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CHAPTER 1 
INTRODUCTION 

1.1 General Background 

Rapid growth of demand on both transmission data rate and distance in this decade for 

supporting the multimedia information is very remarkable.  The promising system 

which has a potential to respond such demand is the optical fiber transmission system.  

However, at present, most of the installed long-haul fiber systems still operate with 

electronic repeaters at very low bit rate.  During the propagation in the transmission 

fiber, the peak power of the optical signal decreases due to the fiber loss, as well as 

the signal waveform becomes distorted due to the fiber characteristics such as the 

fiber second-order dispersion (SOD) and the fiber nonlinearity [1]-[10].  The SOD 

causes the signal pulse broadening while the fiber nonlinearity results in signal spectra 

broadening during signal transmission in the fiber [3]-[5].  The interaction of SOD 

and nonlinearity will cause more severe distortion of both pulse and spectra [4]-[10].   

Figure 1.1 shows the configuration of the electronic repeater [2].  In 

electronic-repeated scheme, after launching to the repeater, such distorted optical 

signal is converted to electrical signal.  The distortion is removed out of signal by 

mean of electronic signal processing, and then is converted back to optical signal 

again.  By this scheme, the capacity of system is limited by speed of the electronic 

circuit, which is well known as “electronic bottle neck”, at the speed of around 40 

GHz or at the bit rate of 40 Gbit/s [4], [5], [11].  Therefore, to operate the system with 

bit rate higher than 40 Gbit/s, all optically signal-processed repeater, which uses light 

processes light, is necessary.   

The invention of the Erbium-doped fiber optical amplifier (EDFA) [4], [5], 

[12]-[15] has significantly opened the possibility of the data transmission at the bit 

rate higher than 40 Gbit/s.  EDFA has many beneficial properties [4], such as 

polarization independent gain, slow recovery time which prevents the pattern effect, 

low insertion loss and high saturation output power.  The most important thing may 

be the fact that EDFA is operating in the 1550 nm region where the optical fibers 

exhibit minimum loss.  Moreover, the gain bandwidth of EDFA is sufficiently wide 

enough so that it realizes a possibility of amplifying the ultra high bit rate signal up to 

over Tbit/s and a large number of WDM signals.  EDFA can also serve as excellent 

receiver pre-amplifiers, as they can provide very nearly the theoretical quantum-
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limited 3-dB noise figure [4].  This is because EDFA can be coupled very efficiently 

to the single-mode fibers with insertion loss of about 0.1dB, and almost full 

population inversion can be achieved.   

 

 
 

Figure 1.1: Configuration of electronic repeater. 

 

Figure 1.2 shows the configuration of the EDFA, which is commonly used in 

optically amplified systems.  High output power semiconductor laser diode with 

operating wavelength 1480 nm or 980 nm is used for stimulating the Stimulated 

Brillouin scattering effect to occur inside the Er3+-doped optical fiber for coherently 

amplifying 1550 nm signal input into the fiber.  Usually, the EDFA is equipped with 

two optical isolators.  The first is placed at the input in order to eliminate possible 

disturbances caused by the backward traveling amplified spontaneous emission (ASE) 

on the upstream span, while the second, at the output, protects the device against 

possible back reflections from the downstream line.  The signal is launched into the 

active fiber together with the pump radiation through a wavelength division 

multiplexer (WDM) coupler which minimizes the power losses of both input beams.   

The gain bandwidth of EDFA ranges approximately from 1520 nm to 1570 nm 

so that it is well tuned with the system operating at wavelength near 1550 nm region.  
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Typical values for the small-signal gain are 30-40dB for pump powers of 50-100 mW.  

Output powers range from +13dBm up to +20dBm, while the noise is generally very 

close to the minimum theoretical limit which can be derived from the fundamental 

laws of physics such as Heisenberg's Uncertainty principle.  

However, the EDFA can only amplify the optical signal.  Unlike the electronic 

repeater, the waveform distortion induced from SOD and fiber nonlinearity can not be 

removed from the signal at the output of EDFA.  Therefore, in order to upgrade the 

electronic-repeated to the optically amplified system, the signal distortion induced 

from the SOD and nonlinearity must be seriously taken into account.   

 

 
 

Figure 1.2: Configuration of EDFA. 

    

There are many transmission methods have been proposed in order to 

overcome the SOD.   The zero-dispersion wavelength transmission [16]-[20] is to set 

an operation wavelength of the system at zero-dispersion point so that the pulses can 

propagate without broadening.  The SOD management [21]-[35] is to arrange the 

various sections of fiber in such a way that none or only very few of them have zero 

SOD wavelengths that coincide with the carrier wavelength while the total fiber 

exhibits zero SOD on average.  The optical soliton [36]-[47] is to create the signal 

pulses that can propagate in optical fiber without broadening by balancing the SOD 

and the nonlinear self-phase modulation (SPM) effect in anomalous dispersion region 

[4], [5], [36].  Quantitatively, this can be achieved by launching optical pulses with 

proper input power and width into the fiber.  The midway optical phase conjugation 

[48]-[52] is to perform the optical phase conjugation (OPC) at the midpoint of system 

in order to achieve the perfect compensation of both SOD and nonlinear effects if the 
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condition that all of the system characteristics are symmetric with respect to the 

midway OPC.   

Although the SOD is completely compensated, when the ultra-high-bit-rate 

data is transmitted through an optical fiber, the third-order dispersion (TOD) shows 

up and influences transmission characteristics.  Moreover, the TOD interplays with 

the SPM, causing severe distortion of both signal waveform and signal spectrum [4].   

In the dispersion-managed system where the SOD map is properly designed 

but the TOD is not compensated, the bit rate of the 10,000-km transmission system is 

limited only about 10Gbit/s because of the interplay of the TOD with the SPM.  It has 

been shown, by numerical simulations, that when TOD is compensated periodically at 

the interval quite shorter than the nonlinear scale of the system, the speed limit is 

possibly raised up over 20Gbit/s [25]. 

On the other hand, in soliton systems, a recent numerical study shows that the 

eigen solution to solitons can exist in the transmission line with TOD, and that is 

stable against the perturbation of TOD [53].  Even without TOD compensation, 

40Gbit/s, 10,000km transmission has been actually demonstrated by using DM 

solitons [54]. 

For further expansion both in capacity and distance, dispersion management to 

eliminate both SOD and TOD will be one of the key issues.  For this purpose, several 

TOD compensators have been proposed and demonstrated such as chirped fiber 

grating [55], [56], all-pass optical filter [57] and also special dispersion compensating 

fibers called the reverse dispersion fiber (RDF) [58]-[60].  Among these devices, the 

RDF seems to be more practical and attractive than others.  Figure 1.3 shows 

schematically the dispersion characteristics of the RDF and the SMF.  Since the RDF 

exhibits low negative TOD with large negative SOD value, therefore, by the 

combination with conventional single-mode fiber (SMF) in each span, the dispersion 

flattened fiber link with low average dispersion for simultaneously compensating both 

SOD and TOD is achieved.  The combination of SMF and RDF can be applied for 

both OTDM and WDM transmission schemes as shown in Fig. 1.3(a) and (b) 

respectively.  Several recent OTDM transmission experiments have demonstrated 

very attractive results of this SMF+RDF combination based systems such as the 

transmission of 640 Gbit/s over 92km [61] and even the data rate as high as 1.28 

Tbit/s over 70 km [62].  In the other hand, the success of 320 Gbit/s over 200km 

transmission using SMF combined with DSCF has been reported [63].  Following by 
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a numerical simulation, the possibility of 320 Gbit/s soliton transmission over 6,000 

km employing short period SOD and TOD management has been shown [64].   

 

 

 
 

(a) 

 

 
 

(b) 

 

Figure 1.3: Dispersion characteristics of SMF and RDF for using 

in (a) OTDM scheme and (b) WDM scheme. 
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As an alternative approach for ultrahigh-bit-rate long-haul transmission, 

midway optical phase conjugation (OPC) is an attractive solution to compensating for 

the distortion induced from the interplay between the SOD and the SPM [65].  Several 

recent works have reported the broadband, wavelength-shift-free, and polarization-

independent optical phase conjugators [66], [67].  This intensively may bring the OPC 

systems into a commercial world.  However, the ultimate performance of OPC 

systems is also limited by TOD together with a nonlinear resonance at well-defined 

signal sideband frequencies induced by periodic amplification process called sideband 

instability (SI) effect [68].   

Propagation of slowly varying envelope optical signal in optical fibers is 

governed by the well-known partial differential equation called nonlinear Schrodinger 

equation (NLSE) [4].  Since the NLSE does not have an analytic solution, the use of 

numerical method is necessary.  The most commonly used numerical algorithm for 

solving the NLSE is the split-step Fourier method (SSFM) [4], in which the fiber is 

divided into small sections with a length called the step size.  Each section exhibits 

only the dispersive or nonlinear effects, which act on the propagating signal 

separately.  The accuracy of the SSFM solution increases with the reduction of the 

step size.   

Although the SSFM has become the standard method for analyzing almost all 

problems of signal propagating in optical fibers, in order to obtain the NLSE, several 

approximations are applied to Maxwell’s equations, and also, the SSFM consumes a 

lot of computation time.  Moreover, it is quite inconvenient for those who are not 

good at computer programming, and also who only aim to study simple problems and 

want to know the approximate solutions immediately.  This is because it is very 

complicated and tough to implement the SSFM algorithm into computational 

program.  It can take more than a week to develop several hundred lines of a 

simulation program based on SSFM algorithm and then validating it before it starts to 

work properly.   

As an alternative method for studying optical field propagation, the finite-

difference time-domain (FDTD) method [69] has been widely used for analyzing and 

designing several structures of short-scale optical waveguides and devices [70], [71].  

Since the FDTD algorithm is much easier and simpler for implementing than the 

SSFM, by using the FDTD, it is possible to develop the calculation program that 

consumes not more than 20 lines in only an hour.  The basic principle of FDTD is to 
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discretize both time and space into small cells and then applying the central difference 

approximations for both temporal and spatial derivatives.  Recently, 12fs ultra-

broadband optical pulse propagation in optical fiber is also studied using the FDTD 

for directly solving Maxwell’s equations [72].  Nevertheless, the algorithm used in 

this previous work cannot be applied to the propagation of slowly varying envelope 

optical pulse in relatively long fibers due to the accumulation of the truncation error 

caused by the sampling width of transmission distance.   

1.2 Purpose of This Study  

The aim of this study is to improve the performance of midway OPC transmission 

systems by proposing and evaluating practical schemes to suppress two main 

problems, TOD and SI, which limit the transmission performance of the systems.  

Two methods are proposed in this thesis for overcoming these two problems in OPC 

system.  First is the use of the combination of SMF and RDF in OPC system in order 

to achieve the simultaneous suppression of both TOD and SI.  Second is the 

suppression of both TOD and SI by using a lump TOD compensator and the 

distributed Raman amplification (DRA) to construct the reverse power distribution in 

the second-half of OPC system to obtain the entirely symmetrical power distribution 

with respect to the system midpoint.  Moreover, we will propose the optimum system 

design theories for achieving maximum system performance for each proposed 

scheme.   

Furthermore, in this study, the numerical method based on the SSFM will be 

mainly used to prove our derived theory and to evaluate our designed systems.  

However, for the sake of simplicity, this study also aims to develop numerical 

analysis algorithms based on the FDTD method for calculating signal propagation in 

optical fiber and to perform a comparison among them.      

1.3 Study Methods and Plans 

The research will start with studying the accumulation characteristic of TOD in OPC 

systems and finding the most suitable scheme to compensate it.  Next, we consider 

two possible ways to eliminate the SI. First is the use of periodic perturbation to 

perturb the Fourier components of the virtual grating constructed by periodic power 

variation.  The periodic perturbation will modulate the magnitudes of those 
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components which results the desirable decrease of SI gain.  Second is the use of 

distributed gain such as Raman amplifier in the second half of the system to form the 

desirable symmetrical signal power distribution with respect to the midway OPC.   

According to the above research plan, the research methods of this work are 

mainly based on the derivation of analytical theories, and then evaluating their 

possibilities and accuracies by the method of computer numerical simulations.   

The study plan can be divided into 16 steps.   

1) Studying on the TOD accumulation characteristic and the most suitable TOD 

compensating scheme in OPC systems.  Then, proposing the optimum system 

design strategies to achieve maximum performance and confirming the 

performance improvement of the systems when the TOD is compensated.   

2) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal.   

3) Proposing the simultaneous suppression of TOD and SI by higher-order 

dispersion compensating fiber link composed of SMF and RDF.  Deriving the 

complete mathematical expression of SI gain concerning periodic dispersion 

management fiber link when two different fibers are connected together.  

Verifying the derived theory with the computer simulations.  Confirming the 

possibility of reducing SI gain with the fiber link consisted by SMF and RDF.   

4) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal.   

5) Proposing and studying the implementation of the dispersion management 

using SMF and RDF on OPC systems in terms of possible installing profiles. 

Theoretically making the comparison the advantages and disadvantages 

among the proposed schemes.  Finding out the most suitable scheme.   

6) Using the computer simulation to confirm the performance improvement of 

higher-order dispersion-managed OPC system by the simultaneous 

suppression of both TOD and SI.   

7) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal 

8) Theoretically finding the optimum higher-order dispersion-managed OPC 

system design strategies in terms of designing system operating parameters 

such as input signal power, dispersion management period, and average 

dispersion value, etc. in order to achieve maximum system performance.   
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9) Using computer simulations to evaluate the maximum performance of higher-

order dispersion-managed OPC transmission system employing the derived 

optimum system design strategies.   

10) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal 

11) Studying the suppression of SI using DRA.  Designing the Raman gain in 

order to obtain symmetrical signal power distribution with respect to the 

system midpoint when the Raman amplifiers are applied to the second-half of 

the system.   

12) With the DRA in combination with lump TOD compensators, confirming by 

the computer simulations the performance improvement of the OPC 

transmission systems.    

13) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal 

14) Studying numerical computations of the propagation of optical signal in 

optical fiber using the FDTD method with several algorithms such as the 

explicit FDTD, the implicit FDTD, and the Crank-Nicholson scheme, 

comparing the calculation results using these FDTD methods with those 

obtained from the SSFM.   

15) Summarizing the results, presenting the work in international conferences or 

publishing the work in periodical journal. 

16) Writing the doctoral dissertation. 

1.4 Studying Scopes 

1) Focusing only on the suppressing two main problems, TOD and SI, of OPC 

systems.   

2) Proposing, studying and evaluating only the two possible ways to eliminate 

the TOD and SI.  

• The use of higher-dispersion compensated fiber link composed of single-

mode fiber and reverse dispersion fiber.  This combination yields the 

compensation of TOD and at the same time induces the periodic 

perturbation to the system.  Therefore, by this scheme, the simultaneous 

suppression of both TOD and SI is expectable.   
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• The use of distributed gain from Raman amplifiers with the combination 

of lumped gain from EDFA.  With this combination, the periodic power 

variation in the second half of OPC system can be made symmetrical with 

respect to midway point when the distributed gain of the Raman amplifier 

is carefully designed.  Therefore, in combination with lump TOD 

compensators the vanishing of both TOD and SI can also be expected.   

3) Proposing, studying and evaluating the OPC system optimum design theory 

focusing only the systems using the above two schemes. 

4) As this research aims to study the performance improvement of ultra-long-

haul ultra-high-speed OPC systems, therefore, we focus on OPC systems with 

transmission length of 10,000 km and with data rate higher than 100 Gbit/s.   

5) The computer simulation is only one method to verify the derived theories 

because it is still not possible to perform such ultra-long haul ultra-high bit 

rate transmission experiments except in large telecommunication companies 

such as NTT, KDD and AT&T.   

6) The numerical methods developed for computer simulations in this study are 

the SSFM and the FDTD method.   

1.5 Benefits 

1) The accumulation characteristic of TOD in OPC systems and the most suitable 

scheme for compensating the TOD on OPC systems.   

2) First time in our knowledge, the complete theory of SI when two different 

characteristics of fibers are connected together. 

3) The use of dispersion-management in OPC system which will be proposed for 

the first time in our knowledge. 

4) The design of Raman amplifier gain that yields the lowest effect of SI to the 

signal transmission.   

5) The performance improvement of OPC systems that is expected to be 

improved close to the linear SNR limit.  

6) Very simple numerical analysis algorithms for calculating signal propagation 

in relatively long optical fiber using the FDTD method that gives both 

accuracy and least calculation time at the same time.    

7) Three publications in proceedings of domestic conferences.    



 11

8) Three publications in proceedings of international conferences.    

9) Publications of two full papers and one letter in international periodical 

journals.   

10) Best paper award in domestic conference 

1.6 Organization of this Dissertation 

This thesis is organized as follows.  Chapter 2 gives the review of basic knowledge 

about single-mode fiber characteristics and their effects on signal propagation.  In 

chapter 2, we also describe about the NLSE and the principle of the SSFM which is 

the numerical method used for solving the NLSE.  Chapter 3 is the literature review 

about the theory of the OPC and its limitations, together with other transmission 

schemes for overcoming the SOD effect.  Our contributions start from chapter 4 

where we discuss about the TOD compensation scheme in OPC systems.  We show 

that the accumulation characteristic of the TOD in OPC transmission systems is 

almost linear.  By assuming the ideal TOD compensator, the computer simulation 

result has shown the possibility of 100-Gbit/s, 10,000-km transmission based on TOD 

compensated OPC systems.   

In chapter 5, the complete theoretical analysis of SI focusing on the case when 

two different characteristic fibers connected together is made.  In our analysis, not 

only the periodic power variation but the periodic dispersion management, periodic 

fiber loss coefficient variation, and periodic nonlinear coefficient variation are also 

included.  We derive the analytical SI gain and the SI frequency considering three 

cases: (a) when the dispersion management period is larger than the amplifier spacing, 

(b) when the two lengths are equal, and (c) when the amplifier spacing is larger than 

the dispersion management period.  The derived theory is evaluated its accuracy by 

computer simulations.   

We also focus on a dispersion managed transmission system consisting of 

SMF and RDF.  Our computer simulation results show that, when two or more 

channels produce SI at the same frequency, SI significantly causes a serious problem 

to the channel whose carrier is positioned just at that superposition resonance 

frequency.  We also demonstrate that, by re-arranging the channel position or channel 

spacing in such a way that none of the SI resonance frequency falls inside the channel 

signal bandwidth, the transmission performance is significantly improved.   
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In chapter 6, the reduction of the SI gain by employing the combination of 

SMF and RDF is shown.  We then discuss an implementation of dispersion 

management in OPC systems.  We suggest that a symmetric dispersion profile with 

respect to the mid-point of the system is preferable in order to avoid nonlinear 

accumulation of amplifier noise when the system operates with relatively high signal 

intensity.  The performance improvement of the dispersion-managed 100-Gbit/s OPC 

system using the symmetric dispersion profile is confirmed by numerical simulations 

even when the dispersion map is not optimized.   

Next, we discuss the optimum dispersion map design for obtaining the 

maximum performance in OPC systems.  We demonstrate that, a 200-Gbit/s data 

transmission over a 10,000 km distance can be achieved by simultaneously 

suppressing TOD and SI in OPC systems using the dispersion-managed fiber link 

consisting of SMF and RDF whose dispersion map is properly designed.   

Chapter 7 devotes to the use of bi-directional pumped DRA in the second-half 

of the OPC system to obtain the symmetrical signal power distribution with respect to 

the system midpoint.  We show that the reverse power distribution can be formed by 

carefully choosing the forward pump power and backward pump power.  In 

combination with one lump TOD compensator, we demonstrate by the computer 

simulation that the transmission of a 200-Gbit/s data over 10,000 km can also be 

made possible.   

In chapter 8, we propose the use of FDTD for solving the NLSE and 

demonstrate that the FDTD can be sufficiently applied to simulate the optical pulse 

propagation in relatively long fiber under acceptable accuracy.  In this chapter, three 

main FDTD algorithms, the explicit FDTD, the implicit FDTD, and the FDTD with 

Crank-Nicholson scheme are studied.  We modify these algorithms to be the implicit-

1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them 

suitable for solving the NLSE.  Then, using these proposed methods, the comparison 

among the simulation results based on the model of single pulse propagation in 

optical fiber, together with those obtained from the SSFM are shown and discussed.   

Finally, the conclusion of this thesis, the discussion considered the minor 

factors, which can also affect the performance of the proposed schemes, and the 

suggestion for future works are made at chapter 9.   



CHAPTER 2 
SIGNAL PROPAGATION IN SINGLE-MODE 

FIBER AND NUMERICAL METHOD 
 

For understanding the evolution of optical pulses propagation in an optical fiber, it is 

necessary to understand the properties and characteristics of single-mode fibers which 

are generally used as transmission medium in fiber-optic systems.   

Optical fibers are always considered as the lossless mediums because of their 

extremely small value of a loss coefficient (minimum 0.2 dB/km at an operation 

wavelength 1.55µ m) [4], [73].  This will lead to the extension of repeater spacing for 

more than 100 km while in the systems employing coaxial cables whose repeater 

spacing is limited to a few kilometers.  Furthermore, according to the fact that optical 

fibers are made of SiO2 glass, so optical fibers will have robustness against the 

disturbances from the surrounding circumstance more than those systems that use 

metal wires as transmission mediums.  The above reasons make the fiber-optic 

systems the most expectable systems for nowadays and also, future 

telecommunication.   

The behavior of optical signal when propagating in single-mode optical fiber 

is mainly determined by three main effects: fiber loss, dispersion, and fiber 

nonlinearity.  The fiber loss causes the exponentially decrease of signal power during 

the propagation, which is necessary to be compensated by repeater for long distance 

transmission.  The dispersion results a broadening of optical pulse, while the 

nonlinearity of fiber yields a broadening of signal spectrum.  In fact, the dispersion 

and the nonlinearity interplay with each other, resulting in the distortion of both signal 

and its spectrum.   

In this chapter, we describe about these fiber characteristics and their effects 

on signal propagating in optical fiber.  Next, the concept of a numerical method called 

the split-step Fourier method which is mainly used for simulating signal propagating 

in optical fiber in this dissertation is shown.   
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2.1 Single-Mode Fiber Characteristics 

2.1.1 Fiber Loss 

Let iP  is the power launched at the input of a fiber length L, the transmitted 

power: TP  is given by 

( )LPP iT α−= exp ,                                               (2-1) 

where α  is the attenuation constant, commonly referred to as the fiber loss.  It is 

customary to express the fiber loss in units of dB/km by using the relation 

αα 343.4log10
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

i

T
dB P

P
L

,                                  (2-2) 

where dBα  is the attenuation constant in dB/km expression.  The fiber loss depends on 

the wavelength of light.  Figure 2.1 shows the optical loss characteristic of single-

mode fibers as a function of the operation wavelength.   

The factors that are mainly contributed to the fiber loss are material absorption 

induced by OH ion and Rayleigh scattering [4], [73].  Other factors that cause 

additional loss is bending losses and boundary losses (due to scattering at the core-

cladding boundary).  The total loss of a fiber link on optical communication systems 

also includes the splice loss that occurs when two fiber pieces are joined together.  

The fiber loss causes the exponential decrease of optical signal power without giving 

rise to any change in signal shape also its spectrum.   

 

Figure 2.1: Optical loss characteristic of single-mode fibers. 
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2.1.2 Second-Order Dispersion [4] 
When an optical pulse is launched to the fiber, its different frequency components 

associated with the pulse travel at different speeds.  It will lead to the pulse 

broadening induced by the delay of transit time of each frequency component.  This 

effect is well known as the chromatic dispersion, which may be one important 

limitation of a bit-rate or a distance in fiber-optic communication systems.   

  In the case if we consider optical fiber as a medium, dispersion play a critical 

role in propagation of short optical pulses since different spectral components 

associated with the pulse travel at different speeds given by ωnc /  and the shorter 

pulses will have broader spectrum width.   

Mathematically, the effects of fiber dispersion are accounted for by expanding 

the signal propagation constant β  in a Taylor series about the lightwave carrier 

frequency 0ω .   

( ) ( ) ( ) ( ) ...
6
1

2
1 3

03
2

02010 ωωβωωβωωββωβ −+−+−+= ,           (2-3) 

where 1β  in Eq. (2-3) refers to the inverse of group-velocity of the pulse envelope and 

also be known as first-order group-velocity dispersion (GVD) parameter.  The 

second-order GVD parameter 2β  is responsible for pulse broadening, and the third-

order GVD 3β , which relates to the TOD, causes signal waveform distortion in ultra-

high bit rate signal transmission.   

There is another parameter called second-order dispersion (SOD) or dispersion 

parameter D  that is commonly used in the fiber-optics literature in place of 2β .  It is 

related to 2β  by the relation 

22
2 β
λ
πcD −= .                                                  (2-4) 

Figure 2.2 shows schematically the variation of 2β  and D  with wavelength λ  

for optical fibers.  The most notable feature in Fig. 2.2 is that 2β  and D  vanishes at a 

wavelength Dλ .  Dλ  is often referred to as zero-dispersion wavelength which is about 

1.3 µ m in the case of standard single-mode fibers (SMF) and becomes 1.55 µ m 

where the fiber loss is minimum in dispersion-shifted fibers (DSF).   
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Figure 2.2: Dispersion characteristics of single-mode fibers. 

   

The pulse can propagate without broadening in the zero-dispersion region, and 

the systems which operate at the zero-dispersion wavelength are known as zero-

dispersion transmission systems which are expected to achieve high bit-rate and long 

transmission distance since the performance of the systems no longer limited by the 

SOD-induced broadening.  However, it should be noted that total dispersion does not 

vanish at Dλ .  Pulse propagation near Dλ  requires the inclusion of the third-order 

dispersion effects 3β .  Their inclusion is however necessary only when the pulse 

wavelength approaches Dλ  to within a few nanometers.     

According to Figure 2.2, for wavelength such that Dλλ < , 02 >β , the fiber is 

said to exhibit normal dispersion.  In the normal-dispersion regime, the higher 

frequency (blue-shifted) components of an optical pulse travel slower than the lower 

frequency (red-shifted) components.  By contrast, the opposite occurs in the so-called 

anomalous-dispersion regime in which Dλλ > , 02 <β .  The anomalous-dispersion 

regime gives an interest for the study of nonlinear effects because it is in this regime 

that optical fibers can support nonlinear optical pulse soliton through a balance 

between the dispersive and nonlinear effects.   

It should be noted here that the SOD-induced pulse broadening does not 

depend on the signs of 2β .  Different signs but same values of SOD will lead to the 

same magnitude of broadening.  Moreover, although the dispersion results in pulse 
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broadening, it does not cause the change in the spectrum of the pulse.  Figure 2.3 

shows the propagation of single optical pulse propagates along the optical fiber in the 

presence of the effect of dispersion.   

 

Figure 2.3: Evolution of single optical pulse in single-mode fiber with the effect of 

dispersion, (a) in normal dispersion regime ( 02 >β ), (b) in anomalous dispersion 

regime ( 02 <β ). 

 

In general the extent of broadening is governed by the SOD length by 
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where outT  denotes the transmitted pulse width.  The SOD length DL  is defined as 

2

2
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2 β
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Ld = .                                                     (2-6) 

  DL  is the parameter which determines the length scale over which the 

dispersive effect becomes important for pulse evolution along a fiber length L  when 

LLd <2 .   

The difference between propagation of a pulse in normal-dispersion region 

and in anomalous-dispersion region is the sign of linear phase modulation of the 
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transmitted pulse.  This linear phase modulation can be expressed as the time 

dependence of the optical phase ( )Tz,φ  caused by the effect of 2β .   

( ) ( )( )
( ) ⎟⎟

⎠

⎞
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φ ,                          (2-7) 

where ( ) 1sgn 2 ±=β  depending on the sign of the GVD parameter 2β .  The time 

dependence of the phase ( )Tz,φ  implies that the instantaneous frequency differs across 

the pulse from the central frequency 0ω . The difference ω∆  is just the time derivative 

T∂−∂ /φ  and is given by 

( )( )
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ω .                                       (2-8) 

The phenomenon that frequency changes across the pulse is generally known 

as the frequency chirp.  Although the incident pulse is unchirped but after propagating 

in dispersive fiber the pulse will be chirped.  The chirp ω∆  depends on the sign of 

2β .  Figure 2.4 shows the difference between frequency chirp in normal-dispersion 

regime ( )2β+  and anomalous-dispersion regime ( )2β− .   

In the normal-dispersion regime, ω∆  is negative at the leading edge 0<T  

and increases linearly across the pulse.  The opposite occurs in the anomalous-

dispersion regime.   

2.1.3 Third-Order Dispersion [4], [74]   
SOD-induced pulse broadening discussed above is due to the second-order GVD term 

proportional to 2β  in the expansion (3).  Although the contribution of this term 

dominates in most cases of practical interest, it is sometimes necessary to include the 

higher-order term proportional to 3β  in this expansion.   

Since 3β  is the derivative of 2β  by the frequency ω : ωββ dd 23 = .  The 

effect of 3β  can be explained in term of the effect of dispersion slope.  As shown in 

Fig. 2.5, for broadband optical signal such as ultra-short pulses or OTDM signal [75], 

different signal spectral component will experience different dispersion values due to 

the slope of the dispersion curve.  Therefore, it is often necessary to include 3β  for 

such signal.   
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Figure 2.4: Linear frequency chirps induced by fiber SOD, (a) in normal dispersion 

regime (+ 2β ), (b) in anomalous dispersion regime (- 2β ). 

 

 
 

Figure 2.5: Broadband optical signal on fiber dispersion band. 

 

The important parameter widely used representing the effect of 3β  is the 

third-order dispersion (TOD) or the dispersion slope, which is defined by the 

derivative of the dispersion value D  by wavelength λ : TOD = λddD .  Typically, 
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near zero-dispersion wavelength of DSF, ≈3β 0.2ps3/km and TOD = 0.06ps/km/nm2.  

In order to compare the relative importance of the dispersion and the TOD terms, it is 

useful to introduce a dispersion length associated with the TOD term defined as 

3

3

3 β
TLd = .                                                    (2-9) 

The higher-order dispersive effects play a significant role only if 23 dd LL ≤ .   

Figure 2.6(a) shows the single optical pulse propagates along the optical fiber 

with the effect of higher-order dispersion in the case of positive TOD and Fig. 2.6(b) 

and (c) shows the initial pulse shape and the output pulse, respectively.  The output 

optical pulse is distorted such that it becomes asymmetry with an oscillatory structure 

near one of its edges.  It should be noted that the dispersive effect does not cause any 

change in the output spectrum.  For the case of positive TOD shown in Fig. 2.6, the 

oscillation appears near the trailing edge of the pulse.   

For the case of 0=D , oscillations are deep with intensity dropping to zero 

between successive oscillations.  However, these oscillations damp significantly even 

for the relatively small values of D .   

2.1.4 Kerr Effect [4] 
Most of the nonlinear effects in optical fibers originate from nonlinear refraction.  

Nonlinear refraction is a phenomena that refers to the intensity dependence of the 

refractive index.  This phenomena is known as the Kerr effect.  The expression of the 

refractive index, which includes the term of light intensity dependence, becomes 

( ) ( ) 2
2

2, AnnAn += ωω                                        (2-10) 

where ( )ωn  is the linear part.  2A  is the optical signal intensity inside the fiber, and 

2n  is the nonlinear-index coefficient.   

