) Transmitting messages in the first two-user Gaussian interference channel

with receiver cooperation, (b) Transmitting messages in the second two-user Gaussian in-

terference channel with receiver cooperation and (c) Transmitting messages in the two-user

Gaussian X channel with receiver cooperation viewed as the superposition of (a) and (b).

From dividing into groups above, we imagine the two-user Gaussian X channel with

limited receiver cooperation as superposing of two Gaussian interference channels with

limited receiver cooperation as shown in Figure 6.1. For i , j = 1, 2 and i 6= j , we have

• In Figure 6.1 (a), message mii in the first group is sent from transmitter i and then it

is decoded correctly with limited receiver cooperation at receiver i. This communi-

cation scenario is similar to the work [2],
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• In Figure 6.1 (b), message mji in the second group is sent from transmitter i and then

it are decoded with limited receiver cooperation at receiver j. This communication

scenario is different from the work [2] due to the different purpose of decoding at

each receiver,

• In Figure 6.1 (c), messages mii and mji are sent from transmitter i. At receiver i,

messages mii and mij are decoded corretly with limited receiver cooperation. Figure

6.1 (c) shows that the two-user Gaussian X channel with limited receiver cooperation

can be viewed as superposing of two Gaussian interference channels from Figure 6.1

(a) and Figure 6.1 (b).

In this dissertation, we aim at the two-user Gaussian X channel with limited receiver

cooperation where each transmitter sends simultaneously two different messages to two

receivers and both receivers are allowed to exchange a certain amount of information be-

tween them. From the requirement above and the viewpoint of Figure 6.1, therefore, all

messages in our system can be sent by using HK strategy [20] in our transmission scheme.

6.1.2 Cooperative Protocol

In [2], Wang and Tse reveal that their proposed cooperative protocol which is based on

the QMF scheme achieves the optimal number of GDoF for all value of the normalized in-

terference (α) and the normalized capacity of the receiver-cooperative link (κ). In addition,

they also show that strategies based on conventional compress-forward or decode-forward

scheme which are used in [29, 30] are not proper for receiver cooperation to mitigate

interference in certain regimes because both schemes do not achieve the optimal GDoF

universally for all α’s and κ. Therefore, from the key advantage above, we use the coop-

erative protocol of the work [2] in the two-user Gaussian X channel with limited receiver

cooperation.

6.2 Proposed Strategies

In this section, we describe the proposed strategies consisting of two parts, i.e., the

transmission scheme and the cooperative protocol, and derive the achievable rate regions

for the general case and the strong Gaussian X channel type I case.
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Figure 6.2: Transmission scheme in the general case, (a) Transmitting messages in the first

two-user Gaussian interference channel with receiver cooperation, (b) Transmitting mes-

sages in the second two-user Gaussian interference channel with receiver cooperation and

(c) Transmitting messages in the two-user Gaussian X channel with receiver cooperation

viewed as the superposition of (a) and (b).

6.2.1 General Case

For i , j = 1, 2 and i 6= j , idea for transmitting messages in the general case based

on the perspective of our motivation as shown in Figure 6.1 and using the HK strategy is

depicted in Figure 6.2 and can be described as follows:

• In Figure 6.2 (a), message mii at transmitter i is split into common and private mes-
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sages, i.e., (miic,miip). At receiver i, messages (miic,miip) are decoded correctly

with limited receiver cooperation.

• In Figure 6.2 (b), message mji at transmitter i is split into common and private mes-

sages, i.e., (mjic,mjip). At receiver i, messages (mijc,mijp) are decoded correctly

with limited receiver cooperation.

• In Figure 6.2 (c), message mii and mji at transmitter i are split into messages (miic,miip)

and (mjic,mjip). At receiver i, messages (miic,miip) and (mijc,mijp) are decoded

correctly with limited receiver cooperation. Figure 6.2 (c) shows that the two-user

Gaussian X channel with limited receiver cooperation can be viewed as superposing

of two Gaussian interference channels from Figure 6.2 (a) and Figure 6.2 (b).

With the consideration above, our transmission scheme in this case has the details as

follows:

6.2.1.1 Transmission Scheme

Each transmitter consists of two independent messages mii and mji that are sent to

receiver i and j , respectively, for i , j = 1, 2 and i 6= j . Each transmitter splits each

own message into common and private messages, that is, mii → (miic,miip) and mji →

(mjic,mjip). Hence, we have four independent submessages in each transmitter. Each

common message can be decoded by both receivers, while each private message is de-

coded only at own receiver. In each transmitter, two common messages (miic,mjic) are

used for generating the common codeword and then these two common messages are re-

arranged as a new common message mic ∈ {1, ..., 2N (Riic+Rjic)}. Next, each transmitter

generates each private codeword by serving common codeword as the cloud center. Fi-

nally, each transmitter generates the codeword which is superposed over triple of common

codeword and two private codewords. From the transmission scheme above, each message

is encoded into a codebook drawn from a Gaussian random codebook with a certain power.

For transmitter i , the power for its two private codewords and one common codeword are

Qiip ,Qjip , and Qic = 1− (Qiip + Qjip), respectively.

Note that our transmission scheme above which is based on the HK strategy can be

called two-layer HK scheme and is similar to the work [11, 13] but it does not use the

Marton’s binning technique as the work [11].
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Remark 6.1 (Managing the power-splitting of private signals in the general case) For the is-

sue of managing the power-splitting of all private signals in the general case, we do not

propose or adopt any method to solve this problem. We only intend to provide the achiev-

able rates based on the proposed strategy consisting the transmission scheme and the co-

operative protocol in the general terms for this case as shown in Section 6.2.1.3.

6.2.1.2 Cooperative Protocol

We use the two-round strategy (STGj→i→j ) from [2] with some modifications in the de-

coding processes. This protocol is based on the quantize-map-and-forward (QMF) scheme

and its processing order is: receiver j quantize-and-bins, receiver i decoded-and-bins and

receiver j decodes. Its achievable rate region is denoted byR j→i→j . By time sharing, the

achievable rate region is obtained by R := conv{R 2→1→2 ∪R 1→2→1}, i.e., the convex

hull of the union of two rate regions. Next, we describe the two-round strategy STG2→1→2.

• Quantize-Binning: Receiver 2 (serving as relay) quantizes its received signal by a

pregenerated Gaussian quantization codebook with proper distortion and sends out

a bin index determined by a pregenerated binning function (l21 = b2(ŷN
2 )) to re-

ceiver 1. Based on our transmission scheme, the private signals x21p , x22p and the

noise that it meets are not the required information for receiver 1. Therefore, the

natural configuration is to set the distortion level equal to the sum of the power

level of the noise, the total power level of the private signals x21p , x22p and the term

|h11h22 − h12h21|2Q21pQ22p relating to the channel gain and phase of channel results

from sending m21p and m22p that are contained in the codewords via wireless channel

from transmitter 1 and 2, respectively.

• Decode-Binning: Receiver 1 retrieves the receiver-cooperative side information, and

then decodes two common messages and its two own private messages by searching

in transmitters’ codebooks for a codeword quadruple (indexed by two common mes-

sages (m1c,m2c) and receiver 1’s two private messages (m11p ,m12p)) that is jointly

typical with its received signal and some quantization codeword in the given bin.

If there is such unique codeword quadruple, i.e., there exists an unique indices, it

can easily obtain two desired common messages m11c,m12c from m1c,m2c , respec-

tively. Otherwise, declare an error. After receiver 1 decodes already, it uses two
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pregenerated binning function to bin the two common messages m1c,m2c (l
(ic)
12 =

b
(ic)
1 (mic), for i = 1, 2) and sends out these two bin indices to receiver 2.

• Decoding: After receiving two bin indices from the receiver-cooperative side infor-

mation, receiver 2 decodes two common messages m1c,m2c and its two own private

messages m21p ,m22p by searching in the corresponding bins (containing common

messages) and receiver 2’s two private codebooks for a codeword quadruple that is

jointly typical with its received signal. Finally, if there is such unique codeword

quadruple, i.e., there exists an unique indices, it can easily obtain two desired com-

mon messages m21c,m22c from m1c,m2c , respectively. Otherwise, declare an error.

Remark 6.2 Although the cooperative protocol is similar to that in the work [2], but there

are two modification points based on codebook generation of transmitted messages as fol-

lows:

1. In Quantize-Binning stage, the quantization distortion equals the total power of

the undesired signals, i.e., the noise power and the total power of private signals

x21p , x22p and the term |h11h22 − h12h21|2Q21pQ22p involving with the channel gains

and the phases of channel for transmitting private messages m21p and m22p that are

contained in the codewords via wireless channel from transmitter 1 and 2, respec-

tively.

2. In Decode-Binning and Decoding stages, the set of messages (m1c,m2c,m11p ,m12p)

and (m1c,m2c,m21p ,m22p) are decoded correctly, respectively.

6.2.1.3 Achievable Rates

In the following theorem, we establish the achievable rates using the two-round strategy

(STG2→1→2) for the two-user Gaussian X channel with limited receiver cooperation in the

general case. Let Ric Riip , and Rijp denote the rates for transmitter i ’s common message,

private message miip , and private message mijp , respectively, for i , j = 1, 2 and i 6= j .



79

Theorem 6.3 (Achievable Rate Region for STG2→1→2): The rate sextuple (R1c,R2c,R11p ,

R12p ,R21p ,R22p) in the general case satisfying the following constraints is achievable:

Constraint at transmitter 1:

R1c = R11c + R21c (6.1)

Constraints at receiver 1:

R11p

≤ min
{
I (x11p ; y1|x1c, x2c, x12p) + (CB

21 − ξ1)+, I (x11p ; y1, ŷ2|x1c, x2c, x12p)
}

(6.2)

R12p

≤ min
{
I (x12p ; y1|x1c, x2c, x11p) + (CB

21 − ξ1)+, I (x12p ; y1, ŷ2|x1c, x2c, x11p)
}

(6.3)

R1c + R11p

≤ min
{
I (x1c, x11p ; y1|x2c, x12p) + (CB

21 − ξ1)+, I (x1c, x11p ; y1, ŷ2|x2c, x12p)
}

(6.4)

R2c + R12p

≤ min
{
I (x2c, x12p ; y1|x1c, x11p) + (CB

21 − ξ1)+, I (x2c, x12p ; y1, ŷ2|x1c, x11p)
}

(6.5)

R11p + R12p

≤ min
{
I (x11p , x12p ; y1|x1c, x2c) + (CB

21 − ξ1)+, I (x11p , x12p ; y1, ŷ2|x1c, x2c)
}

(6.6)

R1c + R11p + R12p

≤ min
{
I (x1c, x11p , x12p ; y1|x2c) + (CB

21 − ξ1)+, I (x1c, x11p , x12p ; y1, ŷ2|x2c)
}

(6.7)

R2c + R12p + R11p

≤ min
{
I (x2c, x12p , x11p ; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x12p , x11p ; y1, ŷ2|x1c)
}

(6.8)

R1c + R11p + R2c + R12p

≤ min
{
I (x1c, x11p , x2c, x12p ; y1) + (CB

21 − ξ1)+, I (x1c, x11p , x2c, x12p ; y1, ŷ2)
}

(6.9)

where

ξ1 = I (ŷ2, y2|x1c, x11p , x2c, x12p , y1)

Constraint at transmitter 2:

R2c = R12c + R22c (6.10)
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Constraints at receiver 2:

R21p ≤ I (x21p ; y2|x1c, x2c, x22p) (6.11)

R22p ≤ I (x22p ; y2|x1c, x2c, x21p) (6.12)

R1c + R21p ≤ I (x1c, x21p ; y2|x2c, x22p) + CB
12 (6.13)

R2c + R22p ≤ I (x2c, x22p ; y2|x1c, x21p) + CB
12 (6.14)

R21p + R22p ≤ I (x21p , x22p ; y2|x1c, x2c) (6.15)

R1c + R21p + R22p ≤ I (x1c, x21p , x22p ; y2|x2c) + CB
12 (6.16)

R2c + R21p + R22p ≤ I (x2c, x21p , x22p ; y2|x1c) + CB
12 (6.17)

R1c + R21p + R2c + R22p ≤ I (x1c, x21p , x2c, x22p ; y2) + CB
12 (6.18)

over all joint distribution

p(x1c)p(x11p|x1c)p(x21p|x1c)p(x1|x1c, x11p , x21p)

× p(x2c)p(x12p|x2c)p(x22p|x2c)p(x2|x2c, x12p , x22p).

For i , j = 1, 2 and i 6= j , the superposition codebook generating random variable

xi = xic + xiip + xjip , where both private codebook generating random variables xiip ∼

CN (0,Qiip) and xjip ∼ CN (0,Qjip) are independent of the common codebook generating

random variable xic ∼ CN (0,Qic). The quantization codebook generating random vari-

able ŷ2 = y2 + ẑ2, where ẑ2 ∼ CN (0,∆2) is independent of everything else and ∆2 denotes

the quantization distortion at receiver 2.

Proof: See Section 6.4.

From Theorem 6.3, we provide some comments on these rate constraints as follows:

• First, m1c and m2c must be decoded correctly at receiver 1 because they are used to

help receiver 2. Since the rate constraints (6.4) and (6.5) which are the same as the

rate constraint R1c and R2c , respectively, as seen in Section 6.4.2 for deriving the

probability of E (1)
S involve with m1c and m2c . Therefore, both (6.4) and (6.5) are

obviously required.

• Second, in the set of the rate constraints at receiver 1, on the right-hand side each

inequality is minimum of two terms. The first term corresponds to the case when
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receiver 1 can only determine a set of candidates of quantized ŷN
2 . The second term

corresponds to the case when the cooperative link is strong enough to carry the quan-

tized ŷN
2 accurately.

• Finally, there is no gain in R21p and R22p in the set of the rate constraints at receiver

2 because receiver 1 only help receiver 2 decode m1c and m2c .

Remark 6.4 (Effectiveness of an Achievable Rate Region in Theorem 6.3) Considering the

special case when the capacity of the receiver-cooperative links is zero, i.e., CB
12 = CB

21 = 0,

in Theorem 6.3, and compare it with [11] when setting Rijp = Rij p∗ for i , j = 1, 2 and

assigning the time-sharing random variable g to be a constant (no time sharing) in the

result of [11]. With the above comparison, we obtain that our proposed rate region reduces

to the best known achievable rate region for the two-user Gaussian X channel without

receiver cooperation in [11]. This means that our proposed achievable rate region is larger

than or equal to the one of the two-user Gaussian X channel without receiver cooperation

case.

Remark 6.5 (Achievable Rate Region with the Perfect Cooperation) This dissertation stud-

ies the case of limited rate receiver cooperation where noiseless receiver-cooperative links

have finite capacity 0 ≤ CB
ij ≤ CB∗

ij , for i , j = 1, 2 and i 6= j , as given in Section 3.1.

When we consider an achievable rate region in Theorem 6.3 for the perfect cooperation

case where both receivers can share yN
1 and yN

2 perfectly, it can see that this rate region

contains achievable rates with the maximum value of the finite capacity of links, i.e., CB∗
ij .

Furthermore, comparing this rate region with the region for receiver 2 in Theorem 6.3

when CB
12 is sufficiently large, it obviously obtain that the region for receiver 2 does not

exceed an achievable rate region with the perfect cooperation since CB
12 ≤ CB∗

12 .

We define the following notations which are used over the rest of this chapter: for

i , j = 1, 2 and i 6= j ,

SNRiip
i := |hii |2Qiip = SNRiQiip , SNR

ijp
i := |hii |2Qijp = SNRiQijp ,

INRijp
i := |hij |2Qijp = INRiQijp , INRjjp

i := |hij |2Qjjp = INRiQjjp .
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Next, we calculate the rate loss term ξ1 which is in the set of the rate constraints at

receiver 1 as follows:

ξ1 = I (ŷ2, y2|x1c, x11p , x2c, x12p , y1)

= h(ŷ2|x1c, x11p , x2c, x12p , y1)− h(ŷ2|x1c, x11p , x2c, x12p , y1, y2)

= h(h21x21p + h22x22p + z2 + z̃2|h11x21p + h12x22p + z1)− h(ẑ2)

= log

(
1 + ∆2

∆2

+
INR21p

2 + SNR22p
2 + |h11h22 − h12h21|2Q21pQ22p

∆2(1 + SNR21p
1 + INR22p

1 )

)

≤ log

(
1 + ∆2 + INR21p

2 + SNR22p
2 + |h11h22 − h12h21|2Q21pQ22p

∆2

)
. (6.19)

From (6.19), it is easily seen that the rate loss term ξ1 can be upper bounded by 1 bit by

selecting ∆2 = 1 + INR21p
2 + SNR22p

2 + |h11h22 − h12h21|2Q21pQ22p.

