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CHAPTER I INTRODUCTION 

ß-lactam antibiotics, particularly penicillins and cephalosporins, represent the most 

prescribed drugs for infectious diseases.(1) Early on, penicillins were commonly 

prescribed; however, the rate of cephalosporins prescriptions have dramatically 

increased and nowadays cephalosporins have become the most commonly prescribed 

antibiotics for hospital inpatients.(2) Cephalosporins, especially ceftriaxone, were 

reported as the major cause responsible for allergic reactions because they were 

mostly used in clinics.(3-6) In generally, once a cephalosporin allergic reaction had been 

found in a patient, physicians and pharmacists usually avoided re-administering that 

cephalosporin, including other cephalosporins, and other related ß-lactam antibiotics 

to those patients. The abstinence of ß-lactam antibiotics have resulted in the 

prescription of alternative antibiotics, which are generally more expensive for patients 

and cause unnecessary bacterial resistance to new classes of antibiotics.(7) The cross-

reactivity to other ß-lactam antibiotics should be of concern because they share a 

common ß-lactam ring nucleus. However, several studies have also shown that allergic 

reactions could be related to similarity of the side chain.(8, 9) Cephalosporins with 

different side chains may be safely used in patients with a history of cephalosporin 

allergy. The avoidance of all ß-lactam antibiotics in the case of allergy to one of the 

ß-lactam antibiotics may be inappropriate.  

Diagnosis of a drug allergy is necessary for decision-making in drug prescription. Despite 

the validated in vivo or in vitro allergy tests not available for most drugs, skin testing 

is widely used.(10) Penicillins have an available commercial skin test reagents while 



 

 

2 

cephalosporins do not. There is evidence showing that low molecular weight 

compounds, termed haptens, could sensitize an allergic reaction in vivo, as an 

antigenic determinant, by covalent conjugation to macromolecular carriers such as 

protein.(11-16) The commercial skin test kit of penicillins is composed of a major antigenic 

determinant (benzylpenicilloyl-polylysine conjugate) and a minor antigenic 

determinant mixture (a mixture of benzylpenicillin and its degradation products such 

as benzylpenicilloate, benzylpenicilloic acid).(17)  

This study has attempted to reveal the relationship between the structure of 

ceftriaxone and its immunogenicity. The tested compounds, including ceftriaxone 

itself, and other cephalosporins which share an identical or different side chain with 

ceftriaxone, its side chain moieties, cephalosporins ring nucleus, degradation products, 

and octalysine conjugated products, were prepared. The immunogenicity of tested 

compounds was evaluated using an enzyme-linked immunosorbent spot (ELISPOT) 

assay technique. Eventually, knowledge of the relationship between the structure and 

immunogenicity of ceftriaxone could lead to the development of a standard approach 

for cephalosporin allergy diagnosis. 

 



 

 

CHAPTER II LITERATURE REVIEW 

ß-Lactam antibiotics 

ß-lactam antibiotics have been the most used antibiotics due to their broad spectrum 

of antibacterial action. The first ß-lactam antibiotic, penicillin, was discovered in 

Penicillium mold by Alexander Fleming. Nowadays, ß-lactam antibiotics encompass 

various drugs, due to continuous development. A four-membered cyclic amide ring, 

also known as the ß-lactam ring, is presented in all ß-lactam antibiotics. ß-lactam 

antibiotics have been classified based on a core nucleus of drug molecules, as shown 

in Figure 1.(18-20) 

 

   
ß-Lactam ring Penicillin Cephalosporin Carbapenem 

    
Clavulanate Penam sulfone Penems Monobactam 

Figure 1: The structures of the ß-lactam ring and ß-lactam family 

ß-lactam antibiotics are bactericidal antibiotics; their activity arises from the inhibition 

of biosynthesis of bacterial cell walls. The ß-lactam ring portion binds to penicillin-

binding proteins (PBPs), a group of bacterial enzymes, thereby rendering them inactive 

for their role in cell wall synthesis. 
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Cephalosporins 

Cephalosporins are semi-synthetic antibiotics derived from naturally occurring 

cephalosporins C that was first isolated from cultures of Cephalosporium acremonium.  

A cephalosporin nucleus, a 7-aminocephalosporanic acid (7-ACA), consists of a four-

membered cyclic amide ring (ß-lactam ring) and a dihydrothiazine ring. The variety of 

side chains at the C3 (methylene substituent, R2) and C7 position (acylamino group, R1) 

results in a variety of cephalosporins and antibacterial spectrums.(16, 20, 21) The ring 

nucleus of cephalosporins is shown in Figure 2. 

 

Figure 2: The structure of cephalosporins ring nucleus 

Due to variations in their chemical structures and antibacterial spectrums, they are 

classified into five generations. In brief, first- and second-generation cephalosporins 

show good activity against gram-positive bacteria, while most third- generation 

cephalosporins have better gram-negative activity. The fourth- and fifth-generation 

agent have both gram-positive and gram-negative activity.(22, 23) The classification of 

cephalosporins is shown in Table 1.  
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Table 1: Cephalosporins classification(22, 23) 

1st 
Generation 

2nd 
Generation 

3rd 
Generation 

4th 
Generation 

5th 
Generation 

Cefadroxil Cefaclor Cefdinir Cefepime Ceftaroline 
Cefazolin Cefamandole Cefixime Cefpirome  
Cephalexin Cefmetazole Cefodizime   
Cephalotin Cefminox Cefoperazone   
Cephapirin Cefonicid Cefotaxime   
Cephradine Cefotetan Cefpodoxime   
 Cefotiam Ceftizoxime   
 Cefoxitin Cefpiramide   
 Cefuroxime Ceftazidime   
 Loracarbacef Ceftibuten   
  Ceftriaxone   

 
Ceftriaxone 

The chemical structure of ceftriaxone (C18H18N8O7S3, MW 554.58) is shown in Figure 3. 

There are three pKa values; pKa1 2.37 (COOH), pKa2 3.03 (aminothiazole), and pKa3 4.21 

(hydroxytriazinone). The sodium salt of ceftriaxone (C18H16N8Na2O7S3·3½H2O, MW 

661.60) was used in this study. Ceftriaxone sodium is soluble in water and sparingly 

soluble in methanol.(24, 25) 
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Figure 3: A chemical structure of ceftriaxone 

Drug allergy and immunogenicity of cephalosporins 

Drug allergy or drug hypersensitivity is a small subset of all adverse drug reactions 

(ADR). Hypersensitivity reactions are divided into four types, according to the Gell and 

Coombs classification system. Type I hypersensitivity is mediated by an IgE antibody. 

The response (such as; urticaria, angioedema, bronchospasm, pruritus, anaphylaxis) is 

very rapid. Type II, a cytotoxic reaction, is mediated by specific IgG or IgM antibodies 

and causes hemolytic anemia. Type III is activated by an antigen-antibody complex 

and results in serum sickness. Type IV, the delayed type, is based on cell mediated. 

For the delayed type, the drug molecules are presented to T cells by a major 

histocompatibility complex (MHC). Cytokines and inflammatory mediators are released. 

Allergic contact dermatitis is presented in 2 to 7 days after drug exposure.(26) 

The stimulation on T cells can be described by three pathways; the hapten/pro-hapten 

concept, the pharmacological interaction (PI) concept, and the altered peptide 

repertoire model.(27-32) The hapten concept explains that the small molecules (less 

than 1000 Da), termed hapten, are not antigenic by themselves. They can become 

antigenic by irreversible covalent conjugation with a macromolecular carrier, such as 
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an endogenous protein. This implies that the hapten is a chemically reactive molecule. 

On the other hand, many drugs can elicit immune responses even though they are 

chemically inert molecules. This phenomenon might be explained by the pro-hapten 

concept, in that the non-reactive molecules gain their reactivity by metabolism and 

become reactive. After that it is like the hapten concept, the metabolites bind to 

endogenous protein and elicit an immune response. The modified proteins from 

haptenization are disturbed in their functions. They might lead to inflammation, 

production of danger signals, activation of dendritic cells and T cells, and, eventually, 

immune responses. For the PI concept, the drugs that lack chemical reactivity might 

fit with an adequate affinity to an appropriate T cell receptors or to the MHC 

molecules. This non-covalent and reversible interaction can lead to an immune 

response. For the altered peptide repertoire model, the culprit drug changes the 

chemistry of the binding cleft since the drug occupies the peptide-binding groove 

position of MHC protein. These peptides are recognized as a foreign by the immune 

system. 

According to the hapten hypothesis, cephalosporins could conjugate with an 

endogenous protein and become an antigenic determinant. Their immunogenicity may 

cause immediate reactions mediated by IgE antibodies,(33, 34) or non-immediate 

reactions mediated by T lymphocytes.(35) The allergic response may be either selective 

reactivity to unique cephalosporins or cross-reactivity to other ß-lactam antibiotics.(36, 

37)  
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Structural studies on immunogenicity of cephalosporins 

Carbonyl moiety in the ß-lactam ring of penicillins or cephalosporins could bind to 

endogenous protein that act as a nucleophile under physiological conditions; 

therefore, a penicilloyl or cephalosporoyl derivative is formed. The structure of a 

penicillin major antigenic determinant, a penicilloyl derivative, is stable enough for 

isolation and elucidation. Therefore a commercial benzylpenicillin major antigenic 

determinant, a benzylpenicilloyl-polylysine conjugate, is available. On the other hand, 

the cephalosporoyl derivative was difficult to isolate and elucidate due to its stability. 

