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In this dissertation, the performance improvement of the optica phase
conjugation (OPC) systems by suppressing the third-order dispersion (TOD) and the
sideband instability (Sl) is studied. For the TOD compensation, we predict that the
accumulation of TOD in OPC systems is almost linear. We demonstrate the
possibility of a 100-Gbit/s data transmission over 10,000 km by only performing the
TOD compensation. For the Sl suppression, we derive the complete theoretical
analysis of the Sl that occurs when two fibers with different characteristics are
concatenated to form a dispersion-managed fiber link. We find that the magnitude of
the SI gain reduces with the increase in the strength of dispersion management.

Since the strong dispersion management link using the combination of a
standard single-mode fiber (SMF) and a reverse dispersion fiber (RDF) can realize the
simultaneous compensation of the second-order dispersion (SOD) and the TOD, we
employ this combination of SMF and RDF to simultaneously suppress both TOD and
Sl in OPC systems. By computer simulation, we demonstrate the possibility of a 200-
Ghit/s data transmission over 10,000 km by only optimizing the dispersion map and
the input signal power.

For aternative method for compensation of SI, we propose the use of
distributed Raman amplification (DRA) to construct a reverse power distribution in
the second half of OPC systems, in order to form the entirely symmetrical distribution
of signal power with respect to the system midpoint. The result of our simulation also
shows that the 200-Gbit/s data can successfully transmit over 10,000 km.

For computing pulse propagation in optical fiber, we develop severa
algorithms based on the finite-difference time-domain (FDTD) method. The results
of the ssimulations are compared with the results obtained from the split-step Fourier
method (SSFM), which is the common method used for calculating signa
propagation in-optical fibers. Our developed FDTD algorithms show a possibility of
the calculation over several ten Kilometers with acceptable accuracy.
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6.3: Transmission of ASE noisein OPC system. ASE noise
produced from each optical amplifier is enhanced during

the transmission by parametric interaction between SOD and SPM,

and will accumulate to the end of system. Since the transmission

of ASE noiseisnot symmetric with respect to the system mid-point,

therefore, only part of the nonlinear enhancement can be compensated

by OPC while their remains an amount of ASE noise that

is enhanced by the nonlinear interaction and accumul ates
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in OPC transmission system. In (a) both periodic dispersion variation
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entire system length. On the other hand, in (b), the order

of SMF-RDF isreversed to RDF-SMF after the system mid-point,

forming the symmetric distribution of the periodic SOD variation

with respect to the system mid-point. The symmetric dispersion profile

in (b) gives better transmission performance than profile (a) especially

when the systems operates with high signal power because part

of the interaction between SPM and fiber local dispersion is compensated
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CHAPTER 1
INTRODUCTION

1.1 General Background

Rapid growth of demand on both transmission data rate and distance in this decade for
supporting the multimedia information is very remarkable. The promising system
which has a potential to respond such demand is the optical fiber transmission system.
However, at present, most of the installed long-haul fiber systems still operate with
electronic repeaters at very low bit rate. During the propagation in the transmission
fiber, the peak power of the optical signa decreases due to the fiber loss, as well as
the signal waveform becomes distorted due to the fiber characteristics such as the
fiber second-order dispersion (SOD) and the fiber nonlinearity [1]-[10]. The SOD
causes the signal pul se broadening while the fiber nonlinearity results in signal spectra
broadening during signal transmission in the fiber [3]-[5]. The interaction of SOD
and nonlinearity will cause more severe distortion of both pulse and spectra[4]-[10].

Figure 1.1 shows the configuration of the electronic repeater [2]. In
electronic-repeated scheme, after launching to the repeater, such distorted optical
signal is converted to electrical signal. The distortion is removed out of signal by
mean of electronic signal processing, and then is converted back to optical signal
again. By this scheme, the capacity of system is limited by speed of the electronic
circuit, which is well known as “electronic bottle neck”, at the speed of around 40
GHz or at the bit rate of 40 Ghit/s [4], [5], [11]. Therefore, to operate the system with
bit rate higher than 40 Ghit/s, all optically signal-processed repeater, which uses light
processes light, is necessary.

The invention of the Erbium-doped fiber optical amplifier (EDFA) [4], [5],
[12]-[15] has significantly opened the possibility of the data transmission at the bit
rate higher than 40 Ghit/s. - EDFA has many beneficial properties [4], such as
polarization independent gain, slow recovery time which prevents the pattern effect,
low insertion loss and high saturation output power. The most important thing may
be the fact that EDFA is operating in the 1550 nm region where the optical fibers
exhibit minimum loss. Moreover, the gain bandwidth of EDFA is sufficiently wide
enough so that it realizes a possibility of amplifying the ultra high bit rate signal up to
over Thit/s and a large number of WDM signals. EDFA can aso serve as excellent

receiver pre-amplifiers, as they can provide very nearly the theoretical quantum-



limited 3-dB noise figure [4]. Thisis because EDFA can be coupled very efficiently
to the single-mode fibers with insertion loss of about 0.1dB, and almost full
population inversion can be achieved.

Electronic-based optical repeater

Distorted optical signal Regenerated

Electrically optical signal
Photo amplification
detector and — | Modulator [———»

signal processing I

-
w
w
(1]
=

Optical Electrical . Optical

Capacity of system is limited by processing speed of electronic circuit

E=p> Electronic bottle neck : 40GHz or 40Gbit/s

v

Optically signal amplification is necessary for optical transmission systems

with bit rate higher than 40Gbit/s
Figure 1.1: Configuration of electronic repeater.

Figure 1.2 shows the configuration of the EDFA, which is commonly used in
optically amplified systems. High output power semiconductor laser diode with
operating wavelength 1480 nm or 980 nm is used for stimulating the Stimulated
Brillouin scattering effect to occur inside the Er**-doped optical fiber for coherently
amplifying 1550 nm signal input into the fiber. Usually, the EDFA is equipped with
two optical isolators. The first is placed at the input in order to eliminate possible
disturbances caused by the backward traveling amplified spontaneous emission (ASE)
on the upstream span, while the second, at the output, protects the device against
possible back reflections from the downstream line. The signal is launched into the
active fiber together with the pump radiation through a wavelength division
multiplexer (WDM) coupler which minimizes the power losses of both input beams.

The gain bandwidth of EDFA ranges approximately from 1520 nm to 1570 nm
so that it is well tuned with the system operating at wavelength near 1550 nm region.



Typical values for the small-signal gain are 30-40dB for pump powers of 50-100 mW.
Output powers range from +13dBm up to +20dBm, while the noise is generally very
close to the minimum theoretical limit which can be derived from the fundamental
laws of physics such as Heisenberg's Uncertainty principle.

However, the EDFA can only amplify the optical signal. Unlike the electronic
repeater, the waveform distortion induced from SOD and fiber nonlinearity can not be
removed from the signal at the output of EDFA. Therefore, in order to upgrade the
electronic-repeated to the optically amplified system, the signa distortion induced

from the SOD and nonlinearity must be seriously taken into account.

Er’” doped fiber

Wavelength _
multlple\er ( Optical BPF
‘L'_J— = m = %
Input signal

Optical isolator Optical isolator Output signal

(2=1.55 pm) §

High power pump laser (A=1.48 um)
Figure 1.2: Configuration of EDFA.

There are many transmission methods have been proposed in order to
overcome the SOD. The zero-dispersion wavelength transmission [16]-[20] is to set
an operation wavelength of the system at zero-dispersion point so that the pulses can
propagate without broadening.; The SOD management [21]-[35] is to arrange the
various sections of fiber in'such away that none or only very few of them have zero
SOD wavelengths. that coincide with. the carrier - wavelength while the total fiber
exhibits zero SOD on average. The optical ‘soliton [36]-[47] is to create the signa
pulses that can propagate in optical fiber without broadening by balancing the SOD
and the nonlinear self-phase modulation (SPM) effect in anomalous dispersion region
[4], [5], [36]. Quantitatively, this can be achieved by launching optical pulses with
proper input power and width into the fiber. The midway optical phase conjugation
[48]-[52] isto perform the optical phase conjugation (OPC) at the midpoint of system
in order to achieve the perfect compensation of both SOD and nonlinear effects if the



condition that all of the system characteristics are symmetric with respect to the
midway OPC.

Although the SOD is completely compensated, when the ultra-high-bit-rate
data is transmitted through an optical fiber, the third-order dispersion (TOD) shows
up and influences transmission characteristics. Moreover, the TOD interplays with
the SPM, causing severe distortion of both signal waveform and signal spectrum [4].

In the dispersion-managed system where the SOD map is properly designed
but the TOD is not compensated, the bit rate of the 10,000-km transmission system is
limited only about 10Ghbit/s because of the interplay of the TOD with the SPM. It has
been shown, by numerical simulations, that when TOD is compensated periodically at
the interval quite shorter than the nonlinear scale of the system, the speed limit is
possibly raised up over 20Ghit/s [25].

On the other hand, in soliton systems, a recent numerical study shows that the
eigen solution to solitons can exist in the transmission line with TOD, and that is
stable against the perturbation of TOD [53]. Even without TOD compensation,
40Ghit/s, 10,000km transmission has been actually demonstrated by using DM
solitons [54].

For further expansion both in capacity and distance, dispersion management to
eliminate both SOD and TOD will be one of the key issues. For this purpose, severa
TOD compensators have been proposed and demonstrated such as chirped fiber
grating [55], [56], all-pass optical filter [57] and also special dispersion compensating
fibers called the reverse dispersion fiber (RDF) [58]-[60]. Among these devices, the
RDF seems to be more practical and attractive than others. Figure 1.3 shows
schematically the dispersion characteristics of the RDF and the SMF. Since the RDF
exhibits low negative TOD with large negative SOD value, therefore, by the
combination with conventional single-mode fiber (SMF) in each span, the dispersion
flattened fiber link with low average dispersion for simultaneously compensating both
SOD and TOD is achieved. The combination of SMF and RDF can be applied for
both OTDM and WDM transmission schemes as shown in Fig. 1.3(@) and (b)
respectively. Several recent OTDM transmission experiments have demonstrated
very atractive results of this SMF+RDF combination based systems such as the
transmission of 640 Ghit/s over 92km [61] and even the data rate as high as 1.28
Thit/s over 70 km [62]. In the other hand, the success of 320 Gbit/s over 200km
transmission using SMF combined with DSCF has been reported [63]. Following by



a numerical simulation, the possibility of 320 Ghit/s soliton transmission over 6,000
km employing short period SOD and TOD management has been shown [64].

Ultra-high bit rate SME
OTDM signal spectra -

Second-order Dispersion : D [ps/km/nm]

N-channels WDM
ALK

Second-order Dispersion : D [ps/km/nm]

Amp. Amp.

D SMF d RDE D
(b)

Figure 1.3: Dispersion characteristics of SMF and RDF for using
in (@) OTDM scheme and (b) WDM scheme.



As an aternative approach for ultrahigh-bit-rate long-haul transmission,
midway optical phase conjugation (OPC) is an attractive solution to compensating for
the distortion induced from the interplay between the SOD and the SPM [65]. Several
recent works have reported the broadband, wavelength-shift-free, and polarization-
independent optical phase conjugators [66], [67]. Thisintensively may bring the OPC
systems into a commercia world. However, the ultimate performance of OPC
systems is also limited by TOD together with a nonlinear resonance at well-defined
signal sideband frequencies induced by periodic amplification process called sideband
instability (SI) effect [68].

Propagation of slowly varying envelope optical signal in optical fibers is
governed by the well-known partial differential equation called nonlinear Schrodinger
equation (NLSE) [4]. Since the NLSE does not have an analytic solution, the use of
numerical method is necessary. The most commonly used numerical algorithm for
solving the NLSE is the split-step Fourier method (SSFM) [4], in which the fiber is
divided into small sections with a length called the step size. Each section exhibits
only the dispersive or nonlinear effects, which act on the propagating signa
separately. The accuracy of the SSFM solution increases with the reduction of the
step size.

Although the SSFM has become the standard method for analyzing ailmost all
problems of signal propagating in optical fibers, in order to obtain the NLSE, several
approximations are applied to Maxwell’s equations, and also, the SSFM consumes a
lot of computation time. Moreover, it is quite inconvenient for those who are not
good at computer programming, and also who only aim to study simple problems and
want to know the approximate solutions immediately. This is because it is very
complicated and tough to implement the SSFM algorithm into computational
program. It can take more than a week to develop several hundred lines of a
simulation program based on SSFM agorithm and then validating it before it starts to
work properly.

As an dternative method for studying optical field propagation, the finite-
difference time-domain (FDTD) method [69] has been widely used for analyzing and
designing severa structures of short-scale optical waveguides and devices [70], [71].
Since the FDTD algorithm is much easier and simpler for implementing than the
SSFM, by using the FDTD, it is possible to develop the calculation program that

consumes not more than 20 lines in only an hour. The basic principle of FDTD isto



discretize both time and space into small cells and then applying the central difference
approximations for both temporal and spatial derivatives. Recently, 12fs ultra-
broadband optical pulse propagation in optical fiber is also studied using the FDTD
for directly solving Maxwell’s equations [72]. Nevertheless, the algorithm used in
this previous work cannot be applied to the propagation of slowly varying envelope
optical pulse in relatively long fibers due to the accumulation of the truncation error
caused by the sampling width of transmission distance.

1.2 Purpose of This Study

The aim of this study is to improve the performance of midway OPC transmission
systems by proposing and evaluating practical schemes to suppress two main
problems, TOD and SI, which limit the transmission performance of the systems.
Two methods are proposed in this thesis for overcoming these two problems in OPC
system. First isthe use of the combination of SMF and RDF in OPC system in order
to achieve the simultaneous suppression of both TOD and SI. Second is the
suppression of both TOD and Sl by using a lump TOD compensator and the
distributed Raman amplification (DRA) to construct the reverse power distribution in
the second-half of OPC system to obtain the entirely symmetrical power distribution
with respect to the system midpoint. Moreover, we will propose the optimum system
design theories for achieving maximum system performance for each proposed
scheme.

Furthermore, in this study, the numerical method based on the SSFM will be
mainly used to prove our derived theory and to evaluate our designed systems.
However, for the sake of simplicity, this study also aims to develop numerical
analysis agorithms based on the FDTD method far calculating signal propagation in

optical fiber and to perform a comparison among them.