Remark 6.6 (Reason for Choosing ∆2 in the General Case) Based on our transmission

scheme in Sect. 6.2.1.1, the undesirable signals from yN
2 at receiver 1 are the private sig-

nals involving m21p and m22p and noise which it meets. Choosing ∆2 = 1 + INR21p
2 +

SNR22p
2 + |h11h22−h12h21|2Q21pQ22p which is equal to the aggregate power of the undesir-

able signals, where the first three terms of the aggregate power of the undesirable signals

correspond to the power level of noise and the private signals involving m21p and m22p ,

respectively, in y2 for receiver 1 and the last term |h11h22−h12h21|2Q21pQ22p relating to the

channel gain and phase of channel results from sending m21p and m22p that are contained

in the codewords via wireless channel from transmitter 1 and 2, respectively. Hence, ξ1

in (6.19) can be upper bounded by 1 bit with choosing ∆2 as above and the undesirable

signals are managed by treating them as noise at receiver 1.

6.2.2 Strong Gaussian X Channel Type I Case

In Section 3.3, we show the classification of the two-user Gaussian X channel based on

the work [12]. This dissertation considers only on the strong Gaussian X channel type I

case, i.e., SNR1 > INR2 and SNR2 > INR1. With the point of view in Figure 6.1, idea for

transmitting messages in this case is shown in Figure 6.3, where the bold arrow indicates

the strong channel gain, and has the following details:
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1. In Figure 6.3 (a), the first interference channel corresponds to the weak interference

channel with receiver cooperation. Therefore, both messages m11 and m22 can be

split into common and private messages, i.e., (m11c ,m11p) and (m22c ,m22p), respec-

tively, and then messages (m11c ,m11p) and (m22c ,m22p) are decoded with cooperation

at receiver 1 and 2, respectively.

2. In Figure 6.3 (b), the second interference channel corresponds to the strong interfer-

ence channel with receiver cooperation. Therefore, both messages m12 and m21 are

whole common messages, i.e., m12c and m21c , respectively, and messages m12c and

m21c are decoded with cooperation at receiver 1 and 2, respectively.

3. Finally, we obtain the strong Gaussian X channel type I with receiver cooperation as

Figure 6.3 (c) by superimposing two interference channels with receiver cooperation

from Figure 6.3 (a) and Figure 6.3 (b) and messages miic ,miip ,mjic are sent from

transmitter i and then messages miic ,miip ,mij c are decoded at receiver i , for i , j =

1, 2 and i 6= j .

With the point of view in Figure 6.1 and the concept of a simple power split construction

in [9], our proposed transmission scheme in this case is showed in Figure 6.3 and can be

described as follows:

6.2.2.1 Transmission Scheme

Each transmitter consists of two independent messages mii and mji that are sent to

receiver i and j , respectively, for i , j = 1, 2 and i 6= j . In transmitter i , message mii is

split into common and private messages, i.e., mii → (miic,miip), whereas message mji is

whole common message. Hence, we have three independent submessages in each trans-

mitter. Each common message can be decoded by both receivers, while a private message

is decoded only at own receiver. In each transmitter, two common messages (miic,mjic)

are used for generating a common codeword and then these two common messages are re-

arranged as a new common message mic ∈ {1, ..., 2N (Riic+Rjic)}. Finally, each transmitter

generates a private codeword by serving common codeword as the cloud center. From the

transmission scheme above, each message is encoded into a codebook drawn from a Gaus-

sian random codebook with a certain power. For transmitter i , the power for its private and

common codewords are Qiip and Qic = 1−Qiip , respectively.
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Figure 6.3: Transmission scheme in the the strong Gaussian X channel type I case, (a)

Transmitting messages in the weak interference channel with receiver cooperation, (b)

Transmitting messages in the strong interference channel with receiver cooperation and (c)

Transmission scheme for the strong Gaussian X channel type I with receiver cooperation

viewed as the superposition of two different interference channels ((a) and (b)).

The power split configuration is such that Qiip + Qic = 1 and INRjjp
i := |hij |2Qijp ≤ 1

if SNRi > INRj . Using a simple power-splitting configuration from [9], we set the power

of each private message as follows:

Qiip = min
{ 1

INRj

, 1
}

(6.20)
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Remark 6.7 (Comparison our transmission scheme with the previous works) From the pro-

posed transmission scheme for the strong Gaussian X channel type I above, we see that

1. In each transmitter, there is only one private message for encoding which corre-

sponds to the result in [15].

2. A common codeword in our work is generated from two different common messages

but a common codeword in [2] is generated from a common message.

3. A transmitted codeword from each transmitter in our work which is the sum of a

common codeword and a private codeword (see details in Section 6.5) is similar

to [2].

6.2.2.2 Cooperative Protocol

Using the proposed transmission scheme in Section 6.2.2.1, i.e., message mii is split

into miic and miip while making mij as the whole common message mijc for i , j = 1, 2 and

i 6= j . Therefore, the cooperative protocol with STG2→1→2 in Section 6.2.1.2 is reduced

to the original version [2] by decoding messages (m1c,m2c,m11p) and (m1c,m2c,m22p) in

the decode-binning and decode stages, respectively.

Note that the details of the cooperative protocol with STG2→1→2 in this subsection are

similar to the ones in Section 6.2.1.2. Hence, we omit them.

6.2.2.3 Achievable Rates

In the following theorem, we establish the achievable rates using the two-round strategy

(STG2→1→2) for the two-user Gaussian X channel with limited receiver cooperation in the

strong Gaussian X channel type I case. Let Ric and Riip denote the rates for i th common

message and private message miip , respectively, for i = 1, 2.
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Theorem 6.8 (Achievable Rate Region for STG2→1→2): The rate tuple (R1c,R2c,R11p ,R22p)

in the strong Gaussian X channel type I case satisfying the following constraints is achiev-

able:

Constraint at transmitter 1:

R1c = R11c + R21c (6.21)

Constraints at receiver 1:

R11p ≤ min
{
I (x1; y1|x1c, x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x1c, x2c)
}

(6.22)

R2c ≤ min
{
I (x2c; y1|x1) + (CB

21 − ξ1)+, I (x2c; y1, ŷ2|x1)
}

(6.23)

R1c + R11p ≤ min
{
I (x1; y1|x2c) + (CB

21 − ξ1)+, I (x1; y1, ŷ2|x2c)
}

(6.24)

R2c + R11p ≤ min
{
I (x2c, x1; y1|x1c) + (CB

21 − ξ1)+, I (x2c, x1; y1, ŷ2|x1c)
}

(6.25)

R1c + R11p + R2c ≤ min
{
I (x1, x2c; y1) + (CB

21 − ξ1)+, I (x1, x2c; y1, ŷ2)
}

(6.26)

where

ξ1 = I (ŷ2; y2|x1c, x2c, x1, y1)

Constraint at transmitter 2:

R2c = R12c + R22c (6.27)

Constraints at receiver 2:

R22p ≤ I (x2; y2|x1c, x2c) (6.28)

R1c ≤ I (x1c; y2|x2) + CB
12 (6.29)

R2c + R22p ≤ I (x2; y2|x1c) + CB
12 (6.30)

R1c + R22p ≤ I (x1c, x2; y2|x2c) + CB
12 (6.31)

R1c + R2c + R22p ≤ I (x1c, x2; y2) + CB
12 (6.32)

where xi = xic + xiip is the superposition codebook generating random variable with

xic ∼ CN (0,Qic) and xiip ∼ CN (0,Qiip) that is independent of xic . ŷ2 = y2 + ẑ2 is the

quantization codebook generating random variable and ẑ2 ∼ CN (0,∆2) where ∆2 is the

quantization distortion at receiver 2.

Proof: See all details in Section 6.5.
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We provide some comments on these rate constraints as follows:

1. The achievable rate region in Theorem 6.8 is similar to Theorem 4.3 in [2] for the

two-user interference channels with limited receiver cooperation, but there are two

key different points as follows:

(a) In our work, the rate constraints at both transmitters in (6.21) and (6.27) are

required in our work but not in [2].

(b) The rate constraint for R1c where receiver 2 is required to decode m1c correctly.

Next, the rate loss ξ1 in the set of the rate constraints at receiver 1 can be calculated as

the following:

ξ1 = I (ŷ2, y2|x1c, x2c, x1, y1)

= h(ŷ2|x1c, x2c, x1, y1)− h(ŷ2|x1c, x2c, x1, y1, y2)

= h(h22x22p + z2 + ẑ2|h12x22p + z1)− h(ẑ2)

= log
(1 + ∆2

∆2

+
SNR22p

2

(1 + INR22p
1 )∆2

)
≤ log

(1 + ∆2 + SNR22p
2

∆2

)
. (6.33)

By choosing ∆2 = 1 + SNR22p
2 , the rate loss ξ1 is upper bounded by 1 bit.

Remark 6.9 The above chosen distortion (∆2 = 1 + SNR22p
2 ) may not be optimal. The

achievable rates can be further improved if we optimize over all possible distortions [2,

32]. For instance, if the cooperative link capacity is large, the distortion level could be

lowered to obtain a finer description of the received signal. With the above selection for

the distortion, however, this achievable rate region can be within a constant gap to the

capacity region, regardless of channel parameters.

6.3 Characterization of the Capacity Region to Within 2 Bits

In this section, we show the performance of the proposed strategy in the case of strong

Gaussian X channel type I. First of all, we present the main result of this chapter in Section

6.3.1. Second, we provide the achievable rate region in the terms of (R11,R12,R21,R22)

by using the result of Theorem 6.8 in Section 6.3.2. Finally, we show that our proposed
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strategy in the strong Gaussian X channel type I case is within 2 bits/s/Hz per message

compared with an outer bound on the capacity region of the two-user Gaussian X channel

with limited receiver cooperation from Lemma 4.1.

6.3.1 Capacity Region to Within 2 Bits

In this dissertation, we investigate only in the Gaussian strong X channel type I case,

i.e., SNR1 > INR2 and SNR2 > INR1. Our main result states in the following theorem

(Recall thatC is an outer bound on the capacity region shown in Lemma 4.1):

Theorem 6.10 (Within 2-bit Gap to Capacity Region):

R ⊆ C ⊆ C ⊆R ⊕ ([0, 2]× [0, 2]× [0, 2]× [0, 2]),

Proof: This theorem is proved by Lemma 6.12.

6.3.2 Achievable Rate Region for the Strong Gaussian X Channel Type I Case

First, we consider STG2→1→2 and get the set of achievable rates (R1c,R2c,R11p ,R22p)

from Theorem 6.8. Remind that the rate loss ξ1 ≤ 1 when we choose ∆2 = 1 + SNR22p
2 .

To simplify computations, we follow the same line in [2] by replacing (6.22) and (6.24)

with

R11p ≤ I (x1; y1|x1c, x2c),

R1c + R11p ≤ I (x1; y1|x2c)

in the following computations.

For i , j = 1, 2 and i 6= j , the achievable rate region in terms of (R11,R12,R21,R22) for

R 1→2→1 can be computed from the following three constraints:

1. R′ii = Riip + Ric

2. R′i = Riip + Ric + Rjc

3. R′′i = Riip + 2Ric and R′′j = Rjjp + Rjc

Next, rewriting the above three constraints as follows:
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1. Riip = R′ii − Ric

2. Riip = R′i − Ric − Rjc

3. Riip = R′′i − 2Ric and Rjjp = R′′j − Rjc

Then applying the Fourier-Motzkin algorithm to each rewritten constraint and remov-

ing redundant terms (details omitted). Finally, after collecting and reordering the above

obtained results, we get the achievable rate regionR 2→1→2 which consists of nonnegative

(R11,R12,R21,R22) satisfying

R11 ≤ I (x1; y1|x2c)− R21c (6.34)

R11 ≤ I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R21c (6.35)

R12 ≤ I (x2c; y1|x1) + (CB
21 − ξ1)+ − R22c (6.36)

R12 ≤ I (x2c; y1, ŷ2|x1)− R22c (6.37)

R21 ≤ I (x1c; y2|x2) + CB
12 − R11c (6.38)

R22 ≤ I (x2; y2|x1c) + CB
12 − R12c (6.39)

R22 ≤ I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R12c (6.40)

R22 ≤ I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c)− R12c (6.41)

R11 + R12 ≤ I (x1, x2c; y1) + (CB
21 − ξ1)+ − R21c − R22c

R11 + R12 ≤ I (x1, x2c; y1, ŷ2)− R21c − R22c

R11 + R12 ≤ I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R21c − R22c

R11 + R12 ≤ I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R21c − R22c (6.42)

R11 + R12 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R21c − R22c

 (6.43)

R11 + R12 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c; y2|x2) + CB
12

−R21c − R22c

 (6.44)

R11 + R12 ≤

I (x2c, x1p ; y1|x1c) + I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12

−R21c − R22c

 (6.45)

R11 + R12 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12 − R21c − R22c (6.46)

R21 + R22 ≤ I (x1c, x2; y2) + CB
12 − R11c − R12c

R21 + R22 ≤ I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB
12 − R11c − R12c (6.47)
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R21 + R22 ≤

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R11c − R12c

 (6.48)

R21 + R22 ≤

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+CB
12 − R11c − R12c


R21 + R22 ≤

I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c − R12c

 (6.49)

R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c − R12c

R11 + R12 + R21 ≤ I (x1, x2c; y1) + (CB
21 − ξ1)+ − R22c (6.50)

R11 + R12 + R21 ≤ I (x1, x2c; y1, ŷ2)− R22c (6.51)

R11 + R12 + R21 ≤ I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R22c (6.52)

R11 + R12 + R21 ≤ I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c (6.53)

R11 + R12 + R21 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R22c

 (6.54)

R11 + R12 + R21 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c; y2|x2)

+CB
12 − R22c

 (6.55)

R11 + R12 + R21 ≤

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12

−R22c

 (6.56)

R11 + R12 + R21 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12 − R22c (6.57)

R11 + R12 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R21c

 (6.58)

R11 + R12 + R22 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12 − R21c (6.59)

R11 + R12 + R22 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R21c (6.60)

R11 + R12 + R22 ≤ I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R21c

R11 + R12 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R21c (6.61)

R11 + R12 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c)

+(CB
21 − ξ1)+ + CB

12 − R21c

 (6.62)

R11 + R12 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c)

+CB
12 − R21c

 (6.63)



91

R11 + R12 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1)+ + CB

12 − R21c

 (6.64)

R11 + R12 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1)

+I (x1c, x2; y2|x2c) + CB
12 − R21c

 (6.65)

R11 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R12c

 (6.66)

R11 + R21 + R22 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12 − R12c (6.67)

R11 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R12c

R11 + R21 + R22 ≤ I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R12c (6.68)

R11 + R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

R11 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c)

+(CB
21 − ξ1)+ + CB

12 − R21c

 (6.69)

R11 + R21 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2)

+I (x2; y2|x1c, x2c) + CB
12 − R12c

 (6.70)

R11 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1)+ + CB

12 − R12c

 (6.71)

R11 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1)

+I (x1c, x2; y2|x2c) + CB
12 − R12c


R12 + R21 + R22 ≤ I (x1c, x2; y2) + CB

12 − R11c (6.72)

R12 + R21 + R22 ≤ I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB
12 − R11c (6.73)

R12 + R21 + R22 ≤

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R11c

 (6.74)

R12 + R21 + R22 ≤

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+CB
12 − R11c

 (6.75)

R12 + R21 + R22 ≤

I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R11c

 (6.76)

R12 + R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c (6.77)
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R11 + R12 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1)+ + CB

12

 (6.78)

R11 + R12 + R21 + R22 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12 (6.79)

R11 + R12 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 (6.80)

R11 + R12 + R21 + R22 ≤ I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ (6.81)

R11 + R12 + R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c) (6.82)

R11 + R12 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ + CB

12

 (6.83)

R11 + R12 + R21 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2)

+I (x2; y2|x1c, x2c) + CB
12

 (6.84)

R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

 (6.85)

R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1)

+I (x1c, x2; y2|x2c) + CB
12

 (6.86)

2R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c)

+I (x1, x2c; y1) + (CB
21 − ξ1)+ + CB

12 − R21c


2R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c)

+I (x1, x2c; y1, ŷ2) + CB
12 − R21c


2R11 + R12 + R21 + R22 ≤


I (x1; y1|x1c, x2c) + I (x2c, x1; y1|x1c)

+I (x1c; y2|x2) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1)+ + 2CB

12 − R21c

 (6.87)

2R11 + R12 + R21 + R22 ≤


I (x1; y1|x1c, x2c) + I (x2c, x1; y1, ŷ2|x1c)

+I (x1c; y2|x2) + I (x1c, x2; y2|x2c) + 2CB
12

−R21c

 (6.88)

R11 + 2R12 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R22c

 (6.89)

R11 + 2R12 + R21 + R22 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2) + CB
12 − R22c (6.90)

R11 + 2R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c)

+2I (x2c; y1|x1) + 2(CB
21 − ξ1)+ + CB

12 − R22c

 (6.91)
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R11 + 2R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c)

+2I (x2c; y1, ŷ2|x1) + CB
12 − R22c

 (6.92)