It was proposed that this cephalosporoyl derivative is unstable and undergoes a 

process of multiple fragmentation in the dihydrothiazine ring.(21, 22, 38, 39) 

 

Figure 4: Penicilloyl (left) and cephalosporoyl (right) derivatives 

Several studies have attempted to reveal the cephalosporins antigenic determinant. 

The antigenic determinant of cephalothin was studied and reported by Brandriss et al. 

The human γ-globulin (HGG) conjugated compounds of cephalothin and 

benzylpenicillin were prepared. Their immunogenicity was studied in rabbits using 

hemagglutination and passive cutaneous anaphylaxis reactions. The HGG-cephalothin 

conjugate elicited the formation of antibodies. The cross-reaction between the HGG-

cephalothin conjugate and HGG-benzylpenicillin conjugate was shown. The authors 
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claimed that cephalothin becomes an antigenic determinant through protein adduct 

at ß-lactam carbonyl carbon. However, the structure of HGG-cephalothin conjugate, an 

antigenic determinant, had not been proved.(40)   

Cephalothin Benzylpenicillin  

Figure 5: Structures of ß-lactam antibiotics which were studied by Brandriss et al.(40) 

Batchelor et al. studied the immunogenicity of cephalosporin derivatives (cephalothin 

and cephaloridine) and their cross-reaction with penicillins (benzylpenicillin and 6-

aminopenicillanic acid, 6-APA). The bovine γ-globulin (BGG) and polylysine (PLL), with 

the degree polymerizations of 16 and 65, were used as protein carrier to form 

conjugates. The protein conjugates of 6-APA and benzylpenicillin showed a high degree 

of cross-reaction. The protein conjugate of 6-APA showed no cross-reaction to protein 

conjugates of cephalothin and cephaloridine. The authors concluded that a ring 

nucleus was involved in the allergic reactions. However, there was a cross-reaction 

between the protein conjugate of benzylpenicillin and cephalosporins (cephalothin, 

cephaloridine). The author ascribed that might be due to an immunologically similar 

side chain.(41)  
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Benzylpenicillin

CephaloridineCephalothin

6-Aminopenicillanic Acid (6-APA)

 

Figure 6: Structures of ß-lactam antibiotics which were studied by Batchelor et al.(41) 

Structural correlation with cross-reactivity of ß-lactam antibiotics was performed by 

Uno and Yamasaku. Tested compounds were studied by using a leucocyte migration 

inhibition test. The cross-reactivity of tested compounds was evaluated in sixteen 

patients with history of allergy to cephalosporins that contained a tetrazolyl group at 

C3. The results showed degree of cross-reaction of 78% to cephalosporins with the 

tetrazolyl group, 33% to cephalosporins ring nucleus (7-ACA), 29% to tetrazolyl free 

moiety, 5% to cephalosporins without the tetrazolyl group, and 0% to penicillins. The 

authors suggested that the tetrazolyl free moiety, as well as cephalosporins ring 

nucleus moiety, were strongly involved in cephalosporins containing tetrazolyl group 

allergy.(42)  

Tetrazolyl group 7-aminocephalosporanic acid (7-ACA) 
Figure 7: Structures of compounds which were studied by Uno and Yamasaku(42) 
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Miranda et al. studied the role of side chains on cross-reaction between penicillins and 

cephalosporins. Amoxicillin showed a high degree of cross-reaction to cefadroxil with 

no cross-reaction to cefamandole. These results implied that the C7 side chain of 

cephalosporins contribute to the cross-reactivity.(43) Furthermore, Pham and Baldo 

reported that both side chains at C3 and C7 of cephalosporins were necessary for 

antibody recognition.(44) 

CefamandoleCefadroxil

Amoxicillin

 

Figure 8: Structures of ß-lactam antibiotics which were studied by Miranda et al.(43) 

Sánchez-Sancho et al. and Montañez et al. attempted to study the structure of 

protein-cephalosporin conjugates. The proposed epitopes that may arise from 

degradation of protein-cephalosporin conjugates were synthesized. The synthesized 

epitopes were then tested for their immunogenicity using radioallergosorbent and 

radioallergosorbent inhibition test. The author suggested that the S1-C6 bond in the 

dihydrothiazine ring of protein-cephalosporin conjugates could break down due to 

degradation in vivo. They confirmed that the C7 side chain of cephalosporins was 

necessary for IgE recognition.(38, 39) 
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Protein or peptide conjugate of ß-lactam antibiotics synthesis 

The preparative procedure of protein conjugate of benzylpenicilloyl was presented by 

Levine. Alkyl amines, aromatic amines and polylysine with various degrees of 

polymerization were used as carriers. The reaction was performed in alkaline condition 

(maintained pH about 10-11) at room temperature. The conjugate was precipitated 

from the reaction mixture by adjusting pH to 3.6 and washed with cold water. The 

precipitate was re-dissolved in an alkaline aqueous solution, re-precipitated at pH 3.6, 

and washed with cold water. Finally, it was dried by lyophilization.(45, 46) For a 

benzylpenicilloyl-octa-L-lysine conjugate, the benzylpenicilloyl content was assayed 

with a penamaldate assay. Levine claimed that the number of benzylpenicilloyl groups 

per molecule of octa-L-lysine was 8.02.(46) 

The human γ-globulin (HGG) conjugates of benzylpenicillin and cephalothin were 

prepared by Brandriss et al. The conjugate formation was performed at pH 10.5-11.0 

and room temperature. Finally, the reaction solution was brought to pH 7.5-8.0. The 

conjugate was dialyzed against a buffered saline solution. The author claimed that the 

conjugate contained 25-35 benzylpenicilloyl groups per molecule of HGG. The amount 

of cephalothin in the conjugate molecule was not reported.(40)  

Batchelor et al. prepared the protein conjugate of four ß-lactam antibiotics 

(benzylpenicillin, 6-APA, cephalothin, and cephaloridine). The native antibiotics 

reacted with bovine γ-globulin (BGG) and polylysine (average degree polymerization 

of 16 and 65) in an aqueous solution at pH 11-12, 23ºC, for 24 hours. The reaction 
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solution was subjected to exhaustive dialysis against de-ionized water and then 

lyophilized. There were no data of conjugate characterization.(41) 

A conjugation of cefaclor and human serum albumin (HSA) was prepared by Pham and 

Baldo. The reaction was performed at pH 5.5 for 20 hours at 25ºC and the conjugates 

were dialyzed against distilled water at 0ºC for 3 days. Characterization of the 

conjugates was not reported.(44) 

Zhao et al. prepared the benzylpenicilloyl-polylysine (polylysine with a degree of 

polymerization of 50) and benzylpenicilloyl-HSA conjugates in an alkaline solution at 

room temperature for 2 hours. The conjugates were cleaned up using a Sephadex G-

25 column, dialyzed, and lyophilized. Characterization of the conjugates was 

performed by using a penamaldate assay and nuclear magnetic resonance (NMR) 

spectrometer. The NMR results revealed that a conjugation bond occurred between 

carbonyl carbon in the ß-lactam ring of benzylpenicillin and the ε-amino group of 

polylysine. The penamaldate assay showed that the benzylpenicilloyl group was 

contained in the benzylpenicilloyl-polylysine conjugate for 11-67% and in the 

benzylpenicilloyl-HSA conjugate for 24-59%.(47) 

 



 

 

CHAPTER III MATERIALS AND METHODS 

OBJECTIVE 

This study focused on the relationship between the structure of ceftriaxone and its 

immunogenicity. Briefly, twelve tested compounds were selected and prepared. The 

structures of all compounds were characterized spectroscopically, the purity 

determined, and their immunogenicity evaluated. 

MATERIALS 

Apparatus and instruments 

– Analytical balance (Mettler Toledo, Switzerland) 

– Analytical column; a C18 column, XSelect® CSH™, 2.1x100-mm, 2.5-µm 

(Waters, USA) 

– Autopipette, Rainin Pipet-Lite (Mettler Toledo, USA) 

– Filter paper No.1 (Whatman, UK) 

– Freeze dryer (Labogene, Denmark) 

– HPLC/PDA; a HPLC system included two of LC 10ADVP pumps, an 

autosampler, a column oven, and a photo diode array detector (Shimadzu, 

Japan) 

– HPLC/MS; a HPLC system (Dionex, USA) couple to micrOTOF-Q II, a tandem 

mass spectrometer with an electrospray ionization ion source (ESI-Q-TOF), 

(Bruker, USA) 

– Magnetic stirrer/hot plate (Corning, USA) 
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– NMR spectrometer (500 MHz), AVANCE III HD (Bruker, USA) 

– Nylon membrane filter, 0.22-µm (Pall Corporation, USA) 

– Nylon syringe filter, 0.22-µm (Filtrex, USA) 

– Refrigerated centrifuge (Labogene, Korea) 

– Sep-Pak® C18, 3-mL, 500-mg (Waters, USA) 

– TLC Silica gel 60 F254, plastic sheet (Merck, USA) 

– Ultrasonic bath (Elma Schmidbauer, Germany) 

– Vortex mixer (Vortex-Genie, Germany) 

– Water purification system (Millipore, Germany) 

Chemicals and reagents 

– 2-Amino--(methoxyimino)-4-thiazoleacetic acid (Sigma-Aldrich, USA) 

– 7-Aminodesacetoxycephalosporanic acid (Tokyo Chemical Industry, Japan) 

– Ammonium formate (Acros, USA) 

– Ammonia solution (Lobachemie, India) 

– Cefepime dihydrochloride monohydrate (S.Z. Phystandard Bio-Tech Co., Ltd., 

China) 

– Cefotaxime sodium (Tokyo Chemical Industry, Japan) 

– Cefoperazone (S.Z. Phystandard Bio-Tech Co., Ltd., China) 

– Cefpirome sulphate (BePharm Ltd., China) 

– Ceftazidime (Tokyo Chemical Industry, Japan) 

– Ceftriaxone disodium hemiheptahydrate (Tokyo Chemical Industry, Japan) 

– D2O (Merck, Switzerland) 
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– Disodium hydrogen phosphate (Merck, Germany) 

– DMSO-d6 (Merck, Switzerland) 

– Formic acid (Merck, Germany) 

– Hydrochloric acid (Merck, Germany) 

– L-Lysine (Sigma-Aldrich, USA) 

– Methanol (B&J, Korea) 

– Octa-L-lysine (GenScript, USA) 

– Potassium chloride (Merck, Germany) 

– Potassium dihydrogen phosphate (Merck, Germany) 

– Sodium chloride (Merck, Germany) 

– Sodium hydroxide (Merck, Germany) 

– Tetrahydro-2-methyl-3-thioxo-1,2,4-triazine-5,6-dione (Sigma-Aldrich, USA) 
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METHODS 

The overall approach of this study was composed of the preparation of tested 

compounds and screening of immunogenicity of the prepared tested compounds.  

