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Modern wireless communications via the X channel where each transmitter has an independent
message for the corresponding receiver have become an active topic of research since they can sup-
port various services transmitted from sources to users or obtain different types of data transmitted
from users to sources. However, interference is the important phenomenon that occurs unavoidably
in these wireless communications and affects directly on the performance of the system. Coop-
eration is one of several methods that can mitigate the effect of interference and is considered in
several communication scenarios. Unfortunately, the basic comprehension of the X channel with
cooperation is somewhat less.

In this dissertation, we study the two-user Gaussian X channel with limited receiver cooperation
where both receivers exchange messages over the orthogonal receiver-cooperative links through the
perspective of information theory that can be divided into 3 parts as follows: In the first part, we
investigate the fundamental limits of the two-user Gaussian X channel with limited receiver coop-
eration using the Fano’s inequality, the data processing inequality, and the genie-aided techniques.
The obtained result is called an outer bound. In the second part, we characterize the generalized
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results in this part imply that the performance of our system can be improved when the amount of
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the strong Gaussian X channel type I case where SNR; > INR, and SNRe > INR;. The obtained
results show that our proposed strategy in the strong Gaussian X channel type I case achieves the
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CHAPTER 1

INTRODUCTION

1.1 Background

In the past two decades, wireless communications have had significant progresses and
made a great impact on human lifestyle, wireless services and wireless industry. Several
commercial standards in mobile telecommunication systems, such as the universal mobile
telecommunications system (UMTS), wideband code division multiple access (WCDMA)
and long-term evolution (LTE), etc., are good examples for these progresses. These stan-
dards have been developed from the modern wireless communication techniques, includ-
ing code division multiple access (CDMA), orthogonal frequency division multiplexing
(OFDM), and multiple-input multiple-output (MIMO), etc., that are based on theoretical
ideas induced by information theory. In addition to the commercial standards, hardware
including smartphones, laptops, tablets, and other mobile nodes are also produced by the
advanced technologies. With the rapidly developed wireless technologies, therefore, we
obtain the better communication services from mobile operators, create the new solutions
for business and then make money from their solutions and have a good health from wire-
less healthcare systems.

In modern wireless communication systems, communications between two or more
transmitter-receiver pairs over a common physical medium cause interference at each re-
ceiver see Figure 1.1. Because of the broadcast and the superposition nature of the wireless
medium, the intended signal at each receiver is superposed by the unintended signals plus
noise. This phenomenon is unavoidable and limits the performance of the wireless sys-
tem. Currently, most wireless systems cope with interference by either orthogonalizing the
communication links in time or frequency so that they do not interfere with each other at
all or treating interference as noise. Unfortunately, two approaches are suboptimal because
there is an a priori loss of degrees of freedom (DoF) in both links for the orthogonalizing

approach and the performance of systems is degraded when the number of interferes grows



Figure 1.1 Interference in wireless communication network

in the treating interference as noise approach.

1.1.1 Interference Management: Interference Channel and X Channel

To develop the interference management schemes which their performances are better
than two well-known approaches above, several researchers have studied the effect of in-
terference and investigated the fundamental limits of communications in wireless channels.

Interference Channel: The simplest information theory model for studying this point
is the two-user interference channel. However, the problem of characterizing the capacity
region of this channel has been open for over 30 years, except for several special cases
such as the strong and very strong interference channel [5-7] and classes of deterministic
and semi-deterministic interference channel [3, 8]. Recently, significant progress has been
performed by Etkin, Tse and Wang [9] to propose a new approach for approximating the
capacity region of the two-user Gaussian interference without cooperation and then char-
acterize this approximate capacity region to within 1 bit/s/Hz for all values of the channel
parameters by using Han-Kobayashi strategy in transmission scheme with a simple power
split construction. The important benefit of finding the bounded gap-to-optimality
in [9] is to produce an uniform approximation of the capacity region and to ensure cer-
tainly the performance of the proposed scheme [2].

X Channel: Next, the above interference problem is extended to the situation where
each transmitter has an independent message for all receivers in the system. This com-
munication scenario is called the X channel which is introduced initially by Vishwanath,

Jindal and Goldsmith [10]. The X channel is a generalization of the multiuser channels



studied in information theory, such as the multiple access channel (MAC), the broadcast
channel (BC), the interference channel (IC), the Z-channel (ZC) and the Z-interference
channel (ZIC), etc. It is easily seen that, in the X channel, each receiver obtains several
interference and desired messages at the same time. Hence, the effect of interference on
the receiver in the X channel is more crucial than one in the interference channel due to
several desired and undesired messages.

The practical examples for the X channel such as, in a cellular system, each base station
provides two different services to two users (see Figure 1.2) and, in modern wireless sensor
network for agriculture, each source node can send several measured parameters including
air temperature, relative humidity, soil moisture, and picture of product to the servers (see

Figure 1.3).

Figure 1.2 The two-user Gaussian X channel in cellular network

In the simplest case, it is seen that the two-user Gaussian X channel is physically the
same as the two-user Gaussian interference channel. However, the difference between these
two channels is the message set which leads to encode and decode messages differently at

transmitter and receiver, respectively.

1.1.2 Related works for X channel

The research works about X channel have been studied widely in [11-17] to character-
ize the achievable rate region, sum capacity, upper bounds, generalized degrees of freedom
(GDoF), approximate capacity region, and degrees of freedom (DoF) region, etc., as the

following details:



Figure 1.3 The X channel in agriculture

o Characterizing the Achievable Rate Region: Koyluoglu, Shahmohammadi and Gamal
[11] give the best known achievable region for the X channel based on the combi-
nation of the Marton’s binning technique for the broadcast channels [18, 19] and
the message splitting for interference channel [20] with joint decoding at receivers.
However, characterization of this rate region is extremely complicated [12]. In the
work [13], Sridhar and Bhashyam considered the two-user Gaussian X channel using
superposition coding [20]. They derived achievable rates of the 6 messages where
each transmitter consists of two private messages and one common message and de-
termined that these messages were useful in maximizing the sum rate for the various

interference conditions.

e Characterizing the Sum Capacity, Upper bounds and Generalized Degrees of Free-
dom (GDoF): Huang, Cadambe and Jafar [14] characterized the sum capacity' of the
deterministic and Gaussian X channel under a symmetric channel setting. They also
proposed the upper bounds? for the deterministic and Gaussian X channel. Further-
more, they explored the GDoF of the symmetric Gaussian X channel from their sum

capacity of the Gaussian X channel. Recently, Niesen and Maddah-Ali [15] gave the

'The sum capacity in [14] means that the sum of 4 rates, i.e., Ri1 + Ri2 + Ra1 + Roo.
2Huang, Cadambe and Jafar [14] gave the upper bounds for the sum of 3 rates, i.e., Ry; +Rio+ Ra1, Ry +

Ris + Roo, R11 + Ro1 + Rao, Rio2 + Ro1 + Ros and the sum of 4 rates, i.e., R11 + R12 + Ro1 + Roo.



new upper bounds?® for the deterministic X channel and Gaussian X channel.

o Characterizing the Approximate Capacity Region: Prasad and Chockalingam [12]
provide firstly the approximate capacity region of the X channel which is within
the intersection of 4 outer bounds to the capacity region of the X channel where each
outer bound is derived by removing only one message to obtain the corresponding Z-
channel. Furthermore, they characterized the outer bounds on the capacity region of
the Gaussian X channel for two main classes, i.e., strong and mixed X channel, from
their approximate capacity region. In the general case, however, their outer bound
does not have the closed form to use easily. Hence, characterizing the capacity

region of the general two-user X channel has still been open.

o Characterizing the Capacity to within a Constant Gap: Niesen and Maddah-Ali [15]
used the interference alignment (IA) technique to characterize capacity of the two-
user Gaussian X channel. They proposed a new communication scheme and showed
that it achieved capacity of the Gaussian X channel to within a constant gap. This
is the first constant-gap result for a general fully-connected X network requiring

interference alignment.

e Characterizing the DoF: Jafar and Shamai [16] show that there are % DoF when the
channel coefficients are time-varying or frequency-selective and drawn from a con-
tinuous distribution. Cadambe and Jafar [21] extend the work [16] into the case of
M transmitters and N receivers of wireless X networks and then showed that the
total DoF of the M x N X networks is equal to % per orthogonal time and fre-
quency dimension when all nodes have a single antenna and all channel coefficients
vary in time or frequency. Very recently, Motahari et.al. [17] developed the idea of

real interference alignment (IA) that is extremely powerful in achieving the sum DoF

of single antenna systems. They showed that the total DoF of the M x N X network

MN

WN=T for almost all

with real and time invariant channel coefficients is equal to

channel realizations.

3Niesen and Maddah-Ali [15] proposed the upper bounds for the sum of 5 rates, i.e., 2R11 + Ri2 + Ro1 +
Ros, R11 + 2R12 + Ro1 + Rao, Ri1 + Ri2 + 2Ra1 + Raa, R11 + Ria + Ro1 + 2Rao.



1.1.3 Cooperation

In the above X channel set-up [11-17], there are no communications between trans-
mitters (receivers). Hence, each receiver has to handle interference on its own messages.
Nowadays, cooperation between transmitters (receivers) which is allowed by exchanging a
certain amount of information at the limited rate due to physical constraints is becoming the
essential part of modern communication systems. It is known that cooperation can alleviate
interference by forming distributed multiple antenna arrays or called distributed multiple-
input multiple-output (MIMO) systems in [2,22,23] and help to achieve large performance
gains in wireless networks [24]. For example, the base stations in a cellular network can be
connected via wireline backhaul links [25] or the mobile nodes are close enough to each

other to be able to establish reliable cooperation links.

1.1.4 Related Works for Cooperation

Conferencing among encoders/decoders, a special case of out-of-band cooperation as
classified in [26,27] has been investigated in [2,28-33]. Willems [28] introduced initially
the conferencing among encoders and then characterized the capacity region of multiple
access channels (MAC). In the work [29], the capacity region of the two-user compound
MAC with a common message and unidirectional conferencing between decoders was
characterized. Next, the two-user one-sided Gaussian interference channels with unidi-
rectional and bidirectional rate-limited conferencing between decoders were considered
in [30, 31], respectively. Zhou and Yu characterized the capacity region in strong interfer-
ence regimes and the asymptotic sum capacity at high SNR in [30] and an achievable rate
region was shown to be optimal under certain conditions in [31]. In the work [2], Wang and
Tse considered the two-user Gaussian interference channel with rate-limited receiver coop-
eration and characterized its entire capacity region to within a constant gap. Very recently,
Ashraphijuo, Aggarwal and Wang [32] characterized the approximate capacity region of
the two-user MIMO interference channel with limited receiver cooperation within the total
number of receive antennas of both receivers. In addition, they gave the proposed GDoF
region when all nodes have equal number of antennas. Do, Oechtering and Skoglund [33]

gave a new inner bound for the capacity region of the discrete memoryless two-user inter-



ference channel with receiver cooperation and an inner bound for the Gaussian interference
channel with orthogonal conference links at the receivers. The latter was equivalent to the
one-round quantize-bin-and-forward inner bound specially designed for the channel model

in [2].

1.2 Two-user Gaussian X channel with limited receiver cooperation

In this section, we introduce two main interesting issues, i.e., fundamental limits and
strategy of communications, for the two-user Gaussian X channel with limited receiver

cooperation and provide the importance for studying these two topics in this dissertation.

1.2.1 Fundamental limits

With the advantages of cooperation in Section 1.1.3, interference management in wire-
less X networks using cooperation is the interesting topic. As mentioned above, the previ-
ous research works of the X channel [11-17] focus on the case of non-cooperation. There-
fore, knowledge of the X channel with cooperation, especially the fundamental limits of the
X channel with cooperation which are the important issue in the perspective of information
theory, has not been well known even in the two-user case. The better understanding of the
fundamental limits leads us to know communication limits and to propose new techniques
based on cooperation in practice efficiently for managing interference in the X channel. In
this dissertation, we consider the two-user Gaussian X channel and focus on the case of
limited receiver cooperation. We give an attempt to understand the fundamental limits of
this channel in terms of an outer bound (or called an approximate capacity region) and then
characterize the generalized degrees of freedom (GDoF) of sum capacity obtained from the
proposed outer bound to further comprehend the effect of limited receiver cooperation on

the two-user Gaussian X channel.

1.2.2 Strategy for Communications

In addition to find the fundamental limits, the strategy for communications in the two-
user Gaussian X channel with limited receiver cooperation is also the interesting issue.
Although research involving this issue has been quite rare, there is the work that can be

a guideline for this dissertation, i.e., Wang and Tse’s work [2]. Based on the work [2],



this dissertation proposes strategies also composing of two parts: 1) transmission scheme
based on the Han-Kobayashi (HK) strategy [20] which is used widely in several communi-
cation scenarios [2,9, 11, 13,20,29-31,33-36], etc., and 2) cooperative protocol based on
quantize-map-and-forward (QMF) scheme [2], for the general case and the strong Gaus-
sian X channel type I case where SNR; > INR; and SNR, > INR;. Furthermore, there are
following two important constraints which are considered in this dissertation: 1) two dif-
ferent messages are sent simultaneously from each transmitter to both receivers and 2) both
receivers are allowed to exchange a certain amount of information between them. Finally,
we evaluate the performance of our proposed strategy in the strong Gaussian X channel

type I case by comparing its achievable rate region with our proposed outer bound.

1.3 Objectives of the Dissertation

The objectives of this dissertation are

1. To propose an outer bound on the capacity region for the two-user Gaussian X chan-

nel with limited receiver cooperation.

2. To characterize the generalized degrees of freedom (GDoF) from our proposed outer

bound region under a symmetric channel setting.

3. To propose the strategy for delivering messages in the two-user Gaussian X channel

with limited receiver cooperation.

4. To evaluate the performance of the proposed strategy in the case of strong Gaussian
X channel type I by comparing its achievable rate region with the proposed outer

bound.

1.4 Scope of the Dissertation

1. We consider the two-user Gaussian X channel with out-of-band (orthogonal) limited
receiver cooperation, that is, signals in transmitter-receiver links do not interfere with

ones in receiver-cooperative links.

2. We focus on the general case and the strong Gaussian X channel type I case, where

the direct channels are stronger than the corresponding cross channels, i.e., SNR; >

INRy and SNRy > INR;.



3. In our system, each transmitter has a single antenna and each receiver has also a

single antenna.
4. In exchanging information between both receivers, we assign

(a) Both receiver-cooperative links are noiseless with finite capacity from the re-
ceiveritoj, fori,7 = 1,2 and i # j.

(b) Information at each receiver is encoded causally in the sense that cooperation
signal from the receiver 1 to 2, uy3[n], is only a function of {4 [1], ..., y1[n — 1],
upy[1],. .., ups[n — 1]}, for n = 1,..., N. Similarly, us;[n], is only a function

of {a[l],..., yn — 1], usa[l], ..., wz[n — 1]}.

1.5 Organization and Contributions of the Dissertation

The rest of this dissertation is organized as follows:

In Chapter II, we give the basic knowledge of information theory and techniques which
are useful profitably for deriving an outer bound, the generalized degrees-of-freedom (GDoF)
under symmetric channel setting, and achievable rate regions in Chapter IV —VI, respec-
tively. In addition, we provide the example based on the two-user Gaussian multiple-access
channel (Gaussian MAC) for better understanding the capacity region and the example
from [14] to present how to use the genie-aided techniques for finding the sum-rate in the
two-user Gaussian X channel without cooperation that is the important basis to compre-
hend our derived upper bounds in Chapter I'V.

In Chapter III, we introduce the channel model for the two-user Gaussian X channel
with out-of-band (orthogonal) limited receiver cooperation. Next, the definitions of strate-
gies, achievable rates, and capacity region are provided. Third, the classification of the
two-user Gaussian X channel from [12] is mentioned and the modified version for the
strong Gaussian X channel type I is introduced. Finally, the notations are given for using
throughout in the rest of this dissertation.

In Chapter IV, we provide the knowledge to better comprehend the fundamental limits

of the two-user Gaussian X channel with limited receiver cooperation.

e The contribution of this chapter is to propose an outer bound on the capacity region

for the two-user Gaussian X channel with limited receiver cooperation and also give
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the details for deriving all upper bounds which are contained in our proposed outer

bound.

In Chapter V, the effect of receiver cooperation on the two-user Gaussian X channel

can be further understood by using the GDoF.

e The contribution of this chapter is to characterize the GDoF with our proposed outer

bound from Chapter IV under a symmetric channel setting.

In Chapter VI, we propose the strategies for communications in the two-user Gaussian
X channel with limited receiver cooperation for the general case and the strong Gaussian

X channel type I case.
e The contributions of this chapter are

1. To provide the achievable rate regions for the two-user Gaussian X channel with
limited receiver cooperation in both the general case and the strong Gaussian X

channel type I case.

2. To characterize the capacity region of the two-user Gaussian X channel with
limited receiver cooperation in the strong Gaussian X channel type I to within

2 bits/b/s per message to the proposed outer bound in Chapter IV.

Finally, the conclusion of this dissertation is given in Chapter VII.



CHAPTER 11

BASIC KNOWLEDGE OF INFORMATION THEORY
AND TECHNIQUES

In this chapter, we provide the basic knowledge of information theory and techniques
which are used profitably for finding an outer bound, the generalized degrees-of-freedom
(GDOF) under symmetric channel setting, and achievable rate regions in Chapter IV—VI,
respectively. Next, we provide the definition of the capacity region and give the example
based on the two-user Gaussian multiple-access channel (Gaussian MAC) for better un-
derstanding our result in Chapter IV. In addition, we introduce the two-user Gaussian X
channel and give the example from [14] to present how to use the genie-aided techniques
for finding the sum-rate. Finally, we show one of the results from [2] that specifies two

regions considering the gain from limited receiver cooperation.

2.1 Entropy

This section gives the definition of entropy that is a measure of the uncertainty of a
random variable [1].

Let X be a discrete random variable with alphabet X and probability mass function
(pmf) p(z) = Pr{X = z},x € X. The entropy H(X) of a discrete random variable X is
defined as

H(X)=-> p(x)logp(z) = —Elogp(z). 2.1)

zeEX
where E denotes expectation.

The important properties of the entropy H (X)) are nonnegative and concave function

inlog p(z).
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2.2 Differential Entropy, Joint Differential Entropy, Conditional Dif-
ferential Entropy and Mutual information

In this section, we provide the basic definitions of the differential entropy, joint dif-
ferential entropy, conditional differential entropy and mutual information for continuous
random variables [1, 37] that are useful to derive an outer bound in Chapter IV and an
achievable rate region in Chapter VI.

First, we present the differential entropy. Let X be a random variable and its cumulative
distribution function is F'(z) = Pr(X < z). X is a continuous random variable if F'(z)

is continuous. Let f{x) be the derivative of F'(z), i.e., f(z) = F'(z) and is called the

probability density function with [~ f(z) = 1.

e The differential entropy h(X) of a continuous random variable X with probability
density function (pdf) f(x) is defined as

b = = [ fa)log (o) 22)
For example,
1. Uniform distribution: If X ~ Unif]a, b], then
h(X) =log(b — a)
2. Normal distribution: If X ~ N(u,0?), then
1 2
h(X) = §log(27rea )
The maximum differential entropy of a continuous random variable X ~ f(z) with the
average power constraints £ (X?) < P is
1
h(X) = =log(2meP
s ph<p M) = glomel)
and if X ~ N(0, P), then we obtain
1
h(X)=h(X — E{X}) = §log(27reVar(X)).

Next, the definition of differential entropy of one random variable is extended to several

random variables.
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o The differential entropy of jointly distributed random variables X;, Xs, ..., X,, is de-
fined as

h(X1, Xo, ..., X)) = — /f(x")logf(x”)dx" (2.3)
where f(2") = f (21, 22, ..., x,) is the joint pdf.

e Let X Y be two random variables that have a joint density function f(x, y). The

conditional differential entropy h(X|Y') is defined as

h(X]Y) = /f z,y)log f(x|y)drdy (2.4)
From the relationship f(z|y) = f(z,y)/f(y), we obtain

WX|Y)=h(X,Y)—h(Y)

e Mutual information I (X ; Y') between two random variables with joint density f (z; y)

is defined as
(z,9)
/f T,y log @) dxdy. (2.5)
— W(X) - h<X|Y> (2.6)
= h(Y) = h(Y]X) 2.7)
= h(X)+ (YY) - h(X,Y) (2.8)

Properties of Differential Entropy and Mutual Information

e (X + a) = h(X) when a denotes any constant (Translation).

h(bX) = h(X) + log |b| when b denotes any nonzero constant (Scaling).

h(X|Y) < h(X) with equality iff X and Y are independent.

(X1, Xo, .., X)) = >0 h(X;| X1, Xs, ..., X;_1) (Chain rule for differential en-
tropy)

h( X1, Xo, ..., X)) < D00 h(X;) with equality iff X7, X5, ..., X,, are independent.

e /(X;Y) > 0 with equality iff X and Y are independent.
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2.3 Asymtotic Equipartition Property for Continuous Random Vari-

ables

This section defines the typical set and characterizes the behavior of typical sequences
for a continuous random variable [1]. The typical set is used to derive the error probability
in Section 6.4.2.

Let X3, Xy, ..., X,, be a sequence of i.i.d random variables according to the probability

density function f(z). Therefore
1
——log f(X1, Xo, ..., X)) = E[—log f(X)] = h(X) in probability (2.9)
n

For € > 0 and any n, the typical set AE”) with respect to f(z) is defined as follows:

1
Am = {(xl,@,...,xn) e S": ‘5logf(a:1,a:2,...,xn) — h(X)

< e}, (2.10)

where f (21, 22, ..., Tp) = H?:l f ().

The volume Vol (A) of the typical set for continuous random variables A C R" is
defined as follows:

Vol(A) = /A dxydxy - - - dx,,. (2.11)
Properties of the typical set A™ consist of
1. Pr(AE”)) > 1 — e for n adequately large.
2. Vol(A™) < 2n((X)+9) for all n.

3. Vol(A™) > (1 — €)272()+9) for all n adequately large.

2.4 Fano’s Inequality

Suppose that we wish to estimate a random variable X with with a distribution p(z).
We observe a random variable Y that is related to X by the conditional distribution p(y|z).
From Y, we calculate a function g(Y) = X , where X is an estimate of X and takes on

value in X' . We will not restrict the alphabet X to be equal to X', and we will also allow the
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function ¢(Y') to be random. We wish to bound the probability that X # X. We observe

that X — Y — X forms a Markov chain. Define the probability of error
P, =Pr{X # X}. (2.12)

Theorem 2.1 (Fano’s Inequality) For any estimator X such that X — Y — X, with

P, = Pr(X # X), we have
H(P,)+ P.log|X| > H(X|X) > H(X|Y). (2.13)

where H (-) denotes entropy.

This inequality can be weakened to

1+ P.log|X| > H(X]|Y). (2.14)
or
H(X|Y)-1
> 2.15
Proof: See all details in [1]. |

Remark 2.2 Note that from (2.13) P, = 0 implies that H(X|Y') = 0, as intuition sug-

gests.

2.5 Data Processing Inequality

Definition 2.3 Random variables X, Y, Z are said to form a Markov chain in that order
(denoted by X — Y — Z) if the conditional distribution of Z depends only on Y and
is conditionally independent of X. Specifically, X, Y and Z from a Markov chain X —

Y — Z if the joint probability mass function can be written as
p(2,9.2) = p(@)p(ylz)p(z]y). (2.16)
Some simple consequences are as follows:
e X - Y — Zifandonly if X and Z are conditionally independent given Y.

e X — Y — Z implies that Z — Y — X. Thus, the condition is sometimes written

XY 2.
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o if Z=f(Y) then X » Y — Z.

The next theorem shows that no processing of Y, deterministic or random, can increase

the information that Y contains about X.
Theorem 2.4 (Data Processing Inequality [1]) If X — Y — Z, then [(X;Y) > I(X; 7).

Proof: By the chain rule, we can expand mutual information in two different ways:

[(X;Y,2)=1(X:2)+ I(X;Y|Z) (2.17)
= I(X:Y)+I(X;2Z]|Y) (2.18)

Since X and Z are conditionally independent given Y, we have [(X; Z|Y) = 0. Since
I(X;Y|Z) > 0, we have

I(X;Y)>I(X;2) (2.19)

We have equality if and only if /(X; Y|Z) = 0 (i.e., X — Z — Y forms a Markov
chain). Similarly, one can prove that I(Y;Z) > I(X; Z) n

2.6 Genie-Aided Techniques

Genie-aided techniques are used to derive the upper bounds in various communica-
tion scenarios, i.e., interference channel without cooperation [9], interference channel with
cooperation [2], X channel without cooperation [14, 15].

The key feature of these techniques is to provide the side information by the genie to

the receivers for compensating the damage from interference on the other link.

2.7 Han-Kobayashi Strategy

The Han-Kobayashi (HK) strategy [20] involves splitting the transmitted information
at each transmitter into two parts as shown in Figure 2.1: private message m;, which can
be decoded only at the intended receiver and common message m;. which can be decoded
at both receivers, for i = 1,2. Each transmitter generates a common codeword z}) and a

. N e N N
private codeword z;, using messages m;. and m;,. The power for codewords z;, and z;,
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Figure 2.1 The HK strategy in the two-user interference channel

are Q;. and @), respectively. Then, we obtain the transmitted codeword z;¥ with its power
=1 = Q;c+Q;. Finally, each receiver decodes only its corresponding private information
z}) and two common information Y, 1Y, i.e., obtaining ms,, mi., mye.

The original HK strategy [20] allows arbitrary splits of each user’s transmit power into
the private and common information portions (as well as time sharing between multiple

such splits). However, there are the problems for finding the HK region as follows:

1. Optimizing a great number of possibilities for each user’s transmit power is not well-

understood.
2. Time-sharing over many choices of each user’s transmit power may be required.

In the work [9], Etkin, Tse and Wang propose a simple HK type scheme achieving rates
within 1 bit/s/Hz of the capacity of the channel, independent of channel parameters.

The key concept of their scheme [9] is to set the power of the private information of
each user such that it is received at the level of the Gaussian noise at the other receiver as
depicted in Fig. 2.2.

This strategy is used widely in several communication scenarios, i.e., Gaussian inter-
ference channel [9,20], X channel [11, 13], Gaussian interference channel with coopera-
tion [2,22,33], Compound multiple access channel with cooperation [29], Z interference
channel with cooperation [30, 31], Gaussian interference relay channel [34], Z-channel

with cooperation [35, 36], etc.
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Figure 2.2 A simple Han-Kobayashi type scheme in the two-user interference channel
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Figure 2.3 Quantize-map-and-forward (QMF) scheme in the relay model

2.8 Cooperative Protocol

This section describes the concept of quantize-map-and-forward (QMF) scheme [38]
and then indicates its features. After that, cooperative protocol based on QMF scheme

proposed by the work [2] is reported.

2.8.1 Quantize-Map-and-Forward (QMF) Scheme

The QMF scheme [38] is a recently proposed scheme that allows to approximately
achieve the capacity of arbitrary wireless relay networks.
In this scheme, the relay (R) quantizes its received signal at noise level, randomly maps

it to a codeword and forwards it to the destination (see in Figure 2.3).

2.8.2 Features of QMF scheme

e The quantization and mapping are performed without regard to quality of forward
channel at the relay. This reduces the channel estimation and feedback overhead for

the link.
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Figure 2.4: Two-round cooperative protocol base on QMF scheme in the two-user Gaussian

interference channel

o QMF uses joint decoding of the message (from the transmitter) and side information
(from the relay) because mapping at relay is performed without any knowledge of
forward channel strength and side information from relays cannot be decoded at the

destination independently.

e QMF performs within bounded gap from capacity for networks having an arbitrary

number of relays [38].

2.8.3 Cooperative protocol based on QMF scheme

In the work [2], Wang and Tse proposed the two-round QMF strategy for cooperating
between two receivers in the two-user Gaussian interference channel (see in Figure 2.4).
Remind that [2] uses HK strategy in the transmission scheme.

For simplicity, we describe this strategy with the processing order Rxo — Rx; — Rxo

consisting of three stages as follows:

1. Quantize-Binning: Receiver 2 first quantizes its received signal ¥’ into 7' by a
pregenerated Gaussian quantization codebook with certain distortion which equal to
the aggregate power level of the noise and user 2’s private signal and then sends out

a bin index determined by a pregenerated binning function ly; = by (72").

2. Decode-Binning: After receiver 1 retrieves the receiver-cooperative side informa-
tion, that is, the bin index /1, it decodes two common messages and its own private
message (mq., Mo, Mip), by searching in transmitters’ codebooks for a codeword

triple (indexed by user 1 and user 2’s common messages and user 1’s own private
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message) that is jointly typical with its received signal and some quantization point
(codeword) in the given bin. After receiver 1 decodes, it uses two pregenerated bin-
(ic

ning functions to bin the two common messages (/5 ) = bfie)(mic), for i = 1,2)

and sends out these two bin indices to receiver 2.

3. Decoding: After receiving these two bin indices, (Ij5,l2), receiver 2 decodes two
common messages and its own private message (my., Mo, Myp), by searching in the
corresponding bins (containing common messages) and user 2’s private codebook

for a codeword triple that is jointly typical with its received signal ys .

2.8.4 Advantage of cooperative protocol based on QMF scheme

In the work [2], Wang and Tse reveal that strategies based on the compress-forward or
decode-forward scheme which are used in [29,30] are not proper for receiver cooperation
to mitigate interference in certain regimes because both schemes do not achieve the opti-
mal GDoF universally. However, they show that their proposed cooperative protocol which
consists of an improved compress-forward and decode-forward scheme achieves the opti-
mal number of GDoF for all value of the normalized interference («) and the normalized
capacity of the receiver-cooperative link (k).

Therefore, from the key advantage above, we adopt the cooperative protocol of
the work [2] in our cooperative protocol for the two-user Gaussian X channel with
limited receiver cooperation.

In the next section, we introduce the capacity region based on the Gaussian multiple-

access channel.

2.9 Capacity Region

To understand capacity region more clearly, this section gives the well-known sim-
ple example, i.e., the capacity region for the two-user Gaussian multiple-access channel
(Gaussian MAC) [1].

The two-user Gaussian multiple-access channel consisting of two transmitters and one

receiver can be modeled as follows (see Figure 2.5):

Yi = Ty + T2 + 2 (2.20)
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where y € C is the channel output at receiver, z; and 2, € C are the channel input at
transmitter 1 and 2, respectively, the additive noise processes {z;} are independent and

identically distributed (i.i.d.) CA/(0, 1) over time and 7 denotes the index of time.

FHl—’ ENC 1

DEC  [mep (i1.71,)

1 | ENIC 2

Figure 2.5 Gaussian multiple-access channel [1]

Assume that there is an average power constraint P; at transmitter j, i.e., for each

transmitter, we have

1
Nzxﬁ(mj)gpj, m; € {1,2,--- 2N} 5 =12 (2.21)
=1

Next, we provide the definitions for achievable rates and the capacity region based on

the two-user Gaussian MAC.

Definition 2.5 A rate pair (Ry, R») is said to be achievable for the Gaussian MAC if there
exists a sequence of (2N 2NF2 N codes with PN approaches to 0, where the average

probability of error

1
pN) .= SN < Z Pr{d(yN) # (my, mg) | (M, mg) are Sent}
(m1,m2)EM1X M2

Definition 2.6 The capacity region of the Gaussian MAC is the closure of the set of achiev-

able rate pairs (Ry, Ry).

From [1], the capacity region is the closure of the convex hull of the set of rate pairs

satisfying

Ry < I(m1;y|2:) (2.22)
Ry < I(m2;y|x1) (2.23)

Ri+ Ry < I(m1, 123 y) (2.24)
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for some input distribution f;(z;)f,(7;) satisfying the average power constraints F[z?] <
Py and E[z]] < P,.

Next, finding the mutual information 7 (x;; y|x,) as follows:

I(z15yl22) = h(y|22) — h(yla, 22) (2.25)
= h(z1 + 22 + 2|20) — h(@ + 22 + 2|71, 22) (2.26)
= h(z + 2|m) — h(2|z1, 22) (2.27)
@ bz + 2) — h(z2) (2.28)
(2 log(2me)(Py + N) — log(2me) N (2.29)
- 1og<1 n %) (2.30)

where (a) is due to the fact that z is independent of z; and 2, and z; is also independent
of 1,, (b) is due to the fact that the normal distribution maximizes the entropy for a given
second moment.

By choosing z; ~ CN(0, P;) and 2, ~ CN(0, P,), therefore, bounds (2.31)—(2.33)

are maximized with these distributions.
Definition 2.7 The channel capacity function is defined as C(x) 2 log(1+ z)

With the definition above, the capacity of two-user Gaussian multiple-access channel

(2.31)—(2.33) can be rewritten as follows:

Ry < 0(%) 2.31)
Ry < c(%) (2.32)
Ri+ Ry < 0<P1+P2) (2.33)

PitP —-f2) This value is obtained

Note that the sum of rates in (2.33) can be as large as C'(
by a single transmitter sending with a power equal to the sum of the powers.

Using (2.31)—(2.33), the region of the capacity region for Gaussian multiple-access
channel is shown in Figure 2.6.

From Figure 2.6, the corner points have the following interpretation.

e Point A corresponds to the maximum rate achievable from transmitter 1 to the re-

ceiver when transmitter 2 is not transmitting any information.
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.
-

A B
EERFUL
B+N N

Figure 2.6 Gaussian multiple-access channel capacity [1]

e Point B corresponds to the maximum rate at which transmitter 2 can send as long
as transmitter 1 sends at its maximum rate. This is the rate that is obtained if z; is

considered as noise for the channel from z; to .
e Point C corresponds to point B with the role of the transmitter reversed.
e Point D corresponds to point A with the role of the transmitter reversed.
Remark 2.8 Decoding in the Gaussian multiple-access channel corresponding point B
consists of a two-stage process:

1. In the first stage, the receiver decodes the second transmitter by treating the first
transmitter as part of the noise. This decoding will have low probability of error if

Ry < C( P2 )

Pi1+N

2. After information of the second transmitter has been decoded successfully, it can be

subtracted out and the first transmitter can be decoded correctly if Ry < C (%)

Remark 2.9 If (R, Ry) is in the capacity region given above, the probability of error goes

to 0 as N tends to infinity.
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2.10 Gaussian X channel

In this section, we introduce the simple two-user Gaussian X channel without coopera-
tion and show that how to use the genie-aided techniques with the example for deriving the
sum-rate upper bound from the result in [14] which is a useful guideline to understand our
proposed upper bounds in Chapter IV.

The two-user Gaussian X channel that is a communication scenario where each trans-
mitter has an independent message for both receivers can be modeled as follows (see Figure

2.7) [14]:

y1 = hi1my + hioto + 21
Yo = ho171 + hoomn + 2,

where y; is the channel output at receiver ¢, z; is the channel input at transmitter ¢ and
the additive noise processes {z;[n|} are independent and identically distributed (i.i.d.)

CN(0,1) over time for 7,5 = 1,2 and ¢ # j.

Figure 2.7 Gaussian X Channel

In the X channel, there are four independent messages, my1, m12, Ma1, Moo, Where mes-
sage mj; 1S sent from transmitter ¢ to receiver j. Hence, transmitter ¢ encodes message m;;

and m;; into a block codeword {z;[n]|}Y_, with an average transmit power constraint

N

1

T2 lulnl <P, i=12
n=1

for arbitrary block length N. The size of the message m;; is given by |m;;|. For codewords

log |mij|

spanning N symbols, rates Ry = —

are achievable if the probability of error for all

messages are made arbitrarily small when N is large sufficiently.
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Defining the capacity region C of the X channel is the set of all achievable rate tuples
R = (Ri1, Ri2, Ra1, Ro2) and the sum capacity of the X channel is denoted by Cs-.

Next, we give the example for deriving the upper bound of the X channel from [14].

Example: Deriving the upper bound (103) in [14] using the genie-aided technique as
follows:
First, setting my; = ¢. Letting a genie gives side information le ,my; and mys to

receiver 2. Hence, we can upper bound the sum-rate R1; + Ri2 + Roo as follows:

N(Ry1 + Ri2 + Rae) = H(may, my2) + H(mgs)

= I(my1, ma; 4y ) + H(mar, mao|y’) + I(mao; y3') + H(mas|ys')

()
< I(mu, mi; yi) + ey + I(maz; ys' ) + €3

(b
= I (myrmgs ') + 1 (maoi ') + e (2.34)
where €}, — 0 and €3, — 0 as N — 0. (a) follows from Fano’s inequality, i.c.,

H(miy, mis|yl) < N(Riy + Rin) P + H(PY) 2 Nel,

H(mao|y') < N(Rao) PY) + H(PY)) £ Né,

(b) is due to the fact that €, = e} + €3.