R11 + 2R12 + R21 + R22 ≤


I (x2c; y1|x1) + I (x2c, x1; y1|x1c)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+

+CB
12 − R22c

 (6.93)

R11 + 2R12 + R21 + R22 ≤

I (x2c; y1, ŷ2|x1) + I (x2c, x1; y1|x1c)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12 − R22c

 (6.94)

R11 + 2R12 + R21 + R22 ≤

I (x2c; y1|x1) + I (x2c, x1; y1, ŷ2|x1c)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12 − R22c

 (6.95)

R11 + 2R12 + R21 + R22 ≤

I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+I (x2c, x1; y1, ŷ2|x1c) + CB
12 − R22c

 (6.96)

R11 + 2R12 + R21 + R22 ≤

I (x2c; y1|x1) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2)

+(CB
21 − ξ1)+ + CB

12 − R22c

 (6.97)

R11 + 2R12 + R21 + R22 ≤

I (x2c; y1, ŷ2|x1) + I (x1; y1|x1c, x2c)

+I (x1c, x2; y2) + CB
12 − R22c

 (6.98)

R11 + 2R12 + R21 + R22 ≤

I (x1, x2c; y1) + I (x2; y2|x1c) + (CB
21 − ξ1)+ + CB

12

−R22c


R11 + 2R12 + R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c) + CB

12 − R22c (6.99)

R11 + 2R12 + R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x2; y2|x1c) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + 2CB

12 − R22c

 (6.100)

R11 + 2R12 + R21 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c)

+I (x1c; y2|x2) + 2CB
12 − R22c

 (6.101)

R11 + R12 + 2R21 + R22 ≤

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R11c

 (6.102)

R11 + R12 + 2R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x1c, x2; y2|x2c) + CB
12 − R11c (6.103)

R11 + R12 + 2R21 + R22 ≤ I (x1; y1|x2c) + I (x1c, x2; y2) + CB
12 − R11c

R11 + R12 + 2R21 + R22 ≤

I (x1; y1|x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1)+ + CB

12 − R11c

 (6.104)

R11 + R12 + 2R21 + R22 ≤

I (x1; y1|x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+CB
12 − R11c


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R11 + R12 + 2R21 + R22 ≤

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c)

+2I (x1c; y2|x2) + (CB
21 − ξ1)+ + 2CB

12 − R11c

 (6.105)

R11 + R12 + 2R21 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c)

+2I (x1c; y2|x2) + 2CB
12 − R11c

 (6.106)

R11 + R12 + 2R21 + R22 ≤

I (x1, x2c; y1) + I (x2; y2|x1c, x2c)

+I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12 − R11c

 (6.107)

R11 + R12 + 2R21 + R22 ≤

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

+I (x1c; y2|x2) + CB
12 − R11c


R11 + R12 + 2R21 + R22 ≤


I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+2CB
12 − R11c

 (6.108)

R11 + R12 + 2R21 + R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + 2CB
12 − R11c

 (6.109)

R11 + R12 + R21 + 2R22 ≤

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c)

+I (x1c, x2; y2) + (CB
21 − ξ1) + CB

12 − R12c


R11 + R12 + R21 + 2R22 ≤

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c)

+I (x1c, x2; y2) + CB
12 − R12c


R11 + R12 + R21 + 2R22 ≤


I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c)

+I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+2(CB
21 − ξ1) + CB

12 − R12c

 (6.110)

R11 + R12 + R21 + 2R22 ≤


I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c)

+I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1) + CB

12 − R12c


R11 + R12 + R21 + 2R22 ≤


I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c)

+I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+(CB
21 − ξ1) + CB

12 − R12c


R11 + R12 + R21 + 2R22 ≤


I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c)

+I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+CB
12 − R12c

 .
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Remark 6.11 (Maximum value of each proposed bound) All of the above bounds except

the bounds of the sum of 4 rates, i.e., R11 +R12 +R21 +R22, involve with parameters β and

γ in the common rate constraints (6.1) and (6.10) at both transmitters which are rewritten

the following forms for convenience in the later consideration:

R1c = R11c + R21c = βR1c + (1− β)R1c (6.111)

R2c = R12c + R22c = (1− γ)R2c + γR2c (6.112)

where β, γ ∈ [0, 1]. After calculating, it is easily seen that

• R11 bound has the maximum value when β = 1;

• R12 bound has the maximum value when γ = 0;

• R21 bound has the maximum value when β = 0;

• R22 bound has the maximum value when γ = 1;

• R11 + R12 bound has the maximum value when β = 1 and γ = 0;

• R21 + R22 bound has the maximum value when β = 0 and γ = 1;

• R11 + R12 + R21 bound has the maximum value when γ = 0;

• R11 + R12 + R22 bound has the maximum value when β = 1;

• R11 + R21 + R22 bound has the maximum value when γ = 1;

• R12 + R21 + R22 bound has the maximum value when β = 0;

• 2R11 + R12 + R21 + R22 bound has the maximum value when β = 1;

• R11 + 2R12 + R21 + R22 bound has the maximum value when γ = 0;

• R11 + R12 + 2R21 + R22 bound has the maximum value when β = 0;

• R11 + R12 + R21 + 2R22 bound has the maximum value when γ = 1.

Next, for the achievable rate regionR 2→1→2, we will show that all bounds at their max-

imum values except (6.37), (6.43)−(6.49), (6.58)−(6.60), (6.62)−(6.71), (6.73), (6.87)−

(6.110) are within a constant gap from the corresponding upper bounds in Lemma 4.1.
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By symmetry, however, we can obtain strategy R 1→2→1. Similarly to the perspective

of the work [2], rate points inR 1→2→1 can recompense the problematic bounds (6.37),

(6.43)−(6.49), (6.58)−(6.60), (6.62)−(6.71), (6.73), (6.87)−(6.110) in strategyR 2→1→2

by time-sharing. Hence, the resulting achievable rate region R := conv{R 2→1→2 ∪

R 1→2→1} is within a bounded gap from the upper bounds in Lemma 4.1. We give the

following lemma.

Lemma 6.12 (Rate Region in the Two-User Gaussian Strong X Channel Type I)

R ⊆ C ⊆ C ⊆R ⊕ ([0, 2]× [0, 2]× [0, 2]× [0, 2]),

in the two-user Gaussian strong X channel type I.

Proof: We need the following claims:

Claim 6.13 In the achievable rate regionR2→1→2, whenever the R12 bound (6.37) is active

and R11 +R21 +R22 bounds are also active, the corner point where R11 +R12 +R21 +R22

bound and R11 +R21 +R22 bound intersect can be obtained. This condition is depicted in

Figure. 6.4.

Figure 6.4 Condition onR2→1→2 for Claim 6.13

Proof: In this condition, the value of R11 + R12 + R21 +R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details is given in Appendix 6.6.
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Claim 6.14 In the achievable rate regionR2→1→2, whenever the R11+R12 bound (6.43), . . . ,

(6.45) or (6.46) is active and R21 + R22 bounds are also active, the corner point where

R11 + R12 + R21 + R22 bound and R21 + R22 bound intersect can be obtained. This con-

dition is depicted in Figure. 6.5.

Figure 6.5 Condition onR2→1→2 for Claim 6.14

Proof: In this condition, the value of R11 + R12 + R21 +R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details is given in Appendix 6.6.

Claim 6.15 In the achievable rate regionR2→1→2, whenever the R21 + R22 bound (6.47),

(6.48) or (6.49) is active and R11 + R12 bounds are also active, the corner point where

R11 + R12 + R21 + R22 bound and R11 + R12 bound intersect can be obtained. This

condition is depicted in Figure. 6.6.

Proof: In this condition, the value of R11 + R12 + R21 +R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.
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Figure 6.6 Condition onR2→1→2 for Claim 6.15

(a)

(b)

Figure 6.7: Condition on R2→1→2 for Claim 6.16. (a) R11 + R12 + 2R21 + R22 bound is

active. (b) R11 + R12 + 2R21 + R22 bound is not active.
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Claim 6.16 In the achievable rate regionR2→1→2, whenever the R11 + R12 + R22 bound

(6.58), . . . , (6.64) or (6.65) is active,

1. if R11 + R12 + 2R21 + R22 bounds are active, the corner point where R11 + R12 +

R21 + R22 bound and R11 + R12 + 2R21 + R22 bound intersect can be obtained;

2. if R11 +R12 + 2R21 +R22 bounds are not active, the corner point where R11 +R12 +

R21 + R22 bound and R21 bound intersect can be obtained.

These two conditions are depicted in Figure. 6.7.

Proof: In both conditions, the value of R11 + R12 + R21 +R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.

Claim 6.17 In the achievable rate regionR2→1→2, whenever the R11 + R21 + R22 bound

(6.66), . . . , (6.70) or (6.71) is active,

1. if R11 + 2R12 + R21 + R22 bounds are active, the corner point where R11 + R12 +

R21 + R22 bound and R11 + 2R12 + R21 + R22 bound intersect can be obtained;

2. if R11 + 2R12 +R21 +R22 bounds are not active, the corner point where R11 +R12 +

R21 + R22 bound and R12 bound intersect can be obtained.

These two conditions are depicted in Figure. 6.8.

Proof: In both conditions, the value of R11 + R12 + R21 +R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.
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(a)

(b)

Figure 6.8: Condition on R2→1→2 for Claim 6.17. (a) R11 + 2R12 + R21 + R22 bound is

active. (b) R11 + 2R12 + R21 + R22 bound is not active.

Claim 6.18 In the achievable rate regionR2→1→2, whenever the R12 + R21 + R22 bound

(6.73) is active,

1. if 2R11 + R12 + R21 + R22 bounds are active, the corner point where R11 + R12 +

R21 + R22 bound and 2R11 + R12 + R21 + R22 bound intersect can be obtained;

2. if 2R11 +R12 +R21 +R22 bounds are not active, the corner point where R11 +R12 +

R21 + R22 bound and R11 bound intersect can be obtained.

These two conditions are depicted in Figure. 6.9.

Proof: In both conditions, the value of R11 + R12 + R21+ R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.
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(a)

(b)

Figure 6.9: Condition on R2→1→2 for Claim 6.18. (a) 2R11 + R12 + R21 + R22 bound is

active. (b) 2R11 + R12 + R21 + R22 bound is not active.

Claim 6.19 In the achievable rate regionR2→1→2, whenever the 2R11 +R12 +R21 +R22

bound (6.87) or (6.88) is active and R12 + R21 + R22 bounds are also active, the corner

point where R11 + R12 + R21 + R22 bound and R12 + R21 + R22 bound intersect can be

obtained. This condition is depicted in Figure. 6.10.

Proof: In this condition, the value of R11 + R12 + R21+ R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.
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Figure 6.10 Condition onR2→1→2 for Claim 6.19

Claim 6.20 In the achievable rate regionR2→1→2, whenever the R11 + 2R12 +R21 +R22

bound (6.89), . . . , (6.100) or (6.101) is active and R11 +R21 +R22 bounds are also active,

the corner point where R11 +R12 +R21 +R22 bound and R11 +R21 +R22 bound intersect

can be obtained. This condition is depicted in Figure. 6.11.

Figure 6.11 Condition onR2→1→2 for Claim 6.20

Proof: In this condition, the value of R11 + R12 + R21+ R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.
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Claim 6.21 In the achievable rate regionR2→1→2, whenever the R11 +R12 + 2R21 +R22

bound (6.102), . . . , (6.108) or (6.109) is active and R11 +R12 +R22 bounds are also active,

the corner point where R11 +R12 +R21 +R22 bound and R11 +R12 +R22 bound intersect

can be obtained. This condition is depicted in Figure. 6.12.

Figure 6.12 Condition onR2→1→2 for Claim 6.21

Proof: In this condition, the value of R11 + R12 + R21+ R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.

Claim 6.22 In the achievable rate regionR2→1→2, whenever the R11 +R12 +R21 + 2R22

bound (6.110) is active and R11 +R12 +R21 bounds are also active, the corner point where

R11 + R12 + R21 + R22 bound and R11 + R12 + R21 bound intersect can be obtained. This

condition is depicted in Figure. 6.13.

Proof: In this condition, the value of R11 + R12 + R21+ R22 at the intersection of

the dashed lines is always greater than the value of R11 + R12 + R21 + R22 at the required

corner point. Details are given in Appendix 6.6.

Therefore, the R12 bound (6.37), the R11 + R12 bounds (6.43)− (6.46), the R21 + R22

bounds (6.47)−(6.49), the R11 + R12 + R22 bounds (6.58)−(6.65), the R11 + R21 + R22

bounds (6.66)−(6.71), the R12+R21+R22 bound (6.73), the 2R11+R12+R21+R22 bounds

(6.87)−(6.88), the R11+2R12+R21+R22 bounds (6.89)−(6.101), the R11+R12+2R21+R22

bounds (6.102)−(6.109) and the R11 +R12 +R21 +2R22 bounds (6.110) and, by symmetry,
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Figure 6.13 Condition onR2→1→2 for Claim 6.22

theirs corresponding R21, R11 + R12, R21 + R22, R11 + R12 + R21, R11 + R12 + R22,

R11 +R21 +R22, 2R11 +R12 +R21 +R22, R11 +2R12 +R21 +R22, R11 +R12 +2R21 +R22

and R11 +R12 +R21 +2R22 bounds in the achievable rate regionR 1→2→1 do not appear in

R = conv{R 2→1→2 ∪R 1→2→1} andR is within 2 bits per message to the approximate

capacity region in Theorem 4.1. Next, we first consider the bounds in the achievable rate

region R 2→1→2 except the bounds (6.37), (6.43)−(6.49), (6.58)−(6.60), (6.62)−(6.71),

(6.73), (6.87)−(6.110). We claim that

Claim 6.23 The bounds in the achievable rate regionR 2→1→2 except (6.37), (6.43)−(6.49),

(6.58)−(6.60), (6.62)−(6.71), (6.73), (6.87)−(6.110) satisfy:

• R11 bound is within 2 bits to upper bounds when β = 1;

• R12 bound is within 2 bits to upper bounds when γ = 0;

• R21 bound is within 2 bits to upper bounds when β = 0;

• R22 bound is within 2 bits to upper bounds when γ = 1;

• R11 + R12 bound is within 3 bits to upper bounds when β = 1 and γ = 0;

• R21 + R22 bound is within 3 bits to upper bounds when β = 0 and γ = 1;

• R11 + R12 + R21 bound is within 4 bits to upper bounds when γ = 0;

• R11 + R12 + R22 bound is within 4 bits to upper bounds when β = 1;
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• R11 + R21 + R22 bound is within 4 bits to upper bounds when γ = 1;

• R12 + R21 + R22 bound is within 4 bits to upper bounds when β = 0;

• R11 + R12 + R21 + R22 bound is within 5 bits to upper bounds;

• 2R11 + R12 + R21 + R22 bound is within 6 bits to upper bounds when β = 1;

• R11 + 2R12 + R21 + R22 bound is within 6 bits to upper bounds when γ = 0;

• R11 + R12 + 2R21 + R22 bound is within 6 bits to upper bounds when β = 0;

• R11 + R12 + R21 + 2R22 bound is within 6 bits to upper bounds when γ = 1.

Proof: See Appendix 6.6.

6.4 Proof of Theorem 6.3

We will first describe the detail of our proposed strategy and analyze the error proba-

bility.

6.4.1 Description of the Strategy

Codebook Generation: Transmitter i splits its own messages mii → (miic,miip) and

mji → (mjic,mjip) for i , j ∈ {1, 2} and i 6= j . We consider block length-N encoding and

generate codebooks as follows:

Fix a joint distribution

p(x1c, x11p , x21p , x2c, x12p , x22p , x1, x2) = p(x1c)p(x11p|x1c)p(x21p|x1c)p(x1|x1c, x11p , x21p)

× p(x2c)p(x12p|x2c)p(x22p|x2c)p(x2|x2c, x12p , x22p)

• First we generate 2N (Riic+Rjic) independent common codewords xN
ic (miic,mjic), miic ∈

{1, · · ·, 2NRiic} and mjic ∈ {1, · · ·, 2NRjic}, according to distribution p(xN
ic ) =∏N

n=1 p(xic[n]) with xic[n] ∼ CN (0,Qic) for all n.

• For convenience, we combine and rearrange two codeword indices (miic,mjic) into

mic ∈ {1, . . ., 2NRic}, where Ric = Riic + Rjic . Therefore, we also denote these

independent common codewords with xN
ic (mic).
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• Then for each common codeword xN
ic (mic) serving as a cloud center, we gener-

ate 2NRiip independent codewords xN
iip(mic,miip), miip ∈ {1, . . ., 2NRiip}, accord-

ing to conditional distribution p(xN
iip|xN

ic ) =
∏N

n=1 p(xiip [n]|xic[n]) with xiip [n] ∼

CN (0,Qiip) for all n.

• Similarly, for each common codeword xN
ic (mic), we generate 2NRjip independent

codewords xN
jip(mic,mjip), mjip ∈ {1, . . ., 2NRjip}, according to conditional distri-

bution p(xN
jip|xN

ic ) =
∏N

n=1 p(xjip [n]|xic[n]) with xjip [n] ∼ CN (0,Qjip) for all n.