Tested compounds 

This study was designed to test the immunogenicity of twelve compounds as shown 

in Figure 9. Ceftriaxone itself was certainly included in our study. Furthermore, 

cephalosporins which share an identical R1 side chain with ceftriaxone (cefepime, 

cefpirome, and cefotaxime) and cephalosporins which contain different side chains 

from ceftriaxone (ceftazidime and cefoperazone) were also selected.  

Small moieties which represented the cephalosporin ring nucleus (7-

aminodesacetoxycephalosporanic acid, 7-ADCA), R1 side chain of ceftriaxone (2-amino-

-(methoxyimino)-4-thiazoleacetic acid, MTTA), and R2 side chain of ceftriaxone 

(tetrahydro-2-methyl-3-thioxo-1,2,4-triazine-5,6-dione, TMTD) were also included. 

Due to the stability issue of ceftriaxone, it is possible that the compound can be 

degraded under hydrolytic reaction conditions. So the degradation products of 

ceftriaxone (desacetylcefotaxime and desacetylcefotaxime lactone) were also 

included. 

According to the hapten hypothesis described previously, the octalysine-ceftriaxone 

conjugated compound is interesting and therefore included in our study. Thus, this 

conjugate was synthesized. 
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Figure 9: Structures of tested compounds 

 
 
 

Ceftriaxone Cefotaxime Cefepime 

Cefpirome Ceftazidime Cefoperazone 

Desacetylcefotaxime Desacetylcefotaxime lactone Octalysine-ceftriaxone conjugated 

2-Amino-α-(methoxyimino)-4-
thiazoleacetic acid (MTTA) 

Tetrahydro-2-methyl-3-thioxo-1,2,4-
triazine-5,6-dione (TMTD) 

7-Aminodesacetoxy 
cephalosporanic acid (7-ADCA) 
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Synthesis of desacetylcefotaxime 

Cefotaxime sodium (0.936 g) was dissolved in 20 mL of 0.3 N sodium hydroxide 

solution. The reaction solution was stirred in an ice bath with a temperature not greater 

than 5ºC. The reaction was monitored by TLC (silica gel 60 F254) using a mixture of 

methanol : ethyl acetate (1:2) as a developing solvent. After 3 hours, the solution was 

brought to pH 7-8 using hydrochloric acid and cleaned up by solid-phase extraction 

(SPE) with an octadecyl (C18) cartridge (Sep-Pak®). Finally, the eluted solution was 

lyophilized.  

Synthesis of desacetylcefotaxime lactone 

Cefotaxime sodium (0.468 g) was dissolved in 10 mL of 0.3 N sodium hydroxide 

solution. The reaction solution was stirred in an ice bath with a temperature not greater 

than 5ºC. After 3 hours, the solution was brought to about pH 2 with hydrochloric acid 

and proceeded by stirring at room temperature. After 2 hours, the stirred solution was 

cooled down in an ice bath and brought up to pH 7-8 using a 2 N sodium hydroxide 

solution. The reaction was followed by TLC (silica gel 60 F254) using a mixture of 

methanol : ethyl acetate (1:2) as a developing solvent. The formed precipitate was 

collected using filter paper No.1 and washed with a small amount of cold ultrapure 

water. The moist precipitate was lyophilized. 
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Synthesis of octalysine-ceftriaxone conjugate 

Octalysine (52.17 mg) and ceftriaxone disodium hemiheptahydrate (66.16 mg) was 

dissolved in 1 mL of 0.1 N sodium hydroxide solution. The reaction solution was then 

stirred at room temperature and maintained at about pH 11. The reaction was 

monitored by TLC (silica gel 60 F254) using a mixture of water : methanol : ethyl acetate 

: ammonia solution (0.5:1:1.5:0.05) as a developing solvent. After 2 hours, the solution 

was brought to pH 7-8 with 1 N hydrochloric acid solution, centrifuged at 5000 rpm, 

4ºC for 10 minutes and cleaned up by Sep-Pak® C18. Finally, the eluted solution was 

lyophilized. 

Structure confirmation of tested compounds 

The structures of all tested compounds were confirmed using nuclear magnetic 

resonance (NMR) spectroscopy and high resolution mass spectrometry (HRMS) 

techniques. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE III HD 

NMR spectrometer at 500 MHz. All chemical shifts () were reported in parts per million 

(ppm). Mass spectra were recorded on a Bruker micrOTOF-Q II mass spectrometer with 

an electrospray ionization ion source (ESI-Q-TOF) in positive mode. 

Purity determination of tested compounds 

Purity of the tested compounds was determined by using high performance liquid 

chromatography coupled with a photo diode array detector (HPLC/PDA). All tested 

compounds were prepared with a concentration of 100 µg/mL. The chromatographic 

separation was on an XSelect® CSH™ C18 column (2.1x100-mm, 2.5-µm) operated at 
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40ºC. The mobile phase was a gradient of buffer (5 mM ammonium formate or 0.1% 

formic acid) and methanol with a flow rate of 0.3 mL/min. The peak purity values were 

considered using the PDA which was operated in the wavelength range of 200-800 nm. 

The percentage of area responses from the specific wavelength was reported as 

chromatographic purity of the tested compound. 

For the octalysine-ceftriaxone conjugate, the free octalysine, an excess reactant, was 

determined using HPLC coupled with a mass spectrometer (HPLC/MS). The 

chromatographic separation was on a C18 column (XSelect® CSH™, 2.1x100-mm, 2.5-

µm) operated at 40ºC. The mobile phase was an isocratic of 0.1% formic acid and 

methanol with a flow rate of 0.3 mL/min. The mass spectrometer was operated in 

positive electrospray ionization (ESI+) mode. The ions were monitored with a selected 

ion monitoring (SIM) mode. Quantification was achieved by monitoring the ions at m/z 

of 261.6998. Purity of the octalysine-ceftriaxone conjugate was considered using both 

HPLC/PDA and HPLC/MS results. 

Biological samples 

Control sample 

The peripheral blood mononuclear cells (PBMC) from 10 control subjects without a 

history of ß-lactam antibiotics allergy were used as control samples. The research 

protocol with the title of “Relationship between the structure and immunogenicity of 

ceftriaxone” was approved by the Institutional Review Board of the Faculty of 
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Medicine, Chulalongkorn University (Certificate of approval No. 630/2015, IRB No. 

131/58, Approval date: September 17, 2015).  

Allergic sample 

The retained PBMC from allergic subjects with a history of ceftriaxone allergy were 

used as allergic samples. Those PBMC were obtained from a study with the title of “In 

vitro investigation to study cross-reactivity reactions to third generation cephalosporins 

in patients with a history of beta-lactam allergy” (Certificate of approval No. 523/2014, 

IRB No. 251/57, Approval date: August 7, 2014).  

Blood sample collection and processing 

Whole blood samples (20 mL) were collected into acid-citrate dextrose (ACD) 

anticoagulant tubes. PBMC were separated from the whole blood by a density gradient 

centrifugation technique using Ficoll-Hypaque solution and kept frozen in liquid 

nitrogen until use. 

ELISPOT assay 

The 96-well flat-bottom nitrocellulose plates (MultiScreen HTS™ IP, Millipore, Ireland) 

were coated with anti-human IFN-γ mAb 1-D1K (Mabtech, Sweden). The plates were 

incubated overnight at 4ºC. They were washed with phosphate buffer saline (PBS), 

blocked by 10% inactivated fetal bovine serum (FBS) in RPMI medium (RPMI 1640, 

PAN™ Biotech, Germany) at 37ºC for at least 1 hour, and then washed with PBS. PBMC 

were seeded in wells (200,000-250,000 cells per well) and incubated at 37ºC in 5% 
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CO2 in the presently tested compounds with a concentration of 400 µM (10 µg/mL for 

octalysine-ceftriaxone conjugate). Wells containing PBMC alone served as negative 

controls and wells containing PBMC spiked with phytohemagglutinin (PHA, Sigma®, 

USA) served as positive controls. After 40-48 hours, the plates were washed with PBS 

6 times. Anti-human IFN- mAb biotinylated (Mabtech) was added into the wells, 

incubated at 37ºC for 1.5 hours, and washed with PBS 6 times. Streptavidin-alkaline 

phosphatase solution (Mabtech) was added into each well, incubated at 37ºC for 1 

hour and washed with PBS 6 times. Spots were performed using 5-bromo-4-chloro-3-

indolyl phosphate (BCIP) and nitroblue tetrazolium (NBT) as substrates. The number of 

spots was analyzed using the ELISPOT reader and values greater than the mean plus 

2 standard deviations (SD) of the spot from 10 control subjects, each tested 

compound, were defined as positive. 