The intensity dependence of the refractive index leads to a large number of 

interesting nonlinear effects.  The one most widely studied are self-phase modulation 

(SPM) [4].  SPM refers to the self-induced phase shift experienced by optical field 

during its propagation in optical fibers. Its magnitude can be obtained by changes of 

the phase of an optical field by 

( )( ) LkAnnLkn 0
2

20 +== ωφ  ,                               (2-11) 
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where λπ /20 =k  and L  is the fiber length.  The intensity-dependent nonlinear phase 

shift caused by SPM is 
2

0 ALknnl =φ  .                                             (2-12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  

Figure 2.6: Transmission of an optical pulse and in single-mode fiber with the effect 

of TOD, (a) pulse evolution, (b) initial pulse shape, (c) pulse at output end of fiber. 
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breaking of the optical pulse.  By contrast, If the SPM balances with the SOD effect in 

anomalous-dispersion regime, this will lead to the existence of optical solitons.   

If we consider the pulse propagation in lossless optical fibers, ( )tzU ,  now 

represents the normalized envelope function of the optical pulses, Eq. (2-12) should 

be modulated to time-distance-depended equation which fits to the description of 

pulse propagation in fiber,   

  ( ) ( ) nlnl LztzUtz /,, 2=φ   ,                                           (2-13) 

where the nonlinear length NLL  which represents the length of fiber at which the 

nonlinearity becomes the dominant effect is defined as   

0

1
P

Lnl γ
= ,                                                    (2-14) 

where 0P  denotes the input peak power of the pulse and γ  is the nonlinear coefficient 

which is proportional to the nonlinear refractive index 2n .  ( )tzU ,  appearing in Eq. 

(2-13) is the optical field normalized by peak power.   

Equation (2-13) shows that SPM gives rise to an intensity-dependent phase 

shift while the pulse shape governed by ( ) 2, tzU  remains unchanged. Furthermore, 

this nonlinear phase shift ( )tznl ,φ  given by Eq. (2-13) increases with the propagated 

distance z .  SPM-induced spectral broadening is a consequence of the time 

dependence of ( )tznl ,φ .  This can be understood by nothing that a temporally varying 

phase implies that the instantaneous optical frequency differ across the pulse from its 

central value 0ω .  The difference ω∆  is given by 

( )
nl

NL

L
z

t
tzU

t ∂

∂
−=

∂
∂

−=∆
2,φ

ω ,                               (2-15) 

and the frequency of the pulse now becomes time-depend function.  Figure 2.7 shows 

the modulation of optical carrier frequency of the pulse obtained from Eq. (2-15).   
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Figure 2.7: Modulation of optical frequency inside the pulse due to nonlinear self-

phase modulation. 

 

The modulation of frequency or the time dependence of ω∆  can be viewed as 

a frequency chirp.  The chirp is induced by SPM and increases in magnitude with the 

propagated distance.  The temporal variation of the SPM-induced chirp in ω∆  in Fig. 

2.7 has two interesting features.  First, ω∆  is negative near the leading edge (red 

shift) and becomes positive near the trailing edge (blue shift).  Second, the chirp is 

linear and positive (up-chirp) over the large central region.  Since the characteristic of 
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the SPM-induced frequency chirp is similar to the linear up-chirp, we should call this 

chirp the nonlinear up-chirp.   

Figure 2.8 shows the spectrum of single optical pulse propagating along the 

optical fiber with only the effect of SPM.  The most notable feature of Fig. 6 is that 

SPM-induced spectral broadening is accompanied by an oscillatory structure covering 

the entire frequency range.  In general, the spectrum consists of many peaks and the 

outermost peaks are the most intense.   
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Figure 2.8: Evolution of optical spectrum in the presence of nonlinear self-phase 

modulation. 

 

2.1.5 Stimulated Inelastic Scattering 
Stimulated inelastic scattering is the nonlinear effect in which the optical field 

transfers part of its energy to the nonlinear medium.  Two important nonlinear effects 

in optical fiber fall in this category are known as stimulated Raman scattering (SRS) 

[4], [6] and stimulated Brillouin scattering (SBS) [4], [6], [76].  Both of them are 

related to vibrational excitation modes of silica. The main difference between the two 

is that optical phonons participate in SRS while acoustic phonons participate in SBS.   
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2.1.5.1 Stimulated Raman Scattering   

Stimulated Raman scattering (SRS) is an important nonlinear process that can turn 

optical fibers into broadband Raman amplifiers.  When the intense optical beam is 

inputted into the fiber, part of its energy coverts to another optical beam at a 

frequency downshifted by an amount determined by the vibrational modes of the 

medium.  This process is called the Raman effect and is described quantum-

mechanically as a scattering of the incident photon by a molecule to a lower-

frequency photon while the same time the molecule makes a transition between 

vibrational states.  The incident light acts as a pump to generate the frequency-shifted 

light called Stokes wave.   

Under the steady state or CW operation of the pump light, the initial growth of 

the Stokes wave is described by the relation 

SPR
s IIg

dz
dI

= ,                                            (2-16) 

where SI  is the stokes intensity, PI  is the pump intensity, and Rg  is the Raman gain 

coefficient.  Figure 2.9 shows Rg  as a function of the frequency shift for fused silica 

at a pump wavelength of 1000 nm.  The most significant feature of the Raman gain in 

silica fiber is that Rg  extends over a large frequency range up to 40 THz with a broad 

dominant peak near 13 THz  (440 cm-1).  As a result, optical fibers can act as the 

broadband amplifiers.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Raman gain coefficient Rg  as a function of the frequency shift for fused 

silica at a pump wavelength of 1000 nm (After Ref.[4]).  
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Considering a cw pump beam propagating inside the fiber at the optical 

frequency Pω .  If the probe beam at the frequency Sω  is coincident with the pump at 

the fiber input, it will be amplified because of the Raman gain as long as the 

frequency difference SP ωω −  lies within the bandwidth of the Raman gain spectrum.  

If only the pump beam is incident at the fiber input, spontaneous Raman scattering 

provides a weak signal which acts as a probe and is amplified with propagation.  

Since spontaneous Raman scattering generates photons within the entire bandwidth of 

the Raman gain spectrum, all frequency components are amplified.  However, the 

frequency component for which Rg  is maximum build up most rapidly.  In the case of 

pure silica Rg  is maximum for the frequency by about 13.2 THz (440 cm-1).  It turns 

out that when the pump power exceeds a threshold value, this component builds up 

almost exponentially.  Thus, SRS leads to generation of the Stokes wave whose 

frequency is determined by the peak of the Raman gain.  The corresponding 

frequency shift is sometimes called the Raman shift or the Stokes shift.   

To find the Raman threshold in the CW case, two coupled equations of the 

interaction between the pump and Stokes waves should be considered as follow: 

SSSPR
s IIIg

dz
dI

α−= ,                                         (2-17) 

PPPSR
S

PP IIIg
dz

dI
α

ω
ω

−= ,                                     (2-18) 

where the absorption coefficients Sα  and Pα  account for the fiber loss at the Stokes 

and pump frequencies.  For estimating the Raman threshold, the first term on the 

right-hand side of Eq. (2-18), which is responsible for pump depletion, can be 

neglected.  Then the solution of the coupled equations are obtained 

( ) ( ) ( )LLIgILI SeffRSS α−= 0exp0 ,                             (2-19) 

where 

( )( )LL P
P

eff α
α

−−= exp11                                     (2-20) 

is the effective interaction length and 0I  is the incident pump intensity at z = 0.  The 

use of Eq. (2-19) requires an input intensity ( )0SI  at z = 0.  In practice, SRS can build 

up from spontaneous Raman scattering.   
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The Raman threshold is defined as the input pump power at which the Stokes 

power becomes equal to the pump power at the fiber output, or 

( ) ( ) ( )LPLPLP PPS α−== exp0 ,                               (2-21) 

where  

effAIP 00 = ,                                                (2-22) 

0P  is the input power and effA  is the effective fiber core area.  By assuming PS αα ≈ , 

the threshold pump power thP0  is calculated to be 

effR

effth

Lg
A

P
16

0 ≈ .                                                (2-23) 

If polarization is not preserved the Raman threshold is increased by a factor whose 

value lies between 1 and 2.  For long fiber such that PeffP LL αα 1,1 ≈<< .  At Pλ  = 

1550 nm, a wavelength near which the fiber loss in minimum.  If we use a typical 

value µ50=effA m2, the predicted Raman threshold is thP0  = 600 mW.  Since the 

power launched into the fiber is typically 1 mW, SRS is not likely to occur in single-

channel optical communication systems.  The soliton-based optical communication 

systems would require higher power levels in the range 40-50 mW.  This range is still 

well below the critical value.  Moreover, to estimate how the Raman effect affects the 

lightwave system, the CW theory of SRS needs modification when optical pulses are 

used at the pump since the optical power launched into the fiber is the pulses not the 

CW.   

In this case, if the Raman threshold is reached and if the pulse width is much 

smaller than the Raman response time of the medium ( ≈Rτ  10 fs in silica fiber), each 

pump pulse then generates a Stokes or Raman pulse.   

Optical fiber can be used to amplify a weak signal if it is propagated together 

with a strong pump wave and if its wavelength lied within the bandwidth if the 

Raman gain spectrum of the pump.  Such amplifiers are called fiber-Raman 

amplifiers.  The signal intensity at the amplifier output at z = L is then given by Eq. 

(2-19).  Since ( ) ( ) ( )LILI SSS α−= exp0  in the absence of pump, the amplifier gain or 

the amplification factor is given by 

( )
( ) ( ) ( )effeffR

SS

S
R ALPg

LI
LIG 0exp

exp0
=

−
=

α
,                     (2-24) 
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Fiber-Raman amplifier can easily amplify the signal by a factor of 1000 (30 

dB gain) at a pump power of about 1 W.  An attractive feature of the fiber-Raman 

amplifiers is their broad bandwidth (≧ 5 THz).  It can be used to amplify several 

channels simultaneously in a multi-channel communication system and it is possible 

to apply to the amplification for transmitting ultra-short pulses such soliton pulses.   

Raman amplifier using optical fiber can be realized by forward, backward, and 

also bi-directional pumping scheme.  In chapter 7, we apply the distributed Raman 

gain produced through the bi-directional pumped SRS in optical fiber for constructing 

the reverse power distribution in order to achieve the perfect compensation of signal 

distortion in OPC system.   

 

2.1.5.2 Stimulated Brillouin Scattering 

Stimulated Brillouin scattering (SBS) is a nonlinear process that occurs in 

optical fibers at input power levels much lower than those needed for stimulated 

Raman scattering (SRS).  The difference against SRS is that the direction of generated 

Stokes wave is backward while SRS is occurred in both direction, and an amount of 

the frequency shift of the Stokes wave is determined by the acoustic phonons instead 

of optical phonons.  Similarly, SBS can be useful through fiber-Brillouin amplifiers 

and laser [77], [78].   

SBS manifests through the generation of a backward Stokes wave downshifted 

from the frequency of the incident pump wave by an amount determined by the 

nonlinear medium.  The stoke shift in SBS (≈  10 GHz) is smaller by three orders of 

magnitude compared with the occurring in SRS.  The threshold power for SBS 

depends on the spectral width associated with the pump wave.  It can be as low as ≈1 

mW for a CW pump.  By contrast, SBS nearly ceases to occur for short pump pulses 

with widths shorter than 10 ns.   

The process of SBS can be described as a parametric interaction among the 

pump wave, the Stokes wave, and an acoustic wave.  The pump wave generates 

acoustic waves through the process of electrostriction which in turn causes a periodic 

modulation of the refractive index.  The pump-induced index grating scatters the 

pump light through Bragg diffraction.  The scattered light is downshifted in frequency 

because of the Doppler shift associated with a grating moving at the acoustic velocity 

Av .  The frequency shift Bν  in the backward is given by  
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P

A
B

nv
λ

ν
2

= ,                                                      (2-25) 

where n is the refractive index, and Pλ  is the pump wavelength.  If we use Av  =  5.96 

km/s and n = 1.45, the values appropriate for silica fibers, ≈Bν  11.1 GHz at Pλ  = 

1550 nm.  Similar to the case of SRS, the growth of the Stokes wave is characterized 

by the Brillouin gain coefficient ( )BBg ν  whose peak value occurs at Bνν = .  However 

in contrast with the SRS case, the spectral width Bν∆  of the Brillouin-gain spectrum 

is very small (≈  10 MHz).  The Brillouin-gain coefficient Bg  is nearly independent 

of the pump wavelength. For fused silica, 11105 −×=Bg  m/W.   

Similar to the SRS case, the development of SBS in optical fibers requires the 

consideration of mutual interaction between the pump and Stokes waves.  Assuming 

that the fiber loss is the same for the pump and Stokes waves ( )ααα == SP , under 

the steady-state conditions, the interaction couple-intensity equations is given by 

SSPB
S IIIg

dz
dI

α−= ,                                            (2-26) 

SPSB
P IIIg

dz
dI

α+−= .                                          (2-27) 

The solution of the couple equations about the Stokes intensity is found to 

grow exponentially in the backward direction according to the relation 

( ) ( ) ( )( )LALPgLII effeffBS α−= 00 exp0 ,                             (2-28) 

where ( ) effP AIP 00 = , effA  is the effective core area, and the effective interaction 

length is given by 

( )( )LLeff α
α

−−= exp11 .                                          (2-29) 

Equation (2.28) shows how a Stokes signal incident at z = L grows in the 

backward direction because of Brillouin amplification occurring as a result of SBS.  

In practice, no such signal is generally fed, and the Stokes wave grows from noise or 

spontaneous Brillouin scattering occurring throughout the fiber.  The Brillouin 

threshold is found to occur at a threshold pump power thP0  obtained by using the 

relation 

210 ≈effeff
th

B ALPg .                                            (2-30) 
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The numerical factor of 21 can also increase by a factor between 1 and 2 

depending on whether the pump and Stokes waves maintain their polarization along 

the fiber or not.  If we used the typical values for fibers used in 1550 nm optical 

communication systems, =effA  50 µ m2, ≈effL  20 km, and 11105 −×≈Bg  m/W, the 

predicted threshold pump power ≈thP0  1 mW.  It is such a low threshold that makes 

SBS a dominant nonlinear process in optical fibers.   

The Brillouin gain of an optical fiber can be used to amplify a weak signal 

whose frequency is shifted from the pump frequency by an amount equal to the 

Brillouin shift Bν .  The fiber-Brillouin amplifier gain BG  is given by 

( )effeffBB ALPgG 0exp= .                                      (2-31) 

Since amplification of fiber-Brillouin amplifiers can be achieved at the pump 

power of only a few milliwatts, such a semiconductor laser can be used as a pump 

source.  The narrow bandwidth of the amplifiers can also be advantageous for some 

fiber-optic applications requiring selective amplification of only a narrow portion of 

the incident signal spectrum.   

The most important development in optical fiber communication in this 

decade may be the invention of EDFA.  Such kind of fiber amplifier has Erbium 

doped in the core and utilizes SBS to provide a gain for optical amplification.  EDFA 

is the most attractive and has a great potential for lightwave system not only for linear 

systems but also can be applied for amplifying nonlinear pulses such as optical soliton 

in nonlinear systems [79]-[81].   

2.1.6 Parametric Processes and Four-Wave Mixing 
In the stimulated scattering processes, the optical fiber play and active role through 

the participation of molecular vibrations or acoustic phonons.  In many nonlinear 

phenomena the fiber plays a passive role except for mediating the interaction among 

several optical waves through a nonlinear response of bound electrons.  Such 

processes are referred to as the parametric processes as they originate from light-

induced modulation of a medium parameter such as the refractive index [4].  These 

processes include the nonlinear phenomena such as second-harmonic generation 

which will not occur in the mediums such as optical fibers, four-wave mixing [4], 

[82], and parametric amplification [8], [83].   
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Four-wave mixing and parametric amplification refer to the interaction among 

four optical waves.  Four-wave mixing in optical fibers has been studied extensively 

since it can be quite efficient in generating new waves.  Its main features can be 

understood by considering the third-order polarization term given as  
( )3

0NLP E E Eε χ= ⋅ ⋅
v v v v

,                                        (2-32) 

where E
v

 is the electric field, NLP
v

 is the induced nonlinear polarization, and 0ε  is the 

vacuum permitivity.  Consider four optical waves oscillating at frequencies 

321 ,, ωωω , and 4ω  and linearly polarized along the same axis x.  The total electric 

field can be written as 

( )( )∑
=

+−=
4

1
..exp

2
1ˆ

j
jjj cctzkiExE ω

v
,                           (2-33) 

where 

cnk jjj ω= ,                                               (2-34) 

jn  is the refractive index, c.c. represents the complex conjugate, and four waves are 

assumed to be propagating in the same direction z.  Substituting Eq. (2-33) in Eq. (2-

32), NLP
v

 can be expressed as 

( )( )∑
=

+−=
4

1
..exp

2
1ˆ

j
jjjNL cctzkiPxP ω

v
,                           (2-35) 

we find that jP  for j = 1-4  consists of a large number of terms involving the products 

of three electric fields.  For example, P4 can be expressed as 

( ) ( )( ) ( ) ( ){ }K++++++= −+ θθχ
ε

iEEEiEEEEEEEEP xxxx exp2exp22
4

3 *
3213214

2
3

2
2

2
1

2
4

30
4

 (2-36) 

where 

( ) ( )tzkkkk 43214321 ωωωωθ −++−−++=+ ,                   (2-37) 

( ) ( )tzkkkk 43214321 ωωωωθ −−+−−−+=− .                   (2-38) 

The term proportional to E4 in Eq. (2-36) is responsible for self-phase modulation 

(SPM) and cross-phase modulation (XPM) effects respectively.  The remaining terms 

are responsible for FWM.  The efficiency of FWM depends on the phase difference 

between E4 and P4 as described in Eq. (2-37) and Eq. (2-38).  Significant FWM 

occurs only if the phase difference nearly vanishes.  This requires matching of 

frequencies as well as of the wave vectors.  The latter requirement is often referred to 

as phase matching.  Phase matching condition requires a specific choice of the 
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frequencies and the refractive indices for parametric processes to occur.  There are 

two types of FWM terms in Eq. (2-36).  First, the case which three photons transfer 

their energy to a single photon by the following condition,  

3214 ωωωω ++= .                                             (2-39) 

This process can also refers to the phenomena such as third-harmonic generation 

when 321 ωωω ==  or frequency conversion to the wave at 312 ωω +  when 

321 ωωω ≠= .  In general, it is difficult to satisfy the phase matching condition for 

these processes to occur in optical fibers with high efficiencies.   

The process which is able to occur in optical fiber is the second type of FWM 

described by the following condition,  

2143 ωωωω +=+ ,                                            (2-40) 

where two photons at frequencies 1ω  and 2ω  are annihilated with a simultaneous 

creation of two photons at frequencies 3ω  and 4ω .   

The phase-matching requirement for this process to occur is that 0=∆k , 

where 

( ) cnnnnkkkkk 221144332143 ωωωω −−+=−−+=∆ .             (2-41) 

The description of this process is illustrated in Fig. 2.10.  It is relatively easy to satisfy 

the phase matching condition for the case in which 21 ωω = .  This case is similar to 

SRS.   

A strong pump wave at 1ω  creates two side bands at lower frequency 3ω  and 

higher frequency 4ω .  3ω  and 4ω  are referred to as the Stokes and anti-Stokes 

respectively in direct analogy with SRS and are also be called the signal and idler 

bands when an input signal at 3ω  is amplified through the process of FWM.   

FWM will affect the multi-channel fiber-optics systems such WDM systems 

since once the phase matching is satisfied, one channel transfers its energy to other 

two channels [84], [85].  Even the single-channel systems, the degradation by FWM 

process occurs since the signal transfers its energy to spontaneous noise whose their 

frequencies satisfy the phase matching condition [86]-[93].  The degradation of 

single-channel systems will be stronger if the signal wavelength is set at the zero-

dispersion wavelength since it has been shown that phase-matching is easily to justify 

at zero-dispersion wavelength of optical fibers [4], [82].  In this case, the FWM 
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interacts with the SPM effect causing an enhancement of the spontaneous noises 

resulting in spreading of spectrum which will degrade a bit-error rate of the systems 

[86]-[93].   
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Figure 2.10: Process of Four-wave mixing in optical fiber. 
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2.2  Derivation of Basic Propagation Equation  

In order to study signal propagation in optical fiber both analytically and numerically, 

the nonlinear Schrodinger equation (NLSE) which governs the signal propagation in 

optical fiber must be solved.  In this section, we show the derivation of basic equation 

that governs the propagation of optical signal in single-mode fibers which is based on 

Maxwell's equations and important concepts such as the linear and nonlinear parts of 

the induced polarization, the frequency-dependent dielectric constant, and the theory 

of pulse propagation in nonlinear dispersive media in the slowly-varying-envelope 

approximation with the assumption that the pulse is much smaller than the frequency 

of the incident radiation.  Next, we describe a simulation method which is employed 

in this research for solving the propagation equation since there is no analytic solution 

available except a special case such as soliton.  As we use the algorithm of FFT so 

that the initial optical field must be sampled to discrete function, this sec ends with 

the preparation before performing the numerical simulation.   

Like all electromagnetic phenomena, the propagation of optical fields in fibers 

is governed by Maxwell's equations.  In the case that considers optical fibers as a 

medium, Maxwell's equations will be 

BE
t

∂
∇× = −

∂

v
v

,                                                    (2-42) 

f
DH J
t

∂
∇× = +

∂

v
v v

,                                                (2-43) 

fD ρ∇ ⋅ =
v

,                                                     (2-44) 

0B∇⋅ =
v

,                                                       (2-45) 

where E
v

 and H
v

 are electric and magnetic field vectors respectively, and D
v

 and B
v

 

correspond to electric and magnetic flux densities.   

In the medium such as optical fibers, the relations between  D
v

 and E
v

, and, B
v

 

and H
v

 are 

0D E Pε= +
v v v

,                                                    (2-46) 

0B Hµ=
v v

,                                                       (2-47) 

where 0ε  is the vacuum permitivity, 0µ  is the vacuum permeability, and P
v

 is the 

induced electric polarization.  If we include third-order nonlinear effects governed by 
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the third-order susceptibility ( )3χ , the induced polarization will separate into two 

parts such that 

NLL PPP
vvv

+= ,                                                 (2-48) 

where the linear part LP
v

 and the nonlinear part NLP
v

 are related to the electric field by 

the following relations 
( )EPL

vv 1
0χε= ,                                                 (2-49) 

( ) EEEPNL

vvvv
⋅⋅= 3

0χε .                                           (2-50) 

To derive the basic propagation equation that governs the propagation of 

optical pulses in nonlinear dispersive fibers, the starting point is to take the curl of Eq. 

(2-42) and using Eq. (2-43), (2-46), (2-47) and (2-48), then we will obtain 

2

2

02

2

02

2

2
2 1

t
P

t
P

t
E

c
E NLL

∂
∂

−
∂
∂

−=
∂
∂

−∇
vvv

v
µµ .                          (2-51) 

To solve Eq. (2-51), it is necessary to make several simplifying assumptions 

such the following items 

1. NLP
v

 is treated as a small perturbation to LP
v

.   

2. The optical field is assumed to maintain its polarization along the fiber 

length so that a scalar approach is valid.   

3. The center frequency of the optical field is assumed to locate at 0ω  and has 

the spectral width ω∆  such that 10 <<∆ ωω .  This assumption is valid for pulses 

whose width is ≤  0.1 ps.   

4. Assuming that the slow-varying envelope approximation can be applied to 

this case.   

By the last item of the above assumptions, we can separate the rapidly varying 

part of the electric field and the induced polarization components by writing them in 

the form 

( ) ( ) ( ) ( ){ }tititrExtrE 00 expexp,ˆ
2
1, ωω +−= vvv ,                      (2-52) 

( ) ( ) ( ) ( ){ }tititrPxtrP LL 00 expexp,ˆ
2
1, ωω +−= vvv

,                    (2-53) 

( ) ( ) ( ) ( ){ }tititrPxtrP NLNL 00 expexp,ˆ
2
1, ωω +−= vvv

,                  (2-54) 
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where x̂  is the polarization unit vector of the light assumed to be linearly polarized 

along the x-axis, and ( )trE ,v  is a slowly varying function of time.   

To obtain the wave equation for the slowly varying amplitude ( )trE ,v , it is 

more convenient to work in the Fourier domain.  Substituting Eq. (2-52)-(2-54) into 

Eq.(2-51), using the relation between electric fields and induced polarization given by 

Eq. (2-53) and then taking the Fourier transform, we will obtain  

( ) ( ) ( ) 0,~,~
0

2
00

2 =−−−∇ ωωωεωω rEkrE vv ,                        (2-54) 

where ( )0,~ ωω −rE v  is the envelope function in Fourier domain defined by 

( ) ( ) ( )( )dttitrErE 00 exp,,~ ωωωω −=− ∫
∞

∞−

vv ,                       (2-55) 

0k  is the wave number, and the dielectric constant ( )ωε  is given by  

( ) ( ) ( ) NLεωχωε ++= 1~1 ,                                      (2-56) 

where ( )( )ωχ 1~  is the Fourier transform of ( ) ( )t1χ , and the nonlinear part NLε  is given 

by 

( ) ( ) 23 ,
4
3 trENL

vχε = .                                        (2-57) 

The dielectric constant can be used to define the refractive index n  and the 

absorption α  by the relation 

( )( ) ,2 2
0kin αωε +=                                        (2-58) 

so that n  will be intensity dependent by the relation 

( ) ( ) 2
2 Ennn += ωω ,                                       (2-59) 

where 2n  is defined as the nonlinear refractive index given by 

( )3
2 8

3 χ
n

n = .                                             (2-60) 

If we assume a solution of Eq. (2-54) has the form 

( ) ( ) ( ) ( )zizAyxFrE 000 exp,~,,~ βωωωω −=−v ,                  (2-61) 

where ( )0,~ ωω −zA  is a slowly varying function of  z, and F(x, y) is the modal 

distribution of the optical field in an optical fiber.  Substituting Eq. (2-61) into Eq. (2-

54) then the two equations for ( )0,~ ωω −zA  and F(x, y) will be obtained as  

( ){ } 022
02

2

2

2

=−+
∂
∂

+
∂
∂ Fk
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F

x
F βωε ,                         (2-62) 
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z
Ai βββ .                                        (2-63) 

Eq. (2-62) can be solved by using first-order perturbation theory.  However, we 

should concentrate to the more important Eq. (2-63) that can explain pulses 

propagation in optical fibers.   

The eigen value ( )ωβ  has the form 

( ) ( ) βωβωβ ∆+= ,                                           (2-64) 

where 

( )

( )∫ ∫

∫ ∫
∞

∞−

∞

∞−

∆
=∆

dxdyyxF

dxdyyxFnk

2

2
0

,

,
β .                                    (2-65) 

and 

0

2
2 2k

iEnn α
+=∆ ,                                            (2-66) 

By using Eq. (2-64), Eq. (2-63) can be written as 

( )( )Ai
z
A ~~

0ββωβ −∆+=
∂
∂ .                                     (2-67) 

where we approximated 2
0

2 ββ −  by ( )002 βββ − .   

The inverse Fourier transform of Eq. (2-67) provides us the propagation 

equation for ( )tzA , .   For this purpose, it is useful to expand ( )ωβ  in a Taylor series 

about the carrier frequency 0ω ,   

( ) ( ) ( ) ( ) ...
6
1

2
1 3

03
2

02010 ωωβωωβωωββωβ −+−+−+= ,            (2-68) 

where 

0ωωω
ββ

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= n

n

n d
d

.                                             (2-69) 

As mentioned above, 2β  and 3β  are responsible for the second-order and third-order 

dispersion, respectively.  In the zero-dispersion region, only the effect of 2β  vanishes, 

however, it is necessary to include the high-order terms of dispersion.  The higher-

order terms in this expansion are negligible if the spectral width 0ωω∆  << 0ω  

corresponding to the pulse width > 0.1 ps.  Substituting Eq. (2-68) in Eq. (2-67) and 
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considering only to the third-order dispersion term, the inverse Fourier transform of 

Eq. (2-67) will be 
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where A is the inverse Fourier transform of the envelope function A~ .  By substituting 

Eq. (2-66) and Eq. (2-65) in Eq. (2-70), we will obtain 

AAiA
t
A

t
Ai

t
A

z
A 2

3

3

32

2

21 26
1

2
γαβββ =+

∂
∂

−
∂
∂

+
∂
∂

+
∂
∂ ,               (2-71) 

where the nonlinear coefficient γ  is defined by 

effcA
n 02ωγ = .                                                   (2-72) 

The parameter effA  is known as the effective core area and is given by 
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For a single-mode fiber, the modal distribution ( )yxF ,  corresponds to the distribution 

of the fundamental fiber mode 11HE  given by the expression of Bessel functions 

which is too complicated for calculating.  In practice, the fundamental fiber mode is 

often approximated by a Gaussian distribution of the form 

( ) ⎟⎟
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⎞
⎜⎜
⎝

⎛ +
−= 2

22

exp,
a

yxyxF ,                                    (2-74) 

where a  is the fiber core radius.   

Equation (2-71) describes the propagation of an optical pulse in single-mode 

fibers.  It includes the effects of fiber loss through α , of chromatic dispersion through 

1β , 2β , and 3β , and of fiber nonlinearity through γ .  However, if we consider an 

ultra-short pulse whose width is shorter than 0.1 ps or a pulse whose peak power is 

larger than the threshold level of stimulated inelastic scattering such as SRS and SBS, 

it may need modification for supplying these effects.   

Before attempting to solve the propagation equation (2-71), it is useful to 

employ a frame of reference moving with the pulse at the group velocity gv  

( )11 β=gv .  By making the transformation 
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Equation (2-72) can be written as 
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Equation (2-76) is sometimes called the generalized nonlinear Schrodinger equation. 

In the special case of 0=α  and 03 =β , Eq. (2-76) is well known as the nonlinear 

Schrodinger equation which has been extensively studied in the context of soliton.   

 

2.3  Numerical Method: the Split-Step Fourier  
To understand the propagation of the pulse in an optical fiber, it is necessary to solve 

Eq. (2-76).  However, the propagation equation (2-76) generally does not have the 

analytic solutions except for some specific cases such as the soliton case which the 

inverse scattering method can be employed.  Because of this reason, a numerical 

method is therefore necessary for solving this equation.  In this thesis, we used the 

numerical method called split-step Fourier method (SSFM) [4], [74] which has been 

extensively used to solve the nonlinear equation.  By this method, a fiber length is 

divided into a large number of small segments of width δ  where each segment is 

assumed to have the effects of nonlinearlities or the dispersive effects only.  Thus, by 

using an iterative procedure, we can utilize the Fourier transform to solve the 

propagation of the pulse that is disturbed only by the effects of dispersions and the 

effects of nonlinearities separately.  This separation of the calculation of dispersion 

effects and nonlinearity leads to a possibility for solving Eq. (2-76) 

Equation (2-76) can be written as 

( )AND
z
A ˆˆ +=
∂
∂ ,                                            (2-77) 

where the differential operator D̂  includes the first two terms involving loss and 

dispersion while N̂  consists of the last nonlinear term, i. e. , 
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2ˆ AiN γ= .                                                 (2-79) 

As mentioned above, in general dispersion and nonlinearity act together along 

the length of the fiber.  The SSFM obtains an approximate solution by assuming that 
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in propagating the optical field over a small distance δ , the dispersive and nonlinear 

effects can be pretended to act independently.  More specifically, propagation from z 

to δ+z  is carried out in two steps. In the first step, dispersion acts alone, and D̂  = 0 

in Eq. (2-77).  In the second step, dispersion acts alone, and N̂  = 0 in Eq. (2-77).  