1.3 Study Methods and Plans

The research will start with studying the accumulation characteristic of TOD in OPC
systems and finding the most suitable scheme to compensate it. Next, we consider
two possible ways to eliminate the Sl. First is the use of periodic perturbation to
perturb the Fourier components of the virtual grating constructed by periodic power
variation. The periodic perturbation will modulate the magnitudes of those



components which results the desirable decrease of SI gain. Second is the use of
distributed gain such as Raman amplifier in the second half of the system to form the
desirable symmetrical signal power distribution with respect to the midway OPC.
According to the above research plan, the research methods of this work are
mainly based on the derivation of analytical theories, and then evaluating their
possibilities and accuracies by the method of computer numerical simulations.
The study plan can be divided into 16 steps.

1) Studying on the TOD accumulation characteristic and the most suitable TOD
compensating scheme in OPC systems. Then, proposing the optimum system
design strategies to achieve maximum performance and confirming the
performance improvement of the systems when the TOD is compensated.

2) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journal.

3) Proposing the simultaneous suppression of TOD and SI by higher-order
dispersion compensating fiber link composed of SMF and RDF. Deriving the
complete mathematical expression of Sl gain concerning periodic dispersion
management fiber link when two different fibers are connected together.
Verifying the derived theory with the computer ssimulations. Confirming the
possibility of reducing SI gain with the fiber link consisted by SMF and RDF.

4) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journal.

5) Proposing and studying the implementation of the dispersion management
using SMF and RDF on OPC systems in terms of possible installing profiles.
Theoretically making the comparison ‘the advantages and disadvantages
among the proposed schemes. Finding out the most suitable scheme.

6) Using the computer simulation to confirm the performance improvement of
higher-order dispersion-managed OPC system by the simultaneous
suppression of both TOD and Sl.

7) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journa

8) Theoretically finding the optimum higher-order dispersion-managed OPC
system design strategies in terms of designing system operating parameters
such as input signa power, dispersion management period, and average

dispersion value, etc. in order to achieve maximum system performance.



9) Using computer simulations to evaluate the maximum performance of higher-
order dispersion-managed OPC transmission system employing the derived
optimum system design strategies.

10) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journa

11) Studying the suppression of Sl using DRA. Designing the Raman gain in
order to obtain symmetrical signal power distribution with respect to the
system midpoint when the Raman amplifiers are applied to the second-half of
the system.

12) With the DRA in combination with lump TOD compensators, confirming by
the computer simulations the performance improvement of the OPC
transmission systems.

13) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journal

14) Studying numerical computations of the propagation of optical signal in
optical fiber using the FDTD method with several algorithms such as the
explicit FDTD, the implicit FDTD, and the Crank-Nicholson scheme,
comparing the calculation results using these FDTD methods with those
obtained from the SSFM.

15) Summarizing the results, presenting the work in international conferences or
publishing the work in periodical journal.

16) Writing the doctoral dissertation.

1.4 Studying Scopes

1) Focusing only on the suppressing two main problems, TOD and SI, of OPC
systems.

2) Proposing, studying and evaluating only the two possible ways to eliminate
the TOD and Sl.

e The use of higher-dispersion compensated fiber link composed of single-
mode fiber and reverse dispersion fiber. This combination yields the
compensation of TOD and at the same time induces the periodic
perturbation to the system. Therefore, by this scheme, the simultaneous
suppression of both TOD and Sl is expectable.



3)

4)

5)

6)

10

e The use of distributed gain from Raman amplifiers with the combination
of lumped gain from EDFA. With this combination, the periodic power
variation in the second half of OPC system can be made symmetrical with
respect to midway point when the distributed gain of the Raman amplifier
is carefully designed. Therefore, in combination with lump TOD
compensators the vanishing of both TOD and SI can also be expected.

Proposing, studying and evaluating the OPC system optimum design theory

focusing only the systems using the above two schemes.

As this research aims to study the performance improvement of ultra-long-

haul ultra-high-speed OPC systems, therefore, we focus on OPC systems with

transmission length of 10,000 km and with data rate higher than 100 Gbit/s.

The computer ssimulation is only one method to verify the derived theories

because it is still not possible to perform such ultra-long haul ultra-high bit

rate transmission experiments except in large telecommunication companies
suchasNTT, KDD and AT&T.

The numerical methods developed for computer ssmulations in this study are

the SSFM and the FDTD method.

1.5 Benefits

1)

2)

3)

4)

5)

6)

7)

The accumulation characteristic of TOD in OPC systems and the most suitable
scheme for compensating the TOD on OPC systems.

First time in our knowledge, the complete theory of SI when two different
characteristics of fibers are connected together.

The use of dispersion-management in OPC system which will be proposed for
the first time in our knowledge.

The design of Raman amplifier gain that yields the lowest effect of Sl to the
signal transmission.

The performance improvement of OPC systems that is expected to be
improved close to the linear SNR limit.

Very simple numerical analysis algorithms for calculating signal propagation
in relatively long optical fiber using the FDTD method that gives both
accuracy and least calculation time at the same time.

Three publicationsin proceedings of domestic conferences.
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8) Three publicationsin proceedings of international conferences.
9) Publications of two full papers and one letter in international periodical
journals.

10) Best paper award in domestic conference

1.6 Organization of this Dissertation

This thesis is organized as follows. Chapter 2 gives the review of basic knowledge
about single-mode fiber characteristics and their effects on signal propagation. In
chapter 2, we also describe about the NLSE and the principle of the SSFM which is
the numerical method used for solving the NLSE. Chapter 3 is the literature review
about the theory of the OPC and its limitations, together with other transmission
schemes for overcoming the SOD effect. Our contributions start from chapter 4
where we discuss about the TOD compensation scheme in OPC systems. We show
that the accumulation characteristic of the TOD in OPC transmission systems is
amost linear. By assuming the ideal TOD compensator, the computer simulation
result has shown the possibility of 100-Ghit/s, 10,000-km transmission based on TOD
compensated OPC systems.

In chapter 5, the complete theoretical analysis of Sl focusing on the case when
two different characteristic fibers connected together is made. In our analysis, not
only the periodic power variation but the periodic dispersion management, periodic
fiber loss coefficient variation, and periodic nonlinear coefficient variation are also
included. We derive the analytical SI gain and the Sl frequency considering three
cases: (a) when the dispersion management period islarger than the amplifier spacing,
(b) when the two lengths are equal, and (c) when the amplifier spacing is larger than
the dispersion management period. The derived theory is evaluated its accuracy by
computer simulations.

We dso focus on a dispersion - managed transmission system consisting of
SMF and RDF. Our computer simulation results show that, when two or more
channels produce Sl at the same frequency, Sl significantly causes a serious problem
to the channel whose carrier is positioned just at that superposition resonance
frequency. We also demonstrate that, by re-arranging the channel position or channel
spacing in such away that none of the Sl resonance frequency falls inside the channel

signal bandwidth, the transmission performance is significantly improved.
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In chapter 6, the reduction of the SI gain by employing the combination of
SMF and RDF is shown. We then discuss an implementation of dispersion
management in OPC systems. We suggest that a symmetric dispersion profile with
respect to the mid-point of the system is preferable in order to avoid nonlinear
accumulation of amplifier noise when the system operates with relatively high signa
intensity. The performance improvement of the dispersion-managed 100-Gbit/s OPC
system using the symmetric dispersion profile is confirmed by numerical simulations
even when the dispersion map is not optimized.

Next, we discuss the optimum dispersion map design for obtaining the
maximum performance in OPC systems. We demonstrate that, a 200-Gbit/s data
transmission over a 10,000 km distance can be achieved by simultaneously
suppressing TOD and SI in OPC systems using the dispersion-managed fiber link
consisting of SMF and RDF whose dispersion map is properly designed.

Chapter 7 devotes to the use of bi-directional pumped DRA in the second-half
of the OPC system to obtain the symmetrical signal power distribution with respect to
the system midpoint. We show that the reverse power distribution can be formed by
carefully choosing the forward pump power and backward pump power. In
combination with one lump TOD compensator, we demonstrate by the computer
simulation that the transmission of a 200-Gbit/s data over 10,000 km can aso be
made possible.

In chapter 8, we propose the use of FDTD for solving the NLSE and
demonstrate that the FDTD can be sufficiently applied to smulate the optical pulse
propagation in relatively long fiber under acceptable accuracy. In this chapter, three
main FDTD algorithms, the explicit FDTD, the implicit FDTD, and the FDTD with
Crank-Nicholson scheme are studied. We modify these algorithms to be the implicit-
1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them
suitable for solving the NLSE. Then, using these proposed methods, the comparison
among the simulation results based on the model of single pulse propagation in
optical fiber, together with those obtained from the SSFM are shown and discussed.

Finally, the conclusion of this thesis, the discussion considered the minor
factors, which can also affect the performance of the proposed schemes, and the

suggestion for future works are made at chapter 9.



CHAPTER 2
SIGNAL PROPAGATION IN SINGLE-M ODE
FIBER AND NUMERICAL METHOD

For understanding the evolution of optical pulses propagation in an optical fiber, it is
necessary to understand the properties and characteristics of single-mode fibers which
are generally used as transmission medium in fiber-optic systems.

Optical fibers are aways considered as the lossless mediums because of their
extremely small value of a loss coefficient (minimum 0.2 dB/km at an operation
wavelength 1.55 . m) [4], [73]. Thiswill lead to the extension of repeater spacing for

more than 100 km while in the systems employing coaxial cables whose repeater
spacing is limited to a few kilometers. Furthermore, according to the fact that optical
fibers are made of SIO, glass, so optical fibers will have robustness against the
disturbances from the surrounding circumstance more than those systems that use
metal wires as transmission mediums. The above reasons make the fiber-optic
systems the most expectable systems for nowadays and also, future
tel ecommuni cation.

The behavior of optical signal when propagating in single-mode optical fiber
is mainly determined by three main effects. fiber loss, dispersion, and fiber
nonlinearity. The fiber loss causes the exponentially decrease of signal power during
the propagation, which is necessary to be compensated by repeater for long distance
transmission. The dispersion results a broadening of optical pulse, while the
nonlinearity of fiber yields a broadening of signal spectrum. In fact, the dispersion
and the nonlinearity interplay with each other, resuiting in the distortion of both signal
and its spectrum.

In this chapter, we describe about these fiber characteristics and their effects
on signal propagating in optical fiber. Next, the concept of a numerical method called
the split-step Fourier method which is mainly used for ssmulating signal propagating

in optical fiber in this dissertation is shown.
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2.1 Single-Mode Fiber Characteristics

2.1.1 Fiber Loss
Let P is the power launched at the input of a fiber length L, the transmitted
power: P isgiven by
P =R exp(-al), (2-1)
where « is the attenuation constant, commonly referred to as the fiber loss. It is
customary to express the fiber loss in units of dB/km by using the relation
Bl —%Iog[%j =4.343x, (2-2)

where a4 isthe attenuation constant in dB/km expression. The fiber loss depends on

the wavelength of light. Figure 2.1 shows the optical loss characteristic of single-
mode fibers as a function of the operation wavelength.

The factors that are mainly contributed to the fiber loss are material absorption
induced by OH ion and Rayleigh scattering [4], [73]. Other factors that cause
additional loss is bending losses and boundary losses (due to scattering at the core-
cladding boundary). The total loss of a fiber link on optical communication systems
also includes the splice loss that occurs when two fiber pieces are joined together.
The fiber loss causes the exponential decrease of optical signal power without giving
rise to any changein signal shape also its spectrum.
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Figure 2.1: Optical loss characteristic of single-mode fibers.
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2.1.2 Second-Order Dispersion [4]

When an optical pulse is launched to the fiber, its different frequency components
associated with the pulse travel at different speeds. It will lead to the pulse
broadening induced by the delay of transit time of each frequency component. This
effect is well known as the chromatic dispersion, which may be one important
limitation of a bit-rate or a distance in fiber-optic communication systems.

In the case if we consider optical fiber as a medium, dispersion play a critical
role in propagation of short optical pulses since different spectral components
associated with the pulse travel at different speeds given by c¢/ne and the shorter
pulses will have broader spectrum width.

Mathematically, the effects of fiber dispersion are accounted for by expanding

the signal propagation constant £ in a Taylor series about the lightwave carrier

frequency w, .

plo)= i+ Blo-a) o frlo=af +oplo-af.. (@9

where g, in Eq. (2-3) refersto the inverse of group-velocity of the pulse envelope and

also be known as first-order group-velocity dispersion (GVD) parameter. The
second-order GVD parameter £, is responsible for pulse broadening, and the third-

order GVD g, which relates to the TOD, causes signal waveform distortion in ultra-

high bit rate signal transmission.
There is another parameter called second-order dispersion (SOD) or dispersion

parameter D that is commonly used in the fiber-optics literature in place of g,. Itis

related to S, by therelation
2nC
D = —7ﬂ2 . (2'4)

Figure 2.2 shows schematically the variation of £, and D with wavelength 4
for optical fibers. The most notable feature in Fig. 2.2 isthat S, and D vanishesat a
wavelength A, . A, is often referred to as zero-dispersion wavelength which is about
1.3 m in the case of standard single-mode fibers (SMF) and becomes 1.55x m

where the fiber loss is minimum in dispersion-shifted fibers (DSF).
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Figure 2.2: Dispersion characteristics of single-mode fibers.

The pulse can propagate without broadening in the zero-dispersion region, and
the systems which operate at the zero-dispersion wavelength are known as zero-
dispersion transmission systems which are expected to achieve high bit-rate and long
transmission distance since the performance of the systems no longer limited by the
SOD-induced broadening. However, it should be noted that total dispersion does not

vanish at A,. Pulse propagation near A, requires the inclusion of the third-order
dispersion effects f,. Their inclusion is however necessary only when the pulse
wavelength approaches 4, to within afew nanometers.

According to Figure 2.2, for wavelength such that 1 < 45, £, >0, thefiber is

said to exhibit normal dispersion. 'In the normal-dispersion regime, the higher
frequency (blue-shifted) components of an optical pulse travel slower than the lower
frequency (red-shifted) components. By contrast, the opposite occurs in the so-called
anomalous-dispersion regime in which A > 4,, £, <0. The anomalous-dispersion
regime gives an interest for the study of nonlinear effects because it is in this regime
that optical fibers can support nonlinear optical pulse soliton through a balance
between the dispersive and nonlinear effects.