Then, we rewrite (2.34) as (2.35) and then find the solution as follows:

N(Ri1 + Riz+ Ros — en) = I(may, maz; yi' ) + 1(maz; y3') (2.35)
(%) I(may, mag; ') + 1 (mass ys' 41, man, mao) (2.36)
9 I(may, maz; ') + 1 (mazs ys', 41 | mas, maz) (2.37)
= h(yi") = h(y] [mar, maz) + h(ys' y1 | mas, maz)
— Wy’ yi Imar, mag, mpo)
= h(?hN) + h(yéN|y1Na mit, Myz) — h(yzN, lelmn, M1z, Mo2)
D () + |, ma, o) (2.38)
- h(ygNa?/mmn,m12,m22,$2N,$1N) (2.39)
2 h(y") + hsfilsth) — (', ) (2.40)

IN

> h(mln)) + Y h(snnllsizln]) — h(z",2Y)  (241)

n=1
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(2) h2, P.
< Nlog(l+ h3 P+ h%Py) + 1og(1 + Lf) (2.42)

where ey — 0as N — 0, 835 = hpoxd¥ + 2V and s{} = hpz) + 2. () is due to the genie
providing le , my1 and myo to receiver 2. (d) is due to the chain rule and the independence
of all messages mq1, my2, mas. (€) In the first summand on the right-hand side, we use the
fact that given my;, xlN is known at receiver 2 because ms; = ¢. In the second term, using
the fact that conditioning on z;¥ and z" does not reduce entropy. (f) is due to the fact that
conditioning does not reduce entropy. (g) is due to the fact that i.i.d. Gaussian distribution

maximizes conditional differential entropy subject to conditional variance constraints.

2.11 Generalized Degrees of Freedom

The GDoF introduced by Etkin, Tse and Wang [9] is a natural generalization of the
notion of the DoF in point-to-point communication to multiuser scenarios. This notion
provides a useful tool to approximate interference-limited performance in the high-SNR
regime.

For simplicity, we consider in the symmetric channel case of the two-user Gaussian
interference channel where SNR; = SNR,; = SNR, INR; = INR, = INR. The GDoF of the

sum capacity is defined as

d(a) = lim C=5NR, INR) (2.43)

fix o log SNR

SNR—o00

where Cx(SNR,INR) is the sum capacity of the two-user Gaussian interference channel,

i.e., C(SNR,INR) = R; + Ry, and

log INR
SNR 7o logSNR “ 2.44)
More precisely, we use the following approximations [9] such as
log(1 4+ SNR + INR) ~ max(log(SNR), log(INR)) (2.45)
SNR SNRy\\ +
log (1 )~ (1057 )) 24
6\ T 1R/ T U UNR (246)

to give an expansion of the capacity region of the Gaussian interference channel which is

accurate to the first order terms. Denote that (a)™ := max(0, a).
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2.12 Gain from the limited receiver cooperation

In the work [2], Wang and Tse give a numerical example to show the gain from the
limited receiver cooperation by plotting cooperation rate versus user data rate at the fixed
signal-to-noise ratios (SNR) = 20 dB and interference-to-noise ratios (INR) = 15 dB as

depicted in Figure 2.8 .

Figure 2.8 Gain from limited receiver cooperation [2]

From Figure 2.8, they classify their result into two regions: linear and saturation re-

gions.

e In the linear region, it can be stated that receiver cooperation is efficient because
each user’s data rate and the capacity of receiver-cooperative link are approximately
linear. The gain in this region is provided by distributed MIMO systems and is called

the degrees-of-freedom gain.

e In the saturation region, it can be stated that receiver cooperation is inefficient since
each user’s data rate does not change anymore even though the capacity of receiver-
cooperative link increases. The gain in this region is called the power gain and is

bounded independent of the cooperative rate.



CHAPTER III

THE PROBLEM FORMULATION

This chapter provides the channel model for the two-user Gaussian X channel with

limited receiver cooperation and formulate the problem.

3.1 Channel Model

Since the two-user Gaussian X channel is physically the same as the two-user Gaus-
sian interference channel [14], therefore, we can describe the two-user Gaussian X channel
with limited receiver cooperation using the channel model of the two-user Gaussian inter-
ference channel with limited receiver cooperation in [2] as shown in Figure 3.1. This model
consists of two transmitters and two receivers, where each transmitter has an independent
message for each receiver. They communicate each other via two main non-interference

links' as follows:

Figure 3.1: Channel model of the two-user Gaussian X channel with limited receiver co-

operation

"'We consider the two-user Gaussian X channel with out-of-band (orthogonal) limited receiver coopera-

tion, that is, signals in transmitter-receiver links do not interfere with ones in receiver-cooperative links.
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Transmitter-Receiver Links: These links are modeled as the normalized Gaussian X

channel

= hiiz + heae + 2

Yo = ho11) + hoody + 2,

where the additive noise processes {z;[n]}, (i = 1,2), are independent and identically
distributed (i.i.d.) CN(0, 1) over time. For 7,7 = 1,2 and i # j, suppose that there are four
independent messages, mi1, M2, Ma1, Ma2, Where message my; s sent from transmitter
to receiver j. Hence, transmitter : encodes message m;; and mj; into a block codeword

{x;[n]}"_, with an average transmit power constraint

N

1

T2 lmlhlP <1, i=12,
n=1

for arbitrary block length N. Note that the outcome of each encoder depends only on its
own messages. Signal-to-noise ratio (SNR) and interference-to-noise ratio (INR) can be

defined to capture the channel gains as follows:
SNRZ = ‘hm‘ﬁ, and |NR1 = |hij‘2> ’L,] = 1,2, 1 #]

Receiver-Cooperative Links: These links are noiseless with capacity C?j from receiver
i to g, for (i,7) = (1,2),(2,1), where 0 < C3 < CP* and C* denotes the maximum
value of the capacity of receiver-cooperative link from receiver ¢ to 5. Encoding at each
receiver is causal in the sense that the cooperation signal from receiver i to j, u;;[n], is only
a function of the received signal at receiver i, {y;[1],..., v:[n — 1]} and the cooperation

signal from receiver j to i, {u;[1], ..., uj;[n — 1]}, for any time index n = 1,2,..., N.

3.2 Strategies, Achievable Rates, and Capacity Region

We give the definitions for the coding strategies, achievable rate of the strategy, and the

capacity region of the channel.

Definition 3.1 (Strategy and Average Probability of error) An (Myy, Myo, Moy, Moy, N)—
strategy for the X channel consists of the following: for i,j =1, 2, 1 # j,

o Message sets M; == {1,2,..., M;;} and M, = {1,2,..., M};} for transmitter i,
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o Message sets M;; :=={1,2,..., M;} and M;; == {1,2,..., M;;} for receiver i;

Encoding function e My x My — CN, my x myj; > z} at transmitter i;

Set of relay function {r™¥_, such that ui;[n] = r™ (yr 1, uf ) e {1,2,... 260},

Vn =1,2,..., N at receiver i,

Decoding function dl-(N) CCN x {1,2,...,2Y%) 5 My x Mg, (9% uff) =

My X 1y at receiver 1.

The average probability of error

( )
Py . Pr dy (?/1 >U21) # M1 X Mya OF | my1, Maa, Mo,
0 MM M M. Z
MR eMn ds™ (¥, ul) # may X may | mas ave sent
mi2€Mi2
mo1 €EMo
Mmoo €EMaz

Definition 3.2 (Achievable Rates for the general case) A rate hexatruple (R, Rac, Ri1p, Ri2p,
Ro1p, Raayp) is said to be achievable if for any small ¢ > 0 and for all sufficiently large
N, there exists a (Mc, Moc, My1y, Moy, Moy, Mooy, N) strategy with M;, > 2" and
My, > 28R, for i, j = 1,2, such that P < . The achievable rate region is the closure

of the set of achievable rates. This definition is used in Theorem 6.3.

Definition 3.3 (Achievable Rates) A rate quadruple (Ry1, Ria, Ro1, Ros) is said to be achiev-
able if for any small € > 0 and for all sufficiently large N, there exists a (M, My2, Moy, Mg, N)
strategy with M;; > oNEy fori, j = 1,2, such that P(EN) < €. The achievable rate region is

the closure of the set of achievable rates. This definition is used in Theorem 6.8.

Definition 3.4 (Capacity Region) The capacity region Z of the X channel is the closure of

the set of the achievable rate (R11, Ri2, Ra1, Rao).

3.3 C(lassification of the Two-User Gaussian X Channel

In the work [12], Prasad and Chockalingam classify the two-user Gaussian X channel

into the two broad classes which each class is also divided into two subclasses as follows:

e Strong Gaussian X channel
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1. Type I: the direct channels are stronger than the cross channels, i.e., SNR; >

INR2 and SNRy > INR;.

2. Type II: the cross channels are stronger than the direct channels, i.e., SNR; <

INRy and SNRy < INR;.
o Mixed Gaussian X channel

1. Type I: one of the direct channels is stronger than the corresponding cross chan-
nel and the other cross channel is stronger than the corresponding direct chan-

nel, i.e., SNR; > INR, and SNR, < INR;.

2. Type II: one of the cross channels is stronger than the corresponding direct
channel and the other direct channel is stronger than the corresponding cross

channel, i.e., SNR; < INR;y and SNR, > INR;.

In addition to the general case, we also consider the strong Gaussian X channel type
I case in this dissertation. However, we modify the constraints in the strong Gaussian X
channel type I case by replacing the symbol “>" with “>”, that is, SNR; > INR; and
SNR; > INR;.

3.4 Notations

We use the following notations throughout in the rest of this dissertation.

e h(-) and I(-) denote the differential entropy of a continuous random variable or vec-

tor, and mutual information, respectively.
e For a real number a, (a)™ := max(0, a) denotes its positive part.
e C denotes the set of all complex numbers.

e CN(0,1) denotes complex Gaussian random variable with zero mean and unit vari-

ance.

e For set A C R* in an k-dimensional space, conv{A} denotes the convex hull of the

set A.
e Let 2V denote the sequence {z[1],--- , z[N]} where [-] denote time indices.

e Unless otherwise stated, all logarithms log(+) are of the base 2.



CHAPTER IV

AN OUTER BOUND ON CAPACITY REGION FOR
THE TWO-USER GAUSSIAN X CHANNEL WITH
LIMITED RECEIVER COOPERATION

In this chapter, we provide an outer bound on the capacity region containing upper
bounds for the two-user Gaussian X channel with limited receiver cooperation in Lemma
4.1. Ideas for proving upper bounds are outlined in Section 4.1 and all details are given in
Section 4.3. This outer bound is used to evaluate the performance of our proposed strategy
in the case of strong Gaussian X channel type I which details are shown completely in

Chapter VI.

4.1 An Outer Bound

For finding an outer bound on the capacity region for the two-user Gaussian X channel
with limited receiver cooperation, we use Fano’s inequality, data processing inequality and

genie-aided techniques, etc. The result is given in the following theorem.

Lemmad.l 7 C 7, where an outer bound on the capacity region of the two-user
Gaussian X channel with limited receiver cooperation 7 consists of nonnegative rate

quadruple (Ry1, R12, Ra1, Ros) satisfying the following inequalities.

Ru < log(1 + SNR,) +min{C281,log<1 + INSRI\2IR1>} @.1)
Ris <log(1+INRy) + mln{ 21 log( 1 i—l\:llfﬁRl)} 4.2)
Ror < log(1 + INR,) +m1n{ 12,1og(1 + - i'\:leQ)} 4.3)
Ras <log(1l+ SNR,) + mln{C%, 10g<1 + 1 _:_NSR|\1|R2>} 4.4)
Ri1 + Ry <log(1+SNR; + INR;) + C5, (4.5)
Ryy + Ryy < log(1 + SNR, + INRy) + CP (4.6)
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Rll + ng < log <1 + SNR1 + |NR1 + SNR2 + INRQ -+ |h11h22 — h12h21|2>

SNR,
g1+ SR ) .
s\ 1+ TINR 4.7
R21 + RQQ < log <1 + SNR1 + |NR1 + SNRQ + INRQ -+ |h11h22 — h12h21|2>
SNR;
—log(1 —> 4.
og 1+ 1+ INR, 48
SNR, s .
RH —+ R12 + R21 S log(l + INRQ) -+ log(l + INR1 + m) + C21 -+ C12 (49)
2
INR
Ri1+ Ris+ Ry < log(l + SNRQ) + log(l 4+ SNR; + H—TlR) + C281 + C182 (4.10)
2
INR,

Rll + R21 + R22 S log(l + SNRl) —+ 10g<1 + SNR2 + + Cgl + C182 (411)

1+SNR1)

Ryy + Roy + Roy <log(1 + INR;) + log(1 + INR; + #:2&) +CB 4 CB (412
Ri1 + Bia + Ry < log(1 + SNR; + INR;) + log<1 + %) +CB (4.13)
Ri1 + Ris + Rys < log(1 + SNR; + INRy) + log<1 + %) +CY, (4.14)
Rut + Ror + Ras < 1og(1 + SNRs + INRy) + log<1 + %) + B, (4.15)
Ris 4 Ryt + Ry <log(1+ SNRy + INRy) + log(l + %) + CB, (4.16)
Rys + Ria + Roy <10g (14 88 4 INR, + SNR, + (8 . [shas st )

+1log(1 + INRy) — 1og(1 + %) +CB, 4.17)
Ry + i + Rp <log (14 SNR, + (8 1 SV | INR, 4 Dl uatun )

+ log(1 + SNRy) — log<1 - %leuql) + C%, (4.18)
Ryy + Bay + Rp <1log (14 (MR 4 INR; + SR, + (1% 4 Dl uatn )

+log(1 + SNR;) — log<1 + %Rl\lm) +C5, (4.19)
Ry + Rar + Rp <10g (14 SNRy + (MR 4 SN 4 IR, o [ushas st )

+log(1+ INRy) — log 1+ %) +C8 (4.20)
Ry1 + Ria + Roy < log <1 + SNR; + INR; + SNRy + INRy + |hy1hey — h12h21\2>

_ 1og<1 + %) 421)
Ry + Ria + Rye < log (1 + SNR; + INR; + SNRy + INRy + |hy1hey — h12h21\2>

_ 1og<1 + %RGRI) (4.22)
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Rll + R21 + R22 S 10g <1 + SNR1 + |NR1 + SNR2 + |NR2 + |h11h22 - h12h21|2>

~log(1+ INR, ) (4.23)
6" T TISNR, '
ng + R21 + RQQ < log <1 + SNR1 + |NR1 + SNR2 + |NR2 + |h11h22 — h12h21|2>
SNR,
Clog(14 2L .
os(1+ 1Ry (424)
INR, INR,
Rit + Rio + Rot + Rop < 1 (1 SNR —> 1 (1 SNR —)
n e S B = Top (1 ST 1 gNR, ) OV TR T TTGNR,
+CB 4B (4.25)
SNR, SNR,
Rii+ Rig + Rop + Roy < 1 (1 INR —> lo (1 INR —)
11 + o + Roy + g < log( 1 + 1+ INR, + log( 1+ 2+1+|NR1
4B, 4 CB (4.26)
Ri1+ Rig + Ro1 + Roz < log <1 + 1?}‘,\'7& + INR; + SNRs + 1'+’\:'52R + |h11h123r”\7;{22h21|2>
SNR, SNR,
1 (1 INR —>—1 (1 —)
tlog(L R+ 7Rk ) T U T TOINR,
+C5 4.27)

_ 2
R11+R12+Rz1+322§10g<1+SNR1+1J'F'\I',Fj;{1+1§r'}'§§1+INR2+%>
SNR, SNR,

) (1 1)
o) s T

+C5 (4.28)

+log(1+|NR1 +

14+ SNR; + INR; + SNRy + INR,
Ri1 + Ria + Roy + Ry <log (4.29)

+|h11h22 — h12h21|2
SNRl >
1+ INR,

SNR
+log 1+ INRy + =~ )+c132+c§1 (4.30)
1

2Riy + Ris + Ror + Ros < log(1 + SNR; + INR;) + log<1 n

INR; >
14+ SNR;

>+C e 431)

Riy + 2R + Ror + Ry < log(1 + SNR; + INR;) + log<1 +

INR,
1+ SNR;

(

(
+1og(1 + SNR, +
Riy + Ria + 2Roy + Ray < log(1 + SNRs + INRy) + log<1 +
(

INR, >
14+ SNR;

) +CB 4B (4.32)

SNR2 >
1+ INR;

+ C5, + C5, (4.33)

INRy
+ SNR,

Rll -+ R12 -+ R21 -+ 2R22 S IOg 1 -+ SNRQ + INRQ) -+ lOg(l +

+ log( 1+ SNR, —|—

log(1+ INR )
+ log( 1+ 1+ INRQ
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2Rll + R12 + R21 + R22 S IOg <1 + SNR1 + |NR1 + SNR2 + |NR2 + |h11h22 — h12h21|2>

SNR, SNR,
1 (1 —> 1 (1 INR —)
+ log +1+INR2 +log( 1+ 2+1+INR1
SNR,
1 (1 —) B 4.34
os(1+ 1 nR, ) T O (4.34)
Ri1 +2Ry5 + Ro1 + Ry < log <1 + SNR; + INR; + SNRy + INRy + ‘hnhgz - h12h21|2>
INR, INR,
1 (1 —> 1 (1 SNR —)
et ToNR, ) T TN T T oNR,
INR, 5
“log(14+ —22 ) +cC 4.
og(1+ 1 Tong ) + B 39)
RH + R12 + 2R21 + RQQ < log <1 + SNR1 + |NR1 + SNRQ + |NR2 + |h11h22 — h12h21|2>
INR, INR,
log(1+——2 ) +log(1+SNRy + — 1
+0g< +1+SNR1>+Og< +5 1+1+5NR2>
INR,
] (1 —> B .
og +1+SNR2 +C5y (4.36)
Riy + Rz + Roy + 2R < 10g (1 4+ SNRy + INRy + SNRy + INRy + |1 sy — hyahin ?)
SNR, SNR,
1 (1 —) 1 (1 INR —>
tloe(Mt TR, ) eV TN T TORR,
SNR, 5
2R11 + Ria + Ryy + Ry < log <1 + SNR; + l—li-'\llﬁlRl + li'm;l +INRy + _|h11h121|—'\7§21h21l2>
+log(1 + SNR; + INR;) + C5, (4.38)

Ri1 + 2R15 + Roy + Ros < log (1 + 1i§l§1R1 + INR; + SNR, + 1JIFRSIEQR1 + ‘h“hfjgskzlhml?)

+log(1 + SNR; + INR;) + C5, (4.39)

Ri1 + Ri2 + 2Ra1 + Rgy < log <1 + SNR; + 11'\5”,31,?2 + 1?;52'?2 + INRy + _‘hllfﬁ;ﬁéﬁmlz)

+log(1 + SNR;, + INR,) + C%, (4.40)

Riy + Rua + Ry + 2oz < 1og (1 4+ SV 4 INR, + SNRy + g 4 [t ot )

+log(1 + SNR; + INR,) + C&, (4.41)

Proof: All above bounds can be upper bounded by mutual information via Fano’s
inequality and data processing inequality. Next, they are decomposed into two parts: 1)
terms which are similar to ones in Gaussian X channels without cooperation and 2) terms
which indicate the enhancement from cooperation. To upper bound the first part, we use
the genie-aided techniques such as [2,9, 14] where genies provide side information signals

that are carefully chosen to the receivers. In the second part, we consider that both co-
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operation signals u.Y and u{% are a function of both received signals (', y2') and use the
straightforward bounding techniques for others. Details are given thoroughly in Section
4.3.

Next, for 7,7 = 1,2 and ¢ # j, we give a brief outline for our proposed outer bound as
follows:

First of all, bounds (4.1)—(4.4) are the upper bounds of individual rates. In the genie-
aided channel, a genie gives side information xjN to receiver ¢ for upper bounds R; and

2} to receiver i for upper bounds R;;. Therefore, there is no interference at receiver i. The

gain of receiver cooperation is the minimum value between CJBZ- and log(l + hll\sl—m) for
(4.1) and (4.4) and C8 and log (1 + >n&-) for (4.2) and (4.3).

Bounds (4.5)—(4.6) on R;; + R;; are straightforward cut-set upper bounds of the sum
of 2 rates by setting mj = m;; = ¢. The gain of cooperation from receiver i to j is upper
bounded by C.

Bounds (4.7)—(4.8) are derived by providing side information y;" and mj; to receiver i.
In these cases, the gain of cooperation from receiver j to i is absorbed into a power gain'.

Bounds (4.9)—(4.12) correspond to the Z-channel bounds. A genie gives interfering
information sﬁf and my; to receiver ¢ and xjN and m;; to receiver j for bounds (4.9) and
(4.12) and s]f]\.’ and my; to receiver ¢ and xiN and my; to receiver j for bounds (4.10) and
(4.11). The gain of receiver cooperation is the sum of ij and C]-Bi.

Bounds (4.13)—(4.16) also correspond to the Z-channel bounds and the Huang-Cadambe-
Jafar (HCJ) upper bounds for the Gaussian X channel without cooperation [5]. For these
bounds, a genie gives yJN to receiver i for i,7 = 1,2 and ¢ # j. Therefore, the gain from
receiver j to ¢ is absorbed into the power gain and the other gain is upper bounded by C?j.

Bounds (4.17) and (4.20) are derived by providing side information 3, s,y and my; to
receiver ¢ and xjN and m,; to receiver j. Bounds (4.18) and (4.19) are derived by providing
side information yjN , sf]\f and my; to receiver ¢ and z’ and m;; to receiver j. Since a genie
gives xjN and m; to receiver j for (4.17) and (4.20) and xZ-N and m;; to receiver j for (4.18)
and (4.19), i.e., it means that there is no interference at receiver j, therefore, the cooperation
from receiver j to i provides the power gain. In addition, the gain of cooperation from

receiver i to j is upper bounded by Cf—j—.

'The power gain which is identified in [2] occurs in the saturation region where receiver cooperation is

inefficient. This gain is also bounded, regardless of the cooperation rate.
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Bounds (4.21) and (4.22) are derived by giving side information yjN to receiver ¢ and
yiN , m;; and my; to receiver j. In addition, bounds (4.23) and (4.24) are derived by giving
side information y]N , mj; and m;; to receiver ¢ and y;' to receiver j. The gain from the
receiver cooperation in both sides is absorbed into a power gain.

Bounds (4.25)—(4.26) correspond to the Etkin-Tse-Wang (ETW) upper bounds for the
interference channel without cooperation [9] which is extended to the Gaussian X channel
without cooperation [5]. In the genie-aided channel, a genie give side information 5]]}] and
my; to receiver ¢ for (4.25) and §]]¥ and my; to receiver ¢ for (4.26). The gain of receiver
cooperation is upper bounded by CB, + CB,.

Bounds (4.27)—(4.28) on R; + Ris+ Ro1 + Ry are derived by giving side information
y and )} to receiver i and 3 to receiver j. Since a genie gives y" to receiver i, therefore,
the gain from receiver j to ¢ is absorbed into the power gain and the other gain is upper
bounded by C.

Bound (4.29) is straightforward cut-set upper bound of the sum of 4 rates.

Bounds (4.30)—(4.33) correspond to the Niesen-Maddah-Ali (NMA) upper bounds for
the Gaussian X channel without cooperation [12]. In the genie-aided channel, the gain of
receiver cooperation is upper bounded by C8, + CE,.

Bounds (4.34) and (4.37) on 2R;;+ R;;+ R+ Rj; are derived by giving side information
y to the first receiver 4, ' and =" to the second receiver 7 and 5] to receiver j. Similarly,
bounds (4.35) and (4.36) on R;; + 2R;; + Rj + Rj; are derived by giving side information
y! to the first receiver i, 3\ and z;" to the second receiver 7 and 3} to receiver j. In the
genie-aided channel, the structure based on Z-channel is created and thus the gain from one
direction of receiver cooperation is absorbed into the power gain. The other gain is upper
bounded by C.

Bounds (4.38) and (4.41) on 2R;;+ R;;+ R+ Rj; are derived by giving side information
y! to the first receiver 4 and " and 3} to receiver j. Similarly, bounds (4.39) and (4.40)
on Ry + 2Ry + Rj; + Rj; are derived by giving side information y]-N to the first receiver 4
and y¥ and 3 to receiver j. In the genie-aided channel, the point-to-point MIMO channel
is created and thus the gain from both directions of receiver cooperation is absorbed into
the multiple-antenna systems. The other gain is upper bounded by CZB]-.

Note that the derivation of all bounds works for all SNR’s and INR’s. [ ]
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Remark 4.2 (Dependence on Phases) The sum-rate upper bounds on (4.7)—(4.8), (4.17)—
(4.24), (4.27)— (4.29) and (4.34)—(4.41) not only depend on SNR’s and INR’s but also on

the phases of channel coefficients, i.e., |hi1has — hia h21\2. When these upper bounds are

active, an outer bound depends on phases [2].

Next, the effectiveness of our proposed outer bound is given in the following section.

4.2 Effectiveness of the proposed outer bound

To test the effectiveness of an outer bound proposed in Lemma 4.1, we compare this

result with the existing results [2—4, 14, 15,31] in the two ways as follows:

1. Comparison of some upper bounds in Lemma 4.1 with the known results in the fol-

lowing two cases:

e Non-cooperation case:

(a)

(b)

Substituting CB, = CB = 0 in the upper bounds (4.13)—(4.16) and (4.25)—
(4.26), it is easily seen that these upper bounds are identical to the results
of Lemma 5.2 and Theorem 5.3, respectively, in [14]. In addition, the up-
per bounds (4.30)—(4.33) with setting CB, = C8, = 0 are also the same as

the result of Lemma 10 in [15].

Considering the case where each transmitter has only one message by let-
ting mis = My, = ¢, i.e., Rz = Ry = 0, and substituting CB, = C5, = 0
in the upper bounds (4.1), (4.4), (4.14)—(4.15), (4.26), (4.30) and (4.33),
it is easily seen that these bounds are the same as all upper bounds in an
outer bound on the capacity region for the two-user deterministic interfer-

ence channel in [3,4].

e Receiver cooperation case:

(a)

Considering the case where each transmitter has only one message by let-
ting mys = mo; = ¢, i.e.,, Rio = Ry = 0, it is easily seen that the
set of the upper bounds consisting of (4.1), (4.4), (4.14)—(4.15), (4.26),
(4.29)—(4.30), (4.33), (4.38) and (4.41) is identical to an outer bound on
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the capacity region for the two-user Gaussian interference channel with

limited receiver cooperation, i.e, Lemma 5.1 in [2].

(b) Considering the case where each transmitter has only one message by let-
ting mis = mg; = ¢, 1.e., Rio = Ry = 0, and letting that receiver 1
suffers from interference and noise but receiver 2 suffers only from noise,
it is easily seen that the set of the upper bounds consisting of (4.1) with
CQB1 = 0, (4.4), (4.14) and (4.29) with some modifications and disappear-
ance of hy, is the same as an outer bound on the capacity region for the
two-user asymmetric interference channel with limited receiver coopera-
tion, i.e., Theorem 2 in [31].

(¢) Comparing (4.29) with (9) in Lemma 5.1 [2] without setting any parame-
ters in our channel model as (i) and (i1) above, we see obviously that both

upper bounds from the different channel model are the same.

Conclusion: With considerations above, it can be easily seen that some of the pro-
posed upper bounds in Lemma 4.1 are the same as the existing results [2—4,14,15,31]
by setting a certain set of parameters. This means that these bounds are more gener-

alized than those in several communication scenarios.

. Comparison of the region of the proposed outer bound with the region of an outer
bound of the two-user Gaussian interference channel with limited receiver cooper-
ation [2] and that of the two-user Gaussian interference without receiver coopera-

tion [3,4] through some numerical examples.

In this comparison, it consists of the following 3 steps:

(a) Defining parameters: In order to compare our result with the existing results [2—

4] properly, we define the following parameters. Let
e Ry = Ry + Rio;
o Ry = Ry + Rao;

Ry 4+ Ry = Ry1 + Rig + Rop + Rao;

2R1 -+ RQ = 2R11 + 2R12 + R21 + RQQ;

Ry + 2Ry = Ryy + Ria + 2Ro1 + 2Ras.
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Remind that SNR; = |h;|* and INR; = |h;|* for 4,7 = 1,2 and i # j.

(b) Calculating parameters: Based on the assigned parameters in the first step, we

can calculate each parameter from our results as follows:

o Ry =min{(4.1) + (4.2), (4.5), (4.7)};

o R, =min{(4.3) + (4.4), (4.6), (4.8)};

e Ry + Ry = min{(4.25), (4.26), (4.27), (4.28), (4.29)};

o 2Ry + Ry = min{(4.25) + (4.5), (4.26) + (4.5), (4.27) + (4.5),
(4.28)+(4.5), (4.29) +(4.5), (4.25) + (4.7), (4.26) + (4.7), (4.27) + (4.7),
(4.28)+(4.7), (4.29) + (4.7), (4.30) + (4.2), (4.31) + (4.1), (4.34) + (4.2),
(4.35)+(4.1), (4.38)+(4.2), (4.39) +(4.1), (4.9)+(4.10), (4.13) 4 (4.14),
(4.17) + (4.18), (4.21) + (4.22)};

e Ry + 2R, = min{(4.25) + (4.6), (4.26) + (4.6), (4.27) + (4.6),
(4.28) + (4.6), (4.29) + (4.6), (4.25) + (4.8), (4.26) + (4.8), (4.27) + (4.8),
(4.28) + (4.8), (4.29) + (4.8), (4.32) + (4.4), (4.33) +(4.3), (4.36) + (4.4),
(4.37)+(4.3), (4.40)+(4.4), (4.41)+(4.3), (4.11)+(4.12), (4.15)+(4.16),
(4.19) + (4.20), (4.23) + (4.24)}.

(c) Plotting the region: Following the same method in [20], we can plot the region

of the proposed outer bound from the received results in the second step.

Next, using the three steps above, we compare the region of our obtained result with
the region of the outer bounds in the two-user Gaussian interference channel with
limited receiver cooperation [2] and without cooperation [3,4] in the following three

cascs.

e Case 1: We consider the symmetric case where SNR; = SNRy, = 20 dB,
INR; = INRy = 15 dB and CB, = CB, = 2. The received result (see Figure
4.1) shows that our proposed outer bound is a superset of the outer bounds [2]
and [3,4]. Furthermore, we observe that the maximum gap between our pro-
posed outer bound and the outer bounds [2] and [3,4] are 2 and 2.393 bits/s/Hz,

respectively.

e Case 2: We consider the symmetric case where SNR; = SNR, = 20 dB,
INR; = INR, =7 dB and CB, = C8 = 2. In this case, the values of INR;
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—&— Outer bound of XC with RC (Proposed)
—&@— Outer bound of IC with RC [1] -
—l— OQuter bound of IC without RC [2.3]

SNR, =20 dB
SNR, =20 dB
INR, =15dB |

R2 {bps/Hz)

R, (bps/Hz)

Figure 4.1: Comparison of our proposed outer bound with outer bounds [2] and [3,4] where

SNR; = SNRy =20 dB, INR; = INR, = 15 dB and CB, = CB =2

and INR, are reduced from 15 dB in the first case to 7 dB. The obtained re-

Figure 4.2: Comparison of our proposed outer bound with outer bounds [2] and [3,4] where

SNR1 = SNR2= 20 dB, |NR1 = |NR2 =7dB and C1|32 = Cgl =2
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Figure 4.3: Comparison our proposed outer bound with outer bounds [2] and [3, 4] where

SNR; =20 dB, SNR, = 15 dB, INR; = 5dB, INRy =7 dB, CB, = 1 and CB, =2

sult (see Figure 4.2) shows that our proposed outer bound is a superset of the
outer bounds [2] and [3,4]. Furthermore, we observe that the maximum gap
between our proposed outer bound and the outer bounds [2] and [3, 4] are 2
and 2.04 bits/s/Hz, respectively. However, there is a region (indicated by the
dashed ellipse) where the gap between our outer bound and the outer bound [2]

approaches to zero.

e Case 3: We consider the asymmetric case where SNR; = 20 dB, SNR, =
15dB, INR; = 7 dB, INR, = 5dB, CB =1, CB = 1. The received result
(see Figure 4.3) shows that our proposed outer bound is a superset of the outer
bounds [2] and [3,4]. Furthermore, we observe that the maximum gap between
our proposed outer bound and the outer bounds [2] and [3, 4] are 1.073 and
1.206 bits/s/Hz, respectively. The result in this case is similar to the result in
the second case, i.e., there is a region (indicated by the dashed ellipse) where

the gap between our outer bound and the outer bound [2] closes to zero.

Conclusion: From three comparison cases above, based on defining parameters in

the first stage for reducing our results from 4 dimensions to 2 dimensions, it is obvi-
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ously seen that the outer bounds in the two-user Gaussian interference channel with
limited receiver cooperation [2] and without cooperation [3,4] are obviously subsets

of our proposed outer bound.

Next, in addition to compare between our proposed outer bound and the outer bound [2],
we compare above two outer bound with an achievable rate region from our result in Chap-

ter VI and an achievable rate region [2].

Comparisons of outer bounds and achievable rate regions

For better understanding comparisons, we first define Outer,, oposed, Outerc_re,
Achievabley,oposea and Achievablerc— pe as our proposed outer bound, the outer bound [2],
an achievable rate region from our result in Chapter VI and an achievable rate region in [2],
respectively. Comparisons of outer bound and achievable rate region of our work with those

of the work [2] have details as follows:

e When comparing our proposed outer bound with the outer bound [2] as shown in
the three cases above (see Figure 4.1— Figure 4.3), the obtained results can be con-
cluded that our proposed outer bound is a superset of the outer bound [2], i.e.,
Outerproposea =2 Outerrc_ge. Especially, the first symmetric case, the maximum

gap between our proposed outer bound and the outer bound [2] is 2 bps/Hz.

e When comparing our proposed outer bound and an achievable rate region of our
proposed strategy in the strong Gaussian X channel type I case (see more details in
Chapter VI) with the same defining parameters in the the first step, we obtain that
the maximum gap of this comparison is 3 bps/Hz. This gap value is larger than
the maximum gap of comparing between our proposed outer bound and the outer
bound [2] in the first symmetric case. Therefore, we can state that our proposed
outer bound and the outer bound [2] are a superset of an achievable rate region of our
proposed strategy in the strong Gaussian X channel type I case, i.e., OQuter,,oposed 2

Outeric—rc 2 Achievabley, oposea.

e When comparing the outer bound and an achievable rate region in [2], Wang and
Tse [2] show that the gap between them is equal to 2 bits/s/Hz/user at the most,
independent of channel parameters. Hence, we obtain that the outer bound in [2] is a

superset of an achievable rate region in [2], i.e., Outer;c_grc 2 Achievablerc_gre-
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The results from three comparisons above can be concluded that

Outerproposed 2 Outeryc_re 2 Achievabley,oposea = Achievablerc_pe.

Remark 4.3 All upper bounds in Lemma 4.1 have the following relationship:
A=BUC=CUC

where A, B and C denote the set of all upper bounds (4.1)—(4.41), the set of upper bounds
(4.5)—(4.12), (4.27)—(4.28), and (4.34)—(4.41) which is the novel result and the set of
upper bounds (4.1)—(4.4), (4.13)— (4.26) and (4.30)—(4.37) which is also the novel result
and can cover the previous results in [2,4, 14], respectively, by specifying some parameters

suitably in these bounds.

Remark 4.4 (Benefit of Our Result) The obtained outer bound tells us about communica-
tion limits of the two-user Gaussian X channel with limited receiver cooperation. In ad-
dition, it can be used to assess the performance of any proposed methods for transmitting

messages in this channel.

4.3 Proof of Lemma 4.1

In this section, we give the details for proving Theorem 4.1 which are based on the
genie-aided techniques [2,9, 14]. For this proof, we define auxiliary information s;; and

side information §;; as follows:
Sij = hz‘jll?j + Zis SNij = hijxj + ZNZ
where, for 7,7 = 1,2, z; and Z; are i.i.d CN'(0, 1) and independent of everything else. Both

s;; and s;; have the same marginal distribution.

Bounds (4.1) on Rq11, (4.2) on Ro, (4.3) on Roy and (4.4) on Ras:

Proof: 'We compute the upper bound on (4.1) by using Fano’s inequality, data pro-
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cessing inequality, and chain rule: if Ry, is achievable,

(a)
N(RH —GN) < ](mll;leaUQA{)

INE

[(mll; lea u2]\177 'T2N)

—
¢}
~

I

VAN

mii; y1 ) U21|372 )

=

)1 min; gy |2 )+ I(mars ug |91 2 )

(

(

= h(yy' |2°) = h( |2y man) + T(mars gy [y, 25°)
h(w

‘xz ) — h(n ‘xl y Lo >+[(m117u21‘y1 7$2N)

—

e

< Nlog(1+SNRy) + 1 (may; ugy |y, z5")

~

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing inequality.
(b) 1s due to a genie providing side information x2 to receiver 1. (c) is due to the fact
that m;; and x2 are independent. (d) is due to chain rule. (e) is due to the fact that i.i.d.
Gaussian distribution maximizes differential entropy under covariance constraints.