• Finally, at transmitter i , we generate a codeword xN
i according to conditional distri-

bution p(xN
i |xN

ic , x
N
iip , x

N
jip) =

∏N
n=1 p(xi [n]|xic[n], xiip [n], xjip [n]).

Note that the configuration of power is Qic + Qiip + Qjip = 1.

For receiver 2 serving as relay, a quantization codebookŶ 2 of size|Ŷ 2| = 2NR̂2 is

generated randomly according to marginal distribution p(ŷN2 ), marginalized over joint dis-

tribution p(yN2 , x
N
1c, x

N
11p , x

N
2c, x

N
12p)p(ŷN2 |yN2 , xN1c, xN11p , x

N
2c, x

N
12p), where

p(ŷN2 |yN2 , xN1c, xN11p , x
N
2c, x

N
12p) =

N∏
n=1

p(ŷ2[n]|y2[n], x1c[n], x11p [n], x2c[n], x12p [n])

The conditional distribution is such that for all n, ŷ2[n] = y2[n] + ẑ2[n], where ẑ2 ∼

CN (0,∆2), independent of everything else. Each element in the codebookŶ 2 is mapped

into {1, . . . , 2NCB
21} with a uniformly generated random mapping

b2 : Ŷ 2 → {1, . . . , 2NCB
21}, ŷ 7→ l21 (binning)

For receiver 1 serving as relay, it generates two binning functions b(1c)
1 and b

(2c)
1 inde-

pendently according to uniform distributions, such that the message set {1 ≤ mic ≤ 2NRic}

is divided into 2φ
(ic)
1 NCB

12 , for i = 1, 2, where 0 ≤ φ
(ic)
1 ≤ 1, φ

(1c)
1 + φ

(2c)
1 = 1 and

b
(ic)
1 : {1, . . . , 2NRic} → {1, . . . , 2φ

(ic)
1 NCB

12},

mic 7→ l ic12 ∈ {1, . . . , 2φ
(ic)
1 NCB

12}.

Encoding: Transmitter i sends out messages (miic,miip) and (mjic,mjip) to receiver

i and j , respectively, according to its codebooks. For receiver 2 serving as relay, it se-

lects the quantization codeword ŷN
2 which is jointly typical with yN

2 (if there is more than

one, it selects the one with smallest index) and then sends out the bin index l21 stand for
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ŷN
2 . After decoding (m1c,m11p ,m2c,m12p), receiver 1 sends out bin indices (l

(1c)
12 , l

(2c)
12 )

corresponding to binning functions (b
(1c)
1 , b

(2c)
1 ).

Decoding at Receiver 1: First of all, upon receiving signal yN
1 and receiver-cooperative

side information l21, it constructs a list of message quadruples (two common messages

and its two own private messages), each element of this list indices a codeword quadruple

that is jointly typical with its received signal from the transmitter-receiver link. Let L(yN
1 )

denote a list of candidates as follows:

L(yN
1 ) :=

{
m :=(m1c,m11p ,m2c,m12p)|(

xN
1c(m1c), x

N
11p(m1c,m11p), xN

2c(m2c), x
N
12p(m2c,m12p), yN

1

)
∈ A(N )

ε

}
where A

(N )
ε denotes the set of joint ε-typical N-sequences [1].

After that, for each element m ∈ L(yN
1 ), it constructs an ambiguity set of quantization

codewords B(m) where each element of this set is jointly typical with the quadruple and

the received signal. B(m) is defined as follows:

B(m) :=
{
ŷN

2 ∈ Ŷ 2|(
ŷN

2 , x
N
1c(m1c), x

N
11p(m1c,m11p), xN

2c(m2c), x
N
12p(m2c,m12p), yN

1

)
∈ A(N )

ε

}
Finally, it searches through all ambiguity sets and find one that contains a quantization

codeword with the same bin index it received. Declare the transmitted message is m̂ if

there exists an unique m̂ such that ∃ŷN
2 ∈ B(m) with b2(ŷN

2 ) = l21. Otherwise, it declares

an error.

Decoding at receiver 2: After obtaining two bin indices (l
(1c)
12 , l

(2c)
12 ), receiver 2 searches

for an unique message quadruple (m1c,m21p ,m2c,m22p) such that(
xN

1c(m1c), x
N
21p(m1c,m21p), xN

2c(m2c), x
N
22p(m2c,m22p), yN

1

)
∈ A(N )

ε

and b
(ic)
1 (mic) = l

(ic)
12 , for i = 1, 2. If there is no such unique quadruple, an error is declared.

6.4.2 Error Probability Analysis

Error probability analysis at receiver 1: Without loss of generality, we assume that

all transmitted messages are 1’s. Following the same analysis in [2], we consider the case

where receiver 2 serves as a relay to help receiver 1 decode its own messages.
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At receiver 1, by law of large numbers, the the probability that the actually transmitted

messages 1 := (m1c = 1,m11p = 1,m2c = 1,m12p = 1) /∈ L(yN
1 ) approaches to zero

as N → ∞. Furthermore, the probability that B(1) does not contain the actually selected

ŷN
2 is also negligible when N is sufficiently large. Next, we consider the following error

events:

1. First, no quantization codeword is jointly typical with the received signal. From the

known result of source coding, this probability approaches to zero as N → ∞ if

R̂2 ≥ I (ŷ2; y2).

2. Second, there exists m 6= 1 which is in both the candidate list L(yN
1 ) and the ambigu-

ity set B(m) contains some quantization codeword ŷN
2 with bin index b2(ŷN

2 ) = l21.

This event can divide into two cases:

(a) ŷN
2 ∈ B(m) is not the truly selected quantization codeword.

(b) ŷN
2 ∈ B(m) is indeed the selected quantization codeword.

Next, we analyze the error probability of these two typical error events above. For any

nonempty S ⊆ {1c, 11p, 2c, 12p}, we define error events as follows:

• Let E (1)
S denote the event that there exists some m 6= 1, (where ms 6= 1,∀s ∈ S

and ms = 1, ∀s /∈ S ), such that m ∈ L(yN
1 ) and B(m) contains some ŷN

2 (k), k ∈

{1, 2, · · · , 2NR̂2} with b2(ŷN
2 (k)) = l21. Note that ŷN

2 (k) is not the actually selected

quantization codeword ŷN
2 (1).

• Let E (2)
S denote the event that there exists some m 6= 1, (where ms 6= 1,∀s ∈ S and

ms = 1, ∀s /∈ S ), such that m ∈ L(yN
1 ) and B(m) contains ŷN

2 (1).

Probability of E (1)
S : For convenience, let xN (m) denote the vector of codewords corre-

sponding to message m, i.e., (xN
1c(m1c), x

N
11p(m1c,m11p), xN

2c(m2c), x
N
12p(m2c,m12p)). The

probability of the error event E (1)
S can upper bound as (6.114).

Pr{E (1)
S }

≤
∑

m:ms 6=1,
∀s∈S

∑
k 6=1

Pr{m ∈ L(yN
1 ), ŷN

2 (k) ∈ B(m), b(ŷN
2 (k)) = l21}

≤
∑

m:ms 6=1,
∀s∈S

∑
k 6=1

Pr{
(
ŷN

2 (k), xN (m), yN
1

)
∈ A(N )

ε , b(ŷN
2 (k)) = l21}
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(a)
= 2−NCB

21

∑
m:ms 6=1,
∀s∈S

∑
k 6=1

Pr{
(
ŷN

2 (k), xN (m), yN
1

)
∈ A(N )

ε }

≤ 2N
(∑

s∈S Rs

)
2−NCB

21

∑
k 6=1

Pr{
(
ŷN

2 (k), xN (m), yN
1

)
∈ A(N )

ε } (6.113)

≤ 2N
(∑

s∈S Rs

)
2−NCB

21Pr{m ∈ L(yN
1 )} · 2NR̂2 · 2−N (I (ŷ2;x1c ,x11p ,x2c ,x12p ,y1)−3ε) (6.114)

where (a) is due to the independent uniform binning. In (6.113), for k 6= 1, ŷN
2 (k) is inde-

pendent of
(
xN (m), yN

1

)
. We can upper bound

∑
k 6=1 Pr

{(
ŷN

2 (k), xN (m), yN
1

)
∈ A

(N )
ε

}
by using Theorem 15.2.2 in [1] and derive with the same line of Appendix A in [2]. There-

fore, we obtain (6.114).

From the results in the works [11] and [13], we obtain

Pr{m ∈ L(yN
1 )} ≤



2−N (I (x11p ;y1|x1c ,x2c ,x12p)−ε′) S = {11p}

2−N (I (x12p ;y1|x1c ,x2c ,x11p)−ε′) S = {12p}

2−N (I (x1c ,x11p ;y1|x2c ,x12p)−ε′) S = {1c}

2−N (I (x2c ,x12p ;y1|x1c ,x11p)−ε′) S = {2c}

2−N (I (x1c ,x11p ;y1|x2c ,x12p)−ε′) S = {1c, 11p}

2−N (I (x2c ,x12p ;y1|x1c ,x11p)−ε′) S = {2c, 12p}

2−N (I (x1c ,x11p ,x2c ,x12p ;y1)−ε′) S = {1c, 2c}

2−N (I (x11p ,x12p ;y1|x1c ,x2c)−ε′) S = {11p, 12p}

2−N (I (x11p ,x2c ,x12p ;y1|x1c)−ε′) S = {2c, 11p}

2−N (I (x1c ,x11p ,x12p ;y1|x2c)−ε′) S = {1c, 12p}

2−N (I (x1c ,x11p ,x2c ,x12p ;y1)−ε′) S = {1c, 11p, 2c}

2−N (I (x1c ,x11p ,x2c ,x12p ;y1)−ε′) S = {1c, 2c, 12p}

2−N (I (x11p ,x2c ,x12p ;y1|x1c)−ε′) S = {11p, 2c, 12p}

2−N (I (x1c ,x11p ,x12p ;y1|x2c)−ε′) S = {1c, 11p, 12p}

2−N (I (x1c ,x11p ,x2c ,x12p ;y1)−ε′) S = {1c, 11p, 2c, 12p}

where ε′ = 4ε. Note that it is alike in the X channel without cooperation as in [11]

and [13], that is, receiver 1 can decode both m1c and m2c correctly.
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Therefore, after eliminating the redundant terms, the probability of the first kind of

error event vanishes as N →∞ if the rates satisfy the following inequalities:

R11p ≤ I (x11p ; y1|x1c, x2c, x12p) + ψ

R12p ≤ I (x12p ; y1|x1c, x2c, x11p) + ψ

R1c + R11p ≤ I (x1c, x11p ; y1|x2c, x12p) + ψ

R2c + R12p ≤ I (x2c, x12p ; y1|x1c, x11p) + ψ

R11p + R12p ≤ I (x11p , x12p ; y1|x1c, x2c) + ψ

R1c + R11p + R12p ≤ I (x1c, x11p , x12p ; y1|x2c) + ψ

R2c + R11p + R12p ≤ I (x11p , x2c, x12p ; y1|x1c) + ψ

R1c + R11p + R2c + R12p ≤ I (x1c, x11p , x2c, x12p ; y1) + ψ

where ψ = CB
21 − R̂2 + I (ŷ2; x1c, x11p , x2c, x12p , y1).

Furthermore, Pr{E (1)
S } can be alternately upper bounded as follows:

Pr{E (1)
S }

≤
∑

m:ms 6=1,
∀s∈S

Pr{m ∈ L(yN
1 )} · Pr{∃k 6= 1, ŷN

2 (k) ∈ B(m), b(ŷN
2 (k)) = l21|m ∈ L(yN

1 )}

≤ 2N (
∑

s∈S Rs)Pr{m ∈ L(yN
1 )} (6.115)

Hence, the probability of the first kind of error event disappears as N → 0 if the rates

satisfy the following inequalities:

R11p ≤ I (x11p ; y1|x1c, x2c, x12p) + ψ+

R12p ≤ I (x12p ; y1|x1c, x2c, x11p) + ψ+

R1c + R11p ≤ I (x1c, x11p ; y1|x2c, x12p) + ψ+

R2c + R12p ≤ I (x2c, x12p ; y1|x1c, x11p) + ψ+

R11p + R12p ≤ I (x11p , x12p ; y1|x1c, x2c) + ψ+

R1c + R11p + R12p ≤ I (x1c, x11p , x12p ; y1|x2c) + ψ+

R2c + R11p + R12p ≤ I (x11p , x2c, x12p ; y1|x1c) + ψ+

R1c + R11p + R2c + R12p ≤ I (x1c, x11p , x2c, x12p ; y1) + ψ+
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Finally, substituting R̂2 = I (ŷ2; y2) and using the Markov relation (x1c, x11p , x2c, x12p , y1)−

y2 − ŷ2, we have the rate loss term as follows:

ξ1 := R̂2 − I (ŷ2; x1c, x11p , x2c, x12p , y1)

= I (ŷ2; y2)− I (ŷ2; x1c, x11p , x2c, x12p , y1)

= I (ŷ2; y2|x1c, x11p , x2c, x12p , y1)

Probability of E (2)
S : We can upper bound the probability of E (2)

S as follows:

Pr{E (2)
S } ≤

∑
m:ms 6=1,∀s∈S

Pr{ŷN
2 (1) ∈ B(m),m ∈ L(yN

1 )}

=
∑

m:ms 6=1,∀s∈S

Pr{(ŷN
2 (1), xN (m), yN

1 ) ∈ A(N )
ε }

≤



Θ · 2−N (I (x11p ;y1,ŷ2|x1c ,x2c ,x12p)−ε′) S = {11p}

Θ · 2−N (I (x12p ;y1,ŷ2|x1c ,x2c ,x11p)−ε′) S = {12p}

Θ · 2−N (I (x1c ,x11p ;y1,ŷ2|x2c ,x12p)−ε′) S = {1c}

Θ · 2−N (I (x2c ,x12p ;y1,ŷ2|x1c ,x11p)−ε′) S = {2c}

Θ · 2−N (I (x1c ,x11p ;y1,ŷ2|x2c ,x12p)−ε′) S = {1c, 11p}

Θ · 2−N (I (x2c ,x12p ;y1,ŷ2|x1c ,x11p)−ε′) S = {2c, 12p}

Θ · 2−N (I (x1c ,x11p ,x2c ,x12p ;y1,ŷ2)−ε′) S = {1c, 2c}

Θ · 2−N (I (x11p ,x12p ;y1,ŷ2|x1c ,x2c)−ε′) S = {11p, 12p}

Θ · 2−N (I (x11p ,x2c ,x12p ;y1,ŷ2|x1c)−ε′) S = {2c, 11p}

Θ · 2−N (I (x1c ,x11p ,x12p ;y1,ŷ2|x2c)−ε′) S = {1c, 12p}

Θ · 2−N (I (x1c ,x11p ,x2c ,x12p ;y1,ŷ2)−ε′) S = {1c, 11p, 2c}

Θ · 2−N (I (x1c ,x11p ,x2c ,x12p ;y1,ŷ2)−ε′) S = {1c, 2c, 12p}

Θ · 2−N (I (x11p ,x2c ,x12p ;y1,ŷ2|x1c)−ε′) S = {11p, 2c, 12p}

Θ · 2−N (I (x1c ,x11p ,x12p ;y1,ŷ2|x2c)−ε′) S = {1c, 11p, 12p}

Θ · 2−N (I (x1c ,x11p ,x2c ,x12p ;y1,ŷ2)−ε′) S = {1c, 11p, 2c, 12p}

where Θ = 2N (
∑

s∈S Rs) and ε′ = 4ε.
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After eliminating the redundant terms, therefore, the probability of the second kind of

error event vanishes for sufficiently large N if the rates satisfy the following inequalities:

R11p ≤ I (x11p ; y1, ŷ2|x1c, x2c, x12p)

R12p ≤ I (x12p ; y1, ŷ2|x1c, x2c, x11p)

R1c + R11p ≤ I (x1c, x11p ; y1, ŷ2|x2c, x12p)

R2c + R12p ≤ I (x2c, x12p ; y1, ŷ2|x1c, x11p)

R11p + R12p ≤ I (x11p , x12p ; y1, ŷ2|x1c, x2c)

R1c + R11p + R12p ≤ I (x1c, x11p , x12p ; y1, ŷ2|x2c)

R2c + R11p + R12p ≤ I (x11p , x2c, x12p ; y1, ŷ2|x1c)

R1c + R11p + R2c + R12p ≤ I (x1c, x11p , x2c, x12p ; y1, ŷ2)

Error Probability Analysis of Receiver 2: After receiving the two bin indices, receiver

2 can decode (m1c,m21p ,m2c,m22p) with the smaller candidate message sets, i.e., m1c and

m2c . Following the same line as [2], we obtain the rate region that is achievable for receiver

2 to decode successfully as follows:

R21p ≤ I (x21p ; y2|x1c, x2c, x22p)

R22p ≤ I (x22p ; y2|x1c, x2c, x21p)

R1c + R21p ≤ I (x1c, x21p ; y2|x2c, x22p) + CB
12

R2c + R22p ≤ I (x2c, x22p ; y2|x2c, x21p) + CB
12

R21p + R22p ≤ I (x21p , x22p ; y2|x1c, x2c)

R1c + R21p + R22p ≤ I (x1c, x21p , x22p ; y2|x2c) + CB
12

R2c + R21p + R22p ≤ I (x2c, x21p , x22p ; y2|x1c) + CB
12

R1c + R21p + R2c + R22p ≤ I (x1c, x21p , x2c, x22p ; y2) + CB
12.