 



 

 

CHAPTER IV RESULTS AND DISCUSSION 

PREPARATION OF TESTED COMPOUNDS 

Design of tested compounds 

Cephalosporins, especially ceftriaxone, are among the most commonly reported drugs 

causing allergic reaction;(3-6) the relationship between the structure and its 

immunogenicity is of our current interest. This study focused on the relationship 

between the structure of ceftriaxone and its immunogenicity. Twelve compounds were 

designed and prepared. Ceftriaxone itself was specifically selected for our study. 

Cross-reactions between ß-lactam antibiotics that share the same side chain have been 

reported in several studies.(41-44) Cephalosporins that share the same R1 side chain with 

ceftriaxone (cefotaxime, cefepime, and cefpirome) were selected for our study. 

Furthermore, the cephalosporins that contain different side chains from ceftriaxone 

(ceftazidime and cefoperazone) were also included. 

There are some studies reporting that the ring nucleus of ß-lactam antibiotics as well 

as their side chains, both R1 and R2 side chains, could contribute to immunogenicity of 

ß-lactam antibiotics. Therefore, the cephalosporin ring nucleus, 7-ADCA, was included. 

Moreover, the R1 and R2 side chain moieties, MTTA and TMTD, were also included. 

Due to the stability issue of ceftriaxone,(48) the R2 side chain might be cleaved from 

ceftriaxone, while the ß-lactam ring still remains, to provide a degradation product, 

desacetylcefotaxime. In addition, a lactone derivative could be derived from 
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desacetylcefotaxime in an acidic environment. Therefore, the two plausible 

degradation products (desacetylcefotaxime and desacetylcefotaxime lactone) were 

prepared and studied in this work. 

According to the hapten hypothesis, small molecules bind to macromolecules, carrier 

protein, to provoke an immune response. In our study, octalysine (MW 1043.40) was 

used as such a carrier protein. Octalysine-ceftriaxone conjugate was thus prepared. 

Synthesis of desacetylcefotaxime 

Desacetylcefotaxime not only is a degradation product of cefotaxime but also a 

degradation product of ceftriaxone as described in Figure 10. The free R2 side chain of 

cefotaxime is easier to remove from the reaction; hydrolysis of cefotaxime provided 

desacetylcefotaxime as a degradation product together with acetic acid as a free R2 

side chain. So, cefotaxime was used as a reactant to produce the desacetylcefotaxime 

in our study. 

 
 

Figure 10: The hydrolysis reaction of cefotaxime and ceftriaxone 
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Ceftriaxone 

Desacetylcefotaxime Desacetylcefotaxime 
lactone 
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The reaction was set up in an alkaline condition using sodium hydroxide solution as 

described in the previous work by Fabre et al.(49) and Vilanova et al.(50) The first attempt 

in our experiment was based on concern of the nucleophilic attack towards the 

stability of the ß-lactam ring. In order to preserve the ß-lactam ring, the synthetic 

reaction of desacetylcefotaxime was initially set up at low temperature. Cefotaxime 

was dissolved in sodium hydroxide solution and stirred in an ice bath. The reaction 

was monitored with TLC (silica gel 60 F254) using a mixture of methanol : ethyl acetate 

(1:2) as a developing solvent. In the first attempt, the reaction was performed until the 

cefotaxime disappeared. At the end of the reaction time, the spot of cefotaxime at 

the Rf value of 0.42 disappeared. It showed only one UV-absorbed spot at the Rf value 

of 0.25. The TLC results are shown in Figure 11. 

 Initial    At the end 

 

Figure 11: TLC results from synthesis reaction of desacetylcefotaxime. 1) cefotaxime 
standard solution; 2) reaction solution at initial or at the end of reaction time; 3) co-
spot. 
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Rf = 0.25 
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The reaction solutions at the initial and end reaction times were analyzed by 

HPLC/PDA. The chromatograms of both reaction solutions are shown in Figure 12. At 

the end of the reaction time, the peak of cefotaxime at the retention time of 4.1 min 

disappeared. Two peaks with retention times of 2.3 and 2.8 min were observed at the 

end of the reaction time.  

The HPLC/UV/MS result of reaction solutions at the end of the reaction times showed 

two peaks in both the UV and MS detectors (Figure 13). Each peak was considered 

(Figure 14). Although the two peaks showed the same molecular ion at m/z of 414 and 

827, the differences in their retention times convinced us that they were different 

species. According to reverse phase chromatographic separation, the species in the 

second peak showed less polarity than the species in the first peak. The structure of 

both species was proposed based on molecular ion data. The proposed species in the 

first and second peak were desacetylcefotaxime and its dimer, respectively. The results 

revealed that the dimer of desacetylcefotaxime was generated together with 

desacetylcefotaxime in this synthetic reaction. 

The dimer of desacetylcefotaxime was a by-product of this reaction. Amino moiety in 

the R1 side chain, the aminothiazole group, is deprotonated under the reaction 

condition. The deprotonated amino group could attack the ß-lactam ring of the second 

molecule of desacetylcefotaxime to form a corresponding dimer. The dimer was 

difficult to remove from the desacetylcefotaxime. Hence, it was challenging to 

minimize an amount of dimer in this synthesis; the amount of dimer was thus targeted 

to not exceed 5%. So, the reaction was stopped prior to completion. Column 
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chromatography was used to remove the remaining cefotaxime. Eventually, this 

procedure provided desacetylcefotaxime with a purity of 96.6% in a 53.8% yield. 

 

Figure 12: HPLC/PDA chromatograms of the reaction solutions at initial (upper) and 
the end (lower) of reaction time from desacetylcefotaxme synthesis. Mobile phase 
was a gradient of 5 mM ammonium formate and methanol. The chromatographic 
separation was on a C18 column (XSelect® CSH™, 2.1x100-mm, 2.5-µm).  
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Figure 13: HPLC/UV/MS chromatogram of the reaction solution at the end of reaction 
time from desacetylcefotaxme synthesis. Mobile phase was a gradient of 5 mM 
ammonium formate and methanol. The chromatographic separation was on a C18 
column (XSelect® CSH™, 2.1x100-mm, 2.5-µm).  
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Figure 14: Mass spectra at retention time of 3.6 (upper) and 5.0 (lower) min from 
chromatogram in Figure 13. 
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Synthesis of desacetylcefotaxime lactone 

As shown in Figure 10, desacetylcefotaxime lactone can be derived from 

desacetylcefotaxime via hydrolysis. The deacetylated derivative of cefotaxime was 

generated at low temperature under alkaline condition and consecutively converted 

to the lactone derivative under acidic condition. TLC (silica gel 60 F254) with a 

developing solvent of methanol : ethyl acetate (1:2) was used to monitor the reaction. 

The reaction was performed until all the desacetylcefotaxime was converted to 

desacetylcefotaxime lactone. The TLC result is shown in Figure 15. In an acidic 

condition, we observed a new UV-absorbed spot at the Rf value of 0.75. The product 

precipitated when the pH of the reaction solution was brought up and the temperature 

was cooled down. However, a dimer of desacetylcefotaxime lactone was observed 

(Figure 16 and Figure 17). It might come from a dimer of desacetylcefotaxime. 

Eventually, this procedure provided desacetylcefotaxime lactone with a purity of 

97.6% in a 60.5% yield. 

 

Figure 15: TLC result from synthesis reaction of desacetylcefotaxime lactone. 1) 
cefotaxime standard solution; 2) reaction solution in alkaline condition; 3) reaction 
solution in acidic condition; 4) co-spot. 
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Figure 16: HPLC/UV/MS chromatogram of precipitated product from 
desacetylcefotaxime lactone synthesis. Mobile phase was a gradient of 5 mM 
ammonium formate and methanol. The chromatographic separation was on a C18 
column (XSelect® CSH™, 2.1x100-mm, 2.5-µm). 
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Figure 17: Mass spectra at retention time of 5.3 (upper) and 6.3 (lower) min from 
chromatogram in Figure 16. 
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Synthesis of octalysine-ceftriaxone conjugate 

Reaction between monolysine and ceftriaxone 

Hydrolysis of the ß-lactam ring of ceftriaxone and the conjugation reaction may 

compete; so, an appropriate condition was investigated. Monolysine (C6H14N2O2, MW 

146.19) was used for a preliminary study of the conjugation reaction. The conjugate 

reaction of monolysine and ceftriaxone is proposed in Figure 18. The formula of the 

monolysine-ceftriaxone conjugate is C20H27N7O7S2 with a molecular weight of 541.60. 

 

Figure 18: Conjugation reaction of monolysine and ceftriaxone 

The reaction between monolysine and ceftriaxone was performed in a 0.1 N sodium 

hydroxide solution at room temperature. The conjugated product was analyzed using 

HPLC/MS (Figure 19).  

Under alkaline condition, the amino moiety of lysine is deprotonated into a good 

nucleophile. A carbonyl group of the ß-lactam ring of ceftriaxone was attacked by the 

amino group of lysine. The R2 side chain was cleaved from C3 of the ceftriaxone. On 

the other hand, the protonated amino group of lysine, acting as a poor nucleophile, 

does not react to the ß-lactam ring of ceftriaxone, while a water molecule does. So, 
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degradation of ceftriaxone occurs. Control of the ionization state of lysine needs to be 

a concern for conjugation. 