It should be noted here that the SOD-induced pulse broadening does not
depend on the signs of S,. Different signs but same values of SOD will lead to the

same magnitude of broadening. Moreover, although the dispersion results in pulse
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broadening, it does not cause the change in the spectrum of the pulse. Figure 2.3
shows the propagation of single optical pulse propagates along the optical fiber in the

presence of the effect of dispersion.

\
\
\
\

Transmission Distance
Transmission Distance

=~ )
—7 =

v
v

Time Time

) (b)
Figure 2.3: Evolution of single optical pulse in single-mode fiber with the effect of
dispersion, (a) in normal dispersion regime ( S, >0), (b) in anomalous dispersion

regime (5, <0).

In general the extent of broadening is governed by the SOD length by

Toi=T, £1+ (IZD—JZJ; , (2-5)

where T,, denotes the transmitted pulse width. The SOD length L is defined as

Ly, = % (2-6)

L, Is the parameter which determines the length scale over which the

dispersive effect becomes important for pulse evolution along a fiber length L when
Ly, <L.

The difference between propagation of a pulse in normal-dispersion region

and in anomalous-dispersion region is the sign of linear phase modulation of the
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transmitted pulse. This linear phase modulation can be expressed as the time
dependence of the optical phase ¢(z,T) caused by the effect of 4, .

__Sgn(ﬂz)(Z/Ldz)Tz Al 2 :
s () o

where sgn(s,)=+1 depending on the sign of the GVD parameter g,. The time
dependence of the phase ¢(z,T) implies that the instantaneous frequency differs across
the pulse from the central frequency o, . The difference Aw isjust the time derivative

—-o¢ 10T andisgiven by

00 250n(5 N2/ Lp JT _ (2-8)
T 1+(z/Lp )*TE

The phenomenon that frequency changes across the pulse is generally known
as the frequency chirp. Although the incident pulse is unchirped but after propagating
in dispersive fiber the pulse will be chirped. The chirp Ao depends on the sign of
B, . Figure 2.4 shows the difference between frequency chirp in normal-dispersion
regime (+ £3,) and anomalous-dispersion regime (- 4,).

In the normal-dispersion regime, Aw 1S negative at the leading edge T <0

and increases linearly across the pulse. The opposite occurs in the anomalous-
dispersion regime.

2.1.3 Third-Order Dispersion [4], [74]
SOD-induced pulse broadening discussed above is due to the second-order GVD term
proportional to A, in the expansion (3). Although the contribution of this term
dominates in most cases of practical interest, it is sometimes necessary to include the
higher-order term proportional to g, in thisexpansion.

Since f, is the derivative of B, by the frequency w: B, =dB,/de. The
effect of 'S, can be explained interm of the effect of dispersion slope.~As shown in

Fig. 2.5, for broadband optical signal such as ultra-short pulses or OTDM signal [75],
different signal spectral component will experience different dispersion values due to

the slope of the dispersion curve. Therefore, it is often necessary to include g, for

such signal.
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Figure 2.4: Linear frequency chirps induced by fiber SOD, (a) in normal dispersion
regime (+ 43,), (b) in anomalous dispersion regime (- 3,).
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Figure 2.5: Broadband optical signal on fiber dispersion band.

The important parameter widely used representing the effect of g, is the

third-order dispersion (TOD) or the dispersion slope, which is defined by the
derivative of the dispersion value D by wavelength A: TOD = dD/dA. Typicaly,
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near zero-dispersion wavelength of DSF, /3, ~0.2ps’/km and TOD = 0.06ps/km/nn’.

In order to compare the relative importance of the dispersion and the TOD terms, it is

useful to introduce a dispersion length associated with the TOD term defined as

T3
Lyg=—. (2-9)
1Bsl

The higher-order dispersive effects play asignificant roleonly if L, <Lg,.

Figure 2.6(a) shows the single optical pulse propagates along the optical fiber
with the effect of higher-order dispersion in the case of positive TOD and Fig. 2.6(b)
and (c) shows the initial pulse shape and the output pulse, respectively. The output
optical pulse is distorted such that it becomes asymmetry with an oscillatory structure
near one of its edges. It should be noted that the dispersive effect does not cause any
change in the output spectrum. For the case of positive TOD shown in Fig. 2.6, the
oscillation appears near the trailing edge of the pulse.

For the case of D =0, oscillations are deep with intensity dropping to zero
between successive oscillations. However, these oscillations damp significantly even
for the relatively small values of D.

2.1.4 Kerr Effect [4]

Most of the nonlinear effects in optical fibers originate from nonlinear refraction.
Nonlinear refraction is a phenomena that refers to the intensity dependence of the
refractive index. This phenomena is known as the Kerr effect. The expression of the
refractive index, which includes the term of light intensity dependence, becomes

o, | A% )= (@) + n,| A (2-10)
where n(w) is the linear part. |A’ isthe optical signal intensity inside the fiber, and

n, isthe nonlinear-index coefficient.

The intensity dependence of the refractive index leads to a large number of
interesting nonlinear effects. The one most widely studied are self-phase modulation
(SPM) [4]. SPM refers to the self-induced phase shift experienced by optical field
during its propagation in optical fibers. Its magnitude can be obtained by changes of
the phase of an optical field by

6 = koL = (@) + ng A% KoL (2-11)
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where k, =27/ and L isthefiber length. The intensity-dependent nonlinear phase
shift caused by SPM is
By =NkL|A” . (2-12)
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Figure 2.6: Transmission of an optical pulse and in single-mode fiber with the effect
of TOD, (@) pulse evolution, (b) initial pulse shape, (c) pulse at output end of fiber.

SPM is responsible for spectral broadening of optical pulses. When the SPM
interacts with the SOD effect in the normal-dispersion regime, it will lead to the
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breaking of the optical pulse. By contrast, If the SPM balances with the SOD effect in
anomal ous-dispersion regime, thiswill lead to the existence of optical solitons.

If we consider the pulse propagation in lossless optical fibers, U(zt) now
represents the normalized envelope function of the optical pulses, Eg. (2-12) should
be modulated to time-distance-depended equation which fits to the description of
pulse propagation in fiber,

4. (zt)=V(zt) /L, | (2-13)
where the nonlinear length L, which represents the length of fiber at which the
nonlinearity becomes the dominant effect is defined as

-
n = ﬁo

where B, denotes the input peak power of the pulse and y isthe nonlinear coefficient

L (2-14)

which is proportional to the nonlinear refractive index n,. U(z,t) appearing in Eq.
(2-13) isthe optical field normalized by peak power.

Equation (2-13) shows that SPM gives rise to an intensity-dependent phase
shift while the pulse shape governed by |U (z,t]2 remains unchanged. Furthermore,
this nonlinear phase shift ¢, (z,t) given by Eq. (2-13) increases with the propagated
distance z . SPM-induced spectral broadening is a consequence of the time
dependence of ¢, (z,t). This can be understood by nothing that a temporally varying

phase implies that the instantaneous optical frequency differ across the pulse from its

central value @,. The difference Aw isgiven by

U(zt)?
PR T VI R (2-15)
ot ot L

nl
and the frequency of the pulse now becomes time-depend function. - Figure 2.7 shows
the modulation of optical carrier frequency of the pulse obtained from Eg. (2-15).
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Figure 2.7: Modulation of optical frequency inside the pulse due to nonlinear self-
phase modulation.

The modulation of frequency or the time dependence of Aw can be viewed as
afrequency chirp. The chirp isinduced by SPM and increases in magnitude with the
propagated distance. The temporal variation of the SPM-induced chirpin Aw in Fig.
2.7 has two interesting features. First, Aw is negative near the leading edge (red
shift) and becomes positive near the trailing edge (blue shift). Second, the chirp is

linear and positive (up-chirp) over the large central region. Since the characteristic of
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the SPM-induced frequency chirp is similar to the linear up-chirp, we should call this
chirp the nonlinear up-chirp.

Figure 2.8 shows the spectrum of single optical pulse propagating aong the
optical fiber with only the effect of SPM. The most notable feature of Fig. 6 is that
SPM-induced spectral broadening is accompanied by an oscillatory structure covering

the entire frequency range. In general, the spectrum consists of many peaks and the
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Figure 2.8: Evolution of optical spectrum in the presence of nonlinear self-phase

modul ation.

2.1.5 Stimulated I nelastic Scattering

Stimulated inelastic scattering is the nonlinear effect in which the optica field
transfers part of its energy to the nonlinear medium. Two important nonlinear effects
in optical fiber fal in this category are known as stimulated Raman scattering (SRS)
[4], [6] and stimulated Brillouin scattering (SBS) [4], [6], [76]. Both of them are
related to vibrational excitation modes of silica. The main difference between the two
isthat optical phonons participate in SRS while acoustic phonons participate in SBS.
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2.1.5.1 Stimulated Raman Scattering
Stimulated Raman scattering (SRS) is an important nonlinear process that can turn
optical fibers into broadband Raman amplifiers. When the intense optical beam is
inputted into the fiber, part of its energy coverts to another optical beam at a
frequency downshifted by an amount determined by the vibrational modes of the
medium. This process is called the Raman effect and is described quantum-
mechanically as a scattering of the incident photon by a molecule to a lower-
frequency photon while the same time the molecule makes a transition between
vibrational states. The incident light acts as a pump to generate the frequency-shifted
light called Stokes wave.
Under the steady state or CW operation of the pump light, the initial growth of
the Stokes wave is described by the relation
dl
dz

where |4 is the stokes intensity, | is the pump intensity, and g is the Raman gain

=gRIPISl (2'16)

coefficient. Figure 2.9 shows g, as a function of the frequency shift for fused silica
at a pump wavelength of 1000 nm. The most significant feature of the Raman gainin
slicafiber isthat g, extends over alarge frequency range up to 40 THz with a broad

dominant peak near 13 THz (440 cm™). As a result, optical fibers can act as the
broadband amplifiers.
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Figure 2.9: Raman gain coefficient g, as a function of the frequency shift for fused

silicaat a pump wavelength of 1000 nm (After Ref.[4]).
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Considering a cw pump beam propagating inside the fiber at the optical
frequency w, . If the probe beam at the frequency wg is coincident with the pump at
the fiber input, it will be amplified because of the Raman gain as long as the

frequency difference w, — wg lies within the bandwidth of the Raman gain spectrum.

If only the pump beam is incident at the fiber input, spontaneous Raman scattering
provides a weak signal which acts as a probe and is amplified with propagation.
Since spontaneous Raman scattering generates photons within the entire bandwidth of
the Raman gain spectrum, all frequency components are amplified. However, the

frequency component for which g, is maximum build up most rapidly. In the case of
pure silica g is maximum for the frequency by about 13.2 THz (440 cm™). It turns

out that when the pump power exceeds a threshold value, this component builds up
almost exponentially. Thus, SRS leads to generation of the Stokes wave whose
frequency is determined by the peak of the Raman gain. The corresponding
frequency shift is sometimes called the Raman shift or the Stokes shift.

To find the Raman threshold in the CW case, two coupled equations of the

interaction between the pump and Stokes waves should be considered as follow:

di,

% =Oplpls ~asls, (2-17)
dl 1)
e o

where the absorption coefficients a5 and e« account for the fiber loss at the Stokes
and pump frequencies. For estimating the Raman threshold, the first term on the
right-hand side of Eqg. (2-18), which is responsible for pump depletion, can be
neglected. Then the solution of the coupled equations are obtained

ls(L)=1 s(o)eXp(gRl oler — asl—)1 (2-19)
where
L =—(1-expl-az,L)) (2-20)
Xp

is the effective interaction length and |, is the incident pump intensity at z=0. The
use of Eq. (2-19) requires an input intensity 14(0) at z=0. In practice, SRS can build

up from spontaneous Raman scattering.



27

The Raman threshold is defined as the input pump power at which the Stokes
power becomes equal to the pump power at the fiber output, or
Py(L)=P.(L)= P, exp(- apL), (2-22)
where
Po=1oAy (2-22)

P, isthe input power and A isthe effective fiber core area. By assuming o = o,

the threshold pump power P)" is calculated to be
Bt 16A,

D
If polarization is not preserved the Raman threshold is increased by a factor whose

value lies between 1 and 2. For long fiber such that @pL <<, L4 ~Ya, . At A, =

: (2-23)

1550 nm, a wavelength near which the fiber loss in minimum. If we use a typical

value A, =50, the predicted Raman threshold is P\" = 600 mW. Since the

power launched into the fiber is typically 1 mW, SRS is not likely to occur in single-
channel optical communication systems. The soliton-based optical communication
systems would require higher power levelsin the range 40-50 mW. Thisrangeis still
well below the critical value. Moreover, to estimate how the Raman effect affects the
lightwave system, the CW theory of SRS needs modification when optical pulses are
used at the pump since the optical power launched into the fiber is the pulses not the
CW.

In this case, if the Raman threshold is reached and if the pulse width is much

smaller than the Raman response time of the medium (7, = 10 fsin silicafiber), each
pump pulse then generates a Stokes or Raman pul se.

Optical fiber can be used to amplify aweak signal if it is propagated together
with a strong pump wave and if its wavelength lied within the bandwidth if the
Raman gain spectrum of the pump. Such amplifiers are called fiber-Raman
amplifiers. The signal intensity at the amplifier output at z = L is then given by Eq.
(2-19). Since I4(L)=14(0)exp(~asL) in the absence of pump, the amplifier gain or
the amplification factor is given by

_ I5(L)
Cr = O)explaral)

= exp(gRPo Lt / At ), (2-24)
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Fiber-Raman amplifier can easily amplify the signal by a factor of 1000 (30
dB gain) at a pump power of about 1 W. An attractive feature of the fiber-Raman
amplifiers is their broad bandwidth (= 5 THZz). It can be used to amplify several

channels simultaneously in a multi-channel communication system and it is possible
to apply to the amplification for transmitting ultra-short pulses such soliton pulses.

Raman amplifier using optical fiber can be realized by forward, backward, and
also bi-directional pumping scheme. In chapter 7, we apply the distributed Raman
gain produced through the bi-directional pumped SRS in optical fiber for constructing
the reverse power distribution in order to achieve the perfect compensation of signal
distortion in OPC system.