Next, we upper bound term [ (myq; udy |yl , 23') which is the augmentation from coop-

eration by using the relationship 12y is a function of (y{", y&") as follows:

I(mar;ug |y 25') = h(m11|yfv,3«“2N) — h(ma|zy’, 4l upy)

INE

(mlllyiN7 :L,2]V) - h(m11’x2Nu y1N7 ué\{v y2N)

=

h
h(mn\yfvaﬂsz) — h(maslzy i, vy

I mi1; Yo ’?/1 7372N)

|y1 y L ) (92N|?J1N7332N7m11,mzl)

IN

N N N)

(
h(ya
h( |y1 y Ly )_h( 2N|y1 y Ly Iy
h(

521|311) (22]\["31]\])

IN

INR, )

Nlog(1+ —Nh2
Og( TTISNR,

where (a) is due to the fact that conditioning reduces entropy. (b) is due to the fact that
ud] is a function of (yi', y2). In addition, we can see that term [ (myq; ull |yi¥, z)) <
H(u) < NCE

Hence, similarly if a genie provides side information z;¥ to receiver 1 for Rjo, 7' to

receiver 2 for Ry, and x2 to receiver 2 for Roo, we have bounds (4.1)—(4.4). |
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Bounds (4.5) on Ri1 + Ri2 and (4.6) on Ry + Roo:
Proof: In this proof, we show only bound (4.5) and the other bound can be shown
similarly. To upper bound (4.5), we set mg; = mgy = ¢. If (Ry1, Ri2) is achievable, we

can write

—
INe

N(Rll + Ryg — GN) [(mlla mia; le7 UQAD

INE

I(my1, maa; ?J1N) + I(my1, my9; Ué\ﬂi’hN)

—
INe

h(le) - h(lelmn, mi2) + H(Ué\{)

d
< Nlog(1 +SNR; + INR;) + NC5,

—
=

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule. (c) is due to the fact that 1 (myq; ult |y, 2N) < H(ud). (d) is due
to the fact that i.i.d. Gaussian distribution maximizes differential entropy under covariance
constraints and H (ul}) < NCE,.

Hence, similarly for Rs; + Rs2, we have bounds (4.5)—(4.6). [ |

Bounds (4.7) on Ri1 + Ri3 and (4.8) on Ro1 + Ras:
Proof: In this proof, we show only bound (4.7) and the other bound can be shown
similarly. To upper bound (4.7), a genie provides side information y2' and my; to receiver

1. If (Ry1, Ry2) is achievable, we can write

(a)
N(Ry1 + Rz —en) < ](mn, miz; i, uy)

I/\?

. N N N
mi1, Mi2; Y1 5 Usy, Yo 7m21)

C

e

(
I(mn, my2; ?J1N7 UQA{; ?J2N|m21)
(

! I (mar, mazs y Y may)

= by, v [mar) = By, v’ [mar, mag, may)

= h(y1", 43') — h(sis, sp5|mio)

= h(y", 9') — h(siy|mz) — h(s33|sis, ma2)
Ryl v2') — h(2") — h(splsiz)

INE IA

N{RHS of (4.7)}

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to a genie providing side information 2 and my; to receiver 1. (c) is due to
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"1 —@—» ENC1

"2 =¥ ENC2

Figure 4.4 Side information structure for bound (4.9)

the fact that myq, my2 and my; are independent. (d) is due to the fact that uﬁ is a function
of (4, yd'). (e) is due to the fact that i.i.d. Gaussian distribution maximizes differential
entropy under covariance constraints.

Hence, similarly if a genie provides le and my 5 to receiver 2 for Ry; + Raa, we have

bounds (4.7)—(4.8). |

Bounds (49) on Rll + R12 + Rgl, (4]0) on R11 -+ ng + R22, (4]]) on Rll + R21 + Rgg
and (4]2) on R12 -+ R21 -+ RQQ:

Proof: In this proof, we show only (4.9) and other bounds can be shown similarly. To

upper bound R + Ry5 + Ry, we set message mgo = ¢. A genie gives side information s2;

and ma, to receiver 1 and xQN and my; to receiver 2 (refer to Figure 4.4). If (Ry1, R12, Ro1)

is achievable, we can write

N(RH + R12 -+ R21 — GN)

(a)
< I(mar, maz; i, ugy) + I(ma; vy, uy)

(b)
< I(mar, mas; 41 ) + 1 (max, mass way |y)") + I(mags ys' ) + 1 (mar; wh|ys')

(c)

< I(may, mag; ') + H(ugy) + I(mar; 9, ) + H(ufy)
d
< T(muy, mags yy s soy, mor) + T(mor; s, 25", mu) + NC5y + NCB,

—
=

= I(mar, maz; 91", o1 [mar) + 1(mar; vy |25, man) + NCS + NC

= I(mar, mag; sgyImar) + L(may, mas; 4 |81, mor) + 1 (man; 43 |23", may) + NC5y + NCF,
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= h(s2¥|ma1) — h(sd|mar, miy, miz) + h(yl s, mar) — h(yi | sy, ma1, miy, mag)
+ h(y2N|372Na mi) — h(yzN|172N, mit, Mo1) + NC% + NC182
< h(sy|mar) = h(z") + h(y"[s51) = h(2) + h(sqy|man) — h(z') + NC5, + NCF,

(e)
< N{RHS of (4.9)}

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule. (c) is due to the fact that I(myy, mio; udl|yd) < H(udl) and
I(may; uly|y) < H(ud). (d) is due to the fact that a genie provides side information s}
and 7y, to receiver 1 and z;" and my; to receiver 2 and H(u))) < NCJ. (e) is due to
the fact that 1.i.d. Gaussian distribution maximizes differential entropy under covariance
constraints.

Hence, similarly if a genie provides side information s, and my, to receiver 1 and ¥
and my, to receiver 2 for Ry; + Ryp + Ryo (with setting my; = ¢), ' and my; to receiver 1
and siY and my; to receiver 2 for Ry; + Ro; + Rao (With setting mys = ¢), and z¥ and mys

to receiver 1 and 51]\; and my5 to receiver 2 for Ris + Roy + Roo (With setting my; = ¢), we

have shown bounds (4.9)—(4.12). |

Bounds (4.13) on R11+ Rio+ Ra1, (4.14) on Ri1+ Ria+ Roo, (4.15) on Ri1+ Ro1 + Rao
and (4.16) on R15 + Ra1 + Rao:

Proof: In this proof, we show only (4.13) and other bounds can be shown similarly.

To upper bound Ry, + R12+ Ro1, we set message mys = ¢. Let a genie give side information

yIN , my1 and myo to receiver 2 (refer to Figure 4.5). If (Ri1, R12, Ro1) is achievable, we

obtain

N(Ri1 + Ri2+ Ro1 — €n)

(a

S [(mlla mya; yiNv ué\{) + ]<m21; y2Na Ug)
b
< I(myy, mao; Z/1N) + I(my1, myo; Uﬁ‘?hN) + I(mg1; Z/2N> U{ga Z/1N7 mit, Mi2)

—
=

A

Ne

< I(myy, mya; ?/1N) + H(UQA{) + I (ma1; ysz ulj\é, Z/1N|m117 my2)

INE

I(may, maz; ') + NC + I(mor; 4, ys' [ mar, maa)

h(yi') = h(yi [mar, mas) + (Y, ys' [mar, maz) — B(y)", 93" |mar, maa, mar) + NC5,
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Figure 4.5 Side information structure for bound (4.13)

h(yn") = By [mar, maz) + h(yp [ma, maa) + B(ys [y, may, mao)

h(yl', vy [mar, maz, mor) + NC5,

< h(le) + h(yéN|?J1Na mii, M2, ngN) - h(le, y2N|m117 My, Ma1, I1N7 %N) + NC281
h(

y )+ h(syylsfy) — bz, 2" ) + NC5

—

e

< N{RHS of (4.13)}

~

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule and a genie providing side information y#, m;; and m to receiver
2. (c) is due to the fact that I(my1, mio; udl|y¥) < H(ul)) and messages myi, myo and
my, are independent. (d) is due to the fact that ] is a function of (3, y2) and H (ud]) <
NCL. (e) is due to the fact that i.i.d. Gaussian distribution maximizes differential entropy
under covariance constraints.

Hence, similarly if a genie provides side information 4", my; and m5 to receiver 2 for
R11 + Ri2+ Roo (with setting mo; = o), y2N , Moy and myy to receiver 1 for Ry + Ro1 + Rao

(with setting my2 = ¢), and y2N , Ma1 and mas to receiver 1 for Ris+ Rap + Roo (With setting

mi1 = ¢), we have shown bounds (4.13)—(4.16). [ |

Bounds (417) on RH —+ R12 -+ Rgl, (4]8) on Rll + ng + R22, (4]9) on R11 + Rgl + R22
and (4.20) on Ri9 + Ro1 + Rao:
Proof: In this proof, we show only (4.17) and other bounds can be shown similarly.

Let a genie give side information 42", s and my; to receiver 1 and 2 and m,; to receiver
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Figure 4.6 Side information structure for bound (4.17)
2 (refer to Figure 4.6). If (Ry1, Ri12, R21) 1s achievable, we obtain

N(Ri1 + Ri2+ Ro1 — €n)

(a
< I(may, maz; i, wpy) + I(mag; vy, u)

< I(may, maz; yy s ugy) + T(mars 4" ) + 1 (mor; uiy|ys)
(2 I(mar, mao; gy wa, Yo o mon) + L(ma; ys' 25, may) + H(ufh)
(%) I(may, mags; 4l ugy, Y > o1 |mar) + 1 (mars g |25, man) + NCG
(%) I(myy, ma; oy mar) 4+ 1(may, mag; 41, gy, 45 [s31, man) + 1 (mags 45 25", may) + NCF,
gf(mn,mu;t?zj\ﬂmzl) + L(may, mag; 91", 45 [so1, mar) + 1 (man; g5 |23, man) + NCF,
= h(spy|ma1) — h(sgyImar, mur, maz) + (i, 45 [sa1, mar) — h(i", 43 891, Mo, may, mas)
+ By |2, may) — Ry |2 myy, may) + NCE,
= h(spy|mar) — h(z") + by, 45 [s1) — h(ss, saplmaa) + h(sgy|mar) — h(z") + NCp
=y, 45 [so1) — h(s{zlmus) — h(spslsiy, maa) + h(sgy|mar) — h(z") + h(sgy|may)
— h(2") 4+ NC§
< h(yr, 45 [so1) — h(z") — h(spslsiy) + h(syy) — h(z') + NCF,
(8)

< N{RHS of (4.17)}

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule. (c) is due to the fact that a genie provides side information v, s2¥
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Figure 4.7 Side information structure for bound (4.21)

and my; to receiver 1 and zi¥ and my; to receiver 2 and I(my; uly|yd’) < H(ud)). (d) is
due to the fact that messages my1, mi2 and my; are independent and my1, my; and xQN are
also independent and H (uf%) < N C2Bl. (e) is due to chain rule. (f) is due to the fact that uJ;
is a function of (le , yzN ). (g) 1s due to the fact that 1.1.d. Gaussian distribution maximizes
differential entropy under covariance constraints.

Hence, similarly if a genie provides side information ¢, s2 and my, to receiver 1 and
2’ and my to receiver 2 for Ry + Ris + Rao, 2 and my,; to receiver 1 and 4, s{} and
myy to receiver 2 for Ry + Roy + Rao, 2¥ and mys to receiver 1 and g, i and my, to

receiver 2 for Ri5 + R + Rao, we have shown bounds (4.17)—(4.20). [ |

Bounds (4.21) on Ry + Ri2+ Ra1, (4.22) on Ry + Ria+ Raa, (4.23) on Ry + Ray + Rao
and (4.24) on Ri9 + Ro1 + Raa:
Proof: In this proof, we show only (4.21) and other bounds can be shown similarly.
Let a genie gives side information ¢ to receiver 1 and ¥, m,; and m5 to receiver 2 (refer
to Figure 4.7). If (Ry1, Ri12, Ro1) is achievable, we obtain

(a)

N(Riy + Rig + Roy — en) < I(myy, mug; 9, usy) + 1(mar; v, uiy)

(b)
N N _N N N N
< [(m11>m12;y1 y Us1y Yo )+I(m21;y2 y U2, U1 »mn,mu)

c
N N N N N N
< ](m11,m12;y1 y Us1y Yo )+I(m217y2 y U2, U1 |m117m12)

—
~

d
< [(mn,mlz;yfvayzjv) +I(m21§y2Nale|m11>m12)

—
=

N | N
= [(mu,mlg,mfn;% 7y2 )
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=h(y, y') — byl ys' [mar, maz, may)
= h(yl", 13') — h(siy, s33|maz)

= h(yl, vy’ ) — h(siylma) — h(sy|sy)
= h(y), y) — h(2) — h(sd)

(2 N{RHS of (4.21)}

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing inequality.
(b) 1s due to a genie providing side information y2N to receiver 1 and le , myy and myy to
receiver 2. (c) is due to the fact that myq, my5 and my; are independent. (d) is due to the
fact that u is a function of (y1 v 5 ). (e) is due to the fact that i.i.d. Gaussian distribution
maximizes differential entropy under covariance constraints.

Hence, similarly if a genie provides side information yJ" to receiver 1 and 41", m;; and
myo to receiver 2 for Ri; + Ris + R, y2 , Moy and Moy to receiver 1 and yl to receiver 2

for Ry1 + Ra1 + Raos and Rjs + Ro1 + Rys, we have shown bounds (4.21)—(4.24). |

Bounds (4.25)—(4.26) on Ri1 + Ris + Ro1 + Roo:
Proof: To upper bound (4.25), a genie gives side information 3%}, and my, to receiver

1 and Ef\{ and my, to receiver 2 (refer to Figure 4.8). If (Ry1, R12, R22, Roo) is achievable,
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we have

N(Ri1 + Ria+ Ro1 + Ray — €n)

(a

N N N N
< I(may, mags 4y, Ugy) + 1 (a1, maos 4y, Uyp)
b

—
=

IA

f(mn,mlz;fth) —l—[(mn,mu;ué\ﬂyl}v) +[(mf21,mf22592N) +I(m21,m22;u1]\§]y2]\/)

—

C

INe

J(mn, maz; 1) + 1 (mar, mas; ys' ) + H(ugy) + H(uy})

I/\fL

My, Mag; Ui s B, Maz) + 1(may, mag; ya', 31, mun) + NCS, + NCF,

e

(
= [(mlla mi2; ¥ 7822’77]’22> + [(m217 mMa2; Yo 7511’m11> + NC + NC
()
2 1(

~

I(mq1, myo; 5’2]\;’7@2) + I(mq1, myo; le‘mm, 5’2]\;) + I(ma1, maa; g1]\“77”611)

_|_

I(ma1, mag; ya' |may, 3Y) + NC5, + NC5,

—~
~

g
< h(3y|maz) — h(335|zs", mar) + h(yy' [325, maz) — h(y) |3a5, 25", 1) + h(3{)|mar)

— h(E]2", mas) + By |31, man) — h(ws'[31], &, mas) + NC5, + NCE,

< h(Bg|maz) — (%) + h(yi' [355) — h(silma) + h(3Y [man) — R(EY) + h(ys' [31))
— h(syy|man) + NC5, + NCF,
h

(1 |322) h( QN) + h(y2N|§1A1[) - h(glN) + NCQBI + NCIBQ

< N{RHS of (4.25)}

—
N2

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule. (c) is due to the fact that [ (m;;, m;; u i NyNy < H ( ). (d) is due
to the fact that a genie provides side information 32 and m;; to receiver j, for 4,7 = 1,2
and H (u ) < N CB. (e) is due to the fact that myy, myo, my; and my, are independent.
(f) is due to chain rule. (g) is due to the fact that 2V is a function of messages (my;, mj;).
(h) is due to the fact that i.i.d. Gaussian distribution maximizes differential entropy under
covariance constraints.

Hence, similarly if a genie gives side information 31} and my; to receiver 1 and 3% and

mqo to receiver 2 for the other bound, we have shown bounds (4.25)—(4.26). |

Bounds (4.27)—(4.28) on Ri1 + Ri2 + Ra1 + Rao:
Proof: To upper bound (4.27), a genie gives side information yi' and 3J] to receiver

1 and 512 to receiver 2 (refer to Figure 4.9). If (R11, R12, Roo, R22) is achievable, we obtain
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Figure 4.9 Side information structure for bound (4.27)

N(Ri1 + Rio+ Ro1 + Rz — €n)

(a)
< ](mn, my2; y1 ) U21) + ]<m217 Ma2; yz ) Ug)

(b)
S ](mlla my2; yl 3 U21, y2 ; 821) + ](m217 Mmao2; y2 ) 812) + ](m217 maa; U12|y2 )

(c)
< I(may, mag; Ui ua, ¥o' 13ay) + I (man, maa; 3oy ) + I (mar, mas; ya' , 35) + H(ufy)

d
< I(may, mag; i, ys |391) + h(331) — h(39) |mar, maz) + h(ys', 5(%)

—
=

A

— h(y', 3i5|ma1, maz) + NCT,

IN

(
Wy v 1321) = h(yl sy [Bo1, man, mua) + A(S51) — R(Z) + h(33) + h(y'[513)
— h(sd, )+ NC5,
(
(
(

IN

h Z’J1 » Yo |521) h(5127 522) + h(521) h(52N> + h(élj\;) + h(92N|§1]g) - h(Sﬁ)

— h(ZY) + NCB,

(' 2 1521) + h(ya' [513) — h(spalsiz) — h(Z') — h(ZY) + NCpy

—

e

< N{RHS of (4.27)}

~

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing inequality.

(b) is due to chain rule and a genie providing side information " and 32} to receiver 1 and
3{Y to receiver 2. (c) is due to chain rule and the fact that I(may, mao; uly|yd’) < H(ul).
(d) is due to the fact that v} is a function of (y, 4») and H(u?) < NCB,. (e) is due to
the fact that 1.i.d. Gaussian distribution maximizes differential entropy under covariance

constraints.
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Figure 4.10 Side information structure for bound (4.30)

Hence, and similarly if a genie gives side information ;" and 3/}, to receiver 2 and 3%}

to receiver 1 for the other bound, we have shown bounds (4.27)—(4.28). |

Bound (429) on Rll + R12 + R21 + RQQZ
Proof:  This is the straightforward cut-set upper bound: if (Ri1, Ri2, Roo, Roo) is

achievable, we obtain

. N N
my1, Mi2, Ma1, M22; Y1 5 Yo )

N(R11+R12+R21+R22_€N)§[(
Wyl ys') = bz, ")

< N{RHS of (4.29)}

where ey — 0as N — oo.

Hence, we have shown bounds (4.29). |

Bounds (4.30) on 2R11 + Ri3 + Ra1 + Raa, (4.31) on Ry; + 2R + Ro1 + Ras, (4.32)

on Ri1 + Rio + 2Ro1 + Roo and (4.33) on Ri1 + Ria + Ra1 + 2Roo:
Proof: In this proof, we show only (4.30) and other bounds can be shown similarly.
Now, let a genie gives side information ¥4’ and zj' to the second receiver 1 and 3 to

receiver 2 (refer to Figure 4.10). If (Ry1, Ri2, Ra1, Ro2) 1s achievable, we get
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N(2R11 + Rz + Ro1 + Ros — €n)

—
IN®

T(mar, mag; y¥ s uay) + T(mass yi s usy) + 1 (mar, mag; Yy, ugy)
b
< [(mn,mm;%}v) +[(m117m12sué\ﬂy1 )+[(mllay1 >U21;Z/2 ; Lo )+[(m217m227y2 75fg)

—
=

+ I(ma1, ma; Uf\zf‘yQN)

INE

I(my1, ma; ?/1N) + I(mas; le’ u2]\{7 y2N‘$2N) + I (ma1, maa; ?JQN, 3’1]\5) + H(UQA{) + H(U%)

INE

[(mllam1231/1N)+[(m113311N72/2N|$2 )+[(m21,777f22,1/2 7512)+NC +NC

le) - h(y1N|m11,m12) + h(y1 » Yo |f’52 ) — h(?h » Yo ‘552 , 1) +h(?JQNa31]\£)

h(

— h(yd, 50| mar, mas) + NCE, + NCB,
h(yl') = h(s)y) + h(siy, s90) — bz 2" ) + h(ys'  5(5) — h(syy, 2" ) + NC5, + NCE,
h(

Ui )+ hisiilsn) + h(ys 1513) — h(n") — h(z") — h(7") + NG5 + NC

—

%) N{RHS of (4.30)}

where ey — 0 as N — o0. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule and the fact that a genie gives side information y2' and z to the
second receiver 1 and 37, to receiver 2. (c) is due to the fact that my; and 2" are independent
and I (mg;, my; u) |y) < H(ug'). (d)is due to the fact that uj) is a function of (y1, y) and
H(uzjjV )< N CZBj. (e) 1s due to the fact that 1.1.d. Gaussian distribution maximizes differential
entropy under covariance constraints.

Hence, and similarly if a genie provides side information % and ¥ to the second
receiver 1 and 3y to receiver 2 for Ry + 2Ri5 + R + Rao, ¢ and 2 to the second
receiver 2 and 32y to receiver 1 for Ry + Ria + 2Rg; + Rag and y¥ and 2 to the second
receiver 2 and 33’21 to receiver 1 for Ry + Ri2 + Ro1 + 2Rs, we have shown bounds

(4.30)—(4.33). ]

Bounds (4.34) on 2R11 + Ris + Ro1 + Roo, (4.35) on Ri1 + 2R15 + Ro1 4+ Ros, (4.36)

on Ry + Ris + 2Rs1 + Roo and (4.37) on Ri1 + Ris + Ra1 + 2Ryo:
Proof: In this proof, we show only (4.34) and other bounds can be shown similarly.
Now, let a genies give side information yJ' to the first receiver 1, 32" and z" to the second

receiver 1 and §1]§ to receiver 2 (refer to Figure 4.11). If (Ry1, R12, Ro1, R29) 1s achievable,
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Figure 4.11 Side information structure for bound (4.34)

we obtain

N(2R11 + Rig + Rop + Rop — EN)

—
IN®

I(mar, mag; ¥, uay) + T(mass yi s usy) + I(mar, mag; ys' , ugy)
b .., N N N
S [(m117m127y1 y Uo1y Yo )+[(m11ayl 7u217y2 y Ly )+[(m217m227y2 7812)

—
=

+ I(ma1, maz; uiy|ys' )

INZ

I(man, mazs Y1 wag, v’ ) + I(mars g1 s way, o' |20 ) + I(mar, mag; ', $1y) + H(ugy)

INE

I(may, mag; 91 ys ) + Lman; 4 g |20 )+ 1 (ma, maos ', 315) + NCE
h(?h ' Y2 ) - h(yfv,yévlmn,mm) + h(yl ' Y2 |352 ) — h(yl ' Y2 |x2 , M) +h(y2N7§1A£)
— h(ys', 3i3lmar, mas) + NCE,
< h(y,ys') = h(sly, s39) + (st s01) = (=", ") + h(3iy) + h(yy'[513) — h(sy)
_ h("’

4') 4+ NCE,

—

°)

< N{RHS of (4.34)}

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing inequality.
(b) is due to chain rule and the fact that a genie gives side information i’ to the first
receiver 1, ' and z)' to the second receiver 2 and 375 to receiver 2. (c) is due to the
fact that m;; and z" are independent and I (myy, moo; uis|yd’) < H(ul}). (d) is due to the

fact that ul) is a function of (1, y) and H(uf) < NCB,. (e) is due to the fact that i.i.d.
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Figure 4.12 Side information structure for bound (4.38)

Gaussian distribution maximizes differential entropy under covariance constraints.

Hence, and similarly if a genie provides side information i’ to the first receiver 1,
¥ and z}¥ to the second receiver 2 and 3% to receiver 2 for Ry + 2Ry + Roy + Rao,
yl to the first receiver 2, yi¥ and z)" to the second receiver 2 and 32, to receiver 1 for
Ri1 + Ris + 2Ry + Ryy and 3{Y to the first receiver 2, yi¥ and 7" to the first receiver 2 and

s to receiver 1 for Ry + Ris + Ray + 2Ry, we have shown bounds (4.34)—(4.37). W

Bounds (4.38) on 2R11 + Riz2 + Ra1 + Raa, (4.39) on Ry; + 2R + Ro1 + Ras, (4.40)

on Ri1 + Rio + 2Rs1 + Roo and (4.41) on Ri1 + Ris + Ra1 + 2Roo:
Proof: In this proof, we show only (4.38) and other bounds can be shown similarly.
Now, let a genie gives side information yJ’ and 3} to the first receiver 1 and y{" and 3} to

receiver 2 (refer to Figure. 4.12). If (Ry1, R12, Ro1, R92) 1s achievable, we can write

N(2R11 + Rio + Ry1 + Ry — €y)

(a)
< I(myy, mag; y) 5 uay ) + Tman; yi  ugy) + I(mar, mag; ys' 5 ulh)

(b) )
S ](mlla mya; lev uﬁa yQNa Slj\é) + I(mll; le) + ](mll; Ué\“le)

N ,N N =N
—|—](777,21,77b22;y2 y U125 U 7512)

© ~ ~ ~
< ](m11,m12;?/1N7U2A{,yéN|51A£)+1(m117m12§3f\2[) +[(m2177fb22;y2NaU{g>le|51]g)

+ T (may, mao; 315) 4+ T(myy; v ) + H(ud))



59

(d)
< I(mar, maz; i, ys |315) + T(mar, maz; 319) + 1 (mar, mag; 43", yi' |315) + I(max, mas; §13)

-|-[(m11;y1N)+NC281

/\
@
v

](mn,mm,% y Yo |312) +](m11,m12;§1]\§)+](mgl,m22;y2]",yfv|§f\§,mn,m12)

I(may, mao; 315 |may, maa) + I(myy; yl¥) + NCS,

+

I(myy, mig, moy, mag; i, ya  |50%) 4 T (a1, mua, ma1, mog; 305) + I(may; ') + NC5,
' Ys 1312) = Ry, 5 131, mur, maa, mar, maz) + h(3{3) — h(3is]mar, maz, mar, mao)
') = h(yi' [min) + NC3,

y1 Y2 |512) h<21N7 ZQN) + h(éfg) - h(glN) + h(le) - h(51]\2[) + NC2Bl
(f

< N{RHS of (4.38)}

IN  +
> =

(
(
(
(

N

where ey — 0 as N — oo. (a) is due to Fano’s inequality and data processing in-
equality. (b) is due to chain rule and a genie giving side information ¢’ and 3%, to the
first receiver 1 and %' and 3} to receiver 2. (c) is due to chain rule and the fact that

I(myy; udyN) < H(ud)). (d) is due to the fact that u))

; is a function of (y1,y») and

H(udY) < NCB,. (e) is due to the fact that conditioning reduces entropy and (m;, m12) and
(mg1, myy) are independent. (f) is due to the fact that i.i.d. Gaussian distribution maximizes
differential entropy under covariance constraints.

Hence, and similarly if a genie provides side information 2" and 3% to the first receiver
1 and yl and fs’n to receiver 2 for Ry1 + 2R12 + Ro1 + R, yl and 522 to the first receiver
2 and yJ' and 32} to receiver 1 for Ry + Ris + 2R2 + Roy and g and 3 to the first
receiver 2 and y2 and s 5 1 toreceiver 1 for Ry; + Ri9 + Ry + 2 R99, we have shown bounds

(4.38)—(4.41). n



CHAPTER V

GENERALIZED DEGREES OF FREEDOM
CHARACTERIZATION

In this chapter, we can earn further comprehensions with the effect of receiver coop-
eration on the two-user Gaussian X channel by characterizing the generalized degrees of
freedom (GDOF), a natural generalization of the notion of degrees of freedom (DoF) in
point-to-point communication to multiuser scenarios, of the sum capacity from Lemma 4.1
in the symmetric channel setting where SNR; = SNR, = SNR, INR; = INR; = INR
and C5 = CB, = CB. Furthermore, we also show the behavior of the gain from receiver

cooperation under the symmetric channel setting.

5.1 Generalized Degrees of Freedom

We use the notation of the GDoF that is initially proposed in [9] to characterize the
asymptotic behavior of the capacity region with respect to growth of SNR as fixing « and

x in symmetric channel setting case. The GDoF of the sum capacity [2, 9] is defined as

Cs(SNR, INR, CB)

= i .1
d(a, k) = lim log SNR G-
SNR—o0
where
log INR , CB

SNRo log SNR 7 sNRooc log SNR

and Cx(SNR, INR, CB) is the sum capacity of the two-user Gaussian X channel with lim-
ited receiver cooperation, i.e., Cx(SNR, INR, CB) = Ry + Ris + Roy + Roo.
Note that o and ~ are called the normalized interference level and the normalized ca-

pacity of the receiver-cooperative link, respectively.



We also use approximations [9] such as

log(1 4 SNR + INR) ~ max(log(SNR), log(INR))

SNR
& INR

;
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(5.2)

(5.3)

to give an expansion of the capacity region of the Gaussian X channel with receiver coop-
eration which is accurate to the first order approximation. Both (5.2)—(5.3) are very useful

in the derivation of the generalized degrees of freedom region.

Remark 5.1 The limit of (5.1) does not exist since it has different values due to certain
channel realizations. This event occurs when o = 1, where the phase of the channel gains

has the effect on both inner and outer bounds [9].

Next, we provide sum capacity under the symmetric channel setting from the results in
Chapter IV.
5.2 Approximate Symmetric Sum Capacity

This section gives an approximate symmetric sum capacity as follows:

Corollary 5.2 (Approximate Symmetric Sum Capacity):

Cs < 2log(1 + SNR) + 2log (1 + INR)

R INR
in{4C?, 2l0g (1 )+ 20g(1+ o) } 5.4
+min{4C®,2log(1+ 55 )+ 2og (1 + 1 gue G
Cs < 2log(1 + INR + SNR) + 2C® (5.5)
SNR
C < 2log (14 25NR + 2ANR + [hushas — b ) = 2l0g(14+ e ) (56)
(o 1| Hosl SR + 2log 1+ SNR + 148 ) 5
"3 [ +2log(1 + INR) + 2log 1+ INR + S45) -+ 5C?
1
Co < 5 |4log(1+ SNR + INR) + 2log (1 + ) + 2log (14 S8 ) +4¢°] (5.8)
2Aog 1+ I8 + INR + SNR -+ (88 4 [uteshiol”)
e < 1 +210g 1+ SNR + 1-:—NS'I_\\>IR+ 1—?—25R +|NR+’h11h22—h12h21| ) (5 9)
x> .
3| +2log(1+ SNR) -+ 2log(1 + INR) — 2log 1+ 148
i —2log( 1+ 1iT|\TR |
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4log<1 + 2SNR + 2INR + |hy1 hog — h12h21‘2> —2 10g<1 + 1J|r'\slﬁ|R>

1
Oy < = (5.10)
3 s
—210g(1 + 1+'}||\TR)
SNR
s, < 210g<1 FINR 4 INR> +2CB (5.12)
Cs < log (1 + 0% + INR 4 SNR + R + |h11h212+—“f\tl1§h21|2>
SNR
1 (1 INR ) -1 (1 ) c® 5.13
et IR TTONR) T T TIINR) T ©.13)
Cs < log (1 + 2SNR + 2INR + |hy1 gy — h12h21|2> (5.14)
X B log(l + INR + 11’}',&) +2 log(l + Sr'}',\FfR)
Cu < = | +210g(1+ SNR + 145 ) + 2 log 1+ 1455 ) (5.15)
| +41og(1 + SNR + INR) + 8C®
1 [410g (1+25NR+2|NR+ huthas — hah 2)
Cg S g " ‘ 117622 12 21’ " (516)
2101+ INR + 348 ) + 2 log (1 4+ SNR + (188 ) -+ 4P
[ S |h11hoo—hi2ho1 |2
[ 210 (10 SR INR g S+ e
Ce < ¢ | +2log (1 + SNR + INR + 8= + 3882 + 'h“”ii‘s’;,l;h”'2> (5.17)
| +41og(1 + SNR + INR) + 4C®

Note that the symmetric sum capacity (5.4)—(5.17) can be obtained by calculating the

sum rate Cx, from our proposed outer bound in Lemma 4.1 as follows:

e Sum capacity Cy, (5.4) is obtained by adding (4.1)—(4.4).

e Sum capacity Cy; (5.5) is obtained by adding (4.5)—(4.6).

e Sum capacity Cs; (5.6) is obtained by adding (4.7)—(4.8).

e Sum capacity Cy; (5.7) is obtained by adding (4.9)—(4.12).

e Sum capacity Cyx; (5.8) is obtained by adding (4.13)—(4.16).

e Sum capacity Cy, (5.9) is obtained by adding (4.17)—(4.20)

e Sum capacity Cy; (5.10) is obtained by adding (4.21)—(4.24)

e Sum capacity Cx, (5.11)—(5.12) are the symmetric case of (4.25)—(4.26), respec-

tively.
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e Sum capacity Cy; (5.13) is the symmetric case of (4.27) or (4.28).

e Sum capacity Cy; (5.14) is the symmetric case of (4.29).

Sum capacity C; (5.15) is obtained by adding (4.30)—(4.33).

Sum capacity Cx, (5.16) is obtained by adding (4.34)—(4.37).

Sum capacity Cx, (5.17) is obtained by adding (4.38)—(4.41).
where OE = Rll + R12 + Rgl + RQQ.

Remark 5.3 Our results in Lemma 4.1 and Corollary 5.2 show that the sum rates rely on
the phases of the channel gains considerably when a capacity of the receiver-cooperative
link CB is so large that MIMO sum-rate cut-set or MIMO sum-rate based on genie-aided

bounds are active.

Next, we explore the GDoF from the results in Colloraly 5.2.

5.3 Generalized Degrees of Freedom of the Symmetric Sum Capacity

Before computing the GDoF of the sum capacity, we first consider the important point,
i.e., phases in MIMO situations, and then propose the method to solve this problem as
follows:

In general, the characterization of the GDOoF in several communication scenarios, i.e.,
interference channel [9], or X channel [14], etc., cannot consider the impact of phases
in MIMO situations. For solving this problem, Wang and Tse [2] propose the following
lemma which uses an i.i.d. uniform distribution on the phases of the channel gains instead

of claiming that the limit of (5.1) exists for all channel realizations.

Lemma 5.4 ([2]) Let
\hij| = g4, Lhij = ©4,Vi,5 € {1,2}

where g,;’s are deterministic and ©;;’s are i.i.d. uniformly distributed over [0, 27].

Proof: See Appendix E in [2]. [ |
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In this dissertation, we use Lemma 5.4 to consider the term A; := log(1 + 2SNR +
2INR + |h11hao — hyaho |?) that appears in (5.6), (5.10), (5.14) and (5.16). Then, we obtain

the limit £; (v, k) := lim fix a,x bgAﬁ' Furthermore, we extend the concept of Lemma 5.4
SNR— 0

to manage the terms A, := log(14 2tz +INR+SNR+ 8= + |h11h212+—”f;1R2h21\2) and As :—

log(1+SNR+ NR_ | SNR_ | |NR . [hnhez alaiPy iy (5.9), (5.13), (5.17). Then, we also

get the limit for both Lo(a, k) := lim fix ax —42 _ and Li(a, k) = lim fix ax mgAﬁ-

log SNR
SNR—o00 SNR—00
Hence, with considerations above, it is seen that the limit of (5.1) exists almost surely.
After solving the phases issue above, we give the GDoF of the sum capacity with

symmetric channel setting in the following theorem.

Theorem 5.5 (Generalized Degrees of Freedom of the Symmetric Sum Capacity) The GDoF
of the sum capacity for the two-user Gaussian X channel with limited receiver cooperation

in symmetric channel setting is given as follows:

For0<a <1,
. 2a¢ 4K n
d(a, k) = mln{? + 20+ 4K,4,2 + 25,2 — 5 + ?,Qmax(a, (1—a)")+ 2k,
1y 1
5[4+ max(4a, 20+ 2(1 - o)) +8n}, §[2(2—od)++2+404],
1r
3 6+ 204},(2 —a)" +max(a,(1—a)") — (1 —a)" +x,2,
17 1
E 8 — 2a + 2max(a, (1 — a)™) —l—8/{},5[10—|—2max(0z,(1 —a)h) —|—4/—$],
Ir +
[2e-w) +6+4n}} (5.18)

Fora > 1,

2 4
d(a, k) = min{2 + 20 + 4k, da, 2a + 2K, 200 — 3 + ?,Qmax(l, (a—1)%) + 2k,

1 1
5 [404 + max(4,2 + 2(a — 1)4) + 85] 3 [204 +2(2a — 1)F + 4} ,

1 1

3[604—1—2],2@— (1-a)f +m,2a,5[8a—2+2max(1,(a— nHh) +8/{},

1 + 1 +

: [1004 + 2max(L, (a — 1)4) + 4/-;] - [2(2a — 1)t + 6+ 44 } (5.19)

Note that the GDoFs in (5.18)—(5.19) are calculated directly from Corollary 5.2 together

with solving the issue of phases in MIMO situations above as follows:

1. Using the approximations (5.2)—(5.3) with (5.4)—(5.17) to obtain the approximate

version of them.
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2. Substituting the approximate version of (5.4)—(5.5), (5.7)—(5.8), (5.11)—(5.12) and
(5.15) obtained from the first step in (5.1)

3. Substituting the approximate version of (5.6), (5.9)—(5.10), (5.13)—(5.14) and
(5.16)—(5.17) in (5.1) where terms involving |hy1hos — hi2ho |? in these inequalities

are solved using the concept of Lemma 5.4.