 

Figure 19: Mass spectrum from the reaction between monolysine and ceftriaxone that 
performed in alkaline condition at room temperature 

Octalysine stability 

The chemical structure of octalysine (C48H99N16O9, MW 1043.40) is shown in Figure 20. 

Since the hapten hypothesis could be one explanation for allergic reactions, a peptide 

conjugate of ceftriaxone was prepared for this study. Octalysine was used as a carrier 

protein in order to form an octalysine-ceftriaxone conjugate in this study. Due to a 

concern of peptide bond stability, stability of octalysine was investigated prior to 

performing the conjugate reaction. 
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Figure 20: A chemical structure of octalysine 

The stability of octalysine was studied under various conditions. An octalysine solution 

was prepared with a concentration of 50 mM and stirred for 18 hours in water at room 

temperature, in water at 60ºC, in 0.45 N hydrochloric acid solution at room 

temperature, and in 0.45 N sodium hydroxide solution at room temperature. The 

testing solutions were analyzed using a mass spectrometer.  

Mass spectra in Figure 21 shows the signal of octalysine with protonated molecular 

ions of [M+3H]3+ and [M+4H]4+. A broken piece of octalysine (Table 2) was not detected 

in any MS testing condition. The result suggests that octalysine was stable under testing 

conditions within the MS detection experiment. 
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Table 2: Theoretical m/z of the predicted broken piece of octalysine 

Sequence m/z Sequence m/z 
K [M+H]+ = 147.112804 KKKKK [M+H]+ = 659.492656 
KK [M+H]+ = 275.207767  [M+2H]2+ = 330.249966 
 [M+2H]2+ = 138.107522  [M+3H]3+ = 220.502403 
KKK [M+H]+ = 403.302730  [M+4H]4+ = 165.628621 
 [M+2H]2+ = 202.155003 KKKKKK [M+H]+ = 787.587619 
 [M+3H]3+ = 135.105761  [M+2H]2+ = 394.297448 
KKKK [M+H]+ = 531.397693  [M+3H]3+ = 263.200724 
 [M+2H]2+ = 266.202485  [M+4H]4+ = 197.652362 
 [M+3H]3+ = 177.804082 KKKKKKK [M+H]+ = 915.682582 
 [M+4H]4+ = 133.604881  [M+2H]2+ = 458.344929 
   [M+3H]3+ = 305.899045 
   [M+4H]4+ = 229.676103 
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Figure 21: Mass spectra from the stability study of octalysine 
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Reaction between octalysine and ceftriaxone 

According to the preliminary experiment on the reaction between monolysine and 

ceftriaxone, the reaction was performed under alkaline condition. A molecule of 

octalysine has nine amino groups (Figure 20) that could be involved in this proposed 

reaction. Octalysine and ceftriaxone with a mole ratio of 1:10 was dissolved in a 0.1 N 

sodium hydroxide solution. The reaction was performed at room temperature for an 

hour and monitored with a mass spectrometer and TLC (silica gel 60 F254) using a 

mixture of water : methanol : ethyl acetate : ammonia solution (0.5:1:1.5:0.05) as a 

developing solvent.  

From TLC result, the reaction mixture showed a new UV-absorbed spot at the origin 

(Rf = 0), while neither the octalysine standard/control solutions nor the ceftriaxone 

standard/control solutions did. The result is shown in Figure 22. For the MS result, the 

signal of ceftriaxone decreased over time while the signal of octalysine could not be 

detected after 15 minutes. All the results suggested that the reaction between 

octalysine and ceftriaxone proceeded, and all octalysine was presumably consumed 

in the reaction. However, the signal of conjugated molecules could not be detected 

by mass spectrometer in both positive and negative modes in this experiment. This 

might be caused by a low ability to ionize in an ion source, or to fly-through mass 

analyzer of molecular ions in the conjugated molecules.  
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Figure 22: TLC result from octalysine-ceftriaxone conjugate reaction. 1) octalysine 
standard solution; 2) ceftriaxone standard solution; 3) octalysine control solution; 4) 
ceftriaxone control solution; 5) reaction solution; and 6) co-spot. For octalysine 
standard and octalysine control solutions, a stained spot at origin was obtained after 
sprayed with ninhydrin solution. 

At first, a conjugate reaction was performed using a mole ratio of 1:10 for octalysine 

and ceftriaxone. It was expected to result in a high stoichiometry of ceftriaxone on 

octalysine. However, we were unable to detect this by mass spectrometer. These 

phenomena could be due to the low ability to ionize or to fly. The mole ratio of 

octalysine and ceftriaxone in reaction was reduced to 1:2. Octalysine and ceftriaxone 

were dissolved in a 0.1 N sodium hydroxide solution. The solution was stirred at room 

temperature, maintained at a pH of about 11, and monitored by TLC and MS.  

The reaction mixture gave a UV-absorbed spot at the origin on TLC, which was not the 

same Rf with octalysine or ceftriaxone. Moreover, the MS result demonstrated a signal 

of conjugated products between octalysine and ceftriaxone in the ratios of 1:1, 1:2, 
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and 1:3 (Figure 23). The molecular weight of the 1:1, 1:2 and 1:3 conjugated molecules 

are 1438.81, 1834.23, and 2229.65, respectively.  

 

 

Figure 23: Mass spectra from the reaction between octalysine and ceftriaxone (1:2) 
that performed in alkaline condition at room temperature 
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The conjugate was cleaned up using column chromatographics. Mass spectrum of the 

octalysine-ceftriaxone conjugate after being cleaned up is shown in Figure 24. The 

majority of the molecular ratios of octalysine to ceftriaxone in conjugated products 

was 1:2. However, this procedure provided more than 99% purity of octalysine-

ceftriaxone conjugate with an overall yield of 4.4%.  

 

Figure 24: Mass spectrum from octalysine-ceftriaxone conjugate after cleaned up 

The stoichiometry of octalysine and ceftriaxone in the synthesis reaction of octalysine-

ceftriaxone conjugate was 1:2. This reaction provided the mixture for three conjugated 

products. The major conjugated product showed the stoichiometry of two ceftriaxones 

on octalysine. One or three ceftriaxones on octalysine were minor components in the 

mixture of conjugated products. Under our assumption, the position of the conjugation 

bond should not affect the immunogenicity of the conjugate. The position of lysines 

which formed the covalent bond with ceftriaxone in the conjugation reaction were not 

clarified.  
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As described in most studies, the ß-lactam ring of cephalosporins can open by 

nucleophilic attack of either proteins or peptides. There generates a conjugated 

molecule termed a cephalosporoyl derivative even though several studies have 

proposed that the cephalosporoyl derivative is chemically unstable and undergoes a 

process of multiple fragmentations in the dihydrothiazine ring.(22, 38, 39) On the other 

hand,  an octalysine-ceftriaxone conjugate, a cephalosporoyl derivative, was 

successfully synthesized in our study.  

STRUCTURE CONFIRMATION OF TESTED COMPOUNDS 

The tested compounds confirmed their chemical structures using nuclear magnetic 

resonance (NMR) spectroscopy and high resolution mass spectrometry (HRMS) 

techniques. 1H NMR and 13C NMR spectra were recorded on a Bruker AVANCE III HD 

spectrometer at 500 MHz. All chemical shifts () were reported in parts per million 

(ppm). Mass spectra were recorded on a Bruker micrOTOF-Q II mass spectrometer with 

an electrospray ionization ion source (ESI-Q-TOF) in positive mode. The results are 

shown below. 

Ceftriaxone 

1H NMR(51) (500 MHz, D2O):  3.36 (d, J=18Hz, 1H), 3.50 (s, 3H), 3.62 (d, J=18Hz, 1H), 3.89 

(s, 3H), 3.94 (d, J=13.5Hz, 1H), 4.23 (d, J=13.5Hz, 1H), 5.08 (d, J=4.5Hz, 1H), 5.66 (d, 

J=5Hz,1H), 6.89 (s, 1H). 13C NMR (500 MHz, D2O):  26.53, 33.68, 42.68, 57.19, 58.68, 

62.67, 113.40, 119.17, 130.33, 140.39, 148.05, 156.71, 160.59, 163.66, 164.37, 164.86, 

168.59, 170.91. Formula: C18H18N8O7S3. HRMS (ESI): m/z 555.0535 ([M+H]+). 
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Cefotaxime 

1H NMR(50) (500 MHz, D2O):  1.99 (s, 3H), 3.29 (d, J=18Hz, 1H), 3.56 (d, J=18Hz, 1H), 3.88 

(s, 3H), 4.61 (d, J=12.5Hz, 1H), 4.78 (d, J=12.5Hz, 1H), 5.10 (d, J=5Hz, 1H), 5.71 (d, 

J=4.5Hz, 1H), 6.90 (s, 1H). 13C NMR (500 MHz, D2O):  20.31, 25.68, 57.19, 58.82, 62.73, 

64.17, 113.26, 116.33, 131.51, 140.00, 147.78, 163.84, 164.69, 168.40, 170.88, 174.10. 

Formula: C16H17N5O7S2. HRMS (ESI): m/z 456.0656 ([M+H]+). 