2.1.5.2 Stimulated Brillouin Scattering

Stimulated Brillouin scattering (SBS) is a nonlinear process that occurs in
optical fibers at input power levels much lower than those needed for stimulated
Raman scattering (SRS). The difference against SRS is that the direction of generated
Stokes wave is backward while SRS is occurred in both direction, and an amount of
the frequency shift of the Stokes wave is determined by the acoustic phonons instead
of optical phonons. Similarly, SBS can be useful through fiber-Brillouin amplifiers
and laser [77], [78].

SBS manifests through the generation of a backward Stokes wave downshifted
from the frequency of the incident pump wave by an amount determined by the
nonlinear medium. The stoke shift in SBS (& 10 GHz) is smaller by three orders of
magnitude compared with the occurring in SRS. The threshold power for SBS
depends on the spectral width associated with the pump wave. . It can be aslow as ~1
mW for a CW pump. By contrast, SBS nearly ceases to occur for short pump pulses
with widths shorter than 10 ns.

The process of SBS can be described as a parametric interaction among the
pump wave, the Stokes wave, and an acoustic wave. The pump wave generates
acoustic waves through the process of electrostriction which in turn causes a periodic
modulation of the refractive index. The pump-induced index grating scatters the
pump light through Bragg diffraction. The scattered light is downshifted in frequency
because of the Doppler shift associated with a grating moving at the acoustic velocity

v,. Thefrequency shift v, inthe backward is given by
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_2nv,
Ap

Ve : (2-25)

where n is the refractive index, and A, is the pump wavelength. If weuse v, = 5.96
km/s and n = 1.45, the values appropriate for silica fibers, vy = 11.1 GHz a 4, =
1550 nm. Similar to the case of SRS, the growth of the Stokes wave is characterized
by the Brillouin gain coefficient g,(v,) whose peak value occurs at v =v,. However
in contrast with the SRS case, the spectral width Av, of the Brillouin-gain spectrum
is very small (= 10 MHz). The Brillouin-gain coefficient g, is nearly independent
of the pump wavelength. For fused silica, g = 5x10™" m/W.

Similar to the SRS case, the development of SBS in optical fibers requires the

consideration of mutual interaction between the pump and Stokes waves. Assuming

that the fiber loss is the same for the pump and Stokes waves (a, = ag = ), under

the steady-state conditions, the interaction couple-intensity equationsis given by
dl g

E:gslpls_als’ (2-26)
d,
’(E:_gslslp"'als- (2-27)

The solution of the couple equations about the Stokes intensity is found to

grow exponentially in the backward direction according to the relation
1,(0)=ts(L)expl(gs Py Ly / Ak )L ), (2-28)
where P, = 1,(0)A, , Ay is the effective core area, and the effective interaction

length is given by

! (1—exp(-aL)). (2-29)

L4 =43
[04

Equation (2.28) shows how a Stokes signal incident at z = L grows in the
backward direction because of Brillouin amplification occurring as a result of SBS.
In practice, no such signal is generaly fed, and the Stokes wave grows from noise or

spontaneous Brillouin scattering occurring throughout the fiber. The Brillouin
threshold is found to occur at a threshold pump power P, obtained by using the
relation

9Py Ly [Ag ~ 21 (2-30)
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The numerical factor of 21 can aso increase by a factor between 1 and 2
depending on whether the pump and Stokes waves maintain their polarization along
the fiber or not. If we used the typical values for fibers used in 1550 nm optical

communication systems, A, = 50 zm?, L, ~ 20 km, and g, ~5x10™* m/W, the

predicted threshold pump power P," ~ 1 mW. It is such alow threshold that makes

SBS a dominant nonlinear process in optical fibers.

The Brillouin gain of an optical fiber can be used to amplify a weak signal
whose frequency is shifted from the pump frequency by an amount equal to the
Brillouin shift v, . The fiber-Brillouin amplifier gain G; is given by

Gy = explgsPoLer /A )- (2-31)

Since amplification of fiber-Brillouin amplifiers can be achieved at the pump
power of only a few milliwatts, such a semiconductor laser can be used as a pump
source. The narrow bandwidth of the amplifiers can also be advantageous for some
fiber-optic applications requiring selective amplification of only a narrow portion of
the incident signal spectrum.

The most important development in optical fiber communication in this
decade may be the invention of EDFA. Such kind of fiber amplifier has Erbium
doped in the core and utilizes SBS to provide a gain for optical amplification. EDFA
isthe most attractive and has a great potential for lightwave system not only for linear
systems but also can be applied for amplifying nonlinear pulses such as optical soliton
in nonlinear systems[79]-[81].

2.1.6 Parametric Processes and Four-Wave Mixing

In the stimulated scattering processes, the optical fiber play and active role through
the participation of molecular vibrations or acoustic phonons. In-many nonlinear
phenomena the fiber plays a passive role except for mediating the interaction among
several optical waves through a nonlinear response of bound electrons. Such
processes are referred to as the parametric processes as they originate from light-
induced modulation of a medium parameter such as the refractive index [4]. These
processes include the nonlinear phenomena such as second-harmonic generation
which will not occur in the mediums such as optical fibers, four-wave mixing [4],
[82], and parametric amplification [8], [83].
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Four-wave mixing and parametric amplification refer to the interaction among
four optical waves. Four-wave mixing in optical fibers has been studied extensively
since it can be quite efficient in generating new waves. Its main features can be

understood by considering the third-order polarization term given as
P, =¢x E-E-E, (2-32)
where E is the electric field, P, is the induced nonlinear polarization, and &, is the

vacuum permitivity.  Consider four optical waves oscillating at frequencies

w,,0,,0,, and o, and linearly polarized along the same axis x. The total electric

field can be written as
4
E-x %Zl expli(k 2= w;t))+ cc., (2-33)
(=
where
ki =njo,/c, (2-34)
n; is the refractive index, c.c. represents the complex conjugate, and four waves are

assumed to be propagating in the same direction z. Substituting Eq. (2-33) in Eq. (2-
32), P, can be expressed as

Py = X—ZP expli (k Z- o, t))+ cc., (2-35)

wefind that P, forj = 1-4 consists of alarge number of terms involving the products

of three electric fields. For example, P, can be expressed as

P, = 32 ;(W{Q E,|° +2Q E|° +|E,* +|E°)E )) +2E1E2E3exp(i0*)+2E1E2E;exp(iH’)Jr...}(2'36)
where
0" =(k +k, +ky—k,)z2— (0, + @, + 0, — 0, }, (2-37)
0" =(k +k, —ks =K, )z~ (0, + 0, — 05—, )t (2-38)

The term proportional to E4 in EqQ. (2-36) is responsible for self-phase modulation
(SPM) and cross-phase modulation (XPM) effects respectively. The remaining terms
are responsible for FWM. The efficiency of FWM depends on the phase difference
between E, and P, as described in Eq. (2-37) and Eq. (2-38). Significant FWM
occurs only if the phase difference nearly vanishes. This requires matching of
frequencies as well as of the wave vectors. The latter requirement is often referred to

as phase matching. Phase matching condition requires a specific choice of the
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frequencies and the refractive indices for parametric processes to occur. There are
two types of FWM terms in Eq. (2-36). First, the case which three photons transfer
their energy to asingle photon by the following condition,
W, =0, +0,+0,. (2-39)

This process can aso refers to the phenomena such as third-harmonic generation
when o, =, =m, or frequency conversion to the wave a 2w, + w, when
w, = o, # 0y. In generd, it is difficult to satisfy the phase matching condition for
these processes to occur in optical fibers with high efficiencies.

The process which is able to occur in optical fiber is the second type of FWM
described by the following condition,

W+ 0, =0, +0,, (2-40)
where two photons at frequencies o, and @, are annihilated with a simultaneous
creation of two photons at frequencies @, and @, .

The phase-matching requirement for this process to occur is that Ak =0,
where
AK =Ky + K, —k, —k, = (no, + n,0, - no, —n,0,)/c. (2-41)
The description of this processisillustrated in Fig. 2.10. Itisrelatively easy to satisfy
the phase matching condition for the case in which o, = w,. This case is similar to
SRS.

A strong pump wave at @, creates two side bands at lower frequency o, and
higher frequency w,. o, and w, are referred to as the Stokes and anti-Stokes

respectively in direct analogy with SRS and are aso be called the signal and idler
bands when an input signal at @, isamplified through the process of FWM.

FWM will affect the multi-channel fiber-optics systems such WDM systems
since once the phase matching is satisfied, one channel transfers its energy to other
two channels [84], [85]. Even the single-channel systems, the degradation by FWM
process occurs since the signal transfers its energy to spontaneous noise whose their
frequencies satisfy the phase matching condition [86]-[93]. The degradation of
single-channel systems will be stronger if the signal wavelength is set at the zero-
dispersion wavelength since it has been shown that phase-matching is easily to justify

at zero-dispersion wavelength of optical fibers [4], [82]. In this case, the FWM
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interacts with the SPM effect causing an enhancement of the spontaneous noises
resulting in spreading of spectrum which will degrade a bit-error rate of the systems
[86]-[93].

Four optical waves
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Figure 2.10: Process of Four-wave mixing in optical fiber.
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2.2 Derivation of Basic Propagation Equation

In order to study signal propagation in optical fiber both analytically and numerically,
the nonlinear Schrodinger equation (NLSE) which governs the signal propagation in
optical fiber must be solved. In this section, we show the derivation of basic equation
that governs the propagation of optical signal in single-mode fibers which is based on
Maxwell's equations and important concepts such as the linear and nonlinear parts of
the induced polarization, the frequency-dependent dielectric constant, and the theory
of pulse propagation in nonlinear dispersive media in the slowly-varying-envelope
approximation with the assumption that the pulse is much smaller than the frequency
of the incident radiation. Next, we describe a simulation method which is employed
in this research for solving the propagation equation since there is no analytic solution
available except a special case such as soliton. As we use the algorithm of FFT so
that the initial optical field must be sampled to discrete function, this sec ends with
the preparation before performing the numerical simulation.

Like all electromagnetic phenomena, the propagation of optical fieldsin fibers
is governed by Maxwell's equations. In the case that considers optical fibers as a
medium, Maxwell's equations will be

Vx E ot (2-42)
ot
VocH=J;+-2, (2-43)
at
V-D=p,, (2-44)
V.B=0, (2-45)

where E and H are electric and magnetic field vectors respectively, and D and B
correspond to electric and magnetic flux densities.
In the medium such as optical fibers, the relations between D and E, and, B
and H are
D=¢,E+P, (2-46)
B=uH, (2-47)
where g, is the vacuum permitivity, , is the vacuum permeability, and P is the

induced electric polarization. If we include third-order nonlinear effects governed by



35

the third-order susceptibility ;((3), the induced polarization will separate into two
parts such that
P=P +P,, (2-48)
where the linear part P, and the nonlinear part P, are related to the electric field by
the following relations
P =s,2"E, (2-49)
Pu=¢,7?E-E-E. (2-50)
To derive the basic propagation equation that governs the propagation of
optical pulsesin nonlinear dispersive fibers, the starting point is to take the curl of Eq.
(2-42) and using Eq. (2-43), (2-46), (2-47) and (2-48), then we will obtain
/ N -
VZE_C.lz?atIZ’E P\ aatF:L -~ aatpzNL |

To solve EqQ. (2-51), it is necessary to make several simplifying assumptions

(2-51)

such the following items

1. P, istreated asasmall perturbation to P, .

2. The optical field is assumed to maintain its polarization along the fiber
length so that a scalar approach isvalid.

3. The center frequency of the optical field is assumed to locate at @, and has
the spectral width A such that Aw/@, <<1. This assumption is valid for pulses

whose widthis < 0.1 ps.

4. Assuming that the slow-varying envelope approximation can be applied to
this case.

By the last item of the above assumptions, we can separate the rapidly varying
part of the electric field and the induced polarization components by writing them in

theform

>

E(F,t exp(—iw,t)+ expliw,t)}, (2-52)

P, (F,t){exp(—imyt)+ expliwyt)}, (2-53)

I_-Ul
—_
=
—
A —
Il
Nk Nk NP

x>

Pu (f,'[) =ZXPy (r,t){exp(— i a’ot) + eXp(i @ot )} , (2-54)
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where X is the polarization unit vector of the light assumed to be linearly polarized
along the x-axis, and E(F,t) isaslowly varying function of time.
To obtain the wave equation for the slowly varying amplitude E(F,t), itis

more convenient to work in the Fourier domain. Substituting Eq. (2-52)-(2-54) into
Eq.(2-51), using the relation between electric fields and induced polarization given by
Eqg. (2-53) and then taking the Fourier transform, we will obtain

Vzé(f,a)—a)o)—g(a))kglg(f,a)—a)o)=O, (2-54)

where E(F,— , ) isthe envelope function in Fourier domain defined by

E(r,0-o,) = E(.t)expli(@— oo )t , (2-55)

—00

k, isthe wave number, and the dielectric constant s(w) is given by

gl@)=1+ 7Y (w)+ &, , (2-56)
where 7"(w) is the Fourier transform of »(t), and the nonlinear part &,, is given
by

3 )
o = 2PE[ L) (2-57)

The dielectric constant can be used to define the refractive index n and the
absorption « by therelation
¢ =(N(w)+ia/2k,), (2-58)
sothat n will be intensity dependent by the relation
ﬁ(a)) = n(a))+ n2|E|2, (2-59)
where n, is defined as the nonlinear refractive index given by

3
n =g 2 (2-60)

If we assume a solution of Eq. (2-54) hasthe form

E(F,0—o,)= F(x,y)A(z,0— o, )exp(i5,2). (2-61)
where A(z,0-w,) is a slowly varying function of z and F(x, y) is the modal
distribution of the optical field in an optical fiber. Substituting Eq. (2-61) into Eq. (2-
54) then the two equations for A(z,w— ,) and F(x, ) will be obtained as

0°F 0°F =
Tt le(kZ - B2IF =0, (2-62)
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2iﬁoaa—’:+{ﬁz—ﬂ§}ﬂzo. (2-63)

Eqg. (2-62) can be solved by using first-order perturbation theory. However, we
should concentrate to the more important Eq. (2-63) that can explain pulses
propagation in optical fibers.