Mathematically, the approximate solution can be obtain as 

( ) ( ) ( ) ( )TzANDTzA ,ˆexpˆexp, δδδ ≈+ .                             (2-80) 

Figure 2.11 shows the propagation of optical field ( )TzA ,  in a small segment of fiber 

δ  when the nonlinearity and dispersion are assumed to act independently.   

 

 

 
 

Figure 2.11: Propagation of optical field ( )TzA ,  in a small segment of fiber δ  when 

the nonlinearity and dispersion are assumed to act independently. 

 

To perform the SSFM, it is necessary to use the differential operation D̂  in Fourier 

domain.  By replacing 
T∂
∂  with ωi , we will obtain  

{ } 2 3
2 3

ˆ
2 2 6

i iF D α β ω β ω= − + − ,                                 (2-81) 

where F denotes the Fourier-transform operation.  Equation (2-80) can be written in 

the form of SSFM as 



 41

( ) ( )( ) ( ) ( ){ }{ }TzANFiDFTzA ,ˆexpˆexp, 1 δωδδ −=+ .                   (2-82) 

Figure 2.12 shows the calculation route of optical field propagating in fiber based on 

SSFM for the case that the fiber is divided into 4 small segments.   

 

 
 

Figure 2.12: Calculation route of optical field propagating in fiber based on SSFM for 

the case that the fiber is divided into 4 small segments. 

 

The speed of this SSFM directly depends on an algorithm of Fourier-

transform.  In this thesis, we use the algorithm of FFT(Fast Fourier Transform) [94] 

which can makes this numerical evaluation of Eq. (2-82) relatively fast.  About the 

accuracy of the SSFM, the dominant error term is found to result from the single 

commutator [4] 

( )DNND ˆˆˆˆ
2
1 2 −δ .                                                (2-83) 
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From the result of Eq. (2-83), the SSFM is accurate to second order in the step size δ , 

thus the improvement of accuracy of this method can be perform by reducing the step 

width.  Furthermore, The accuracy of the SSFM can be improved by adopting a 

different procedure which includes the effect of nonlinearity only at the midplane and 

uses an iterative calculation performed on each half step.  In this procedure Eq. (2-84) 

is replaced by 
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Because of the symmetric from of the exponential operators in Eq. (2-85), this method 

is known as the symmetrized SSFM.  The integral in the middle exponential is useful 

to include the z dependence of the nonlinear operator N̂ .  If the step size δ  is small 

enough, it can be approximated by )ˆexp( Nδ .  The accuracy of the SSFM can be 

further improved by evaluating the integral in Eq. (2-85) more accurately than 

approximating it by ( )zN̂δ .  A simple approach is to approximate the integral by 

( ) ( ) ( ){ }δ
δ

++≈′′∫
+

zNzNhzdzN
z

z

ˆˆ
2

ˆ .                                 (2-86) 

However, the implementation of Eq. (2-86) is not simple since ( )δ+zN̂  is unknown 

at the midsegment located at 2δ+z .  It is necessary to follow an iterative procedure 

that is initiated by replacing ( )δ+zN̂  by ( )zN̂ .  Equation (2-85) is then used to 

estimate ( )TzA ,δ+ , which in turn is used to calculate the new value of ( )δ+zN̂ .  

Although the iteration procedure is time-consuming, it can still reduce the overall 

computing time if the step size δ  can be increased because of the improved accuracy 

of the numerical algorithm.  Two iterations are generally enough in practice.   

In this dissertation, the SSFM is mainly used for simulating signal propagation 

in optical fibers.  The implementation of the SSFM in this thesis is conceptually 

shown in Fig. 2.13.  The fiber length is divided into a large number of segments that 

need not to be equi-spaced.  The optical signal is propagated from the segment to 

segment using the prescription of Eq. (2-85).  More specifically, the optical field 

( )TzA ,  is first propagated for a distance midplane 2δ+z , the field is multiplied by 

a nonlinear term that represents the effect of nonlinearity over the whole segment 

length δ .  Finally, the field is propagated the remaining distance 2δ  with dispersion 
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only to obtain ( )TzA ,δ+ .  In effect, the nonlinearity is assumed to be lumped at the 

midplane of each segment.   

 

 

 
 

Figure 2.13: Calculation procedure of the symmetric SSFM. 

 

2.4 Preparation before Simulation 
Because we concern both amplitude and phase of the optical field ( ),A z T , so that 

( ),A z T  is assumed to be the complex function.   

( ) ( ) ( ), , ,r iA z T A z T iA z T= + .                                  (2-87) 

For initial field of simulation, since we use the algorithm of fast-Fourier transform 

(FFT) in the SSFM, ( )0,A T  is sampling with the sampling interval T∆  to be the 

discrete function consists of n-data: ( )*A n T∆ .  Initially, it is convenient to set the 

relative phase of the optical field to zero thus the discrete field can be written as 

( ) ( )* *0, 0,rA n T A n T∆ = ∆ .                                       (2-88) 
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Figure 2.14: Relation between sampling interval and maximum spectral bandwidth 

according to sampling theory. 
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As shown in Fig. 2.14, according to the sampling theory, after performing 

Fourier transform of ( )* ,A z n T∆ , the maximum bandwidth of its discrete spectral 

window maxB  will be limited by the sampling interval T∆  or the number of data n by 

the relation [97] 

max
1 nB
T T

= =
∆

,                                               (2-89) 

where T denotes the duration of discrete field ( )* ,A z n T∆ .  Using the above relations, 

the frequency interval f∆  of discrete spectrum of ( )* ,A z n T∆  is obtained by 

1 1f
n T T

= =
∆

.                                                (2-90) 

The relation between maximum bandwidth and number of sampled data 

predicts that it is impossible to assume the free-space bandwidth since the bandwidth 

is limited by the number of sampled data.  To increase the maximum bandwidth, it is 

necessary to increase the number of sampled data.  In this dissertation we use the 

number of sampled data n = 2048 for all calculations.   

 

 

 



CHAPTER 3 
OPTICAL TRANSMISSION SCHEMES FOR 

SYSTEM USING OPTICAL AMPLIFICATION 
 

When the electronic repeaters are replaced with the optical amplifiers, the problem 

which is necessary to be overcome first is considerably originated from fiber 

dispersion that causes the broadening of the signal pulses during propagation inside 

the fiber.  There are many systems that have been proposed in order to overcome the 

dispersion effect.   

3.1 Zero-Dispersion Wavelength Transmission [17]-[20] 

According to the dispersion characteristic of optical fibers shown in Fig. 2.2, the 

group-velocity dispersion (GVD) parameter 2β  and the second-order dispersion 

(SOD) parameter D  vanish at the wavelength of Dλ  which is referred to 1.55µ m for 

the DSF.  The idea of this kind of system is simple: setting an operation wavelength 

of the system at zero-dispersion (SOD) point so that the pulses can propagate without 

broadening.  The advantages of the zero-dispersion systems arise from their simple 

construction and the avoidance from dispersion-limited performance.  However, it is 

considerably difficult to set the operation wavelength exactly at the zero-dispersion 

point.   

The problems of the zero-dispersion systems, as discussed above, grow up 

from the third-order dispersion (TOD) resulting in pulse distortion and broadening 

[4], [17].  When the input power of the signal becomes intense, the nonlinearity of the 

fiber mainly causes the problems in zero-dispersion transmission.  The two main 

problems in zero-dispersion transmission induced from fiber nonlinearity are the 

interaction between SPM and TOD and the enhancement of optical amplifier noise 

due to SPM [18]-[20].  The above two problems seriously result the signal waveform 

distortion and the rapid spreading of signal spectra.   

3.2 Dispersion Management [21]-[35].   

As discussed above, fiber systems whose operation wavelength is located directly at 

the zero-dispersion point encounter problems mainly induced by the nonlinearity of 

optical fibers.  Since the SOD length defined by Eq. (2-6) becomes infinity and no 
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longer is compared to the nonlinear length at zero-dispersion point, the nonlinearity 

becomes stronger and pays important role in limiting the system performance.  In 

order to avoid the nonlinear problems, a very slight displacement of a carrier 

wavelength from zero-dispersion wavelength may be one way to alleviate the 

problems [21]-[35].   

 

 
 

Figure 3.1: Concept of dispersion management method. 
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Furthermore, the more sufficient method is to arrange the various sections of 

fiber in such a way that none or only very few of them have zero-dispersion 

wavelengths that coincide with the carrier wavelength while the total fiber exhibits 

zero SOD on average.  A method for construction a fiber system which consists of 

fiber sections that are arranged such that the SOD of each amplifiers span is zero at 

the operation wavelength are generally called dispersion management.   

The idea of dispersion management comes from the completely cancellation of 

the frequency chirp resulting in the recovery of the pulse shape.  If we consider the 

fiber section consisting of two pieces of fibers with the same value of SOD but 

different symbols (+ and -) shown in Fig. 3.1.  This section of fiber exhibits the zero 

SOD on average.  An optical pulse launched to this fiber will be frequency-chirped 

induced by the SOD.  The pulse will be broadened due to the SOD-induced pulse 

broadening.  However, when the pulse is entered to the fiber which exhibits the 

opposite SOD symbol, the frequency-chirping occurs in the opposite direction so that 

it will cancel the chirp induced by the first fiber resulting in pulse compression.   

 

3.3  Optical Soliton [36]-[47] 
Soliton refers to special kind of waves that can propagate undistorted over long 

distances and remain unaffected after collision with each other.  Optical soliton in 

optical fiber is conformed by balancing the fiber dispersion and nonlinear self-phase 

modulation (SPM) in anomalous dispersion region [4], [5], [36].  Quantitatively, this 

can be achieved by launching optical pulses with proper input power and width into 

the fiber.  The most attractive characteristic of optical soliton is that they can 

propagate in optical fibers without pulse shape distortion over a long distance if the 

fiber loss is negligible.  There are other several other reasons why soliton is attractive 

for optical communication systems generally and therefore why they should be 

considered as a possible route for system upgrades.  In particular, soliton is 

compatible with all optical switching and routing technologies [11].  The ability to 

optically process signal is essential if the bottleneck problems encountered at 

switching nodes are to be overcome for the high data rates.   

The generation of optical soliton in optical fibers based on the idea of 

dispersion compensation which is achieved by the frequency-chirp cancellation 

occurring by transmitting optical pulses in two pieces of optical fibers whose symbols 
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of SOD are opposite.  In the case of nonlinear effect, if we launch an intense optical 

pulse to the fiber with operating wavelength situating at anomalous dispersion region, 

the nonlinear up-chirp will occur through the SPM and at the same time the linear 

down-chirp will be induced by the anomalous dispersion.  Since the chirp induced by 

SPM and chirp induced by the SOD exhibit opposite symbols, they will cancel each 

other during propagation inside resulting in pulse compression or broadening 

depending on the input power of the pulse.  If we enter the optical pulse to the fiber 

with an appropriated power which is related to the value of 2β  and pulse width, the 

nonlinear up-chirp and linear down-chirp will cancel each other in such a way that no 

pulse compression and pulse broadening during propagation.  Such the optical pulse 

which can travel inside the fibers with no change in pulse shape and spectrum by 

balancing the effect of SPM and SOD refers to the optical soliton.   

Figure 3.2 illustrates how the soliton can maintain its shape during the 

propagation by the balance of frequency chirp by SPM and chirp by fiber SOD in 

anomalous dispersion region.  Qualitatively, in the absence of fiber loss, such soliton 

phenomena can be met at the balance point of SOD effect and SPM via the condition: 

2dnl LL = , which yields the input power 0P  required for conforming the soliton for 

given 2β  and pulse width T .   

The problems in soliton transmission systems are roughly classified into the 

following three problems: the fiber loss, [4], [5], [42]-[44] the mutual interaction 

between adjacent solitons [4], [45], and the Gordon-Haus effect [46], [47].  To 

transmit soliton pulses through actual optical fibers, especially for a long distance, it 

is necessary to consider the fiber loss.  The fiber loss results in exponentially increase 

of soliton width and decrease of soliton peak.  It is necessary to amplify the soliton 

periodically to maintain its power.  With the EDFA, the soliton power is amplified to 

amplitude larger than that required for forming the fundamental soliton (the soliton in 

lossless fibers) so that its average power along the fiber is still the fundamental soliton 

power.  Such a soliton called the guiding-center soliton [42] or average soliton [43], 

which is stable when the ratio of the amplifier spacing and the soliton period is much 

less than unity [44].   
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Figure 3.2: Soliton generated by the balance of SPM and fiber SOD in anomalous 

dispersion region. 

 

In addition to the stability requirement, there are two other effects limiting the 

capacity of soliton transmission.  When the solitons are closely spaced, the mutual 

interaction changes the velocity of the solitons and causes the soliton to move out of 

the detection window [4], [45].  On the other hand, the noise introduced by the optical 

amplifier randomly modulates the carrier frequency of the soliton, and the group 

velocity varies.  This effect leads to the timing jitter and is known as the Gordon-Haus 

effect [46], [47].   

3.4 Midway Optical Phase Conjugation [48]-[52].   
This kind of system performs optical phase conjugation (OPC) at the midpoint of 

system in order to compensate both dispersive and nonlinear effects.  If all of the 

system characteristics in the first half is symmetrical to the second half with respect to 

the midway OPC, when we generate the conjugate signal of the first-half-transmitted 

signal at the midway of the system, all of the phase distortions induced in the first half 
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are completely compensated via the self-recovery effect of the conjugate signal when 

transmitting through the second half of the system.   

Figure 3.3 shows schematically the midway OPC system.  The optical phase 

conjugator is placed at the midpoint of the system.  Under the condition that all of the 

system characteristics are symmetric with respect to the midway OPC, generating the 

conjugate signal of the first-half-transmitted signal at the midway of the system, all of 

the phase distortions induced in the first half are completely compensated via the self-

recovery effect of the conjugate signal when transmitting through the second half of 

the system.  However, in real transmission, three problems including one from an 

asymmetric system characteristic occur and limit a performance of OPC systems.   

 

Figure 3.3: Optical transmission system with midway OPC. 

 

According to the nonlinear Schrodinger equation (NLSE) (Eq. (2-76), which 

governs the propagation of signal pulses in an optical fiber, taking the complex 

conjugation of NLSE, we obtain  
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where * denotes the complex conjugate operation.  Eq. (3-1) describes the complex 

conjugate amplitude of the signal A propagating in backward direction through the 

fiber which exhibit reverse sign of α and 3β .  According to Eq. (2-76) and (3-1) 

indicates that if we generate the complex conjugate of the distorted pulses at the 

midway of a transmission link and let them travel through the second half of the link, 

we will obtain the complex conjugate of the undistorted input pulses at the output end.  

The nonlinear waveform distortion caused by the fiber nonlinearity and the dispersion 

is thus perfectly compensated at the output end.  However, to achieve the perfect 

compensation two conditions are needed.  First, the transmission fiber of the second 



 52

half must have negative 3β  while its 2β  still keeps the same sign as that of first half.  

Second, the propagation of signal through the second half requires a distributed gain 

instead of distributed loss since the sign of α  must be reversed.   

According to the first requirement, the widely-used transmission fibers such as 

SMF and dispersion-shifted fiber (DSF) both exhibit positive TOD.  Therefore, 

similar to other systems, the TOD in OPC systems cannot be compensated by OPC 

but it just accumulates along the system length and will also cause the signal 

waveform distortion [48], [49].  On the other hand, the second condition can be 

satisfied only in an ideal lossless medium.  In real system with long distance 

transmission, a periodic lumped amplification must be used for maintain signal power 

in order to obtain good signal-to-noise ratio (SNR) at receiver.  The fiber loss and this 

periodic amplification forms a periodic signal power distribution along the system 

length and at the same time produces a periodic variation of fiber refractive index 

through the nonlinear Kerr effect of an optical fiber.  By this process, it seems like a 

grating is virtually constructed in the transmission fiber.  As shown in Fig. 3.4, a 

resonance between the virtual grating and the signal will occur at the signal sideband 

component whose wave vector matches the wave vector of this virtual grating 

resulting in exponential growth of that component with transmission length.  This 

phenomenon is known as the sideband instability (SI), which causes signal waveform 

distortion if SI arises at frequency inside the signal bandwidth, which cannot be 

eliminated by using optical bandpass filter [50]-[52].   

Qualitatively, SI can be considered as four-wave mixing (FWM) effect which 

is quasi-phase-matched by the assistance of the periodic power variation induced 

virtual grating as the condition 

fkkkk +=+ −+ 02 .                                             (3-2) 

In Eq. (3-2), 0k  denote the wave number of the signal which acts as a pump, ±k  the 

sideband wave numbers, and fk  the wave number of the virtual grating which is 

given as   

,2

f
f l

nk π
=                                                       (3-3) 
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where ,...,2,1,0 ±±=n  and fl is the amplifier spacing.  The sideband frequency nω  

shifted from the carrier frequency, at which SI arises is obtained from Eq. (3-2) and 

(3-3) as 

( )( )   . sgn21
2

2

Pnk fn β
β

ω −±=                                    (3-4) 

where P  is the path-averaged signal power.  The power gain ( )nωλ of SI at each n-

order resonance frequency is 

( ) nn FP02=ωλ ,                                                 (3-5) 

where 0P  denotes the signal input power and nF  the n-order of the Fourier series 

coefficient of the periodic function ( )zα  whose period is equal to fl .   

In order to avoid the signal distortion due to the SI, C. Lorattanasane et al. has 

introduced the optimum system design strategies, which is shown conceptually in Fig. 

3.5.  Figure 3.5 shows the magnitude of signal degradation in OPC system as a 

function of the SOD in the absence of the TOD.  In Fig. 3.5, two transmission 

windows are observed at relatively large anomalous dispersion region and at 

relatively low normal dispersion.  The SI causes the serious signal distortion when the 

operation SOD becomes larger because the SI will occur at inner signal bandwidth 

according to Eq. (3-4).  Therefore, the use of relatively low SOD is preferred.  

However, the lowest SOD that can be used is limited by the effect of the SOD 

fluctuation around zero-dispersion point.  In anomalous dispersion region, the use of 

low SOD induces the modulation instability effect which will result in much signal 

degradation.  Thus, for anomalous dispersion region, the optimum operation SOD is 

located at relatively large value.   

As alternative method for reducing the effect of SI, Watanabe and Shirasaki 

have given a condition for perfect SI compensation [95] as shown below.   
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where the GVD parameter 2β , the nonlinear coefficient γ  , and the signal power P  

are the function of distance z.   
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Figure 3.4: The occurrence of SI in chain of periodic amplification. 

 

 
Figure 3.5: Operation windows for OPC systems. 
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Equation (3-6) indicates that the perfect suppression of SI is achieved when the 

cumulative SOD-induced chirp and the cumulative nonlinearity-induced chirp 

integrated from the OPC position at 0=′z  to 1z′−  and 2z′  are equal.  This relation 

means that providing the equal ratio of the SOD and the nonlinearity at the 

corresponding position symmetrical from the system midpoint, perfect distortion 

compensation can be obtained.  This relation gives us the following freedoms for the 

OPC system design.   

1) The OPC needs not be placed at the midway of the system.  Assuming that the 

SOD value, the signal power, and the system length of the first half are AD , 

AP , and AL , respectively, and those of the second section are BD , BP , and 

BL , respectively.  We find that Eq. (3-6) holds provided that BA kDD = , 

BA kPP = , and BA LkL = .   

2) The power distribution needs not to be uniform.  Equation (3-6) holds when 

the SOD value is properly tailored to follow attenuation of the signal power.   

In order to satisfy the condition, a dispersion-decreasing (SOD) fiber (DDF), whose 

SOD-decreasing coefficient is proportional to a fiber loss coefficient, must be 

installed throughout the entire OPC system length.  A good transmission result of 20 

Gbit/s over 3,000 km [95] was demonstrated by using a quasi-DDF in which short 

fibers with different dispersion values were concatenated to form the dispersion-

decreasing profile.  However, such the approach sounds too impractical to be 

employed in real systems.  Moreover, for both two proposed schemes the 

uncompensated TOD will show up to affect the long-haul transmission with the bit 

rate higher than 40 Gbit/s.   

 

 

 

 



CHAPTER 4 
THIRD-ORDER DISPERSION COMPENSATION 

IN OPC SYSTEMS 
 

In this chapter, we prove that, in optical phase conjugation systems, the third-order 

dispersion of fibers almost linearly accumulates along the transmission distance, and 

the distortion induced from the third-order dispersion can be perfectly compensated 

by using a linear third-order dispersion compensator placed at any point of the system.  

We demonstrate by numerical simulations that 100-Gbit/s single-channel transmission 

can be achieved over a 10,000-km distance in midway optical phase conjugation 

transmission system by compensating the third-order dispersion using only one third-

order dispersion compensator placed anywhere in the system [49].     

4.1 Introduction 

In ultra-high bit-rate optical-time-division multiplexed (OTDM) transmission systems, 

the second-order dispersion (SOD) of fibers for transmission must be completely 

compensated.  With SOD averaged to zero, the third-order dispersion (TOD) shows 

up and influences transmission characteristics.  Moreover, the TOD interplays with 

the self-phase modulation (SPM) of optical pulses, causing severe distortion of both 

signal waveform and signal spectrum [4].   

 In the dispersion-managed system using non-return-to-zero (NRZ) pulse 

format, where the SOD map is properly designed but the TOD is not compensated,  

the bit rate of the 10,000km transmission system is limited only about 10Gbit/s 

because of the interplay of the TOD with the SPM.  It has been shown, by numerical 

simulations, that when the TOD is compensated periodically at the interval quite 

shorter than the nonlinear scale of the system, the speed limit is possibly raised up 

over 20Gbit/s [25].   

 On the other hand, in dispersion-managed (DM) soliton systems, a recent 

numerical study shows that the eigen solution to DM solitons can exist in the 

transmission line with the TOD, and that is stable against the perturbation of the TOD 

[40].  Even without TOD compensation, 40Gbit/s, 10,000km transmission has been 

actually demonstrated by using DM solitons [54]. 

 As an alternative approach for high-bit-rate long-distance transmission,  

midway optical phase conjugation (OPC) is an attractive solution to compensating for 
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the distortion induced from the interplay between the SOD and the SPM [65].  The 

ultimate performance of the OPC systems is also limited by the TOD together with a 

nonlinear resonance at well-defined signal sideband frequencies induced by periodic 

amplification process called sideband instability (SI) effect [65].  However, the 

accumulation characteristic of the TOD and the TOD compensation scheme suitable 

for OPC systems have not been studied yet.   

In this chapter, we show, for the first time to our knowledge, the linear 

accumulation characteristics of the TOD in OPC systems under ordinary operation 

conditions, and demonstrate that the performance of the OPC system can be improved 

beyond the above TOD limitation only by linearly compensating the TOD.  

Numerical simulation results show that the 100Gbit/s, 10,000km transmission is made 

possible by the OPC system incorporated with the TOD compensation.   

4.2 TOD Accumulation Characteristic in OPC Systems 

First, it should be noted that, to discuss the accumulation of TOD in OPC systems, it 

is necessary to use three characteristic scales: the SOD length Ld2, the TOD length Ld3, 

and the nonlinear length Lnl, which are defined in [4] for forecasting signal behaviors 

in optical fiber transmission systems.  The effect whose scale becomes the shortest 

plays a dominant role in limiting the system performance.   

Dispersion-managed NRZ transmission systems require the SOD 

compensation interval, which is quite shorter than Lnl, in order to avoid the interaction 

of the SOD and SPM.  If the SOD compensation interval becomes much shorter than 

Ld3, which is usually the case, the pulse behaves in the TOD scale as if it propagates 

through a uniformly zero-dispersion fiber.  In such a system, in order to prevent the 

interaction between the TOD and the SPM, it is necessary to place TOD compensators 

at the interval much shorter than Lnl so that TOD can be compensated before 

interacting with SPM.   

  Also in OPC systems, TOD cannot be compensated by OPC and it just 

accumulates along the system length.  However, the accumulation of TOD in OPC 

systems has different characteristics from the above system.  In OPC systems, SOD 

exists along the entire transmission length; therefore, Ld2 becomes many times shorter 

than Lnl for the case of high bit-rate transmission.  When Ld2 is much shorter than Lnl 

and Ld3, the signal pulses are rapidly broadened by the SOD effect, and their peak 

power decreases after transmitting for several Ld2.  This means that the broadened 
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pulses almost do not experience the effect of the fiber nonlinearity, and we can thus 

expect that the accumulation of the TOD-induced phase shift increases almost linearly 

with the transmission length.   

However, if Lnl becomes comparable to Ld2, both the pulses and spectrum will 

first be distorted by the interaction between SPM and SOD and subsequently being 

attacked by TOD.  In this case, even though the pulse waveform and spectrum can be 

restored to their initial shapes at the end of the system, since OPC can compensate for 

the SPM+SOD interaction, the amount of TOD-induced phase shift is no longer 

linearly proportional to the transmission length because the spectral shape changes 

during the transmission.  However, to obtain the condition Lnl ≈  Ld2, we need an 

extremely high input signal power which will not be practically used in ordinary 

operating states.  Thus, we can conclude from this fact that the TOD accumulation in 

OPC systems is almost linear.  The linear TOD accumulation enables us to place only 

one TOD compensator at any point in the link instead of periodically placing TOD 

compensators at the interval much shorter than Lnl.   

4.3 Computer Simulations 
To confirm the prediction, the computer simulations have been performed.  The main 

parameters used in the simulation are typical dispersion-shifted fiber parameters: 

SOD: D = -1 ps/km/nm, TOD = 0.06 ps/km/nm, and the nonlinear coefficient γ  = 2.6 

W-1km-1.  The fiber loss and amplification process are neglected in order to focus only 

on the TOD accumulation characteristics.  The TOD compensator used in simulations 

is assumed to be an ideal device that multiplies the complex amplitude of the signal 

with a negative amount of linearly accumulated phase shift caused by TOD.  This 

compensator is placed only at the end of system.   

The optical pulse at the midway of the system is conjugated by an ideal 

infinite-bandwidth optical phase conjugator.  The propagation of the optical pulse is 

calculated by solving the nonlinear Schrodinger (NLS) equation by the split-step 

Fourier method [4].  In the first calculation, Lnl is set at 280 km which is equal to Ld3 

and is approximately 40 times longer than Ld2 ( 7≈ km).   

Figures 4.1(a) and (b) shows the waveform and spectrum of a single 5-ps 

FWHM optical pulse.  The dotted curves show those of input pulse, whereas the dash-

dotted curves those of the input pulse which propagates a 2000-km distance in the 

OPC system with the effect of TOD.  The pulse waveform is distorted after 
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propagation, while any change in its spectrum is not observed.  The solid curves are 

those of 2,000-km transmitted pulse after compensating TOD.  The pulse waveform 

recovers to the initial shape by TOD compensation.  The results shown in Fig. 4.1 

indicate that the accumulation of TOD is linear and the compensation is done 

perfectly as we expected in the previous section.   
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Figure 4.1: Waveform and spectrum of an optical pulse propagating a 2,000-km 

distance in the OPC system where the nonlinear length is set equal to the TOD length; 

(a) optical pulse, (b) optical spectrum.  The dotted curves show those of the input 

pulse, the dash-dotted curves those of the pulse transmitted with the effect of TOD, 

and the solid curves are those of the transmitted pulse after compensating the TOD. 
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Figures 4.2(a) and (b) show the calculated results of the case when Lnl is equal 

to Ld2 ( 7≈  km).  As we have mentioned, the interaction between TOD and SPM 

appears in OPC systems.  Both the pulse shape and spectrum becomes distorted and 

the TOD compensation is almost failed. 
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Figure 4.2: Waveform and spectrum of an optical pulse propagating a 2,000-km 

distance in the OPC system where the nonlinear length is equal to the GVD length; (a) 

optical pulse, (b) optical spectrum.  The dotted curves show those of the input pulse, 

the dash-dotted curves those of the pulse transmitted with the effect of TOD, and the 

solid curves are those of the transmitted pulse after compensating the TOD. 
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Figure 4.3 shows the calculated bit-error rate (BER) of the TOD compensated 

OPC system.  The input power of all curves is set at 3 mW.  In this case, Lnl becomes 

almost equal to Ld3 at 280 km while Ld2 is around 7 km.  An input optical signal 

consists of a pseudorandom 32-bit Gaussian RZ pulse train whose bit rate is equal to 

100 Gbit/s.  The fiber loss of 0.2 dB/km and amplification of 8 dB at every 40 km 

interval are included in the calculations.  The optical amplifier produces ASE noise 

through a process of amplification with noise figure of 5.3 dB (nsp = 1.7).  The ideal 

infinite bandwidth TOD compensator is placed at the output end of the fiber. We 

assume the use of an optical band-pass filter with a 1 THz bandwidth in front of a 

receiver with a bandwidth of 50-GHz-cutoff-low-pass filter.  The system performance 

is evaluated in terms of the bit-error rate (BER) calculated by repeating 128 times the 

transmission of the same pulse train and assuming Gaussian noise distribution [25].   
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Fig. 4.3: BER of the 100-Gbit/s TOD compensated OPC systems where the nonlinear 

length becomes equal to the TOD length.  The BER of TOD compensated OPC 

system is shown by squares, that of the system neglecting the TOD is shown by 

diamonds, and that of the system without TOD compensation is shown by circles.   
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According to the calculation results, the BER curve obtained from the TOD 

compensated OPC system (shown by squares) almost fits with that obtained from the 

system that neglects TOD (shown by diamonds), showing that the accumulation of the 

TOD is almost linear even Ld3 is comparable to Lnl so that the linear TOD 

compensation is done perfectly.  Without TOD compensation (shown by circles) the 

maximum achievable length for 100-Gbit/s OPC transmission is limited about 2,500 

km at BER = 10-9 as shown by the across line.  The TOD compensated OPC system 

gains more 4,000-km transmission length up to 6,500 km.  This proves the 

effectiveness of TOD compensation on improving transmission performance in OPC 

systems.   

4.4 100-Gbit/s, 10,000-km Transmission by Optimum 

Input Power 
If we increase the power of the signal, the achievable transmission distance will 

increase due to the improvement of SNR.  At the same time, the increase in power 

gives rise to the degradations from the SI effect and the reduction of the 

corresponding nonlinear length.  Therefore, the improvement and degradation will 

balance each other at an optimum input power in which the system can reach the 

maximum performance.  To find the optimum power, we perform the simulations by 

increasing the input power of the same system as Fig. 2.4 from 3 mW to 20 mW.  