In the next section, we show the characterization of the GDoF of the symmetric sum
capacity with respect to the normalized interference level («) and the normalized capacity

of the receiver-cooperative link (k).

5.4 Results and Discussion

First, the GDoFs (d(«, k)) of the sum capacity for the symmetric two-user Gaussian
X channel with and without limited receiver cooperation from (5.18)—(5.19) versus the

normalized interference level (o) are plotted in Figure 5.1.

Figure 5.1: The GDoF for the symmetric two-user Gaussian X channel with/without re-

ceiver cooperation

From Figure 5.1, the result shows that

1. Our system obtains the gain from the receiver cooperation for a« € [0, 3] when

we compare the GDoF between the receiver cooperation case (x > () and non-
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cooperation case (x = 0)!. This implies that the performance of our system can be
improved when amount of exchanged information between both receivers increases.
However, the obtained gains from the receiver cooperation at the different values of

a do not equal.

2. Our system achieves the full receiver cooperation. To consider this issue, we divide

the considered range of « into 2 parts as follows:

(@) For 0 < a < 1: As shown in Figure 5.2, the GDoF increases with varying
gain value when r increases and equals 2 for all a’s € [0,1) at x = 3. For the
GDoF curve, we see that it changes from a sawtooth curve to a linear line with
a slope of 0 when « increases from O to % (see in Figure 5.2 (b)). However, the
GDoF still equals 2 with a slope of the GDoF curve = 0 even though « > %

(see in Figure 5.2 (a)). This implies that there is no more gain in the GDoF

when x > % since full receiver cooperation performance is obtained. Note that

in Figure 5.2(b), we observe that
e d(o,k=3)=2when0 < a<03and o= 2 and

e d(a,k=%)=2when0 < a<0.1

;
(b) For 1 < a < 3: As shown in Figure 5.3, the GDoF increases with varying
gain value when « increases. The GDoF curve changes from a step to a linear
line with a slope of 2 when « increases from O to 2. Furthermore, we observe

that the GDoF saturates since full receiver cooperation performance is achieved

when x > k* in the following subrange of a.

i. For1 < a <2, weobtain x* = 1
1. For% < o <2,weobtain k* =1

il. For2 < a < g, we obtain k* =

N

iv. For 3 < o < 3, we obtain k* = 2

In addition, from Figure 5.4, when we use o = % as the line for dividing the GDoF

curves into 2 areas, we easily see that, at each «, the GDOF in the range % <a<3is

larger than or equal to the GDoF in the range 0 < o < %. This result shows that the

'"The GDOF of the symmetric Gaussian X channel defined in Section 3.1 is the same as the result in [14],

i.e., the solid line in Figure 5.1.
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Figure 5.2: Characteristic of the GDoF for the symmetric two-user Gaussian X channel
with receiver cooperation (a) Considering 0 < o < 1 and max(x) = 3 (b) Zooming Figure
5.2(a) by focusing on 0 < o < 1 and max(k) = 3
performance of this system is improved considerably when it is at medium to high

interference environments.
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Remark 5.6 The interesting notice of the obtained results in Figure 5.1 is a growth of the

GDoF (d(«a, k)) without bound when

1

° aZQat/i:O,(S,%.

[SNIFSN

ca>larn=>31%%23

In the case k = 0 corresponding to the two-user Gaussian X channel without receiver
cooperation, our received result is identical to d(c, k = 0) = 2ac—2 for a > 2 in Theorem
3.2 [14]. For k > 0, tendency of d(«a, k) is similar to the case k = 0, i.e., d(a, k) grows

as o increases.

Second, we present the behavior of the obtained gain from limited receiver cooperation

by plotting the GDoF (d(«, x)) at a = 3, 2, 3,2, 2 and 3 versus the normalized capacity of

the receiver-cooperative link . The result is shown in Figure 5.5.

M. B
,'!,,,,,"::'.‘..’:-......:‘..-._,.‘.__._._T-._._,-‘_,-.-._,i.._..._.

| |
! ‘ ! ‘
i I i I i
H | | | |
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K

Figure 5.5 Gain from receiver cooperation when considering at o = %, %, %, 2, % and 3

From Figure 5.5, we see that

o Ata = %: The GDOoF curve increases linearly and its slope = 2 when « increases

from O to 3 and we obtain the GDoF value d(a = 3,x = 3) = 2. However, when

K > % the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

ie., d(%,m) =2 for% < g < 4.
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Ata = %: The GDoF curve increases linearly and its slope = 2 when & increases

from O to 3 and we obtain the GDoF value d(a = 2,k = %) = 2. However, when

K > %, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

ie., d(3,k) =2fory <k <A

Ata = %: The GDoF curve increases linearly and its slope = 2 when « increases

from O to % and we obtain the GDoF value d(a = %, K = %) = 3. However, when

K > %, the GDOF curve’s the slope changes to 0 and the GDoF value does not change,

ie,d(2 k) =3for; <k <4

At a = 2: The GDoF curve increases linearly and its slope = 2 when & increases
from O to 1 and we obtain the GDoF value d(a = 2,k = % = 4. However, when
r > 1, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,

ie,d(2,k)=4forl <k <4.

At a = g: The GDoF curve increases linearly and its slope = 2 and 1 when &

increases from 0 to 5 and  to 2, respectively, and we obtain the GDoF value d(o =

5 . _ 3
2k =73

the GDoF value does not change, i.e., d(%, k) = b for % <k < 4.

) = 5. However, when x > %, the GDoF curve’s the slope changes to 0 and

At o = 3: The GDoF curve increases linearly and its slope = % when k increases
from 0 to 2 and we obtain the GDoF value d(a = 3,k = 2) = 6. However, when
k > 2, the GDoF curve’s the slope changes to 0 and the GDoF value does not change,
ie,d(3,rk) =6for2 <k <4

From the results above, it is clear that the receiver cooperation is obviously efficient in

“the linear region” as defined in [2], i.e, the region which the GDoF is proportional to the

normalized capacity of the receiver-cooperative link (x) with a positive slope until it gets

full receiver cooperation performance at a specific point « = x* as shown in Figure 5.5,

where

for o =

W=
Wi

for a =

N
[\e][oV]

N[ =

.k =1fora = 2.



5. k* =2foraa =3

Note that this result corresponds to the obtained result in Figure 5.2 and Figure 5.3.
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CHAPTER VI

ACHIEVABLE RATE REGIONS FOR THE TWO-USER
GAUSSIAN X CHANNEL WITH LIMITED RECEIVER
COOPERATION

In this chapter, we propose the strategies which consist of transmission schemes based
on HK strategy and cooperative protocol based on QMF scheme and then derive the achiev-
able rate regions for the two-user Gaussian X channel with limited receiver cooperation in
both the general case and the strong Gaussian X channel type I case. We show that our
strategy in the strong Gaussian X channel type I case achieving the capacity region univer-
sally to within 2 bit/s/Hz per message, regardless of channel parameters, for the two-user

Gaussian X channel with limited receiver cooperation.

6.1 Motivation of Strategy

Before providing our strategy for the two-user Gaussian X channel with limited receiver
cooperation, we first give the idea for transmission scheme and then reveal the reason why
we choose the two-round strategy based on QMF scheme as our cooperative protocol in

this section.

6.1.1 Idea for Transmission Scheme

The idea for our transmission scheme comes from the objective of sending and receiv-
ing messages from each transmitter to the corresponding receivers. Therefore, we divide

all transmitted messages {m;; } into two groups as follows:
1. In the first group, message m;; is sent from transmitter 7 to receiver ¢, for 1 = 1, 2.

2. In the second group, message m;; is sent from transmitter ¢ to receiver j, for (4, j) =

(1,2) or (2,1).
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Figure 6.1: Idea for transmission scheme in the two-user Gaussian X channel with receiver
cooperation, (a) Transmitting messages in the first two-user Gaussian interference channel
with receiver cooperation, (b) Transmitting messages in the second two-user Gaussian in-
terference channel with receiver cooperation and (c) Transmitting messages in the two-user

Gaussian X channel with receiver cooperation viewed as the superposition of (a) and (b).

From dividing into groups above, we imagine the two-user Gaussian X channel with
limited receiver cooperation as superposing of two Gaussian interference channels with

limited receiver cooperation as shown in Figure 6.1. For 7,5 = 1,2 and i # j, we have

e In Figure 6.1 (a), message m;; in the first group is sent from transmitter i and then it
is decoded correctly with limited receiver cooperation at receiver i. This communi-

cation scenario is similar to the work [2],
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e In Figure 6.1 (b), message m,; in the second group is sent from transmitter i and then
it are decoded with limited receiver cooperation at receiver j. This communication
scenario is different from the work [2] due to the different purpose of decoding at

each receiver,

e In Figure 6.1 (c), messages m; and my; are sent from transmitter i. At receiver i,
messages m;; and m;; are decoded corretly with limited receiver cooperation. Figure
6.1 (c) shows that the two-user Gaussian X channel with limited receiver cooperation
can be viewed as superposing of two Gaussian interference channels from Figure 6.1

(a) and Figure 6.1 (b).

In this dissertation, we aim at the two-user Gaussian X channel with limited receiver
cooperation where each transmitter sends simultaneously two different messages to two
receivers and both receivers are allowed to exchange a certain amount of information be-
tween them. From the requirement above and the viewpoint of Figure 6.1, therefore, all

messages in our system can be sent by using HK strategy [20] in our transmission scheme.

6.1.2 Cooperative Protocol

In [2], Wang and T'se reveal that their proposed cooperative protocol which is based on
the QMF scheme achieves the optimal number of GDoF for all value of the normalized in-
terference (o) and the normalized capacity of the receiver-cooperative link (). In addition,
they also show that strategies based on conventional compress-forward or decode-forward
scheme which are used in [29, 30] are not proper for receiver cooperation to mitigate
interference in certain regimes because both schemes do not achieve the optimal GDoF
universally for all o’s and . Therefore, from the key advantage above, we use the coop-
erative protocol of the work [2] in the two-user Gaussian X channel with limited receiver

cooperation.

6.2 Proposed Strategies

In this section, we describe the proposed strategies consisting of two parts, i.e., the
transmission scheme and the cooperative protocol, and derive the achievable rate regions

for the general case and the strong Gaussian X channel type I case.
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Figure 6.2: Transmission scheme in the general case, (a) Transmitting messages in the first
two-user Gaussian interference channel with receiver cooperation, (b) Transmitting mes-
sages in the second two-user Gaussian interference channel with receiver cooperation and
(c) Transmitting messages in the two-user Gaussian X channel with receiver cooperation

viewed as the superposition of (a) and (b).

6.2.1 General Case

For 7,7 = 1,2 and ¢ # j, idea for transmitting messages in the general case based
on the perspective of our motivation as shown in Figure 6.1 and using the HK strategy is

depicted in Figure 6.2 and can be described as follows:

e In Figure 6.2 (a), message m,; at transmitter i is split into common and private mes-
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sages, 1.e., (Myic, Myp). At receiver i, messages (M., m;;,) are decoded correctly

with limited receiver cooperation.

e In Figure 6.2 (b), message m,; at transmitter 7 is split into common and private mes-
sages, 1.e., (mjic, mji,). At receiver i, messages (my;., my,) are decoded correctly

with limited receiver cooperation.

e InFigure 6.2 (c), message m;; and my; at transmitter 7 are split into messages (1, Myip)
and (myic, mjp). At receiver i, messages (Myic, Mip) and (myje, my;) are decoded
correctly with limited receiver cooperation. Figure 6.2 (c) shows that the two-user
Gaussian X channel with limited receiver cooperation can be viewed as superposing

of two Gaussian interference channels from Figure 6.2 (a) and Figure 6.2 (b).

With the consideration above, our transmission scheme in this case has the details as

follows:

6.2.1.1 Transmission Scheme

Each transmitter consists of two independent messages m;; and my; that are sent to
receiver ¢ and j, respectively, for i,7 = 1,2 and ¢ # j. Each transmitter splits each
own message into common and private messages, that is, m;; — (Mg, My;,) and mj; —
(mjic, mjip). Hence, we have four independent submessages in each transmitter. Each
common message can be decoded by both receivers, while each private message is de-
coded only at own receiver. In each transmitter, two common messages (m;;., mj;.) are
used for generating the common codeword and then these two common messages are re-

., 2N(RuctFiie)1 - Next, each transmitter

arranged as a new common message m;. € {1,.
generates each private codeword by serving common codeword as the cloud center. Fi-
nally, each transmitter generates the codeword which is superposed over triple of common
codeword and two private codewords. From the transmission scheme above, each message
is encoded into a codebook drawn from a Gaussian random codebook with a certain power.
For transmitter ¢, the power for its two private codewords and one common codeword are
Qiip> Qjip> and Qie = 1 — (Qup + Qjip), respectively.

Note that our transmission scheme above which is based on the HK strategy can be

called two-layer HK scheme and is similar to the work [11, 13] but it does not use the

Marton’s binning technique as the work [11].
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Remark 6.1 (Managing the power-splitting of private signals in the general case) For the is-
sue of managing the power-splitting of all private signals in the general case, we do not
propose or adopt any method to solve this problem. We only intend to provide the achiev-
able rates based on the proposed strategy consisting the transmission scheme and the co-

operative protocol in the general terms for this case as shown in Section 6.2.1.3.

6.2.1.2 Cooperative Protocol

We use the two-round strategy (STG;_,;_,;) from [2] with some modifications in the de-
coding processes. This protocol is based on the quantize-map-and-forward (QMF) scheme
and its processing order is: receiver j quantize-and-bins, receiver ¢ decoded-and-bins and
receiver j decodes. Its achievable rate region is denoted by Z7;_,;_,;. By time sharing, the
achievable rate region is obtained by 27:= conv{ %, ,1_,o U F% 45,1}, i.e., the convex

hull of the union of two rate regions. Next, we describe the two-round strategy STGo_,1 5.

e (Quantize-Binning: Receiver 2 (serving as relay) quantizes its received signal by a
pregenerated Gaussian quantization codebook with proper distortion and sends out
a bin index determined by a pregenerated binning function (kb = by(94')) to re-
ceiver 1. Based on our transmission scheme, the private signals z»1,, 222, and the
noise that it meets are not the required information for receiver 1. Therefore, the
natural configuration is to set the distortion level equal to the sum of the power
level of the noise, the total power level of the private signals 21, 222, and the term
|hi1hoo — hioho|? (J21p Q22 relating to the channel gain and phase of channel results
from sending mg;, and myy, that are contained in the codewords via wireless channel

from transmitter 1 and 2, respectively.

e Decode-Binning: Receiver 1 retrieves the receiver-cooperative side information, and
then decodes two common messages and its two own private messages by searching
in transmitters’ codebooks for a codeword quadruple (indexed by two common mes-
sages (my., my.) and receiver 1’s two private messages (my1p, M12,)) that is jointly
typical with its received signal and some quantization codeword in the given bin.
If there is such unique codeword quadruple, i.e., there exists an unique indices, it
can easily obtain two desired common messages mq1., Mo, from my ., mo., respec-

tively. Otherwise, declare an error. After receiver 1 decodes already, it uses two
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pregenerated binning function to bin the two common messages m;., ma. ( Zl(éc) =

bfic) (m;.), for i = 1,2) and sends out these two bin indices to receiver 2.

e Decoding: After receiving two bin indices from the receiver-cooperative side infor-
mation, receiver 2 decodes two common messages m ., Mg, and its two own private
messages My p, Moz, by searching in the corresponding bins (containing common
messages) and receiver 2’s two private codebooks for a codeword quadruple that is
jointly typical with its received signal. Finally, if there is such unique codeword
quadruple, i.e., there exists an unique indices, it can easily obtain two desired com-

mon messages Mo, Moo from my ., mo., respectively. Otherwise, declare an error.

Remark 6.2 Although the cooperative protocol is similar to that in the work [2], but there
are two modification points based on codebook generation of transmitted messages as fol-

lows:

1. In Quantize-Binning stage, the quantization distortion equals the total power of
the undesired signals, i.e., the noise power and the total power of private signals
To1p, Taap and the term |hyihoy — hiahor |* Qa1 Qoap involving with the channel gains
and the phases of channel for transmitting private messages ma1, and mys, that are
contained in the codewords via wireless channel from transmitter 1 and 2, respec-

tively.

2. In Decode-Binning and Decoding stages, the set of messages (M., Mac, M11p, Mi2p)

and (M, Mac, Ma1p, Maap) are decoded correctly, respectively.

6.2.1.3 Achievable Rates

In the following theorem, we establish the achievable rates using the two-round strategy
(STGa_y1_40) for the two-user Gaussian X channel with limited receiver cooperation in the
general case. Let ;. R;;,, and R;;, denote the rates for transmitter ¢’s common message,

private message m;;,, and private message mg;,, respectively, for ¢,7 = 1,2 and 7 # j.
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Theorem 6.3 (Achievable Rate Region for STGa_,1-,2): The rate sextuple (R, Rac, Ri1p,

Ry2p, Ro1p, Ra2yp) in the general case satisfying the following constraints is achievable:

Constraint at transmitter 1:
Ri. = Riic + Roic (6.1)

Constraints at receiver 1:

Ry

< min{[($11p; Y| T1e, Bacs Tr2p) + (C3) — &) I (@11p5 w1, Gl T1cs 220 1’12p)} (6.2)
Rz

< min{[(ﬂﬁzp; U |T1es T, T11p) + (CS — €T, I (w1295 1, Bo| 1es T2 l’np)} (6.3)
Ric + Ry

< min{f($1c, Ti1p; y1\$2c, $12p) + (C281 - f1)+, [($1c, T11ps Y1, ﬁ2‘$2c, $12p)} (6.4)
Roc + Rigp

< min{](xzc, Trap; Y1 |Tie, T11p) + (Cop — €0, I(®ac, Tiap; 1, G| Tic, $11p)} (6.5)
Riip + Rigp

< min{f(ffllp, Trop; Y1 |T1es 72e) + (C5 — €0, I (@11, Trap; 11, Go| T, !Ezc)} (6.6)
Ric+ Rip + Rigp

< min{](xlc, Tiips Trzp; Y1 |Toe) + (Coy — €)1 (Z1e, Tiips Tizp; Y1, ﬁ2|I2c)} (6.7)
Roc + Rigp + Ruyp

< min{](@c, s Ti1p; Y1 |T1e) + (Coy — &), 1 (220, Ti2ps Ti1p3 Y1, §2|$1c)} (6.8)
Ric+ Rip + Rae + Rigp

< miﬂ{](xlc, T11p; L2c; T12p; yl) + (C281 - 51)+, [(55107 T11p, L2cy T12p5 Y1, ?JQ)} (6.9)

where

51 = [(@2; Z/2|$1C7 T11p, B2cs T12p, y1)

Constraint at transmitter 2:

Rye = Riae + Raae (6.10)
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Constraints at receiver 2:

Ro1p < I(21p; 12| Z1cs T2, Ta2p) (6.11)
Rogp < I(m22p; 12| %1, Tac, T21p) (6.12)
Ric + Rarp < I(mic, 2a1p; Yo| Toc, 222p) + Ciy (6.13)
Rac + Raop < 1(%ac, T22p; Yo|T1c, T21p) + C (6.14)
R21p + R22p < [(@1;07 T22p; y2|$lca x2c) (6.15)
Ric + Roip + Razy < 1(T1e, o1y, Tap; Yol 7ae) + Ch (6.16)
Roe + Rorp + Razy < 1(%2c, a1y, Top; tol71c) + Ch) (6.17)
Ric+ Ro1p + Roc + Roop < I(Z1c, To1ps Tacs Ta2p; Yo) + C1Bz (6.18)
over all joint distribution
p(xlc)p(xnp|$1c)p($21p|$1c)p(l‘1|I1::7 T11p, 1521;0)
X P(fzc)p(wlzp’$2c)p($22p’mzc)p($2|$2c, T12p, $22p)-
For 7,7 = 1,2 and 7 # j, the superposition codebook generating random variable

T; = Tjc + Tip + Ty, Where both private codebook generating random variables z;;, ~
CN (0, Qi) and z;;, ~ CN (0, Qjipy) are independent of the common codebook generating
random variable x;. ~ CN (0, Q;.). The quantization codebook generating random vari-
able o = 1o+ %, where 2, ~ CN (0, A,) is independent of everything else and A, denotes
the quantization distortion at receiver 2.

Proof: See Section 6.4. [ ]

From Theorem 6.3, we provide some comments on these rate constraints as follows:

e First, m;. and my. must be decoded correctly at receiver 1 because they are used to
help receiver 2. Since the rate constraints (6.4) and (6.5) which are the same as the
rate constraint R,. and R,., respectively, as seen in Section 6.4.2 for deriving the
probability of Eél) involve with m;, and my.. Therefore, both (6.4) and (6.5) are

obviously required.

e Second, in the set of the rate constraints at receiver 1, on the right-hand side each

inequality is minimum of two terms. The first term corresponds to the case when
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receiver 1 can only determine a set of candidates of quantized 72'. The second term
corresponds to the case when the cooperative link is strong enough to carry the quan-

tized §§' accurately.

e Finally, there is no gain in 1, and Ry, in the set of the rate constraints at receiver

2 because receiver 1 only help receiver 2 decode m,. and msy..

Remark 6.4 (Effectiveness of an Achievable Rate Region in Theorem 6.3) Considering the
special case when the capacity of the receiver-cooperative links is zero, i.e., C¥, = C8 =0,
in Theorem 6.3, and compare it with [11] when setting R;;, = R, for 1,5 = 1,2 and
assigning the time-sharing random variable g to be a constant (no time sharing) in the
result of [11]. With the above comparison, we obtain that our proposed rate region reduces
to the best known achievable rate region for the two-user Gaussian X channel without
receiver cooperation in [11]. This means that our proposed achievable rate region is larger
than or equal to the one of the two-user Gaussian X channel without receiver cooperation

case.

Remark 6.5 (Achievable Rate Region with the Perfect Cooperation) This dissertation stud-
ies the case of limited rate receiver cooperation where noiseless receiver-cooperative links
have finite capacity 0 < CiBj < CiBj*, for i,5 = 1,2 and © # j, as given in Section 3.1.
When we consider an achievable rate region in Theorem 6.3 for the perfect cooperation
case where both receivers can share yi¥ and y} perfectly, it can see that this rate region
contains achievable rates with the maximum value of the finite capacity of links, i.e., Cg—*.
Furthermore, comparing this rate region with the region for receiver 2 in Theorem 6.3

when CB, is sufficiently large, it obviously obtain that the region for receiver 2 does not

exceed an achievable rate region with the perfect cooperation since C8, < CB;.

We define the following notations which are used over the rest of this chapter: for
i,7 =1,2and i # 7,
SNR?p = ‘hii|2Qiip = SNR; Qiip, SNR?p = |hii|2Qijp = SNR; Qijp,
INR” := |hy|* Qyp = INR; Qup, INRY” = [5]” Qs = INR; Q-
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Next, we calculate the rate loss term &; which is in the set of the rate constraints at

receiver 1 as follows:

& = 1(12, Yo|T1c, 211p, T2c, Tr2p, Y1)
= h(e|ic, T11ps Tocs Trop, Y1) — h(2|T1cs Tr1p, Tac, Trzp, Y1, Y2)
= h(ho1221p + hootaop + 2 + 2| M1221p + Mi2%a2p + 21) — (%)
_ 10g<1 + Ay n |NR§1P + SNR§2p + | hiihas — h12h21|2Q21pQ22p>

Ay Ay(1 + SNR2'” 4 INR???)
< 10g<1 + Ay + |NR§1P + SNR§2PA—|— |hi1hoo — h12h21|2Q21pQ22p>‘ 6.19)
2

From (6.19), it is easily seen that the rate loss term &; can be upper bounded by 1 bit by
selecting Ag =1+ |NR§1P + SNRgzp + |h11h22 — h12h21’2Q21p Qggp.

Remark 6.6 (Reason for Choosing A, in the General Case) Based on our transmission
scheme in Sect. 6.2.1.1, the undesirable signals from yl¥ at receiver I are the private sig-
nals involving my1, and mag, and noise which it meets. Choosing Ay = 1 + INRglp +
SNR%QP + | h11hoy — hy2hoy |2 (Q21p Qo2p Which is equal to the aggregate power of the undesir-
able signals, where the first three terms of the aggregate power of the undesirable signals
correspond to the power level of noise and the private signals involving ma;, and maay,
respectively, in y for receiver 1 and the last term |hy1hog — hiahay |2 (Q21p Q2o relating to the
channel gain and phase of channel results from sending ma.,, and masy, that are contained
in the codewords via wireless channel from transmitter 1 and 2, respectively. Hence, &,
in (6.19) can be upper bounded by 1 bit with choosing Ay as above and the undesirable

signals are managed by treating them as noise at receiver 1.

6.2.2 Strong Gaussian X Channel Type I Case

In Section 3.3, we show the classification of the two-user Gaussian X channel based on
the work [12]. This dissertation considers only on the strong Gaussian X channel type I
case, i.e., SNR; > INR, and SNR; > INR;. With the point of view in Figure 6.1, idea for
transmitting messages in this case is shown in Figure 6.3, where the bold arrow indicates

the strong channel gain, and has the following details:
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1. In Figure 6.3 (a), the first interference channel corresponds to the weak interference
channel with receiver cooperation. Therefore, both messages m;; and mys can be
split into common and private messages, i.e., (m1.,M11,) and (Maac,Ma2p ), TESPEC-
tively, and then messages (1m11.,m11,) and (maa.,ma2p) are decoded with cooperation

at receiver 1 and 2, respectively.

2. In Figure 6.3 (b), the second interference channel corresponds to the strong interfer-
ence channel with receiver cooperation. Therefore, both messages m;, and my; are
whole common messages, i.e., mis. and my; ., respectively, and messages my,. and

mo1 . are decoded with cooperation at receiver 1 and 2, respectively.

3. Finally, we obtain the strong Gaussian X channel type I with receiver cooperation as
Figure 6.3 (c) by superimposing two interference channels with receiver cooperation
from Figure 6.3 (a) and Figure 6.3 (b) and messages m.,m;;p,Mjic are sent from
transmitter ¢ and then messages m;;.,m;ip,M;;. are decoded at receiver 4, for 4,j =

1,2and i # j.

With the point of view in Figure 6.1 and the concept of a simple power split construction
in [9], our proposed transmission scheme in this case is showed in Figure 6.3 and can be

described as follows:

6.2.2.1 Transmission Scheme

Each transmitter consists of two independent messages m;; and m;; that are sent to
receiver i and j, respectively, for 7,7 = 1,2 and 7 # j. In transmitter ¢, message m;; is
split into common and private messages, i.e., m; — (i, My;yp), Whereas message mj; is
whole common message. Hence, we have three independent submessages in each trans-
mitter. Each common message can be decoded by both receivers, while a private message
is decoded only at own receiver. In each transmitter, two common messages (M;;., Mj;.)
are used for generating a common codeword and then these two common messages are re-
arranged as a new common message m;, € {1, ..., 2V (Fuctic)}  Finally, each transmitter
generates a private codeword by serving common codeword as the cloud center. From the
transmission scheme above, each message is encoded into a codebook drawn from a Gaus-
sian random codebook with a certain power. For transmitter 7, the power for its private and

common codewords are ();;, and Q. = 1 — @y, respectively.
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mi— (P, ML) - ENC 1

ENC 2

mn— (M., Ming) =

mi = miy. - ENC 1

M = P
“T|ENC2 DEC2| g s
> (. ) W e DEC1[ >
M = Mine - — = P
L
P = M - 2 = M
mn— (Mxe. M) - ENC2 DEC2L g i

Figure 6.3: Transmission scheme in the the strong Gaussian X channel type I case, (a)
Transmitting messages in the weak interference channel with receiver cooperation, (b)
Transmitting messages in the strong interference channel with receiver cooperation and (c)
Transmission scheme for the strong Gaussian X channel type I with receiver cooperation

viewed as the superposition of two different interference channels ((a) and (b)).

The power split configuration is such that Q;;, + @;c = 1 and INszp = | Ry [2 Qijp < 1
if SNR; > INR;. Using a simple power-splitting configuration from [9], we set the power

of each private message as follows:

Quip = min{ﬁ, 1} (6.20)
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Remark 6.7 (Comparison our transmission scheme with the previous works) From the pro-

posed transmission scheme for the strong Gaussian X channel type I above, we see that

1. In each transmitter, there is only one private message for encoding which corre-

sponds to the resultin [15].

2. A common codeword in our work is generated from two different common messages

but a common codeword in [2] is generated from a common message.

3. A transmitted codeword from each transmitter in our work which is the sum of a
common codeword and a private codeword (see details in Section 6.5) is similar

to [2].

6.2.2.2 Cooperative Protocol

Using the proposed transmission scheme in Section 6.2.2.1, i.e., message m;; is split
into m;;. and m;;, while making m,; as the whole common message m;;. for ¢, = 1,2 and
i # j. Therefore, the cooperative protocol with STGy_,; .5 in Section 6.2.1.2 is reduced
to the original version [2] by decoding messages (1., Mac, M11,) and (my., Mo, Moz, in
the decode-binning and decode stages, respectively.

Note that the details of the cooperative protocol with STGs_,;_,o in this subsection are

similar to the ones in Section 6.2.1.2. Hence, we omit them.

6.2.2.3 Achievable Rates

In the following theorem, we establish the achievable rates using the two-round strategy
(STGg_,1_40) for the two-user Gaussian X channel with limited receiver cooperation in the
strong Gaussian X channel type I case. Let 1, and R;;, denote the rates for sth common

message and private message m;;,, respectively, for 1 = 1, 2.
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Theorem 6.8 (Achievable Rate Region for STG5_,1_,2): The rate tuple (R, Rac, Ri1p, Ra2p)
in the strong Gaussian X channel type I case satisfying the following constraints is achiev-

able:

Constraint at transmitter 1:

Ric = Ri1c + Raxe (6.21)
Constraints at receiver 1:
Rip <m {f (213 1|21, 20) + (C —51)+=I($1;y1,ﬁ2|x1c,xzc)} (6.22)
Ry < min {f (m2e; ] m) + (CB — &)F, I (mae; 1, ?f2|$1)} (6.23)
Ric+ Rip, <m n{[ (z1; 91|20 ) + (CE —51)+,I(x1;y1,g2\x20)} (6.24)
Rye + Ry1p < min {[ (Z2c, 713 91 |71c) + (C281 — &), (e, 215 11, ?f2|$1c)} (6.25)
Ric+ Rip + Roe <m {I (71, 2003 91) + (C8, — &)7F, Iy, Boe; w1, gjz)} (6.26)

where
&1 = ](@23 y2’$1c: L2¢, T1, yl)

Constraint at transmitter 2:

Rye = Riac + Raac (6.27)
Constraints at receiver 2:
R22p (x27 y2’$167 xQC) (628)
Ry < ](fﬁlc; y2|x2) + C12 (6.29)
Roc + Ragp < (225 yo|21.) + c% (6.30)
Ric + Roop < I(21c, T2; Yo|12c) + C12 (6.31)
Rlc + RQC + R22p (xlm T2, ?/2) + C12 (632)

where 7; = x;. + 2, 1s the superposition codebook generating random variable with
zie ~ CN(0, Qi) and z;, ~ CN(0, Qi) that is independent of z;.. o = y» + % is the
quantization codebook generating random variable and z, ~ CN (0, Ay) where A, is the
quantization distortion at receiver 2.

Proof: See all details in Section 6.5. [ |
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We provide some comments on these rate constraints as follows:

1. The achievable rate region in Theorem 6.8 is similar to Theorem 4.3 in [2] for the
two-user interference channels with limited receiver cooperation, but there are two

key different points as follows:

(a) In our work, the rate constraints at both transmitters in (6.21) and (6.27) are

required in our work but not in [2].

(b) The rate constraint for R;. where receiver 2 is required to decode m; . correctly.

Next, the rate loss &; in the set of the rate constraints at receiver 1 can be calculated as

the following:

51 = [<ZA/27 ?/2|$1c, Loc, 11, yl)
= h(@2|$1ul’2c,$1, yl) - h(@2|$1c, L2¢, 115 Y1, ?JQ)

= h(hggl‘ggp + 2+ »%2|h121}22p + Zl) - h(22)

1+ A, SNR3?”
=lo +
#( A, (g |NR§2P)A2>
14 Ay + SNRZ?
S 10g< + QZQS 2 )

(6.33)

By choosing Ay, =1 + SNR%QP , the rate loss &; is upper bounded by 1 bit.

Remark 6.9 The above chosen distortion (A, = 1 + SN Rg% ) may not be optimal. The
achievable rates can be further improved if we optimize over all possible distortions [2,
32]. For instance, if the cooperative link capacity is large, the distortion level could be
lowered to obtain a finer description of the received signal. With the above selection for
the distortion, however, this achievable rate region can be within a constant gap to the

capacity region, regardless of channel parameters.

6.3 Characterization of the Capacity Region to Within 2 Bits

In this section, we show the performance of the proposed strategy in the case of strong
Gaussian X channel type 1. First of all, we present the main result of this chapter in Section
6.3.1. Second, we provide the achievable rate region in the terms of (R11, R12, Ra1, R22)

by using the result of Theorem 6.8 in Section 6.3.2. Finally, we show that our proposed
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strategy in the strong Gaussian X channel type I case is within 2 bits/s/Hz per message
compared with an outer bound on the capacity region of the two-user Gaussian X channel
with limited receiver cooperation from Lemma 4.1.

6.3.1 Capacity Region to Within 2 Bits

In this dissertation, we investigate only in the Gaussian strong X channel type I case,
i.e., SNR; > INR; and SNRy > INR;. Our main result states in the following theorem

(Recall that Z is an outer bound on the capacity region shown in Lemma 4.1):

Theorem 6.10 (Within 2-bit Gap to Capacity Region):
RCEC ZC (0,2 x[0,2] x[0,2] x [0,2]),

Proof: This theorem is proved by Lemma 6.12. [ ]

6.3.2 Achievable Rate Region for the Strong Gaussian X Channel Type I Case

First, we consider STGs_,;_,2 and get the set of achievable rates (1., Ra., Ri1p, Ro2p)
from Theorem 6.8. Remind that the rate loss £&; < 1 when we choose Ay = 1 + SNR%QP )
To simplify computations, we follow the same line in [2] by replacing (6.22) and (6.24)

with

Riip < I(z1; 41| %1c, 22e),

Ric+ Rip < (215 11| 220)

in the following computations.
For 7,7 =1, 2 and 7 # 7, the achievable rate region in terms of (Ryq, R12, Ro1, Roo) for

2 _,5_,1 can be computed from the following three constraints:
l. R, = Rii, + Ric
2. R, = Riyp + Ric + Rjc
3. R/ = Ry + 2R,. and R]’/ = Rjjp + R

Next, rewriting the above three constraints as follows:



3. Ry, = R —

Ric
Ric - ch
2Ric and Rjjp = R;l - ch
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Then applying the Fourier-Motzkin algorithm to each rewritten constraint and remov-

ing redundant terms (details omitted). Finally, after collecting and reordering the above

obtained results, we get the achievable rate region 2 _,;_,» which consists of nonnegative

(R11, Ri2, Ray, Ryo) satisfying

Riy < I(m; y1|720) — Roie

Ri1 + Rio
Ri1 + Rio
Ri1 + Riz
Ri1 + Ry

Ry + Ry

Ry + Ry

Ry + Ry

Ri1+ Rip <
Ro1 + Rap <

Ro1 + Ros <

I/\ I/\ I/\ I/\ IN I/\ I/\ I/\ IN
~

IN

IN

IN

IN

< I(
I

I(
I(
I(
(
I(
I(
I(
I
I(

I(
I
I(

L5 Y1 | Tres Bae) + 1 (T1e; Yol @) + C12

- 51)Jr - RZQC

L2c; @2|931) — Rag.