Cefepime 

1H NMR(52) (500 MHz, DMSO-d6):  2.03-2.10 (m, 4H), 2.93 (s, 3H), 3.41-3.44 (m, 2H), 3.58-

3.63 (m, 2H), 3.66 (d, J=17Hz, 1H), 3.91 (s, 3H), 4.04 (d, J=17.5Hz, 1H), 4.33 (d, J=13.5Hz, 

1H), 4.59 (d, J=13.5Hz, 1H), 5.33 (d, J=5Hz, 1H), 5.87 (dd, J=5, 8Hz, 1H), 6.88 (s, 1H), 9.83 

(d, J=8Hz, 1H). Formula: C19H25N6O5S2. HRMS (ESI): m/z 481.1318 ([M]+). 

Cefpirome 

1H NMR(53) (500 MHz, DMSO-d6):  2.19-2.27 (m, 2H), 3.07-3.12 (m, 2H), 3.36-3.38 (m, 

2H), 3.41 (d, J=17.5Hz, 2H), 3.79 (s, 3H), 5.02 (d, J=4.5Hz, 1H), 5.18 (d, J=14Hz, 1H), 5.45 

(d, J=14Hz, 1H), 5.63 (dd, J=4.5, 8Hz, 1H), 6.70 (s, 1H), 7.19 (s, 2H), 7.88 (t, J=7Hz, 1H), 

8.33 (d, J=7.5Hz, 1H), 9.28 (d, J=6Hz, 1H), 9.51 (d, J=8Hz, 1H). Formula: C22H23N6O5S2. 

HRMS (ESI): m/z 515.1153 ([M]+). 
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Ceftazidime 

1H NMR(54) (500 MHz, DMSO-d6):  1.38 (s, 3H), 1.39 (s, 3H), 3.10 (d, J=17.5Hz, 1H), 3.51 

(d, J=17.5Hz, 1H), 5.07 (d, J=4.5Hz, 1H), 5.20 (d, J=13.5Hz, 1H), 5.65 (d, J=13Hz, 1H), 5.72 

(dd, J=5, 7.5Hz, 1H), 6.68 (s, 1H), 7.25 (s, 2H), 8.12 (t, J=7Hz, 2H), 8.55 (t, J=7.8Hz, 1H), 

9.41 (d, J=6Hz, 2H), 9.81 (s, 1H). Formula: C22H23N6O7S2. HRMS (ESI): m/z 547.1055 ([M]+). 

Cefoperazone 

1H NMR (500 MHz, DMSO-d6):  1.07 (t, J=7Hz, 3H), 3.51-3.55 (m, 4H), 3.65 (d, J=18Hz, 

2H), 3.87-3.91 (m, 2H), 3.92 (s, 3H), 4.18-4.32 (dd, J=13.5, 56.5Hz, 2H), 4.98 (d, J=4.5Hz, 

1H), 5.47 (d, J=7.5Hz, 1H), 5.71 (dd, J=4.5, 8Hz, 1H), 6.71 (d, J=9Hz, 2H), 7.20 (d, J=8.5Hz, 

2H), 9.33 (d, J=9.5Hz, 1H), 9.44 (s, 1H), 9.70 (d, J=7.5Hz, 1H). Formula: C25H27N9O8S2. 

HRMS (ESI): m/z 646.1480 ([M+H]+). 

7-Aminodesacetoxycephalosporanic acid (7-ADCA) 

1H NMR (500 MHz, DMSO-d6):  1.96 (s, 3H), 3.28 (d, J=17Hz, 1H), 3.54 (d, J=17Hz, 1H), 

4.68 (d, J=5Hz, 1H), 4.90 (d, J=5Hz, 1H). 13C NMR (500 MHz, DMSO-d6):  19.36, 28.39, 

58.49, 63.30, 122.82, 127.78, 163.81, 169.52. Formula: C8H10N2O3S. HRMS (ESI): m/z 

215.0483 ([M+H]+), 237.0308 ([M+Na]+). 
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2-Amino--(methoxyimino)-4-thiazoleacetic acid (MTTA) 

1H NMR (500 MHz, DMSO-d6):  3.84 (s, 3H), 6.84 (s, 1H), 7.24 (s, 2H). 13C NMR (500 MHz, 

DMSO-d6):  62.25, 108.32, 141.41, 148.19, 163.86, 168.78. Formula: C6H7N3O3S. HRMS 

(ESI): m/z 202.0288 ([M+H]+). 

Tetrahydro-2-methyl-3-thioxo-1,2,4-triazine-5,6-dione (TMTD) 

1H NMR (500 MHz, DMSO-d6):  3.63 (s, 3H), 12.42 (s, 1H), 13.00 (s, 1H). 13C NMR (500 

MHz, DMSO-d6):  44.18, 150.15, 152.59, 169.83. Formula: C4H5N3O2S. HRMS (ESI): m/z 

160.0187 ([M+H]+). 

Desacetylcefotaxime 

1H NMR(50) (500 MHz, D2O):  3.36 (d, J=18Hz, 1H), 3.56 (d, J=17.5Hz, 1H), 3.88 (s, 3H), 

4.16 (dd, J=13, 20Hz, 2H), 5.10 (d, J=4.5Hz, 1H), 5.68 (d, J=4.5Hz, 1H), 6.91 (s, 1H). 13C 

NMR (500 MHz, D2O):  25.58, 57.21, 58.67, 61.01, 62.68, 113.44, 121.28, 129.50, 140.36, 

148.08, 163.88, 164.92, 169.01, 170.97. Formula: C14H15N5O6S2. HRMS (ESI): m/z 414.0535 

([M+H]+). 

Desacetylcefotaxime lactone 

1H NMR (500 MHz, DMSO-d6):  3.78 (d, J=7Hz, 2H), 3.84 (s, 3H), 5.04 (s, 2H), 5.15 (d, 

J=5Hz, 1H), 5.92 (dd, J=5, 8.5Hz, 1H), 6.74 (s, 1H), 7.21 (s, 2H), 9.67 (d, J=8.5Hz, 1H). 13C 

NMR (500 MHz, DMSO-d6):  22.54, 57.38, 59.19, 61.86, 71.36, 108.75, 122.72, 142.44, 
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142.46, 148.92, 162.92, 163.05, 166.45, 168.36. Formula: C14H13N5O5S2. HRMS (ESI): m/z 

396.0424 ([M+H]+). 

Octalysine-ceftriaxone conjugated 

Octalysine-ceftriaxone conjugated (1:2) Formula: C76H124N26O19S4. HRMS (ESI): m/z 

917.9288 ([M+2H]2+), m/z 611.9558 ([M+3H]3+), m/z 459.2201 ([M+4H]4+), m/z 367.5784 

([M+5H]5+). Octalysine-ceftriaxone conjugated (1:3) Formula: C90H137N31O24S6. HRMS 

(ESI): m/z 743.9684 ([M+3H]3+), m/z 558.2295 ([M+4H]4+). 

PURITY DETERMINATION OF TESTED COMPOUNDS 

Purity of tested compounds 

The purity of all tested compounds was determined using the HPLC/PDA. All tested 

compounds were prepared with a concentration of 100 µg/mL. The peak purity values 

were considered using the PDA that was operated in the wavelength range from 200 

to 800 nm. The percentage of area responses from the specific wavelength was 

reported as chromatographic purity of the tested compound. In addition, to determine 

the purity of the octalysine-ceftriaxone conjugated product, a by-product of free 

octalysine, an unreacted octalysine in a conjugated compound, was quantified. 

Octalysine does not have a chromophore, therefore it is not detectable by HPLC/PDA; 

therefore, the HPLC/MS method was used. The purity of the octalysine-ceftriaxone 

conjugate was considered using the HPLC/PDA result for the peak of conjugate, 

together with the HPLC/MS result for free octalysine. The purity value of all tested 

compounds is shown in Table 3.  
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Table 3: Chromatographic purity of tested compounds 

Compound Name Peak Purity (A) 
(%) 

Chromatographic Purity (%) 
Wavelength 

(nm) 
Area 
(%) 

Average of 
%Area 

Ceftriaxone 1.00000 240 98.34 98.3 
1.00000  98.35  
1.00000  98.31  

Cefotaxime 1.00000 235 99.60 99.6 
1.00000  99.59  
1.00000  99.62  

Cefepime 1.00000 235 99.42 99.4 
1.00000  99.44  
1.00000  99.36  

Cefpirome 1.00000 265 97.13 97.1 
1.00000  97.13  
1.00000  97.14  

Ceftazidime 1.00000 255 99.29 99.3 
1.00000  99.28  
1.00000  99.29  

Cefoperazone 1.00000 230 98.78 98.7 
1.00000  98.77  
1.00000  98.69  

7-ADCA 1.00000 265 100.00 100.0 
1.00000  100.00  
1.00000  100.00  

MTTA 1.00000 235 100.00 100.0 
1.00000  100.00  
1.00000  100.00  
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Compound Name Peak Purity (A) 
(%) 

Chromatographic Purity (%) 

Wavelength 
(nm) 

Area 
(%) 

Average of 
%Area 

TMTD 1.00000 278 100.00 100.0 
1.00000  100.00  
1.00000  100.00  

Desacetylcefotaxime 1.00000 235 96.78 96.6 
1.00000  96.65  
1.00000  96.26  

Desacetylcefotaxime 
lactone 

1.00000 235 97.69 97.6 
1.00000  97.53  
1.00000  97.53  

Octalysine-
ceftriaxone 
conjugate 

1.00000 205 100.00 > 99 (B) 
1.00000  100.00  
1.00000  100.00  

(A)The peak purity values were considered using the PDA in the wavelength range of 
200-800 nm; (B)This value was considered using HPLC/PDA result for conjugate together 
with HPLC/MS result for free octalysine. The analytical value of free octalysine in 
octalysine-ceftriaxone conjugate was lower than 0.9%. 
 