Figure 4.4 shows the BER calculated as a function of the transmission distance.  The 

optimum power obtained from the result is approximately 7 mW, and with this input 

power, we can achieve over 10,000-km transmission at BER = 10-9.   

4.5 Conclusion 
We have found that the accumulation characteristic of the TOD in OPC transmission 

systems is almost linear as long as the SOD length is much shorter than the nonlinear 

length.  This fact gives us a possibility to install only one of the linear TOD 

compensation device at any point in the system for perfect TOD compensation.  By 

assuming the ideal TOD compensator, the computer simulation result has shown the 

possibility of 100 Gbit/s, 10,000km transmission based on TOD compensated OPC 

systems.   
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Fig. 4.4: BER curves of 100-Gbit/s TOD compensated OPC systems when an input 

power increases from 3 to 20 mW.  We find that 100-Gbit/s, 10,000-km transmission 

is achieved by the optimum input power of 7mW when TOD is compensated in the 

OPC system.   

 

 



CHAPTER 5 
COMPLETE ANALYSIS OF SIDEBAND 
INSTABILITY IN CHAIN OF PERIODIC 

DISPERSION-MANAGED FIBER LINK AND ITS 
EFFECT ON HIGHER-ORDER DISPERSION-

MANAGED LONG-HAUL WAVELENGTH 
DIVISION MULTIPLEXED SYSTEMS 

 

In this chapter, we present for the first time a complete theoretical analysis of 

sideband instability (SI) that occurs when two kinds of fibers with different 

characteristics are concatenated to form a dispersion-managed fiber link [52].  In the 

analysis, the following three cases are taken into account: case (a) when a dispersion 

management period is larger than an amplification period, case (b) when the two 

lengths are equivalent, and case (c) when a dispersion management period is smaller 

than an amplification period.   

We find that the SI gain peak appears at frequencies determined by the larger 

period out of the two variation periods.  Moreover, for all the three cases, the 

magnitude of the SI gain reduces with the increase in strength of dispersion 

management.   

Next, we focus on the fiber link using the combination of standard single-

mode fiber (SMF) and reverse dispersion fiber (RDF), which is widely used for 

simultaneously compensating second-order dispersion (SOD) and third-order 

dispersion (TOD).  By computer simulation, it is shown that, in wavelength-division-

multiplexed (WDM) systems, SI still induces significant degradation in channels 

located at frequencies where SI induced from other channels arises.  By re-allocating 

the channel frequency to avoid the SI frequency, the transmission performance is 

improved significantly.   

5.1 Introduction 

Four-wave mixing (FWM) and cross-phase modulation (XPM) in optical fibers have 

been recognized as the main problems that cause signal waveform distortion in 

wavelength-division-multiplexed (WDM) systems [4], [96], [97].  FWM induces 

signal energy transfer among channels, while, through XPM, temporal intensity 
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variation of every channel modulates the phase of other co-propagating channels.  In 

fact, the use of non-zero dispersion for signal transmission yields relatively different 

propagating group-velocity among channels, referred as walk-off, which dramatically 

results in the reduction of channel crosstalk induced from both FWM and XPM.  For 

this purpose, the second-order dispersion (SOD) management method has been 

proposed and demonstrated [25], [98]-[100].  Through this method, fiber sections are 

periodically arranged in such a way that the signal carrier wavelengths alternatively 

fall in normal and anomalous dispersion region, while, for each period, the total fiber 

exhibits zero or near zero dispersion on average.  Therefore, signal pulse propagating 

in the link will always experience non-zero dispersion while its width is almost 

preserved at each compensation period due to low average dispersion.   

However, such an approach can manage only SOD in only one channel.  

Therefore, in WDM systems, signal channels far from the average zero-dispersion 

wavelength experience different amount of dispersion accumulation along the entire 

system length because of the existence of the dispersion slope or third-order 

dispersion (TOD).   

It has been predicted that the existence of TOD limits the available passband 

of the WDM systems with the data rates of over 10 Gbit/s [101]-[103].  For further 

expansion both in capacity and distance, dispersion management to eliminate both 

SOD and TOD will be one of the key issues.  For this purpose, the special dispersion 

compensating fibers called reverse dispersion fiber (RDF) [58]-[60] has been 

proposed and demonstrated its potential.  Since RDF exhibits low negative TOD with 

large negative SOD, we can achieve the dispersion flattened fiber link with low 

average SOD by combining RDF with standard single-mode fiber (SMF) in each 

compensation interval.  The use of such higher-order dispersion compensation fiber 

link in combination with the optimization of channel spacing realizes the 

simultaneously reduction of FWM, XPM, and TOD.  Transmission experiment shows 

that using the combination of SMF and RDF can achieve the data rate as high as 1 

Tbit/s (104 x 10 Gbit/s) WDM transmission over 10,000 km [104].   

In this chapter, we demonstrate that the additional signal distortion to long-

haul higher-order-dispersion-managed WDM systems can occur via the quasi FWM 

phase-match process assisted by periodic variation of the signal power in the chain of 

lossy fiber intervals and lumped amplifiers incorporated with periodic dispersion 

management.  This parametric process, which occurs in both normal and anomalous 
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dispersion region, is called sideband instability (SI).  Through this process, signal 

carrier transfers its energy to specific sideband frequencies which grow up 

exponentially with transmission distance.   

It has been shown theoretically that in order to avoid the XPM-induced signal 

waveform distortion for 10-Gbit/s-based 10,000 km WDM transmission, the use of 

channel spacing larger than 100 GHz is preferable [105].  Several long-haul 

transmission experiments also demonstrate attractive results using the channel spacing 

around this value [101], [104], [106].  With this relatively large channel spacing, the 

first order SI, which usually exhibits large gain than higher orders, will not arise 

inside one’s channel bandwidth.  Therefore, the problem induced from SI has not 

been yet appeared and can be ignored for such transmissions.   

However, with system distance shorter than 10,000 km, the possibility of 

using smaller channel spacing for signal transmission has been shown [107]-[109].  In 

this situation, if two different channels produce SI at the same frequency, SI will 

cause a serious problem to the channels whose carriers are placed just at that 

frequency, especially for the frequency where the first order SI arises.   

Historically, Matera et al. first theoretically showed the occurrence of SI in 

long distance systems through the periodic signal amplification [50].  Kurtzke and 

Peterman briefly discussed the impact of SI on multi-channel long-distance optical 

communication systems [110], [111].  In their works, by computer simulations, a 

serious channel signal distortion was observed when the SI resonance frequency 

superpositions on the channel frequency.  Kikuchi, et al. experimentally observed SI 

in optical amplifier chain using a recirculating fiber loop [112].  Smith and Doran 

predicted that the periodic dispersion management also leads to the occurrence of SI.  

They also demonstrated that the gain of SI could be reduced by strong dispersion 

management [113].  Recently, we have presented a part of the derivation of SI under 

the existence of both periodic power variation and periodic dispersion variation [51].   

However, all of the previous works have not yet included the periodic 

variation of fiber parameters such as fiber loss coefficient and fiber nonlinear 

coefficient, which is practically necessary to consider when two different fibers are 

connected together to form a dispersion-managed transmission line.  Moreover, to 

avoid the problem of SI in WDM systems, it is important to study SI more details and 

the exact analytical expression of SI must be derived.   
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In this chapter, the complete theoretical analysis of SI focusing on the case 

when two different characteristic fibers connected together has been made for the first 

time.  In our analysis, not only the periodic power variation but the periodic 

dispersion management, periodic fiber loss coefficient variation, and periodic 

nonlinear coefficient variation are also included.  In section 5.2, we derive the 

analytical SI gain and the SI frequency considering three cases: (a) when a dispersion 

management period is larger than an amplifier spacing, (b) when the two lengths are 

equal, and (c) when an amplifier spacing is larger than a dispersion management 

period.  In section 5.3, the derived theory is evaluated its accuracy by computer 

simulations.   

The section 5.4 focuses on dispersion managed transmission system consisting 

of SMF and RDF.  Our computer simulation results show that, when two or more 

channels produce SI at the same frequency, SI significantly causes a serious problem 

to the channel whose carrier is positioned just at that superposition resonance 

frequency.  We also demonstrate that, by re-arranging the channel position or channel 

spacing in such a way that none of the SI resonance frequency falls inside the channel 

signal bandwidth, the transmission performance is significantly improved.  Finally, 

the summary of this paper is made at section 5.5.   

5.2 Derivation of Sideband Instability in the Presence of 
Periodic Power Variation and Periodic Dispersion 
Management 

In long haul and high-capacity fiber transmission systems, the power of the optical 

signal must be kept high in order to obtain good signal-to-noise ratio (SNR) at a 

receiver.  In such high power systems, by amplification process, the periodic power 

variation produces a periodic variation of fiber refractive index through the nonlinear 

Kerr effect of an optical fiber.  By this process, it seems like a grating is virtually 

constructed in the transmission fiber.  As shown in Fig. 3.4, a parametric resonance 

between the virtual grating and the signal will occur at the signal sideband component 

whose wave number is half of the wave number of this virtual grating resulting in 

exponential growth of that component with transmission length.  This phenomenon is 

known as the sideband instability (SI), which causes signal waveform distortion if SI 

arises at frequency inside the signal bandwidth since it cannot be eliminated by using 

optical bandpass filter.   
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Quantitatively, the occurrence of SI can be explained in terms of quasi-phase-

matched FWM process that is assisted by the virtual grating induced by the periodic 

power variation as the condition   

fkkkk +=+ −+ 02 .                                             (5-1) 

In Eq. (5-1), the wave number of the signal, which acts as a pump, is 

( )00 ωβγ +−= Pk , the sideband wave numbers are ( )0
2

22
1 ωβωβ +== −+ nkk , where 

( )0ωβ  is the wave number at the central carrier frequency 0ω .  fk  is the wave 

number of the virtual grating which is given as   

,2

f
f l

nk π
=                                                       (5-2) 

where ,...,2,1,0 ±±=n  and fl is the amplifier spacing.  The sideband frequency nω  

shifted from the carrier frequency, at which SI arises is obtained from Eq. (5-1) and 

(5-2) as 

( )( )   . sgn21
2

2
Pnk fn γβ

β
ω −±=                                   (5-3) 

where P  is the path-averaged signal power.  The power gain ( )nωλ of SI at each n-

order resonance frequency is 

( ) nn FP02=ωλ ,                                                (5-4) 

where 0P  denotes the signal input power and nF  the n-order of the Fourier series 

coefficient of the periodic function ( )zα  whose period is equal to fl .   

In fact, not only the periodic power variation, but also all of the periodic 

perturbation under the Kerr effect, such as the periodic dispersion variation, the 

periodic fiber loss coefficient variation, and the periodic fiber nonlinear coefficient 

variation, can also lead to the occurrence of SI.  To obtain the general expression of SI 

considering all of the periodic perturbation, we should start the analytical derivation 

based on the models of dispersion management systems illustrated in Fig. 5.1.  In Fig. 

5.1, the signal power and the fiber dispersion is assumed to change periodically with 

transmission length.  As we aim to concentrate to dispersion managed transmission 

system consisting of SMF and RDF, the fiber link is composed of two different 

characteristic fibers with the same length.  Therefore, the dispersion profile is the 

simplest type where the dispersion varies every half of period with the same amount 
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plus and minus around a given average dispersion value.  Each fiber has its own 

nonlinear coefficient and the fiber loss, which is assumed periodic by the period 

equivalent to the dispersion management period.  We consider here three possible 

cases: (a) when the dispersion management period is longer than the amplifier span, 

(b) when the two scales become equal, and (c) when the dispersion management 

period is shorter than the amplifier span.   

 
   

 

 

 

Figure. 5.1:  Models of dispersion management system used for the analytical

derivation.  The signal power and fiber dispersion change periodically with

transmission length.  The fiber link is consisted of two different characteristic

fibers with the same length.  Three possible cases are modeled: (a) when the

dispersion compensation period dl  is longer than the amplifier span fl , (b) when

the two scales become equal, and (c) when dl  < fl .   
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The analysis starts from the nonlinear Schrodinger equation for the signal 

envelope function ( )tzU ,  

( )( )
2

2
2 2 2

( ) ( )  .      
2 2 av fl

U z i UU z i z U U
Z t

α β β γ∂ ∂
= − − + +

∂ ∂
           (5-5) 

In Eq. (5-5), The GVD is separated in two parts: the constant average av2β  and the 

fluctuation part ( )zfl2β .  The fiber loss coefficient )(zα , the nonlinear coefficient 

)(zγ  and ( )zfl2β  are the functions of z which are assumed periodic with the same 

period equivalent with the dispersion management period.  It should be noted that the 

GVD parameter 2β  relates to the common dispersion parameter D by  

2
0

0 β
λ
ω

−=D ,                                                   (5-6) 

where 0ω  denotes the carrier frequency and 0λ  the carrier wavelength.   

  At each amplifier, the span loss is compensated so that we can assume the 

optical field propagating in each amplification period has the form  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ −= zztzutzU )(

2
1exp,, α .                                   (5-7) 

Inserting Eq. (5-7) into Eq. (5-5), we obtain 

( )( ) ( )
2

2
2 2 2 ,  

2 av fl
u i uz if z u u
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β β∂ ∂
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                          (5-8) 

where ( ) ( )zzzzf )(exp)( αγ −=  is the periodical function whose period is equal to the 

amplifier spacing.  Next, we perturb Eq. (5-8) by a small amplitude fluctuation a  

added to the steady solution of Eq. (5-8),  

( ) ( ) ( )0 0
0

, exp
z

u z t P a iP f z dz
⎛ ⎞

′ ′= + ⎜ ⎟
⎝ ⎠

∫                                   (5-9) 

where 0P  denotes the input peak power and a is defined as  

( ) ( ) ( ) ( ) ( ){ }1, , exp , exp
2

a z t a z i t a z i tω ω ω ω= + − − .                  (5-10) 

Substituting Eq. (5-9) and (5-10) back to Eq. (5-8), then we obtain one set of two 

differential equations  
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where the subscript * indicates the counterpart complex conjugate.  By introducing 

the transformation 

( )

( )
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Eq. (5-11) becomes 
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where  
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By this transformation, we can remove the fast oscillations in the field 

envelope, so that only those changes that accumulate over the period of ( )zfl2β  is left.  

The key step of this analysis is to expand ( )zf  and ( )zg  as complex Fourier series:  

( ) ( )expn f
n

f z F ik nz
∞

=−∞

= ∑ ,   ( ) ( )expn g
n

g z G ik nz
∞

=−∞

= ∑  ,                  (5-15) 

where kf and kg are the fundamental wave constants of ( )zf  and ( )zg , and Fn and Gn 

denote the Fourier series coefficients of ( )zf  and ( )zg .   

 

5.2.1 The Case when the Dispersion Compensation Period is Larger 

than the Amplifier Spacing 

First, we consider the case (a) when the dispersion management period ld is larger 

than the amplifier spacing lf.  The wave constant kg in this case can be written as 

ddg klk == π2 , where fd pll 2= , so that df pkk 2= and p = 1, 2, 3, .…  In order to get 

close to the resonance of the nth Fourier component of the perturbation, we introduce 

the variable transformation 
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Inserting Eq. (5-15) and (5-16) into Eq. (5-13) and equating only the coefficients of 

( )exp / 2dik nz  and ( )exp / 2dik nz−  (for the complex conjugate counterpart), we obtain 

2
2 0 0 0
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* 2 *

0 2 0 0

1 1
( , ) ( , )2 2

1 1 ( , )( , )
2 2

d av n

n d av

k n P F P Gc z c z
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c zZ c z P G k n P F

β ωω ω
ωω β ω
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= ⎢ ⎥⎢ ⎥ ⎢ ⎥−∂ − ⎣ ⎦⎢ ⎥⎣ ⎦ − − −⎢ ⎥⎣ ⎦

 ,   (5-17) 

where 0F  and nG  denote the fundamental and the n-th order coefficient of Fourier 

series of ( )zf  and ( )zg , respectively.   

From the eigen values of Eq. (5-17), we obtain the power gain ( )ωλ  for the n-

order SI effect as  

( ) ( )  . 4 2
00

2
2

22
0 FPnkGP avdn −−−= ωβωλ                         (5-18) 

At each order of SI, λ  appears its peak at frequencies defined by 

( )( )   . sgn21
002

2

FPnk avd
av

n β
β

ω −±=                               (5-19) 

It is remarkable from Eq. (5-19) that SI occurs at frequencies determined by the 

dispersion management period ld and by the averaged GVD av2β  independent of the 

fluctuation part fl2β .  For larger ld, the SI gain position moves closer to signal carrier 

frequency, which may cause more severe signal waveform distortion.  On the other 

hand, the peak of SI gain at the n-order resonance frequency )( nωλ  depends on av2β  

through nω  in nG  according to Eq. (5-14) and (5-19).   

In order to obtain the expression of the SI gain, 0F  and nG  have to be derived.  

0F  can be calculated from 

∫∫ −==
dd l

d

l

d
dzzzz

l
dzzf

l
F

00
0 .))(exp()(1)(1 αγ                                (5-20) 

Since this paper considers the periodical dispersion compensation, which is 

constructed by the combination of two fibers in equal length.  Each fiber exhibits 

different values of α  and γ  which are assumed to be constant along each fiber length.  

In each compensation interval, let 1α  and 1γ  represent the fiber loss coefficient and 

the nonlinear coefficient of the first fiber and 2α  and 2γ  represent the fiber loss 

coefficient and the nonlinear coefficient of the second fiber, respectively, 0F  is 

obtained through 
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By assuming that ( )zfl2β  follows the profile shown in Fig. 5.1, we have 
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Substituting Eq. (5-22) to the exponential part of Eq. (5-14), Gn can be analytically 

obtained through the Fourier integration   
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Because ( )zf  is periodical over each fiber length with the period of ,
2 2 2
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for j = 0,1,2,…, it satisfies the following relations 
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Applying the above conditions to Eq. (5-23), we obtain 
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Figure 5.2: Theoretical n = 1, 2, and 3-order SI gain peaks at resonance frequency

nω  as a function of local SOD D, calculated with fl  = 40 km, dl  =  80 km, 0P = 5

mW, and avD  = –5 ps/km/nm.  D exhibits a negative value when the arrangement

of fiber link changes the order of fiber installation to RDF-SMF instead of SMF-

RDF.  The gain characteristics for all three orders appear to be decreased and

periodically reduced to minimum points with the increase in D.   
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At resonance frequency nω  where the n-order SI occurs, the n-order SI gain 

becomes nGP02 .  Figure 5.2 plots the n = 1, 2, and 3-order SI gain peaks at nω  as a 

function of local SOD D, calculated by Eq. (5-25) with fl  = 40 km, dl  = 80 km.  0P  

is assumed to be 5 mW, avD  is –5 ps/km/nm, 1α  and 1γ  of the fiber#1 are 0.2 dB and 

1.6 W-1km-1, for the fiber#2, 2α , 2γ  are 0.25 dB and 4.8 W-1km-1, respectively.  It 

should be noted that D exhibits a negative value when the arrangement of fiber link 

changes the order of fiber installation to fiber#2-fiber#1 instead of fiber#1-fiber#2.   

The gain characteristics shown in Fig. 5.2 for all three orders appear to be 

decreased and periodically reduced to minimum points with the increase in fiber local 

SOD.  The reduction of SI gain with the increase of local SOD has been predicted by 

Smith and Doran [113].  However, the reason for explaining this phenomena has not 

been clearly mentioned yet.  According to Eq. (5-23), it is obvious that the reduction 

of SI gain does not come from the linear addition and cancellation of the two Fourier 

components: one induced from the periodic power variation ( )zPα0  and the other 

from the periodic GVD variation ( )zfl2β .  In order to understand the reason, we 

should rewrite fd ll 2= (p = 1) and dnfl ck=2
2 ωβ , where c denotes a real number that 

larger than zero, Eq. (5-23) can be written as 
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Eq. (5-26) indicates that, for the n-order SI, by increasing the local GVD fl2β , the 

corresponding c is increased, resulting in the increase of wave constant kf by the factor 

of ( ) 2nc +  for the first term and ( ) 2nc −  for the second term, respectively.  Each 

order of the SI gain, which becomes smaller for large kf, is correspondingly reduced.  

Saying in other words, the first term of Eq. (5-26) is similar to the formula of Fourier 

integration using for obtaining the ( ) 2nc + -order Fourier coefficient of ( )zf  when 

the period is fl , and for the second term, the ( ) 2nc − -order Fourier coefficient.  

Therefore, this can be also interpreted that the increase of local GVD fl2β  virtually 

shifts the order of SI induced from the power variation to higher order which exhibits 
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lower gain than the lower order.  Furthermore, the SI gain falls down to minimum 

points when the virtual order number ( ) 2nc +  and ( ) 2nc −  together become an 

integer.  In Fig. 5.2, agreeing with our prediction, the SI gain reduces to minimum 

points when ( ) 2nc +  and ( ) 2nc −  becomes |c| = 3, 5, 7,..., for the first-order, |c| = 4, 

6, 8,..., for the second-order, and |c| = 5, 7, 9,...., for the third-order, respectively.   

 

5.2.2 The Case when the Dispersion Compensation Period Becomes 

Equal to, or Shorter than the Amplifier Spacing 

In this subsection, we consider the case when ld is equal to, or shorter than lf.  The 

wave constant kg for this case becomes ff lk /2π= .  lf is assumed to satisfy df pll = , 

where p = 1, 2, 3,....  The analysis approach for this case is almost similar to that of 

previous subsection.  By only replacing kd in Eq. (5-15) with kf.  The power gain ( )ωλ  

for n-order SI effect becomes  
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22
0 FPnkGP avfn −−−= ωβωλ                          (5-27) 

which exhibit each peak of the SI order at frequencies determined by 
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From Eq. (5-28), the frequencies where SI arises are determined by the wave 

constant kf which is constant even the dispersion management period ld is changed.  

This means that, for fd ll ≤ , SI will almost arise at the same frequencies independent 

of the change in ld, which is different from the previous case.  For this case, 0F  can be 

obtained by 
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.  (5-29) 

It should be noted that, in fact, nω  slightly depends on the change of dl  through 0F  in 

Eq. (5-28) and (5-29).  For example, computing the first order SI frequency by 

substituting the same fiber parameters as the calculation of Fig. 5.2 into Eq. (5-28) 
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and (5-29), when we reduce dl  from 40 km (= fl ) to 1 km, the first order SI 

frequency only moves 0.3 GHz closer to the carrier frequency.  Therefore, such small 

amount of frequency shift is negligible comparing to the shift of SI position caused by 

the change of fk .   

 Gn, for this case, can be analytically obtained through the series of Fourier 

integration 
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As ( )2
2exp fli zβ ω−  in ( )zg  repeats periodically p times over each fl ,  
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Carrying out the integration in Eq. (5-30) by the assistance of the relations in Eq. (5-

31) gives 
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Figure 5.3 shows the relations between the n = 1, 2, and 3-order SI gains and 

D at resonance frequency nω .  All parameters used in Fig. 5.3 are the same as the plot 

in Fig. 5.2 except dl  is set equal to fl  at 40 km.  The gain characteristics in Fig. 5.3 
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are in similar shapes to Fig. 5.2 where the gain decreases and periodically reduces to 

minimum points with the increase in D.   

The similar characteristic is also obtained for the case of fd ll <  as shown in 

Fig. 5.4 where dl  is reduced to 10 km.  However, in order to achieve the magnitude of 

SI gain as low as those of the above two cases, relatively large D is required.  

 

 

 

 

 

One interesting thing observed from Fig. 5.2 ( fd ll > ), Fig. 5-3 ( fd ll = ), and 

Fig. 5.4 ( fd ll < ) is the gain characteristic in Fig. 5.2 is symmetrical with respect to D 

= 0 while those of Fig. 5.3 and Fig. 5.4 are not symmetrical.  This can be explained as 

follows.  As described above, when the sign of D is reversed, the order of the fiber 

installation is changed from fiber#1-fiber#2 to fiber#2-fiber#1.  For the case of Fig. 

5.3 and Fig. 5.4, at least two pieces of fibers is used for constructing the transmission 

Figure 5.3:  Relations between the n = 1, 2, and 3-order SI gain peaks and D at

resonance frequency nω .  All parameters used in this figure are the same as the plot

in Fig. 5.2 except dl  is set equal to fl at 40 km.  The SI gain characteristics for all

three orders are similar to Fig. 5.2 where the gain decreases and periodically reduces

to minimum points with the increase in D.   
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line between two amplifiers.  This means that the fiber which locates at the output of 

amplifier where the signal power is still high is replaced with the other fiber which 

has different α , different γ , and different sign of D.  Therefore, the gain 

characteristics in Fig. 5.3 and Fig. 5.4 become asymmetrical when the order of the 

two fibers is changed.  On the other hand, for the case of Fig. 5.2, only one fiber is 

installed over the entire length of one amplifier spacing.  Therefore, the arrangement 

of the two fibers will not result any differences in the gain characteristic.   

 

 

 

 

 

 

 

Quantitatively, nG  calculated from Eq. (5-25) by replacing 1α  and 1γ  with 

2α  and 2γ , and replacing 2α , 2γ , and fl2β  with 1α , 1γ , and fl2β−  is equivalent to 

that obtained directly from Eq. (5-25).  On the other hand, the replacement between 

Figure 5.4:  Theoretical n = 1, 2, and 3-order SI gain peaks at resonance frequency nω

as a function of D when dl  is set at 10 km and fl is still 40 km.  Other parameters are

the same as used for Fig. 5.2.  All three orders are similar to Fig. 5.2 and Fig. 5.3

where the gain decreases and periodically reduces to minimum points with the

increase in D.  However, in order to achieve the magnitude of SI gain as low as those

of the above two cases, relatively large D is required.   
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1α , 1γ , fl2β  and 2α , 2γ , fl2β−  in Eq. (5-32) yields different nG  comparing to 

nG  obtained directly from Eq. (5-32) without the replacement.  Furthermore, for the 

case of fd ll ≤ , even both fiber#1 and fiber#2 possess equivalent values of α  and γ , 

when the order of the two fibers is reversed, only the difference in the sign of D also 

leads to the different magnitude of SI gain since the power variation on each fiber is 

not the same.   

It should be emphasized that, in this work, we focus only on the higher-order 

dispersion managed transmission line consisting of SMF and RDF.  Since SMF and 

RDF possess almost equivalent absolute values of SOD and TOD with opposite signs, 

our analysis model shown in Fig. 5.1 is well matched with the practical transmission 

line composed of SMF and RDF.  However, it is still worth studying SI induced from 

the dispersion-managed line which consists of fibers with different lengths and 

different amount of dispersion shifted from the average dispersion value.   

Figure 5.5(a) shows the model of the dispersion-managed fiber link composed 

of fiber#1 and fiber#2 whose lengths are unequal.  The most practical case where 

fd ll =  is considered.  In Fig. 5.5(a), x is the length of fiber#1 and xl f −  is the length 

of fiber#2.  1D  and 2D , respectively, denote the local dispersion of the fiber#1 and 

the fiber#2 shifted from the average dispersion avD .  To make the accumulated 

dispersion vanished at each dl , 2D  can be written as the function of 1D  and x as  

xl
xDD

f −
−= 1

2 .                                                 (5-33) 

Following the above derivation for the case fd ll ≤ , we found that SI also 

occurs at the frequency determined by Eq. (5-28) but, for this case, 0F  is obtained as 
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On the other hand, nG  can be obtained as 
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where 21β  and 22β  are local GVD parameters of fiber#1 and fiber#2, respectively.  

Completing the integrations in Eq. (5-35) by using Eq. (5-6) and (5-33), we have 

( ) ( )( )
( )

( ) ( )

2
1 21

1 2
1 21

212
2

2 221 21
2 2

2

1 exp exp

exp

exp exp exp exp

f
n

f f f

f

f

f f f f
f f

f

x i k n x
G

l i k n l

l
i x

l x

x xx i k n x l i k n l
l x l x

l

α β ω
γ

α β ω

β
γ ω

β βα ω α ω

α

⎧ ⎫− − − +⎪ ⎪= ⎨ ⎬
+ +⎪ ⎪⎩ ⎭

⎛ ⎞⎛ ⎞
+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠×

2 21

.

f f
f

xi k n l
l x
βω

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬

⎛ ⎞⎛ ⎞⎪ ⎪− −⎜ ⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

 (5-36) 

 

Assuming both fiber#1 and fiber#2 exhibit equivalent α  and γ , then nG  

depends on 1D  and x .  To see the variation of SI gain with the change of both 1D  and 

x , the gain contour map should be used.  Figure 6(b) shows the contour map of the 

first order SI gain peak as functions of 1D  and x .  For obtaining Fig. 5.5(b), avD  = –

0.5 ps/km/nm, α  = 0.2 dB/km, γ  = 2.6 W-1km-1, and fd ll =  = 40 km are used.  The 

gain map in Fig. 5.5(b) indicates that the use of fiber#1 that has large local dispersion 

with relatively long length can significantly reduce the SI gain.  Quantitatively, the 

length of the fiber#1 should be longer than 10 km and the local dispersion 1D , which 

can be both normal and anomalous dispersion, should be larger than 5 ps/km/nm to 

assure the first order SI gain smaller than 10-3 km-1.   

For all cases, it should be noted that when avD  is set in anomalous dispersion 

region the modulation instability (MI) [4], which can be interpreted as the zero-order 

SI, occurs and also only be slightly reduced by relatively large D.   

Recently, the fabrication of optical fiber with designed dispersion value has 

been realized [114].  This enables us constructing a dispersion-managed transmission 

fiber with appropriate value of dispersion in order to suppress SI effect for a given 

system.   
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Figure 5.5: Model of dispersion-managed transmission line and its corresponding

SI gain contour map.  (a) shows the model of dispersion-managed transmission

line composed of fiber#1 and fiber#2 whose lengths are unequal.  (b) shows the

contour map of the first order SI gain peak as functions of 1D  and x.  The gain map

indicates that the use of fiber#1 that has large local dispersion with relatively long

length can significantly reduce the SI gain.   
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5.3 Computer Simulations 
In order to confirm the validity of the proposed theory, we have performed some 

numerical simulations using a CW signal and amplified spontaneous emission (ASE) 

noise as sideband frequency source.  It should be noted that the CW is used for the 

convenience of observing the gain and the position of SI.  The main parameters used 

in the simulations are the same as those used in Fig. 5.2, 5.3, and 5.4.  The TOD of 

fiber#1 and fiber#2 are set at 0.06 ps/km/nm2 and –0.06 ps/km/nm2, respectively.  

Since the two fibers have equal length so that the accumulated TOD is canceled at 

each dispersion compensation interval.  At the output of each amplifier the ASE noise 

is added to the signal through the process of amplification with noise figure of 5.3 dB 

(nsp = 1.7).  The propagation of the optical signal is calculated by solving the 

nonlinear Schrodinger equation (NLSE) by the split-step Fourier method (SSFM) [4].   