Note that the upper bounds for R21p ,R22p and R21p + R22p in the rate region above do

not gain from receiver cooperation since receiver 1 does not decode the private messages

m21p ,m22p .
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6.5 Proof of Theorem 6.8

Codebook Generation: In transmitter i, a message mii is split into miic and miip and

a message mji is considered as a common message mjic . We consider block length-N

encoding and generate codebooks as follows:

• First we generate 2N (Riic+Rjic) independent common codewords xN
ic (miic,mjic), miic ∈

{1, · · ·, 2NRiic} and mjic ∈ {1, · · ·, 2NRjic}, according to distribution p(xN
ic ) =∏N

n=1 p(xic[n]) with xic[n] ∼ CN (0,Qic) for all n.

• For convenience, we combine and rearrange two codeword indices (miic,mjic) into

mic ∈ {1, . . ., 2NRic}, where Ric = Riic + Rjic . Therefore, we also denote these

independent common codewords with xN
ic (mic).

• Finally, for each common codeword xN
ic (mic) serving as a cloud center, we gener-

ate 2NRiip independent codewords xN
i (mic,miip), miip ∈ {1, . . ., 2NRiip}, according

to conditional distribution p(xN
i |xN

ic ) =
∏N

n=1 p(xi [n]|xic[n]) such that for all n,

xi [n] = xic[n] + xiip [n], with xiip [n] ∼ CN (0,Qiip) and independent of everything

else.

The power split configuration is such that Qic + Qiip = 1 and INRjjp
i := Qijp|hij |2 ≤ 1

if SNRi > INRj . Using a simple power-splitting configuration from [9], we set the power

of each private codeword by Qiip = min
{

1
INRj

, 1
}
.

The details for generating codebook when receiver 1 and 2 serve as relay, encoding and

decoding at receiver 1 and 2 and analyzing the error probability at receiver 1 and 2 are the

same as the proof of Lemma 5.1 in [2], they are thus omitted here.
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6.6 Proof of Claim 6.13, Claim 6.14, Claim 6.15, Claim 6.16, Claim

6.17, Claim 6.18, Claim 6.19, Claim 6.20, Claim 6.21, Claim 6.22

and Claim 6.23

6.6.1 Proof of Claim 6.13

Proof: There are three possible R11 + R21 + R22 bounds. Hence, we consider the

following three cases:

1) If the bound

R11 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R21 + R22 bound and the R12

bound (6.37) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12 − R12c

}
+
{
I (x2c; y1, ŷ2|x1)− R22c

}
=
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
+
{
I (x2c; y1, ŷ2|x1)− R12c − R22c

}
= (6.80)

which is greater than the active sum rate bound. Note that {I (x2c; y1, ŷ2|x1) − R12c −

R22c} ≥ 0 refers to (6.37).

2) If the bound

R11 + R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R21 + R22 bound and the R12

bound (6.37) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

}
+
{
I (x2c; y1, ŷ2|x1)− R22c

}
=
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

}
+
{
I (x2c; y1, ŷ2|x1)− R12c − R22c

}
= (6.82)
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which is greater than the active sum rate bound. Note that {I (x2c; y1, ŷ2|x1) − R12c −

R22c} ≥ 0 refers to (6.37).

3) If the bound

R11 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R12c

is active. The point R∗11 +R∗12 +R∗21 +R∗22 where the R11 +R21 +R22 bound and the R12

bound (6.37) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+CB
12 − R12c


+
{
I (x2c; y1, ŷ2|x1)− R22c

}
=
{
I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12

}
+
{
I (x2c; y1, ŷ2|x1)− R12c − R22c

}
= (6.86)

which is greater than the active sum rate bound. Note that {I (x2c; y1, ŷ2|x1) − R12c −

R22c} ≥ 0 refers to (6.37).

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R11 + R21 + R22 bound intersect can be acquired.

6.6.2 Proof of Claim 6.14

Proof: In this proof, we consider only (6.43) and other bounds can be shown similarly.

There are three possible R21 + R22 bounds. Hence, we consider the following three cases:

1) If the bound

R21 + R22 ≤ I (x1c, x2; y2) + CB
12 − R11c − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R21 + R22 bound and the R11 + R12

bound (6.43) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R21c − R22c


+
{
I (x1c, x2; y2) + CB

12 − R11c − R12c

}
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=
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
+

{I (x2c; y1|x1) + (CB
21 − ξ1)+ − R12c − R22c}

+{I (x1c; y2|x2) + CB
12 − R11c − R21c}


= (6.80)

which is greater than the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 − ξ1)+ −

R12c − R22c} ≥ 0 and {I (x1c; y2|x2) + CB
12 − R11c − R21c} ≥ 0 refer to (6.36) and (6.38),

respectively.

2) If the bound

R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R11c − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R21 + R22 bound and the R11 + R12

bound (6.43) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R21c − R22c


+

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12

−R11c − R12c


=

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c)

+I (x1c; y2|x2) + CB
12


+

{I (x2c; y1|x1) + (CB
21 − ξ1)+ − R12c − R22c}

+{I (x1c; y2|x2) + CB
12 − R11c − R21c}


≥ (6.86)

which is greater than the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 − ξ1)+ −

R12c − R22c} ≥ 0 and {I (x1c; y2|x2) + CB
12 − R11c − R21c} ≥ 0 refer to (6.36) and (6.38),

respectively.

3) If the bound

R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R21 + R22 bound and the R11 + R12
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bound (6.43) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

 I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R21c − R22c


+
{
I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12 − R11c − R12c

}
=
{
I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12

}
+

{I (x2c; y1|x1) + (CB
21 − ξ1)+ − R12c − R22c}

+{I (x1c; y2|x2) + CB
12 − R11c − R21c}


= (6.86)

which is greater than the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 − ξ1)+ −

R12c − R22c} ≥ 0 and {I (x1c; y2|x2) + CB
12 − R11c − R21c} ≥ 0 refer to (6.36) and (6.38),

respectively.

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R21 + R22 bound intersect can be acquired.

6.6.3 Proof of Claim 6.15

Proof: In this proof, we consider only (6.47) and other bounds can be shown similarly.

There are four possible R11 + R12 bounds. Hence, we consider the following four cases:

1) If the bound

R11 + R12 ≤ I (x1, x2c; y1) + (CB
21 − ξ1)+ − R21c − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 bound and the R21 + R22

bound (6.47) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c − R12c

}
+
{
I (x1, x2c; y1) + (CB

21 − ξ1)+ − R21c − R22c

}
=
{
I (x1, x2c; y1) + (CB

21 − ξ1)+ − R22c

}
+
{
I (x2; y2|x1c) + CB

12 − R12c

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.50) + (6.39)
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which is greater than the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 − R11c −

R21c} ≥ 0 refers to (6.38).

2) If the bound

R11 + R12 ≤ I (x1, x2c; y1, ŷ2)− R21c − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 bound and the R21 + R22

bound (6.47) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c − R12c

}
+
{
I (x1, x2c; y1, ŷ2)− R21c − R22c

}
=
{
I (x1, x2c; y1, ŷ2)− R22c

}
+
{
I (x2; y2|x1c) + CB

12 − R12c

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.51) + (6.39)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 − R11c −

R21c} ≥ 0 refers to (6.38).

3) If the bound

R11 + R12 ≤ I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R21c − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 bound and the R21 + R22

bound (6.47) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c − R12c

}
+
{
I (x2c; y1|x1) + I (x1; y1|x2c) + (CB

21 − ξ1)+ − R21c − R22c

}
=
{
I (x2c; y1|x1) + I (x1; y1|x2c) + (CB

21 − ξ1)+ − R22c

}
+
{
I (x2; y2|x1c) + CB

12 − R12c

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.52) + (6.39)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 − R11c −

R21c} ≥ 0 refers to (6.38).
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4) If the bound

R11 + R12 ≤ I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R21c − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 bound and the R21 + R22

bound (6.47) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c − R12c

}
+
{
I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R21c − R22c

}
=
{
I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c

}
+
{
I (x2; y2|x1c) + CB

12 − R12c

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.53) + (6.39)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 − R11c −

R21c} ≥ 0 refers to (6.38).

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R11 + R12 bound intersect can be acquired.

6.6.4 Proof of Claim 6.16

Proof: In this proof, we consider only (6.58) and other bounds can be shown similarly.

For the first condition, there are three possible R11 +R12 + 2R21 +R22 bounds. Hence, we

consider the following three cases:

1) If the bound

R11 + R12 + 2R21 + R22 ≤ I (x1; y1|x2c) + I (x1c, x2; y2) + CB
12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + 2R21 + R22 bound and

the R11 + R12 + R22 bound (6.58) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =
{
I (x1; y1|x2c) + I (x1c, x2; y2) + CB

12 − R11c

}
+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R21c


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=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x2c)− R21c

}
+
{
I (x1c, x2; y2) + CB

12 − R11c

}
= (6.78) + (6.34) + (6.72)

which is greater than twice the active sum rate bound.

2) If the bound

R11 + R12 + 2R21 + R22 ≤

I (x1; y1|x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12

−R11c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + 2R21 + R22 bound and

the R11 + R12 + R22 bound (6.58) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1|x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+CB
12 − R11c


+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R21c


=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x2c)− R21c

}
+
{
I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12 − R11c

}
= (6.78) + (6.34) + (6.77)

which is greater than twice the active sum rate bound.

3) If the bound

R11 + R12 + 2R21 + R22 ≤

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12

−R11c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + 2R21 + R22 bound and

the R11 + R12 + R22 bound (6.58) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+CB
12 − R11c


+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R21c


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=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R21c

}
+
{
I (x1c; y2|x2) + CB

12 − R11c

}
= (6.78) + (6.61) + (6.38)

which is greater than twice the active sum rate bound.

Therefore, in the first condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the R11 + R12 + 2R21 + R22 bound intersect can be achieved.

For the second condition, there is one possible R21 bound. Hence, we consider the

following case:

If the bound

R21 ≤ I (x1c; y2|x2) + CB
12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R21 bound and the R11 + R12 + R22

bound (6.58) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R21c


+
{
I (x1c; y2|x2) + CB

12 − R11c

}
=
{
I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB

21 − ξ1)+ + CB
12

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.78)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 − R11c −

R21c} ≥ 0 refers to (6.38).

Therefore, in the second condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the R21 bound intersect can be achieved.

6.6.5 Proof of Claim 6.17

Proof: In this proof, we consider only (6.66) and other bounds can be shown similarly.

For the first condition, there is one possible R11 + 2R12 + R21 + R22 bound. Hence, we

consider the following case:
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If the bound

R11 + 2R12 + R21 + R22 ≤ I (x1, x2c; y1) + I (x2; y2|x1c) + (CB
21 − ξ1)+ + CB

12 − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + 2R12 + R21 + R22 bound and

the R11 + R21 + R22 bound (6.66) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1, x2c; y1) + I (x2; y2|x1c) + (CB
21 − ξ1)+ + CB

12

−R22c


+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R12c


=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1, x2c; y1) + (CB

21 − ξ1)+ − R22c

}
+
{
I (x2; y2|x1c) + CB

12 − R12c

}
= (6.78) + (6.50) + (6.39)

which is greater than twice the active sum rate bound.

Therefore, in the first condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the R11 + 2R12 + R21 + R22 bound intersect can be achieved.

For the second condition, there is one possible R12 bound. Hence, we consider the

following case:

If the bound

R12 ≤ I (x2c; y1|x1) + (CB
21 − ξ1)+ − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 bound and the R11 + R21 + R22

bound (6.66) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R12c


+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R22c

}
=
{
I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB

21 − ξ1)+ + CB
12

}
+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78)
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which is greater than the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 − ξ1)+ −

R12c − R22c} ≥ 0 refers to (6.36).

Therefore, in the second condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the R12 bound intersect can be achieved.

6.6.6 Proof of Claim 6.18

Proof: For the first condition, there are two possible 2R11 + R12 + R21 + R22 bounds.

Hence, we consider the following two cases:

1) If the bound

2R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + I (x1, x2c; y1)

+(CB
21 − ξ1)+ + CB

12 − R21c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the 2R11 + R12 + R21 + R22 bound and

the R12 + R21 + R22 bound (6.73) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c

}
+

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + I (x1, x2c; y1)

+(CB
21 − ξ1)+ + CB

12 − R21c


=

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12 − R11c − R21c


+
{
I (x1c; y2|x2) + I (x2; y2|x1c) + CB

12}+ CB
12

≥ (6.78) + (6.80)

which is greater than twice the active sum rate bound.

2) If the bound

2R11 + R12 + R21 + R22 ≤

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + I (x1, x2c; y1, ŷ2)

+CB
12 − R21c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the 2R11 + R12 + R21 + R22 bound and
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the R12 + R21 + R22 bound (6.73) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c

}
+

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c)

+I (x1, x2c; y1, ŷ2) + CB
12 − R21c


=
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + I (x2; y2|x1c) + CB

12

}
+
{
I (x1c, x2; y2|x2c) + I (x1, x2c; y1, ŷ2)− R11c − R21c

}
+ 2CB

12

> (6.80) + (6.82)

which is greater than twice the active sum rate bound.

Therefore, in the first condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the 2R11 + R12 + R21 + R22 bound intersect can be achieved.

For the second condition, there are two possible R11 bounds. Hence, we consider the

following two cases:

1) If the bound

R11 ≤ I (x1; y1|x2c)− R21c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 bound and the R12 + R21 + R22

bound (6.73) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c

}
+
{
I (x1; y1|x2c)− R21c

}
= {I (x2; y2|x1c) + I (x1; y1|x2c) + CB

12}

+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.80)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2)+CB
12−R11c−R21c}

refers to (6.38).

2) If the bound

R11 ≤ I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R21c
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is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 bound and the R12 + R21 + R22

bound (6.73) intersect satisfies

R∗11 + R∗12 + R∗21 + R∗22 =
{
I (x1c; y2|x2) + I (x2; y2|x1c) + 2CB

12 − R11c

}
+
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB

12 − R21c

}
=
{
I (x1c; y2|x2) + I (x2; y2|x1c) + I (x1; y1|x1c, x2c) + CB

12

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
+ CB

12

≥ (6.80)

which is greater than the active sum rate bound. Note that {I (x1c; y2|x2)+CB
12−R11c−R21c}

refers to (6.38).

Therefore, in the second condition, we conclude that the corner point where the R11 +

R12 + R21 + R22 bound and the R11 bound intersect can be achieved.

6.6.7 Proof of Claim 6.19

Proof: This proof considers only (6.87) and the other can be shown similarly. Since

there are five possible R12 + R21 + R22 bounds. Hence, we consider the following five

cases:

1) If the bound

R12 + R21 + R22 ≤ I (x1c, x2; y2) + CB
12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 + R21 + R22 bound and the

2R11 + R12 + R21 + R22 bound (6.87) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1|x1c, x2c) + I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + 2CB

12 − R21c


+
{
I (x1c, x2; y2) + CB

12 − R11c

}
=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
+
{
I (x1c; y2|x2) + CB

12 − R11c − R21c

}
= (6.78) + (6.80)
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which is greater than twice the active sum rate bound. Note that {I (x1c; y2|x2) + CB
12 −

R11c − R21c} ≥ 0 refers to (6.38).

2) If the bound

R12 + R21 + R22 ≤

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + (CB
21 − ξ1)+

+CB
12 − R11c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 + R21 + R22 bound and the

2R11 + R12 + R21 + R22 bound (6.87) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1|x1c, x2c) + I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + 2CB

12 − R21c


+

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R11c


=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB

12 − R21c

}
+

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R11c


= (6.78) + (6.35) + (6.74)

which is greater than twice the active sum rate bound.

3) If the bound

R12 + R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 + R21 + R22 bound and the

2R11 + R12 + R21 + R22 bound (6.87) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1|x1c, x2c) + I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + 2CB

12 − R21c


+

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+CB
12 − R11c


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=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB

12 − R21c

}
+

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2)

+CB
12 − R11c


= (6.78) + (6.35) + (6.75)

which is greater than twice the active sum rate bound.