HPLC/MS method for determination of free octalysine 

According to the purity control of the conjugate, free octalysine, an unreacted 

octalysine, was determined. The HPLC/MS method was established for determining 

free octalysine in the octalysine-ceftriaxone conjugated product. The method was 

tested for selectivity, sensitivity, carry over, linearity, accuracy, and precision prior to 

use.  

 



 

 

50 

Selectivity 

Molecular ions of octalysine were monitored using a selected ion monitoring (SIM) 

mode. Quantification was achieved by monitoring the ions at m/z of 261.6998. The 

selectivity test demonstrates that our method was able to differentiate octalysine from 

any interference. This was proved by analyzing a blank sample and a standard solution. 

There was no interference peak at the retention time of the octalysine in the blank 

sample. The chromatogram is shown in Figure 25. This method was found to be 

selective.  

 

Figure 25: HPLC/MS chromatograms of blank sample (upper) and octalysine standard 
solution at lowest concentration of calibration curve (lower) 
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Sensitivity 

LOD and LOQ values were obtained from a calibration curve which covered the range 

of 1.047-5.235 µg/mL. The LOD and LOQ were determined as 3.3 /S and 10 /S, 

respectively. This method gave LOD and LOQ values of 0.339 and 1.047 µg/mL, 

respectively.  

Carry over 

The blank sample was injected after the six replicates of octalysine standard solution, 

at the highest concentration of the calibration curve (5.235 µg/mL).(55) The result 

showed no integrated peak, which agrees with the retention time of octalysine. The 

method showed no carry over. 

Linearity and range 

Linearity and range describes the relationship between the instrument responses with 

regard to the concentration of analyte over a specified concentration range. These 

were determined by analyzing the standard solutions of five concentrations in the 

range of 1.047-5.235 µg/mL. The backed calculated concentration of the standard 

solutions should be within 80-115% of the nominal concentration, except for the 

lowest concentration which should be within 75-120%.(56) The coefficient of 

determination (r2) value should be greater than 0.99.(56) This method showed linearity 

over the range of 1.047-5.235 µg/mL. The linear regression is described as the equation 
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of y = 666,192.5711(x) - 209,878.2333 with an r2 value of 0.9968. Analytical data are 

shown in Figure 26 and Table 4. 

 

Figure 26: Linear regression of HPLC/MS method for determination of free octalysine 
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Table 4: Linearity and range of HPLC/MS method for determination of free octalysine 

Nominal 
Concentration 

(µg/mL) 
Peak Area Average 

Back 
Calculated 

Concentration 
(µg/mL) 

Accuracy 
(%) 

1.047 
470034 

473736 1.026 98 474510 

476664 

2.094 
1158670 

1155112 2.049 98 1128418 

1178249 

3.141 
1982088 

1986048 3.296 105 1987103 

1988954 

4.188 

2431266 

2518593 4.096 98 2564602 

2559910 

5.235 

3291215 

3279434 5.238 100 3299023 

3248064 
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Accuracy and precision 

Accuracy and precision were determined by analyzing the standard solutions 

containing a known amount of octalysine representing the entire range of the 

calibration curve. Three samples at each concentration level (3 concentration levels) 

were analyzed for three replicated injections. The obtained concentration of the 

standard solutions should be within 80-115% of the nominal concentration, except for 

the lowest concentration which should be within 75-120%.(56) The precision of the 

standard solutions, expressed as the coefficient of variation (CV), should not exceed 

6%, except for the lowest concentration which should not exceed 8%.(56) This method 

showed accuracy and precision (%CV) with values of 89-107% and 2-8%, respectively. 

All results are shown in Table 5. 

Table 5: Accuracy and precision of HPLC/MS method for determination of free 
octalysine 

Nominal 
Concentration 

(µg/mL) 
Sample Average 

Peak Area 
Obtained 

Concentration 
(µg/mL) 

Accuracy 
(%) CV (%) 

1.047 

A 493052 1.055 101  
8 
 

B 408718 0.929 89 
C 512732 1.085 104 

3.141 

A 2030775 3.363 107  
4 
 

B 2005821 3.326 106 
C 1884791 3.144 100 

5.235 
A 3080205 4.939 94  

2 
 

B 3167614 5.070 97 

C 3049606 4.893 93 
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Determination of free octalysine in a conjugated compound 

Octalysine was used as a reactant in the synthesis of an octalysine-ceftriaxone 

conjugate. It is possible that some amounts of the unreacted octalysine may remain 

mixed with the conjugated product. In order to determine the purity of the conjugate, 

the amount of free octalysine needed to be determined. In order to determine the 

amount of free octalysine, an HPLC/MS method was established. The selectivity, 

sensitivity, carry over, linearity, accuracy, and precision of our method was evaluated 

prior to use. Our method showed selectivity and no carry over. In addition, the method 

also provided accurate and precise results over the range of 1.047-5.235 µg/mL for 

free octalysine. LOD and LOQ values of this method were 0.339 and 1.047 µg/mL, 

respectively.  

An octalysine-ceftriaxone conjugate was prepared for three samples with a 

concentration of 100 µg/mL. Each sample was analyzed for three replicated injections. 

The amount of free octalysine in the conjugate was calculated using a calibration curve 

with the equation for linear regression of y = 666,192.5711(x) - 209,878.2333.  

The results showed that the concentration of free octalysine in the conjugate was 

below the LOQ of the developed method (below 1.047 µg/mL). An analytical result is 

shown in Table 6. Eventually, the amount of free octalysine in the conjugate was 

determined to be below 0.9%. 
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Table 6: Determination of free octalysine in octalysine-ceftriaxone conjugate 

Nominal 
Concentration 
of Conjugate 

(µg/mL) 
Sample Average 

Peak Area 

Obtained 
Concentration of 
Free Octalysine 

(µg/mL) 

Found Amount 
of Free 

Octalysine (%) 

116.000 

A 16107 
Below LOQ * 

(0.339) 

Below 0.9 ** B 13073 
Below LOQ * 

(0.335) 

C 13583 
Below LOQ * 

(0.335) 

*LOQ of this method was 1.047 µg/mL; **Calculated based on the LOQ value 
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IMMUNOGENICITY SCREENING OF TESTED COMPOUNDS 

Biological samples 

According to a review of penicillins allergy by Bhattacharya(57), the author reports that 

about 90% of patients with a history of allergy to penicillins and other ß-lactam 

antibiotics are not truly allergic. Ceftriaxone is a drug commonly reported to cause 

allergic reactions; nevertheless, they might not be true allergic reactions. Ceftriaxone 

is widely used. It is the recommended antibiotic for inpatients and as prophylaxis for 

a number of surgeries.(58, 59) There are many chances to be misled that some adverse 

reactions are allergic reactions. For instance, intravenous (IV) injection of ceftriaxone 

with a high infusion rate can initiate some adverse reactions. These might be mistakenly 

recognized as allergic reactions, and although the number of patients who are truly 

allergic to ceftriaxone may be low, the severity must be taken into account. The studies 

to gain insight into allergic reactions against cephalosporin are interesting. 

All allergic samples were obtained from the retained PBMC in a study with the title of 

“In vitro investigation to study cross-reactivity reactions to third generation 

cephalosporins in patients with a history of beta-lactam allergy” (Certificate of approval 

No. 523/2014, IRB No. 251/57, Approval date: August 7, 2014). Firstly, we planned to 

evaluate the immunogenicity of tested compounds by using the PBMC from ten allergic 

subjects with a history of ceftriaxone allergy. Unfortunately, due to a lack of allergic 

subject, this study obtained PBMC from only three ceftriaxone allergic subjects. Even 

more, one of these subjects had a history of SLE and kidney disease, PBMC ID P01, 

while another one had a history of multiple drug allergies, PBMC ID P03. The allergic 
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samples were obtained from a male and two females in the age range of 25 to 44 

years. 

Control samples were obtained from ten control subjects without a history of allergic 

responses against ß-lactam antibiotics. The control samples were obtained from seven 

females and three males in the age range of 29 to 43 years (Certificate of approval No. 

630/2015, IRB No. 131/58, Approval date: September 17, 2015). PBMC were separated 

from whole blood and kept frozen in liquid nitrogen until use.  

Selection of the optimal concentration of tested compounds 

According to the literature review, the tested compounds, small molecules, were used 

under various concentrations. Therefore, an initial experiment was performed to 

choose the optimal concentration of tested compounds that is enough to stimulate 

the IFN- secretion in an allergic sample and to keep cells alive. PBMC from allergic 

subjects were tested with various concentrations of tested compounds. The results 

showed that the optimal concentration for all tested compounds, except for an 

octalysine-ceftriaxone conjugate, in this study was 400 µM. 

There were two ideas to prepare the concentration of an octalysine-ceftriaxone 

conjugated compound. First idea, the prepared concentration based on whole 

molecules of conjugate. It was prepared with a concentration of 5 µM of conjugate 

(about 10 µg/mL of conjugate(60-62)). The other was based on ceftriaxone molecules on 

a conjugated compound. It was prepared with a concentration of 200 µM of conjugate 

(equivalent to 400 µM of ceftriaxone). PBMC from an allergic subject was tested with 
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both conceptual concentrations. The result showed IFN- secretion in the conjugate 

that was prepared with the first idea, 5 µM of conjugate. The IFN- secretion was not 

observed in the conjugate that was prepared with the second idea, 200 µM of 

conjugate. The different result might be due to cell death under the high concentration 

of conjugate. Therefore, a 5 µM of octalysine-ceftriaxone conjugate, approximately 

equivalent to 10 µM of ceftriaxone, was selected in this study.  