The results of the numerical simulations for several cases in terms of 

transmitted optical spectrum are shown in Fig. 5.6.  The transmitted CW spectrum for 

fd ll = = 40 km with D  = 4.3 ps/km/nm and D  = 21.3 ps/km/nm are shown in Fig. 

7(a) and (b), respectively.  Figure 5.6(c) and (d) show the results for the case fd ll >  

with D  = 14 ps/km/nm and fd ll <  with D  = 16.7 ps/km/nm, respectively.  

According to Fig. 5.3, at D  = 4.3 ps/km/nm, the first, second and third order SI all 

exhibit high gain with almost the same value.  Oppositely, at D  = 21.3 ps/km/nm, all 

the three orders of SI appear in minimum value.   

As expected, in all figures, the computer simulation results of both SI gain and 

SI frequency are in a good agreement with the theoretical gain shown in Fig. 5.2, 5.3 

and 5.4 together with Eq. (5-19) and (5-28), confirming the accuracy of our analytical 

derivation.  For high SI gain as Fig. 5.6(a), SI arises obviously even in such relatively 

short transmission length (2,000 km).  On the other hand, in order to observe SI for 

large D , it requires the transmission distance as long as 16,000 km to serve the gain 

as shown in Fig. 5.6(b), 8,000 km in Fig. 5-6(c) and 6,000 km in Fig. 5.6(d).  This 

informs us that strong dispersion management fiber using such the combination of 

SMF and RDF can be used to suppress SI.   
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When dl  is determined, then, it is helpful to use SI gain contour map to design 

the operating avD  and 0P  at the point where the SI gain becomes as low as possible.  

If we consider a practical case when fd ll = , assuming that the local SOD is fixed at a 

Figure 5.6:  Numerical simulation results show the spectrums of optical CW signal

and amplified spontaneous emission (ASE) noise transmitted in dispersion

management transmission line using SMF and RDF with periodic signal

amplification.  (a) 2,000-km-transmitted CW spectrum for fd ll =  = 40 km with D

= 4.3 ps/km/nm, (b) 16,000-km-transmitted CW spectrum for fd ll = = 40 km with

D  = 21.3 ps/km/nm,  (c) 8,000-km-transmitted CW spectrum for fl  = 40 km, dl =

80 km with D  = 14 ps/km/nm, and (d) 6,000-km-transmitted CW spectrum for fl =

40 km, dl = 10 km with D  = 16.7 ps/km/nm.  All simulation results, for both SI gain

and SI frequency, are in a good agreement with the theoretical gain shown in Fig.

5.2, 5.3 and 5.4.   
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given value, the magnitude of SI gain now only depends on 0P  and avD .  Figure 5.7 

shows the gain contour map of the first order of SI concerning the dispersion managed 

transmission line using the combination of SMF and RDF.  It should be noted that we 

should concentrate to the first order SI because, practically, the low order of SI is 

easier to be phase-matched and causes problem in the long haul transmission than 

other high orders.  The SMF and RDF parameters used for the calculation are the 

same as those have been used for fiber#1 and fiber#2, respectively.  In the contour 

map, D  is assumed to be 17ps/km/nm with positive sign for the SMF and minus sign 

for the RDF.   

 

 

 

 

Figure 5.7:  Gain contour map of the first order of SI concerning the dispersion

managed transmission line consisting of SMF and RDF for fd ll = = 40 km and D

= 17 ps/km/nm with positive sign for the SMF and minus sign for the RDF.   
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In Fig. 5.7, for low 0P , which is referred to relatively short transmission, SI 

possesses relatively low gain over a wide range of avD .  For high power transmission, 

using low avD  can avoid the SI gain and, at the same time, move the SI position out 

of the signal carrier.  However, at some points of 0P , the SI gain exhibits large value 

even at very low avD , for examples, SI gain as high as 9 x 10-4 km-1 arises from 0P  = 

5 mW at avD  = –0.5 ps/km/nm.  In order to achieve the maximum performance of the 

system, these operating points should be avoided.  It should be noted when this 

periodic dispersion management using SMF and RDF is not applied to the system, the 

first order SI induced from only periodic amplification in dispersion-shifted fiber 

chain exhibits high gain larger than 10-3 km-1 even 0P  > 2 mW is used.   

 

5.4 Effect of SI on Long Haul WDM Transmission Systems 
In dispersion managed transmission system consisting of SMF and RDF, all channels 

experience almost the same amount of avD .  Thus, each channel produces its own SI 

that occurs at frequency shifted from carrier frequency by the same amount of 

frequency shift with almost the same gain.  If two different channels produce SI at the 

same frequency, SI will cause a serious problem to the channels whose carriers are 

placed just at that frequency especially for the frequency where the first order SI 

arises.   

In order to confirm our presumption, we perform computer simulations of the 

transmission of 4-wavelength CW signal and ASE noise.  In the first calculation, we 

focus on the case when the first order SI gain generated from two separated channels 

enhances each other and positions on the other two channels.  In the calculations, dl  

is set equal to fl  at 40 km and other SMF and RDF parameters are the same as those 

used in other calculations described above.  According to the contour map in Fig. 8, to 

investigate the problem of SI even the system is operating with condition that yields 

relatively low SI gain, we select 0P  = 3 mW and avD  = –0.5 ps/km/nm, which yields 

the first order SI gain about 2 x 10-4 km-1.  Using Eq. (5-28) and the calculation 

parameters, the first order SI will arise at ± 77.4 GHz shifted from each carrier 

frequency.  Next, we place four channels at the frequencies –116.1 GHz, –38.7 GHz, 

38.7 GHz, and 116.1 GHz shifted from the zero-dispersion wavelength 1550 nm 
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respectively.  By this arrangement, SI produced from channel#1 and channel#3 will 

arise just at the position of channel#2 carrier.  Similarly, SI induced from channel#2 

and channel#4 will occurs just at the position of channel#5-  

Figure 5.8(b) shows the spectrum of the 4-channel CW signal transmitted over 

4000 km comparing with its initial shape shown in Fig. 5.8(a).  By this channel 

allocation, the serious distortion of CW spectrum is clearly observed.  In order to 

avoid this problem, it is necessary to arrange the channel allocation in such a way that 

none of the channel is placed on the SI frequency.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Optical spectrum of 4-channel CW signal shown in linear scale.  dl is set

equal to fl  at 40 km, 0P  = 3 mW and avD  = –0.5 ps/km/nm.  In (a) and (b) the

channel spacing is set at ± 77.4 GHz where two of the first order SI from neighbor

channels arise just at channel#2 and channel#3 carrier positions.  (a) initial shape

and (b) 4,000-km-transmitted spectrum.  By this channel allocation, serious

distortion of CW spectrums is clearly observed.  (c) and (d), respectively, shows the

initial and 4,000-km-transmitted CW spectrums simulated by decreasing 10 GHz to

shift SI frequency out of signal bandwidth.  The transmitted spectrum in (b) appears

in more severe distorted shape than (d) because of SI.   



 88

Figure 5.8(c) and (d) respectively shows the initial four-channel CW signal 

spectrum and its shape after 4,000 km transmission simulated by the same parameters 

as Fig. 5.8(b).  The channel spacing in this calculation is decreased 10 GHz resulting 

in the shift of SI frequency out of signal bandwidth.  Comparing to Fig. 5.8(b) where 

the SI occurs just at the channel position, the output spectrum in Fig. 5.8(d) appears in 

similar shape to the initial than the case of Fig. 5.8(b), confirming the achievement of 

avoiding the effect of SI.  In fact, as FWM among channels is easy to be phase-

matched when the channel spacing becomes smaller, the decrease in channel spacing 

should have led to more signal distortion.  However, the transmitted spectrum in Fig. 

5.8(b) appears in more severe distorted shape than that of Fig. 5.8(d).  This can be 

interpreted that the effect of SI plays a significant role in determining the transmission 

performance than the inter-channel FWM for this condition.   

To explore the effect of SI on WDM transmission more details, we perform 

the calculation of the bit-error rate (BER) of the 4-channel WDM system using 

pseudorandom 32-bit Gaussian RZ pulse train as an input optical signal whose bit rate 

of each channel is equal to 10 Gbit/s.  At the end of the system, the accumulated avD  

is post-compensated by multiplying the complex amplitude of the signal with a 

negative amount of linearly accumulated phase shift caused by avD .  We assume the 

use of a bandwidth-adjustable optical band-pass filter (OBPF) in front of the receiver 

to select the passband channel.  This OBPF is also always adjusted to obtain 

minimum BER.  The receiver is modeled by 6.5-GHz-cutoff sixth-order Bessel-

Thompson low-pass filter following by BER detector.  For obtaining the numerical 

BER of the detected signal, the simulation is repeated 128 times for the same pseudo-

random pulse train.  The numerical Q factor of every bit is then individually 

calculated at the maximum eye-opening point of the bit period.  Based on the 

assumption of Gaussian noise distribution, the numerical BER’s are computed from 

the bit numerical Q factors and averaged over the entire bits [25].   
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Figure 5.9:  BER as a function of transmission distance calculated from the (4 x 10)-

Gbit/s-32-bit RZ signal for different channel spacings.  (a) and (b) show BER curves of

channel#2 and channel#3, respectively.  In both (a) and (b), circles show BER obtained

from the system whose signal carriers are placed on the position where the SI arises while

squares show BER obtained from 10-GHz-decreasing channel spacing.  At BER = 10-9

(shown by an across dotted line) the systems where the channel allocation is re-arranged

to avoid the position of SI give significantly longer transmission length.   
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Figure 5.9(a) and (b), respectively, shows the calculated BER curves of 

channel#2 and 3 as a function of transmission distance simulated by 0P  = 3 mW and 

avD  = –0.5 ps/km/nm with different channel spacing setting.  The BER curves 

obtained from the system whose signal carriers are placed on the position where the 

SI arises (shown by circles) drop more rapidly than those obtained from 10-GHz-

decreased channel spacing (shown by squares).  If we defined the maximum 

transmission distance obtained at the distance where the BER reaches 10-9 as shown 

by the across dotted line, the systems where the channel allocation is arranged to 

avoid the position of SI yield significantly longer transmission length.  We also 

simulated the system with 0P  = 5mW and avD  = –0.5 ps/km/nm that yields high SI 

gain.  The result showed more severe degradation of BER for channel carriers 

positioned just on SI frequency and, on the contrary, an obvious improvement when a 

channel allocation is done to avoid the SI frequency.  This confirms the necessity of 

avoiding SI in higher-order dispersion management long-haul WDM transmission 

systems.   

5.5 Conclusion 
In this chapter, we have presented the derivation of the analytical expression of the 

sideband instability (SI) induced from periodic signal power variation and periodic 

dispersion management considering when two different fibers are connected together 

to form the dispersion compensation link.  Three possible dispersion management 

systems were considered: (a) system where dispersion management period is larger 

than amplifier spacing, (b) system where the two lengths are equal, and (c) system 

where amplifier spacing is larger than dispersion management period.    

We found that SI frequency depends on the larger period between the 

amplifier spacing and the dispersion management period.  The larger the variation 

period becomes, the SI frequency will arise closer to carrier frequency.  Moreover, the 

gain of SI appears to be reduced with the increase of local fiber second-order 

dispersion (SOD).  This is because the increase in the local SOD virtually shifts the 

order of SI to higher order resulting in the difficulty of phase-match process.  The 

computer simulations were made and their results were in a good agreement with the 

derived theory.   
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In WDM systems that use relatively narrow channel spacing, we demonstrated 

that even the dispersion map is properly designed to achieve low SI gain, SI causes 

signal distortion to specific channels that fall just on the low order SI frequency, 

especially the first order.  Additionally to WDM system design rules, the channel 

allocation must avoid the SI position in such a way that none of the channel should be 

lied at.  The computer simulations have confirmed that BER of WDM systems whose 

channel location is re-arranged to avoid SI give a significant improvement of the 

transmission performance.   

 

 



CHAPTER 6 
SIMULTANEOUS SUPPRESSION OF TOD AND SI 

IN OPC TRANSMISSION SYSTEMS BY 
COMBINATION OF SMF AND RDF 

 

In optical phase conjugation (OPC) systems, the third-order dispersion (TOD) of 

optical fibers and the nonlinear resonance at well-defined signal sideband frequencies 

called sideband instability (SI) mainly limit the transmission performance.  We 

propose, for the first time, a scheme for simultaneous suppression of both TOD and SI 

in OPC systems using a periodic higher-order dispersion-managed link consisting of 

standard single-mode fibers (SMFs) and reverse dispersion fibers (RDFs).  Computer 

simulation results demonstrate the possibility of 200-Gbit/s data transmission over 

10,000 km in the higher-order dispersion-managed OPC system, where the dispersion 

map is optimized by our system design strategies [115].     

6.1 Introduction 

To expand both capacity and distance of ultra-high-bit-rate optical-time-division 

multiplexed (OTDM) transmission systems, management of second-order dispersion 

(SOD) and third-order dispersion (TOD) of optical fibers will be one of the key 

issues.  For this purpose, a special dispersion compensating fiber called the reverse 

dispersion fiber (RDF) [58], [60] has been proposed and demonstrated.  Since the 

standard single-mode fiber (SMF) and the RDF possess almost equivalent absolute 

values of SOD and TOD with opposite signs, the combination of SMF and RDF 

realizes a dispersion-flattened transmission line with a sufficiently low average SOD.   

Several recent OTDM transmission experiments demonstrated very attractive 

results such as the 640-Gbit/s signal transmission over 92 km [61], and the 1.28-Tbit/s 

signal transmission over 70 km by using SMF and RDF [62].  In dispersion-managed 

soliton transmission systems, a recent numerical study showed a possibility of 320-

Gbit/s transmission over 6,000 km employing short-period SOD and TOD 

management [63].  Even in wavelength-division multiplexed (WDM) transmission 

systems, the combination of SMF and RDF could achieve the data rate as high as 1 

Tbit/s (104 x 10Gbit/s) over 10,000 km [104].   

As an alternative approach for ultra-high bit-rate long-haul transmission, 

midway optical phase conjugation (OPC) is an attractive solution to compensate for 
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the waveform distortion induced from the interplay between the SOD and the self-

phase modulation (SPM) effect [65].  Several recent works have reported broadband, 

wavelength-shift-free, and polarization-independent optical phase conjugators [66], 

[67].  These may bring the OPC system into a commercial world in the short coming 

future.   

However, the ultimate performance of the OPC system is also limited by the 

TOD together with the nonlinear resonance at well-defined signal sideband 

frequencies induced by the periodic amplification process called the sideband 

instability (SI) effect [68].  Recently, we have demonstrated by a numerical 

simulation that a single-channel transmission with a bit rate of 100 Gbit/s can 

successfully achieve a transmission distance over 10,000 km with TOD compensation 

in the OPC system [49].   

For the SI effect, Watanabe and Shirasaki have given a condition for perfect SI 

compensation [11].  In order to satisfy the condition, a dispersion-decreasing (SOD) 

fiber (DDF), whose SOD-decreasing coefficient is proportional to fiber loss 

coefficient, must be installed throughout the entire OPC system length.  A good 

transmission result of 20-Gbit/s data over 3,000 km [95] was demonstrated by using a 

quasi-DDF in which short fibers with different dispersion values were concatenated to 

form the dispersion-decreasing profile.  However, such an approach sounds too 

impractical to be employed in real systems.  Moreover, the uncompensated TOD will 

show up to affect the long-haul transmission with the bit rate higher than 40 Gbit/s.  

Recently, our analysis has demonstrated a more practical way to suppress the SI by 

only applying strong dispersion management [51], [52].  Therefore, by using such 

combination of SMF and RDF in the OPC system, the simultaneous suppression of 

both SI and TOD can be expected.   

In this chapter, we show, for the first time to our knowledge, the simultaneous 

suppression of TOD and SI in ultra-high-bit-rate long-haul OPC transmission systems 

using the dispersion-managed fiber link consisting of SMF and RDF.  This paper is 

organized as follows.  Section 6.2 reviews our previous works about the TOD 

compensation scheme in OPC systems and the reduction of the SI gain by employing 

the combination of SMF and RDF.  Our main contributions presented here commence 

from section 6.3.  In this section, we discuss the implementation of dispersion 

management in OPC systems.  We suggest that the symmetric SOD profile with 

respect to the mid-point of the system is preferable in order to avoid the nonlinear 
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accumulation of amplifier noise when the system operates with relatively high signal 

intensity.  The performance improvement of the 100-Gbit/s OPC system using the 

symmetric dispersion profile is confirmed by numerical simulations even when the 

dispersion map is not optimized.   

In section 6.4, we discuss the optimum dispersion map design for obtaining 

the maximum performance in OPC systems.  In section 6.5, we demonstrate that, a 

200-Gbit/s data transmission over a 10,000 km distance can be achieved by 

simultaneously suppressing TOD and SI in OPC systems using the dispersion-

managed fiber link consisting of SMF and RDF whose dispersion map is properly 

designed.  Finally, the summary of this paper is presented in section 6.6.   

6.2 Simultaneous Suppression of TOD and SI by SMF and 
RDF 

As described above, the performance of OPC transmission systems is mainly limited 

by TOD and SI effect.  Without TOD compensation, a 10,000-km transmission with 

data rate of 40 Gbit/s was achieved by following optimum design strategies to avoid 

the effect of SI [65].  To increase the transmission bit-rate of the 10,000-km OPC 

system, it is necessary to suppress both TOD and SI.  In this section, we review and 

summarize our previous studies on the TOD compensation scheme in OPC systems 

[49] and the reduction of SI gain through the strong periodic dispersion-managed fiber 

link [51], [52].   

6.2.1 TOD Compensation Scheme in OPC Systems 
The accumulation characteristic of TOD in OPC systems can be discussed through 

three characteristic scales: the SOD length Ld2, the TOD length Ld3, and the nonlinear 

length Lnl, which are defined in [4].  In OPC systems, the SOD exists along the entire 

transmission length; therefore, Ld2 becomes many times shorter than Lnl for the case of 

high bit-rate transmission.  When Ld2 is much shorter than Lnl and Ld3, the signal 

pulses are rapidly broadened by SOD, and their peak power decreases after 

transmitting for several Ld2.  This means that the broadened pulses almost do not 

experience the effect of fiber nonlinearity.  Thus, in ultra-high-speed OPC systems, 

the accumulation of the TOD-induced phase shift increases almost linearly with the 

transmission length at an ordinary operating signal power.  The linear TOD 

accumulation enables us to achieve perfect TOD compensation by placing only one 
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compensator at any point in the line, or even freely installing distributed 

compensators without the necessity of concerning their intervals.   

When TOD is perfectly compensated in OPC systems, the 100-Gbit/s data 

transmission over 10,000 km [49] can be made possible at the balance point of the 

improvement of signal-to-noise ratio (SNR) and the degradation from SI effect.  In 

order to further improve the transmission performance of the TOD-compensated OPC 

system, the waveform distortion induced from SI effect must be overcome.   

6.2.2 Reduction of Sideband Instability Gain by Strong Dispersion 

Management 
As shown in previous chapter, the gain of SI can be practically reduced by using a 

strong periodic dispersion-managed transmission line such as the combination of 

SMF and RDF, instead of uniform dispersion line [51], [52].  This is because the 

increase in the local fiber SOD virtually shifts the order of SI to higher orders 

resulting in the difficulty of phase-match process.  Furthermore, the frequency where 

SI arises depends on the larger period between the amplifier spacing ( fl ) and the 

dispersion management period ( dl ).  The larger the variation period becomes, the 

closer to the carrier frequency the SI frequency arises.   

In order to show the reduction of SI gain through a periodic dispersion-

managed line, here we calculate the gain contour map of the first-order SI focusing on 

the dispersion-managed transmission line consisting of SMF and RDF.  The 

dispersion management profile is the simple type where one SMF and one RDF with 

an equivalent length are only connected together.  In each dispersion management 

period, SMF is placed before RDF at the output end of the amplifier.  The placement 

of signal carrier frequency determines the values of the operating average SOD avD  

and the local SOD D.  In Fig. 6.1, the gain map is obtained as a function of dl  and an 

input signal power 0P  when avD  and D are given.  It should be noted that we should 

concentrate to the first order SI because, practically, the low order of SI is easier to be 

phase-matched and causes more serious signal distortion in long haul transmission 

systems than higher order SI.  The fiber loss coefficient 1α  and the fiber nonlinear 

coefficient 1γ  of SMF used for calculating the gain map are 0.2 dB and 1.6 W-1km-1, 

respectively, while 2α , 2γ  representing those of RDF are 0.25 dB and 6.8 W-1km-1,  
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respectively.  avD  is set at –1 ps/km/nm and D  = 17 ps/km/nm.  Comparing with 

these gain maps, the magnitudes of the first, second, and third-order SI gains of a non-

dispersion management system as a function of the input power is shown in Fig. 12.  

In this case, the transmission fiber is assumed to be a dispersion-shifted fiber (DSF) 

with α  = 0.2 dB and γ  = 2.6 W-1km-1.   

 

 

In Fig. 6.1, for low 0P  (< 3 mW), SI possesses very low gain over a wide 

range of dl ; thus, SI may not affect the signal transmission for relatively short 

distance systems.  Even in high power transmission (from 3 mW to 15 mW), SI still 

exhibits relatively low gain (< 10-3 km-1) comparing with the gain shown in Fig. 6.2 at 

the same 0P .  Without dispersion management, Fig. 6.2 indicates that the SI gain 

Figure 6.1: Gain contour map of the first-order SI focusing on the dispersion-

managed transmission line consisting of SMF and RDF.  The gain is calculated as

a function of dl  and an input signal power 0P  when an average SOD avD  and a

fiber local SOD D  are set at –1 ps/km/nm and 17 ps/km/nm, respectively.   
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almost linearly increases with 0P  and exhibits a value larger than 10-3 km-1 even for 

0P = 2 mW for the first-order SI.   

The linear accumulation of TOD, together with the reduction of SI gain 

through strong dispersion management open a possibility of simultaneously 

suppressing TOD and SI in OPC systems by using the higher-order dispersion 

management transmission line such as the combination of SMF and RDF.   

Assuming that TOD and SI are perfectly suppressed in OPC systems, there 

remains the problem originated from the accumulation of the transmission of 

amplified spontaneous emission (ASE) noise which is enhanced during the 

transmission by parametric interaction between SOD and SPM [65].  As shown in 

Fig. 6.3, the transmission of the ASE noise is not symmetrical with respect to the 

midpoint of the system.  Thus, only part of the nonlinear enhancement can be 

compensated by OPC while there still exists the accumulated ASE noise, which is 

enhanced by the nonlinear interaction.   

 

 

 

Figure 6.2: Magnitudes of the first, second, and third-order SI gains arising from a

non-dispersion management system. The gains are obtained as a function of signal

input power.  The transmission fiber is assumed to be only DSF with α  = 0.2 dB

and γ  = 2.6 W-1km-1.   



 98

It should be noted that this fiber nonlinearity-enhanced ASE noise cannot be 

suppressed by the combination of SMF and RDF.  However, its harm is expected to 

reduce through large fiber local dispersion with sufficiently large compensation 

period.  This is because the signal pulses are rapidly broadened by SOD, therefore, 

they almost do not experience the effect of fiber nonlinearity.   

 

 

 

 

 

 

6.3 Implementation of Dispersion Management on OPC 
Systems 

The most practical way available now to compensate TOD for ultra-high bit-rate long-

haul transmission is probably the use of the dispersion-managed fiber link such as the 

combination of SMF and RDF.  In the previous section, we have shown that SI 

induced from the periodic power variation can be suppressed by using periodic 

dispersion management with large local dispersion.  Therefore, by using such 

combination of SMF and RDF in OPC systems, the simultaneous compensation of 

both TOD and SI can be expected.  Moreover, the accumulation of avD  will be 

Figure 6.3: Transmission of ASE noise in OPC system. ASE noise produced from

each optical amplifier is enhanced during the transmission by parametric interaction

between SOD and SPM, and will accumulate to the end of system.  Since the

transmission of ASE noise is not symmetric with respect to the system mid-point,

therefore, only part of the nonlinear enhancement can be compensated by OPC while

their remains an amount of ASE noise that is enhanced by the nonlinear interaction

and accumulates to the end of system.   
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automatically compensated by OPC without post compensation used in ordinary 

dispersion management systems.  

6.3.1 Possible Installing Dispersion Profiles 
Figure 6.4 illustrates two possible schemes to install dispersion management in the 

OPC transmission system.  In Fig. 6.4(a), both periodic dispersion variation and 

periodic power variation are in uniform distributions along the entire system length.  

On the other hand, in Fig. 6.4(b), the order of SMF-RDF is reversed to RDF-SMF 

after the midway OPC yielding the symmetric distribution of the periodic dispersion 

variation with respect to the system mid-point.   

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Two possible ways for implementing the dispersion management in

OPC transmission system. In (a) both periodic dispersion variation and periodic

power variation are in uniform distributions along the entire system length.  On the

other hand, in (b), the order of SMF-RDF is reversed to RDF-SMF after the

system mid-point, forming the symmetric distribution of the periodic SOD

variation with respect to the system mid-point.  The symmetric dispersion profile

in (b) gives better transmission performance than profile (a) especially when the

systems operates with high signal power because part of the interaction between

SPM and fiber local dispersion is compensated by OPC.   
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We suggest that the symmetric dispersion profile in Fig. 6.4(b) gives better 

transmission performance than the other profile especially for high power 

transmission.  The reasons can be explained as follows:  First, when the nonlinear 

length nlL  is longer than the periods of the variations, due to the uniform distributions 

in Fig. 6.4(a), each order of SI arises from one frequency determined by the two 

periodic perturbations and experiences the gain whose magnitude exponentially 

increases with the transmission length.  On the other hand, for the dispersion 

management profile in Fig. 6.4(b), the system in the first half and second half produce 

their own SI at different frequencies whose separation depends on the difference in 

the nonlinear coefficient and the fiber loss coefficient between SMF and RDF.  

However, each resonance frequency experiences the SI gain only half of the system 

length, the signal distortion may not be so severe as that occurs from the dispersion 

profile in Fig. 6.4(a).   

Second, for high power transmission, when nlL  becomes comparable or 

shorter than the compensation interval, the interplay between SPM and the local 

dispersion of each fiber occurs and causes additional signal waveform distortion.  

With this consideration, by constructing the symmetric dispersion compensation 

profile as shown in Fig. 6.4(b), part of the interaction between SPM and local 

dispersion of the fiber will be compensated by OPC whether the power variation 

distribution remains unchanged.  Oppositely, for the profile in Fig. 6.4(a), this 

interaction will accumulate along the transmission length due to the asymmetric 

distribution with respect to mid-point of both periodic power variation and periodic 

dispersion compensation.   

6.3.2 Computer Simulations 
In order to evaluate our proposed SI suppression method in OPC systems, we perform 

a computer simulation of the transmission of 100-Gbit/s data composed of 32-bit 

pseudorandom Gaussian RZ pulses based on the system models in Fig. 6.6.  In the 

calculation, we set dl = fl  = 40 km. TOD is assumed to be 0.06 ps/km/nm for SMF 

and -0.06 ps/km/nm for RDF.  Other SMF and RDF parameters used in this 

simulation are the same as used above.  The optical amplifier produces ASE noise 

with noise figure of 5.3 dB (nsp = 1.7).  The optical pulse at the midway of the system 

is conjugated by an ideal infinite-bandwidth optical phase conjugator.   
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When the combination of SMF and RDF is not applied for TOD 

compensation, the TOD compensator, placed only at the end of system, is assumed to 

be an ideal device that multiplies the complex amplitude of the signal with a negative 

amount of linearly accumulated phase shift caused by TOD.  Also, for signal 

transmission in this case, DSF with the same parameters as the calculation above is 

used.   

To see the efficiency of the SI suppression more obviously, the input signal 

power 0P  is set at 21 mW giving nlL  becomes equivalent to fl .  Also for all other 

cases, 0P  will be set at this value.  Since SMF and RDF exhibit different values of α  

and γ , we calculate nlL  of the system employing SMF and RDF by using the average 

values of those parameters.  With 0P  = 21 mW, nlL  of the system constructed by 

SMF and RDF becomes approximately 36 km, which is slightly shorter than that of 

DSF.   

The propagation of the optical pulse is calculated by solving the nonlinear 

Schrodinger equation (NLSE) by the split-step Fourier method (SSFM) [4].  The 

integration step size of SSFM is always chosen at the value that gives a step size error 

less than 0.01 % [116].  The receiver is modeled by an optical band-pass filter 

(OBPF), a 65-GHz-cutoff sixth-order Bessel-Thompson low-pass filter, followed by a 

BER detector.  The system performance is evaluated in terms of the numerical bit-

error rate (BER).  The bandwidth of the OBPF is always adjusted to obtain the 

minimum BER.  To calculate the numerical BER of the detected signal, the 

simulation is repeated 128 times for the same pseudo-random pulse train.  The 

numerical Q factor of every bit is then individually calculated at the maximum eye-

opening point of the bit period.  Based on the assumption of the Gaussian noise 

distribution, the numerical BER is computed from the bit numerical Q factor and 

averaged over the entire bits [50].   
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Figure 6.5: BER of several OPC systems, calculated as a function of transmission

distance.  For all OPC systems, the input signal power is adjusted to give nlL

equivalent to fl  at 40 km.  Circles show BER obtained from the system where only

TOD is compensated.  Squares show BER of the system using SMF and RDF as

transmission fiber with the symmetric dispersion management profile of Fig. 6.4(b),

while triangles show BER of the system employing the asymmetric dispersion

profile of Fig. 6.4(a).  Crosses show BER of the system where TOD is neglected.

Diamonds show BER obtained from the system where both TOD and SI are

neglected.  At BER = 10-9, the achievable transmission length of the system using

symmetric dispersion increases 2000 km longer than the system where only TOD is

compensated without using SMF and RDF.  Furthermore, BER of the system

employing the asymmetric dispersion becomes the worst due to the accumulation of

the nonlinear interaction between SPM and local fiber dispersion.   
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Figure 6.5 shows the calculated BER as a function of transmission distance.  

According to the condition nlL  = fl , when only TOD is compensated (shown by 

circles), the performance of the system is limited by SI and the nonlinear distortion 

from the interaction between SPM and local dispersion in each segment of fiber.  

Thus, BER of the system in this case rapidly decreases.  When the dispersion 

management profile in Fig. 6.4(b) is employed to the system (shown by squares), 

BER curve drops significantly slow.  Comparing to the case without the combination 

of SMF and RDF, by using SMF and RDF, the achievable transmission length at BER 

= 10-9 can be further extended approximately 2000 km.  Moreover, the BER curve of 

the system where TOD is neglected (shown by crosses) almost fits with that obtained 

from TOD-compensated system.  This result mentions that this SI suppression method 

does not affect accumulation characteristics of TOD since dl  is still much shorter than 

the TOD length 3dL (≈  280 km) so that in the TOD scale, the signal propagates as if 

there is no dispersion management ever be installed.   

On the other hand, BER of the system employing the dispersion profile of Fig. 

6.4(a) (shown by triangles) obviously becomes worse than others due to the reasons 

described above.  Furthermore, the difference in transmission distance between the 

BER curve obtained from the system using the dispersion profile of Fig. 6.4(b) and 

the BER curve obtained from the system neglecting TOD and SI (shown by 

diamonds) mainly comes from part of the interaction between SPM and local fiber 

SOD that cannot be perfectly compensated by OPC.   