T2c; 1/1’351) ( 51

Tyc; Yo|m) + C12 Riie

T2, y2’171c)+C12 Riac

Toc; |m) + (225 Yo | T1c, T2c) + (CzBl

Toe; Y1, Yol 1) + 1(22; Yo|T1c, T2e) —
— &) — Ryye —

T1, B2¢5 Y1, Z/2) Ry1. — Raac

I $207y1> (C51

Toc; h|m) + 1215 Y1 | 22c) + (C281

R2lc

Rl?c
R22(:

Tac; Y1, Uol@r) + 1(215 1| 220) — Rore — Roae

Iz yi|Tie, 22c) + I(@e; tn|21) + 12145 Y| 22)

+(C3 — &)™ + C¥, — Rore — Raae

- fl)-i_ - R12c

- 51)+ - R2lc - R22c

Iz y1|2e, 1e) + (@0 1, Golm) + 1(m10; yo|22) + C5,

_R21c - R220

I(2ae, 1p; | 2ie) + (2165 Y] 22)
_R21c - R22c

Boc, T15 Y1, Yol ic) + L( 215 yo|2) +

Tic, B2; Y2) + ClBg — Ri1c — Riae

T1e; Yol 12) + I (225 yo| 1) + 2C5, —

+(C3

B
C12

Rllc -

— &)+ CE
- RZlc - R220
RIQC

(6.34)
(6.35)
(6.36)
(6.37)
(6.38)
(6.39)
(6.40)
(6.41)

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)
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Ri1 + Ria + Ro

Ry + Ry2 + Ry

Ry + Rig + Ry

Ry + Rig + Ry

Ri1 + Ria + Roy

Ry + Rig+ Ry <

Ri1 + Rig + Rap <

Rip + Rig+ Ryp <
Ry + Ri2 + Roo
Ry + Rig + Ra

Ri1 + Ria + Ry

Rip + Rig + Ry < {

Rip+ Rig + Ryp <

IN

IN

IN

ININ NN

IN

IN

IN

IN

IN A

| /\

|
|
|

~

~

(
(
(
(
(

-
-
{(

ke

I

~

I
(
(
I(

(e ) + (225 v2|m1e, 2ac) + 1 (2165 4| 22)

+(C8, — &)+ C% — Rire — Ruac

I(@2e; Y1, o) + 1(m2; ol @1c, Dac) + 1 (2165 Y2| 22)
+C% — Rirc — Rz

I(w20; 31| 71) + T (21c, 23 y2l22e) + (C5) — &)T + C
—Ri1. — Raae

Bac; Y1, Bolan) + 1 (T1c, @25 Yol 220) + Cy — Rite — Riae
o1, 25 91) + (Coy — &) = Raae

1, Tac; Y1, o) — Raae

T2cs y1|x1) + ](Il; y1|$2c) + (CQB1 - 51)+ — Roac

(@03 91, Yolm1) + (@15 41| 020) — Roge

(x5 y1|Tie, 22c) + I(@2e; tn|21) + (2165 Y| 22)
+(C§ — &))" + C%, — Ryae

Iz | 2ie, 22c) + 1220 11, o|2n) + L(21c; Y| 22)

I(@2e, 25 y1|2e) + T(1c; 92]m2) + (C5) — &) + Ch
_R22c

LT Y, Yelwe) + I(@e; yo|22) + CI132 — Roac

Toe, 213 Y1 | 21e) + I (21e, 223 Yol 22e) + (C5) — &) T
RQlc

Tac, 015 Y1, ol ) + 1 (21e, T3 4ol a2c) + Chy — Rone
03 Y1 |, Toe) + 1 (T1e, 225 4o) + CF — Rone
o1, Tae; 1) + 1 (225 1| 11e, 1ae) + (C5 — &))" — Raxe
L1, Tac; Y1, Po) + (25 Y2| Tre, Tae) — Roie
Tac, Tn; yl’xlc) + I(@1c; Yol 22) + (225 Yo| 21, Tac)
(C3i — &) +CE — Rae

I(z2c, 715 1, ol 2ie) + L(21e; vol22) + 1(22; Y221, 22c)
RQlc
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(6.48)

(6.49)

(6.50)
(6.51)
(6.52)
(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)
(6.60)

(6.61)

(6.62)

(6.63)
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I(zy; y1|Tre, Toe) + T (@20 Y1 |21) + T(21e, 225 Yo |20

Riv+ Rig+ Ry < (1?11‘1 2) (2 ?Jﬂ 1) (1 292’2) (6.64)
+(C8 — &)t + CB, — Ry
I(z; y1|T1e, 220) + I( 2265 Y1, Yol|T

Rip + Rig + Rag < (15 1o, 22c) (726 10, o) (6.65)
+1 (@10, To; Yo| 22c) + CB, — Ray,
[xc,x; xc+[Ic,$; J]C—l—CB— +

Ris+ Ryt + Ry < (B2c, 713 1| T1e) + I(21e, D25 42 |2e) + (C3p — &1) 6.66)
_’_C?Q_RlQC

Ri1 4 Ro1 + Roo < I(m2c, 215 w1, ol 21c) + L (21c, 225 y2’$2c)+C12 Riac (6.67)

Ry1 + Ro1 + Rao

IA

Ry + Roy + Rao Ty, Toc; Y1) + L (223 Yo| T1c, 22e) + (CgBl - 5'1)+ — Riac (6.68)

(AN
~

I(

I(w; 1 |T1e, 2e) + 131, 25 9) + CB, — Rio.
(
I(

Ri1 + Ro1 + Roo

| /\

Ty, Tac; Uiy Uo) + 1 (225 |21, 220) — Riae

(25, Tie) + (21 1o|2) + 1(22; yo| T1e, To0
Rit + Roy + Rop < 2 1y1|1) (1 y2| 2) (2y2|1 2) (6.69)
+(C8, — &)T 4+ C¥, — Rore
I(me, 215 Y1, |21c) + L(T165 Yo|
Riv+ Rot + Ry < ( 2¢y L15 Y1 y2| 1 ) ( 1 ?J2| 2) (6.70)
+1 (25 Yo | 2105 T2e) + C12 Ria.
1(zy; y1|Tre, Toe) + T (@20 Y1 |21) + T (216, 25 Yo |20
Riv + Rot + Ry < ( 1 yl‘ 1 2) ( 2 ?Jﬂ 1) ( 1cy T2 yz’ 2) 6.71)
+(C8 — &)t + CB — Riae
I(z1; 91| T1e, oe) + T( X263 11, Uo|T
Ri1 + Rop + Raa < (@ 91 lo1c, 22c) (7265 11, Bl )
+1(@1c, To; Yo| 22c) + CB) — Riae
Ris + Ro1 + Rag < (21, 225 y2) +C12 Ryi. (6.72)
Riy + Roy + Roo < (210 yo|m0) + I(m2; 1ol 1.) + 2C5, — Ripe (6.73)
(e yi|m) + 1 e, Toc) + L(x1e; o2
Ry + Rot + Ry < 2 yl‘ 1 (952 yz‘ 1 2) ( 1 ?J2’ 2) (6.74)
+C12 Rllc
I(zo0; y1, Yolxn) + I(22; Yo|Tre, Xae) + I (216 y2| @
Rig+ Rot + Roy < (D265 Y1, Yo|m1) (723 12| T1c, 22 (@1c; Y| 72) (6.75)
C Rllc
I(ze; 1 |2) + (216, 220 | 20c) + (CB, — &) T
Riy+ Ryt + Ry < (Z2c; y1|m) + I(m Y| m20) + (C3 — &1) 6.76)

+C12 Rllc

Ris + Ry + Ry < I(mye; y1, ol 21) + I(21e, 123 9| 120) + C8, — Ryte (6.77)
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I( 22, 15 Y1 |T1e) + L(T1e, B2 Yo |Tac
Ri1 + Ria + Ry + Rgp < (#2e, 73 1 ]1c) (T1e, 225 | 72c) (6.78)

+(CG - &))"

Riy 4 Riz + Rat + Ros < I(mac, 15 11, olwie) + 1 (316, w25 92| 120) + CH (6.79)
Ri1 + Riz + Ry + Rop < I(wi; 1|aie, 22e) + I(mie, 13 ) + C5 (6.80)
Ri1 + Rip + Roy + Ry < I(my, mac; 1) + 1 (123 ol 71, 1) + (C5 — &1)F (6.81)
Riy + Rip + Ryt + Ry < (w1, mac; 41, §2) + (225 92 71e, 22c) (6.82)

flﬁzc, 21, yl’xlc> + I(ﬂflc, ?J2|372)

Ri1 + Rz + Ry + Rop < (6.83)
+1 (295 |16, 22e) + (CF — &1)F
.Z' ¢y L1; ) T1c + -[ T1cy T
Riy + Rz + Ry + Rop < 26, 313 1, Bl i) (16; velaz) (6.84)
+1(32; yo| 210y 22c) + CF
X1 b X C?x Cc + I T C) T
Riy + Rig + Ry + Rop < 159171, 22c) (#2e; 12 ]1) (6.85)
(215 91| T1e, 2) + T (2205 91, G|
Ry + Rig + Ryy + Rop < 19171, o) (2c; 1, fel) (6.86)

+[ xla T2 y2|$20) + C12

I(z1; y1|ic, 22c) + 1(@1c, 225 1|22
2R11 + Rig + Roy + Res < | [22¢)

+1 (w1, 2265 11) + (C8, — &) T + CF, — Rore

(@ yi|Tie, 2oc) + I(@1e, 2235 Y| T2c
2R11 + Rio + Ro1 + Ros < | ) ( 22c)

{—H (165 225 Yol 1) + (C5y — &1)F

+1 (21, %205 Y1, B2) + CB, — Ry,

I(l’h Yi|@ie, 2ae) + (@20, 15 1| 71c)
2R11 + Rig + Ro1 + Roz < § +1(m1c; 9|22) + I(m1e, T2; Y| 22c) (6.87)
+(C281 - &)+ 2C182 — Raic

/

(25 1 |mie, 22c) + L(@20, 215 41, Yol o)
2R11 + Ria + Ro1 + Roo < +1 (2105 9|2) + I (216, To; 1| 120) + 2C5, (6.88)
_R2lc

l’c,fl}, Tic +Ix07 CB_ *
Ri 4+ 21 + Ror + Ry < ve, T Y1 |T1e) + I (@e, 225 42) + (C3) — &) 6.89)

R22c
Ri1 +2R15 + Ro1 + Roo < I(mae, 213 1, Yo|mie) + I(@ie, 223 92) + C?g — Ragc (6.90)

l‘, xc,@c‘f‘jxc;@ xC
Ris + 2R1n -+ Bon + B < 4 11003 010 220) 1 (01, 20 ol azc) (6.91)

+21 (2205 t1|m) + 2(C281 §)T + C12 — R



Ri1 +2R15+ Ro1 + Roo

Ri1 + 2Ry2 + Ry + Roo

Ry + 2Ry9 + R + Ry

R11 + 2R12 + R21 + RQQ

Ri1 +2R15+ Ro1 + Roo

Ri1 +2R19 + Ro1 + Roo

Ry + 2Ry2 + Ry + Ry

Ri1 4+ 2R19 + Roy + Roo

Ri1 +2R19 + Ro1 + Roo

Ry + 2Ry9 + R + Ry

RH + 2R12 + R21 + R22

RH + R12 + 2R21 + RQQ

Ry + Rig + 2R + Ry

Ry + Rig + 2R + Roo

Ri1 + Ria + 2Ry + R <

RH + R12 + 2R21 + RQQ

93

I(z1; 91| T1e, Toe) + T(X1c, T2 Yo| o

< (w15 y1| 210, 220) (Tie, T2; Yo| 22c) (6.92)
+21(z2¢; Y1, Jol @) + CF, — Rooe
I(ze; n|2) + I(@e, 215 41| 21c)

< H(@re, 25 po|m2) + 2(C5 — &)T (6.93)
+C?2 - RQQC
I(2oc; 11, Yolx1) + I(20c, 215 Y1 |21

- (D265 Y1, Bolm1) + I(22e, 715 41|21 (6.94)
—i—[(aflc, T2; yz|952c) + (CzB1 - fl)+ + ClBQ — R
I(zoc; yi|my) + I(22e, 215 Y1, Yo| T1e

< ( 2 y1| 1) ( 2¢y 115 Y1 y2| 1) (6.95)
+[($lc7 T2; ?/2|$2c) + (CzBl - 51)+ + C% — Rao.
I(z cs 9 | + I(z cH ) L2c

< ( 2¢) Y1 Z'Jz‘ 1) ( lcs 22 y?‘ 2c) (6.96)
+1(22c, m1; Y1, ol21e) + CF — Raoe

- I(z2c; yi|z1) + (@ ni|2e, 22c) + 1(21c, 225 42) 6.97)
+(C5 — &)+ CF, — Rage

< I(mae; yry Go|21) + 1(21; va|@e, 220) (6.98)
+1(21¢, 225 42) + CF) — Roae

- I(z1, Boc; 1) + 1 (225 yo|21c) + (C — &) + Ch,

B _R22c

< ](ffl, L2c¢; Y1, @2) + [(372; ?J2|$1c) + CIBQ — Raa. (6.99)

< (e, 25 1 |T1c) + 1 (225 yolmie) + 12165 2| 22) (6.100)
+(C8, — &)+ 2CE, — Ryoe
I(mac, 115 Y1, Yo|T1e) + 1(T25 y2| 71

< (5152 15 % yz| 1) ( 2 y2| 1) (6.101)
+1(21c; Y2|12) + 2C182 — Ry
I(z1, B 1) + I(T1e, 203 Ya|me) + (CB, — &)

< (21, 2265 1) (Z1c, 123 Yol m2c) + (C5; — &1) (6.102)
+C182 - Rllc

IN
~

($1, L2c; Y1, 372) + [(Jﬁm T2; 312‘35%) + Cle — Ry (6.103)
(

I1; y1’$2c) + ]($1c, T2, yz) + CI132 — Riie

(VAN
~

I(z1; 1| 20e) + I(220; 1 |2) + (@1, 225 Y2720
+<C§1 — &)+ ClBQ — Ri1c

(6.104)

I(z; yi|aae) + I(@ae; vr, Golon) + 1 (216, 225 yo|22c)
+C182 — Rllc

IN

N
———/—
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l' ¢y L1; Tie) + I To; Ticy B2c
Ris + Rup 4 21 + Rpp < 4 (720 Tt lme) 1 (25, ) (6.105)
+2[ $1C7 y2’{172 (C% - 51) —+ 2C12 — Rllc
x CH x b ) I C + [ x ) x Cy 'Z' C
Riy+ Rig + 2Ry -+ Ry < 2e, T3 Y1, U2 T1e) (723 12| T1c, T2 (6.106)
+2] xlm y2’l’2 —+ 2C12 Rllc
(21, 2a¢; Y1) + 1(22; 2|21, Toc
Rus + Rup + 2Bn + iy < 4 © (127263 00) L (0, ) (6.107)
+1 (2165 ol 22) + (C5, — &) 4+ CE, — Rux,
x 7x C’ ) + ‘[ 1U2 ‘/L‘ (3] ‘/I" C
Ri1+ Ris +2R9; + Ryy < L 2c; 1, Bo) (@2 eloie, 22c)
+I Ilca y2|$2 + C12 Ry
@ca Iy y1|$1c) + ](xlca ?J2|352)
Ry + Rig + 2Ra1 + Roo < § +1(21c, 123 4| 20e) + (CB, — &) (6.108)
Rllc
$ ¢y 15 Y, Tie) + I(z cs Z
Ri1 + Ris + 2Ry + Ryy < 2e: 205 01, Bl i) (716 |2 (6.109)
+1(21c, 125 Yo|220) + 2(:12 Riie
x C»H T b T C _'_ ‘[ j}2 X CH X C
Ri1 + Rig + Roy + 2R < 2e, 313 71 (@2 e, 22c)
+1(w1e, 225 42) + (C5 — &) + CF, — Ruae
@C? x ) "L‘ C —"_ ‘[ ‘/L‘ b) :1/‘ C»H I C
Ri1 + Rig + Roy + 2R < 1591, Balane) (22 oloe, 22c)
+] xlcax% y2 + C12 Rl?c

[(x2c7 I, y1|xlc) + ](xQ; y2|],‘1¢:7 ‘/'BQC)
(a3 1| m1) + 1(T1cs 225 Y2 | T2c) (6.110)
+2( 51) + C12 R12c

RH + R12 + Rzl + 2R22

IN

(
I(z2c, 215 11, ol 2ic) + 1(22; Y| T1c, 220)
Ri1 + Ria + Ro1 + 2Ry

IN

+1 (2205 1 |21) + I(210, 225 Yo|22c)
| H(C5 — &) + C, — Ruze

p
[('I267 I yl|xlc) + ](@7 y2|l‘lca xQC)
Rll + R12 + R21 + 2R22

IA

+1(220; Y1, Po|21) + (2105 225 Y| T2c)
+(C51 — &)+ Cle — Ria.

4
I(@e, 215 41, G| 21c) + (223 Yo| 21, T2c)
Ry + Rig + Roy + 2Ry

IN

F1(22e; Y1, Yol 21) + 1 (210, 725 92| 22c)
+C?2 - R12c
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Remark 6.11 (Maximum value of each proposed bound) All of the above bounds except
the bounds of the sum of 4 rates, i.e., Ri1 + R12+ Ra1 + Roo, involve with parameters (3 and
v in the common rate constraints (6.1) and (6.10) at both transmitters which are rewritten

the following forms for convenience in the later consideration:

Ric = Ry + Rore = BRic + (1 — B) Ry, (6.111)
Rgc = Rch + RQQC = (1 — ’}/)Rgc + ’)/RQC (6112)

where (3,7 € [0, 1]. After calculating, it is easily seen that
e Ry bound has the maximum value when 5 = 1;
e Ry5 bound has the maximum value when v = 0;
e Ry bound has the maximum value when 5 = 0;
® Ro bound has the maximum value when v = 1;
e Ri1 + Ryo bound has the maximum value when § =1 and v = 0;
e Ry + Roy bound has the maximum value when § = 0 and v = 1;
o Ri1 + Rys + Roy bound has the maximum value when v = 0;
e Ry + Rio + Roo bound has the maximum value when 5 = 1;
o Ry + Ro1 + Ros bound has the maximum value when v = 1;
e Ris + Ro1 + Roo bound has the maximum value when 3 = 0;
e 2Ri1 + Ris + Ry + Ros bound has the maximum value when 3 = 1;
o Ry + 2R15 + Roy + Ros bound has the maximum value when v = 0;
o Ry + Ris + 2Rs1 + Ros bound has the maximum value when 3 = 0;
o Ry1 + Ris + Ro1 + 2Ro5 bound has the maximum value when v = 1.

Next, for the achievable rate region Z%,_,1_.5, we will show that all bounds at their max-
imum values except (6.37), (6.43)—(6.49), (6.58)—(6.60), (6.62)—(6.71), (6.73), (6.87)—

(6.110) are within a constant gap from the corresponding upper bounds in Lemma 4.1.
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By symmetry, however, we can obtain strategy 5% ,» .;. Similarly to the perspective
of the work [2], rate points in. 57 _,,_.; can recompense the problematic bounds (6.37),
(6.43)—(6.49), (6.58)—(6.60), (6.62)—(6.71), (6.73), (6.87)—(6.110) in strategy F%_,1 2
by time-sharing. Hence, the resulting achievable rate region 27 := conv{ % 1,5 U
25,1} is within a bounded gap from the upper bounds in Lemma 4.1. We give the

following lemma.

Lemma 6.12 (Rate Region in the Two-User Gaussian Strong X Channel Type I)
RCFTC Z7C (0,2 x[0,2] x[0,2] x [0,2]),

in the two-user Gaussian strong X channel type I.

Proof: We need the following claims:

Claim 6.13 In the achievable rate region 5%_,,_,5, whenever the R15 bound (6.37) is active
and Ri1 + Ra1 + Roo bounds are also active, the corner point where Ri1 + Ris + Ro1 + Roo
bound and Ry, + Roy + Roo bound intersect can be obtained. This condition is depicted in

Figure. 6.4.

Cormner point :always achievable

R11+RN Ry +Ryy+ Ry + Ry

Figure 6.4 Condition on 23 _,;_,, for Claim 6.13

Proof: 1In this condition, the value of Ry; + Rio> + R21 +Roo at the intersection of
the dashed lines is always greater than the value of Ry, + Ris + Ry + Roo at the required

corner point. Details is given in Appendix 6.6. [ ]
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Claim 6.14 In the achievable rate region 5%_.1_,o, whenever the Ry1+ Ry bound (6.43), . . .,
(6.45) or (6.46) is active and Ry + Roo bounds are also active, the corner point where
Ri1 + Ris + Ry + Rog bound and Ry + Rao bound intersect can be obtained. This con-
dition is depicted in Figure. 6.5.

Comerpoint: always achievable

S+ R4 R R,
Ry + Ry, Ryt Riy+ Ry + Ryy

Figure 6.5 Condition on Z4_.;_,, for Claim 6.14

Proof: 1In this condition, the value of Ry; + Rio + K21 +Roo at the intersection of
the dashed lines is always greater than the value of Ry, + Ris + Ry + Ros at the required

corner point. Details is given in Appendix 6.6. [ ]

Claim 6.15 In the achievable rate region F%_,1_.5, whenever the Ry + Rag bound (6.47),
(6.48) or (6.49) is active and Ry, + Ryo bounds are also active, the corner point where
Ri1 4+ Ri2 + Ra1 + Ros bound and Ry + Ri2 bound intersect can be obtained. This

condition is depicted in Figure. 6.6.

Proof: In this condition, the value of R;; + Ris + Ra1 +Roo at the intersection of
the dashed lines is always greater than the value of Ry + R15 + R21 + Roo at the required

corner point. Details are given in Appendix 6.6. [ |
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Cornerpoint: always achievable

Figure 6.6 Condition on Z%_,;_,5 for Claim 6.15

Corner point : always achievable

R11+R12+2R2N Rii+R;+ R+ Ry

S

S
\-

R+ Rp+ Ry + Ry,
Ry+R,+Ry,

(a)

Cormner point : always achievable
; R+ Ry + Ry + Ry,
6—Q

jS

R+R+ Ry + Ry \\

Ry +Rp+R,,

(b)

Figure 6.7: Condition on % _,;_.5 for Claim 6.16. (a) Ry; + Ri2 + 2R91 + Ras bound is
active. (b) Ry; + Ri2 + 2R2; + Ra bound is not active.
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Claim 6.16 In the achievable rate region F%_,1_,5, whenever the R11 + Ryo + Rao bound

(6.58), ..., (6.64) or (6.65) is active,

1. if Ri1 + Ris + 2Ro1 + Roo bounds are active, the corner point where Ri; + Ris +
Ro1 + Ry bound and R + Ri2 + 2R3 + Rao bound intersect can be obtained;

2. if Ri1 4+ Rio+ 2R21 + Ros bounds are not active, the corner point where R, + Ris +
Ro1 + Roy bound and Ry bound intersect can be obtained.

These two conditions are depicted in Figure. 6.7.

Proof: In both conditions, the value of Ry; + Ri2 + Ro; + Roo at the intersection of
the dashed lines is always greater than the value of Ri; + R1s + Ra1 + R at the required

corner point. Details are given in Appendix 6.6. [ ]

Claim 6.17 In the achievable rate region F%_,1_,, whenever the R, + Ro1 + Rao bound
(6.66), ...,(6.70) or (6.71) is active,

1. if Ri1 + 2Rq5 + Ro1 + Ros bounds are active, the corner point where Ry, + Ris +
Ro1 + Rag bound and R11 + 2R15 + Ro1 + Ros bound intersect can be obtained;

2. if Ry1 +2R15+ Roy + Rog bounds are not active, the corner point where R11 + Ris +
Ro1 + Ry bound and R15 bound intersect can be obtained.
These two conditions are depicted in Figure. 6.8.
Proof: In both conditions, the value of Ry + Ri2 + Ro; + Roo at the intersection of

the dashed lines is always greater than the value of R1; + R12 + Ra1 + R at the required

corner point. Details are given in Appendix 6.6. [ ]
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Corner point : always achievable

R+ 2R12+R2N R1*1+R1*2+R;1+R;2

R+ R+ Ry + Ry

(a)
Corner point : always achievable

‘J Ry +R,+Ry+Ry

st

\

R+ R+ Ry + Ry \\

R+ Ry + Ry,

(b)

Figure 6.8: Condition on % _,;_.5 for Claim 6.17. (a) Ry + 2R12 + Ro1 + Ras bound is
active. (b) Ry1 + 2R15 + Ry1 + Ra2 bound is not active.

Claim 6.18 In the achievable rate region F%_,1_,5, whenever the Ri15 + Ro1 + Rao bound

(6.73) is active,

1. if 2R11 + Ris + Ro1 + Ros bounds are active, the corner point where Ry, + Ris +
Ro1 + Ras bound and 2R, + Ris + Ro1 + Ros bound intersect can be obtained;

2. if 2R11 + Ris + Ro1 + Roo bounds are not active, the corner point where Ry, + Ris +
Ro1 + Roy bound and Ry, bound intersect can be obtained.

These two conditions are depicted in Figure. 6.9.
Proof: In both conditions, the value of Ry + Ri2 + Ro1+ R at the intersection of

the dashed lines is always greater than the value of Ry, + Ri2 + Ro; + Roo at the required

corner point. Details are given in Appendix 6.6. [ ]
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Cornerpoint : always achievable

* * * *
2R+ R+ Ry + Ry Ryt Ryy+ Ry + Ryy

Ry +Ryp+ Ry + Ry

Riy+ Ry + Ry

(a)

(b)

Figure 6.9: Condition on Z4_.;_,, for Claim 6.18. (a) 2Ry + Ri2 + Ro1 + Roy bound is
active. (b) 2R11 + Ri2 + Ro1 + Roo bound is not active.

Claim 6.19 In the achievable rate region F%_,1_,5, whenever the 2R, + R15 + Ro1 + Rao
bound (6.87) or (6.88) is active and R15 + Ry1 + Ras bounds are also active, the corner
point where Ri1 + Rio + Ro1 + Rog bound and Ry5 + Ro1 + Roo bound intersect can be

obtained. This condition is depicted in Figure. 6.10.

Proof: In this condition, the value of Ry + Ri2 + Ro1+ Roo at the intersection of
the dashed lines is always greater than the value of Ry, + Ri2 + Ro; + Rao at the required

corner point. Details are given in Appendix 6.6. [ ]
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Figure 6.10 Condition on .74 _,;_,5 for Claim 6.19

Claim 6.20 In the achievable rate region S%_,_,5, whenever the Ri1 + 2R15 + Ro1 + Rao
bound (6.89), ..., (6.100) or (6.101) is active and R, + Ro1 + Roo bounds are also active,
the corner point where Ri1 + Ri5 + Ro1 + Ros bound and Ri1 + Ro1 + Ros bound intersect

can be obtained. This condition is depicted in Figure. 6.11.

Comer point : always achievable

R +2R)+ Ry + Ry,

Figure 6.11 Condition on % _,;_,, for Claim 6.20

Proof: 1In this condition, the value of Ry; + Rio> + Ro1+ Roo at the intersection of
the dashed lines is always greater than the value of Ry, + Ris + Ro; + Roo at the required

corner point. Details are given in Appendix 6.6. [ ]
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Claim 6.21 In the achievable rate region F%_,1_,5, whenever the Ri1 + Ris + 2Ro1 + Rao
bound (6.102), . .., (6.108) or (6.109) is active and R, + R2+ Roo bounds are also active,
the corner point where Ri1 + Ris + Ro1 + Ros bound and Ry + Ris + Ros bound intersect

can be obtained. This condition is depicted in Figure. 6.12.

Corner point : always achievable

R+ Ry+2R, + Ry

Figure 6.12 Condition on 7% _,,_,, for Claim 6.21

Proof: In this condition, the value of R;; + Ris + Ro1+ Roo at the intersection of
the dashed lines is always greater than the value of Ri; + R1s + Ra1 + R at the required

corner point. Details are given in Appendix 6.6. [ ]

Claim 6.22 In the achievable rate region 5% _,,_5, whenever the Ri1 + Ris + Ra1 + 2Rao
bound (6.110) is active and R11 + R15+ Ro, bounds are also active, the corner point where
Ri1 + Ris 4+ Ro1 + Roo bound and Ry + Ry5 + Ro1 bound intersect can be obtained. This

condition is depicted in Figure. 6.13.

Proof: In this condition, the value of Ry + Ri2 + Ro1+ Roo at the intersection of
the dashed lines is always greater than the value of Ry, + Ris + Ro; + Roo at the required

corner point. Details are given in Appendix 6.6. [ ]

Therefore, the R;5 bound (6.37), the Ry; + R bounds (6.43)— (6.46), the Ry + Roo
bounds (6.47)—(6.49), the R;; + R12 + R2 bounds (6.58)—(6.65), the Ri; + R + Rao
bounds (6.66)—(6.71), the Ri3+ Ra1 + Ra bound (6.73), the 2Ry + R+ Ro1 + Roo bounds
(6.87)—(6.88), the R11+2R12+ R21+ Rao bounds (6.89)—(6.101), the Rq1+ Ri2+2Ra1+ Roo
bounds (6.102)—(6.109) and the Ry, + R12+ Ro1 + 2 Rs5 bounds (6.110) and, by symmetry,
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Comer point : always achievable

&

R+ R+ Ry R +R+ Ry + Ry

Figure 6.13 Condition on .Z%_,1_,, for Claim 6.22

theirs corresponding Ro1, Ri1 + Ria, Roy + R, Ri1 + Ris + Ro1, Ri1 + Ri2 + Roo,
Ri1+ Ro1 + Rag, 2Ry1 + Ria + Ry + Roz, Ri1 +2R12+ Ro1 + Rao, Riy+ Ria+2Ra1 + Roo
and Ri1 + Ri2 + Ro1 + 2Ry bounds in the achievable rate region &2, _.5_,1 do not appear in
X= conv{ H 149U F7 45,1} and F is within 2 bits per message to the approximate
capacity region in Theorem 4.1. Next, we first consider the bounds in the achievable rate
region 75 1,5 except the bounds (6.37), (6.43)—(6.49), (6.58)—(6.60), (6.62)—(6.71),
(6.73), (6.87)—(6.110). We claim that

Claim 6.23 The bounds in the achievable rate region F%5_,1_,5 except (6.37), (6.43)—(6.49),
(6.58)—(6.60), (6.62)—(6.71), (6.73), (6.87)—(6.110) satisfy:

o Ry1 bound is within 2 bits to upper bounds when 3 = 1;

e [Ry9 bound is within 2 bits to upper bounds when v = 0;

e Ry bound is within 2 bits to upper bounds when 3 = 0;

® Roo bound is within 2 bits to upper bounds when v = 1;

e Ri1 + Ryo bound is within 3 bits to upper bounds when $ = 1 and v = 0;
o Ry + Roy bound is within 3 bits to upper bounds when f = 0 and v = 1;
o Ry + Rio + Ro1 bound is within 4 bits to upper bounds when v = 0;

e Ri1 + Ry + Ras bound is within 4 bits to upper bounds when 3 = 1;
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o Ry + Ro1 + Ros bound is within 4 bits to upper bounds when v = 1;

e Ris + Roy + Ros bound is within 4 bits to upper bounds when 3 = 0;

e Ry1 + Ris + Ro1 + Roo bound is within 5 bits to upper bounds;

e 2Ri1 + Ris + Ry + Ros bound is within 6 bits to upper bounds when 3 = 1;
o Ri1 + 2R3 + Roy + Roo bound is within 6 bits to upper bounds when v = 0;
o Ry + Ris + 2R + Ros bound is within 6 bits to upper bounds when 3 = 0;
e Ri1 + Ris + Ro1 + 2R99 bound is within 6 bits to upper bounds when ~v = 1.

Proof: See Appendix 6.6. [ ]

6.4 Proof of Theorem 6.3

We will first describe the detail of our proposed strategy and analyze the error proba-

bility.

6.4.1 Description of the Strategy

Codebook Generation: Transmitter i splits its own messages m;; — (Mjic, My;;,) and
my; — (Myic, mjip) for 4,7 € {1,2} and 7 # j. We consider block length- N encoding and
generate codebooks as follows:

Fix a joint distribution

P(Z1c, Ti1ps Ba1ps Tac, Ti2p, Toops Ty B2) = P(210)D(T11p|21) P(221p| T1) P (21| T1c, T11p, To1p)

X P($2c)p(x12p|$2c)p($22p|$2c)p($2|$2c, T12p, ];221))

e First we generate 2V (Fic+Riic) independent common codewords zY (my;., mjs.), mii. €
{1, 2NRic} and my;. € {1,---,2M%<} according to distribution p(z) =

ngl p(zic[n]) with z;.[n] ~ CN(0, Q) for all n.

e For convenience, we combine and rearrange two codeword indices (m;;., m;;.) into
mi. € {1,...,2"%<} where R;. = Ri.+ Rj.. Therefore, we also denote these

independent common codewords with zY (m;.).
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e Then for each common codeword z (m,.) serving as a cloud center, we gener-

2NR o 2NR

i» independent codewords ;) “ }, accord-

ate ”p(mic,miip), mi,-p € {1,
ing to conditional distribution p(z |zY) = TT_; p(zip[n]|zic[n]) with z,[n] ~

1P
CN (0, Qi) for all n.

e Similarly, for each common codeword ¥ (m,.), we generate 2> independent

codewords =¥ (mje, mjip), mji, € {1,...,2"%n} according to conditional distri-

Jip
bution p(z|z) = [T2_, p(@jip[n]|zic[n]) with 255, [n] ~ CA(0, Qy3,) for all n.
e Finally, at transmitter 4, we generate a codeword z” according to conditional distri-

. N
bution p(z;" |z, 2, 233,) = [y p(@i[n]]2ic[n], iy [n], 35ip [ 1))

Note that the configuration of power is Q. + Quip + Qjip = 1.

For receiver 2 serving as relay, a quantization codebook 75 of size| 75| = 2NV is

generated randomly according to marginal distribution p(72’), marginalized over joint dis-

- N N N N N "N, N N N N N
tribution p(yy' , L1, 11, Togs T12)P (U2 [Y2 X1 T11y5 Toes T1zp)s Where

= HP@2[n}|y2[n]75€1c[n]axllp[”]7132c[”]a$12p[n])

n=1

P |92, 1 211y, T2, 21)
The conditional distribution is such that for all n, y3[n] = yo[n| + 22[n], where 25 ~
CN (0, Ay), independent of everything else. Each element in the codebook % is mapped

into {1,...,2" Cgl} with a uniformly generated random mapping

by : 25 — {1,... ,2NC51}, y — by (binning)

5% inde-

For receiver 1 serving as relay, it generates two binning functions bflc) and
pendently according to uniform distributions, such that the message set {1 < m,, < 2V}

is divided into 2¢(1iC)NC?2, for i = 1,2, where 0 < ¢§ic> <1, nglc) + ¢(120) = land

b {1, 2NRe) 1y f1, L 29 VR

. (ic) B
mie > Iis € {1,...,20 NCi2},

Encoding: Transmitter 7 sends out messages (M., Myip) and (my;., my;,) to receiver
1 and 7, respectively, according to its codebooks. For receiver 2 serving as relay, it se-
lects the quantization codeword 44" which is jointly typical with y4" (if there is more than

one, it selects the one with smallest index) and then sends out the bin index l; stand for



107

. After decoding (myc, Mi1,, Mac, Maz,), Teceiver 1 sends out bin indices (157, 13%)

corresponding to binning functions (5", *%).

Decoding at Receiver 1: First of all, upon receiving signal ' and receiver-cooperative
side information ly, it constructs a list of message quadruples (two common messages
and its two own private messages), each element of this list indices a codeword quadruple

that is jointly typical with its received signal from the transmitter-receiver link. Let L(y)

denote a list of candidates as follows:

L(?AN) = {m 3:(m1c, Mi1p, Mac, m12p)|
($1]\£(m1c), ~T1A1[p(mlc, mllp)a xﬁ(mgc), $1]\2[p(m2cy m12p)7 le) € AEN)}

where A" denotes the set of joint e-typical N-sequences [1].
After that, for each element m € L(y)"), it constructs an ambiguity set of quantization
codewords B(m) where each element of this set is jointly typical with the quadruple and

the received signal. B(m) is defined as follows:
B(m):={i' € %|
(LIJ2N7 ﬁlj\i(mlc), zﬁp(mlc, mllp); $2]\£(m2c)7 fgp(mzc, m12p>7 leN) € AEN)}
Finally, it searches through all ambiguity sets and find one that contains a quantization
codeword with the same bin index it received. Declare the transmitted message is m if

there exists an unique 7 such that 333" € B(m) with by(§4') = b;. Otherwise, it declares

an error.

Decoding at receiver 2: After obtaining two bin indices (lg C), lg C)), receiver 2 searches

for an unique message quadruple (., Ma1,, Mac, Magp) such that

(xlj\c[(mlc)7 xQJ\llp(mlcv m21p)7 IQACT(mQC)a x2]\2]p(m207 m22p)7 le) € AEN)

and b§“) (my.) = ll(gc), fori=1, 2. If there is no such unique quadruple, an error is declared.