4) If the bound

R12 + R21 + R22 ≤ I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 + R21 + R22 bound and the

2R11 + R12 + R21 + R22 bound (6.87) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1, |x1c, x2c) + I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + 2CB

12 − R21c


+

I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c


=
{
I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB

21 − ξ1)+ + CB
12

}
+
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB

12 − R21c

}
+

I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c


= (6.78) + (6.35) + (6.76)

which is greater than twice the active sum rate bound.

5) If the bound

R12 + R21 + R22 ≤ I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R12 + R21 + R22 bound and the

2R11 + R12 + R21 + R22 bound (6.87) intersect satisfies
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2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1; y1|x1c, x2c) + I (x2c, x1; y1|x1c) + I (x1c; y2|x2)

+I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + 2CB

12 − R21c


+
{
I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12 − R11c

}
=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB

12 − R21c

}
+
{
I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB

12 − R11c

}
= (6.78) + (6.35) + (6.77)

which is greater than twice the active sum rate bound.

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R12 + R21 + R22 bound intersect can be acquired.

6.6.8 Proof of Claim 6.20

Proof: In this proof, we consider only (6.89) and the other bounds can be shown sim-

ilarly. Since there are three possible R11 + R21 + R22 bounds. Hence, we consider the

following three cases:

1) If the bound

R11 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R21 + R22 bound and the

R11 + 2R12 + R21 + R22 bound (6.89) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R22c


+
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12 − R12c

}
=
{
I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB

12

}
+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R12c − R22c


= (6.80) + (6.78)

which is greater than twice the active sum rate bound.
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2) If the bound

R11 + R21 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R21 + R22 bound and the

R11 + 2R12 + R21 + R22 bound (6.89) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R22c


+
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

}
=
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

}
+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R12c − R22c


= (6.82) + (6.78)

which is greater than twice the active sum rate bound.

3) If the bound

R11 + R21 + R22 ≤ I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R12c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R21 + R22 bound and the

R11 + 2R12 + R21 + R22 bound (6.89) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R22c


+

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1)

+I (x1c, x2; y2|x2c) + CB
12 − R12c


=

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1)

+I (x1c, x2; y2|x2c) + CB
12


+

I (x2c, x1; y1|x1c) + I (x1c, x2; y2) + (CB
21 − ξ1)+

+CB
12 − R12c − R22c


= (6.86) + (6.78)

which is greater than twice the active sum rate bound.

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R11 + R21 + R22 bound intersect can be acquired.
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6.6.9 Proof of Claim 6.21

Proof: In this proof, we consider only (6.102) and the other bounds can be shown

similarly. Since there are two possible R11 + R12 + R22 bounds. Hence, we consider the

following two cases:

1) If the bound

R11 + R12 + R22 ≤ I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R21c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R22 bound and the

R11 + R12 + 2R21 + R22 bound (6.102) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c


+
{
I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB

21 − ξ1)+ − R21c

}
=
{
I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB

21 − ξ1)+
}

+

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c − R21c


= (6.81) + (6.78)

which is greater than twice the active sum rate bound.

2) If the bound

R11 + R12 + R22 ≤ I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R21c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R22 bound and the

R11 + R12 + 2R21 + R22 bound (6.102) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c


+
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R21c

}
=
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

}
+

I (x1, x2c; y1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

−R11c − R21c


= (6.82) + (6.78)
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which is greater than twice the active sum rate bound.

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R11 + R12 + R22 bound intersect can be acquired.

6.6.10 Proof of Claim 6.22

Proof: Since there are eight possible R11 + R12 + R21 bounds. Hence, we consider the

following eight cases:

1) If the bound

R11 + R12 + R21 ≤ I (x1, x2c; y1) + (CB
21 − ξ1)+ − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+
{
I (x1, x2c; y1) + (CB

21 − ξ1)+ − R22c

}
=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB

21 − ξ1)+
}

+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78) + (6.81)

which is greater than twice the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 −

ξ1)+ − R12c − R22c} ≥ 0 refers to (6.36).

2) If the bound

R11 + R12 + R21 ≤ I (x1, x2c; y1, ŷ2)− R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the
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R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+
{
I (x1, x2c; y1, ŷ2)− R22c

}
=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

}
+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78) + (6.82)

which is greater than twice the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 −

ξ1)+ − R12c − R22c} ≥ 0 refers to (6.36).

3) If the bound

R11 + R12 + R21 ≤ I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+
{
I (x2c; y1|x1) + I (x1; y1|x2c) + (CB

21 − ξ1)+ − R22c

}
=

 I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+

I (x2; y2|x1c, x2c) + I (x2c; y1|x1) + I (x1; y1|x2c)

+(CB
21 − ξ1)+


+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78) + (6.81)

which is greater than twice the active sum rate bound. which is greater than twice the active

sum rate bound. Note that {I (x2c; y1|x1)+(CB
21− ξ1)+−R12c−R22c} ≥ 0 refers to (6.36).
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4) If the bound

R11 + R12 + R21 ≤ I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+
{
I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c

}
=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+
{
I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c

}
+
{
I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + (CB

21 − ξ1)+ − R12c

}
= (6.78) + (6.53) + (6.40)

which is greater than twice the active sum rate bound.

5) If the bound

R11 + R12 + R21 ≤

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2) + (CB
21 − ξ1)+

+CB
12 − R22c


is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2)

+(CB
21 − ξ1)+ + CB

12 − R22c


=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+

I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + I (x2c; y1|x1)

+(CB
21 − ξ1)+ + CB

12 − R22c


+
{
I (x2; y2|x1c, x2c) + I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c

}
= (6.78) + (6.54) + (6.40)
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which is greater than twice the active sum rate bound.

6) If the bound

R11 + R12 + R21 ≤ I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c; y2|x2) + CB
12 − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c; y2|x2)

+CB
12 − R22c


=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+

I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + I (x2c; y1|x1)

+(CB
21 − ξ1)+ + CB

12 − R22c


+
{
I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c)− R12c

}
= (6.78) + (6.54) + (6.41)

which is greater than twice the active sum rate bound.

7) If the bound

R11 + R12 + R21 ≤ I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12 − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12

−R22c


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=

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c)

+(CB
21 − ξ1)+ + CB

12


+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78) + (6.83)

which is greater than twice the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 −

ξ1)+ − R12c − R22c} ≥ 0 refers to (6.36).

8) If the bound

R11 + R12 + R21 ≤ I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12 − R22c

is active. The point R∗11 + R∗12 + R∗21 + R∗22 where the R11 + R12 + R21 bound and the

R11 + R12 + R21 + 2R22 bound (6.110) intersect satisfies

2R∗11 + 2R∗12 + 2R∗21 + 2R∗22 =

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1)

+I (x1c, x2; y2|x2c) + 2(CB
21 − ξ1)+ + CB

12 − R12c


+
{
I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB

12 − R22c

}
=

 I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+

+CB
12


+

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c)

+CB
12


+
{
I (x2c; y1|x1) + (CB

21 − ξ1)+ − R12c − R22c

}
= (6.78) + (6.84)

which is greater than twice the active sum rate bound. Note that {I (x2c; y1|x1) + (CB
21 −

ξ1)+ − R12c − R22c} ≥ 0 refers to (6.36).

Therefore, we conclude that the corner point where the R11 + R12 + R21 + R22 bound

and the R11 + R12 + R21 bound intersect can be acquired.

In addition, we use the following lemma which is proposed in [22] to help our proof.
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Lemma 6.24

log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
≥ log

(
1 +

SNR1

1 + INR2

)
+ log(1 + SNR2 + INR2) (6.116)

Proof: See all details at Lemma B.6 in [22].

Furthermore, using the same line as Lemma B.6 in [22], we also obtain

log
(
1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2

)
≥ log

(
1 +

SNR2

1 + INR1

)
+ log(1 + SNR1 + INR1) (6.117)

Next, for proving in the following claim, we assign the following terms which are

considerably useful for our proof:

1. Quantization distortion at receiver 2 (∆2) = 1 + SNR22p
2 . This value of ∆2 is cho-

sen for upper bounding the rate loss term ξ1 in (6.33) by 1 bit, where SNRiip
i =

SNRiQiip = SNRi min
{

1, 1
INRj

}
≥ SNRi

1+INRj
and 0 ≤ INRjjp

i ≤ 1 for i , j = 1, 2 and

i 6= j .

2. For β, γ ∈ [0, 1], we set R11c = βR1c , R21c = R1c − βR1c , R12c = R2c − γR2c and

R22c = γR2c , where R1c and R2c are the rate constraints without cooperation for the

common codeword at transmitter 1 and 2, respectively, that are calculated as follows:

R1c = I (x1c; y2|x2) = log

(
1 + INR2

1 + INR11p
2

)
,

R2c = I (x2c; y1|x1) = log

(
1 + INR1

1 + INR22p
1

)
.

Remark 6.25 (Constraint common rates (6.111) and (6.112) at the asymptotic values of β

and γ): Remind that the constraint common rates (6.111) and (6.112) are

R1c = R11c + R21c = βR1c + (1− β)R1c

R2c = R12c + R22c = (1− γ)R2c + γR2c

where β, γ ∈ [0, 1]. When considering at the asymptotic values of β and γ, these two

constraint common rates can be considered as the following 4 cases:
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1. Case β = 0: We obtain R1c = R21c .

2. Case β = 1: We obtain R1c = R11c .

3. Case γ = 0: We obtain R2c = R12c .

4. Case γ = 1: We obtain R2c = R22c .

There result are useful to understand the individual rate and the sum-rate in the next re-

mark.

Remark 6.26 (Individual rate at the asymptotic values of β and γ): Remind that, based

on the proposed strategy as shown in Appendix 6.5 for the two-user Gaussian X channel

with limited receiver cooperation in the case of strong Gaussian X channel type I, the

transmitted codeword can be written as follows: xi [n] = xic[n] + xiip [n] for all n and

i = 1, 2. The rate for each message that corresponds to the proposed strategy is shown in

the following relationships: Rii = Riip + Riic and Rij = Rij c, for i , j = 1, 2 and i 6= j ,

where Riic and Rij c are defined in (6.111) and (6.112).

1. The individual rate at the asymptotic values of β and γ can be considered in the

following 4 cases:

(a) Case β = 0: Since R1c = R21c; therefore, we obtain

i. R11 = R11p

ii. R21 = R21c = R1c

This result shows that R11 and R21 are the rate of a private codeword xN
11p and

the rate of a common codeword xN
1c , respectively.

(b) Case β = 1: Since R1c = R11c; therefore, we obtain

i. R11 = R11p + R11c = R11p + R1c

ii. R21 = R21c = 0

This result shows that R11 is the sum rate of a private codeword xN
11p and a

common codeword xN
1c . R21 = 0.

(c) Case γ = 0: Since R2c = R12c; therefore, we obtain

i. R12 = R12c = R2c
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ii. R22 = R22p

This result shows that R12 and R22 are equal to the rate of a common codeword

xN
2c and the rate of a private codeword xN

22p , respectively.

(d) Case γ = 1: Since R2c = R22c; therefore, we obtain

i. R12 = R12c = 0

ii. R22 = R22p + R22c = R22p + R2c

This result shows that R22 is the sum rate of a private codeword xN
22p and a

common codeword xN
2c . R12 = 0.

2. The sum of 2 rates at the asymptotic values of β and γ can be considered in the

following 4 cases:

(a) Case β = 0 and γ = 0: Since R1c = R21c and R2c = R12c; therefore, we

obtain

i. R11 + R12 = R11p + R12c = R11p + R2c

ii. R21 + R22 = R21c + R22p = R22p + R1c

This result shows that Rii + Rij is the sum rate of a private codeword xN
iip and

a common codeword xN
jc .

(b) Case β = 0 and γ = 1: Since R1c = R21c and R2c = R22c; therefore, we

obtain R12 = 0 and

i. R11 + R12 = R11p

ii. R21 + R22 = R21c + R22p + R22c = R22p + R1c + R2c

This result shows that R11 + R12 equals the rate of a private codeword xN
11p

and R21 + R22 is the sum rate of a private codeword xN
22p and two common

codewords xN
1c and xN

2c .

(c) Case β = 1 and γ = 0: Since R1c = R11c and R2c = R12c; therefore, we

obtain R21 = 0 and

i. R11 + R12 = R11p + R11c + R12c = R11p + R1c + R2c

ii. R21 + R22 = R22p
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This result shows that R11 +R12 is the sum rate of a private codeword xN
11p and

two common codewords xN
1c and xN

2c and R21 + R22 = R22 is equal to the rate

of a private codeword xN
22p .

(d) Case β = 1 and γ = 1: Since R1c = R11c and R2c = R22c; therefore, we

obtain R12 = R21 = 0 and

i. R11 + R12 = R11p + R11c = R11p + R1c

ii. R21 + R22 = R22p + R22c = R22p + R2c

This result shows that Rii + Rij is the sum rate of a private codeword xN
iip and

a common codeword xN
ic .

3. The sum of 3 rates at the asymptotic values of β and γ can be considered in the

following 4 cases:

(a) Case β = 0 and γ = 0: Since R1c = R21c and R2c = R12c; therefore, we

obtain

i. R11 + R12 + R21 = R11p + R12c + R21c = R11p + R2c + R1c

ii. R11 + R12 + R22 = R11p + R12c + R22p = R11p + R2c + R22p

iii. R11 + R21 + R22 = R11p + R21c + R22p = R11p + R1c + R22p

iv. R12 + R21 + R22 = R12c + R21c + R22p = R2c + R1c + R22p .

This result shows that Rii +Rij +Rji is the sum rate of a private codeword xN
iip

and two common codewords xN
ic and xN

jc and Rii + Rij + Rjj is the sum rate of

two private codewords xN
iip and xN

jjp and a common codeword xN
2c .

(b) Case β = 0 and γ = 1: Since R1c = R21c and R2c = R22c; therefore, we

obtain R12 = 0 and

i. R11 +R12 +R21 = R11p +R21c = R11p +R1c , i.e., the sum rate of a private

codeword xN
11p and a common codeword xN

1c .

ii. R11 +R12 +R22 = R11p +R22p +R22c = R11p +R22p +R2c , i.e., the sum

rate of two private codewords xN
11p and xN

22p and a common codewords xN
2c .

iii. R11 +R21 +R22 = R11p +R21c +R22p +R22c = R11p +R1c +R22p +R2c ,

i.e., the sum rate of two private codewords xN
11p and xN

22p and two common

codewords xN
1c and xN

2c .
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iv. R12 + R21 + R22 = R21c + R22p + R22c = R1c + R22p + R2c , i.e., the sum

rate of a private codeword xN
22p and two common codewords xN

1c and xN
2c .

(c) Case β = 1 and γ = 0: Since R1c = R11c and R2c = R12c; therefore, we

obtain R21 = 0 and

i. R11 + R12 + R21 = R11p + R11c + R12c = R11p + R1c + R2c , i.e., the sum

rate of a private codeword xN
11p and two common codewords xN

1c and xN
2c .

ii. R11 +R12 +R22 = R11p +R11c +R12c +R22p = R11p +R1c +R2c +R22p ,

i.e., the sum rate of two private codewords xN
11p and xN

22p and two common

codewords xN
1c and xN

2c .

iii. R11 +R21 +R22 = R11p +R11c +R22p = R11p +R1c +R22p , i.e., the sum

rate of two private codewords xN
11p and xN

22p and a common codeword xN
1c .

iv. R12 +R21 +R22 = R12c +R22p = R2c +R22p , i.e., the sum rate of a private

codeword xN
22p and a common codeword xN

2c .

(d) Case β = 1 and γ = 1: Since R1c = R11c and R2c = R22c; therefore, we

obtain R12 = R21 = 0 and

i. R11 + R12 + R21 = R11p + R11c = R11p + R1c

ii. R11 +R12 +R22 = R11p +R11c +R22p +R22c = R11p +R1c +R22p +R2c

iii. R11 +R21 +R22 = R11p +R11c +R22p +R22c = R11p +R1c +R22p +R2c

iv. R12 + R21 + R22 = R22p + R22c = R22p + R2c

This result shows that Rii +Rij +Rji is the sum rate of a private codeword xN
iip

and a common codeword xN
ic and Rii + Rij + Rjj is the sum rate of two private

codewords xN
iip and xN

jjp and two common codewords xN
ic and xN

jc .

4. The sum of 4 rates at the asymptotic values of β and γ can be considered in the

following 4 cases:

(a) Case β = 0 and γ = 0: Since R1c = R21c and R2c = R12c; therefore, we

obtain

R11 +R12 +R21 +R22 = R11p +R12c +R21c +R22p = R11p +R2c +R1c +R22p

(b) Case β = 0 and γ = 1: Since R1c = R21c and R2c = R22c; therefore, we

obtain R12 = 0 and R11 + R12 + R21 + R22 = R11p + R21c + R22p + R22c =

R11p + R1c + R22p + R2c
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(c) Case β = 1 and γ = 0: Since R1c = R11c and R2c = R12c; therefore, we

obtain R21 = 0 and R11 + R12 + R21 + R22 = R11p + R11c + R12c + R22p =

R11p + R1c + R2c + R22p

(d) Case β = 1 and γ = 1: Since R1c = R11c and R2c = R22c; therefore, we obtain

R12 = R21 = 0 and R11 + R12 + R21 + R22 = R11p + R11c + R22c + R22p =

R11p + R1c + R2c + R22p

From the above result, it is obviously seen that the sum of 4 rates for 4 cases has the

same value, i.e., it is the sum of the rate of two private codewords xN
11p and xN

22p and

the rates of two common codewords xN
1c and xN

2c . Therefore, we can conclude that the

sum of four rates does not depend on the asymptotic values of β and γ.