6.4 Optimum Dispersion Map for Higher-Order 

Dispersion-Managed OPC Systems Using SMF and 

RDF 

When the combination of SMF and RDF is employed to a given system, the fiber 

local SOD and the average SOD are almost automatically determined by the 

placement of operating signal wavelength.  In this case, the maximum system 

performance will be achieved by determining the optimum dl  and signal power.  

Below, we discuss the optimum dispersion map design considering the OPC systems 

using fd ll > , fd ll = , and fd ll < .   
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6.4.1 OPC Systems Using fd ll >  

For given dl  ( fd ll > ), the increase in the signal power can help improving SNR.  At 

the same time, when the signal power is increased until nlL  becomes comparable to, 

or shorter than dl , the signal pulse will experience the local SOD rather than its 

periodic variation.  In this case, SI determined by the period of fl  on each local fiber 

length also arises.  Additionally, the signal will also be attacked by the interaction 

between SPM and the local SOD.  Therefore, for given dl  ( fd ll > ), the maximum 

system performance will be achieved by using an optimum input power which yields 

the balance of the improvement in SNR and the degradation described above.   

Even the use of very large dl  ( fd ll > ) can also help reducing the nonlinear 

enhancement of the ASE noise since the signal and the ASE noise will transmit 

through large local SOD which repeats for long length [93].  Additional to the 

problems discussed above, the larger dl  we use, SI, whose position is determined by 

dl  in this case, will occur at the frequency closer to the signal carrier.  Therefore, 

even only a small SI gain may cause serious signal distortion.  As a result, for larger 

dl , the optimum signal power will exhibit lower value than that of shorter dl .  

Furthermore, the system may give a good result close to the linear SNR limit for 

relatively low power transmission.  However, the system performance will degrade 

very immediately after reaching the optimum signal power.   

Comparing to ordinary dispersion management systems, in OPC systems, such 

optimum power will be found at relatively high value since dispersion exists along the 

transmission yielding Ld2 several times shorter than Lnl, especially for the case of high 

bit-rate transmission.   

6.4.2 OPC Systems Using fd ll =  

When fd ll = , the transmission of signal is expected to give a good result since SI 

occurs at the furthest frequency from the signal carrier.  However, the signal, in this 

case, keeps its high peak power during the transmission because the signal almost 

restores its shape at each fl  due to low average dispersion.  Therefore, it is easy to be 

affected by the nonlinear effect.  When fdnl llL => , the nonlinear enhancement of 

ASE noise by the interaction between SPM and average SOD, which is more severe 
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than that of system with fd ll > , becomes a main problem that limits the system.  

Moreover, in the second half of the system, RDF, which exhibits larger nonlinear 

coefficient than SMF, is installed near the output of the optical amplifier according to 

the symmetric SOD distribution.  This results in more serious enhancement of ASE 

noise since, in the second half, the signal and the accumulated noise will propagate 

through the highly nonlinear RDF where their powers are still intense.  When nlL  

approaches dl  by the use of high signal power, the interaction between SPM and fiber 

local SOD also arises and causes additional signal waveform distortion.  By these 

reasons, the system constructed with fd ll =  may not be expectable to give good 

transmission performance comparing to fd ll >  case and even fd ll <  case.   

6.4.3 OPC Systems using fd ll <  

For the system with fd ll < , SI will arise at the same frequencies as those of the 

fd ll =  case since the position of the resonance frequency depends on the larger 

period between dl  and fl .  With increasing the signal input power, similar to the case 

of fd ll = , the problem which limits the performance of the system comes from the 

enhancement of the amplifier noise by the interaction between SPM and average 

SOD.  However, even if we reverse the order of fibers after the mid-point to form 

symmetric dispersion profile, the nonlinear accumulation of amplifier noise will not 

be so severe as the case of fd ll = .  This is because the signal at high peak power does 

not propagate on highly nonlinear RDF for a long length.   

Even nlL  becomes very short by using relatively high input power, the 

interaction between the local SOD and SPM will not be so serious as the case of 

fd ll = .  This is because the signal does not too much feel the local SOD as long as 

nlL  is still not comparable to dl .  This makes the systems with fd ll <  may yield a 

significant tolerance to high power transmission comparing to other cases.  At given 

dl  ( fd ll < ), the optimum power will exhibit relatively high value than the case of 

fd ll > .  However, for a low input power, the system may not give good performance 

comparing to the case of fd ll >  according to the interaction of SPM and average 

SOD.   
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From the above discussion, for each dl , the optimum input power for 

achieving maximum transmission performance will be found at different values.  One 

will be relatively low input power obtained for the case fd ll > .  The longer dl  is, the 

lower the optimum power becomes.  The other one will be found at relatively high 

value for the case fd ll <  and will be higher value with the reduction in dl .  However, 

the system operating with fd ll =  may not give as good result as the others.   

6.5 Ultimate Performance of Higher-Order Dispersion-

Managed OPC Systems 

To explore the ultimate performance of the higher-order dispersion-managed OPC 

systems employing the combination of SMF and RDF when the systems are operating 

in optimum conditions, we perform extensive computer simulations of the systems 

with data rate of 100 Gbit/s, 160 Gbit/s, and 200 Gbit/s.  The SOD profile used in the 

simulations is the symmetric profile shown in Fig. 6.4(b).  The system parameters and 

fiber parameters are all the same as above calculations.   

Figures 6.6, 6.7, and 6.8, respectively, show the calculated BER at 10,000 km 

of OPC transmission systems with data rate of 100 Gbit/s, 160 Gbit/s, and 200 Gbit/s 

as a function of the signal input power 0P  for several dl  (10 km, 40 km, 80 km, 160 

km, and 240 km).  In each figure, BER of the same OPC system neglecting the 

nonlinear coefficient γ  is also calculated to show the linear SNR limit for 

comparison.   

According to the simulated results of the 100-Gbit/s OPC systems shown in 

Fig. 6.6, for low 0P , BER of the systems with larger dl  appears in a value closer to 

the SNR limit because the use of large dl  can help avoiding the effect of fiber 

nonlinearity.  For higher 0P , BER of the systems using large dl  start decaying rapidly 

while that of system using dl  = 10 km still shows a good result due to its tolerance to 

fiber nonlinearity.  As discussed above, the system with dl  is set equivalent to fl  at 

40 km shows the worst result.  However, with defining a maximum transmission 

distance at BER = 10-9, all 100-Gbit/s systems can achieve 10,000-km transmission 

for a wide range of 0P .  In comparison with these results, the system using DSF 
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incorporated with TOD compensation can only reach 10,000 km by only 0P  = 7 mW 

[49].  This mentions the significant improvement of the OPC system by using the 

higher-order dispersion management transmission line consisting of SMF and RDF.   

For the 10,000-km transmission result of 160-Gbit/s data shown in Fig. 6.7, 

the existence of the optimum 0P  can be observed more obviously.  The systems with 

dl  = 240 km, 160 km, 80 km, and 10 km reach maximum performance, at BER 

smaller than 10-9, with their own optimum 0P  at 9 mW, 10 mW, 14 mW, and 15 mW, 

respectively.  As predicted, the optimum 0P  for longer dl  is found at lower value.  

However, system with dl  = 40 km no longer succeeds BER = 10-9 for all range of 0P .   

According to this ultimate performance of dispersion-managed OPC systems, 

further increase in transmission bit-rate can be expected.  The calculated BER of 200-

Gbit/s data transmission at 10,000 km shown in Fig. 6.8 indicates the possibility of 

this ultra-high bit-rate long-haul transmission at BER = 10-9 using dl  = 240 km with 

0P  = 11 mW or dl  = 10 km with 0P  = 15 mW.   

To extend the bit-rate more than 200 Gbit/s in 10,000-km transmission, the 

easiest way may be the optimization of the average SOD value avD .  The increase in 

avD  can reduce the effect of fiber nonlinearity, at the same time, moving the SI which 

is not completely suppressed to occur more inner signal bandwidth.  The optimum 

avD  will be found under the balance of these two effects.   

6.6 Conclusion 
In this paper, we have proposed for the first time the simultaneous suppression of two 

main problems, TOD and SI, in OPC transmission systems by employing the higher-

order dispersion-managed fiber link consisting of SMF and RDF.   
In order to implement the combination of SMF and RDF on OPC systems, we 

demonstrated that it is necessary to use the symmetric dispersion profile with respect 

to the mid-point of the system to reduce the SI gain together with the accumulation of 

the interplay between SPM and the fiber local dispersion.  Finally, the computer 

simulation results have demonstrated that the 10,000-km transmission of the data rate 

as high as 200 Gbit/s is made possible at BER = 10-9 by the higher-order dispersion-

managed OPC system whose dispersion map is properly designed.   
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Fig. 6.6: BER of higher-order dispersion-managed 100-Gbit/s OPC transmission

systems at 10,000 km as a function of the signal input power 0P  for several dl  (10 km,

40 km, 80 km, 160 km, and 240 km), comparing with the linear SNR-limited BER.  At

BER = 10-9, all systems can achieve 10,000-km transmission for a broad range of 0P .

Since the OPC system using DSF where TOD is compensated can only reach 10,000

km by only 0P  = 7 mW [49], these results show the significant improvement of OPC

system by using the higher-order dispersion management transmission line consisting

of SMF and RDF to eliminate both TOD and SI.   
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Fig. 6.7: BER of higher-order dispersion-managed 160-Gbit/s OPC transmission

systems at 10,000 km as a function of the signal input power 0P  for several dl  (10 km,

40 km, 80 km, 160 km, and 240 km), comparing with the linear SNR-limited BER.  The

systems with dl = 240 km, 160 km, 80 km, and 10 km reach maximum performance,

with BER smaller than 10-9, with the optimum 0P at 9 mW, 10 mW, 14 mW, and 15

mW, respectively.     However, system with dl  = fl = 40 km does not achieve BER =

10-9 for all range of 0P .   
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Fig. 6.8: BER of higher-order dispersion-managed 200-Gbit/s OPC transmission

systems at 10,000 km as a function of the signal input power 0P  for several dl (10

km, 40 km, 80 km, 160 km, and 240 km), comparing with the linear SNR-limited

BER.  The 10,000-km transmission of the data rate as high as 200 Gbit/s becomes

possible at BER = 10-9 by using dl  = 240 km with 0P  = 11 mW or dl  = 10 km with

0P  = 15 mW in the higher-order dispersion-managed OPC transmission system.   



CHAPTER 7 
SUPPRESSION OF NONLINEAR WAVEFORM 
DISTORTION INDUCED BY KERR EFFECT IN 
OPC SYSTEMS USING DISTRIBUTED RAMAN 

AMPLIFICATION 
 

In optical phase conjugation (OPC) systems, the third-order dispersion (TOD) of 

optical fibers and the nonlinear resonance at well-defined signal sideband frequencies 

called sideband instability (SI), which is induced by Kerr effect, mainly limit the 

transmission performance.  We propose, for the first time, a scheme for suppression 

not only the SI effect but all the signal distortion induced by Kerr effect in OPC 

systems using distributed Raman amplification (DRA) to form a reverse power 

distribution in the second half of the system.  In combination with TOD compensator, 

our simulation results demonstrate that, a 100-Gbit/s data transmission over 10,000 

km with 50-km amplifier spacing and a 200-Gbit/s data transmission over 10,000 km 

with 40-km amplifier spacing is achieved in the OPC systems using the DRA [117].     

7.1 Introduction 

Broadband optical amplifier, together with broadband dispersion compensation 

technologies are necessary to respond the ever-increasing demand for transmission 

bandwidth in dense wavelength-division-multiplexed (DWDM) systems.  

Nevertheless, due to the difficulty in expanding the gain bandwidth of conventional 

erbium-doped fiber amplifier (EDFA), distributed Raman amplification (DRA) using 

transmission fiber is currently attracting interest [118].  This is due to the fiber Raman 

amplifier (FRA) offers several advantages to the EDFA, such as wider amplification 

bandwidth, higher optical-signal-to-noise-ratio (OSNR) which consequently results in 

the reduction of fiber nonlinearity and the possibility of increasing amplifier span, 

flexible use of signal wavelength since stimulated Raman scattering (SRS) provides 

gain at any wavelength with the provision of a suitable pump source.  Moreover, the 

gain bandwidth of FRA can be designed and expanded by using multiple pumping 

scheme and carefully designing the relative positions and powers of the pump lights.  

Gain bandwidth in excess of 17 THz has been demonstrated using the FRAs pumped 

at multiple wavelengths [119].   
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Several DWDM transmission experiments have successfully achieved using 

the DRA, such as, 3.28 Tbit/s (82 x 40Gbit/s) over 3 x 100 km of non-zero-

dispersion-shifted fiber [120] and 1.05 Tbit/s (105 x 10Gbit/s) over 8,186 km [121].   

For dispersion compensation, midway optical phase conjugation (OPC) 

system is an attractive candidate for ultra-long-haul high-speed transmission since the 

signal waveform distortion induced from the interplay between fiber dispersion and 

the Kerr effect can be almost compensated [65].  However, the ultimate performance 

of the OPC system is also limited by the third-order dispersion (TOD) together with 

the nonlinear resonance at well-defined signal sideband frequencies induced by the 

periodic amplification process through the Kerr effect called the sideband instability 

(SI) effect [50]-[52].  Recently, we have demonstrated by numerical simulations that a 

single-channel transmission with a bit rate of 100 Gbit/s can succeed a transmission 

distance over 10,000 km by only performing TOD compensation in the OPC system 

[49].   

For the SI effect, a condition for perfect SI suppression has been given by 

Watanabe and Shirasaki [95].  In order to satisfy their condition, a dispersion-

decreasing fiber (DDF), whose dispersion-decreasing coefficient is exactly 

proportional to the fiber loss coefficient, must be installed throughout the entire OPC 

system length.  More recently, we have demonstrated a practical way to 

simultaneously suppress both TOD and SI by only applying strong higher-order 

dispersion management using the combination of the standard single-mode fiber 

(SMF) and the reverse-dispersion fiber (RDF) [60], [115].  Our computer simulation 

result has shown that the 10,000-km transmission of the data rate as high as 200 

Gbit/s is made possible by the higher-order dispersion-managed OPC system whose 

dispersion map is properly designed [115].   

In this chapter, we propose the alternative application of DRA for 

compensating residual signal waveform distortion caused by the Kerr effect in ultra-

long-haul high-speed OPC transmission system.  The DRA in combination with 

optical attenuator, in this case, is used for producing the reverse periodic signal power 

variation on the second-half of OPC system, which results in the entirely symmetrical 

signal power distribution with respect to the midway OPC.  By this scheme, not only 

the SI effect but all the signal waveform distortion induced by the Kerr effect which is 

accumulated from the first-half will be perfectly compensated by transmitting the 

conjugated signal through the second half.     
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This chapter is organized as follows.  Section 7.2 gives the basic knowledge 

about the DRA using a transmission fiber.  Section 7.3 devoted to the design of the 

DRA gain using bidirectional pumping scheme to achieve the reverse power 

distribution. In section 7.4, the system configuration of ultra-long haul high-speed 

OPC systems using the combination of DRA and optical attenuators, together with the 

TOD compensator is proposed for the first time to our knowledge.  The simulation 

results obtained from the system model demonstrate that, a 100-Gbit/s data 

transmission over 10,000 km with 50-km amplifier spacing and 200-Gbit/s data 

transmission over 10,000 km with 40-km amplifier spacing can be achieved when the 

DRA is used to form the reverse power distribution in the second half of the OPC 

systems.    

7.2 Distributed Raman Amplification Using Transmission 
Fiber 

Theoretically, the nonlinear waveform distortion induced from the Kerr effect can be 

completely compensated by the OPC if the signal power distribution in the second 

half of the system mirrors the distribution in the first half [65].  For the system using 

cascaded lump EDFAs, such power distribution can not be realized.  We propose that 

the use of distributed gain from Raman amplifiers or the combination of the Raman 

amplifiers with EDFA may bring such power distribution to reality.   

Raman gain in optical fibers arises from the transfer of power from one optical 

beam to another that is down shifted in frequency by the energy of an optical phonon.  

Practically this can be produced by inject high power laser pump whose frequency is 

higher than the signal carrier frequency by an amount of Raman frequency shift into 

transmission fibers [4].   

The measured Raman gain in fused silica at a pump wavelength of 1000 nm 

has been shown in Fig. 2.9, as a function of frequency shift from the pump.  The 

Raman gain exhibits the gain over a large bandwidth up to 40 THz with a broad 

dominant peak near 13 THz.   

Figure 7.1 shows several pump configurations of DRA.  In Fig. 7.1, (a) shows 

the co-propagating pump scheme, (b) the counter-propagating pump scheme, and (c) 

the bidirectional pump scheme, and (d) when combined with EDFA.  It was shown 

that co-propagating pump scheme suffers from the pump depletion than counter-

propagating pump scheme.  However, co-propagating pump scheme gives better SNR 
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than that of counter-propagating pump scheme.  On the other hand, bi-directional 

pumping produces high gain and provides high SNR for medium pump power.  For 

higher pump power, the counter propagating pumping yields the best in both gain and 

SNR [122].    

The forward pump power ( fP ), backward pump power ( bP ), signal power 

( sP ), and noise power ( nP ) evolutions in one link of FRA are governed by the DRA 

equations as shown in Eq. (7-1), (7-2), (7-3), and (7-4), respectively [125].   
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In Eq. (7-1), (7-2), (7-3), and (7-4), z is the transmission distance, pα , sα , and nα  are 

the fiber loss coefficients at frequencies of the forward and backward pump (single 

wavelength pumps), signal, and noise, respectively.  Similarly, pf  , sf , and f∆  are 

the frequencies of the pumps, signal, and the bandwidth of noise, respectively.  RG  is 

the Raman gain coefficient at signal frequency, effK  and effA  the polarization factor 

and the effective core area, ph , Bk , and T  the Plank’s constant, the Boltzman’s 
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constant, and the temperature in Kelvin unit, and Rl the Rayleigh back-scattering 

coefficient.  From the DRA equations shown above, the signal power evolution in the 

bi-directional pumping DRA depends on the pump powers launched into the fiber.  

Therefore, the signal evolution in FRA link can be designed by using appropriate 

pump powers.   

 

 
 

 

 

 

Figure 7.1:  Several pump configurations of Raman amplifier.  (a) shows the co-

propagating pump scheme, (b) the counter-propagating pump scheme, (c) the

bidirectional pump scheme, and (d) when combined with EDFA.   
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In Fig. 7.2, we propose a configuration which employs the DRA for obtaining 

symmetrical power distribution with respect to system midpoint.  Comparing with the 

power distribution in cascaded EDFAs shown in Fig. 7.2(a), the use of bi-directional 

pumped DRA and optical attenuators in the second-half of the system, shown in Fig. 

7.2(b) may enables us to form reverse power distribution of the first half.  This 

reverse power distribution does not only result in the reduction of SI effect, but also 

provides the avoidance of all nonlinear waveform distortion induced from the Kerr 

effects in OPC transmission systems.  With the proposed scheme, in combination with 

lump TOD compensators, the vanishing of both TOD and SI in OPC systems can be 

expected.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Periodic signal power variation (a) in chain of EDFA and (b) with DRA in 

the second half to form reverse power distribution. 
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7.3 Generation of Reverse Signal Power Distribution by 
DRA 

For long distance transmission, periodic lump amplification is used for maintaining a 

good SNR at a receiver.  The fiber loss and the periodic gain form a periodic signal 

power distribution along the system length, producing a periodic variation of the fiber 

refractive index through the nonlinear Kerr effect of an optical fiber.  This process 

constructs a virtual grating in the transmission fiber.  The resonance between the 

virtual grating and the signal will occur at signal sideband components whose wave 

vectors match with the wave vector of this virtual grating, resulting in the exponential 

growth of those components with transmission length.   

This phenomenon is known as the sideband instability (SI), which causes 

signal waveform distortion if the SI arises at frequencies inside the signal bandwidth.  

Figure 7.2(a) shows the signal power evolution in the OPC system constructed by the 

chain of lossy fiber and the lump amplification.  Since the signal power distribution in 

practical OPC systems is not symmetrical with respect to the mid-point, the SI cannot 

be compensated and will accumulate to the end of the system length.  On the other 

hand, by constructing the symmetrical power distribution with respect to the midway 

OPC, as shown in Fig. 7.2(b), the SI induced in the first half will be compensated 

while the signal propagates through the second half of OPC system.  In order to obtain 

such symmetrical power distribution, the signal transmission through the second half 

requires a distributed gain whose gain coefficient is equal to the loss coefficient of the 

fiber used in the first half.  However, such reverse power distribution can never be 

realized if a lossy fiber and lump amplification is used for signal transmission.   

Here, we bring the reverse power distribution into the real world by using the 

bidirectional pumping DRA.  Since the signal power evolution in FRA depends on the 

pump powers launched into the fiber, there should exists the appropriate pump powers 

which give the reverse power distribution.  To find out those powers, we numerically 

calculate the signal power transmission in one span DRA using the model based on 

the DRA equations presented in [123].  We assume the use of a single wavelength 

pump light because the Raman gain bandwidth of about 2 THz, which is sufficiently 

broad and flat enough for single channel data rate used in our simulations, can be 

produced by only single wavelength pumping.  The signal wavelength is 1,550 nm.  

The pump wavelength is 1,450 nm, which is corresponding to the 13.2-THz-up-shift 
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from signal carrier frequency.  Two pump lights are launched into the input end of 

fiber, which propagates forward, and the output end of fiber, which propagates 

backward.  The model in [123] also accounts for the temperature-dependent 

spontaneous Raman scattering noise and the Rayleigh back scattering with multiple 

reflections, which are considered as noise.  For simplicity, the evolution of signal 

power and noise are treated separately because the noise effects has little influence on 

the distributed Raman gain spectrum and the signal evolution [124], [125].  In our 

calculations, the Raman gain spectrum with polarization factor of 2, and the 

attenuation spectrum of silica fiber shown in [2] is taken.  The fiber is the dispersion-

shifted fiber (DSF) with effective core area effA  = 50 µ m2.  The signal and noise 

evolution is computed by integrating the FRA equations using the fourth-order 

Runge-Kutta (RK4) method [94] with the integration step size of 10 m.   

In order to obtain the reverse power distribution from the FRA, we first 

calculate the target reverse power distribution ( )zPsig
ref  with a given input signal power 

sig
revP  and keep it as reference.  It should be noted that sig

revP  refers to the signal power at 

the output end of fiber span for the case of ordinary lump amplification, which can be 

calculated by )exp( LPP sig
pump

sig
rev α−= , where sig

pumpP  is the signal input power for lump 

amplification, α  the fiber loss coefficient, and L the amplifier span.  Then, the FRA 

equations are solved iteratively until we obtain the bidirectional input pump powers 

( +P : forward pump power and −P : backward pump power), which yield least 

normalized root-mean-square error ( )−+ PPErr ,  defined as   

( )
( ) ( )

( )
%100

,,
,

0

2
0

2

×
−

=
∫

∫ −+

−+ L sig
ref

L sig
ref

sig
Raman

dzzP

dzzPzPPP
PPErr ,          (7-5) 

where ( )zPPPsig
Raman ,, −+  represents the reverse power distribution obtained by DRA.   

Table 7.1 shows the optimum +P  and −P  and their corresponding ( )−+ PPErr ,  at 

several 0P  for L = 40 km and 50 km.  ( )−+ PPErr ,  becomes larger for higher value of 0P .  

At given 0P , the use of 50-km span yields larger ( )−+ PPErr ,  than that of the 40-km 

span.  We also calculate ( )−+ PPErr ,  from the 80-km span.  ( )−+ PPErr ,  larger than 30 % 

is resulted from such long span.  For instance, Fig. 7.3 and 7.4 shows the reverse 
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power distribution from DRA with ( )−+ PPErr ,  of about 7.3 %, compared with the 

reference calculated by 0P  = 5 mW and L = 40 km and the corresponding pump 

power evolutions.  The reverse power distribution obtained from DRA is almost 

curve-fitted with the reference, indicating the possibility of generating reverse power 

distribution by DRA.  It should be noted that we also explore the backward and 

forward pumping schemes.  However, the reverse power distribution with sufficiently 

low error cannot be constructed by these two schemes.   

Table 7.1: Raman pump powers for constructing reverse power distribution. 

 

 

Figure 7.3: Reverse power distribution formed by DRA for signal input power of 5 

mW. 

 Amplifier span 40 km Amplifier span 50 km 

Input 
signal 
power 
[mW] 

Forward 
pump 
power 
[mW] 

Backward 
pump 
power 
[mW] 

Error 
[%] 

Forward 
pump 
power 
[mW] 

Backward 
pump 
power 
[mW] 

Error 
[%] 

3 120 127 6.9 146 152 11.9 
4 120 130 7.1 145 155 12.3 
5 127 122 7.3 145 158 12.6 
6 127 124 7.3 157 142 12.7 
8 126 129 7.4 156 148 12.7 
10 125 134 7.7 155 154 12.9 
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Figure 7.4: Pump power evolutions for constructing the reverse power distribution in 

Fig. 7.3. 

7.4 Computer Simulations of OPC Transmission Systems 
Using DRA 

After we obtain the optimum Raman bi-directional pump powers for producing the 

reverse power distribution, the DRA is implemented on the second half of OPC 

system to form the symmetrical power distribution with respect to the system 

midpoint.  The model of OPC system using DRA in the second half is shown in Fig. 

7.2(b).  The fist half consists of chain of transmission fibers and optical amplifiers.  In 

the second half, at each span end, the optical attenuator is installed to reduce the 

signal power to make the reverse power distribution periodic.  At the end of system, 

the TOD compensator is placed to reset the accumulated TOD.  It should be noted that 

the accumulation of TOD in OPC systems has been theoretically shown to be linear 

[49], thus, only one linear TOD compensator is needed and can be installed anywhere 

in the system for perfect compensation.   

In order to evaluate the performance improvement using our proposed method, 

we perform a computer simulation of the optical signal transmission in OPC systems 

based on the model in Fig. 7.2(b).  The optical signal composed of 32-bit 

0

30

60

90

120

150

0 10 20 30 40

Distance [km]

Pu
m

p 
po

w
er

 [m
W

]
Backward pump

Forward pump



 121

pseudorandom Gaussian RZ pulses.  The transmission fiber is the DSF with the 

operating dispersion D = -1ps/km/nm, the TOD = 0.06 ps/km/nm, and the nonlinear 

coefficient γ  = 2.6 W-1km-1.  Other parameters used in this simulation are the same as 

used for integrating the FRA equations above.  For the first half of the system, the 

optical signal propagation is simulated by solving the nonlinear Schrodinger equation 

(NLSE) with the split-step Fourier method (SSFM) [4].  The integration step size of 

the SSFM is set at the value that gives the step size error less than 0.1 % [116].  The 

optical amplifier produces ASE noise with noise figure of 5.3 dB ( spn  = 1.7).  The 

optical pulse at the midway of the system is conjugated by an ideal infinite-bandwidth 

optical phase conjugator.   

To simulate the signal propagation in the FRAs in the second half, some 

following modifications are needed.  The distributed gain for each step of the SSFM 

is calculated from the FRAs equations with the RK4, then, the distributed gain is 

acted as a gain/loss in the NLSE for that step.  Similarly, the amount of noise 

generated within the step length of FRA is also computed from Raman equations with 

the RK4, then, is used for calculating the varience of the Gaussian distribution of ASE 

noise which will be randomly added to the signal bandwidth at end of that step.    

The TOD compensator, placed only at the end of system, is assumed to be an 

ideal device that multiplies the complex amplitude of the signal with the negative 

amount of linearly accumulated phase shift caused by the TOD.  The bandwidth of the 

optical band-pass filter, which is placed at the output end of the fiber, is always 

adjusted to obtain the minimum BER.  The receiver is modeled by the 65-GHz-cutoff 

sixth-order Bessel-Thompson low-pass filter followed by the BER detector.  For 

obtaining the numerical BER of the detected signal, the numerical Q factor of every 

bit is individually calculated at the maximum eye-opening point of the bit period.  

Based on the assumption of Gaussian noise distribution, the numerical BER is 

computed from the bit numerical Q factors and averaged over the entire bits [25].   

Figure 7.5 shows the calculated BER at 10,000 km of the OPC systems using 

DRA as a function of the signal input power launched to the first half.  In Fig. 7.5, for 

low input signal power, BER of the systems using the reverse power distribution 

reduce as the input signal power increase owing to the improvement in SNR, together 

with the suppression of SI.  In fact, assuming that the TOD and the SI are perfectly 

suppressed in OPC systems, there remains the problem originated from the 
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accumulation of noise which is nonlinearly enhanced during the transmission by the 

parametric interaction between dispersion and SPM [65], [93], [115].  Since the 

transmission of the ASE noise is not symmetrical with respect to the midpoint of the 

system.  Thus, only part of the nonlinear enhancement can be compensated by OPC 

while there still exists the accumulated ASE noise, which is enhanced by the 

nonlinear interaction.   

Therefore, for high input signal power, the BER becomes saturate because the 

nonlinear enhancement of noise, as well as the increase in error in forming the reverse 

power distribution become significant and start to affect the system performance.  

When we further increase the signal power, these two effects mainly cause signal 

distortion, therefore, the BER degrades rapidly.  However, with defining a maximum 

transmission distance at BER = 10-9, the 100-Gbit/s systems using the reverse power 

distribution with the amplifier span of 40 km can achieve 10,000-km transmission for 

a wide range of input signal power (2 – 10 mW).   

In comparison with these results, the same OPC system using the DSF and the 

lump amplifiers incorporated with the TOD compensation can only achieve the 

10,000-km transmission by using only input signal power of 7 mW [49].  This 

mentions the significant improvement of the OPC system by using the DRA.  On the 

other hand, for the system with the amplifier spacing of 50 km, the 10,000-km 

transmission can be achieved with BER = 10-9 at the input signal power of only 4 

mW.  This is mainly resulted from larger error in constructing the reverse power 

distribution compared to the 40-km span.  We also calculate the BER of the systems 

using the 80-km span.  Because the error in forming the reverse power distribution 

becomes even larger than 30 % for signal power all input signal powers, therefore, we 

cannot achieve BER = 10-9.  However, the result has demonstrated the possible in 

expanding the span length of 10 km when the DRA is used.   

For the 40-km span, the further increase in transmission data rate is expectable 

using the DRA.  The calculated BER of 160-Gbit/s and 200-Gbit/s data transmission 

at 10,000 km shown in Fig. 7.5 indicate the possibility of such ultra-high bit-rate 

long-haul transmission at BER = 10-9 using the signal input power = 4 mW and 5 mW 

for the 160-Gbit/s and the 200-Gbit/s data, respectively.   
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Figure 7.5: BER of optical signal after transmitted 10,000 km through OPC systems 

using DRA. 