Evaluation of the non-specific response in the ELISPOT IFN-γ assay 

In order to define the cut-off values for the IFN-γ secretion from PBMC, values greater 

than two standard deviations (2SD), approximately a 95% of normally distributed, of 

the mean values of the responses in ten control subjects were defined as positive 

responses. 

Tested compounds were evaluated for a nonspecific response in the absence or 

presence of PBMC from control subjects. All of test compounds were not generated 

the fault positive response in the absence of PBMC. In the present of PBMC from ten 

control subjects, it might be found a positive response, which showed response over 

the 95% of normally distributed, in some tested compounds. 

ELISPOT IFN-γ assay 

Immunogenicity of the tested compounds was studied using PBMC obtained from 

three allergic subjects with a history of ceftriaxone allergy. The results were shown in 

Table 7. All three samples obtained from the allergic subjects gave positive responses 

to ceftriaxone. There was no positive response to ceftriaxone in all control samples 



 

 

60 

obtained from the ten control subjects. This method obviously showed the sensitivity 

to differentiate the IFN-γ secretion between the PBMC obtained from subjects with a 

history of ceftriaxone allergy, and control subjects with no history of ceftriaxone allergy. 

PBMC from allergic subjects showed three positive responses to cefotaxime, cefepime, 

and cefpirome. These three cephalosporins share an identical R1 side chain, 2-amino-

α-(methoxyimino)-4-thiazoleacetyl group, with ceftriaxone. There were two positive 

responses to 7-ADCA and MTTA, the cephalosporin ring nucleus and R1 side chain 

moiety, respectively. The results implied that the ring nucleus together with an R1 side 

chain could play a role in the immune recognition in ceftriaxone allergy more than the 

ring nucleus or R1 side chain alone.  

From the above results, three cephalosporins, cefotaxime, cefepime, and cefpirome, 

that contain 2-amino-α-(methoxyimino)-4-thiazoleacetyl group, showed positive 

responses in all ceftriaxone allergic samples. However, allergic responses with 

desacetylcefotaxime and desacetylcefotaxime lactone, the degradation products that 

contained the identical R1 side chain to ceftriaxone, were not detected. There were 

only two positive responses. This result may be explained in that this allergic 

mechanism depends on the hapten theory. Due to the lack of a good leaving group 

at C3, the activity of the ß-lactam ring in both degradation products is less than in 

cephalosporins. So, the ability to conjugate with macromolecules to provide an 

antigenic determinant was difficult.  

Ceftazidime, containing a similar R1 side chain to ceftriaxone (Figure 27), elicited only 

two positive responses. These positive responses might be caused by a cross reaction 
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between the R1 side chain of ceftriaxone and ceftazidime. However, from PBMC ID P03 

obtained from multiple drug allergy subjects, the positive from PBMC ID P03 might be 

caused by multiple drug allergies. 

 

Figure 27: Chemical structures of ceftriaxone (left) and ceftazidime (right). These 
compounds share the similar R1 side chain. The R1 side chain of ceftazidime present 
two methyl groups and a carboxylic group which were not present in the R1 side chain 
of ceftriaxone. The different part of their R1 side chain were shown in boxes. 

Cefoperazone, containing a different R1 side chain from ceftriaxone (Figure 28), also 

elicited two positive responses. One of the positive responses was from PBMC ID P03, 

which might be caused by multiple drug allergies. The other one was from PBMC ID 

P01. Moreover, the PBMC ID P01 also showed a positive response to 7-ADCA. These 

results may suggest that this subject might be allergic to cefoperazone or truly allergic 

to bicyclic ß-lactam core.  
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Figure 28: Chemical structures of ceftriaxone (left) and cefoperazone (right) 

An octalysine-ceftriaxone conjugate contained two moieties, representing ceftriaxone 

which was the cephalosporoyl group. Five µM of the conjugate gave positive responses 

in PBMC from all tested subjects with a history of ceftriaxone allergy. The result implied 

that octalysine conjugate can enhance the ELISPOT response for a ceftriaxone allergy. 

Interestingly, without intact ß-lactam as a cephalosporin core structure, octalysine-

ceftriaxone conjugate demonstrated all positive results. Therefore, the result suggested 

that the R1 side chain may be involved in the allergic reaction. 

The results of other tested compounds cannot be deduced from the data due to 

limitations on the number of allergic samples. In addition, the size of the population 

was small, with an immune disease in one subject, and multiple drug allergies in the 

other. However, the ELISPOT method in this study showed a sensitivity to diagnosing 

ceftriaxone allergy. This method can differentiate the response to ceftriaxone between 

PBMC from a ceftriaxone allergic subject, and PBMC from the control subject. Our 

result suggested that the ring nucleus together with the R1 side chain, rather than the 

ring nucleus or R1 side chain alone, could play a role in ceftriaxone allergy. According 

to the ELISPOT result of two degradation products, we hypothesize that the hapten 
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theory can account for our observations. Furthermore, we found that the octalysine 

conjugate can enhance the ELISPOT response.  

However, a greater population of PBMC obtained from ceftriaxone allergic subjects, 

without other factors related to allergic reaction, is needed for further study to reveal 

the strong relationship between the structure and immunogenicity of ceftriaxone. 
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Table 7: Result of ELISPOT IFN-γ assay 
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CHAPTER V CONCLUSION 

Twelve tested compounds were selected and prepared in this study. Two designed 

degradation compounds and an octalysine conjugate of ceftriaxone were successfully 

synthesized. A structure and purity of greater than 95% of all tested compounds were 

elucidated and determined prior to their immunogenicity evaluation. The interferon-

gamma enzyme-linked immunosorbent spot (ELISPOT IFN-) results suggested that the 

ring nucleus together with the R1 side chain, rather than the ring nucleus or R1 side 

chain alone, could play a role in ceftriaxone allergy. The hapten theory could explain 

the ELISPOT results of two degradation products containing both ß-lactam moiety and 

R1 side chain. Furthermore, we found that octalysine conjugate can enhance the 

ELISPOT response.  

One of the difficulties encountered during this work was the lack of PBMC from 

ceftriaxone allergic subjects. We could only obtain three allergic samples from truly 

ceftriaxone allergic subjects. However, a greater population of PBMC obtained from 

ceftriaxone allergic subjects, without other factors related to allergic reactions, is 

needed for further study. 
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APPENDIX A: NMR SPECTRA 
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Figure 29: 1H NMR spectrum of ceftriaxone 
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Figure 30: 13C NMR spectrum of ceftriaxone 
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Figure 31: 1H NMR spectrum of cefotaxime 
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Figure 32: 13C NMR spectrum of cefotaxime 
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Figure 33: 1H NMR spectrum of cefepime 
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Figure 34: 1H NMR spectrum of cefpirome 



 

 

82 

 
 

Figure 35: 1H NMR spectrum of ceftazidime 
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Figure 36: 1H NMR spectrum of cefoperazone 
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Figure 37: 1H NMR spectrum of 7-ADCA 
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Figure 38: 13C NMR spectrum of 7-ADCA 
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Figure 39: 1H NMR spectrum of MTTA 
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Figure 40: 13C NMR spectrum of MTTA 
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Figure 41: 1H NMR spectrum of TMTD 
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Figure 42: 13C NMR spectrum of TMTD 
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Figure 43: 1H NMR spectrum of desacetylcefotaxime 
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Figure 44: 13C NMR spectrum of desacetylcefotaxime 
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Figure 45: 1H NMR spectrum of desacetylcefotaxime lactone 
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Figure 46: 13C NMR spectrum of desacetylcefotaxime lactone 
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APPENDIX B: MS SPECTRA 
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Figure 47: MS spectrum of ceftriaxone 

 

 

Figure 48: MS spectrum of cefotaxime 
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Figure 49: MS spectrum of cefepime 

 

 

Figure 50: MS spectrum of cefpirome 
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Figure 51: MS spectrum of ceftazidime 

 

 

Figure 52: MS spectrum of cefoperazone 
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Figure 53: MS spectrum of 7-ADCA 

 

 

Figure 54: MS spectrum of MTTA 
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Figure 55: MS spectrum of TMTD 

 

 

Figure 56: MS spectrum of desacetylcefotaxime 
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Figure 57: MS spectrum of desacetylcefotaxime lactone 

 

 

Figure 58: MS spectrum of octalysine-ceftriaxone conjugate 
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Figure 59: MS spectrum of octalysine 
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APPENDIX C: HPLC/PDA CHROMATOGRAMS 
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Figure 60: HPLC/PDA chromatogram of ceftriaxone 
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Figure 61: HPLC/PDA chromatogram of cefotaxime 
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Figure 62: HPLC/PDA chromatogram of cefepime 
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Figure 63: HPLC/PDA chromatogram of cefpirome 
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Figure 64: HPLC/PDA chromatogram of ceftazidime 
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Figure 65: HPLC/PDA chromatogram of cefoperazone 
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Figure 66: HPLC/PDA chromatogram of 7-ADCA 
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Figure 67: HPLC/PDA chromatogram of MTTA 
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Figure 68: HPLC/PDA chromatogram of TMTD 
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Figure 69: HPLC/PDA chromatogram of desacetylcefotaxime 
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Figure 70: HPLC/PDA chromatogram of desacetylcefotaxime lactone 
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Figure 71: HPLC/PDA chromatogram of octalysine-ceftriaxone conjugate 
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