5. The sum of 5 rates at the asymptotic values of β and γ can be considered in the

following 4 cases:

(a) Case β = 0 and γ = 0: Since R1c = R21c and R2c = R12c; therefore, we

obtain

i. 2R11 +R12 +R21 +R22 = 2R11p +R12c +R21c +R22p = 2R11p +R2c +

R1c + R22p

ii. R11 + 2R12 +R21 +R22 = R11p + 2R12c +R21c +R22p = R11p + 2R2c +

R1c + R22p

iii. R11 + R12 + 2R21 + R22 = R11p + R12c + 2R21c + R22p = R11p + R2c +

2R1c + R22p

iv. R11 + R12 + R21 + 2R22 = R11p + R12c + R21c + 2R22p = R11p + R2c +

R1c + 2R22p

This result shows that 2Rii + Rij + Rji + Rjj is the sum of twice rate of a

private codeword xN
iip , rates of two common codewords xN

ic and xN
jc and a rate

of a private codeword xN
jjp and Rii + 2Rij + Rji + Rjj is the sum of rates of

two private codewords xN
iip and xN

jjp , twice rate of a common codeword xN
jc and

a rate of a common codeword xN
ic .

(b) Case β = 0 and γ = 1: Since R1c = R21c and R2c = R22c; therefore, we

obtain R12 = 0 and
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i. 2R11 +R12 +R21 +R22 = 2R11p +R21c +R22p +R22c = 2R11p +R1c +

R22p +R2c , i.e., the sum of twice rate of a private codeword xN
11p , the rates

of two common codewords xN
1c and xN

2c and the rate of a private codeword

xN
22p .

ii. R11 + 2R12 + R21 + R22 = R11p + R21c + R22p + R22c = R11p + R1c +

R22p + R2c , i.e., the sum of the rates of two private codewords xN
11p and

xN
22p and the rates of two common codewords xN

1c and xN
2c .

iii. R11 +R12 + 2R21 +R22 = R11p + 2R21c +R22p +R22c = R11p + 2R1c +

R22p+R2c , i.e., the sum of the rates of two private codewords xN
11p and xN

22p ,

twice rate of a common codeword xN
1c and the rate of a common codeword

xN
2c .

iv. R11 +R12 +R21 + 2R22 = R11p +R21c + 2R22p + 2R22c = R11p +R1c +

2R22p + 2R2c , i.e., the sum of the rate of a private codeword xN
11p , the rate

of a common codeword xN
1c , twice rate of a private codeword xN

22p and twice

rate of a common codeword xN
2c .

(c) Case β = 1 and γ = 0: Since R1c = R11c and R2c = R12c; therefore, we

obtain R21 = 0 and

i. 2R11 +R12 +R21 +R22 = 2R11p +2R11c +R12c +R22p = 2R11p +2R1c +

R2c + R22p , i.e., the sum of twice rate of a private codeword xN
11p , twice

rate of a common codeword xN
1c , the rate of a private codeword xN

22p and

the rate of a common codeword xN
2c .

ii. R11 + 2R12 + R21 + R22 = R11p + R11c + 2R12c + R22p = R11p + R1c +

2R2c + R22p , i.e., the sum of the rate of a private codeword xN
11p , the rate

of a common codeword xN
1c , twice rates of a common codeword xN

2c and the

rate of a private codeword xN
22p .

iii. R11 + R12 + 2R21 + R22 = R11p + R11c + R12c + R22p = R11p + R1c +

R2c + R22p , i.e., the sum of the rates of two private codewords xN
11p and

xN
22p and the rates of two common codewords xN

1c and xN
2c .

iv. R11+R12+R21+2R22 = R11p+R11c+R12c+2R22p = R11p+R1c+R2c+

2R22p , i.e., the sum of the rate of the private codeword xN
11p , the rates of

two common codewords xN
1c and xN

2c and twice rate of a private codeword
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xN
22p .

(d) Case β = 1 and γ = 1: Since R1c = R11c and R2c = R22c; therefore, we

obtain R12 = R21 = 0 and

i. 2R11 +R12 +R21 +R22 = 2R11p +2R11c +R22c +R22p = 2R11p +2R1c +

R2c + R22p .

ii. R11 + 2R12 + R21 + R22 = R11p + R11c + R22c + R22p = R11p + R1c +

R2c + R22p .

iii. R11 + R12 + 2R21 + R22 = R11p + R11c + R22c + R22p = R11p + R1c +

R2c + R22p .

iv. R11 +R12 +R21 + 2R22 = R11p +R11c + 2R22c + 2R22p = R11p +R1c +

2R2c + 2R22p .

This result shows that 2Rii +Rij +Rji +Rjj is the sum of twice rate of a private

codeword xN
iip , twice rate of a common codeword xN

ic , the rate of a common

codeword xN
jc and the rate of a private codeword xN

jjp and Rii +2Rij +Rji +Rjj

is the sum of the rates of two private codewords xN
iip and xN

jjp , and the rates of

two common codewords xN
ic and xN

jc .

Note that the all above relationships are useful for better understanding the proof of

Claim 6.23 in the next section.

6.6.11 Proof of Claim 6.23

Proof: In this proof, we consider the bounds with the different values of β and γ as

follows:

1. R11 bound: We have two bounds as follows:

• Case β = 1:

• First,

I (x1; y1|x2c)− R21c

= log
(

1+INR22p
1 +SNR1

1+INR22p
1

)
− (R1c − βR1c)

≥ log
(

1+SNR1

1+INR22p
1

)
which is within 2 bits to the upper bound log(1 + SNR1 + INR2) in (4.1).
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• Second,

I (x1; y1|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R21c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12 − (R1c − βR1c)

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12

which is within 2 bits to the upper bound log(1 + SNR1 + INR2) in (4.1).

• Case β = 0: In this case, it is easily seen that above two bounds of R11 are less than

the corresponding upper bounds. However, they are not within a constant gap. The

proof is similar to case β = 1. Therefore, we omit it.

2. R12 bound: The bound

• Case γ = 0:

• I (x2c; y1|x1) + (CB
21 − ξ1)+ − R22c

= log
(

1+INR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ − γR2c

= log
(

1+INR1

1+INR22p
1

)
+ (CB

21 − ξ1)+

which is within 2 bits to the upper bound log(1 + INR1) + CB
21 in (4.2).

• Case γ = 1: In this case, it is seen that above bound of R12 is less than the corre-

sponding upper bound. However, it is not within a constant gap. The proof is similar

to case γ = 0. Therefore, we omit it.

3. R21 bound: The bound

• Case β = 0:

• I (x1c; y2|x2) + CB
12 − R11c

= log
(

1+INR2

1+INR11p
2

)
+ CB

12 − βR1c

= log
(

1+INR2

1+INR11p
2

)
+ CB

12

which is within 1 bit to the upper bound log(1 + INR2) + CB
12 in (4.3).

• Case β = 1: In this case, it is seen that above bound of R21 is less than the corre-

sponding upper bound. However, it is not within a constant gap. The proof is similar

to case β = 0. Therefore, we omit it.

4. R22 bound: We have three bounds as follows:
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• Case γ = 1:

• First,

I (x2c, x2; y2|x1c) + CB
12 − R12c

= log
(

1+INR11p
2 +SNR2

1+INR11p
2

)
+ CB

12 − (R2c − γR2c)

≥ log
(

1+SNR2

1+INR11p
2

)
+ CB

12

which is within 1 bits to the upper bound log(1 + SNR2) + CB
12 in (4.4).

• Second,

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R12c

= log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ (CB

21 − ξ1)+ − (R2c − γR2c)

≥ log
(

1+INR1

1+INR22p
1

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+

≥ log
(

1+INR1+SNR2

(1+INR22p
1 )(1+INR22p

1 )

)
which is within 2 bits to the upper bound log(1 + SNR2 + INR1) in (4.4).

• Third,

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c)− R12c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
− (R2c − γR2c)

(a)

≥ log
(

2(1+INR1+SNR2)
4∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
≥ log

(
1+SNR2+INR1

1+INR11p
2

)
− 1

where ∆2 = 1+SNR22p
2 , INR22p

1 ≤ 1 and (a) is due to (1 + ∆2)(1 + INR22p
1 ) + SNR22p

2

≤ 2(1 + ∆2) + SNR22p
2 = 4 + 3SNR22p

2 ≤ 4∆2. This bound is within 2 bits to the

upper bound log(1 + SNR2 + INR1) in (4.4).

• Case γ = 0: In this case, it is easily seen that above two bounds of R22 are less than

the corresponding upper bounds. However, they are not within a constant gap. The

proof is similar to case γ = 1. Therefore, we omit it.

5. R11 + R12 bound: We have four bounds as follows:

• Case β = 1 and γ = 0:

• First,

I (x1, x2c; y1) + (CB
21 − ξ1)+ − R21c − R22c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ − (R1c − βR1c)− γR2c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+

which is within 1 + 1 = 2 bits to the upper bound (4.5).
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• Second,

I (x1, x2c; y1, ŷ2)− R21c − R22c

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
−(R1c − βR1c)− γR2c

≥ log
(

1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2
∆2

)
− 2

Using (6.117), therefore, this bound is within 2 bits to the upper bound (4.7).

• Third,

I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R21c − R22c

= log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR22p

1 +SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ − (R1c − βR1c)− γR2c

≥ log
(

1+INR1+SNR1

(1+INR22p
1 )(1+INR22p

1 )

)
+ (CB

21 − ξ1)+

which is within 2+1 = 3 bits to the upper bound (4.5).

• Fourth,

I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R21c − R22c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR22p

1 +SNR1

1+INR22p
1

)
− (R1c − βR1c)− γR2c

≥ log
(

1+INR1+SNR2

2∆2

)
+ log

(
1+SNR1

1+INR22p
1

)
≥ log

(
1+INR1+SNR1

1+INR22p
1

)
− 1

which is within 2 bits to the upper bound (4.7).

• Case β = 0 and γ = 0, case β = 0 and γ = 1 and case β = 1 and γ = 1: In these

cases, it is seen that above four bounds of R11 + R12 are less than the corresponding

upper bounds. However, they are not within a constant gap. The proof is similar to

case β = 1 and γ = 0. Therefore, we omit it.

6. R21 + R22 bound: We have three bounds as follows:

• Case β = 0 and γ = 1:

• First,

I (x1c, x2; y2) + CB
12 − R11c − R12c

= log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − βR1c − (R2c − γR2c)

= log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12

which is within 1 bits to the upper bound (4.6).

• Second,

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R11c − R12c
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= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ CB

12

− βR1c − (R2c − γR2c)

≥ log
(

1+INR1+SNR2

∆2

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ CB

12 − 1

≥ log
(

1+INR2+SNR2

(1+INR11p
2 )(1+INR11p

2 )

)
+ CB

12 − 1

which is within 3 bits to the upper bound (4.6).

• Third,

I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c − R12c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+CB

12−βR1c− (R2c−γR2c)

≥ log
(

2(1+INR1+SNR2)
4∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − 1

which is within 2 bits to the upper bound (4.6).

• Case β = 0 and γ = 0, case β = 1 and γ = 0 and case β = 1 and γ = 1: In

these cases, above three bounds of R21 + R22 are less than the corresponding upper

bounds. However, they are not within a constant gap. The proof is similar to case

β = 0 and γ = 1. Therefore, we omit it.

7. R11 + R12 + R21 bound: We have eight bounds as follows:

• Case γ = 0:

• First,

I (x1, x2c; y1) + (CB
21 − ξ1)+ − R22c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ − γR2c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+

which is within 3 bits to the upper bound (4.13).

• Second,

I (x1, x2c; y1, ŷ2)− R22c

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
−γR2c

≥ log
(

1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2
∆2

)
−2

which is within 2 bits to the upper bound (4.21).

• Third,

I (x2c; y1|x1) + I (x1; y1|x2c) + (CB
21 − ξ1)+ − R22c
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= log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR22p

1 +SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ − γR2c

≥ log
(

1+INR1+SNR1

(1+INR22p
1 )(1+INR22p

1 )

)
+ (CB

21 − ξ1)+

which is within 2 + 1 = 3 bits to the upper bound (4.13).

• Fourth,

I (x2c; y1, ŷ2|x1) + I (x1; y1|x2c)− R22c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR22p

1 +SNR1

1+INR22p
1

)
− γR2c

≥ log
(

2(1+INR1+SNR2)
4∆2

)
+ log

(
1+INR22p

1 +SNR1

1+INR22p
1

)
≥ log

(
1+INR1+SNR1

1+INR22p
1

)
− 1

Using (6.117), therefore, this bound is within 2 bits to the upper bound (4.21).

• Fifth,

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c; y2|x2c, x22p) + (CB
21 − ξ1)+ + CB

12 − R22c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+log

(
1+INR1

1+INR22p
1

)
+log

(
1+INR2

1+INR11p
2

)
+(CB

21−ξ1)+ +CB
12−γR2c

≥ log
(

1+INR1+SNR11p
1

(1+INR22p
1 )(1+INR22p

1 )

)
+ log

(
1+INR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

which is within 3+1 = 4 bits to the upper bound (4.9).

• Sixth,

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c; y2|x2c, x22p) + CB
12 − R22c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+log

(
1+INR2

1+INR11p
2

)
+log

(
(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+CB

12−γR2c

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+INR1+SNR2

∆2

)
+ CB

12 − 1

≥ log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12 − 1

Using (6.117), therefore, this bound is within 3 bits to the upper bound (4.17).

• Seventh,

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) + (CB
21 − ξ1)+ + CB

12 − R22c

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12 − γR2c

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

which is within 2+1 = 3 bits to the upper bound (4.9).

• Eighth,

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + CB
12 − R22c

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2

1+INR11p
2

)
+CB

12

− γR2c

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

∆2

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12 − 2



149

which is within 3 bits to the upper bound (4.17).

• Case γ = 1: In this case, above eight bounds of R11 + R12 + R21 are less than the

corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case γ = 0. Therefore, we omit it.

8. R11 + R12 + R22 bound: We have two bounds as follows:

• Case β = 1

• First,

I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+ − R21c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1 +

SNR22p
2

1+INR11p
2

)
+ (CB

21 − ξ1)+ − (R1c − βR1c)

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1 +

SNR22p
2

1+INR11p
2

)
+ (CB

21 − ξ1)+

which is within 2+1 = 3 bits to the upper bound (4.14).

• Second,

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R21c

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1 +

SNR22p
2

1+INR11p
2

)
− (R1c − βR1c)

≥ log
(

1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2
4∆2

)
+ log

(
1 + SNR22p

2

)
− 1

≥ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)
−3

which is within 3 bits to the upper bound (4.22).

• Case β = 0: In this case, above two bounds of R11 + R12 + R22 are less than the

corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case β = 1. Therefore, we omit it.

9. R11 + R21 + R22 bound: We have three bounds as follows:

• Case γ = 1

• First,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R12c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − (R2c − γR2c)

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12

which is within 2 bits to the upper bound (4.15).
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• Second,

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)− R12c

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
− (R2c − γR2c)

≥ log
(

1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2
4∆2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
≥ log

(
1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2

∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
− 2

which is within 3 bits to the upper bound (4.23).

• Third,

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R12c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR11p
1 )+SNR22p

2

)
+ log

(
1+INR22p

1 +SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
− (R2c − γR2c) + CB

12

≥ log
(

1+INR1+SNR2

2∆2

)
+ log

(
1+INR22p

1 +SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log(1 + INR1) + log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12 − 1

which is within 3 bits to the upper bound (4.27).

• Case γ = 0: In this case, above three bounds of R11 + R21 + R22 are less than the

corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case β = 1. Therefore, we omit it.

10. R12 + R21 + R22 bound: We have five bounds as follows:

• Case β = 0:

• First,

I (x1c, x2; y2) + CB
12 − R11c

= log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − βR1c

= log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12

which is within 2 bits to the upper bound (4.16).

• Second,

I (x2c; y1|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2c, x22p) + (CB
21 − ξ1)+ + CB

12 − R11c

= log
(

1+INR1

1+INR22p
1

)
+log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+log

(
1+INR2

1+INR11p
2

)
+(CB

21−ξ1)+ +CB
12−βR1c

≥ log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

(1+INR11p
2 )(1+INR11p

2 )

)
+ (CB

21 − ξ1)+ + CB
12

which is within 3+1 = 4 bits to the upper bound (4.12).
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• Third,

I (x2c; y1, ŷ2|x1) + I (x2; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R11c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ CB

12 − βR1c

≥ log
(

1+INR1+SNR2

2∆2

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ CB

12

≥ log(1 + INR1) + log
(

1+INR2

1+INR11p
2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ CB

12 − 1

Applying Lemma 6.24, this bound is within 3 bits to the upper bound (4.16).