In [115] we have also demonstrated the possibility of 10,000-km transmission 

of the data rate 200 Gbit/s by simultaneously suppressing both TOD and SI in OPC 

transmission systems employing the higher-order dispersion management fiber link 

consisting of SMF and RDF.  Although, such method can only reduce the SI effect, it 

realizes such ultra-high bit rate transmission because the harm of fiber nonlinearity-

enhanced ASE noise is also reduced through large fiber local dispersion of SMF and 

RDF.  On the other hand, by using the DRA, the signal and noise propagates under 

small value of uniform dispersion for entire length of system, therefore, the 

nonlinearity-enhanced noise may be almost as strong as the system using the periodic 

EDFA.  However, the DRA in the second half, where the accumulated noise becomes 

large and is enhanced by the fiber nonlinearity, produces lower noise than the chain of 

periodic EDFA.  Moreover, the SI is almost perfectly suppressed, thus, the 200-Gbit/s 

data transmission over 10,000 km can also be made possible by this method.    
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7.5 Conclusion  

We have demonstrated the performance improvement of ultra-long-haul high-bit-rate 

OPC transmission systems by employing the DRA to suppressing signal waveform 

distortion caused by the Kerr effect.  The pump powers of the bi-directional pumping 

DRA were designed for producing the reverse periodic signal power variation on the 

second-half of the systems in order to construct entirely symmetrical power 

distribution with respect to the system midpoint.  Incorporated with the TOD 

compensator, our simulation results have shown possibilities of the 100-Gbit/s data 

transmission over a 10,000 km with the 50-km amplifier span and the 200-Gbit/s data 

transmission over 10,000 km with the 40-km amplifier span.   



CHAPTER 8 
FINITE-DIFFERENCE TIME-DOMAIN 
SIMULATION OF SLOWLY-VARYING 
ENVELOPE PULSE PROPAGATION IN 

RELATIVELY LONG NONLINEAR OPTICAL 
FIBER 

 

We propose the use of several algorithms of the finite-difference time-domain 

(FDTD) method for simulating pulse propagation in relatively long fiber.  The results 

are compared with the results from the split-step Fourier method (SSFM).  The 

numerical results of 5-ps FWHM single optical pulse propagation in dispersion 

compensated fiber span using the FDTD method have shown a possibility of the 

calculation over several ten kilometers with acceptable accuracy.  The algorithms 

studied in this chapter are the explicit FDTD, the implicit FDTD, and the FDTD 

employing the Crank-Nicholson (CN) scheme.  We have modified these algorithms to 

be the implicit-1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to 

make them suitable for solving the nonlinear Schrodinger equation (NLSE) which is 

separated into two coupled equations for the real and imaginary part of the optical 

signal.   

8.1 Introduction 

Propagation of slowly varying envelope optical signal in optical fibers is governed by 

the well-known partial differential equation called nonlinear Schrodinger equation 

(NLSE) [4].  Since the NLSE does not have an analytic solution, the use of numerical 

method is necessary.  The most commonly used numerical algorithm for solving the 

NLSE is the split-step Fourier method (SSFM) [4], in which the fiber is divided into 

small sections with a length called the step size.  Each section exhibits only the 

dispersive or nonlinear effects which act on the propagating signal separately.  The 

accuracy of the SSFM solution increases with the reduction of the step size.   

Although the SSFM has become the standard method for analyzing almost all 

problems of signal propagating in optical fibers, it is quite inconvenient for those who 

are not good at computer programming, and also who only aim to study simple 

problems and want to know the approximate solutions immediately.  This is because 

it is very complicated and tough to implement the SSFM algorithm into 
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computational program.  It can take more than a week to develop several hundred 

lines of a simulation program based on SSFM algorithm and then validating it before 

it starts to work properly.   

As an alternative method for studying optical field propagation, the finite-

difference time-domain (FDTD) method [69] has been widely used for analyzing and 

designing several structures of short-scale optical waveguides and devices [70], [71].  

Since the FDTD algorithm is much easier and simpler for implementing than the 

SSFM, by using the FDTD, it is possible to develop the calculation program which 

consumes not more than 20 lines in only an hour.  The basic principle of FDTD is to 

discretize both time and space into small cells and then applying the central difference 

approximations for both temporal and spatial derivatives.  Recently, a 12-fs ultra-

broadband optical pulse propagation in optical fiber is also studied using the FDTD 

for directly solving Maxwell’s equations [72].   

In this chapter, we propose the use of FDTD for solving the NLSE and 

demonstrate that the FDTD can be sufficiently applied to simulate the optical pulse 

propagation in relatively long fiber under acceptable accuracy.  The paper is 

organized as follows.  Section 8.2 of this paper mainly devotes to the use of the 

explicit FDTD method for solving the NLSE.  After the discretization of the NLSE 

and the employment of central difference approximation in the NLSE, through the 

explicit FDTD algorithm, the NLSE is transformed into first-order linear equation 

with initial problem.  Furthermore, we also introduce a practical condition for 

determining spatial step size of FDTD.  Then, the problem based on the propagation 

of 5-ps single optical pulse over 50-km dispersion compensated fiber link is modeled.  

The calculation error caused by the choice of spatial step size is quantified.  Next, the 

simulation results, together with the comparison with those obtained from the SSFM 

are shown and discussed.   

Several algorithms have been invented to reduce the accumulated error due to 

the choice of the calculation step such as the implicit FDTD [69], the Crank-

Nicholson scheme [69], the Douglas scheme [126], [127], and other algorithm [71].  

In section 8.3 and 8.4 of this chapter, we study the use of the implicit FDTD and the 

Crank-Nicholson (CN) scheme for solving the NLSE.  We modify these algorithms to 

be the implicit-1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to 

make them suitable for solving the NLSE which will be separated into two coupled 

equations for the real and imaginary part of the optical signal.  Similar to section 8.2, 
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the same problem of pulse propagation is simulated.  The characteristic of the 

accumulation error, as well as the difference between the results obtained by the 

FDTD and the SSFM are shown and discussed.  Next, the comparison between all the 

proposed FDTD algorithms and also the SSFM are discussed in section 8.5.  Finally, 

the summary of this paper is made at section 8.6.   

8.2 Explicit FDTD 
We should start from the NLSE for the slowly-varying envelope signal function 

( )TzA ,  propagating along z axis 
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where 2β  is the group-velocity dispersion (GVD) parameter, 3β  the higher-order 

GVD parameter, α  the fiber loss coefficient, and γ  the nonlinear coefficient.  To 

apply the explicit FDTD method to Eq. (8-1), time domain discretization is made with 

the step of T∆ , and the corresponding index n, giving TnT ∆= (n = 1, 2, 3, …).  

Similarly, the propagation distance is discretized with the step z∆ , and the spatial 

index k, therefore, zkz ∆=  (k = 1, 2, 3, …).  Then, after discretization, ( )TzA ,  

becomes )(nAk .  Following FDTD algorithm, Eq. (8-1) becomes 
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Since ( )TzA ,  is complex function, we will split )(nAk  into its real and imaginary 

components 

( ) ( ) ( )niAnAnA n
imag

k
real

k += .                                    (8-3) 

Substituting Eq. (8-3) into Eq. (8-2), we obtain two coupled explicit FDTD 

equations 
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In Eq. (8-4) and (8-5), it is worth noted that, to obtain the signal spectra, the fast-

Fourier transform (FFT) algorithm can be used to transform )(nAk  at arbitrary 

distance to obtain its spectra.  Then the time resolution T∆  is determined by the 

spectral window W with the relation TW ∆= /1 .  On the other hand, it is quite 

difficult to determine the spatial step z∆  because there is no specific Courant 

condition [2] to guide us, as was the case in Maxwell’s equations simulation.  We 

propose here a practical approach to determine reasonable z∆  by defining the 

normalized spatial step q 
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Our concept is very simple and similar to FDTD numerical stability theorem [2].  

That is, a stable solution to Eq. (8-4) and (8-5) will be obtained if q becomes much 

less than unity.   

The problem model used for simulations is the propagation of optical single 

pulse in dispersion compensated fiber link composed of dispersion-shifted fiber (DSF) 

and dispersion compensator.  The length of one span is 50 km.  The optical signal is 

5-ps full-width-half-maximum (FWHM) single pulse with Gaussian shape.  The input 

power of the pulse is 10 mW.  The parameters used in the simulations are typical 

dispersion-shifted fiber parameters: α  = 0.2 dB/km, 2β  = 0.26 ps2/km 

(corresponding to the second-order dispersion (SOD) or the dispersion = -0.2 
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ps/km/nm), 3β  = 0.11 ps3/km (corresponding to dispersion slope or the third-order 

dispersion (TOD) = 0.06 ps/km/nm2), and γ  = 2.6 W-1km-1.  The dispersion 

compensator used in simulations is assumed to be an ideal device that multiplies the 

complex amplitude of the signal with a negative amount of linearly accumulated 

phase shift caused by the SOD.  This compensator is placed at the end of 50-km span.  

Also, one lump optical amplifier placed at the end of 50-km span.  The amplifier 

produces gain of 10 dB without amplifier noise for compensating the fiber loss of 50-

km span.   

The time window is 50 ps and is sampled to 512 discrete points giving 

1.0≈∆T  ps, which yields the spectral window width ≈W  10 THz.  The propagation 

of the optical pulse is calculated by solving the NLSE using both above proposed 

FDTD method and SSFM.  To quantify the error caused by the choice of the spatial 

step size of both FDTD and NLSE, the normalized root-mean-square error ( )zE ∆ , 

which is defined in [116],  
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where ( )izAk
sim ;∆  represents the discretized output pulse obtained by simulation, and 

( )izAk
exact ;∆  the exact solution.  It should be noted that and ( )izAk

exact ;∆  is 

approximated by ( )izA ref
k
exact ;∆ , where refz∆  is 5 times smaller than the so far smallest 

step size for which ( )zE ∆  has been estimated.   

Figure 8.1 shows ( )zE ∆  of the single pulse after propagating for one span as 

the function of q simulated by the FDTD method.  Both ( )zE ∆  and q in Fig. 8.1 are 

shown in logarithm scale.  The result indicates that ( )zE ∆  increases almost linearly 

with the spatial step size.  The smaller the error is, the closer the numerical result gets 

closed to the exact solution.  However, there becomes a question that how much the 

error can be acceptable.   

Figure 8.2 shows the output pulse shape computed by setting q = 1.7x10-2 

(shown by solid line), comparing with the output pulse waveform simulated by 

reducing q to 3.4x10-3, which is 5 times smaller (shown by dotted line).  In this case, 

( )zE ∆  obtained from q = 1.7x10-2 is around the value of 1.2x10-2.  From Fig. 8.2, the 

propagated pulses appear with slight asymmetrical broadening induced from higher-
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order GVD.  Excepting small distinction around peak point of the pulse, the pulse 

waveform calculated by using q = 1.7x10-2 is almost fitted with that obtained from q = 

3.4x10-3.  To further decreasing q much shorter than this value may result only a little 

more difference.  However, the result from Fig. 8.2 informs us that with error of about 

10-2, we are sufficiently able to attain nearly the exact solution.   
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Figure 8.1: ( )zE ∆  of the single pulse after propagating for one span as the function of 

q shown in logarithm scale simulated by the FDTD method.  ( )zE ∆  increases almost 

linearly with the spatial step size.   

 

Figure 8.3 compares ( )zE ∆  from the explicit FDTD method with the SSFM as 

a function of spatial step size z∆ .  At the same z∆ , the SSFM produces much smaller 

( )zE ∆  and converges to the exact solution more rapid than the FDTD method.  At z∆  

= 10-2, ( )zE ∆  of the SSFM exhibits a value lower than 10-8, while that obtained from 

the FDTD is as large as 10-1.  Therefore, by the explicit FDTD method, in order to 

achieve an equal ( )zE ∆  to the SSFM, it is clearly that extremely small z∆  is required, 

resulting in significant increase in computation time.   

 



 131

 
 

Figure 8.2: Output pulse shape calculated by the explicit FDTD method with q = 

1.7x10-2 (shown by solid line), comparing with output pulse shape simulated by q = 

3.4x10-3 (shown by dotted line).  ( )zE ∆  of q = 1.7x10-2 is about 1.2x10-2.  Small 

difference around peak point of the pulse is observed.  However, the exact solution is 

almost obtained with error of about 10-2.   
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Figure 8.3: ( )zE ∆  calculated from the explicit FDTD method and the SSFM as a 

function of spatial step size.  The SSFM yields much smaller ( )zE ∆  and converges to 

the exact solution more rapid than the explicit FDTD method.   
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Figure 8.4 shows the comparison of computation time between the explicit 

FDTD method and SSFM method as a function of ( )zE ∆ .  Although, the computation 

time used by both methods increase almost linearly with the reduction of ( )zE ∆ .  As 

expected, at equal value of ( )zE ∆ , the explicit FDTD method consumes much 

calculation time than the SSFM.  However, with the rapid progress in the performance 

improvement of nowadays computers, in such a case of simulation of pulse 

propagation in fiber span which is not so long, such drawback in computation time 

may not disturb those who use the explicit FDTD method too much rather than being 

annoyed in wasting much time transforming the SSFM into computer code.  For 

instance, running the simulations on MS. Visual C++ on Window XP using CPU 

Pentium IV 2 GHz with 512 MB memory take computation time below 1 s for the 

SSFM and about 10 s for the explicit FDTD method at the same ( )zE ∆  of about 10-2.   

Next, we explore how far the explicit FDTD method can be used to compute 

the pulse propagation.  Assuming the SSFM is the most accurate method for 

simulating pulse propagation in optical fibers, the difference between results obtained 

from the explicit FDTD method and the SSFM is investigated.  Figure 8.5 shows the 

50-km-transmitted pulse waveform calculated by the explicit FDTD method using q = 

3.4x10-4 (shown by solid line), comparing with that calculated by the SSFM with z∆  

= 10 m.  ( )zE ∆  of both waveform are 2.4x10-4 and  3.9x10-9, for the explicit FDTD 

method and the SSFM, respectively.  According to Fig. 8.5, the difference in results 

between two algorithms is observed.  To determine an amount of difference between 

the explicit FDTD method and the SSFM, we should define the FDTD-to-SSFM error 

using Eq. (8-7) by changing the reference term ( )izAk
exact ;∆  with ( )izAk

SSFM ;∆ , where 

( )izAk
SSFM ;∆  is obtained from SSFM.  By this definition, the FDTD-to-SSFM error of 

the two pulse waveforms in Fig. 8.5 is about 7.9x10-2.   
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Figure 8.4: Comparison of computation time between the explicit FDTD method and 

the SSFM method as a function of ( )zE ∆ .  At equal ( )zE ∆ ,  the explicit FDTD 

method consumes much calculation time than the SSFM.   

 

 
 

Figure 8.5: 50-km-transmitted pulse waveform calculated by the explicit FDTD 

method using q = 3.4x10-4 (shown by solid line), comparing with that calculated by 

the SSFM with z∆  = 10 m.  ( )zE ∆  of both waveform are 2.4x10-4 and  3.9x10-9, for 

the explicit FDTD method and the SSFM, respectively.  FDTD-to-SSFM error of the 

two pulse waveforms is about 7.9x10-2.   
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Figure 8.6 show the explicit-FDTD-to-SSFM error as a function of 

propagation distance for several q values.  In this case the pulse is transmitted for two 

spans (100 km) with additional one lump noiseless optical amplifier placed at 100 km.  

The result from Fig. 8.6 mentions that the FDTD-to-SSFM error become greater with 

propagation distance.  The increase in spatial step size z∆  can only slightly reduce 

this error.  For relatively small q, even we further reducing q by 20 times (q = 6.8x10-

3 shown by squares to q = 3.4x10-4 shown by diamonds), the corresponding FDTD-to-

SSFM error at arbitrary distance is almost not changed.   
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Figure 8.6: FDTD-to-SSFM error as a function of propagation distance for several q 

values.  The pulse is transmitted for two spans (100km).  FDTD-to-SSFM error 

becomes greater with propagation distance.  The increase in spatial step size z∆  can 

only slightly reduce this error.  If we consider the FDTD-to-SSFM error is the most 

serious limit of the explicit FDTD method, the simulation using the explicit FDTD 

method can only be applied for a fiber length of several ten kilometers.   

 

8.3 Implicit FDTD 
The concept of implicit FDTD is to use the next step solution to calculate the next 

step solution itself.  It has been shown that the use of the implicit FDTD can reduce 

the error caused by the choice of a step size.  At the same step size, the implicit FDTD 
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gives more accurate result than the explicit FDTD.  However, the accumulative 

characteristics of these two methods are the same.   

Using the implicit FDTD, Eq. (8-2) is rewritten to be 
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It should be noted that the suffix k on the right hand side of Eq. (8-8) is only replaced 

by k+1.   

After splitting )(nAk  as well as )(1 nAk+ into its real and imaginary components using 

Eq. (8-3), we obtain two coupled implicit FDTD equations 
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From Eq. (8-9) and (8-10), to obtain )(1 nAk+ , we establish two coupled implicit 

FDTD matrix equations for the real part and imaginary part with each equation has n 

unknown variables as shown below,  
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The matrix A, B, A′ , and B′  are all nn× matrix.  The components of matrix A which 

are not zero are 
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The components of matrix B which are not zero are 
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The components of matrix  A′  which are not zero are 
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The components of matrix B′  which are not zero are 
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For given fiber parameters and kA , in order to solve the above two equations for 

obtaining the next step solution 1+kA , some algorithms must be used for modifying 

Eq. (8-11) and (8-12).  This is because, for example, to obtain 1+k
realA , the second term 

on the left hand side of Eq. (8-11), which is dependent on 1+k
imagA  must be available 

first.  Similarly, to calculate 1+k
imagA , the second term on the left hand side of Eq. (8-12), 

which is dependent on 1+k
realA  must be also obtained before.  Furthermore, in matrix B, 

iib ,  and iib ,′  require the calculation of ( ) ( ) 2121 iAiA k
imag

k
real

++ + , which will not be exactly 

obtained unless we have both 1+k
realA  and 1+k

imagA  before.  For overcoming these 

problems, we proposed two schemes, which will be assigned the names as the 

implicit-1 FDTD and the implicit-2 FDTD.   

 

8.3.1 Implicit-1 FDTD 

The algorithm of the implicit-1 FDTD, as shown in Fig. 8.7 is very simple.  k
realA  and 

k
imagA  are used instead of 1+k

realA    and 1+k
imagA  in the second terms including the 
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calculation of  ( ) ( ) 2121 iAiA k
imag

k
real

++ + inside the matrix B and B′ , respectively.  Then, 

Eq. (8-11) and (8-12) will be solve to obtain  1+k
realA   and 1+k

imagA , which become k
realA  

and k
imagA  for next step.   

 

 
 

Figure 8.7: Algorithm of the implicit-1 FDTD. 

 

Figure 8.8 shows the accumulated step size error of the explicit FDTD in 

percentage unit for the single pulse propagation in two spans (100 km), as a function 

of distance for several step sizes   

For comparison, Fig. 8.9 shows the accumulated step size error of the implicit-

1 FDTD in percentage unit for the single pulse propagation in two spans, as a function 

of distance for several step sizes.  The results are obtained by solving Eq. (8-11) and 

(8-12) by using Gaussian elimination with backsubstitution with scaling and pivoting 

[94].  Although the error increases with transmission distance and then rapidly arises 

at a distance that is shorter for larger step size, the error causes by the implicit-1 

FDTD is approximately 10 times smaller than the error from using the explicit FDTD.   
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Figure 8.8: Step size error of the explicit FDTD in percentage unit for the single pulse 

propagation for 100 km as a function of distance for several step sizes. 

 

 
Figure 8.9: Accumulated step size error of the implicit-1 FDTD in percentage unit for 

the single pulse propagation for 100 km as a function of distance for several step 

sizes.   
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Figure 8.10 shows the accumulated explicit-FDTD-to-SSFM error in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  Although, the error almost increases linearly with transmission 

distance, similar to Fig. 8.6, the increase in size z∆  can only slightly reduce this error.  

The error converges to a value for a given distance, for examples, 7.6 % for 50 km 

and 17.8 % for 100 km transmission.   

 

 
 

Figure 8.10: Accumulated explicit-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 

In comparison with the result in Fig. 8.10, Fig. 8.11 shows the accumulated 

implicit-FDTD-to-SSFM error in percentage unit for the single pulse propagation in 

two spans, as a function of distance for several step sizes.  For larger step size (> 0.2 

km), this error increases rapidly when the pulse propagates for a distance.  However, 

for smaller step size (< 0.2 km) the error also saturates to a value which is almost the 

same as the case of explicit FDTD.  For examples, the error becomes 7.6 % for 50 km 

and 17.8 % for 100 km transmission.   
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Figure 8.11: Accumulated implicit-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 

8.3.2 Implicit-2 FDTD 
The algorithm of the implicit-2 FDTD, as shown in Fig. 8.12, is more complicated 

than the implicit-1 FDTD.    For the first step of calculation, 2
realA  is calculated by 

using 1
realA  and 1

imagA .  Then, 2
imagA  is obtained by using 2

realA  in the second term of the 

left hand side of Eq. (8-12).  It should be noted that ( ) ( )2 22 2
real imagA i A i+  is 

approximated by ( ) ( ) ( ) ( ){ }2 2 2 22 1 1 11
2 real imag real imagA i A i A i A i+ + + .  For next step, 

2
realA  and 2

imagA  are employed to calculate 3
realA  from Eq. (8-11).  3

imagA  is then obtained 

by using 2
realA , 2

imagA , and 3
realA  through Eq. (8-12).  This calculation repeats 

continuously until n
realA  and n

imagA  are obtained.   
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Figure 8.12: Algorithm of the implicit-2 FDTD. 

 

Figure 8.13 shows the accumulated step size error of the implicit-2 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  The increase in error is almost the same as that of the implicit-1 

FDTD.  However, the implicit-2 FDTD results slightly better error for a given step 

size than the result from the implicit-1 FDTD.  Figure 8.14 shows the accumulated 

implicit-2-FDTD-to-SSFM error in percentage unit for the single pulse propagation in 

two spans, as a function of distance for several step sizes.  Similar to the implicit-1 

FDTD, the reduction in the step size can only slightly reduce the difference of the 

result from FDTD and the SSFM.  For the step larger than 0.2 km, this error increases 

rapidly when the pulse propagates for a distance.  However, the distance that the error 

rapidly arises is longer than that of the implicit-1 FDTD.   
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Figure 8.13: Accumulated step size error of the implicit-2 FDTD in percentage unit 

for the single pulse propagation for 100 km as a function of distance for several step 

sizes. 

 

 

 
 

Figure 8.14: Accumulated implicit-2-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 
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8.4 FDTD Employing Crank-Nicholson Scheme 
Crank-Nicholson (CN) scheme is well known for a method that can sufficiently 

reduce the accumulated error caused by the choice of step size in FDTD algorithm.  

The concept of CN scheme is to use the average value between the solution and the 

solution of the next step for estimating the solution of the next step.    

Employing the CN scheme, Eq. (8-2) is modified to be 
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After splitting )(nAk  and )(1 nAk+  into its real and imaginary parts using Eq. (3), we 

obtain two coupled implicit FDTD equations 
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Similar to the case of the implicit FDTD, to obtain )(1 nAk+ , two coupled 

implicit FDTD matrix equations originated by Eq. (8-30) and (8-31) is formed for the 

real part and imaginary part with each equation has n unknown variables as shown 

below,  
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The matrix A, B, A′ , and B′  are all nn× matrix.  The components of matrix A which 

are not zero are 

,
11
4i ia zα= + ∆ , for i = 1, 2, 3,…, n,                                 (8-34) 

3
, 1 36i i

za
T

β
+

∆
=

∆
, for i = 1, 2, 3,…, n-1,                                (8-35) 

3
, 2 312i i

za
T

β
+

∆
= −

∆
, for i = 1, 2, 3,…, n-2,                              (8-36) 

3
1, 36i i

za
T

β
+

∆
= −

∆
, for i = 1, 2, 3,…, n-1,                              (8-37) 

3
2, 312i i

za
T

β
+

∆
=

∆
, for i = 1, 2, 3,…, n-2.                              (8-38) 

 

The components of matrix B which are not zero are 

,
11
4i ib zα= − ∆ , for i = 1, 2, 3,…, n,                                  (8-39) 

3
, 1 36i i
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β
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∆
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3
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=

∆
, for i = 1, 2, 3,…, n-2,                                (8-41) 

3
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∆
, for i = 1, 2, 3,…, n-1,                                 (8-42) 

3
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T
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∆
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∆
, for i = 1, 2, 3,…, n-2.                               (8-43) 
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The components of matrix C which are not zero are 

( ) ( ) ( ) ( ){ }2 2 2 21 1 2
, 24 2

k k k k
i i real imag real imag

zc A i A i A i A i z
T

γ β+ + ∆
= − + + + ∆ −

∆
, 

              for i = 1, 2, 3,…, n,                                                (8-44) 
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2
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∆
, for i = 1, 2, 3,…, n-1,                                   (8-46) 

 

The components of matrix A′  which are not zero are 
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3
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The components of matrix B′  which are not zero are 
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, for i = 1, 2, 3,…, n-2.                             (8-56) 

 

The components of matrix C′  which are not zero are 
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( ) ( ) ( ) ( ){ }2 2 2 21 1 2
, 24 2

k k k k
i i real imag real imag

zc A i A i A i A i z
T

γ β+ + ∆′ = + + + ∆ +
∆

, 

for i = 1, 2, 3,…, n,                                           (8-57) 

2
, 1 24i i

zc
T

β
+

∆′ = −
∆

, for i = 1, 2, 3,…, n-1,                              (8-58) 

2
1, 24i i

zc
T

β
+

∆′ = −
∆

, for i = 1, 2, 3,…, n-1.                              (8-59) 

Similar to the case of the implicit FDTD, some algorithms must be used for 

solving Eq. (8-32) and Eq. (8-33) because, to obtain the next step solution 1kA + , we 

have to use 1kA +  itself for computing the second and third term in Eq. (8-32) and (8-

33) before.  For this purpose, we present here 5 algorithms for solving Eq. (8-32) and 

(8-33).  The algorithms are named as CN-1, CN-2, CN-3, CN-4, and CN-5.   

 

8.4.1 CN-1 FDTD 
The concept of the CN-1 FDTD algorithm is shown in Fig. 8.15.  For the first step of 

calculation, 2
realA  is calculated by using 1

realA  and 1
imagA  instead of 2

realA  and 2
imagA .  

Then, 2
imagA  is obtained by using 2

realA  1
realA , and 1

imagA  in the second and the third term 

of the right hand side of Eq. (8-33).  For next step, 2
realA  and 2

imagA  are used instead of 

3
realA  and 3

imagA  while 1
realA  and 1

imagA  are used instead of 2
realA  and 2

imagA  in the second 

and the third term of the right hand side of Eq. (8-32) for calculating 3
realA  from Eq. 

(8-32).  3
imagA  is then obtained by using 2

realA , 2
imagA , and 3

realA  from Eq. (8-33).  This 

process will repeat continuously until n
realA  and n

imagA  are obtained.   

Figure 8.16 shows the accumulated step size error of the CN-1 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  The CN-1 FDTD yields less error than that of the implicit 

FDTD when the same step size is used.  However, if we look at Fig. 8.17, which 

shows the accumulated CN-1-FDTD-to-SSFM error in percentage unit for the single 

pulse propagation in two spans as a function of distance for several step sizes, the 

error becomes larger than 100 % at a distance of about 60 km for all of step size 

values.  Moreover, the use of larger step size results in slightly smaller different from 

the result from the SSFM.  This indicates that the CN-1 FDTD gives the solution that 

is much different from the solution from the SSFM.   
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Figure 8.15: Algorithm of the CN-1 FDTD. 
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Figure 8.16: Accumulated step size error of the CN-1 FDTD in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 

 
 

Figure 8.17: Accumulated CN-1-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 
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Figure 8.18: Comparison of pulse shapes at the output end of 100-km fiber calculated 

by the CN-1 FDTD and the SSFM. 

 

Figure 8.18 shows the pulse shapes at the output end of 100-km fiber 

calculated by the CN-1 FDTD compared with that calculated by the SSFM.  The pulse 

obtained from the CN-1 FDTD exhibits the power as large as 70 mW although its 

power that we launched into the input end is only 10 mW.  This is impossible because 

a gain medium is not installed except the amplifiers which we use only to compensate 

the span loss.  Therefore, we can conclude that the CN-1 FDTD that we proposed 

gives the result that is not accurate.  On the other hand, for the result obtained from 

the SSFM, the result is reasonable because the output pulse has the peak power value 

very close to 10 mW.   

 

8.4.2 CN-2 FDTD 
The algorithm that we call CN-2 FDTD is the same as that of the implicit-1 FDTD 

which is shown in Fig. 8.7.  This CN-2 FDTD is much simpler than the CN-1 FDTD.  

In CN-2 FDTD, k
realA  and k

imagA  is used instead of 1k
realA +  and 1k

imagA +  for calculating 1k
realA + .  

Then, k
realA  and k

imagA  is used instead of 1k
realA +  and 1k

imagA +  again for obtaining 1k
imagA + .  This 

calculation repeats continuously until we obtain n
realA  and n

imagA .   

Figure 8.19 shows the accumulated step size error of the CN-2 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 
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for several step sizes.  The step error increases with transmission distance and arises 

rapidly at a distance that is shorter for larger step size.  Although the CN-2 FDTD 

gives sufficiently as small error as those of the implicit FDTD and the CN-1 FDTD, 

the error is slightly larger than that of the CN-1 FDTD at the same step size.  Figure 

8.20 shows the accumulated CN-2-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation in two spans as a function of distance for several step sizes. 

The error is almost the same at the error causes by using the implicit FDTD.   

 

 

 
 

Figure 8.19: Accumulated step size error of the CN-2 FDTD in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   
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Figure 8.20: Accumulated CN-2-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 

 

8.4.3 CN-3 FDTD 
The concept of the CN-3 FDTD algorithm is the same as the implicit-2 FDTD which 

is shown in Fig. 8.12.  For the first step of calculation, 2
realA  is calculated by using 

1
realA  and 1

imagA  instead of 2
realA  and 2

imagA .  Then, 2
imagA  is obtained by using 2

realA  1
realA , 

and 1
imagA  in the second and the third term of the right hand side of Eq. (8-33).  For 

next step, 2
realA  and 2

imagA  are used instead of 3
realA  and 3

imagA  in the second and the 

third term of the right hand side of Eq. (32) for calculating 3
realA  from Eq. (8-32).  

3
imagA  is then obtained by using 2

realA , 2
imagA , and 3

realA  from Eq. (8-33).  This process 

will repeat continuously until n
realA  and n

imagA  are obtained.   

Figure 8.21 shows the accumulated step size error of the CN-3 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  Comparing to other types of the CN FDTD which we have 

proposed, the CN-3 FDTD gives the error that is smaller than the CN-2 FDTD but 

slightly larger than the CN-1 FDTD.  Figure 8.22 shows the accumulated CN-3-

FDTD-to-SSFM error in percentage unit for the single pulse propagation in two spans 
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as a function of distance for several step sizes. The error is almost the same at the 

error causes by using the implicit FDTD and the CN-2 FDTD.   