The eigen value f(w) hasthe form

B(@)= plw)+AB, (2-64)
where
koj TAnl F(x ) dxdy
== . (2-65)
I I|F(x, y)’ dxdy
and
An=ny|E[" + 2'—30 (2-66)
By using Eqg. (2-64), Eq. (2-63) can be written as
L oi(pl@)rap - ). (2:67

where we approximated 5% - A2 by 24, (,E —~ ﬂo).
The inverse Fourier transform of Eg. (2-67) provides us the propagation
equation for A(zt). For this purpose, it is useful to expand S(w) in a Taylor series

about the carrier frequency w,,

plo)= ot Blo=0)1 3 fola-0,) +<plo-a ... (@69
where
_(dp
you —( dw”L%' (2-69)

As mentioned above, £, and S, are responsible for the second-order and third-order

dispersion, respectively. In the zero-dispersion region, only the effect of S, vanishes,
however, it is necessary to include the high-order terms of dispersion. The higher-

order terms in this expansion are negligible if the spectral width Aw/w, << @,

corresponding to the pulse width > 0.1 ps. Substituting Eq. (2-68) in Eq. (2-67) and
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considering only to the third-order dispersion term, the inverse Fourier transform of
Eq. (2-67) will be

OA i 82A 1 23A
:_ﬂl ﬂz _ﬂs at 'AﬂA (2'70)

0z 6

where A is the inverse Fourier transform of the envelope function A. By substituting
Eg. (2-66) and Eq. (2-65) in Eq. (2-70), we will obtain

aA N 62A 1 aA a,
ﬁl ﬁz ﬂs at3 —A=i |A4 A, (2-71)
where the nonlinear coefficient y is defined by
Ny,
- 2% 2-72
/4 oA, (2-72)

The parameter A, isknown as the effective core area and is given by

( j ];| F(xy) olxoly]2

IT|F(X, y) dxdy

Ay = (2-73)
For a single-mode fiber, the modal distribution F (x, y) corresponds to the distribution

of the fundamental fiber mode HE,, given by the expression of Bessel functions

which is too complicated for calculating. In practice, the fundamental fiber mode is

often approximated by a Gaussian distribution of the form

F(xy)= exp(— Xz;yzj , (2-74)

where a isthefiber core radius.

Equation (2-71) describes the propagation of an optical pulse in single-mode
fibers. It includes the effects of fiber loss through e, of chromatic dispersion through
B, B, and g,, and of fiber nonlinearity through ». However, if we consider an
ultra-short pulse whose width is shorter than 0.1 ps or a pulse whose peak power is
larger than the threshold level of stimulated inelastic scattering such as SRS and SBS,
it may need modification for supplying these effects.

Before attempting to solve the propagation equation (2-71), it is useful to

employ a frame of reference moving with the pulse at the group velocity v,

(vg =1/ ,Bl). By making the transformation
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T=t-2-t-pz, (2-75)
V

g

Equation (2-72) can be written as

oA a 82A 1
A 182 2
oz 2 oT

Equation (2-76) is sometimes called the generalized nonlinear Schrodinger equation.

8T3 +iy|A”A. (2-76)

In the special case of =0 and S, =0, Eq. (2-76) is well known as the nonlinear

Schrodinger equation which has been extensively studied in the context of soliton.

2.3 Numerical Method: the Split-Step Fourier

To understand the propagation of the pulse in an optical fiber, it is necessary to solve
Eqg. (2-76). However, the propagation equation (2-76) generally does not have the
analytic solutions except for some specific cases such as the soliton case which the
inverse scattering method can be employed. Because of this reason, a numerical
method is therefore necessary for solving this equation. In this thesis, we used the
numerical method called split-step Fourier method (SSFM) [4], [74] which has been
extensively used to solve the nonlinear equation. By this method, a fiber length is
divided into a large number of small segments of width & where each segment is
assumed to have the effects of nonlinearlities or the dispersive effects only. Thus, by
using an iterative procedure, we can utilize the Fourier transform to solve the
propagation of the pulse that is disturbed only by the effects of dispersions and the
effects of nonlinearities separately. This separation of the calculation of dispersion
effects and nonlinearity leads to a possibility for solving Eg. (2-76)
Equation (2-76) can be written as

OA

D+ NJA, 2-77
= (6+N) (2-77)
where the differential operator D includes the first two terms involvi ng loss and

dispersion while N consists of the last nonlinear term, i. e. ,

N =i y|/s42. (2-79)
As mentioned above, in general dispersion and nonlinearity act together along
the length of the fiber. The SSFM obtains an approximate solution by assuming that
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in propagating the optical field over a small distance ¢, the dispersive and nonlinear
effects can be pretended to act independently. More specifically, propagation from z

to z+ ¢ iscarried out in two steps. In the first step, dispersion acts alone, and D=0
in Eq. (2-77). In the second step, dispersion acts aone, and N =0in Eq. (2-77).
Mathematically, the approximate solution can be obtain as

Alz+5,T) ~ expleD JexplN JA(z,T). (2-80)
Figure 2.11 shows the propagation of optical field A(z,T) in a small segment of fiber

o when the nonlinearity and dispersion are assumed to act independently.

A(z+96, T)

4 Nonlinearities

Small distance : &

Optical field
Dispersion — A4(z T)

Small distance :

Figure 2.11: Propagation of optical field A(zT) in-asmall segment of fiber § when

the nonlinearity and dispersion are assumed to act independently.

To perform the SSFM, it is necessary to use the differential operation D in Fourier

domain. By replacing aiT with i, we will obtain

F{f)} =—%+i—2ﬂ2w2—i—6ﬁ3w3, (2-81)

where F denotes the Fourier-transform operation. Equation (2-80) can be written in
the form of SSFM as
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Az+6,T)=F* {exp(éf)(i a)))F {exp(é]\Al )A(ZT)}} (2-82)
Figure 2.12 shows the calculation route of optical field propagating in fiber based on
SSFM for the case that the fiber is divided into 4 small segments.

[ Solution in the form of Split-step Fourier method ]

A(z+8,T) = {{F " exp(8D(im)) F } exp(SN) Y A(z, T)

e 8 —sh— 5 —f— 6 —op— 5 —>]
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Figure 2.12: Calculation route of optical field propagating in fiber based on SSFM for
the case that the fiber is divided into 4 small segments.

The speed of this SSFM directly depends on an algorithm of Fourier-
transform. In this thesis, we use the algorithm of FFT(Fast Fourier Transform) [94]
which can makes this numerical evaluation of Eq. (2-82) relatively fast. About the

accuracy of the SSFM, the dominant error term is found to result from the single
commutator [4]

L 52(BK - KB). (2-83)
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From the result of Eq. (2-83), the SSFM is accurate to second order in the step size &,
thus the improvement of accuracy of this method can be perform by reducing the step
width. Furthermore, The accuracy of the SSFM can be improved by adopting a
different procedure which includes the effect of nonlinearity only at the midplane and
uses an iterative calculation performed on each half step. In this procedure Eqg. (2-84)
isreplaced by

2+0

Az+6,T)~ exp(g [A)} exp[ | I(I(z')dz’J exp(g Iﬁ}A(z,T). (2-85)

Because of the symmetric from of the exponential operatorsin Eqg. (2-85), this method
is known as the symmetrized SSFM. The integral in the middle exponential is useful

to include the z dependence of the nonlinear operator N. If the step size § is small
enough, it can be approximated by exp(d\]). The accuracy of the SSFM can be
further improved by evaluating the integral in Eg. (2-85) more accurately than
approximating it by éN(z). A simple approach is to approximate the integral by

25 h(~ \

[N(2)dz ~ 2iN(2)+ N(z+5)]. (2-86)
However, the implementation of Eq. (2-86) is not simple since N(z+5) is unknown

at the midsegment located at z+ /2. It is necessary to follow an iterative procedure
that is initiated by replacing N(z+&) by N(z). Equation (2-85) is then used to
estimate A(z+8,T ), which in turn is used to calculate the new value of N(z+6).
Although the iteration procedure is time-consuming, it can still reduce the overall
computing time if the step Size § can be increased because of the improved accuracy
of the numerical algorithm. Two iterations are generally enough in practice.

In this dissertation, the SSFM is mainly used for simulating signal propagation
in optical fibers.  The implementation of the SSFM in this thesis is conceptually
shown in Fig. 2.13. The fiber length is divided into a large number of segments that
need not to be equi-spaced. The optical signal is propagated from the segment to
segment using the prescription of Eq. (2-85). More specifically, the optical field
A(z,T) isfirst propagated for a distance midplane z+ /2, the field is multiplied by
a nonlinear term that represents the effect of nonlinearity over the whole segment

length 6. Finaly, thefield is propagated the remaining distance /2 with dispersion
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only to obtain A(z+,T). In effect, the nonlinearity is assumed to be lumped at the

midplane of each segment.

Dispersion only

| |

/ e A28, T)

a0.n —~| A .
|

\ =t
z=0 \ / z=28

Nonlinearity only

Figure 2.13: Calculation procedure of the symmetric SSFM.

2.4 Prepar ation before Simulation
Because we concern both amplitude and phase of the optical field A(z,T), so that
A(z,T) isassumed to be the complex function.

A(zT)=A(zT)+iA(zT). (2-87)
For initial field of simulation, since we use the algorithm of fast-Fourier transform

(FFT) in the SSFM, A(Q,T) is sampling with the sampling interval AT to be the
discrete function consists of n-data: A" (nAT). Initially, it is convenient to set the

relative phase of the optical field to zero thus the discrete field can be written as

A (0,nAT)= A (0,nAT). (2-89)
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Figure 2.14: Relation between sampling interval and maximum spectral bandwidth

according to sampling theory.
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As shown in Fig. 2.14, according to the sampling theory, after performing

Fourier transform of A'(z,nAT), the maximum bandwidth of its discrete spectral

window B,__ will belimited by the sampling interval AT or the number of data n by

the relation [97]
B = =2, (2-89)
AT T

where T denotes the duration of discrete field A" (z,nAT). Using the above relations,
the frequency interval Af of discrete spectrum of A'(z nAT) isobtained by

o Tl
nAT T

The relation between maximum bandwidth and number of sampled data

(2-90)

predicts that it is impossible to assume the free-space bandwidth since the bandwidth
is limited by the number of sampled data. To increase the maximum bandwidth, it is
necessary to increase the number of sampled data. In this dissertation we use the

number of sampled data n = 2048 for all calculations.



CHAPTER 3
OPTICAL TRANSMISSION SCHEMES FOR
SYSTEM USING OPTICAL AMPLIFICATION

When the electronic repeaters are replaced with the optical amplifiers, the problem
which is necessary to be overcome first is considerably originated from fiber
dispersion that causes the broadening of the signal pulses during propagation inside
the fiber. There are many systems that have been proposed in order to overcome the
dispersion effect.

3.1 Zero-Dispersion Wavelength Transmission [17]-[20]

According to the dispersion characteristic of optical fibers shown in Fig. 2.2, the

group-velocity dispersion (GVD) parameter S, and the second-order dispersion
(SOD) parameter D vanish at the wavelength of A, which is referred to 1.55 4 m for

the DSF. The idea of this kind of system is simple: setting an operation wavelength
of the system at zero-dispersion (SOD) point so that the pulses can propagate without
broadening. The advantages of the zero-dispersion systems arise from their simple
construction and the avoidance from dispersion-limited performance. However, it is
considerably difficult to set the operation wavelength exactly at the zero-dispersion
point.

The problems of the zero-dispersion systems, as discussed above, grow up
from the third-order dispersion (TOD) resulting in pulse distortion and broadening
[4], [17]. When the input power of the signal becomes intense, the nonlinearity of the
fiber mainly causes the problems in zero-dispersion transmission. The two main
problems in zero-dispersion transmission induced from fiber nonlinearity are the
interaction between SPM-and TOD: and the enhancement of -optical amplifier noise
due to SPM [18]-[20]. The above two problems seriously result the signal waveform
distortion and the rapid spreading of signal spectra.

3.2 Dispersion Management [21]-[35].

As discussed above, fiber systems whose operation wavelength is located directly at
the zero-dispersion point encounter problems mainly induced by the nonlinearity of
optical fibers. Since the SOD length defined by Eq. (2-6) becomes infinity and no
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longer is compared to the nonlinear length at zero-dispersion point, the nonlinearity
becomes stronger and pays important role in limiting the system performance. In
order to avoid the nonlinear problems, a very dlight displacement of a carrier
wavelength from zero-dispersion wavelength may be one way to alleviate the
problems [21]-[35].
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Figure 3.1: Concept of dispersion management method.
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Furthermore, the more sufficient method is to arrange the various sections of
fiber in such a way that none or only very few of them have zero-dispersion
wavelengths that coincide with the carrier wavelength while the total fiber exhibits
zero SOD on average. A method for construction a fiber system which consists of
fiber sections that are arranged such that the SOD of each amplifiers span is zero at
the operation wavelength are generally called dispersion management.

The idea of dispersion management comes from the completely cancellation of
the frequency chirp resulting in the recovery of the pulse shape. If we consider the
fiber section consisting of two pieces of fibers with the same value of SOD but
different symbols (+ and -) shown in Fig. 3.1. This section of fiber exhibits the zero
SOD on average. An optical pulse launched to this fiber will be frequency-chirped
induced by the SOD. The pulse will be broadened due to the SOD-induced pulse
broadening. However, when the pulse is entered to the fiber which exhibits the
opposite SOD symbol, the frequency-chirping occurs in the opposite direction so that

it will cancel the chirp induced by the first fiber resulting in pulse compression.

3.3 Optical Soliton [36]-[47]
Soliton refers to special kind of waves that can propagate undistorted over long
distances and remain unaffected after collision with each other. Optical soliton in
optical fiber is conformed by balancing the fiber dispersion and nonlinear self-phase
modulation (SPM) in anomalous dispersion region [4], [5], [36]. Quantitatively, this
can be achieved by launching optical pulses with proper input power and width into
the fiber. The most attractive characteristic of optical soliton is that they can
propagate in optical fibers without: pulse shape distortion over a long distance if the
fiber lossis negligible. There are other several other reasons why soliton is attractive
for optical - communication -systems generaly and therefore why they should be
considered as a possible route for system upgrades. In particular, soliton is
compatible with all optical switching and routing technologies [11]. The ability to
optically process signal is essential if the bottleneck problems encountered at
switching nodes are to be overcome for the high data rates.