• Fourth,

I (x2c; y1|x1) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12 − R11c

= log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12 − βR1c

≥ log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

which is within 2+1 = 3 bits to the upper bound (4.12).

• Fifth,

I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c

= log
(

(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12 − βR1c

≥ log
(

(1+INR1+SNR2)
2∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log(1 + INR1) + log
(

1+INR2+SNR22p
2

1+INR11p
2

)
+ CB

12 − 1

≥ log
(

1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − 1

which is within 3 bits to the upper bound (4.16).

• Case β = 1: In this case, although above eight bounds of R12 + R21 + R22 are less

than the corresponding upper bounds but they are not within a constant gap. The

proof is similar to case β = 0. Therefore, we omit it.

11. R11 + R12 + R21 + R22 bound: We have nine bounds as follows:

• First,

I (x2c, x1; y1|x1c) + I (x1c, x2; y2|x2c) + (CB
21 − ξ1)+ + CB

12

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+(CB

21 − ξ1)+ + CB
12

which is within 2 + 1 = 3 bits to the upper bound (4.26).

• Second,

I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
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+ CB
12

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

4∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log
(

1 + SNR11p
1 + INR1 + SNR2 + INR11p

2 + |h11h22 − h12h21|2Q11p

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
− log(1 + SNR22p

2 ) + CB
12 − 2

which is within 3 bits to the upper bound (4.27).

Note that we can lower bound for this bound in the alternative form which is useful

for considering the third bound as follows:

I (x2c, x1; y1, ŷ2|x1c) + I (x1c, x2; y2|x2c) + CB
12

= I (x2c; y1, ŷ2|x1c) + I (x1; y1, ŷ2|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

= I (x2c; ŷ2|x1c) + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

(a)

≥ I (x2c; y2|x1c)− 1 + I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + CB
12

(b)

≥ I (x1c, x2; y2) + I (x1; y1|x1c, x2c) + CB
12 − 1

where (a) is due to

I (x2c; ŷ2|x1c) = log
( 1 + ∆2 + SNR2 + INR11p

2

1 + ∆2 + SNR22p
2 + INR11p

2

)
≥ log

( 1 + SNR2 + INR11p
2

1 + (1 + SNR22p
2 ) + SNR22p

2 + INR11p
2

)
≥ log

( 1 + SNR2 + INR11p
2

1 + SNR22p
2 + INR11p

2

)
− 1

= I (x2c; y2|x1c)− 1

and (b) is due to

I (x2c; y2|x1c) + I (x1c, x2; y2|x2c) = I (x2c; y2, x1c) + I (x1c, x2; y2|x2c)

≥ I (x2c; y2) + I (x1c, x2; y2|x2c)

= I (x1c, x2; y2)

• Third,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2) + CB
12

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12

Using the lower bound of the alternative form for the above second bound, therefore,

this bound is within 2 bits to the upper bound (4.27).
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• Fourth,

I (x1, x2c; y1) + I (x2; y2|x1c, x2c) + (CB
21 − ξ1)+

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ (CB

21 − ξ1)+

≥ log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+

Using the same consideration as the third bound, this bound is within 2+1 = 3 bits

to the upper bound (4.28).

• Fifth,

I (x1, x2c; y1, ŷ2) + I (x2; y2|x1c, x2c)

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1 +

SNR22p
2

1+INR11p
2

)
≥ log

(
1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2

4∆2

)
+ log

(
1 + SNR22p

2

)
− 1

= log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)
−3

which is within 3 bits to the upper bound (4.29).

• Sixth,

I (x2c, x1; y1|x1c) + I (x1c; y2|x2) +I (x22p ; y2|x1c, x2c) + (CB
21 − ξ1)+ + CB

12

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ (CB

21− ξ1)+ +CB
12

≥ log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

(1+INR11p
2 )(1+INR11p

2 )

)
+ (CB

21 − ξ1)+ + CB
12

which is within 3 + 1 = 4 bits to the upper bound (4.26).

• Seventh,

I (x2c, x1; y1, ŷ2|x1c) + I (x1c; y2|x2) + I (x2; y2|x1c, x2c) +CB
12

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2

1+INR11p
2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ CB

12

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

4∆2

)
+ log

(
1+INR2+SNR22p

2

(1+INR11p
2 )(1+INR11p

2 )

)
+

CB
12

≥ log
(

1 + SNR11p
1 + INR1 + SNR2 + INR11p

2 + |h11h22 − h12h21|2Q11p

)
+ log(1 + INR2 + SNR22p

2 )− log(1 + SNR22p
2 ) + CB

12 − 4

which is within 4 bits to the upper bound (4.27).

• Eighth,

I (x1; y1|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c) +(CB
21 − ξ1)+ + CB

12

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21− ξ1)+ +CB
12

≥ log
(

1+INR1+SNR11p
1

(1+INR22p
1 )(1+INR22p

1 )

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12
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which is within 3+1 = 4 bits to the upper bound (4.26).

• Ninth,

I (x1; y1|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) +CB
12

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR11p
1 )+SNR22p

2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+CB

12

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR1+SNR2

2∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12 − 1

Using the concept of (6.117), therefore, it easily see that this bound is within 3 bits

to the upper bound (4.27).

12. 2R11 + R12 + R21 + R22 bound: We have two bounds as follows:

• Case β = 1:

• First,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + I (x1, x2c; y1) + (CB
21 − ξ1)+ + CB

12 − R21c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+

+ CB
12 −(R1c − βR1c)

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR1+SNR1

1+INR22p
1

)
+ (CB

21 − ξ1)+ + CB
12

Using the concept of (6.117), therefore, this bound is within 3+1 = 4 bits to the

upper bound (4.30).

• Second,

I (x1; y1|x1c, x2c) + I (x1c, x2; y2|x2c) + I (x1, x2c; y1, ŷ2) + CB
12 − R21c

= log
(

1+INR22p
1 +SNR11p

1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ log

(
(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ CB

12 −(R1c − βR1c)

≥ log
(

1+SNR11p
1

1+INR22p
1

)
+log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ log

(
1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2

4∆2

)
+ CB

12

≥ log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log(1 + INR2 + SNR2

1+INR1
) − log(1 + SNR2

1+INR1
) + log(1 + SNR1

1+INR2
) + CB

12 − 4

which is within 4 bits to the upper bound (4.34).

• Case β = 0: In this case, although above two bounds of 2R11 + R12 + R21 + R22

are less than the upper bounds but they are not within a constant gap. The proof is

similar to case β = 1. Therefore, we omit it.

13. R11 + 2R12 + R21 + R22 bound: We have a bound as follows:
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• Case γ = 0:

• I (x1, x2c; y1) + I (x2; y2|x1c) + (CB
21 − ξ1)+ + CB

12 − R22c

= log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1+INR11p

2 +SNR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12 − γR2c

≥ log
(

1+INR1+SNR1

1+INR22p
1

)
+ log

(
1+SNR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

which is within 5 bits to the upper bound (4.31).

• Case γ = 1: In this case, although above bound of R11 + 2R12 + R21 + R22 is less

than the corresponding upper bound but it is not within a constant gap. The proof is

similar to case γ → 0. Therefore, we omit it.

14. R11 + R12 + 2R21 + R22 bound: We have three bounds as follows:

• Case β = 0:

• First,

I (x1; y1|x2c) + I (x1c, x2; y2) + CB
12 − R11c

= log
(

1+INR22p
1 +SNR1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − βR1c

≥ log
(

1+SNR1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12

Using the concept of (6.117) with (4.40), therefore, this bound which is within 4 bits

to the upper bound (4.40).

• Second,

I (x1; y1|x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12 − R11c

= log
(

1+INR22p
1 +SNR1

1+INR22p
1

)
+log

(
(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR11p
1 )+SNR22p

2

)
+log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+CB

12−

βR1c

≥ log
(

1+SNR1

1+INR22p
1

)
+ log

(
1+INR1+SNR2

2∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12

≥ log
(

1+SNR1

1+INR22p
1

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − 1

which is within 5 bits to the upper bound (4.40).

• Third,

I (x1, x2c; y1, ŷ2) + I (x2c; y2|x1c, x2c) + I (x1c; y2|x2) + CB
12 − R11c

= log
(

(1+∆2)(1+SNR1+INR1)+SNR2+INR2+|h11h22−h12h21|2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12 − βR1c

≥ log
(

1+SNR1+INR1+SNR2+INR2+|h11h22−h12h21|2
4∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR2

1+INR11p
2

)
+ CB

12
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= log
(

1 + SNR1 + INR1 + SNR2 + INR2 + |h11h22 − h12h21|2
)

+ log(1 + INR2)

+ CB
12 − 4

Using (6.117), therefore, this bound is within 4+1 = 5 bits to the upper bound (4.40).

• Case β = 1: In this case, although above three bounds of R11 + R12 + 2R21 + R22

are less than the corresponding upper bounds but they are not within a constant gap.

The proof is similar to case β = 0. Therefore, we omit it.

15. R11 + R12 + R21 + 2R22 bound: We have five bounds as follows:

• Case γ = 1:

• First,

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x1c, x2; y2) + (CB
21 − ξ1)+ + CB

12 − R12c

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ (CB

21 − ξ1)+

+ CB
12 − (R2c − γR2c)

≥ log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

which is within 3+1 = 4 bits to the upper bound (4.33).

• Second,

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c) + I (x1c, x2; y2) + CB
12 − R12c

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12 −(R2c − γR2c)

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

4∆2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR2+SNR2

1+INR11p
2

)
+ CB

12 − 2

which is within 4 bits to the upper bound (4.41)

• Third,

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1|x1) + I (x1c, x2; y2|x2c)

+ (CB
21 − ξ1)+ + CB

12 − R12c

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12 −(R2c − γR2c)

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

4∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
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+ log
(

1+INR1

1+INR22p
1

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12

= log
(

1 + SNR2

1+INR1

)
+ log(1 + SNR11p

1 + INR1) + log(1 + INR2 + SNR22p
2 )

+ log(1 + INR1) + (CB
21 − ξ1)+ + CB

12 − 5

Using the concept of (6.117), this bound is within 5+1 = 6 bits to the upper bound

(4.33)

• Fourth,

I (x2c, x1; y1|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c)

+ (CB
21 − ξ1)+ + CB

12 − R12c

= log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ (CB

21 − ξ1)+ + CB
12 −(R2c − γR2c)

≥ log
(

1+INR1+SNR11p
1

1+INR22p
1

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR1+SNR2

2∆2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+(CB

21 − ξ1)+ + CB
12

which is within 4+1 = 5 bits to the upper bound (4.33)

• Fifth,

I (x2c, x1; y1, ŷ2|x1c) + I (x2; y2|x1c, x2c) + I (x2c; y1, ŷ2|x1) + I (x1c, x2; y2|x2c) + CB
12

− R12c

= log
(

(1+∆2)(1+SNR11p
1 +INR1)+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
(1+∆2)(1+INR1)+SNR2

(1+∆2)(1+INR22p
1 )+SNR22p

2

)
+ log

(
1+INR11p

2 +SNR22p
2

1+INR11p
2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12 −(R2c − γR2c)

≥ log
(

1+SNR11p
1 +INR1+SNR2+INR11p

2 +|h11h22−h12h21|2Q11p

4∆2

)
+ log

(
1+INR1+SNR2

2∆2

)
+ log

(
1+SNR22p

2

1+INR11p
2

)
+ log

(
1+INR2+SNR22p

2

1+INR11p
2

)
+ CB

12 − 2

≥ log
(

1 + SNR11p
1 + INR1 + SNR2 + INR11p

2 + |h11h22 − h12h21|2Q11p

)
+ log(1 + SNR2 + INR2) + CB

12 − 5

which is within 5 bits to the upper bound (4.41)

• Case γ = 0: In this case, although above two bounds of R11 + R12 + R21 + 2R22

are less than the uppers bounds but they are not within a constant gap. The proof is

similar to case γ = 1. Therefore, we omit it.

Therefore, we obtain that the bounds in the achievable rate regionR 2→1→2 satisfy:

• R11 bound is within 2 bits to upper bounds when β = 1;

• R12 bound is within 2 bits to upper bounds when γ = 0;
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• R21 bound is within 1 bits to upper bounds when β = 0;

• R22 bound is within 2 bits to upper bounds when γ = 1;

• R11 + R12 bound is within 3 bits to upper bounds when β = 1 and γ = 0;

• R21 + R22 bound is within 3 bits to upper bounds when β = 0 and γ = 1;

• R11 + R12 + R21 bound is within 4 bits to upper bounds when γ = 0;

• R11 + R12 + R22 bound is within 3 bits to upper bounds when β = 1;

• R11 + R21 + R22 bound is within 3 bits to upper bounds when γ = 1;

• R12 + R21 + R22 bound is within 4 bits to upper bounds when β = 0;

• R11 + R12 + R21 + R22 bound is within 4 bits to upper bounds;

• 2R11 + R12 + R21 + R22 bound is within 4 bits to upper bounds when β = 1;

• R11 + 2R12 + R21 + R22 bound is within 4 bits to upper bounds when γ = 0;

• R11 + R12 + 2R21 + R22 bound is within 5 bits to upper bounds when β = 0;

• R11 + R12 + R21 + 2R22 bound is within 6 bits to upper bounds when γ = 1.

Finally, by symmetry, we can relax the above obtained results without loss of generality

for R21, R11 +R12 +R22, R11 +R21 +R22, R11 +R12 +R21 +R22, 2R11 +R12 +R21 +R22,

R11 + 2R12 + R21 + R22, R11 + R12 + 2R21 + R22 bounds as follows:

• R21 bound is within 2 bits to upper bounds when β = 0;

• R11 + R12 + R22 bound is within 4 bits to upper bounds when β = 1;

• R11 + R21 + R22 bound is within 4 bits to upper bounds when γ = 1;

• R11 + R12 + R21 + R22 bound is within 5 bits to upper bounds;

• 2R11 + R12 + R21 + R22 bound is within 6 bits to upper bounds when β = 1;

• R11 + 2R12 + R21 + R22 bound is within 6 bits to upper bounds when γ = 0;

• R11 + R12 + 2R21 + R22 bound is within 6 bits to upper bounds when β = 0;



CHAPTER VII

CONCLUSION

In this dissertation, we give an attempt to understand the fundamental limits of the two-

user Gaussian X channel with limited receiver cooperation. The better comprehension of

these limits leads us to use cooperation in practice efficiently for managing interference

in the two-user Gaussian X channel channel. Furthermore, we provide the strategies for

communications in this channel for the general case and the strong Gaussian X channel

type I case. Three main results of this dissertation can be concluded as follows:

First, as shown in Chapter IV, we give an outer bound based on the Fano’s inequality,

the data processing inequality and the genie-aided techniques for the two-user Gaussian

X channel with limited receiver cooperation. The obtained results present that some of

upper bounds contained in our proposed outer bound are identical to the known results

in several communication scenarios such as the two-user Gaussian interference channel

with/without receiver cooperation [2–4], the two-user Gaussian X channel without receiver

cooperation [14,15] and the two-user Gaussian Z-interference channel with receiver coop-

eration [31] by setting a certain set of parameters. Furthermore, we show that the region

of our proposed outer bound is larger than the region of an outer bound on capacity re-

gion of the two-user interference channel with limited receiver cooperation [2] and without

cooperation [3, 4]

Second, as shown in Chapter V, the proposed outer bound in Chapter IV is then used

to find the GDoF under the symmetric channel setting. The received results show that the

GDoF can be improved obviously by increasing a certain amount of information which is

exchanged between both receivers. However, it is seen that the system reaches the satura-

tion of the receiver cooperation, i.e., there is no more gain when the normalized capacity

of the receiver-cooperative link κ is larger than or equal κ∗ where

1. κ∗ = 1
3

for α = 2
3

2. κ∗ = 1
2

for α = 1
2
, 3

2
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3. κ∗ = 1 for α = 2

4. κ∗ = 3
2

for α = 5
2

5. κ∗ = 2 for α = 3

Finally, as shown in Chapter VI, we propose the strategies for the two-user Gaussian X

channel with rate-limited receiver cooperation and give achievable rate regions in both the

general case and the strong Gaussian X channel type I case. Our results show that the pro-

posed strategy achieves the capacity region to within 2 bits/s/Hz per message, regardless of

channel parameters, for the case of the strong Gaussian X channel type I when parameters

β and γ in the common rate constraints at each transmitter are set such that each bound

from our proposed strategy except (6.37), (6.43)−(6.49), (6.58)−(6.60), (6.62)−(6.71),

(6.73), (6.87)−(6.110) reaches its maximum value.
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