6.4.2 Error Probability Analysis

Error probability analysis at receiver 1: Without loss of generality, we assume that
all transmitted messages are 1’s. Following the same analysis in [2], we consider the case

where receiver 2 serves as a relay to help receiver 1 decode its own messages.
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At receiver 1, by law of large numbers, the the probability that the actually transmitted
messages 1 := (my. = 1,my1, = 1,my, = 1,myp, = 1) ¢ L(y{") approaches to zero
as N — oo. Furthermore, the probability that B(1) does not contain the actually selected
72V is also negligible when N is sufficiently large. Next, we consider the following error

events:

1. First, no quantization codeword is jointly typical with the received signal. From the
known result of source coding, this probability approaches to zero as N — oo if

Ry > (%05 12).

2. Second, there exists m # 1 which is in both the candidate list L (7{") and the ambigu-
ity set B(m) contains some quantization codeword ¢4’ with bin index by (2") = k.

This event can divide into two cases:

(a) 94 € B(m) is not the truly selected quantization codeword.

(b) ¥ € B(m) is indeed the selected quantization codeword.

Next, we analyze the error probability of these two typical error events above. For any

nonempty S C {lc, 11p,2¢, 12p}, we define error events as follows:

o Let Eél) denote the event that there exists some m # 1, (where m, # 1,Vs € S
and m, = 1,Vs ¢ S), such that m € L(y{') and B(m) contains some ' (k), k €
{1,2,---,2¥%2} with by (92 (k)) = k. Note that § (k) is not the actually selected

quantization codeword 72’ (1).

o Let Eéz) denote the event that there exists some m # 1, (where m, # 1,Vs € S and

ms = 1,Vs ¢ §), such that m € L(y{") and B(m) contains 7' (1).

Probability of Eél): For convenience, let ¥ (m) denote the vector of codewords corre-

sponding to message m, i.e., (z{%(mac), 2}, (Mic, mi1p), 230 (Mac), 2y, (Mac, Maay)). The

)

probability of the error event Eél can upper bound as (6.114).

Pr{E{"}
< > > Pr{me L(y"), ' (k) € B(m), b(§' (k) = br}
g
< Y0 Y T Pe{(B' (k) 2V (m), 1) € AN, b(i" (k) = I}
m:ms#1, k#1
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@) 5-nNCE, Z ZPr{(@QN(/{),xN(m),yfv)EAEN)}

m:mg#1, k#1
VseS

< 9 (Zees B:) 9N S Py (3 (), 5 (m), ) € AN} (6.113)
k£1

< 2V(Sees 1) 9N pr{my € L(y)} - 2V g VU mmem o)) (6.114)

where (a) is due to the independent uniform binning. In (6.113), for k& # 1, @2N (k) is inde-
pendent of (2" (m),y{"). We can upper bound 3=, ., Pr{ (7, (k),z" (m),y) € AN

by using Theorem 15.2.2 in [1] and derive with the same line of Appendix A in [2]. There-

fore, we obtain (6.114).

From the results in the works [11] and [13], we obtain

Pr{m € L(y")} <

¢
2—N(1(w11p§y1 |Z1c,22¢,212p ) —€)

9= N(I(z12p3y1]210,22¢,011p) —€')
2—N(I(:c1¢,:c11p;y1 [22¢,712p) —€)
9= N(I(22¢,712p391|21¢,711p) —€')
9=N(I(z1c,211p;91|220,212p) —€")
9= NI (z2c,712p591]T1csT11p) —€")
2—N([(z1mx11p,xzc,ﬂﬁup;yl)—f')
9= N(I(z11p,712p391 |T1c,720) =€)
9= NI (z11p,32¢0,212p3Y1|T1c) —€")
2—N(I($167x11p7x12p§y1 |z2c)—€")
2—N(I(xlc,xl1p,120,9612p;y1)*6/)
2—N(I($1¢,$11p,$2c,5512p§y1)—6/)
=N (@11p,72¢,812p391 |z1c)—€)
=N (z1c,311p,212p391 |z2¢)—€")

2—N(I(w1c,$11p,$2c,$512p;y1)—6')

\

S ={11p}

S ={12p}

S ={lc}

S = {2¢}

S ={lc,11p}
S = {2¢,12p}
S = {1¢,2¢}
S = {11p,12p}
S ={2¢,11p}
S ={lc,12p}

S ={le,11p,2c}
S ={le,2¢c,12p}
S ={l11p,2¢,12p}
S ={lc,11p,12p}

S ={le,11p,2¢,12p}

where ¢ = 4e. Note that it is alike in the X channel without cooperation as in [11]

and [13], that is, receiver 1 can decode both m;. and my. correctly.
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Therefore, after eliminating the redundant terms, the probability of the first kind of

error event vanishes as N — oo if the rates satisfy the following inequalities:

Rllp < [(xllpa yl‘xlca L2cy L12p
Riop < I(212p; v1|T1c, T2, T11p) + 0

Ric + Rip < I(mie, 211p; Yi|T2c, Tr2p) +

>\.

Ri1p + Rigp < I(211p, T12p; V1| T1c, 220) +

»\‘

Ric+ Riip + Rigp <

)+
)
)
Rye + Rigp < I(T2c, Trop; Y1|T1e, T11p) + ¢
)
(Z1es Tr1p, Ti2p: Y1|T2e) +
)

Rac + Ritp + Rizp < I(@11p, Tac, Trop; Y1|21c) + 0

Ric+ Ri1p + Roc + Riop < I(Z1c, T11p, Tocs Trzp; th) +

__ B 7 A
where ¢ = C5| — Ry + I (ih; Tic, Tr1p, Bac, Ti2p, Y1)

Furthermore, Pr{Eél)} can be alternately upper bounded as follows:

Pr{E"}
< > Pr{me Ly")} Pr{3k £ 1L, (k) € B(m), b(i' (k) = b|m € L(y")}
B
< Nses BIprim e L(yM)} (6.115)

Hence, the probability of the first kind of error event disappears as N — 0 if the rates

satisfy the following inequalities:

Rllp

. +
Ti1p; Y1 |Tre, Bae, Tr2p) + U

R12p

IN

I

. +
T12p; Y1|T1cy Bae, T11p) +

Ric+ Ry <1

IN

. +
Tic, T11p; Y1|Tac, Tip) + U

Roe + Rigp < 1

IN

Ri1p + Riagp

IN
~

Ric+ Rip + Rigp

| /\

)

)

)

Bacs Tiap; Y1 |1, Ti1p) + 7T

)

e, T11p, T12p} Y1|Tac) + U7
)

Roc + Rip + Rigp

| /\

I(
(
(
(
(T11p, Trop; V1| T1e, T2e) + 7T
I
I(211p, T2, T12p; Y1]01c) + 7T
I(

Ric+ Riip + Roe + Rigp

| /\

. +
Tic, Biip, Toc, Tr2p; Y1) + U
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Finally, substituting Ry=1 (92; y2) and using the Markov relation (21, Z11p, T2, T12p, Y1) —

Y2 — U2, we have the rate loss term as follows:

Ry — [(92; Ticy T11ps P2cy L12p, yl)

§1:

I(92; y2) — L(W0; Trc, T11p, T2y Tr2p, Y1)
e

; y2|$1c, T11p, B2¢y T12p5 1/1)

Probability of Eg): We can upper bound the probability of Eg) as follows:

>

Pr{E{} < Pr{§(1) € B(m), m € L(y")}

mims#£1,Vs€S
= > Pr{(@'(1),2"(m), y") € A}
mims£1,Ys€S
(6. 9~ N inloiczemizg)—¢) g — {11p}
© . 2~ NU(mzpsy1,delerc,m20,110) =€) G — {12p}
Q . 9~ NU(we.mipiyyiolne,mzp)—¢) G {1c}
© . 2~ N (m2c,m2p3y1,82]710,211p) =€) § — {2¢}
© - 2~ NU(memnpninlazemn) =) g = f1c 11p}
© . 2~ N (m2c,m12p591,02|710,7110)—€) G — {2¢,12p}
© . 9~ NU(z1e,@11p,020,812p591,82)—€¢) G — {1e,2¢}
< @ 2 NU@upmyielnend =) ¢ = {11p 12p}
O . 9~ NU(211p,220,212p391, 92| 710)—€') G — {2¢,11p}
O . 2~ NU(z1e,@11p,m2p;91 02 220)—€¢) G — {1c,12p}
O - 2~ NU@empmempiynie) =€) ¢ — f1¢ 11p, 2¢}
© - 2~ NU@mempmemapiyri) =) 6 = {1¢ 2¢,12p}
© - 2 NU @ aemzpinielond)—¢) ¢ = f11p 2¢,12p}
© . 2~ NU(@eapmapinieled <) ¢ = {1 11p, 12p}
Gl 9~ NU(mempmemypuniz)—) g = f1c 11p,2¢,12p}

where © = 2V(ses5 B9) and ¢ = 4e.
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After eliminating the redundant terms, therefore, the probability of the second kind of

error event vanishes for sufficiently large N if the rates satisfy the following inequalities:

Ry, <1

Ti1p; Y1, y2|$107 L2cy T12p

Riop <1

Ti2p; Y1, y2|{L‘10; Loc, T11p

Ric + Rinp < I(mic, Taps v1, P2l B2c, 212p

Roc + Rigp < 1

Ri1p + Rizp < I(211p, Tr2p; 1, | Tic, 22c

Ric+ Rip + Rigp < 1

)
)
)
Lacy T12p5 Y15 @2’I107 $11p)
)
Tic; T11p; T12p5 Y1, @2|$2c)

)

Roc + Ritp + Rizp < I(211p, Tac, T12p; Y1, o] T1c

(
(
(
(
(
(
(
(

Ric+ Ri1p + Roc + Rioy < I(21c, T11p, Tocs Trzp; Yr, o)

Error Probability Analysis of Receiver 2: After receiving the two bin indices, receiver
2 can decode (my., Ma1p, Mac, Mag,) With the smaller candidate message sets, i.e., m;, and
my, . Following the same line as [2], we obtain the rate region that is achievable for receiver

2 to decode successfully as follows:

I/\

R21p <$21p§ 1/2’551c, Loc, 51?22p)

Rasp < I(%22p5 42| %1c, Zac, T21p)

Ric+ Roip < I(Z1c, 21p; Y| T2, T22p) +

Roe 4+ Roop < (e, T2y Y| T2c, 221p) +

Ro1p + Ragp < 1(221p, Ta2p; Yo|T1c, T2c)
Ri.+ Rop + Ragy < 110, To1p, Ty Yo| 12e) + CB,

Ry. + Ro1p + Rasp < (e, To1p, Toap; Yo|71c) + CT
I(

Ric + Ro1p + Rae + Ragy Tic, B21p, Tac, Tazp; Yo) + Cle

Note that the upper bounds for Ry, 222, and Ry, + Ray, in the rate region above do

not gain from receiver cooperation since receiver 1 does not decode the private messages

M21p, M22p.
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6.5 Proof of Theorem 6.8

Codebook Generation: In transmitter i, a message my; is split into m;. and m;;, and
a message my; is considered as a common message mj.. We consider block length-N

encoding and generate codebooks as follows:

e First we generate 2V (Fic+Riic) independent common codewords z (my;., mji.), mii. €
{1,---,2NRic} and my;. € {1,---,2M%<}, according to distribution p(z) =

ngl p<xzc[n]) with xzc[n] ~ CN(O, ch) for all n.

e For convenience, we combine and rearrange two codeword indices (1m;;., my;.) into
mi € {1,...,2"%} where R;. = Ri.+ Rj.. Therefore, we also denote these

independent common codewords with 2 (m;.).

e Finally, for each common codeword ;¥ (m;.) serving as a cloud center, we gener-

NR. NR;;
2 .., 2VRup

ate i independent codewords =¥ (m,., miy), mi, € {1,. }, according
to conditional distribution p(zN|zY) = []_, p(z:[n]|z:[n]) such that for all n,
z;[n] = mic[n] + @ip[n], with z,[n] ~ CN (0, Qi) and independent of everything

else.

The power split configuration is such that Q. + Q;;, = 1 and INRij = Qiplhiy|> < 1
if SNR; > INR;. Using a simple power-splitting configuration from [9], we set the power
of each private codeword by Q;;, = min{ ﬁ, 1}.

The details for generating codebook when receiver 1 and 2 serve as relay, encoding and
decoding at receiver 1 and 2 and analyzing the error probability at receiver 1 and 2 are the

same as the proof of Lemma 5.1 in [2], they are thus omitted here.
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6.6 Proof of Claim 6.13, Claim 6.14, Claim 6.15, Claim 6.16, Claim
6.17, Claim 6.18, Claim 6.19, Claim 6.20, Claim 6.21, Claim 6.22
and Claim 6.23

6.6.1 Proof of Claim 6.13

Proof: There are three possible R, + Ro; + Rso bounds. Hence, we consider the
following three cases:

1) If the bound

Ri1 + Ro1 + Roo < I(m; y1|®e, 2ae) + 1210, 22 42) + C?Q — Riac

is active. The point R, + R}, + R3, + R;, where the Ry; + R + Ra2 bound and the Ry
bound (6.37) intersect satisfies

Ry, + Riy + Ry + Ry = S (21 yi|@ie, 20c) + L(21c, 225 42) + ClBg — R12c}

_|_

[ 352(:, Y1, 312‘951 R22c}

I (1 yl‘xlcax%)+[($lcax27y2>+c }

+ {—7 (22¢; Y1, Tol21) — Rige — R22c}
= (6.80)
which is greater than the active sum rate bound. Note that {I(2s.; y1, io|21) — Ri2e —

Rasc} > 0 refers to (6.37).
2) If the bound

Ri1 4 Ror + Roo < I(m1, 2205 w1, U2) + I(22; vo|@ic, 220) — Rige

is active. The point R}, + R}, + R, + R5, where the 1 + R + R bound and the Ry

bound (6.37) intersect satisfies

Ry, + Riy + Ry + Ry = S (21, 2205 w1, B2) + 1(22; Yol @i, 220) — Rlzc}

+

{] $2cyy1,3/2’$1 RZZC}
{] Ty, Toe; Yi, o) + 1 (123 9| w1 56’2c)}
+ {] Tac; Y1, Yol21) — Rige — R22c}

= (6.82)
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which is greater than the active sum rate bound. Note that {I(2s.; y1, io|21) — Ri2e —
Ros.} > 0 refers to (6.37).
3) If the bound

Riy + Ryt + Rog < I(m1; 11| %1e; T2e) + I (tae; y1, Bo| @) + 1(21e, 23 92| 20e) + C5) — Rige

is active. The point R;; + R}, + R3, + R;, where the Ry, + Ro; + Rye bound and the Ry
bound (6.37) intersect satisfies

. . . . Iz yi|2ie, mc) + 1 (@20; 41, Bo|21) + 1 (210, 225 Y2720
Rn + R12 + R21 + R22 = B
+C12 - RIQC
+ {](l“zc; Y1, Jolm) — R22c}
= (@ yi|2ie, 2e) + L(@e; s Bol 1) + 1(@1e, 223 9] 22e) + C182}
+ 9 I (w2c; 1, Yo|m) — Rioe — Rmc}
= (6.86)
which is greater than the active sum rate bound. Note that {I(2.; y1, %|21) — Ri2ec —
Rao.} > 0 refers to (6.37).

Therefore, we conclude that the corner point where the Ry, + Ris + Ro; + Rae bound

and the R;; + R2; + R2o bound intersect can be acquired.

6.6.2 Proof of Claim 6.14

Proof: In this proof, we consider only (6.43) and other bounds can be shown similarly.
There are three possible Ry + R2 bounds. Hence, we consider the following three cases:

1) If the bound
Ror + Rao < I(21c, 225 1) + ClBg — Ry — Rige

is active. The point R, + R}, + R3, + R;, where the Ry; + Rao bound and the Ry; + Rio

bound (6.43) intersect satisfies

(@ yi|2ie, 22c) + I(22e; tn|21) + 1( 2105 Y| 22)
+(CB — &))" +CB, — Roye — Roae

+ {](xlm T2 ) + C?g — Ry — Rl2c}

R>1k1 + Rik2 + R>2kl + R;2 =
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= {[(1}17 y1’$1c> ch) + [(xlca Ta; yQ) + Cle}
{(zae; 1 |21) + (CQBl — &) — Rige — Ryoc}
H{I(z1c; 12| 22) + ClBQ — Ry1c — Ro1c}

— (6.80)

which is greater than the active sum rate bound. Note that {I(zy.; 11 |71) + (C5, — &) —
Rch — Rggc} 2 0 and {[(iElC, y2|$2) + C?Q — Rllc — RQlc} Z 0 refer to (636) and (638),
respectively.

2) If the bound
Ro1 + Rog < I(@ac; y1, U2|m1) + I(225 yo|T1c, 22c) + I(21e; yo|2) + Cle — Ri1c — Rige

is active. The point R}, + R}, + 5, + R5, where the Ry + [ao bound and the Ry 4+ Rio

bound (6.43) intersect satisfies

i X i i Iz y1|Tie, 220) + (2205 th|21) + (2105 Y| 22)
Rn + R12 + R21 + R22 - B fy B
(C21 - 51) C12 - RQlc - RZZC

I(me; ths Bo|1) + 1(22; Yol 21e, T2e) + (213 Yo| 12) + C12
_Rllc RlZc

+1(21c; Yol 22) + C12

B _ + .
2
{I L2c5 yl|371 (C 1 fl) Riac R22c}

B { I(z; i |me, 2oc) + L(20; 1, Bolan) + I(22; yo|2re, 22c)
{ +{I xlc; y2|$2) + C12 Rllc - RQlc}

> (6.86)

which is greater than the active sum rate bound. Note that {I(zy.; y1]21) + (C5, — &)* —
Rise — Rose} > 0and {I(z1.; 42|22) + CB — Ryye — Ra1.} > 0 refer to (6.36) and (6.38),
respectively.

3) If the bound
Ro1 + Roy < I(me; 1, o|m1) + 1(1e, 125 42| 22e) + C5, — Rite — Riae

is active. The point R, + R}, + R3, + R;, where the Ry; + Rao bound and the Ry + Rio
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bound (6.43) intersect satisfies

I(z; y1|Tie, 2oc) + I (T2e; Y1 |21) + 1(Z1c; Y2 |22
T L | )+ 1o ) + (e el)
+(C8 — &))" + C¥, — Ryre — Rooe
+ {] (@ae; Y1y Po|21) + 1(Z1c, T2; Yol @) + C12 Riic — R12c}
I(z1; | 21e, 22c) + 1320 115 Bo|mn) + (@1, 225 Yo |22c) + Clg}

{I(z2e; 3n]21) + (C8, — &) — Rize — Rooc}
+{I(21¢; v2|m2) + CB, — Ri1e — Rorc}

= (6.86)

which is greater than the active sum rate bound. Note that {(zy.; y1]21) + (C5, — &)* —
Rise — Rose} > 0and {I(z1.; 42|22) + CB — Ry — Ro1.} > O refer to (6.36) and (6.38),
respectively.

Therefore, we conclude that the corner point where the R1; + Ris + Ro; + Roo bound

and the Ry, + Rs2 bound intersect can be acquired.

6.6.3 Proof of Claim 6.15

Proof: In this proof, we consider only (6.47) and other bounds can be shown similarly.
There are four possible Ry, + R;> bounds. Hence, we consider the following four cases:

1) If the bound
Ry + Rip < I(w1, 300, y1) + (C5, — €)% — Roye — Rooe

is active. The point R}, + R}, + R;, + R3, where the Ry; + Rj5 bound and the Ro; + Roo

bound (6.47) intersect satisfies

Riy + Riy + Ry + Ry, = {I(Uﬂlc; yolaz) + 1 (2; ol are) + 2CFy — Rure — Rch}
{1(3717 Tae; 1) + (C51 — &) — Rare — R220}
= {2 0) + (C — &) — Rane |
{](952; yo|11e) + Cry — Rmc}
{](xlc; Y| 12) + Cfy — Rure — Rmc}

— (6.50) + (6.39)
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which is greater than the active sum rate bound. Note that {7 (z1; yo|2) + C8, — Ry —
R0} > 0 refers to (6.38).
2) If the bound

Rii + Rio < I(m, 2263 Y1, U2) — Ro1c — Raae

is active. The point R}, + R}, + R, + R5, where the R, + 12 bound and the Ry; 4+ Roo
bound (6.47) intersect satisfies
Ry + Riy + Ry + B3y = {]($1c; yala2) + I(mp; ya|mne) +2CF, — Rige — Rch}
+ {[ 1, Baes Y1, Po) — Rare — R22c}
= ¢ L2, 3265 41, B2) — Rmc} + {](952; yolare) + CFy — R12c}
+ 9 I (31c; y2l22) + C — Rure — R2lc}
= (6.51) + (6.39)
which is greater than the active sum rate bound. Note that {7 (z1.; yo|2) + C8, — Ry —

Ry} > 0O refers to (6.38).
3) If the bound

Riy + Ria < I(@ac; yi|m) + I (215 w1 |22e) + (C281 — &))" — Roie — Roac

is active. The point R, + R}, + R3, + R;, where the Ry; + Rj5 bound and the Ry + Roo

bound (6.47) intersect satisfies

Ry, + Riy + Ry + R3y = {I(Im Yo|m2) + I(225 Y| 21c) + 2C182 — Ry — R12c}

+

{[(JSQc; yi|m1) 4 (215 1] 720) + (C) — &1)T — Roe — R22c}
= { 1@l + Ians plan) + (G5 = €0)F = Fone
)
)

I(z2; yo|me) + C1BQ - R12c}

+{ (
+ {[(«Tlc; Yolm) + Cle — Ri1c — R2lc}
= (6.52) + (6.39)

which is greater than the active sum rate bound. Note that {1 (z1; ya|22) + ClB2 — Ri1. —

Ro1.} > 0 refers to (6.38).
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4) If the bound
Ri1 + Rio < I(@20; 11, Bo|z1) + (215 v1|22c) — Ro1e — Raae

is active. The point R}, + R}, + R, + R3, where the R;; + Rj5 bound and the Ry + Roo

bound (6.47) intersect satisfies

Riy + Riy + Ry + Ri = { (@163 98la2) + 1(2a3 galone) + 2C8 — Ruse — Riae }
+ {](5520; Y1, olm1) + (215 91| 72e) — Rare — R22c}
= {I(ZE%; Y1, U2l @) + I(20; yi|22c) — R22c}
+ {]($2§ yolaie) + Cy — Rmc}
+ {]($1c3 Yolz2) + CF, — Rige — RZlc}

which is greater than the active sum rate bound. Note that {(z1.; y2|22) + C8, — Ry —
Ro1.} > 0 refers to (6.38).
Therefore, we conclude that the corner point where the Ry, + Ri5 + Ro; + R bound

and the R;; + R;» bound intersect can be acquired.

6.6.4 Proof of Claim 6.16

Proof: In this proof, we consider only (6.58) and other bounds can be shown similarly.
For the first condition, there are three possible Ri; + R12 + 221 + Roo bounds. Hence, we
consider the following three cases:

1) If the bound
Ri1 + Ria + 2Ryt + Roo < 1215 1| 22c) + L (216, 225 12) + Cle — Ri1c

is active. The point R}, + R}, + 5, + R3, where the Ry + i3 + 2Ry + Rys bound and
the Ri; + R12 + Ro bound (6.58) intersect satisfies
2R}y + 2R, + 2R, + 285, = {1 i) + I(mne, 703 ) + C — R}

(e, 21 1 |T1e) + 1(210, 22; ol m2e) + (C8 — &) F
—i—C% — Royc
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I(@ac, 203 Y1 |21c) 4 1 (21c, 15 4| 720) + (C5) — &)
+C5,
+ {[(ﬁl; Y| 72e) — RQlc} + {](5171@, m;4e) + Chy — Rllc}
= (6.78) + (6.34) + (6.72)
which is greater than twice the active sum rate bound.

2) If the bound

L(m; ] mae) + L(mae; 11, Golma) + 1 (21c, 225 9ol ) + CHy
_Rllc
is active. The point R}, + R}, + R5, + R3, where the Ry + Ri2 + 2Rs1 + Ras bound and

Riy + Ria + 2Ry + Rop <

the R11 + Ri2 + Ry bound (6.58) intersect satisfies

Iz yilmae) + I(@ae; vr, Golon) + 1(21e, 225 yo|22c)

+C182 - Rllc

C RQlc

I(%e, 215 1 |T1e) + L(T1e, 225 yo|12e) + (C5 — &) F

{I(@m 215 Y1 |T1e) + 1(Tre, 223 1o |20e) + (C8 — &)

+C&,
{[ 15 Y1 | Tae) — RQlc}
{[ Boei Y1, Jelon) + 1 (w1e, 25 o] m20) + CT) — Rllc}
= (6.78) + (6.34) + (6.77)

which is greater than twice the active sum rate bound.

3) If the bound

I(1, Tac; 91, Bo) + 1 (225 92| 01c, D2e) + I(21c; yal22) + CFy
_Rllc
is active. The point R}, + R;, + R3, + R, where the Ry; + Ry2 + 2R2; + R bound and

Ri1+ Ris +2R9; + Ry <

the Ri1 + Ri2 + Ra bound (6.58) intersect satisfies

I(z1, 22c; 11, ) + 1(22; Yol Trc, 22e) + (2165 Yo|22)

+C?2 - Rllc

I(ze, 215 | 21e) + I(@1e, 225 Yol 20e) + (CQB1 — &)t
+CIB2 - RQIC
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{ 1’2c,$1,yl|$1c)+[($1c>1?2 y2\$2c) (CgBl _51)+
{[ Ty, ey Ui, Yo) + 1 (225 |21, 220) — R21c}

= (6.78) + (6.61) + (6.38)

I(z1c; yo|22) +C12 Rllc}

which is greater than twice the active sum rate bound.
Therefore, in the first condition, we conclude that the corner point where the Ry, +
Ris + Ro1 + Ry bound and the Ry, + Ri2 + 2R2; + Roo bound intersect can be achieved.
For the second condition, there is one possible Ry, bound. Hence, we consider the
following case:

If the bound
Roy < I(m1¢5 12| 12) + ClB2 — Ri1c

is active. The point R}, + R;, + R, + R, where the Ry, bound and the Ry + Ri2 + Roo

bound (6.58) intersect satisfies

. . . . (e, 205 3 |216) + I(21e, 225 yo|220) + (C5, — &) T+ C
Rn + R12 + R21 + R22 =

_R21c
+{] Tic; Yo|22) +C12 Rllc}
B + B
{[ Tae, 215 Y1|T1e) + L (1, 225 12| 220) + (C5 — &1) +C12}
+{f Tyc; Yo|22) +C12 Rllc_RQIC}

= (6.78)

which is greater than the active sum rate bound. Note that {(z.; y2|22) + C5, — Ryy. —
Ro1.} > 0 refers to (6.38).
Therefore, in the second condition, we conclude that the corner point where the R;; +

Ris + Ro1 + Ry bound and the Rs; bound intersect can be achieved.

6.6.5 Proof of Claim 6.17

Proof: In this proof, we consider only (6.66) and other bounds can be shown similarly.
For the first condition, there is one possible Ry; + 2R3 + Ro1 + Ro bound. Hence, we

consider the following case:
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If the bound
Riy 4 2Ri9 + Roy + Ry < Iy, mo0; 11) + I(m2; yo|m1e) + (C5, — &) 4 CB, — R,

is active. The point R}, + R;, + R;, + R3, where the Ry + 2R12 + Ry + Rss bound and
the Ri; + Ry + Ro bound (6.66) intersect satisfies

I(z1, 265 31) + (225 o|1e) + (C — &)1 + CR,
_RQZC

]<x20a X1 91’371(;) + ](xlm T2 y2|x2c) (C281 - 51)_‘—

5
s

](@caxbyllxlc)+[(x107$27y2’x2c) (C281 _51)+

[ L1y B2¢; ?/1 ( 51) — Raa.
{ )
4

= (6.78) + (6.50) + (6.39)

I(z2;5 yo|21c) +C12 R12c}

which is greater than twice the active sum rate bound.
Therefore, in the first condition, we conclude that the corner point where the R;; +
Ris + Ro1 + Roo bound and the Rq1 + 2R15 + Ro1 + Roo bound intersect can be achieved.
For the second condition, there is one possible R, bound. Hence, we consider the
following case:

If the bound
Riy < I(mae;mi|m) + (C5, — &) — Roae

is active. The point R, + R}, + R3, + R;, where the R15 bound and the R;; + Ro1 + Roao

bound (6.66) intersect satisfies

I(@e, o5 | 2ie) + I(@e, 225 Yo|22c) + (CzB1 - &)+ C1BQ
_R12c

Rﬁ + Rikz + R;1 + RSQ -

+ {[($2c; yilm) + (C5 — &) — R22c}
= {[(me z; | 21e) + I(@e, 225 Yol 22c) + (C281 - f1)+ + ClBQ}
+ {](xzc; yilm) + (C281 — &) — Ry — R2zc}

— (6.78)
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which is greater than the active sum rate bound. Note that {1 (zy.; y1]21) + (C5, — &)F —
Risc — Rooc} > 0 refers to (6.36).
Therefore, in the second condition, we conclude that the corner point where the R;; +

Ris + Rs1 + Ra9 bound and the R;s bound intersect can be achieved.

6.6.6 Proof of Claim 6.18

Proof: For the first condition, there are two possible 2R;; + R15 + Ro1 + R22 bounds.
Hence, we consider the following two cases:

1) If the bound

I(z; i |@e, 22c) + 1(21e, 225 Yo |220) + (21, 2265 1)
+(C8 — &)+ CB, — R

2R11 + Ris + Ro1 + Ros <

is active. The point R}, + R}, + R5, + R3, where the 2R;; + R12 + Ra1 + Ra2 bound and
the Ris + Ro1 + Ras bound (6.73) intersect satisfies

2Rik1 + 2RT2 + 2R o1 T 2R22 = [(fﬁlc, ?/2|552) + I(l’za ?/2|551c) + 2C12 Rllc}

I(z; | 2ie, 22c) + I(T1e, 223 Yo|22e) + L(21, 2203 Y1)
(CzBl 51) + C12 R21c

[(1’1, T2c;s yl) + [($1c> T2, y2\$2c) (CQB1 - 61)+
C Rllc RQlc

+ 3 L2105 | 2) + (223 Yo | T1c) + C12} + C
> (6.78) + (6.80)

which is greater than twice the active sum rate bound.

2) If the bound

I(@; y1| @1, @ae) + 1(Z1e, 223 Yol 22e) + L(21, 22c; Y1, )
+C8 — Ry

2R + Rig + Rop + Rop <

is active. The point R}, + R}, + R;, + R}, where the 2R;; + R12 + Ra1 + Ra3 bound and
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the R + o1 + Rae bound (6.73) intersect satisfies

2Ry, + 2Ry + 2Ry + 2R5, = {I(xlcé Yo|m2) + (125 9| m1c) + QC% - Rllc}
I(z15 91210, Dae) + 1 (T1c, T3 Yo22c)
+1(21, Bac; Y1, 92) + CF — Rane
— {f(rvls Y1 Tre, Bac) + 1(@1cs yol22) + 1 (225 Yo|210) + Cle}
+ {I(l’lc, To; Yo|Tac) + 1(T1, Dac; Y1, Uo) — Rune — RQlc}
+2C%,

> (6.80) + (6.82)

which is greater than twice the active sum rate bound.
Therefore, in the first condition, we conclude that the corner point where the Ry, +
Ris + Rs1 + Ros bound and the 2R1; + Ris + Ro1 + Roe bound intersect can be achieved.
For the second condition, there are two possible R;; bounds. Hence, we consider the

following two cases:

1) If the bound
Ry < I(21; 41| 720) — Roxe

is active. The point R}, + R}, + R, + R3, where the R;; bound and the Ry5 + Ra1 + Roo

bound (6.73) intersect satisfies

Riy + Riy+ Ry + Ry = L300 o)1) + T ]ne) + 2CB, — RHC}

$17 y1|332c R21c}

/_/h\f_'\ﬂf_/h\f—M

I(m; yo|m1e) + 1 (215 y1|20e) + Cho}
I(z1c; yo|m) + C12 Ryie — R2lc}

(6.80)

which is greater than the active sum rate bound. Note that { I (z1; y|72)+C8—Ri1.— Ro1c}
refers to (6.38).
2) If the bound

Riy < I(x1; yi|wie, 22c) + 12105 | 22) + C?g — Ropc
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is active. The point R, + R}, + R3, + R;, where the Ry; bound and the R;5 + Ro1 + Roao

bound (6.73) intersect satisfies
Riy + Riy + Ry + Ry = {[(l"m Yo|m2) + 1 (25 2| m1.) + 2C182 - Rllc}

+ 3 L (0; 01| T1e, Boe) + 1 (2105 ya|22) + CB, — R21c}

_|_

{[ Tie; Yo|22) + 1(m2; Yol 1) + 1( @05 Y1 |T1c, T2c) + C1Bz}

I(z1c; 2| 22) + C12 — Ri1e — RQlc} + C12

v

(6.80)

which is greater than the active sum rate bound. Note that {1 (z;¢; y2|72)+C8 — Ry — Rop. }
refers to (6.38).
Therefore, in the second condition, we conclude that the corner point where the R;; +

Ris + Ro1 + Roy bound and the R;; bound intersect can be achieved.

6.6.7 Proof of Claim 6.19

Proof: This proof considers only (6.87) and the other can be shown similarly. Since
there are five possible Ry5 + R21 + Roo bounds. Hence, we consider the following five

cases:

1) If the bound
Ry + Ro1 + Rog < I(w1e, 13 42) + C3 — Rute

is active. The point R}, + R}, + 5, + R3, where the Rj5 + Ry + Rye bound and the
2R11 + Ri3 + Ro; + Rao bound (6.87) intersect satisfies

I(zs i |me, 22c) + L(220, 15 1| 21e) + (2165 Y2|22)

+I(l"1c, x23 y2|352c) + (CzB1 - §1>+ + 2C182 — Roie
+ {[ $1ca$2792 +C12 Rllc}

{ 932c,I1,y1|fE1c)+I(I1c,$27y2|$2c) (C§1—fl)+

{] (15 01| Z1es 220) + 1(T1c, 225 12) + Clz}
{[ (2165 Yo|22) + C12 Riie — Rzlc}

= (6.78) + (6.80)
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which is greater than twice the active sum rate bound. Note that {/(z;.; y2|22) + C§, —
Ri1. — Ra1.} > 0 refers to (6.38).
2) If the bound

(o5 y1|m) + I(22; Yo| Tic, 2oc) + 1 (@1e; Yo|22) + <C281 — &))"
+C152 - Rllc

Ria 4 Rop + Rag <

is active. The point R}, + R}, + R5, + Rj, where the Rj5 + Ro; + Rye bound and the
2R11 + Ris + Ro1 + Ros bound (6.87) intersect satisfies

I(@; yi|2ie, 22c) + 1(22e, 215 th|210) + 1(21c5 Yo|22)

2R>1k1 + 2RT2 + 2R;1 + 2R;2 — B
+[($1C7 To; Z/z‘ﬂbc) =+ <C281 - fl)+ + 2C12 — Roic

I(@oe; yi|m) + 1(22; o] 21, 220) + 1(21c; Yo]22)

{ ( 51) + C12 - Rllc
[(5152c, 5 y1‘$lc) + [(ib‘lc, T, 1/2’352(:) (CzBl - 51)+
+C

+11 $1791’$1c,$2c)+](331c,92|152)+C12 R2lc}

I(@e; y1|x1 )+ L(22; Yo|T1c, 22c) + 1 (2165 Yo|22)
+ C12 R]_]_c

= (6.78) + (6.35) + (6.74)

which is greater than twice the active sum rate bound.

3) If the bound
Ris + Roy + Roo < I(mac; y1, ol m1) + 1(22; o] 21, 22c) + 1 (21c; Y2|22) + C?g — Ri1c

is active. The point R}, + Rj, + R3, + R3, where the Ry5 + R + Rao bound and the
2R11 + Ri2 + Ro1 + Ro bound (6.87) intersect satisfies

I(20; 91| T, 220) + 1 (@ae, 215 11| 21e) + 1 (2165 Y| 22)

2R>f1 + 2Ri‘2 + 2R 51 + 2]%22 = 5
+[(l“1c, T2, Z/z\xzc) + (CQB1 - 51)+ + 2C12 — Roc

I(zac; 1, Yol 1) + (225 yo|21c, 22c) + 1(21c; Y| 22)
+C8 — Riic
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{ x20>xlayl‘xlc) +[($1C7$2>y2|$2c) (C281 _51)+
+ < I(z; | Tie, 2oe) + I(21e; Yol 22) + C12 R2lc}

(@205 41, Dol 21) + 1(22; | 21c, T2c) + (210 Y] 22)
Rllc

= (6.78) + (6.35) + (6.75)

which is greater than twice the active sum rate bound.