The generation of optical soliton in optical fibers based on the idea of
dispersion compensation which is achieved by the frequency-chirp cancellation

occurring by transmitting optical pulsesin two pieces of optical fibers whose symbols
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of SOD are opposite. In the case of nonlinear effect, if we launch an intense optical
pulse to the fiber with operating wavelength situating at anomalous dispersion region,
the nonlinear up-chirp will occur through the SPM and at the same time the linear
down-chirp will be induced by the anomalous dispersion. Since the chirp induced by
SPM and chirp induced by the SOD exhibit opposite symbols, they will cancel each
other during propagation inside resulting in pulse compression or broadening
depending on the input power of the pulse. If we enter the optical pulse to the fiber

with an appropriated power which is related to the value of £, and pulse width, the

nonlinear up-chirp and linear down-chirp will cancel each other in such away that no
pulse compression and pulse broadening during propagation. Such the optical pulse
which can travel inside the fibers with no change in pulse shape and spectrum by
balancing the effect of SPM and SOD refers to the optical soliton.

Figure 3.2 illustrates how the soliton can maintain its shape during the
propagation by the balance of frequency chirp by SPM and chirp by fiber SOD in
anomalous dispersion region. Qualitatively, in the absence of fiber loss, such soliton
phenomena can be met at the balance point of SOD effect and SPM via the condition:

L, =Lg,, which yields the input power P, required for conforming the soliton for

given S, and pulsewidth T .

The problems in soliton transmission systems are roughly classified into the
following three problems: the fiber loss, [4], [5], [42]-[44] the mutual interaction
between adjacent solitons [4], [45], and the Gordon-Haus effect [46], [47]. To
transmit soliton pulses through actual optical fibers, especially for a long distance, it
IS necessary to consider the fiber loss. The fiber loss results in exponentially increase
of soliton width and decrease of soliton peak. It is necessary to amplify the soliton
periodically to maintain its power. With the EDFA, the soliton power is amplified to
amplitude larger than that required for forming the fundamental soliton (the soliton in
lossless fibers) so that its average power along the fiber is still the fundamental soliton
power. Such a soliton called the guiding-center soliton [42] or average soliton [43],
which is stable when the ratio of the amplifier spacing and the soliton period is much
less than unity [44].
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Figure 3.2: Soliton generated by the balance of SPM and fiber SOD in anomalous
dispersion region.

In addition to the stability requirement, there are two other effects limiting the
capacity of soliton transmission. When the solitons are closely spaced, the mutual
interaction changes the velocity of the solitons and causes the soliton to move out of
the detection window [4], [45]. On the other hand, the noise introduced by the optical
amplifier randomly modulates the carrier frequency of the soliton, and the group
velocity varies. This effect |eads to the timing jitter and is known as the Gordon-Haus
effect [46], [47].

3.4 Midway Optical Phase Conjugation [48]-[52].

This kind of system performs optical phase conjugation (OPC) at the midpoint of
system in order to compensate both dispersive and nonlinear effects. If al of the
system characteristics in the first half is symmetrical to the second half with respect to
the midway OPC, when we generate the conjugate signal of the first-half-transmitted
signal at the midway of the system, al of the phase distortions induced in the first half
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are completely compensated via the self-recovery effect of the conjugate signal when
transmitting through the second half of the system.

Figure 3.3 shows schematically the midway OPC system. The optical phase
conjugator is placed at the midpoint of the system. Under the condition that all of the
system characteristics are symmetric with respect to the midway OPC, generating the
conjugate signal of the first-half-transmitted signal at the midway of the system, all of
the phase distortions induced in the first half are completely compensated via the self-
recovery effect of the conjugate signal when transmitting through the second half of
the system. However, in real transmission, three problems including one from an

asymmetric system characteristic occur and limit a performance of OPC systems.

fiber fiber

Tx coe >o.- OPC | eee >... Rx

~— - |

A\ el A \

Input signal | Distorted signal | Output signal
lo Li2 L

Figure 3.3: Optical transmission system with midway OPC.

According to the nonlinear Schrodinger equation (NLSE) (Eq. (2-76), which
governs the propagation of signal pulses in an optical fiber, taking the complex

conjugation of NLSE, we obtain

6A a
0z 2 ﬁZaTZ ﬁSaTS

where * denaotes the complex conjugate operation. Eg. (3-1) describes the complex

+i \A\ (3-1)

conjugate amplitude of the signal A propagating in backward direction through the
fiber which exhibit reverse sign of o and g,. According to Eg. (2-76) and (3-1)

indicates that if we generate the complex conjugate of the distorted pulses at the
midway of atransmission link and let them travel through the second half of the link,
we will obtain the complex conjugate of the undistorted input pulses at the output end.
The nonlinear waveform distortion caused by the fiber nonlinearity and the dispersion
is thus perfectly compensated at the output end. However, to achieve the perfect

compensation two conditions are needed. First, the transmission fiber of the second
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half must have negative £, whileits g, still keeps the same sign as that of first half.

Second, the propagation of signal through the second half requires a distributed gain
instead of distributed loss since the sign of @ must be reversed.

According to the first requirement, the widely-used transmission fibers such as
SMF and dispersion-shifted fiber (DSF) both exhibit positive TOD. Therefore,
similar to other systems, the TOD in OPC systems cannot be compensated by OPC
but it just accumulates along the system length and will also cause the signa
waveform distortion [48], [49]. On the other hand, the second condition can be
satisfied only in an ideal lossless medium. In real system with long distance
transmission, a periodic lumped amplification must be used for maintain signal power
in order to obtain good signal-to-noise ratio (SNR) at receiver. The fiber loss and this
periodic amplification forms a periodic signal power distribution along the system
length and at the same time produces a periodic variation of fiber refractive index
through the nonlinear Kerr effect of an optical fiber. By this process, it seems like a
grating is virtually constructed in the transmission fiber. As shown in Fig. 3.4, a
resonance between the virtual grating and the signal will occur at the signal sideband
component whose wave vector matches the wave vector of this virtua grating
resulting in exponential growth of that component with transmission length. This
phenomenon is known as the sideband instability (SI), which causes signal waveform
distortion if Sl arises at frequency inside the signal bandwidth, which cannot be
eliminated by using optical bandpass filter [50]-[52].

Qualitatively, Sl can be considered as four-wave mixing (FWM) effect which
is quasi-phase-matched by the assistance of the periodic power variation induced
virtual grating as the condition

k, +k =2k, +kK; . (3-2)

In Eq. (3-2), Kk, denote the wave number of the signal which acts as a pump, k, the
sideband wave numbers, and k, the wave number of the virtual grating which is
given as

K =—, (3-3)
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where n=0,£1%2,..., and | is the amplifier spacing. The sideband frequency o,

shifted from the carrier frequency, at which Sl arises is obtained from Eq. (3-2) and
(3-3) as

o, = i\/ﬁ (kf n— ngn(ﬂz)ﬁ). (3-4)

where P is the path-averaged signal power. The power gain A(w, )of Sl at each n-
order resonance frequency is

Mw,) = 2R|F, (3-5)
where P, denotes the signal input power and F, the n-order of the Fourier series
coefficient of the periodic function «(z) whose period isequal to | ;.

In order to avoid the signal distortion due to the SI, C. Lorattanasane et a. has
introduced the optimum system design strategies, which is shown conceptualy in Fig.
3.5. Figure 3.5 shows the magnitude of signal degradation in OPC system as a
function of the SOD in the absence of the TOD. In Fig. 3.5, two transmission
windows are observed at relatively large anomalous dispersion region and at
relatively low normal dispersion. The S| causes the serious signal distortion when the
operation SOD becomes larger because the S| will occur at inner signal bandwidth
according to EQ. (3-4). Therefore, the use of relatively low SOD is preferred.
However, the lowest SOD that can be used is limited by the effect of the SOD
fluctuation around zero-dispersion point. In anomalous dispersion region, the use of
low SOD induces the modulation instability effect which will result in much signal
degradation. Thus, for anomalous dispersion region, the optimum operation SOD is
located at relatively large value.

As aternative method for reducing the effect of SI, Watanabe and Shirasaki
have given a condition for perfect SI' compensation [95] as shown below.

plcz) _ plz) .
y-z2)P-2) »(z)P(z;)

where the GVD parameter f,, the nonlinear coefficient y , and the signal power P

are the function of distance z
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Equation (3-6) indicates that the perfect suppression of Sl is achieved when the
cumulative SOD-induced chirp and the cumulative nonlinearity-induced chirp

integrated from the OPC position at z’=0 to —z and z, are equal. This relation

means that providing the equal ratio of the SOD and the nonlinearity at the
corresponding position symmetrical from the system midpoint, perfect distortion
compensation can be obtained. This relation gives us the following freedoms for the
OPC system design.
1) The OPC needs not be placed at the midway of the system. Assuming that the
SOD value, the signal power, and the system length of the first half are D,
P,, and L,, respectively, and those of the second section are Dy, P;, and
L, respectively. We find that Eq. (3-6) holds provided that D, =kDg,
P,=kP;,and kL, = L.
2) The power distribution needs not to be uniform. Equation (3-6) holds when
the SOD value is properly tailored to follow attenuation of the signal power.
In order to satisfy the condition, a dispersion-decreasing (SOD) fiber (DDF), whose
SOD-decreasing coefficient is proportional to a fiber loss coefficient, must be
installed throughout the entire OPC system length. A good transmission result of 20
Ghit/s over 3,000 km [95] was demonstrated by using a quasi-DDF in which short
fibers with different dispersion values were concatenated to form the dispersion-
decreasing profile.  However, such the approach sounds too impractical to be
employed in real systems. Moreover, for both two proposed schemes the
uncompensated TOD will show up to affect the long-haul transmission with the bit
rate higher than 40 Gbit/s.



CHAPTER 4
THIRD-ORDER DISPERSION COMPENSATION
IN OPC SYSTEMS

In this chapter, we prove that, in optical phase conjugation systems, the third-order
dispersion of fibers almost linearly accumulates along the transmission distance, and
the distortion induced from the third-order dispersion can be perfectly compensated
by using alinear third-order dispersion compensator placed at any point of the system.
We demonstrate by numerical simulations that 100-Gbit/s single-channel transmission
can be achieved over a 10,000-km distance in midway optical phase conjugation
transmission system by compensating the third-order dispersion using only one third-

order dispersion compensator placed anywhere in the system [49].

4.1 Introduction

In ultra-high bit-rate optical-time-division multiplexed (OTDM) transmission systems,
the second-order dispersion (SOD) of fibers for transmission must be completely
compensated. With SOD averaged to zero, the third-order dispersion (TOD) shows
up and influences transmission characteristics. Moreover, the TOD interplays with
the self-phase modulation (SPM) of optical pulses, causing severe distortion of both
signal waveform and signal spectrum [4].

In the dispersion-managed system using non-return-to-zero (NRZ) pulse
format, where the SOD map is properly designed but the TOD is not compensated,
the bit rate of the 10,000km transmission system is limited only about 10Ghit/s
because of the interplay of the TOD with the SPM. It has been shown, by numerical
simulations, that when the TOD ‘is compensated periodicaly at the interval quite
shorter than the nonlinear scale of the system, the speed limit is possibly raised up
over 20Ghit/s[25].

On the other hand, in disperson-managed (DM) soliton systems, a recent
numerical study shows that the eigen solution to DM solitons can exist in the
transmission line with the TOD, and that is stable against the perturbation of the TOD
[40]. Even without TOD compensation, 40Ghit/s, 10,000km transmission has been
actually demonstrated by using DM solitons [54].

As an dternative approach for high-bit-rate long-distance transmission,

midway optical phase conjugation (OPC) is an attractive solution to compensating for
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the distortion induced from the interplay between the SOD and the SPM [65]. The
ultimate performance of the OPC systems is also limited by the TOD together with a
nonlinear resonance at well-defined signal sideband frequencies induced by periodic
amplification process called sideband instability (Sl) effect [65]. However, the
accumulation characteristic of the TOD and the TOD compensation scheme suitable
for OPC systems have not been studied yet.

In this chapter, we show, for the first time to our knowledge, the linear
accumulation characteristics of the TOD in OPC systems under ordinary operation
conditions, and demonstrate that the performance of the OPC system can be improved
beyond the above TOD limitation only by linearly compensating the TOD.
Numerical simulation results show that the 100Gbit/s, 10,000km transmission is made

possible by the OPC system incorporated with the TOD compensation.

4.2 TOD Accumulation Characteristicin OPC Systems

Firgt, it should be noted that, to discuss the accumulation of TOD in OPC systems, it
IS necessary to use three characteristic scales. the SOD length Ly, the TOD length Lgs,
and the nonlinear length L, which are defined in [4] for forecasting signal behaviors
in optical fiber transmission systems. The effect whose scale becomes the shortest
plays adominant role in limiting the system performance.

Disperson-managed NRZ transmission systems require the SOD
compensation interval, which is quite shorter than Ly, in order to avoid the interaction
of the SOD and SPM. If the SOD compensation interval becomes much shorter than
Lgs, which is usually the case, the pulse behaves in the TOD scale as if it propagates
through a uniformly zero-dispersion fiber. In such a system, in order to prevent the
interaction between the TOD and the SPM, it is necessary to place TOD compensators
at the interval much shorter than L, so that TOD can be compensated before
interacting with SPM.

Also in OPC systems, TOD cannot be compensated by OPC and it just
accumulates along the system length. However, the accumulation of TOD in OPC
systems has different characteristics from the above system. In OPC systems, SOD
exists along the entire transmission length; therefore, Ly, becomes many times shorter
than L, for the case of high bit-rate transmission. When Ly, is much shorter than Ly
and Lgs, the signal pulses are rapidly broadened by the SOD effect, and their peak
power decreases after transmitting for several Lg. This means that the broadened
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pulses almost do not experience the effect of the fiber nonlinearity, and we can thus
expect that the accumulation of the TOD-induced phase shift increases aimost linearly
with the transmission length.

However, if L, becomes comparable to L, both the pulses and spectrum will
first be distorted by the interaction between SPM and SOD and subsequently being
attacked by TOD. In this case, even though the pulse waveform and spectrum can be
restored to their initial shapes at the end of the system, since OPC can compensate for
the SPM+SOD interaction, the amount of TOD-induced phase shift is no longer
linearly proportional to the transmission length because the spectral shape changes
during the transmission. However, to obtain the condition Ly ~ Lg, We need an
extremely high input signal power which will not be practically used in ordinary
operating states. Thus, we can conclude from this fact that the TOD accumulation in
OPC systemsis aimost linear. The linear TOD accumulation enables us to place only
one TOD compensator at any point in the link instead of periodically placing TOD
compensators at the interval much shorter than L.