 
Figure 8.21: Accumulated step size error of the CN-3 FDTD in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 
Figure 8.22: Accumulated CN-3-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 
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8.4.4 CN-4 FDTD 
The concept of the CN-4 FDTD algorithm is shown in Fig. 8.23.  The algorithm starts 

by the estimation of 2
realA  by using 1

realA  and 1
imagA  instead of 2

realA  and 2
imagA .  Then, 

2
imagA  is obtained by using 2

realA  1
realA , and 1

imagA  in the second and the third term of the 

right hand side of Eq. (8-33).  For next step, 2
realA  and 2

imagA  are used in the second and 

the third term of the right hand side of Eq. (8-32) to obtain 2
realA  again.  In the next 

step 3
realA  and 3

imagA  is similarly calculated through this process.  The calculation will 

repeat continuously until n
realA  and n

imagA  are obtained.  Since we have to solve the CN 

FDTD equations 3 times (Eq. (8-32), Eq. (8-33), and Eq. (8-33)) for the estimation of 
1k

realA +  and 1k
imagA +  for each step, it consumes the computation time about 1.5 times longer 

than other CN FDTD algorithm.     

Figure 8.24 shows the accumulated step size error of the CN-4 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  The CN-4 FDTD yields larger error than other FDTD 

algorithm.  Moreover, similar to the result from CN-1 FDTD, the accumulated CN-4-

FDTD-to-SSFM error as a function of distance in Fig. 8.25 shows a very high error 

closed to 100 % for long distance caused by this algorithm.   

Figure 8.26 shows the pulse shapes at the output end of 100-km fiber 

calculated by the CN-4 FDTD compared with that calculated by the SSFM.  The peak 

power of the pulse calculated by the CN-4 FDTD reduces significantly to be about 1 

mW.  Similar to the case of the CN-1 FDTD, this is also not reasonable because we 

compensate for the span loss by optical amplification.  Therefore, the CN-4 FDTD 

algorithm is also the one that we have to avoid.   
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Figure 8.23: CN-4 FDTD algorithm. 
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Figure 8.24: Accumulated step size error of the CN-4 FDTD in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 

 
 

Figure 8.25: Accumulated CN-4-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 
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Figure 8.26: Comparison of pulse shapes at the output end of 100-km fiber calculated 

by the CN-4 FDTD and the SSFM. 

 

8.4.5 CN-5 FDTD 
The concept of the CN-5 FDTD algorithm is shown in Fig. 8.27.  In the first step of 

calculation, 2
realA  is computed by using 1

realA  and 1
imagA  instead of 2

realA  and 2
imagA  in 

the second and the third term of the right hand side of Eq. (8-32).  Then, 2
imagA  is 

estimated by using 2
realA , 1

realA , and 1
imagA  in the second and the third term of the right 

hand side of Eq. (8-33).  For next step, 2
realA  and 2

imagA  are used in the second and the 

third term of the right hand side of Eq. (8-33) to obtain 3
imagA .  Then 3

imagA , 2
realA  and 

2
imagA  is used to calculate 3

realA  from Eq. (8-32).  Similarly for each next step, 1k
realA +  and 

1k
imagA +  are alternatively obtained until the last step that we reach n

realA  and n
imagA .   
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Figure 8.27: CN-5 FDTD algorithm. 

 

Figure 8.28 shows the accumulated step size error of the CN-5 FDTD in 

percentage unit for the single pulse propagation in two spans, as a function of distance 

for several step sizes.  Although for relatively large step size, the error increases very 

rapidly, the use of relatively small step size (< 10 m) brings the error to be lower than 

other FDTD algorithm.  Figure 8.29 shows the accumulated CN-5-FDTD-to-SSFM 

error in percentage unit for the single pulse propagation in two spans as a function of 

distance for several step sizes. The error is almost the same at the error causes by 

using other FDTD algorithm except the CN-1 and CN-4 FDTD.   
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Figure 8.28: Accumulated step size error of the CN-5 FDTD in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes.   

 

 
Figure 8.29: Accumulated CN-5-FDTD-to-SSFM error in percentage unit for the 

single pulse propagation for 100 km as a function of distance for several step sizes. 
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8.5 Comparison among Proposed FDTD Algorithms 
Figure 8.30 shows the comparison between proposed algorithms in term of the step 

error as a function of transmission distance by using the calculation step size 10 m.  

For only the explicit FDTD, the step error increases almost linearly with the 

transmission distance.  At a distance shorter than 50 km, all the non-explicit FDTDs 

give the errors which are more than 10-time lower than the explicit FDTD.  However, 

when the distance becomes longer than 50 km, all the non-explicit FDTDs result the 

errors which are rapidly increases with the distance and become closer to the error 

caused by the explicit FDTD for case of the CN-2 DTD at 100 km or even larger than 

the explicit FDTD for the case of the CN-4 FDTD at 100 km.  For a distance shorter 

than 50 km, the CN-1, CN-3, and CN-5 yield sufficiently small error while, for a 

distance longer than 50 km, the implicit-1 and implicit-2 FDTD give the errors 

smaller than those from all of the CN FDTD.   

 

 
 

Figure 8.30: Comparison between proposed algorithms in term of the step error as a 

function of transmission distance by using the calculation step size 10 m.   

 

Figure 8.31 shows the comparison of the differences from the SSFM caused 

by the proposed algorithms as a function of transmission distance by using the 

calculation step size 10 m.  The CN-1 and CN-2 gives very large differences from the 
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result from the SSFM.  The differences become larger than 100 % for a distance 

shorter than 100 km for these two algorithms.  For other algorithms, almost the same 

differences from the SSFM are obtained.  It should be noted that the explicit FDTD 

results slightly larger error than those obtained from other algorithms except the CN-1 

and CN-4 FDTD for a distance larger than 60 km.    

 

 
Figure 8.31: Comparison of the differences from the SSFM caused by the proposed 

algorithms as a function of transmission distance by using the calculation step size 10 

m.   

 
Figure 8.32: Pulse shapes at the output end of 100-km fiber calculated by the CN-5 

FDTD and the SSFM. 
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As a representative of the result of calculation from FDTD method, Fig. 8.32 

shows the pulse shape at the output end of 100-km fiber calculated by the CN-5 

FDTD compared with the result from the SSFM.  Although the difference between 

these two pulse shapes is about 18 %, the result from the CN-5 FDTD looks 

sufficiently similar to the result from SSFM.  Thus, we can almost get the information 

about the pulse after propagation though we choice the FDTD for computation.  For 

the result from the CN-5 FDTD, the effect of the dispersion slope on pulse 

propagation is obviously seen from the small pulse generated at the tail of the pulse.  

On the other hand, we cannot observe the small pulse when the SSFM is used.   

Table 8.1 shows the comparison among the normalized computation times 

consumed by the proposed FDTDs at arbitrary distance with the same step size.  The 

normalized time is obtained as the ratio between the computation time used by the 

FDTD algorithm and the computation time used by the SSFM.  Except the explicit 

FDTD, the proposed FDTD algorithms use much longer computation time than the 

SSFM.  Although, the explicit FDTD uses shorter computation time than the SSFM 

when the same step size is used, the explicit FDTD causes almost 108 –time larger 

than the SSFM as shown in Fig. 8.4.  The CN-4 FDTD uses longer computation time 

than other algorithms because, in order to obtain 1k
realA +  and 1k

imagA +  from k
realA  and k

imagA , 

three steps of calculation are needed.   

 

Table 8.1: Comparison among the normalized computation times used by the 

proposed FDTD algorithms.   

Algorithms SSFM Exp Imp-1 Imp-2 CN-1 CN-2 CN-3 CN-4 CN-5 

Normalized 

computation 

times 

 

1 

 

0.2 

 

177.8 

 

188.9 

 

188.9 

 

188.9 

 

188.9 

 

277.8 

 

188.9 

 

8.6 Conclusion 
In this chapter, the use of FDTD method for solving the NLSE in order to simulate 

pulse propagation in relatively long optical fiber has been studied.  For the simplest 

explicit FDTD, we have defined the normalized spatial step size which should be 

determined much shorter than unity in order to attain the numerical stability.  In 

comparison with SSFM, the SSFM is obviously superior to the explicit FDTD method 
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in both error and computation time.  Taking into account the difference between the 

result obtained from the explicit FDTD and the SSFM or the FDTD-to-SSFM error, 

the numerical results of 5-ps FWHM single optical pulse propagation in dispersion 

compensation fiber span using FDTD method has shown a possibility of the 

calculation over several ten kilometers before this error approaches 20 %.   

Next, two algorithms (implicit FDTD, and Crank-Nicholson) for reducing the 

error due to the choice of calculation step size in the explicit FDTD method are 

employed and compared.  We have modified these algorithms to be the implicit-1, 

implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them suitable 

for solving the NLSE which is separated into two coupled equations for the real and 

imaginary part of the optical signal.  For the explicit FDTD, the step size error 

increases linearly with the transmission distance, while for the implicit and CN 

FDTD, the step size error also increases linearly with the transmission but rapidly 

arises at a shorter distance when larger step size is used.  However, both implicit and 

CN FDTD give significantly smaller step size error than the explicit FDTD at the 

same step size.  For the comparison of the computation time when the same step size 

is used, the explicit FDTD consumes the smallest computation time than other 

methods including the SSFM because of its simplicity in algorithm.   

It has been widely recognized that the SSFM is the method that gives the 

sufficient accuracy for the calculation result of pulse propagation in long nonlinear 

optical fiber, since the CN-1 and CN-4 FDTD yield the results that differ from the 

result obtained from the SSFM more than 100 % for the propagation of the single 

pulse over 100 km, we can mention that the algorithms such as the CN-1 and CN-4 

FDTD that we have proposed should be avoided.  For other algorithms, the 

differences in the results compared to the SSFM are almost the same at about 18 % 

for 100-km propagation.  This indicates that if we consider the FDTD-to-SSFM error 

is the most serious limit of the FDTD method, the simulation using the FDTD method 

can only be applied for a fiber length of several ten kilometers.  Nevertheless, it is a 

matter of exactness which those who compute required for the solution.  Also, if 

possible, it is still necessary to compare the results from both FDTD method and 

SSFM with the experiment result in order to justify which gives more accurate 

solution.   

According to all results shown above, although the FDTD method was shown 

to be difficult to be utilized to simulate pulse propagation in very long optical fiber 
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transmission system, the FDTD method can be employed for studying signal 

propagation in short distance systems, fiber devices, fiber amplifiers, and also 

studying other nonlinear effects in optical fiber by additionally including interesting 

terms to the NLSE.  The significant advantage of the FDTD method to the SSFM is 

that the FDTD method is much easy to implement than the SSFM.  Therefore the 

calculation results can be immediately seen without wasting too much time in 

programming before starting to simulate.    

The FDTD method is also capable to be applied to the case of multi-bit signal 

or even WDM signal transmission.  This can be realized by only reducing the time 

sampling resolution and the corresponding spatial step size since such multi-bit signal 

and WDM signal are represented by larger bandwidth than the bandwidth of single 

pulse.   



CHAPTER 9 
DISCUSSION:  

GETTING CLOSER TO THE REAL WORLD 
 

In this dissertation, we proposed the practical schemes for improving the transmission 

performance of the OPC systems.  The numerical method is used for proving the 

effectiveness of our proposed schemes.  We should state that, by our numerical 

results, we assure the performance improvement of the systems using our proposed 

schemes, but we do not aim to assure the achievable data rates shown in this 

dissertation.  In fact, we have modeled the systems as much practical as possible.  

Moreover, the major effects that cause significant signal distortions are all considered.  

Thus, we believe that, in the real world, the performance of the system may differ 

from the calculated results not too much.   

In all calculations in this dissertation, some minor factors, which can also 

cause the signal distortions, have been neglected.  This is because such factors do not 

play dominant roles in limiting system performance comparing with the problems 

induced from the TOD and SI effect.  However, in order to fulfill the completeness of 

this dissertation, in this section, we note about such factors and how they affect an 

OPC system.   

The polarization mode dispersion (PMD) has been recognized as a significant 

problem limiting the transmission of such ultra-high bit-rate data.  In this thesis, we 

do not take PMD into account in the calculations.  For the higher-order-dispersion-

managed OPC systems using the combination of SMF and RDF, which is proposed in 

chapter 6, it has been shown that, without compensation, PMD of the dispersion-

managed transmission fiber using SMF and RDF is as small as 0.03 ps/ km  [61].  

Thus, by incorporating with PMD compensation, the performance of the higher-order-

dispersion-managed OPC systems may not be degraded too much.  In chapter 7, we 

have proposed the use of DRA in OPC systems.  In this case, we assume the use of 

DSF for signal transmission.  The DSF, in fact, exhibits larger PMD than the 

combination of SMF and RDF.  For the design of the power distribution in a link of 

DRA, we have considered the PMD by including the PMD factor of 2 in the DRA 

equations.  Therefore, the power distribution obtained by the DRA in the real world 
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may only slightly be affected by the PMD.  However, for the signal transmission in 

DSF with data rate larger than 100 Gbit/s, the PMD compensation may be necessary.   

In all calculations shown above, for simplicity, the optical phase conjugator is 

assumed to be ideal because we aim to focus on the effectiveness of our proposed 

methods for suppressing the problems induced from the TOD and the SI.  Practically, 

if we use the optical nonlinearity for producing the conjugated replica of the signal, 

the SNR of the signal will unavoidably decreases due to the poor conversion 

efficiency.  This will cause poorer BER than the results we have shown in this thesis.   

Furthermore, in our calculations, we neglect the spatial fluctuation of local 

fiber SOD.  This effect can also cause significant signal distortion in OPC systems.  

For the systems where the SOD fluctuation period is shorter than the nonlinear length: 

nlL , the SOD fluctuation has a little influence on signal transmission because, the 

SOD fluctuation can be averaged out in the nonlinear scale.  Then, the signal almost 

feels the average SOD rather than the SOD fluctuation while propagating in such 

systems.  On the other hand, the SOD variation whose period is comparable or longer 

than nlL  will cause significant signal distortion.  For the case of a higher-order-

dispersion-managed OPC system using the SMF and RDF, since the nonlinear 

coefficient of RDF is larger than that of SMF, the SOD fluctuation on the RDF will 

result more severe degradation than that occurs in the SMF and DSF.   

The signal distortion caused by the SOD fluctuation can be reduced by using 

the transmission fibers with a relatively large SOD.  Since the combination of SMF 

and RDF yields large local fiber SOD, moreover, in all calculations, we set the 

average SOD value: avD  at -1 ps/km/nm for both cases of OPC systems using SMF 

and RDF and OPC systems using DSF, we believe that the influence of the SOD 

fluctuation is sufficiently suppressed in our proposed systems.   

According to the results obtained from chapter 6, relatively high input signal 

powers (> 10 mW) are required for achieving BER < 10-9.  The stimulated Brillouin 

scattering (SBS) effect [4] is also one of the main factors that place the upper limit for 

the usable input signal power.  For the problem induced from the SBS, we have 

estimated the SBS threshold powers [128], [129] of the RDF for several data rates 

used in our simulations because the RDF is more nonlinear than the SMF.  The SBS 

thresholds for the case of 100-Gbit/s, 160-Gbit/s, and 200-Gbit/s data are 

approximately 51 mW, 81 mW, and 102 mW, respectively.  Therefore, we can 
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conclude that the SBS can be neglected for all values of the signal input powers used 

in our calculations.   

The fourth-order dispersion, which exhibits a value around 44 10−× ps/km/nm3 

[62] for DSF, has been shown to affect the propagation of such a femto-second pulse 

(pulse width < 1 ps).  For non-OPC systems, using the fourth-order dispersion value 
44 10−× ps/km/nm3 for the pulse width of 2.5 ps (data rate 200 Gbit/s) and the 

transmission distance of 10,000 km, the maximum delay between signal spectral 

components can be estimated to be approximately 131 ps.  Thus, the fourth-order 

dispersion will also cause the signal distortion for such a 200-Gbit/s data transmission 

over 10,000 km.  However, the NLSE, which is numerically solved in this dissertation, 

includes the dispersive effects up to only the third-order.  This is because the OPC can 

perfectly compensate for the dispersion whose order is an even number (2nd, 4th, 

6th,…) [4].  Therefore, we can neglect the fourth-order dispersion in both higher-order 

dispersion-managed OPC systems and OPC systems using DRA.  Especially for the 

higher-order dispersion-managed OPC systems, practically the TOD almost vanishes 

by the combination of the SMF and RDF.  Therefore, the dispersion whose order is 

higher than the TOD can be completely neglected.   

The optical phase conjugator should be exactly placed at the system midpoint 

or nearest to the system midpoint in order to utilize the full performance of the OPC 

scheme.  In case that the optical phase conjugator has to be installed at the point 

deviated from the midpoint, it is necessary to compensate the amount of the unbalance 

SOD accumulation between the accumulated SOD in the first half and the second half 

because the lengths of the first half and the second half become no longer equal.  With 

respect to the position of the optical phase conjugator, the additional signal distortion 

will be induced from the interaction between the fiber SOD and the Kerr effect on the 

unbalance section.  Therefore, the larger the position of the optical phase conjugator 

deviates from the system midpoint, the more serious such signal distortion degrades 

the system performance.  The deviation of the optical phase conjugator from the exact 

midpoint of the system should be much smaller than the nonlinear scale of the system 

in order to reduce the nonlinear waveform distortion occurring in the unbalance 

section.   

For practical installation, the optical phase conjugator should be placed at the 

same point of the optical amplifiers.  Therefore, the optical phase conjugator will be 
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moved out of the midpoint with the step of one amplifier span.  For the higher-order 

dispersion-managed OPC systems whose the dispersion management period is larger 

than the amplifier span, we have to move the optical phase conjugator with a length 

step of one dispersion management period in order to keep the symmetrical 

distribution of the dispersion management profile with respect to the optical phase 

conjugator.  This will cause more severe signal distortion for larger dispersion 

management period.  According to the installed dispersion management profile shown 

in Fig. 6.4(b), for the higher-order dispersion-managed OPC systems whose the 

dispersion management period is equal to, or smaller than the amplifier span, the 

optical phase conjugator should be moved to the second half in order to shorten the 

transmission where the RDFs, whose nonlinear coefficient is larger than the SMFs, 

are located near the output of amplifiers.  Then, the signal distortion due to the 

interaction between the Kerr effect and the SOD on the unbalance transmission 

section will be reduced.   

Figure 9.1 shows the example of OPC system configuration where the optical 

phase conjugator is moved to the second half.  The transmission length of the first half 

is L1, while that of the second half is L2, resulting in the unbalance section of 1 2L L−  

located at the input end of fiber.  The operating dispersion is –D, therefore, at the end 

of the system, the SOD with amount of ( )1 2D L L− −  is necessary to add in order to 

balance the accumulated SOD in the first half and the second half.   

 

 
 

Figure 9.1: Example of OPC system configuration where the optical phase conjugator 

is moved to the second half.   
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It has been shown that the RDF can be manufactured to have almost perfect 

compensation of the TOD when combining with the SMF.  The average remained 

TOD becomes as small as 53.3 10−×  ps/km/nm2 [62].  Using this value, the TOD 

length for the data rate of 200 Gbit/s is as long as 60,000 km.  Since the longest 

transmission length in this dissertation is 10,000 km, we can neglect the slight 

mismatch between the dispersion characteristic of SMF and RDF.  Therefore, in this 

dissertation, we have assumed that the dispersion characteristic of RDF is a complete 

reverse of SMF.  The effect of the imperfect match of the cascaded SMFs and RDFs 

on signal transmission, however, can be considered as the random variation of the 

TOD.  For OPC systems, since we have proved that the accumulation characteristic of 

the TOD is almost linear in chapter 4 and in [49], this problem can be completely 

overcome by only adjusting the amount of TOD that will be compensated at the TOD 

compensator.       

It is common and practical to construct a system with equal amplifier spacing.  

This is because the accumulated amount of the ASE noise at the receiver becomes 

minimum for only the system using the equal amplifier spacing.  Moreover, it will be 

easy and convenient to design the gain of an optical amplifier for equal amplifier 

spacing.  However, randomly slight deviation of the amplifier position may possibly 

occur in the real world.   Comparing to a system using equal amplifier spacing, since 

the amount of the accumulated noise in a system using unequal amplifier spacing is 

larger, the SNR at the receiver will be poorer than the system using equal amplifier 

spacing.  Moreover, as shown in Fig. 9.2 for the occurrence of the SI effect, the signal 

power variation in a chain of the randomly unequal amplifier spacing produces the 

virtual grating in transmission fiber.  This virtual grating has a form of randomly 

nonlinear-chirped grating [130] through the Kerr effect.  The nonlinear resonance, 

which is assisted by this randomly nonlinear-chirped grating, will arise at many signal 

sideband spectral components around the carrier frequency.  Although, the gain of this 

type of SI is not so large as the SI gain for the case of the equal amplifier spacing, the 

gain of the SI from the unequal amplifier spacing exhibits very broad bandwidth.  

Therefore, the severe spectral broadening will be resulted from the unequal amplifier 

spacing.   

In OPC systems, although either the strong higher-order dispersion 

management or the DRA is very effective for suppressing the SI, however, the system 
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performance cannot be expected as high as the OPC systems using the equal amplifier 

spacing.   

 

 

 
 

Figure 9.2: The occurrence of SI for a system using nonuniform amplifier spacing. 

 

The spectral linewidth of the optical source is not taken into account in this 

dissertation for the sake of simplicity.  The source spectral linewidth is directly 

responsible for the dispersion effect and the amount of noise entering the signal 

bandwidth.  For the data rates used in this dissertation, in combination with the TOD 

compensation, the signal will restore its spectral width to its initial linewidth after 

transmitting in our proposed OPC systems because the all order of dispersion is 

almost perfectly compensated.  Therefore, only the degradation of the SNR at the 
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receiver is still left to consider when the linewidth of the optical source is taken into 

account.   

The optical loss due to signal reflections at connection parts on a system is 

also neglected in this dissertation.  To overcome this additional loss, it is necessary to 

increase the gain of the optical amplifiers.  This results in larger amount of the ASE 

noise generated through high optical gain.  Therefore, this problem also causes the 

degradation of the SNR at the receiver.     

 

 



CHAPTER 10 
CONCLUSION AND SUGGESTIONS  

FOR FURTHER IMPROVEMENT 
 

10.1 Summary of the Dissertation 

In this dissertation, performance improvement of ultra-long-haul high-bit-rate optical 

transmission system using midway OPC was studied.  The serious limitations of OPC 

system are mainly resulted from TOD and SI effect.  We have shown that the 

accumulation characteristic of the TOD in OPC transmission systems is almost linear 

as long as the SOD length is much shorter than the nonlinear length.  This fact gave us 

a possibility to install only one of the linear TOD compensator at any point in the 

system for perfect TOD compensation.  By assuming the ideal TOD compensator, the 

computer simulation result has shown the possibility of a data transmission over 

10,000 km with data rate of 100 Gbit/s based on TOD compensated OPC systems.   

We have presented the derivation of the analytical expression of the sideband 

instability (SI) induced from periodic signal power variation and periodic dispersion 

management when two different fibers are connected together to form the dispersion 

compensation link.  Three possible dispersion management systems were considered: 

(a) system where dispersion management period is larger than amplifier spacing, (b) 

system where the two lengths are equal, and (c) system where amplifier spacing is 

larger than dispersion management period.    

  We found that SI frequency depends on the larger period between the 

amplifier spacing and the dispersion management period.  The larger the variation 

period becomes, the SI frequency will arise closer to carrier frequency.  Moreover, the 

gain of SI appears to be reduced with the increase of local fiber second-order 

dispersion (SOD).  This is because the increase in the local SOD virtually shifts the 

order of SI to higher order resulting in the difficulty of phase-match process.  The 

computer simulations were made and their results were in good agreement with the 

derived theory.   

In WDM systems that use relatively narrow channel spacing, we demonstrated 

that even the dispersion map is properly designed to achieve low SI gain, SI causes 

signal distortion to specific channels that fall just on the low order SI frequency, 

especially for the first order.  In addition to WDM system design rules, the channel 
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allocation must avoid the SI position in such a way that none of the channels should 

be lied at.  The computer simulations have confirmed that a WDM system, whose 

channel location is re-arranged to avoid SI, give a significant improvement of the 

transmission performance.   

Next we proposed for the first time the simultaneous suppression of the two 

main problems, TOD and SI, in OPC transmission systems by employing higher-order 

dispersion management fiber link consisting of SMF and RDF.  In order to implement 

the combination of SMF and RDF on OPC systems, we demonstrated that it is 

necessary to use symmetric dispersion profile with respect to mid-point of the system 

to reduce SI gain together with the accumulation of the interplay between SPM and 

each fiber local dispersion.  According to the numerical computation results, a 100-

Gbit/s data transmission in OPC system that employs the SMF+RDF-dispersion-

managed link without optimizing the dispersion map has achieved the transmission 

length at BER = 10-9 over 2,000 km longer than the system where SI is not 

suppressed, although the nonlinear length of the system is set comparable to the 

amplifier spacing.   

Next, we have introduced the system design approaches to achieve the 

maximum system performance considering the determination of dispersion 

management period dl  and the corresponding signal input power.  Such maximum 

performance can be achieved by using optimum input power, which will be found at 

relatively low value for the case of fd ll >  and at relatively high value for the case of 

fd ll < .  The computer simulation results have demonstrated that the 10,000-km 

transmissions of 100-Gbit/s data, 160-Gbit/s data and even the data whose data rate as 

high as 200 Gbit/s become possible by the dispersion-managed OPC system whose 

dispersion map is properly designed.    

Figure 10.1 shows the recent significant progresses in single channel 

transmission data rate and distance.  From figure 10.1, our result has recorded the 

highest bit-rate-distance product that has been proposed by computer simulation up to 

now.  Also shown in the same figure, L. J. Richardson, et. al. have numerically 

demonstrated the transmission of a 320-Gbit/s data over the distance of 6,000 km 

[64].  The bit-rate-distance product of their work (1,920 Tbit ⋅ km/s) is only 4 % 

smaller than our work (2,000 Tbit ⋅km/s).  However, their proposed scheme is very 

impractical comparing with our proposed scheme.  This is because, in their work, the 
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320-Gbit/s soliton signal is propagated through a chain of very-short period higher-

order dispersion management.  In one link of 50-km amplifier spacing, the period of 

such higher-order dispersion management is assumed to be as much as 64 periods.  

Furthermore, the absolute fiber local SOD and the average SOD have to be strictly set 

at about 1.2 ps2/km and -0.001 ps2/km, respectively.  This is very difficult to 

manufacture such higher-order dispersion-managed fibers.  Moreover, since their 

scheme requires relatively small values of the fiber local SOD and the average SOD, 

the random dispersion fluctuation will easily cause the deviation of such fiber local 

SOD and average SOD from the designed values.  Therefore, in the real world, the 

soliton may be destroyed after only propagating for several amplifier spans.   

 

 

Figure 10.1: Recent significant progresses in single channel transmission data rate and 

distance.  Our result has recorded the highest bit-rate-distance product that has been 

proposed by computer simulation up to now.   

 

The performance improvement of the OPC transmission system by employing 

distributed Raman amplification (DRA) was also studied.  We produced the reverse 

periodic signal power variation on the second-half of the systems in order to construct 

entirely symmetrical power distribution with respect to the system midpoint by using 

appropriate pump powers of the bi-directional pumping DRA.  As a result, all signal 

waveform distortions caused by the Kerr effect are compensated through the midway 

OPC.  Incorporated with the TOD compensator, our simulation results have shown 
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possibilities of the 100-Gbit/s data transmission over a 10,000 km with the 50-km 

amplifier span and the 200-Gbit/s data transmission over 10,000 km with the 40-km 

amplifier span.   

Next, to develop the simple numerical algorithm for calculating signal 

transmission in optical fibers, we studied the use of finite-difference (FDTD) method 

for solving the nonlinear Schrodinger equation (NLSE) in order to simulate pulse 

propagation in relatively long optical fiber.  The algorithms studied in this chapter are 

the explicit FDTD, the implicit FDTD, and the FDTD employing the Crank-

Nicoleson (CN) scheme.  We have modified these algorithms to be the implicit-1, 

implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them suitable 

for solving the NLSE.  The model of a 5-ps full-width-half-maximum (FWHM) single 

optical pulse propagation in dispersion compensated fiber span was used for 

simulation.  The numerical results of using these proposed FDTD algorithms are 

compared with the results obtained by using the split-step Fourier method (SSFM).  

Taking into account the differences of result from the SSFM, our developed FDTD 

algorithm have shown a possibility of the calculation over several ten kilometers with 

acceptable accuracy.  Therefore, we should mention that the FDTD method can be 

employed for studying signal propagation in short distance systems, fiber devices, 

fiber amplifiers, and also studying other nonlinear effects in optical fiber by 

additionally including interesting terms to the NLSE.  The significant advantage of 

the FDTD method to the SSFM is that the FDTD method is much easier to implement 

than the SSFM.  Therefore the calculation results can be immediately seen without 

wasting too much time in programming before starting to simulate.    

10.2 Suggestions for Further Work 

We give the suggestions for further work as follows.   

1. The optimum operation SOD for OPC systems: To extend the performance of 

the OPC systems more than what we have derived, the easiest way may be the 

optimization of the average SOD value avD .  The increase in avD  can reduce the 

effect of fiber nonlinearity either the case for using the combination of SMF and 

RDF or the case of using the DRA, at the same time, moving the SI which is not 

completely suppressed to occur more inner signal bandwidth.  The optimum avD  

will be found under the balance of these two effects.   
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2. The optimum symmetrical power distribution by DRA: Since the power 

distribution in a link of transmission fiber with DRA can be designed by using 

appropriate input pump powers, there should exist the symmetrical power 

distribution constructed by the DRA that gives the least difference from the target 

power distribution though high input signal power or large DRA span is required.  

This optimum symmetrical power distribution will yield better performance on 

both the increasing transmission data rate and the extension of the DRA span 

because the Kerr effect will be almost completely compensated through the OPC.  

For examples in Fig. 10.2, we propose two configurations, which employ the 

DRA for obtaining symmetrical power distribution with respect to system 

midpoint.  In Fig. 10.2 (a) and (b), a flat power distribution and a uniform power 

distribution may also be constructed by using the bi-directional pumping schemes.   

3. Wavelength division multiplexing: Since all the systems considered in this work 

are single channel transmission systems, for future works, we suggest the study on 

the use of higher-order dispersion-managed OPC scheme on long-haul wavelength 

division multiplexing (WDM) transmission systems.  In this case, design 

strategies for signal channel allocation that avoids the position of SI should be 

considered.   

4. DRA with ultra-broadband, flat-gain, and symmetrical power distribution by 

multi-wavelength pumping scheme: To support the data transmission using 

OPC with DRA in WDM scheme, the DRA that exhibits ultra-broadband, flat-

gain, symmetrical-power-distribution should be used.  This can be realized by 

using the multi-wavelength pumping scheme with carefully designing the 

wavelength and the power of each pump.   
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Figure 10.2:  Two symmetrical power distributions, with respect to system midpoint, 

which can be constructed by employing the DRA, (a) flat power distribution and (b) 

uniform power distribution. 
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