4) If the bound

Ris + Ro1 + Roo < I(mae; 1| 21) + 1(21c, 25 Y2| T20) + (C% &)+ Cle — Riic

is active. The point R}, + R}, + R5, + R3, where the Rj5 + Ro; + Rse bound and the
2R11 + Ri3 + Ro1 + Roo bound (6.87) intersect satisfies

I(@s y, |2es 32e) + 1(220, 215 Y1 | T1e) + 1(21c; Y2 12)

2R}, + 2R}y + 2R3, + 2R5, =
+1(21c, 223 Yo|220) + (Cz'?l — &)t + 2Cle — Rorc

H(wae; yi|0) + 1 (@1e, 223 y2]m2e) + (C5) — &) T + CR,

Iz yi| e, 22c) + I(21e; yo|2) + C% — R2lc}

I(@ae; ni|m1) + I(21c, 225 Y| 22e) + (C5, — &) T

- {[(fzm v | m1e) + (e, 223 yolaoe) + (C5) — &) + CF

— (6.78) + (6.35) + (6.76)

which is greater than twice the active sum rate bound.

5) If the bound
Ria + Ro1 + Roo < I(m20; 41, | 1) + (@1, 22; Yol 22c) + C?z — Riic

is active. The point R}, + Rj, + R3, + R3, where the B3 + Ro; + Rao bound and the
2R11 + R + Ro1 + Ro bound (6.87) intersect satisfies
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I(@; yi|2ie, 22c) + I(2ae, 215 1 |210) + 1 (21c; yo|22)

1 (21, 725 Yol 0ae) + (C5y — &) + 2CF, — Rope
+ {[ x?ca U, y2|fl§'1 + ](:Ulca R 3/2|$2c) + C12 - Rllc}

332c, Iy, y1|I1c) + f(ﬁlc, T2, ?J2|$2c) (C2B1 - fl)Jr

I(z; ni|Tie, 22c) + I(21e; yo|2) + C12 R2lc}

{] $2c7y17y2|xl) +[($1c>x2ay2‘x20) +C12 Rllc}

= (6.78) + (6.35) + (6.77)

which is greater than twice the active sum rate bound.
Therefore, we conclude that the corner point where the R;; + R15 + Ro; + Rse bound

and the R15 + Ro; + Roo bound intersect can be acquired.

6.6.8 Proof of Claim 6.20

Proof: In this proof, we consider only (6.89) and the other bounds can be shown sim-
ilarly. Since there are three possible R;; + Ro; + Roo bounds. Hence, we consider the
following three cases:

1) If the bound
Ryt + Roy + Roo < I(21; 31| %1es 22e) + I(1e, 125 42) + C5) — Riae

is active. The point R, + R}, + R;, + R;, where the Ry; + Ro + Rye bound and the
Ri1 + 2R15 + Ro1 + Rae bound (6.89) intersect satisfies

](IQCa Ty y1|:v1c) + ](xlca T2, y2) + (C2Bl - fl)Jr
RQQC

2RY, + 2Ry, + 2R, + 2R, =

+ 3 L2 1| T1e, D2e) + I(T1e, To5 90) + CFp — Rm}
[ xl? yl‘xlca xZC) + ](xlca T2 2/2) + C]Q}

372(:7 15 Z/1|l’1c) + [(l’u, 2, Z/z) (C281 - 51)+
RIQC RQQC

— (6.80) + (6.78)

which is greater than twice the active sum rate bound.



129

2) If the bound
Ri1 4 Ror + Roo < I(m1, 2205 w1, 92) + I(22; v2|@ic, 220) — Rige

is active. The point R}, + R}, + R5, + R3, where the R;; + R + Rye bound and the
Ri1 + 2R15 + Ro1 + Ry bound (6.89) intersect satisfies
[(9520, 21 Y| 71e) + 1 (31e, 725 92) + (C5 — &1)F
— Roae

2R}, + 2R}, + 2R3, + 2R;, =

+ 3 1(21, 220 Y1, o) + 1 (225 4| T1c, 220) — R12c}

I Ih L2c; Y,y y2> + ](x27 ?J2|371c7 'I'Qc)}

H(@ye, 73 1| m1e) + (210, 725 90) + (CB, — €1)F
R12c - R220

— (6.82) + (6.78)

which is greater than twice the active sum rate bound.

3) If the bound
Ri1 + Ro1 + Roo < I(x1; y1|®1e, 22c) + I(@ae; w1, Po|11) + 1(Z1c, T2; Yo|22e) + C?g — Riac

is active. The point R}, + Rj, + R3, + R3, where the Ry; + Ro; + Rao bound and the
Ri1 4+ 2R19 + Ro1 + Ras bound (6.89) intersect satisfies

[(517207 Ty Z/1|l’1c) + [($1c, T2 2/2) + (C2Bl - 51)+

CB - R220

Iz ni|21e, 22c) + 12205 41, Yo|21)
+1(I1c,$27 y2|$2c) + C12 Riae

B {]($1, 1|71, Toc) + 1 (T2c; Y1, Uo|21)
+1 (210, 72; Yol 22) + CH
{]($2c, oy 1| aie) + (2, 25 40) + (C5 — &1)F
CP, — Rize — Raae

= (6.86) + (6.78)
which is greater than twice the active sum rate bound.

Therefore, we conclude that the corner point where the Ry; + R15 + Ro; + Rao bound

and the Ry, + R2; + R2o bound intersect can be acquired.
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6.6.9 Proof of Claim 6.21
Proof: In this proof, we consider only (6.102) and the other bounds can be shown
similarly. Since there are two possible Ry, + R12 + [22 bounds. Hence, we consider the

following two cases:

1) If the bound

Rip + Rig + Roy < 121, moc; y1) + 1(0; ¥|m1e, me) + (C5, — &) — Ray,

is active. The point R}, + Rj, + R3, + R;, where the Ry + Rj2 + Rao bound and the
Ri1 + Ri2 + 2Ry + Ros bound (6.102) intersect satisfies

I(z1, 2o0; y1) + I(210, T2; 1| 20e) + (CB, — &) + CB
DREy 4+ 2Ry + 2Ry + 2Ry — § |7 ) H e i el (G = 6)

—Ri1c
+ {]<x17 Bae; Y1) + 1 (225 12| T1c, 120) + (C5 — &1)F — R21c}
= {[(3717 Tac; Y1) + 1(22; Yo|1c, T2c) + (C281 - 51)+}
N {[($1, Boe; 1) + 1 (Zre, 225 Yol 720) 4+ (C5 — &)

—Ry1c — Roie

which is greater than twice the active sum rate bound.

2) If the bound

Ri1 4 Rig + Roo < I(m1, 22c; w1, U2) + I(22; v2|@ic, 220) — Roie

is active. The point R}, + R}, + R5, + R3, where the R;; + Ri5 + Rye bound and the
Ri1 + Ri2 + 2Ry + Ro2 bound (6.102) intersect satisfies

I(z, 205 y1) + 1(T1e, 205 Y| 22e) + (C5 — &) T+ C
_Rllc

+ S I(z1, e Y1, Bo) + L (225 |1, 220) — Rzu}
I(z1, 2205 1, B2) + 1 (22; y2‘131c,l’2c)}

$1, T2cs 2/1 + ](ﬁlc, To; ?J2|332c) (C2B1 - 51)+
_Rllc - RQlc

= (6.82) + (6.78)
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which is greater than twice the active sum rate bound.
Therefore, we conclude that the corner point where the Ry; + R12 + Ro; + Rse bound

and the R;; + Ri2 + R2o bound intersect can be acquired.

6.6.10 Proof of Claim 6.22

Proof: Since there are eight possible Ry, + R15 + R2; bounds. Hence, we consider the
following eight cases:

1) If the bound
Ri1 + Rio + Roy < I(21, 2205 11) + (CzB1 — &))" — Rao.

is active. The point R, + R}, + R5, + Rj, where the Ry; + Ri2 + Ry bound and the
Ri1 + Ri2 + Ro1 + 2Rg bound (6.110) intersect satisfies

I(ze, 215 t1|21e) + 1(225 ol T1e, 22e) + 1 (2205 41 |21)
+1(@1cy 225 Yo|220) + 2(C8, — &) T + CF, — Riae
+ {] (21,2203 91) + (C5, — &) T — R22c}

{ $2c7$1,y1|$1c)+]($1c,$27y2|$2c) ((:2|31_€1)Jr

{] Ty, Tacy Y1) + L(22; Yo| e, T20) + (C281 - 51)+}
{] T2cs 1/1’351 ( 51 - 51)+ — Rige — R220}

— (6.78) + (6.81)

which is greater than twice the active sum rate bound. Note that {1 (z.; y1|z1) + (C5, —

&))" — Riae — Rao.} > 0 refers to (6.36).
2) If the bound
Ri1 + Rio + Roy < I(m, %2c; Y1, Uo) — Roae

is active. The point R, + R}, + R;, + Rj, where the Ry; + Ri2 + Ry bound and the
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Ri1 + Ri2 + Ro1 4+ 2R95 bound (6.110) intersect satisfies
I(@e, o5 Y1 | 21e) + 1 (25 Y2 |Trc, 22c) + 1 (22e; Y1|21)
+1 (@1, 725 Ya|12e) + 2(CF — &)T + CF, — Riae
+ {] T1, Tacs Y1, Po) — Rzzc}

{ $2C,$17y1‘$1c)+]($1c,$27y2’1’2c) (C281—51)+

2Ry, + 2R}, + 2R5, + 2R5, =

{[ 1, Taes Y1, Po) + 1 (225 92| 21 51720)}
{[ Tye; Yi|m) + (C 281 - fl)+ — Rige — R220}
— (6.78) + (6.82)
which is greater than twice the active sum rate bound. Note that {I(zy.; y1]z1) + (C8, —

&) — Rizc — Roac} > 0 refers to (6.36).
3) If the bound

Ri1 + Ria + Roy < I(ma0; ni|21) + (215 v1|220) + (C281 — &) — R

is active. The point R}, + R}, + R5, + R5, where the R;; + R12 + Ry bound and the
Ri1 + Ris + Ro1 + 2R95 bound (6.110) intersect satisfies

I(ze, 215 th|210) + 1225 | T1c, 220) + I (2265 11 |21)
+1 (21, 225 Yo |220) + 2(C281 §1)F + ClBQ — Riac

—l-{] Toe; ta|m) + I (@ | 22e) + (CgB1—51)+—322c}

2RY, + 2Ry, + 2R, + 2R, =

{ (¢, 213 Y1|T1c) + 1 (21, 225 Yo|22e) + (C§1—51)+
{ o y2|xlc, :@c) - T(@ae; yh|21) + T(o1; 1] 00e)

+ {f Tae; th|2) + (C 281 - 51)+ — Rige — R22c}

= (6.78) + (6.81)

which is greater than twice the active sum rate bound. which is greater than twice the active

sum rate bound. Note that {1 (2y.; y1|71) + (C5, — &) — Rize — Rose} > 0 refers to (6.36).
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4) If the bound
Ri1 + Ria + Ry < I(m20; 41, Yol m1) + (215 1] 220) — Roge

is active. The point R}, + R}, + R5, + R3, where the Ry + Ri5 + Ry bound and the
Ri1 + Ri2 + Ro1 + 2R3 bound (6.110) intersect satisfies

I(ze, 215 1| 21c) + L(22; Yol Tic, 22c) + 1 (22e; 11 |m1)

+[($1m T2, y2|152c) + 2(C21 - 51)+ + C12 — Ria.
+ {[(l’zc; Y1, Golar) + (@5 |aae) — R22c}

{](@c, 215 y1|m1e) + I (@1, 223 Yo la0e) + (C5 — &) F

{](IQCQ Y1, Yol 1) + 1 (215 y1|22e) — R22c}
{](xzc; 1 |21) + 1325 Yo|T1e, o) + (C5, — &) — Rch}
— (6.78) + (6.53) + (6.40)

which is greater than twice the active sum rate bound.

5) If the bound

I(z1; y1|@ie, 2e) + I(oc; yi|2) + I(@1e; o) + (C5 — &)T
+C182 — Raae

Riy + Rig+ Ry <

is active. The point R, + R}, + R;, + R;, where the R;; + Ri2 + Ry bound and the
Ri1 + Riz + Ra1 + 2R3 bound (6.110) intersect satisfies

I(ze, 215 th|21c) + 1225 | Tic, 220) + I (2265 41 |21)

2R}, + 2Rf2 + 2R§1 + 2R5, = B
+[($1c> T2 ZUQ\&CQC) + Q(CgBl - 51)+ + C12 — Rizc

(@ yi|2ie, 220) + I(22e; tr|21) + (2165 Y| 22)
(C2Bl fl) + C12 - R220

B {I(xzc,xl, yil11) + (@10, 233 goloae) + (CB — €1)*

+CB

+(C8, — &) 4+ CE, — Rooe

n {[(1’17 Yi|Tie, ac) + 1(2165 2| 22) + 1 (2205 Y1 |71)
+ {] (223 Yo|T1c, T2c) + (2205 11]21) + (C 281 — 51)+ — R12c}

= (6.78) + (6.54) + (6.40)
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which is greater than twice the active sum rate bound.

6) If the bound
Ri1 + Rio + Roy < I(21; 1| ®ie, 22c) + L2205 Y1, Po| 1) + 1(21c; Yo|2n) + Cle — Ragc

is active. The point R, + R}, + R5, + R;, where the Ry; + Ri2 + Ry bound and the
Ri1 + Rz + Ra1 + 2R3 bound (6.110) intersect satisfies

I(@2c, 213 y1|210) + (223 Yo| Tic, T2c) + 1 (2263 Y| 21)

2Ry, + 2R}, + 2R5, + 2R5, =
+1(21c, 725 Y2|12e) + 2(C — &)T + CF, — Riae

I(z1; il @ie, 22c) + 1220 11, Tol2n) + L(2ie; Yol 22)

{‘I’Clz RQZC

](SUQC, Iy, y1|:151c) + [(l"lc, T2; ?J2|I2c) (C281 - 51)+

+C8,

+

Iz yi|Tie, 220) + I(@1e; yol22) + (2205 1| 21)
+(C8, — &)+ CB, — Rose

+ < I (z2c; Y1, Bolan) + (22 Yo|T1c, 220) — R12c}

= (6.78) + (6.54) + (6.41)

which is greater than twice the active sum rate bound.

7) If the bound
Riy + Ry + Roy < I(moe, 113y |wie) + (w165 4ol m2) + (C5) — &) + C) — Roa.

is active. The point R}, + Rj, + R;, + R3, where the Ry; + Rj2 + R2; bound and the
Ri1 + Rz + Ra1 + 2R bound (6.110) intersect satisfies

I(z2c, 215 1| 21c) + L(22; Yol Trc, 22e) + 1 (22e; y1|m1)

+1(T1c, 23 2| m2e) + 2(C5, — &) T + CB, — Ruae

H(ae, 13 1| 21e) + (2165 yo|22) + (C5, — &) T + CE,
_R22c

+
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](95207 Iy, yl|$1c) + ](1'1@ T2, y2’$2c) (CzBl - f1)+
+C

(C2B1 51) + C12
[ T2c; Z/1‘CU1 ( 51 - £1>+ — Rige — Rz2c}

= (6.78) + (6.83)

{](fﬂzc, z; | 21e) + I(@es yolae) + 12 Yo | Tie, T2c)
e

which is greater than twice the active sum rate bound. Note that {I(z.; y1]z1) + (C8, —
&) — Rizc — Roac} > 0 refers to (6.36).
8) If the bound

Ri1 + Ria + Ror < I(m2c, 215 1, ol 2ic) + L(21c5 o] 22) + C?2 — Rao,

is active. The point R}, + R}, + R5, + R3, where the R;; + Ri2 + Ry bound and the
Ri1 + Ris + Ro1 + 2R95 bound (6.110) intersect satisfies

I(mac, 215 1| 21c) + 1(22; Yo| Trc, 22e) + 1 (22e; 11 |m1)

2Rf1 + 2R}, + 2R o1+ 2R3 =
—l—[ $1c> T2; 92\9520) + 2(C281 51)+ + Cle — Rizc

+ {] Tae, 013 Y1, Po|Tre) + 1(T1e; yo|m2) + CF — Rmc}

{ (e, 115 | 21e) + I(@1e, 225 Yo|22c) + (CzBl — &)t
{ Bac, T15 Y1, ol ie) + L(21c; ol22) + I(22; Y221, 22c)

+ 3 L2205 th|m) + (C 51 - 51)+ — Rige — R220}

= (6.78) + (6.84)

which is greater than twice the active sum rate bound. Note that {I(zy.; y1]z1) + (C8, —
&) — Rizc — Roac} > 0 refers to (6.36).
Therefore, we conclude that the corner point where the R;; + R15 + Ro; + Rse bound

and the R1; + R12 + R2; bound intersect can be acquired.

In addition, we use the following lemma which is proposed in [22] to help our proof.
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Lemma 6.24

log(l + SNR; + INR; + SNRy + INRg + | A1 hey — h12h21|2)

SNR,
> _ .
_log<1+ 1+INR2> +log(1+SNRy +INR,)  (6.116)

Proof: See all details at Lemma B.6 in [22]. |

Furthermore, using the same line as Lemma B.6 in [22], we also obtain

log(1 + SNRy + INR; + SNRy + INRy + [hy1 /2 — hizhor|?)

SNR,

> (1 >Rz
=18 TOINR,

) +log(1+SNR +INR;)  (6.117)

Next, for proving in the following claim, we assign the following terms which are

considerably useful for our proof:

1. Quantization distortion at receiver 2 (Ay) = 1 + SNR5?”. This value of A, is cho-
sen for upper bounding the rate loss term & in (6.33) by 1 bit, where SNR??’ =

SNR; Qiy = SNR; min{ 1, e } > S35 and 0 < INRP < 1 for ,j = 1,2 and
i #J.

2. For ﬂ,’y — [O, 1], we set Rllc = ﬁRlC, Rglc = Rlc — 5R1C, R12c = RQC — "}/RQC and
Ros. = YRy, where Ry, and R, are the rate constraints without cooperation for the

common codeword at transmitter 1 and 2, respectively, that are calculated as follows:

1+ INR
Rlc - ](xlc; y2|$2) = lOg( = )7

14 INRy'"
1+ INRy >

Roe = I(m20; 10| m) = log| ———5=
2 (22¢; 1] 71) g(H_lNR?zp

Remark 6.25 (Constraint common rates (6.111) and (6.112) at the asymptotic values of 3

and 7y): Remind that the constraint common rates (6.111) and (6.112) are

Ric = Riic + Rorc = BRic + (1 — B) Ry,

Ry = Rige + Rooe = (1 — 7) Roe + Y Ra.

where 3,y € [0,1]. When considering at the asymptotic values of B and -, these two

constraint common rates can be considered as the following 4 cases:
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1. Case B = 0: We obtain R,. = Ra..
2. Case = 1: We obtain R;. = Ri1..
3. Case v = 0: We obtain Ry. = Ria..
4. Case v = 1: We obtain Ry, = Ras..

There result are useful to understand the individual rate and the sum-rate in the next re-

mark.

Remark 6.26 (Individual rate at the asymptotic values of 5 and «): Remind that, based
on the proposed strategy as shown in Appendix 6.5 for the two-user Gaussian X channel
with limited receiver cooperation in the case of strong Gaussian X channel type I, the
transmitted codeword can be written as follows: x;[n| = z;.[n] + 2, [n] for all n and
1 = 1,2. The rate for each message that corresponds to the proposed strategy is shown in
the following relationships: R;; = Ry, + Ry and R; = Ry, for 1,5 = 1,2 and i # j,
where R;;. and R;;. are defined in (6.111) and (6.112).

1. The individual rate at the asymptotic values of 3 and ~y can be considered in the
following 4 cases:
(a) Case B = 0: Since Ri. = Ro., therefore, we obtain
i. Ry = Ry
7 R21 = RQlc = Rlc

This result shows that Ry, and Ry, are the rate of a private codeword xlj\{p and

the rate of a common codeword i\, respectively.
(b) Case B = 1: Since Ri. = Ry1., therefore, we obtain
i. Ri1= Riup+ Rie= Ry + Rie
Ii. Rgl = RQlc =0

This result shows that Ry, is the sum rate of a private codeword xf\{p and a

common codeword xﬁ Ry = 0.
(c) Casey = 0: Since Ry, = Rys., therefore, we obtain

L. R12 = R12c = RQC
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ii. Roy = Ry
This result shows that R,5 and Roo are equal to the rate of a common codeword
2 and the rate of a private codeword 352]\2719, respectively.
Case v = 1: Since Ry. = Rao.; therefore, we obtain

i Rip = Ryp.=0

ii. Rog = Rogp + Rooe = Rogp + Roe

This result shows that Rss is the sum rate of a private codeword :EQAQIP and a

common codeword mzl\g Ry =0.

2. The sum of 2 rates at the asymptotic values of [ and ~y can be considered in the

following 4 cases:

(a)

(b)

(c)

Case B = 0 and v = 0: Since Ri. = Rs1. and Ry. = Ris.; therefore, we
obtain

i. Riy+ Rig = Rip + Rige = Riip + Roc

ii. Roy+ Rop = Roie + Rogp = Rogp + Ry

This result shows that R;; + R;; is the sum rate of a private codeword =¥ and

1P

a common codeword xjﬁ’ .
Case f = 0 and v = 1: Since Ry, = Roi. and Ry, = Rao.; therefore, we
obtain R, = 0 and
i. Rii+ Rip= Ry
ii. Roy+ Rog = Roic + Raogp + Roae = Rogp + Ry + R
This result shows that Ry, + Rio equals the rate of a private codeword xf\{p

and Rs1 + Roo is the sum rate of a private codeword xgp and two common

codewords ¥ and .
Case B = 1 and v = 0: Since Ri. = Ri1. and Ry. = Ris.; therefore, we
obtain Ry = 0 and

i. Rii+ Rig = Rip+ Riie + Rize = Riip + Ric + R

ii. Roy+ Roo = Rggp
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This result shows that Ry, + Rys is the sum rate of a private codeword xﬁp and
two common codewords xf\g and xQJ\c/ and Ry, + Ros = R is equal to the rate

of a private codeword legp.

(d) Case B = 1 and v = 1: Since Ri. = Ry1. and Ry. = Ras.; therefore, we
obtain Ry = Ry; = 0 and

i. Rii+ Rip = Rip + Riie = Riip + Ric
ii. Ry + Rop = Raop + Rooe = Raogp + Rac

This result shows that R;; + R;; is the sum rate of a private codeword ¥ and

“p
a common codeword z .

3. The sum of 3 rates at the asymptotic values of 3 and ~y can be considered in the

following 4 cases:

(a) Case B = 0 and v = 0: Since Ri. = Rs1. and Ry. = Ris.; therefore, we

obtain

i. Rii+ Rig+ Roy = Ryip + Rige + Ro1e = Ritp + Rae + Rye
ii. Ry1+ Rig+ Rog = Ri1p + Rige + Rogp = Ri1p + Roe + Ragp
iii. Ry + Roy + Roo = Ri1p + Roie + Ragp = Ri1p + Ric + Ragp

iv. Rig+ Ro1 + R = Rige + Roie + Ragp = Roe + Ry + Ragp.

This result shows that R;; + R;; + Rj; is the sum rate of a private codeword :UZ%
and two common codewords )y and x\ and R;; + Ry + Ry; is the sum rate of

= and x

two private codewords Ty, ip and a common codeword .

(b) Case B = 0 and v = 1: Since Ri. = Rs1. and Ry. = Ras.; therefore, we
obtain Ry, = 0 and

i. Rii+Rio+ Ro = Rip+ Roie = Riip+ Ry, ie., the sum rate of a private
codeword ) » and a common codeword Y.

ii. Ri1+ Rio+ Ry = Rup + Rzzp + Ros. = Rup + Rgzp + Ry, i.e., the sum

rate of two private codewords xf\{p and xgp and a common codewords x,\.

iii. Ryj+ Roy+ Rog = Ry1p + Roic + Rogp + Rooe = Ri1p + Ric + Rogp + Ra,

i.e., the sum rate of two private codewords xlj\{p and xgp and two common

codewords i\ and 3.
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iv. Rig+ Ro1 + Rog = Raic + Ragp + Roge = Ric + Ragp + R, i.e., the sum
rate of a private codeword xgp and two common codewords x\ and z.\.
(c) Case f = 1 and v = 0: Since Ri., = Ryi. and Ry, = Ris.; therefore, we
obtain Ry1 = 0 and
i. Rii+ Rig+ Roy = Riip + Riie + Riae = Ruip + Ric + Ry, iee., the sum
rate of a private codeword xf\{p and two common codewords x\ and z.\.
ii. Ryj+ Rig+ Rog = Ri1p+ Riie+ Rige + Rogp = Ri1p + Bic + Rae + Rogy,
i.e., the sum rate of two private codewords xﬁp and xzjgp and two common
codewords i\ and 3.
iii. Ryp+ Rop+ Rog = Rip + Riie + Ragp = Riip + Ric + Ragp, i.e., the sum
rate of two private codewords Y, and w33, and a common codeword .
iv. Rig+ Ro1+ Rag = Rigc+ Ragp = Roc+ Ragy, i.e., the sum rate of a private
codeword xgp and a common codeword .
(d) Case p = 1 and v = 1: Since Ri. = Ry1. and Ry, = Roy.; therefore, we
obtain R = Ro1 = 0 and
i. Ri1+ Rig+ Ry1 = Ryyp + Rite = Ritp + Ry
ii. Riy+ Rig+ Rop = Ri1p+ Rire+ Rogp + Roge = Ritp + Ric+ Rogp + R
iii. Ry1+ Rop+ Rog = Ryip + Riic + Ragp + Rooe = Ritp + Ric + Ragp + Rac
iv. Rig+ Roy + Roo = Raop + Roae = Ragp + Rac

This result shows that R;; + R;; + Rj; is the sum rate of a private codeword xé\;
and a common codeword ©%} and R;; + R;; + Rj; is the sum rate of two private

N N
codewords x;;, and 1,

and two common codewords T} and xjj .
4. The sum of 4 rates at the asymptotic values of  and v can be considered in the

following 4 cases:

(a) Case 5 = 0 and v = 0: Since Ri. = Ro1. and Ry, = Ryo.; therefore, we
obtain
Ri1+ Ria+ Roy + Rag = Ryip+ Rige + Rorec + Ragp = Rinp + Roc+ Ry + Ragp
(b) Case f = 0 and v = 1: Since Ri. = Ro1. and Ry, = Roo.; therefore, we
obtain Ri» = 0 and Ry + Ri2 + Ro1 + Rop = Riip + Raie + Rogp + Roge =
Ri1p + Ric + Rogp + R
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(c) Case 8 = 1 and v = 0: Since Ri. = Ry1. and Ry, = Ris., therefore, we
obtain Ry; = 0 and Ry1 + Ri2 + Ro1 + Ry = Rllp + Ri1e + Rise + Rggp =
Riip + Ric + Rae + Ragyp

(d) Case f = 1and~ = 1: Since Ry. = Ry1. and Ry. = Ros.; therefore, we obtain
Rip = Ry1 = 0 and Ryy + Riz + Ro1 + Raa = Ryyp + Riie + Rooe + Raop =
Ri1p + Ric + Roe + Royy

From the above result, it is obviously seen that the sum of 4 rates for 4 cases has the
same value, i.e., it is the sum of the rate of two private codewords xf\{p and :UQJ\Q’p and
the rates of two common codewords z\. and 3. Therefore, we can conclude that the

sum of four rates does not depend on the asymptotic values of 3 and .

5. The sum of 5 rates at the asymptotic values of 3 and ~y can be considered in the

following 4 cases:

(a) Case f = 0 and v = 0: Since Ri. = Ro1. and Ry, = Ryo.; therefore, we

obtain

i. 2R+ Rio + Ro1 + Rop = 2Ry1p, + Riae + Rore + Ragp = 2Ry1, + Roe +
Ry + Ragp

ii. Riy+ 2R+ Roy+ Roo = Ry1p + 2R12. + Rore + Ragp = Ryt + 2Ry +
Rlc + R22p

iii. Ri1+ Rig+ 2Ro1 + R = Riip + Rioe + 2Ro1c + Roop = Ry + Roe +
2Rlc + R22p

iv. Riyy+ Rio+ Ro1 + 2Rgs = Ri1p + Rige + Rote + 2Ra9p = Ry1p + Rae +
Rlc + 2R22p

This result shows that 2R;; + Ry + Ry + Ry is the sum of twice rate of a

Y

private codeword x,, rates of two common codewords z} and xjjf and a rate

£L’N

of a private codeword x;;, and R;; + 2R;; + Ry + Ry is the sum of rates of

N

two private codewords z} and x5, twice rate of a common codeword zj, and

p P’

a rate of a common codeword xY.

(b) Case f = 0 and v = 1: Since Ri. = Ro1. and Ry, = Roo.; therefore, we

obtain Ri; = 0 and
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2R + Ri2 + Ro1 + Roy = 2Ry1, + Roic + Rogp + Rooe = 2Ry + By +
Raop + Ry, i.e., the sum of twice rate of a private codeword xf\{p, the rates

of two common codewords x\. and x)'. and the rate of a private codeword

N

Ri1 +2Ry9 + Ro1 + Roe = Ry1p + Raie + Rogp + Rooe = Ri1p + Ry +
Rasp + Ry, i.e., the sum of the rates of two private codewords xf\{p and

xgp and the rates of two common codewords =\ and 3.

Ri1+ Rig +2R91 + Rog = Riip + 2Ro1c + Roop + Rooe = Rutp + 2R+
Raop+ Ry, i.e., the sum of the rates of two private codewords xf\{p and 5172]\2];7’
twice rate of a common codeword z{\. and the rate of a common codeword
Ri1 4 Rig + Ro1 + 2R9s = Ry1p + Rote +2Ro2p + 2R99. = Rypp + Ry +
2Ra2p + 2Ry, i.e., the sum of the rate of a private codeword xf\{p, the rate
of a common codeword z}\, twice rate of a private codeword xgp and twice

rate of a common codeword 3.

(c) Case 8 = 1 and v = 0: Since Ri. = Ry1. and Ry, = Ris., therefore, we

obtain Ryy = 0 and

I.

il.

il

.

2R+ Rig+ Roy + Rog = 2R11p +2R110+ Rige + Rogp = 211, + 2R+
Roc + Raayp, i.e., the sum of twice rate of a private codeword zﬁp, twice
rate of a common codeword x\, the rate of a private codeword xgp and
the rate of a common codeword .

Ri1 4+ 2R19 + Ro1 + Rog = Ryip + Riie + 2Ri9c + Rogp = Ryyp + Ric +
2Ry. + Ragp, i.e., the sum of the rate of a private codeword asﬁp, the rate
of a common codeword z{\, twice rates of a common codeword . and the
rate of a private codeword xgp.

Ri1 + Rig + 2Ro1 + Rop = Ri1p + Riie + Rige + Rogp = Ri1p + Ry +
Roc + Raayp, i.e., the sum of the rates of two private codewords xf\{p and
xgp and the rates of two common codewords i\ and .
Rii+Ria+ Ro1 +2R90 = Ry1p+Rite+Rige+2Ra9, = Riip+Ric+Rac+
2Ry, i.e., the sum of the rate of the private codeword xf\{p, the rates of

two common codewords i\ and x\ and twice rate of a private codeword



143

N

(d) Case B = 1 and v = 1: Since R;. = Ry1. and Ry. = Rao.; therefore, we
obtain Ry = Ry; = 0 and

i. 2R11+ Rig+ Ry + Roo = 2Ry1, + 211+ Roge + Roop = 2Ry1, + 2R .+
Ry + Ragp.
ii. Ry +2Ro+ Roy + Rog = Ryip + Riie + Rooe + Rogp = Ryyp + Ry +
Ry + Ragp.
iii. Ri1+ Rig + 2R + Rog = Riip + Riie + Rage + Rogp = Rinp + Rie +
Ryc + Ragp.
iv. Riy+ Rig+ Ro1 +2R90 = Ry1p + Riie + 2Ro2c + 2Ro9, = Ry1p + Ric +
2Ry, + 2R9s,.

This result shows that 2R;; + R;; + Rj; + Rj; is the sum of twice rate of a private

N

1’

codeword ¥

L Wice rate of a common codeword the rate of a common

codeword szg and the rate of a private codeword l‘j% and Ri; +2R;; + Rji + Rj;

=N and z

is the sum of the rates of two private codewords i and the rates of

two common codewords )} and xjj .

Note that the all above relationships are useful for better understanding the proof of

Claim 6.23 in the next section.

6.6.11 Proof of Claim 6.23

Proof: In this proof, we consider the bounds with the different values of 5 and ~ as
follows:

1. R;; bound: We have two bounds as follows:
e Case f = 1:

e First,

[(5'715 Z/1|352c) — Ryyc
— 10g<—1+'NR§2p+SNR1> — (Ric — BRy.)

1+INR??P
14+SNR;
2 log ( 1+INRZ? )

which is within 2 bits to the upper bound log(1 + SNR; + INRy) in (4.1).
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e Second,
[(351; yl|$1c> Izc) + [(xlc; y?‘xz) + C?z — Roic
22 11
= log<—1+INR1 _EONR p) + log( T ) + CP, — (Ric — BRy.)

1+INRT?P 1+INRy'?
1+SNR;” 1+INR, B
=z log< 1+INRT?? +log 1+INRS'? +Ch

which is within 2 bits to the upper bound log(1 + SNR; + INRy) in (4.1).

e Case § = 0: In this case, it is easily seen that above two bounds of R;; are less than
the corresponding upper bounds. However, they are not within a constant gap. The

proof is similar to case 8 = 1. Therefore, we omit it.
2. Rq5 bound: The bound

e Casey=0:

o [(amc; yilm) + (C — &)F — Raae

— log (4N ) + (CB, — €)' — Ve

— log (LM% ) + (CB, — &)

which is within 2 bits to the upper bound log(1 + INR;) + C& in (4.2).

e Case v = 1: In this case, it is seen that above bound of R, is less than the corre-
sponding upper bound. However, it is not within a constant gap. The proof is similar

to case v = (. Therefore, we omit it.
3. Ry; bound: The bound

e Case = 0:

o [(z1c; 1p|12) + C?Q — Riic
= log( LEINR, ) + CB, — BRy.

1+INR3'?

- g (2508 ) + %

which is within 1 bit to the upper bound log(1 + INR3) + CB, in (4.3).

e Case [ = 1: In this case, it is seen that above bound of Ry; is less than the corre-
sponding upper bound. However, it is not within a constant gap. The proof is similar

to case 5 = 0. Therefore, we omit it.

4. Rs9 bound: We have three bounds as follows:
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e Casey = 1:

e First,
I (3¢, 225 o|1c) + CT, — Rioe

1+INRLP+SNR
= log(le—Rél,,Q) + ClBQ - (RQC - 7R2c)

14+SNR B
> 10g<1++|,\,—R§12p) + CT,

which is within 1 bits to the upper bound log(1 + SNRy) + CB, in (4.4).

e Second,
I(@ae; yr|n) + I (@a; ol wic, o) + (CF — &) — Ruze
= log (L0 ) - og (LMY ) 1 (CB — €)* — (Rae — 7Fae)

1+INR??? 1+INRy P
1+SNR22P B
> lo <1+”\”§;>+lo (—121 +(CB — &)t
— g 1+|NR1 D g 1+|NR2 P ( 21 5 )

> 1+INR;1 +SNR>
= 1Og((1+|NR§2P)(1+|NR§2P)

which is within 2 bits to the upper bound log(1 + SNRy + INR;) in (4.4).

e Third,

(205 11, Do 21) + 1(22; | 21c, T20) — Rioe

_ (1+A2)(1+INR1)+SNR2 1+INRY'P+SNRZ*P\ B
_10g<(1+A2)(1+|NR§2P)+SNR§2P)+10g( 1+2|NR§1P : (Rae — 7 Rac)

@ 2(14+INR; +SNR 14+SNR22?
> log (2HNEISUR ) 4 Jog (15N

1+SNR2+INR
2 log (W) -1
where Ay = 14+SNR5”, INRT? < 1 and (a)is dueto (1 + Ay)(1 + INRT?) 4 SNR;?
< 2(1 4 Ay) + SNR>? = 4 4 3SNR5* < 4A,. This bound is within 2 bits to the

upper bound log(1 + SNRy + INR;) in (4.4).