4.3 Computer Simulations

To confirm the prediction, the computer simulations have been performed. The main
parameters used in the simulation are typical dispersion-shifted fiber parameters:
SOD: D = -1 ps’km/nm, TOD = 0.06 ps’km/nm, and the nonlinear coefficient y = 2.6

Wkm. The fiber loss and amplification process are neglected in order to focus only
on the TOD accumulation characteristics. The TOD compensator used in simulations
is assumed to be an idea device that multiplies the complex amplitude of the signal
with a negative amount of linearly accumulated phase shift caused by TOD. This
compensator is placed only at the end of system.

The optical pulse at the midway of the system is conjugated by an ideal
infinite-bandwidth optical phase conjugator. The propagation of the optical pulse is
calculated by solving the nonlinear Schrodinger (NLS) equation by the split-step
Fourier method [4]. In the first calculation, Ly is set at 280 km which is equal to Lgs
and is approximately 40 times longer than Lq, (= 7km).

Figures 4.1(a) and (b) shows the waveform and spectrum of a single 5-ps
FWHM optical pulse. The dotted curves show those of input pulse, whereas the dash-
dotted curves those of the input pulse which propagates a 2000-km distance in the
OPC system with the effect of TOD. The pulse waveform is distorted after
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propagation, while any change in its spectrum is not observed. The solid curves are
those of 2,000-km transmitted pulse after compensating TOD. The pulse waveform
recovers to the initia shape by TOD compensation. The results shown in Fig. 4.1
indicate that the accumulation of TOD is linear and the compensation is done

perfectly as we expected in the previous section.
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Figure 4.1: Waveform and spectrum of an optical pulse propagating a 2,000-km
distance in the OPC system where the nonlinear length is set equal to the TOD length;
(a) optical pulse, (b) optical spectrum. The dotted curves show those of the input
pulse, the dash-dotted curves those of the pulse transmitted with the effect of TOD,

and the solid curves are those of the transmitted pulse after compensating the TOD.
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Figures 4.2(a) and (b) show the calculated results of the case when Ly is equal

to Lgx (7 km). As we have mentioned, the interaction between TOD and SPM

appears in OPC systems. Both the pulse shape and spectrum becomes distorted and
the TOD compensation is amost failed.
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Figure 4.2: Waveform and spectrum of an optical pulse propagating a 2,000-km

distance in the OPC system where the nonlinear length is equal to the GVD length; (a)

optical pulse, (b) optical spectrum. The dotted curves show those of the input pulse,
the dash-dotted curves those of the pulse transmitted with the effect of TOD, and the

solid curves are those of the transmitted pulse after compensating the TOD.
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Figure 4.3 shows the calculated bit-error rate (BER) of the TOD compensated
OPC system. The input power of all curvesisset at 3 mW. In this case, L becomes
amost equal to Lgz at 280 km while Lg is around 7 km. An input optical signa
consists of a pseudorandom 32-bit Gaussian RZ pulse train whose bit rate is equal to
100 Ghit/s. The fiber loss of 0.2 dB/km and amplification of 8 dB at every 40 km
interval are included in the calculations. The optical amplifier produces ASE noise
through a process of amplification with noise figure of 5.3 dB (ns, = 1.7). The idedl
infinite bandwidth TOD compensator is placed at the output end of the fiber. We
assume the use of an optical band-pass filter with a 1 THz bandwidth in front of a
receiver with a bandwidth of 50-GHz-cutofi-low-pass filter. The system performance
is evaluated in terms of the bit-error rate (BER) calculated by repeating 128 times the

transmission of the same pulse train and assuming Gaussian noise distribution [25].
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Fig. 4.3: BER of the 100-Ghit/s TOD compensated OPC systems where the nonlinear
length becomes equal to the TOD length. The BER of TOD compensated OPC
system is shown by squares, that of the system neglecting the TOD is shown by

diamonds, and that of the system without TOD compensation is shown by circles.
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According to the calculation results, the BER curve obtained from the TOD
compensated OPC system (shown by squares) almost fits with that obtained from the
system that neglects TOD (shown by diamonds), showing that the accumulation of the
TOD is admost linear even Lg3 is comparable to L, so that the linear TOD
compensation is done perfectly. Without TOD compensation (shown by circles) the
maximum achievable length for 100-Ghit/s OPC transmission is limited about 2,500
km at BER = 10 as shown by the across line. The TOD compensated OPC system
gains more 4,000-km transmission length up to 6,500 km. This proves the
effectiveness of TOD compensation on improving transmission performance in OPC
systems.

4.4 100-Gbit/s, 10,000-km Transmission by Optimum

| nput Power

If we increase the power of the signal, the achievable transmission distance will
increase due to the improvement of SNR. At the same time, the increase in power
gives rise to the degradations from the Sl effect and the reduction of the
corresponding nonlinear length. Therefore, the improvement and degradation will
balance each other at an optimum input power in which the system can reach the
maximum performance. To find the optimum power, we perform the simulations by
increasing the input power of the same system as Fig. 2.4 from 3 mW to 20 mW.
Figure 4.4 shows the BER calculated as a function of the transmission distance. The
optimum power obtained from the result is approximately 7 mw, and with this input

power, we can achieve over 10,000-km transmission at BER = 10”.

45 Conclusion

We have found that the accumulation characteristic of the TOD in OPC transmission
systems is almost linear aslong as the SOD length is much shorter than the nonlinear
length.  This fact gives us a possibility to install only one of the linear TOD
compensation device at any point in the system for perfect TOD compensation. By
assuming the ideal TOD compensator, the computer simulation result has shown the
possibility of 100 Ghit/s, 10,000km transmission based on TOD compensated OPC
systems.
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Fig. 4.4: BER curves of 100-Ghit/s TOD compensated OPC systems when an input
power increases from 3 to 20 mW. We find that 100-Gbit/s, 10,000-km transmission
is achieved by the optimum input power of 7mwW when TOD is compensated in the
OPC system.



CHAPTER 5
COMPLETE ANALYSISOF SIDEBAND
INSTABILITY IN CHAIN OF PERIODIC
DISPERSION-MANAGED FIBER LINK AND ITS
EFFECT ON HIGHER-ORDER DISPERSION-
MANAGED LONG-HAUL WAVELENGTH
DIVISION MULTIPLEXED SYSTEMS

In this chapter, we present for the first time a complete theoretical analysis of
sideband instability (SI) that occurs when two kinds of fibers with different
characteristics are concatenated to form a dispersion-managed fiber link [52]. In the
analysis, the following three cases are taken into account: case (a) when a dispersion
management period is larger than an amplification period, case (b) when the two
lengths are equivalent, and case (c) when a dispersion management period is smaller
than an amplification period.

We find that the S| gain peak appears at frequencies determined by the larger
period out of the two variation periods. Moreover, for al the three cases, the
magnitude of the SI gain reduces with the increase in strength of dispersion
management.

Next, we focus on the fiber link using the combination of standard single-
mode fiber (SMF) and reverse dispersion fiber (RDF), which is widely used for
simultaneously compensating second-order dispersion (SOD) and third-order
dispersion (TOD). By computer simulation, it is shown that, in wavelength-division-
multiplexed (WDM) systems, Sl still induces significant degradation in channels
located at frequencies where Sl induced from other channels arises. By re-allocating
the channel frequency to avoid the Sl frequency, the transmission performance is

improved significantly.

5.1 Introduction

Four-wave mixing (FWM) and cross-phase modulation (XPM) in optical fibers have
been recognized as the main problems that cause signal waveform distortion in
wavelength-division-multiplexed (WDM) systems [4], [96], [97]. FWM induces

signal energy transfer among channels, while, through XPM, temporal intensity
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variation of every channel modulates the phase of other co-propagating channels. In
fact, the use of non-zero dispersion for signal transmission yields relatively different
propagating group-velocity among channels, referred as walk-off, which dramatically
results in the reduction of channel crosstalk induced from both FWM and XPM. For
this purpose, the second-order dispersion (SOD) management method has been
proposed and demonstrated [25], [98]-[100]. Through this method, fiber sections are
periodically arranged in such a way that the signal carrier wavelengths alternatively
fall in normal and anomalous dispersion region, while, for each period, the total fiber
exhibits zero or near zero dispersion on average. Therefore, signal pulse propagating
in the link will always experience non-zero dispersion while its width is almost
preserved at each compensation period due to low average dispersion.

However, such an approach can manage only SOD in only one channel.
Therefore, in WDM systems, signal channels far from the average zero-dispersion
wavelength experience different amount of dispersion accumulation along the entire
system length because of the existence of the dispersion slope or third-order
dispersion (TOD).

It has been predicted that the existence of TOD limits the available passband
of the WDM systems with the data rates of over 10 Ghit/s [101]-[103]. For further
expansion both in capacity and distance, dispersion management to eliminate both
SOD and TOD will be one of the key issues. For this purpose, the specia dispersion
compensating fibers called reverse dispersion fiber (RDF) [58]-[60] has been
proposed and demonstrated its potential. Since RDF exhibits low negative TOD with
large negative SOD, we can achieve the dispersion flattened fiber link with low
average SOD by combining RDF with standard single-mode fiber (SMF) in each
compensation interval. The use of such higher-order dispersion compensation fiber
link in combination with the optimization of channel spacing realizes the
simultaneously reduction of FWM, XPM, and TOD. Transmission experiment shows
that using the combination of SMF and RDF can achieve the data rate as high as 1
Thit/s (104 x 10 Gbit/s) WDM transmission over 10,000 km [104].

In this chapter, we demonstrate that the additional signal distortion to long-
haul higher-order-dispersion-managed WDM systems can occur via the quasi FWM
phase-match process assisted by periodic variation of the signal power in the chain of
lossy fiber intervals and lumped amplifiers incorporated with periodic dispersion

management. This parametric process, which occurs in both normal and anomalous
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dispersion region, is caled sideband instability (SI). Through this process, signa
carrier transfers its energy to specific sideband frequencies which grow up
exponentially with transmission distance.

It has been shown theoretically that in order to avoid the XPM-induced signal
waveform distortion for 10-Gbit/s-based 10,000 km WDM transmission, the use of
channel spacing larger than 100 GHz is preferable [105]. Several long-haul
transmission experiments also demonstrate attractive results using the channel spacing
around this value [101], [104], [106]. With this relatively large channel spacing, the
first order SI, which usually exhibits large gain than higher orders, will not arise
inside one's channel bandwidth. Therefore, the problem induced from Sl has not
been yet appeared and can be ignored for such transmissions.

However, with system distance shorter than 10,000 km, the possibility of
using smaller channel spacing for signal transmission has been shown [107]-[109]. In
this situation, if two different channels produce Sl at the same frequency, Sl will
cause a serious problem to the channels whose carriers are placed just at that
frequency, especialy for the frequency where the first order Sl arises.

Historically, Matera et al. first theoretically showed the occurrence of Sl in
long distance systems through the periodic signal amplification [50]. Kurtzke and
Peterman briefly discussed the impact of SI on multi-channel long-distance optical
communication systems [110], [111]. In their works, by computer simulations, a
serious channel signal distortion was observed when the Sl resonance frequency
superpositions on the channel frequency. Kikuchi, et al. experimentally observed S|
in optical amplifier chain using a recirculating fiber loop [112]. Smith and Doran
predicted that the periodic dispersion management also leads to the occurrence of Sl.
They aso demonstrated that the gain of Sl could be reduced by strong dispersion
management [113]. Recently, we have presented a part of the derivation of SI under
the existence of both periodic power variation and periodic dispersion variation [51].

However, al of the previous works have not yet included the periodic
variation of fiber parameters such as fiber loss coefficient and fiber nonlinear
coefficient, which is practically necessary to consider when two different fibers are
connected together to form a dispersion-managed transmission line. Moreover, to
avoid the problem of Sl in WDM systems, it isimportant to study SI more details and

the exact analytical expression of SI must be derived.
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In this chapter, the complete theoretical analysis of Sl focusing on the case
when two different characteristic fibers connected together has been made for the first
time. In our anaysis, not only the periodic power variation but the periodic
disperson management, periodic fiber loss coefficient variation, and periodic
nonlinear coefficient variation are aso included. In section 5.2, we derive the
analytical Sl gain and the SI frequency considering three cases: (a) when a dispersion
management period is larger than an amplifier spacing, (b) when the two lengths are
equal, and (c) when an amplifier spacing is larger than a dispersion management
period. In section 5.3, the derived theory is evaluated its accuracy by computer
simulations.

The section 5.4 focuses on dispersion managed transmission system consisting
of SMF and RDF. Our computer simulation results show that, when two or more
channels produce Sl at the same frequency, Sl significantly causes a serious problem
to the channel whose carrier is positioned just at that superposition resonance
frequency. We also demonstrate that, by re-arranging the channel position or channel
spacing in such away that none of the Sl resonance frequency falls inside the channel
signal bandwidth, the transmission performance is significantly improved. Finaly,

the summary of this paper is made at section 5.5.

5.2 Derivation of Sideband Instability in the Presence of
Periodic Power Variation and Periodic Dispersion
M anagement

In long haul and high-capacity fiber transmission systems, the power of the optical
signal must be kept high-in order to obtain good signal-to-noise ratio (SNR) at a
receiver. In such high power systems, by amplification process, the periodic power
variation produces a periodic variation of fiber refractive index through the nonlinear
Kerr effect of an optical fiber. By this process, it seems like a grating is virtually
constructed in the transmission fiber. As shown in Fig. 3.4, a parametric resonance
between the virtual grating and the signal will occur at the signal sideband component
whose wave number is half of the wave number of this virtual grating resulting in
exponential growth of that component with transmission length. This phenomenon is
known as the sideband instability (SI), which causes signal waveform distortion if Sl
arises at frequency inside the signal bandwidth since it cannot be eliminated by using

optical bandpassfilter.
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Quantitatively, the occurrence of Sl can be explained in terms of quasi-phase-
matched FWM process that is assisted by the virtual grating induced by the periodic
power variation as the condition

K. +k =2k, +k;. (5-1)
In Eq. (5-1), the wave number of the signal, which acts as a pump, is

ko =P + B(w,), the sideband wave numbers are k, =k_ :%ﬂza)ﬁ + flwy), where

B(@,) is the wave number at the central carrier frequency @q. Kk, is the wave

number of the virtual grating which is given as

K ==, (52)
f

where n=0,£1%2,..., and |, is the amplifier spacing. The sideband frequency o,

shifted from the carrier frequency, at which S| arises is obtained from Eq. (5-1) and
(5-2) as

o, = i\/i (kf n—2sgn(4, )7'3)- (5-3)
52|

where P is the path-averaged signal power. The power gain A(w, )of Sl at each n-
order resonance frequency is

Mao,)=2P|F|, (5-4)
where P, denotes the signal input power and F, the n-order of the Fourier series
coefficient of the periodic function a(z) whose period isequal to | ;.