Case v = 0: In this case, it is easily seen that above two bounds of Ry, are less than
the corresponding upper bounds. However, they are not within a constant gap. The

proof is similar to case v = 1. Therefore, we omit it.
. Ri1 + R;2 bound: We have four bounds as follows:
Case f =1andy = 0:

e First,
L@, Bae; 1) + (C5y — &1)7 — Rare — Roac

= log (LNRUSNRL ) 4 (8, — &)+ — (Ry, — BRic) — 7 Fac

= los (=R + (< - 6"

which is within 1 4 1 = 2 bits to the upper bound (4.5).
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e Second,

I(21, 205 01, @2) — Ry1c — Ray.
_ (14+A2)(14+SNR1 +INR;1 )+SNRo+INRo+ |11 hoo —haoho1 [2 ) _ _
- log( (14+42)(1+INR??) + SNRZ?P (Bic = BRic) =7 Rae

_ 2
> log(1+5NR1+|NR1+5NR2-£|2NR2+|}L11}L22 hi2h21| > —9

Using (6.117), therefore, this bound is within 2 bits to the upper bound (4.7).

e Third,
I(2e; y1lm1) + 1 (213 y1|22e) + (C5) — &) — Rore — Raae
22p
= 10g< L+INR, ) + log<w> + (CzBl - 51)+ - (Rlc - 5R1c) — YRy

1H+INRT?P 1+INR??P

=z 10g<(1+|1|\|§|f\|25;;;i’:||5éf2?’)> (GG = &)

which is within 241 = 3 bits to the upper bound (4.5).

e Fourth,

I(z2c; 1, Yolz1) + (@5 | 220) — Rote — Roac

. (14+A2)(1+INR1)+SNRo 1+INR?*P 4 SNRy . B
_10g<(1+A2)(1+|NR$2P)+SNR§2P)+10g( HNRZ ) (Ric = BRic) = v Rae

> 1Og<1+INI;1AJ;SNR2> i log< 14SNR; )

1+INR?P
> log(1+|NR1+252NR1> 1
= 1+INRZ??

which is within 2 bits to the upper bound (4.7).

Case  =0and v = 0,case S =0and vy = 1 and case 5 = 1 and v = 1: In these
cases, it is seen that above four bounds of Ry; + R, are less than the corresponding
upper bounds. However, they are not within a constant gap. The proof is similar to

case $ = 1 and v = 0. Therefore, we omit it.
. R31 + Ras bound: We have three bounds as follows:

Case f =0and y = 1:

e First,
I(z1c, 225 12) + Cle — Ri1e — Rige
= log<—1+ﬂ$§;§1§&> + C%, — BRic — (R2e — YR2.)

— 10 1+INRs+SNR> CB
& 1+INRS T

which is within 1 bits to the upper bound (4.6).

e Second,

I(@oe; 1, Uolz1) + I(25 Y2| @16y Bae) + (2105 Yo|22) + ClBQ — Ri1c — Riac
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1p 22p
_ (14+A5)(1+INR; ) +SNRy 1+INRs 1+INR}'? +SNR3 B
o 10g<(1+A2)(1+|NR§2P)+SNR§2P +log 1+INRy'” +log 1+INRy'” +Ch

- ﬁRlc - (R2c - 7R2c)

S 22p
> 1og<%> + log<1f”'“”£%p> + log<%> +Ch -1

1+INR2+SNR B
= 10g<(1+lNR§1p§(1+lN;§1p)) +Chp—1

which is within 3 bits to the upper bound (4.6).

e Third,

I(me; s ol 21) + 1(21c, 25 2| 220) + ClBg — Ri1e — Riac

. (1+A2)(1+INR1)+SNR 1+INR2+SNR3>? B B B
_10g<(1+A2)(1+|NR§2P)+SNR§2P)+10g< THNRL >+C12 BRic— (Rae —vRac)

2(1+INR;+SNR 1+INRy+SNR2%P

1+INRy 4+ SNR B
> 10g<w> +Ch -1

which is within 2 bits to the upper bound (4.6).

Case S = 0andy = 0,case f§ = land y = Oand case § = 1 and v = 1: In
these cases, above three bounds of Ry, + R, are less than the corresponding upper
bounds. However, they are not within a constant gap. The proof is similar to case

£ = 0and v = 1. Therefore, we omit it.
. R11 + Ry + R2; bound: We have eight bounds as follows:

Case v = 0:

o First,
I(‘Tlu T2¢; yl) + (CZBI - 51)+ - R22c

= log (MR ) 4 (CE, — &) —

= log (SRS + (< - 6"

which is within 3 bits to the upper bound (4.13).

e Second,

[(:Ela L2c5 Y1, @2) - R22c

— 1o (14+A2)(14+SNR1+INR1)+SNRo+INRo+ |11 hoo —haoho1 |2 ) R
8 (1+45) (1+INR>?) + SNRZ?P Tit2e

> log (1+5NR1+|NR1+SNR2+|NR2+|h11h22—h12h21\2) -2

Ag
which is within 2 bits to the upper bound (4.21).

e Third,
[(Sﬂzc; Z/1|l’1) + ](551; Z/1|l’2c) + <C2Bl - fl)+ — Raac
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1+INR?2P £ SNR
= log(%) + log(mlN—R?pl) + (C8, — &))" — Ry

s
= log<(1+lll\lj:'?\|25;;;+’:ll5é?2p)> +(Ch-a)

which is within 2 + 1 = 3 bits to the upper bound (4.13).

e Fourth,

I(@c; y1, Yolm) + 1(21; 91| 720) — Roae

— (14+A2)(14INR1)+SNR> LHINRPP4SNR; |
N log ( (1+A2)(1+|NR?2P)+SNR§QP + log 1+|NR%2P ’VRQC

22
> 10g<2(1+INfA1;-SNR2)> i lOg<1+|NRl P+SNR1>

1+INRZ?P
> log(Lemsne,) )
= 1+INR7?P

Using (6.117), therefore, this bound is within 2 bits to the upper bound (4.21).

e Fifth,
Iz y1|Tie, 22c) + (220 i |21) + 12165 Y| 22e, 1722;;) + (Cgl - &)+ C?Q — Ragc

1+INR7?” +SNR; 7
— log (FNIEERRT ) trlog (LN ) +log (K ) 4 (CE —6)* +CE— v Rae

1+INR; +SNR?
=z 1Og<(1+lNR§Q;)(1+u\|lRf2p)) T 1Og<11+J|r||\|'\;<E%P> + (G - &) + G

which is within 341 = 4 bits to the upper bound (4.9).

e Sixth,

Iz | 2ie, 22c) + 1220 11, Tol2) + 1(@1e; Yol Toc, 222p) + ClBg — Rag.

- 1+INR??P L SNRI'P 1+INRy (14+A2)(1+INR; ) +SNR2 B
_10g< 1+INR??P +log 1+INR}'P +log (14+A2) (1+INRT??)+SNRZ?? +Ch—7 R

> 1Og(1+SNR11p> —|—10g( 1+INR» ) +10g<1+|NRA1;rSNR2> 1 CB 1

14+INRT?? 1+INRS'?

1+INR; +SNR;'? 1+INR B
> log(—m1 + log %) +Ch —1
= 1+INR??? 1+INR}'? 12

Using (6.117), therefore, this bound is within 3 bits to the upper bound (4.17).

e Seventh,
I(z2c, 215 1| 21c) + L(2105 o] 22) + (C281 — &)t + ClBg — Ry,
— 10g<1+|NR1+SN—R}1p + 10g< Rl > + (CB, — &) + CB, — vRy.

1+INR??P 1+INR,'?
1+INR; +SNR;'? 1+INR B B
8 1+INRZZ & 1+INRIT? (G — &) 12

which is within 2+1 = 3 bits to the upper bound (4.9).

e Eighth,

I(z2c, 215 1, ol 1c) + 1(21c; Wo]22) + C1Bz — Raaec

~ 1o (14+A2) (14+SNR} P +INRy ) +SNR2+INRY P + | hy1 hao —hazho1 |2 Q11 1 log ( LHINR ) | (B
8 (14A2) (14+INRT??)+SNR3>P 8 1+INR;'? 12

- 'YRQC

1+SNRMP +INRy +SNRo+INREP | Ay 1 hog — ko kot |2
> 10g< + 1 U +INRy 2 A; |hi1ho2—h12ho1 | Q11p +log 11+-§|-'I\II\£%Z7 +C182 _9
2
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which is within 3 bits to the upper bound (4.17).

Case v = 1: In this case, above eight bounds of Ry; + Ri2 + R are less than the
corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case v = 0. Therefore, we omit it.
. Ri1 + Ris + Ry bound: We have two bounds as follows:

Case 0 =1

e First,

L@y, Bac; 31) + I(; 90| 21e, 22e) + (CF) — &) — Rore

= 10g<—1+'NR1+SNR1> - log(l + w) +(C8, — &) — (R — BR1.)

1+INR??P 1+INR}'?
22p
= LHINR; +SNRy SNRy B _ ¢ \+

which is within 2+1 = 3 bits to the upper bound (4.14).

e Second,

[(xla L2c; Y1y @2) + I($2, y?‘xlcg 352@) _ RQlc
= 1Og((1+A2)(1+SNR1+|NR1)+SNR2+INR2+|h11h22,h12h21|2) +log<1 L v )

(14+A2) (1+INRT?P)+SNR3*? 1+INR,'?
- (Rlc - BRIC)
_ 2
2 log<1+SNR1+|NR1+SNRQZ-A||;|R2+|h11h22 hi2ha1| > +10g<1 + SNR32P> -1

> log (1 + SNR; + INR; + SNRy + INRy + | g1 hgo — h12h21|2> -3
which is within 3 bits to the upper bound (4.22).

Case = 0: In this case, above two bounds of Ri; + Ri» + Rao are less than the
corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case 5 = 1. Therefore, we omit it.
. Ry1 + Ro1 + Ra9 bound: We have three bounds as follows:

Casey =1
e First,
I(zy; i |@ie, 22c) + (216, 225 Y2) + Cle — Riac

22 11
_ 1Og(1+|NR1 P LSNR! P) N 10g(1+|NR2+SNR2> 4 CB — (Roe — YRo.)

1+INR??? 1+INR,'?
1+SNR}” 1+INR2+SNR B
> 1 1 1 2 2
= 108 1+INRZ?? +log 1+INRIT? +Ch

which is within 2 bits to the upper bound (4.15).
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e Second,

](xla L2c5 Y1, @2) + I('TZa y?‘xlca x?c) - Rl?c

— 1o (14+A2)(14+SNR; +INR1 ) +SNRo+INRo+ |1 1 hoo —hioho1 | o 1+INRS'P+SNR2??
— 108 (14+A2) (1+INRT?P)+-SNR5?? 1+INRS'?

— (RQC — ’}/RQC)

14+SNR; +INR; +SNR2+INRo+|h11 Aoz —hiohoi |2 1+INR P +SNR2??
> 2 2
= 10g< 44, log 1+INRy'?

1+SNR;+INR; +SNRo+INRy+| 11 hoo —hi2hot |2 1+SNR22P
> 2 —
= 1og< Ay +log 1+INRL'P

which is within 3 bits to the upper bound (4.23).

e Third,

Iz | @ie, 32) + (@203 y1, Gol21) + 1(21e, 223 yo|220) + CF, — Riac

o (1+A2)(1+INR1)+SNR2 1+INR?2P 4 SNRI'P 1+INR24+SNR2??
B 10g<(1+A2)(1+|NR}“’)+SNR§210 +log 1+INRT?? +log 1+INRS'?

- (R2c - P)/R2c> + ClBQ

1+INR22P { SNRLTP 1+INR2+SNR2?? B
> 1o <1+INR1+SNR2) 4 lo ( 1 - 1 + lo —112 + C
= 108 24 & 1+INR??P & 1+INR,'P 12

11p 22p
> log(1+ INRy) + log<11fNN§§2p) + log(—Hl';Ifﬁ\Ts;l‘? ) +CB -1

which is within 3 bits to the upper bound (4.27).

e Case v = 0: In this case, above three bounds of R;; + R + Rao are less than the
corresponding upper bounds. However, they are not within a constant gap. The proof

is similar to case 3 = 1. Therefore, we omit it.
10. Ry5 + Ry + R9> bound: We have five bounds as follows:

e Case f =0:

e First,
I(z10, 225 ) + C% — Rine

— 1+INR2+SNRy B
- 10g< 1+INR}'? > + Cly — fRic

— log [ LINR2+SNRy B
08 TIINRIT +Ch

which is within 2 bits to the upper bound (4.16).

e Second,
I(moe; yilm) + (25 Yol @ie, 220) + I (@165 Y2l Tae, Ta2p) + (CF — &) + C8, — Rune

1+INRLP £ SNR22P
= log (LR, ) log (LN ) +log (LHNR ) 4+ (CB —€1)F +CB— BRu.

1+INR 14+INRy+SNRS* B + B
= 10g<1+INRf%”) + 10g<(1+|NR§1”)(1+n\|2R§1”)) (G = &)" + Gy

which is within 3+1 = 4 bits to the upper bound (4.12).
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e Third,

I(2e; 1,y Bo|z1) + 1(22; Yol 21e, T2e) + (2103 2| 12) + C?g — R

_ (1+A2)(1+INR1)+SNRy 1+INR 1+SNR22P B
o log((1+A2)(1+|NR§2P)+SNR§2P) t 1Og(pru\lRﬁp) + log< 1+INR§1P ) +Ch — Al

> log<1+lNR1+SNR2> +10g( 1+INRy ) +log<1+'NR51p+SNR32p> N C182

22 1+INR}'? 1+INRIT?
INR 1+SNR2”
> log(1+INR;) + log<lf:NRﬁp> + log<w> +CB -1

Applying Lemma 6.24, this bound is within 3 bits to the upper bound (4.16).
e Fourth,

I(moe; yilm) + I(21e, 325 12| 2e) + (C5 — &) T + C8, — Ry,
22p
_ log< 14INR; ) +10g<w> +(CB — &)* + CB, — BR,,

1+INRT?P 1+INRy'?
22p
1+INR; 14+INR2+SNR5 B + B
= 10g(1+lNR§2P> T log( 1+INRy'? + (G5 — &)+ Chy

which is within 2+1 = 3 bits to the upper bound (4.12).

e Fifth,

I(mac; 1, Polm) + 1(T1c, 225 yo|220) + CB) — Ryge

B 10g<(”A?)(H'NR?”HSNR?F) + log( 1+INR§1P2 ) + Cfy — BR1.

1+INR;+SNR 1+INRg+SNR22P
> 10g<( 25 2)> + 1Og<—1+|2NR§1”2 ) +Ch

22
> log(1+ INR;) + log<%> +C8 -1

1+INR2+SNR B
> log (MR ) + OBy —

which is within 3 bits to the upper bound (4.16).

e Case $ = 1: In this case, although above eight bounds of R, + Ry + R are less
than the corresponding upper bounds but they are not within a constant gap. The

proof is similar to case 8 = 0. Therefore, we omit it.
11. Ry1 + Ri2 + Ra1 + Roo bound: We have nine bounds as follows:

e First,
Hwye, w1 y1|mie) + I(@ie, 205 polae) + (C8) — &)1 + CE,

. 1+INR; +SNR}'? 1+INRo+SNR2?P B i B
= 10g<—1+|NR§2” + log TOIANRYT +(C31 — &)+ G

which is within 2 + 1 = 3 bits to the upper bound (4.26).

e Second,

L@, 215 91, U2l 21e) + 1 (21e, T2 90| 22) + CF

1o (14A2)(1+SNR; P +INR; )+ SNR2+INRL P 4| A1 1 hoo —hi2ho1]2 Qi1 11 1+INR2+SNR3??
— 108 (14+A2) (1+INRT?P)+-SNR5?? 1+INRS'?
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+Ch
14+SNR; " +INR; +SNR2+INRy' P 4| h11 hao —h12h21 | Qi1 1+INR2+SNR2?? B
= log( 442 +log 1+INRy"? +Gh

> log (1 + SNR}" + INR; + SNRy + INRy™” + [hy1 hoo — h12h21|2Q11p>
—l—log(%) —log(1 4 SNRZ*") + CB, — 2

2
which is within 3 bits to the upper bound (4.27).

Note that we can lower bound for this bound in the alternative form which is useful

for considering the third bound as follows:

I(xe, 215 41, G| 1e) + I(@1e, 225 Yo|22c) + ClBg
= I(mc; Y1, Do|mic) + I(2; w1, folie, 22c) + I(@1e, 22; Yol 22e) + CF

= I(%c; ol 11c) + L(21; 11| T1e, Toe) + 1 (1e, o5 yo| T2 ) + CB
(a)
> (20 yo|mie) — 1+ (20 y1|Tie, T2e) + I(21e, 5 Yo |120) + CE,
(b)
I(

> I(210, 2 12) + I (205 Y1 | 210, 220) + CF, — 1

where (a) is due to

1+ Ay + SNRy + INRy'? )
1+ Ay + SNR3?” 4 INRS'?
1+ SNR; + INR}'”
10g< 22p 2p llp)
1+ (14 SNR3™) 4+ SNR5™ + INR,
1+ SNR; + INR}'”
= 10g< 22 11p> -
14+ SNR3? + INR,

-[(55207 @2’3710) - log(

v

- .[(3?25, y2|xlc) -1
and (b) is due to

I(z20; yo|21e) + I(21c, 25 Yo|2ae) = 1(@ac; Yo, T1c) + I(Z1c, 25 Yo|22c)

> (20 y2) + L(216, 225 Y| 22c)

I(z1c, 225 42)

Third,

L2 1|21, Boe) + (10, 225 40) + CB,
_ 1Og(1+n\|R§2’J+SNR}1P> n 10g<1+|NR2+SNR2> +CB,

1+INRT?P 1+INRS'?
14+SNR; 7 14+INRy+SNRy B
=z log< 1+INRT?? +log 1+INR}'? +Ch

Using the lower bound of the alternative form for the above second bound, therefore,

this bound is within 2 bits to the upper bound (4.27).
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e Fourth,

L@y, Bac; 1) + (25 90| 21e, 02e) + (CF) — &) F
— log(—1+'NR1+SNR1> + log<—1+lNR51p+SNRg2p> +(C3 = &)7

1+INRT?P 1+INR3'?
1+SNRZ2P
> log ( LMBLENRL) 4 log (11N ) + (CB - €0)*
Using the same consideration as the third bound, this bound is within 2+1 = 3 bits
to the upper bound (4.28).
e Fifth,

I(@1, B 1, U2) + 1(225 92| T1e, 22c)

22p
o (1+A2)(1+SNR1+|NR1)+SNR2+|NR2+|h11h22—h12h21|2 SNR2
B 10g< (14+A2) (1+INRT?P) + SNR3P +1log(1+ 1+INR3'P

> log(1+SNR1+INR1+SNR2:-A”;IR2+|h11h22—h12h21|2> +10g<1 + SNR32P> 1

—1og (14 SNR; + INR; + SNRy + INRy -+ |yl — hiahor[2) —3
which is within 3 bits to the upper bound (4.29).

e Sixth,

I(@e, 13 i |m1e) + 1(@1e; yo|22) +1(222p; 92| T1e, 220) + (C5 — &) T + CE,

B 1+INR; +SNR11” 14INR, L+INR,'” +SNR}?” B + (B
= 10g< 1+INRZZ +log L+INRL? +log 1+INRLT” +(C5 — &))" + G

1+INR; +SNRI'? 1+INRy+SNR2?? B 4 B
= log< 1+INRT?P ' ) T 1Og<(1+|NR§1P)(1+||\|2R;1P) +(C5 — &) + G

which is within 3 + 1 = 4 bits to the upper bound (4.26).

e Seventh,

I(@oe, 215 Y1, Dol 1e) + 1 (@1e; yo|22) + I (295 yo| 210, 220) +CF

_ 10g<(1+A2)(1+SNR%1P+|NR1)+SNR2-;2|NRé1p+|h11h22—h12h21\2Q11p) —|—10g( 1+INR> )
(14A2)(1+INRZ?P) £ SNR3?? 1+INRS'?
1+INR,'P+SNR3?? B
T 10g< 1+INR}'? ) +Ch
> 10g<1+SNR}1P+|NR1+SNR2+|NR§1F+\h11h22—h12h21|2Q11p> 11 ( 1+INR2+SNR3” ) n
= 479 (1+INR3'P) (14+INR')

%

> log (1 + SNR;" 4 INR; + SNRy + INRy'™” + |hyy gy — hmhmy?cgn,,)
+1log(1 4 INRy + SNR2%”) — log(1 + SNR3*") + CB, — 4

which is within 4 bits to the upper bound (4.27).

e Eighth,

Iz yi|me, 22c) + L(22c; n|21) + (21, 225 Y| 22c) +(C281 — &)+ ClBQ

. 1+INRT*” +SNR; 7 14INR; 1+INR2+SNR2%? B n B
_10g< 1+INRT?? +log 1+INRT?? +1log 1+INR, "7 (G &)+

1+INR; +SNR}'? 1+INR2+SNR2?? B ¢ \+ B
Z10g((1+|NR?YD)(HlNR?Y”) +log 1+INRy"” H(G -8+ G
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which is within 3+1 = 4 bits to the upper bound (4.26).

e Ninth,

Iz pl|wie, 2e) + (320 91, Go| ) + (216, 325 yo|220) +CF

. 1+INR?*P +SNR; '? (14+A2)(14+INR1)+SNR; 1+INRa+SNR3” B
_10g< 1+INRT?P +log (1+22)(1+INR}'P) +-SNRZ? +log 1HINRS'? +Chy

> 10g<1+SNR}1P> +log<1+lNR1+SNR2> +log<M> + CB,

= 1+INRZ?? 24 1+INRy'?

1+INR; +SNRI P 1+INR2+SNR2?? B
>10g<—22,1 +log| ———m+— ) +CL, — 1
= 14+INRF?P 1+INRA'P 12

Using the concept of (6.117), therefore, it easily see that this bound is within 3 bits
to the upper bound (4.27).

12. 2Ry1 + Ris + Ro1 + Ry bound: We have two bounds as follows:
e Case f = 1:
e First,

I(20; 1 |Tre, 2e) + I (216, To; ya|m2e) + (21, 2203 1) + (C5) — &) T + CB, — Ry,

1+INR??P £ SNR; 7 1+INR2+SNR3*? 1LINR{LSNR B
=1 1 ki 1 2 1 1 1 _ +
08 1+INR??P +log 1+INRIT? + log 11INRZZ? +(C3 — &)

+ ClBQ _(Rlc - ﬁRlc)

1+SNR? 1+INR2+SNR2?? 1+INR; +SNR B B
> b IRy 141NRy +5NRy _ +
- lOg( l—HNR?Qp + log 1+|NR%1P + log 1+|NR§2P + (C21 61) + C12

Using the concept of (6.117), therefore, this bound is within 3+1 = 4 bits to the
upper bound (4.30).

e Second,

) ) o B
I(zy; y1|@1e, Bac) + 1(21e, B2; Yol 72e) + (@1, D25 91, Go) + CTy — Rane
_ 1+INR?*P +SNR; '? 1+INRo+SNR3”
- log( 1+INRT?P +log 1+INRS'?
(14+A2)(1+SNR; +INR; )+SNRo+INRo +| k11 hpg —hi2 ho1 | B _ _
+ log< (14+22) (1+INRT?")+SNR3?? + Gy —(Fie — fhic)

1+SNRI1P 1+INRy+SNR22P 1+SNR; +INR; +SNRo+INRa+ |11 hog —hioho1 |2
> 10 ( 212’ ‘HO - 2 _|_10 1 1 2 2 11122 —N12M21
= 108 1+INR7? & 1+INR,™? & 4A;

+ CB,
> log (1 + SNRl + INR; + SNR2 + INRy + ‘h11h22 — h12h21|2)
+log(1 + INRy + 248&) —log(1 + 25%-) + log(1 + 25e) + CF, — 4

which is within 4 bits to the upper bound (4.34).

e Case # = 0: In this case, although above two bounds of 2R1; + Ris + Ro1 + Roo
are less than the upper bounds but they are not within a constant gap. The proof is

similar to case 8 = 1. Therefore, we omit it.

13. Ri1 + 2R;19 + Ro1 + Ray bound: We have a bound as follows:
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e Casey=0:

o [(z1, mc; 1) + (25 yo|1c) + (CQBI - &)+ CIBQ — Raae
11p
_ 10g<1+INR1+SNR1> I log(1+'NR2 +SNR2> +(CB — &)+ CB) — 4Ry,

1+INR??P 1+INRy'?
1+|NR1+SNR1 1+SNR2 B + B
> 10g<—1+|NR§2P > + 10g<1+|NR§1P> + (G — &)+ G

which is within 5 bits to the upper bound (4.31).

e Case v = 1: In this case, although above bound of Ry; + 2R15 + Ra1 + Ros is less
than the corresponding upper bound but it is not within a constant gap. The proof is

similar to case v — 0. Therefore, we omit it.
14. Ri1 + Ris + 2R91 + Ry, bound: We have three bounds as follows:

e Case g =0:

e First,
I(z; y|m2e) + I(210, 123 12) + C5, — Ruye

_ 1+INR}?” +SNRy 1+INR2+SNR> B
—10g< 1+INRZ?? +log 1+INRLT? +Cyp — BlRie

> o (e ) +log (M) + B
Using the concept of (6.117) with (4.40), therefore, this bound which is within 4 bits

to the upper bound (4.40).

e Second,

I(z1; yi|22e) + I(@c; v, Golm1) + 1(1e, 225 Yol 22e) + CF, — Rune
22 22
_ 10g<1+u\|R1 ”+SNR1> +10g<( (1+A5)(1+INR; ) +SNRs >+log<1+lNR2+SNR2 P) LCB

1+INR3?P 14+A2)(1+INR}'P)+SNR3?? 1+INRy'?
ﬁRlc
22p
1+SNR; 1+INR; +SNRy 1+INR2+SNR> B
14+SNR; 1+INRy+SNR; B
= 10%(@) + 10%(—1+|NR;1P ) +Cp -1

which is within 5 bits to the upper bound (4.40).

e Third,

) - . ) B
(21, %e; Y1, B) + 1(2e; Yo| Tics 22c) + I(@1c; 2| 22) + CF5 — Riie
— 1o (14+A2)(14+SNR; +INR1 ) +SNRo+INRo+ |1 1 hoo —hioho1 | o 1+INRS'P+SNR2??
8 (14+A2)(1+INRT?P) +SNR3P 1+INRy'?
—l—lo,g.{(—H”\'R2 ) +CB — B8Ry,

1+INR;'?

14+SNR; +INR1 +SNRo+INRo+|A11 hoa —hioho1 | 1+SNR22P 14+INR
> 2 2
= log( 4As +log renry? )t log 14+INR;'?

+ CB,
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—1og (14 SNR; + INR; + SNRy + INRy + [y — huahor[2) + 10g(1 + INRy)
Using (6.117), therefore, this bound is within 4+1 = 5 bits to the upper bound (4.40).

e Case f = 1: In this case, although above three bounds of Ri; + Ris + 2R + Roo
are less than the corresponding upper bounds but they are not within a constant gap.

The proof is similar to case 3 = 0. Therefore, we omit it.
15. Ri1 + Ri2 + Ry1 + 2R5; bound: We have five bounds as follows:

o Casey=1:

e First,

I(xzc, 15 y1|$1c) + 1(1’2; y2|$lc> fIch) + f(flilc, O ?Jz) + (C281 - 51)+ + ClBg — Riae

1+INR; +SNRI1? 1+INRLP 4 SNR22P 1+INRo-+SNR B
= log /=21 log [ e FoRRy - lo 2 2 cB _ +
& 1+INRT?P T log 1+INRIT? +log 1+INRLT? +(C = &)

+ ClBQ — (Rae — 7 R2e)

1+INR; +SNR}'? 1+SNR22P 14+INRo+SNR B +
> Rl i AT 2Ry 1+INRy+SNRy —
ol 10g< 1+|NR?2P + log 1+|NR%1P + log 1+|NR%1P + (C21 51)

which is within 341 = 4 bits to the upper bound (4.33).

e Second,

(e, 215 1, Bol21e) + 1(22; Yol @1, 226) 4+ I (216, 225 42) + CF) — Riae

— log (14A2) (14SNRTP+INR1 )+ SNR2+INRY P 4| hi1 hoo —hi2ho1 [2 Qi1 Tlo 1+INR} P +SNR2??
=10 (11 22) (11 INRZ7) 1 SNRZZ? 1+INRLT?

1+INR2+SNR B

+ 10g< 1+”3R11p 2) + C _(RQC - 7R20)

> 1o 1+SNR11”+INR1+SNR2+INR11”+\h11h22 hi2ho1]? Qu1p Tlo 1+INRy'” +-SNR5??

= 108 44 1HINR,™
1+INR2+SNR B

T log( 1+||\21R“P 2) +G

> 1o 1+SNR”P+|NR1+SNR2+|NR1 P+ hirhae—hi2ho1]? Quiyp 11 1+SNR3*?

= 108 Ag 1+INRS'?
1+INRy+SNRy B

T log( 1+INRIT? ) +Ch -

which is within 4 bits to the upper bound (4.41)

e Third,

I(me, 215 y1,s ol 21e) + 122 Yo | Tre, 220) + L(22e; vi]21) + 1(21c, 223 Y2 |220)

B B

+ (C21 - 51)Jr + C12 - Rl?c

(14+A2) (14SNR} P +INR1 ) +SNR2 +INR P 4| hi1 hoo —hi2ho1 [2 Qi1 1o 1+INRS P +SNR3??
(14A2)(1+INRZ?P) £ SNR3?? 1+INRy'?

1+INR2+SNR22?
+ log(%) + log<1+l2N—Rélp2> +(CB — &))" + C8, —(Rye — YRa.)

>10g<1+SNR%1P+INR1+SNR2+INR%1P+\h11h227h12h21\QQHP> | <1+SNR§2P
- 422 1+INRLT”

= log
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22
- log(—l’L”\'R1 ) + log<—1+"\lR2+S'\lR2 p) +(C5 — &)+ Ch

1+INR??P 1+INR;'?
- 10g<1 + li“,'{f,gl) +log(1 + SNRM™ £ INR;) +log(1 + INR, + SNRZ?)

Using the concept of (6.117), this bound is within 541 = 6 bits to the upper bound
(4.33)

e Fourth,

I (@2, 213 Y1|21c) + (225 Yo | Tre, @2c) + L (@26 Y1, Yol 1) + 1 (216, T2; Y| 220)
+(C5 — &) +Ch — Riae

_ 1Og<1+|NR1+SNR}1P> n 10g<1+lNR§1F+SNR§2P> n log<( (14+A2) (1+INR1)+SNR> )

1H+INR??P 1+INRS'? 14+A2) (14+INR7?P) +SNR3>?
1+INRy+SNR2%P B 1 B
+ 10g<—1+|NR§1P =)+ (G5 = &)7 + Gy —(Roe — Y Rae)
1+INR; +SNR1? 1+SNR22P 1+INR; +SNR 1+INRz+SNR22?
> A s S IO Ry 1+INR; +5NRo 1F+INRo+SNRy ™
= log< 1+INRS?? +log 1+INRS'? +log 24, +log 1+INRy'?

+(Ch - &)t + O
which is within 44-1 = 5 bits to the upper bound (4.33)
o Fifth,

I(@e, 1 91, Pol1e) + I (225 v2|T1e, @) + I (2e; Y1, Gol21) + I(210, 723 Y| 720) + C5,

- R12c

— Jog [ (1+A2) (LESNRY P +HINR)+SNRo+INR, ¥+ | oz —hnz ot |* Qi
& 1+A5) (1+INRY?P)+SNRS?
1 2

1o (14+A2)(1+INR1 )+SNR2 o 1+INR}'? + SNR2?? 11 1+INRy+SNR3??
& (14+A2)(1+INRT*?)+SNR5 & 1+INR;'? 1+INRS'?

+ C182 _(R2c - /}/RQC)

14+SNR'”+INR; +SNRo+INR} P + |1 hoo —hazha1 |2 Qu1p 1+INR; +SNRo
210%( 15 Hlog( =5
14+SNR22P 1+INRy+SNRZ?P B
1 2 log| ———=% -2
T log 1+INRS'? T log 1HINR,'? +Ch

> log (14 SNR!'” + INR; + SNRy + INRY 1Ay — hrahin* Q11
+log(1 + SNRy + INRy) + CB, — 5
which is within 5 bits to the upper bound (4.41)

Case v = 0: In this case, although above two bounds of Ri; + Ris + Ra1 + 2Rao
are less than the uppers bounds but they are not within a constant gap. The proof is

similar to case v = 1. Therefore, we omit it.

Therefore, we obtain that the bounds in the achievable rate region %% .1 _,, satisfy:

e Ry bound is within 2 bits to upper bounds when 8 = 1;

e %15 bound is within 2 bits to upper bounds when v = 0;
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e Ry bound is within 1 bits to upper bounds when 5 = 0;

e %95 bound is within 2 bits to upper bounds when v = 1;

e Ri1 + Ry5 bound is within 3 bits to upper bounds when 3 = 1 and v = 0;

e R + Ryy bound is within 3 bits to upper bounds when § = 0 and v = 1;

e Ry + Ry + Ry bound is within 4 bits to upper bounds when v = 0;

e Ri1 + Ri5 + Ro bound is within 3 bits to upper bounds when 5 = 1;

e Ri1 + Ry + Roo bound is within 3 bits to upper bounds when v = 1;

e Ris + Ry + R bound is within 4 bits to upper bounds when 5 = 0;

e Ry + Ris + Rs1 + Roo bound is within 4 bits to upper bounds;

e 2Ry, + Ris + Ry + Rao bound is within 4 bits to upper bounds when 5 = 1;
® 11 + 2R15 + Roy + Ros bound is within 4 bits to upper bounds when v = 0;
e Ri1 + Ris + 2Ry + Rss bound is within 5 bits to upper bounds when 5 = 0;

e Ri1 + Ri3 + Ro1 + 2R bound is within 6 bits to upper bounds when v = 1.

Finally, by symmetry, we can relax the above obtained results without loss of generality
for Roy, Ryi1+ Ria+ Rag, Bit+ Roti + Rog, Riy+ Rio+ Roy + Rog, 2Ry + Rig + Rop + R,
RH + 2R12 + Rzl + RQQ, R11 + R12 + 2R21 + RQQ bounds as follows:

e [R5 bound is within 2 bits to upper bounds when 5 = 0;

e Ry + Ry5 + R bound is within 4 bits to upper bounds when 5 = 1;

e 111 + Rs1 + Rys bound is within 4 bits to upper bounds when v = 1;

e Ri1 + Ris + Ro1 + Ryy bound is within 5 bits to upper bounds;

e 2Ri; + Ris + Ro1 + Rss bound is within 6 bits to upper bounds when 5 = 1;
o Ri1 + 2R15 + Ro; + Ry bound is within 6 bits to upper bounds when v = 0;

e Ry + Ris + 2Ry + Rss bound is within 6 bits to upper bounds when 5 = 0;



CHAPTER VII

CONCLUSION

In this dissertation, we give an attempt to understand the fundamental limits of the two-
user Gaussian X channel with limited receiver cooperation. The better comprehension of
these limits leads us to use cooperation in practice efficiently for managing interference
in the two-user Gaussian X channel channel. Furthermore, we provide the strategies for
communications in this channel for the general case and the strong Gaussian X channel
type I case. Three main results of this dissertation can be concluded as follows:

First, as shown in Chapter IV, we give an outer bound based on the Fano’s inequality,
the data processing inequality and the genie-aided techniques for the two-user Gaussian
X channel with limited receiver cooperation. The obtained results present that some of
upper bounds contained in our proposed outer bound are identical to the known results
in several communication scenarios such as the two-user Gaussian interference channel
with/without receiver cooperation [2—4], the two-user Gaussian X channel without receiver
cooperation [14, 15] and the two-user Gaussian Z-interference channel with receiver coop-
eration [31] by setting a certain set of parameters. Furthermore, we show that the region
of our proposed outer bound is larger than the region of an outer bound on capacity re-
gion of the two-user interference channel with limited receiver cooperation [2] and without
cooperation [3,4]

Second, as shown in Chapter V, the proposed outer bound in Chapter IV is then used
to find the GDoF under the symmetric channel setting. The received results show that the
GDoF can be improved obviously by increasing a certain amount of information which is
exchanged between both receivers. However, it is seen that the system reaches the satura-
tion of the receiver cooperation, i.e., there is no more gain when the normalized capacity

of the receiver-cooperative link  is larger than or equal k* where

1. k* =3 fora=

W

o=
ol

2. k¥ =4 fora =
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3. k*=1forax =2

5. k*=2fora=3

Finally, as shown in Chapter VI, we propose the strategies for the two-user Gaussian X
channel with rate-limited receiver cooperation and give achievable rate regions in both the
general case and the strong Gaussian X channel type I case. Our results show that the pro-
posed strategy achieves the capacity region to within 2 bits/s/Hz per message, regardless of
channel parameters, for the case of the strong Gaussian X channel type I when parameters
[ and v in the common rate constraints at each transmitter are set such that each bound
from our proposed strategy except (6.37), (6.43)—(6.49), (6.58)—(6.60), (6.62)—(6.71),
(6.73), (6.87)—(6.110) reaches its maximum value.
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Appendix

List of Publications

Tan-a-ram, S. and Benjapolakul, W. “Upper Bounds for the Two-User Gaussian
X Channel with Limited Receiver Cooperation”, submitted to Frequenz (Journal
of RF-Engineering and Telecommunications), under review. Content taken from

Chapter IV and Chapter V.

Tan-a-ram, S. and Benjapolakul, W. “Achievable Rate Regions for the Two-User
Gaussian X Channel with Limited Receiver Cooperation: General Case”, submit-
ted to IEICE Transactions on Fundamentals of Electronics, Communications and

Computer Sciences, under review. Content taken from Chapter VI.
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