In fact, not only the periodic power variation, but also all of the periodic
perturbation under the Kerr effect, such as the periodic dispersion variation, the
periodic fiber loss coefficient variation, and the periodic fiber nonlinear coefficient
variation, can also lead to the occurrence of SI. To obtain the general expression of S|
considering al of the periodic perturbation, we should start the analytical derivation
based on the models of dispersion management systemsillustrated in Fig. 5.1. InFig.
5.1, the signal power and the fiber dispersion is assumed to change periodically with
transmission length. As we aim to concentrate to dispersion managed transmission
system consisting of SMF and RDF, the fiber link is composed of two different
characteristic fibers with the same length. Therefore, the dispersion profile is the

simplest type where the dispersion varies every half of period with the same amount
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plus and minus around a given average dispersion value. Each fiber has its own
nonlinear coefficient and the fiber loss, which is assumed periodic by the period
equivalent to the dispersion management period. We consider here three possible
cases. (@) when the dispersion management period is longer than the amplifier span,
(b) when the two scales become equal, and (c) when the dispersion management
period is shorter than the amplifier span.

Fiber
Power P
\J\_I\_I\_N_I\ ces
0 Iy

5
.E !d
lc)_‘ 0 ------------------------------------------- -Dal
2 7

(a) When power variation period ( /)
< dispersion variation period ( ;)

la

T P I e ey TR

Dispersion
o

D

(b) When power variation period ( /)
= dispersion variation period ( /)

| fnonnnononnonnn
T U I T OO

(c) When power variation period ( /r)
> dispersion variation period ( /4)

Dispersion

Figure. 5.1: Models of dispersion management system used for the analytical
derivation. The signal power and fiber dispersion change periodically with
transmission length. The fiber link is consisted of two different characteristic
fibers with the same length. Three possible cases are modeled: (a) when the

dispersion compensation period |, islonger than the amplifier span I, , (b) when

the two scales become equal, and (c) when |, < I,
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The analysis starts from the nonlinear Schrodinger equation for the signal

envelope function U(z,t)

N __ 2@y 1 oy :
5 =5 U 5Bt B (2) S+ @[V (5-5)

In Eqg. (5-5), The GVD is separated in two parts. the constant average f,,, and the

fluctuation part 8,4 (z). The fiber loss coefficient a(z), the nonlinear coefficient
7(2) and S,4(z) are the functions of z which are assumed periodic with the same

period equivalent with the dispersion management period. It should be noted that the

GVD parameter S, relatesto the common dispersion parameter D by
@y
——5,, 5-6
A yeA (5-6)

where o, denotes the carrier frequency and A, the carrier wavelength.

At each amplifier, the span loss is compensated so that we can assume the
optical field propagating in each amplification period has the form

U(zt)= u(z,t)exp(— —;«a(z)zj : (5-7)
Inserting EqQ. (5-7) into Eq. (5-5), we obtain
0 i ou . 2
= =5 Bt P (D) S5+ (2)uf v, (59

where f(z) = y(z)exp(~ a(z)z) is the periodical function whose period is equal to the
amplifier spacing. Next, we perturb Eg. (5-8) by a small amplitude fluctuation a
added to the steady solution of Eq. (5-8),

zt)= (\/Fo+a)exp[i%j f (z’)dz’J (5-9)
0
where P, denotes the input peak power and a isdefined as
a(zt)= %{a(z,a))exp(ia)t)Jr a(z,-)exp(-iat)) (5-10)

Substituting Eq. (5-9) and (5-10) back to Eq. (5-8), then we obtain one set of two
differential equations

1 2
ﬂ[a(z,a)) }:i E(ﬂzaer'BZf'(Z))w v @R 2R { a(z,w) } (5-11)
oz

@ @) @R B Pra @)~ 1 2R, |2 7
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where the subscript * indicates the counterpart complex conjugate. By introducing
the transformation

2150 (2)d ] 0
{a(z,a)) j|: exp[l 2 _!;IBZ (Z) ‘ |:b(Z,a)) :| (5_12)
(7 — 2z b'(z,-
a(z-o) 0 —exp[iw—Iﬂzfl(z')dZ'J (z.-e)
2 0
Eq. (5-11) becomes
1
A Foav \ f I:)O I:)O
i{b*(z’w) }:i 2,3 o+ f(2) 9(2) {b(za))} (5-13)
(b (=) G@R  —2pei- 1 @R | )
where
9(z)=f (z)exp(—iwzjz'ﬁzﬂ (z’)dz'j. (5-14)

By this transformation, we can remove the fast oscillations in the field

envelope, so that only those changes that accumulate over the period of 4,4 (z) isleft.

Thekey step of thisanalysisisto expand f(z) and g(z) as complex Fourier series:

f(z)= i F.exp(iknz), g(z)= i G, exp(ik,nz) (5-15)

where ki and kg are the fundamental wave constants of f(z) and g(z), and F, and Gy

denote the Fourier series coefficients of f(z) and g(z).

5.2.1 The Case when the Dispersion Compensation Period is Larger

than the Amplifier Spacing

First, we consider the case (a) when the dispersion management period |4 is larger
than the amplifier spacing I+ The wave constant ky in thiscase can be written as
kg =27/l4 =kq, Where Iy = 2pl, so that k; =2pkgand p=1, 2, 3, .... In order to get
close to the resonance of the n™ Fourier component of the perturbation, we introduce

the variable transformation

1
{b(z,w) }: osfigkm) o {C(Z’@} (5-16)
b (z-0) 0 ek ¢ (z-0)

2 d
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Inserting Eq. (5-15) and (5-16) into Eq. (5-13) and equating only the coefficients of

exp(ikynz/ 2) and exp(-ik,nz/2) (for the complex conjugate counterpart), we obtain

1, 1.
5 {C(Z'w) }:i —Skin+ S B + RF RG, { o(z,0) } . (5-17)

7le@-o) RG; k=2 o —RF; |1 57

where F, and G, denote the fundamental and the n-th order coefficient of Fourier
seriesof f(z) and g(z), respectively.
From the eigen values of Eq. (5-17), we obtain the power gain A(w) for the n-

order Sl effect as

A@)=y4R2G, " ~ (s Brue® = RIS - (5-18)

At each order of SI, 4 appearsits peak at frequencies defined by

ol 4l =2zl ) (519

It is remarkable from Eq. (5-19) that SI occurs at frequencies determined by the
dispersion management period |4 and by the averaged GVD f,,, independent of the

fluctuation part g,,. For larger |4, the Sl gain position moves closer to signal carrier
frequency, which may cause more severe signal waveform distortion. On the other
hand, the peak of Sl gain at the n-order resonance frequency A(w»,) dependson f,,,
through @, in |G| according to Eq. (5-14) and (5-19).
In order to obtain the expression of the SI gain, F, and G,, have to be derived.
F, can be calculated from
ld Id
1 1
Fo == f(2dz=— j 7(2)exp(—a(2)2)dz. (5-20)
ly 5 ly 5
Since this paper. consders: the periodical dispersion’ compensation, which is

constructed by the combination of two fibers in equal length. Each fiber exhibits

different values of ¢ and » which are assumed to be constant along each fiber length.
In each compensation interval, let «; and y, represent the fiber loss coefficient and
the nonlinear coefficient of the first fiber and «, and y, represent the fiber loss
coefficient and the nonlinear coefficient of the second fiber, respectively, F, is

obtained through
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Iy il gy 1 il
Yo g g, la Mg

1 p-1|2p 2P 222
Fo=t I 7, eXp(—a,2)dz + I 72 eXp(-a,z)dz
di=0| il o, ilg
2p 2"2p

1, J : (5-21)

By assuming that 2, (z) follows the profile shown in Fig. 5.1, we have

ﬂz 14 = {0’ l_dj
fﬂzﬂ Z')dz = |2 : (5-22)
ﬂZfl(ld _Z)’Zz{_;Jd}

Substituting Eq. (5-22) to the exponential part of Eq. (5-14), G, can be analytically
obtained through the Fourier integration

ld lg
1 p-12p 2p

G, =— _[ 71 exp(—alz)exp(—iﬂzﬂa)zz)exp(—ikan)dZ
d j=0 ily
2p (5-23)

Id Id | jly

1p12 Zp 2p
I

+

7, Xp(=a,2)exp(=iByq0° (1, — z) ) exp(—ik,nz) dz

d =0 g ilg
2 2p

Because f (z) is periodical over each fiber length with the period of { = j;LJrz'd ]
p p 2p

forj=0,1,2,..., it satisfies the following relations
Jd Jd ’f | J'd I ,
f(ij 7eXp( ZDJ 1 (29 2p) 17 ) “2p
(Ao Yl | o e[ <ol Y dla ) 2 4 [y dla) 0] o). (5-24)
') 2p 2 2p 2 2p 2p 2p

Applying the above conditions to Eq. (5-23), we obtain
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| . |
1- exp(—aldj EXD(_' (/Bzﬂwz + kdn)dJ p-1 i
2p 2p Zexp(—i (ﬂzﬂa)erkdn)—éI;]

: 2
a1|d+|(ﬂ2fla) +kdn)|d i=0

wftnmot el inrsofs5)| g
aly—i (,Bzﬂa)2 - kdn)ld

+7,

et i
x> exp[l (Bog® - kdn)z—dJ
j=0 P
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Figure 5.2: Theoretical n =1, 2, and 3-order S| gain peaks at resonance frequency
o, asafunctionof local SOD D, calculated with |, ="40km, |; = 80 km, P, =5

mW, and D,, = -5 ps’km/nm. D exhibits a negative value when the arrangement

of fiber link changes the order of fiber installation to RDF-SMF instead of SMF-
RDF. The gain characteristics for all three orders appear to be decreased and

periodically reduced to minimum points with the increase in D.
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At resonance frequency @, where the n-order Sl occurs, the n-order Sl gain

becomes 2PR,|G,|. Figure 5.2 plotsthe n =1, 2, and 3-order S| gain pesks a w, asa
function of local SOD D, calculated by Eq. (5-25) with |, =40 km, |, =80 km. PR,
isassumed to be 5 mW, D,, is-5 pskm/nm, o, and y, of the fiber#1 are 0.2 dB and
1.6 Wkm™, for the fiber#2, a,, 7, are 0.25 dB and 4.8 W'km™, respectively. It

should be noted that D exhibits a negative value when the arrangement of fiber link
changes the order of fiber installation to fiber#2-fiber#1 instead of fiber#1-fiber#2.
The gain characteristics shown in Fig. 5.2 for al three orders appear to be
decreased and periodically reduced to minimum points with the increase in fiber local
SOD. The reduction of SI gain with the increase of local SOD has been predicted by
Smith and Doran [113]. However, the reason for explaining this phenomena has not
been clearly mentioned yet. According to Eg. (5-23), it is obvious that the reduction

of Sl gain does not come from the linear addition and cancellation of the two Fourier

components: one induced from the periodic power variation Poa(z) and the other

from the periodic GVD variation £3,,(z). In order to understand the reason, we

should rewrite I, =2l (p = 1) and B,qo7 =k, , Where ¢ denotes a real number that
larger than zero, Eq. (5-23) can be written as

4
l f

lf; 7 ep(-a2) exp(—i @ K, 2] dz

|G.|= (5-26)

+|£exp(—i (c+n)x) J: ¥, exp(-a,z) exp(i (c;zn) K, ZJ dz

f

Eqg. (5-26) indicates that, for the n-order Sl, by increasing the local GVD ‘ﬂzﬂ‘, the

corresponding c isincreased, resulting in the increase of wave constant k; by the factor

of (c+n)/2 for the first term-and (c—n)/2 for the second term, respectively. Each

order of the Sl gain, which becomes smaller for large k;, is correspondingly reduced.
Saying in other words, the first term of Eq. (5-26) is similar to the formula of Fourier

integration using for obtaining the (c+n)/2 -order Fourier coefficient of f(z) when

the period is |, , and for the second term, the (c—n)/2-order Fourier coefficient.

Therefore, this can be also interpreted that the increase of local GVD |A,,| virtually

shifts the order of SI induced from the power variation to higher order which exhibits
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lower gain than the lower order. Furthermore, the Sl gain fals down to minimum
points when the virtual order number (c+n)/2 and (c—n)/2 together become an

integer. In Fig. 5.2, agreeing with our prediction, the SI gain reduces to minimum
points when (c+n)/2 and (c—n)/2 becomes|c| = 3, 5, 7,..., for the first-order, |c| = 4,

6, 8,..., for the second-order, and |c| =5, 7, 9,...., for the third-order, respectively.

5.2.2 The Case when the Dispersion Compensation Period Becomes

Equal to, or Shorter than the Amplifier Spacing

In this subsection, we consider the case when Iy is equal to, or shorter than l¢. The

wave constant kq for this case becomes k; =27 /1 . |t is assumed to satisfy I = ply,

wherep =1, 2, 3,.... The analysis approach for this case is amost similar to that of
previous subsection. By only replacing kq in Eq. (5-15) with k. The power gain A(w)

for n-order Sl effect becomes

/1(50): \/4P02|Gn!2 _(kf n _ﬁZava)z ~ P0||:0|)2 , (5-27)

which exhibit each peak of the Sl order at frequencies determined by

w, = i\/*;f (k,n—25gn(3,, )P, F|). (5-28)

2av|

From Eq. (5-28), the frequencies where S| arises are determined by the wave
constant ki which is constant even the dispersion management period g is changed.

This means that, for I, <1, SI will almost arise at the same frequencies independent

of the change in |4, which.is different from the previous case. For thiscase, F, can be
obtained by

lg .
<+l i
p-11]2 Jla lg+ilg

1
F= _z J. 7 exp(-a,z)dz + _[ 7, eXp(~a,z)dz

|. 4

=0 [ jl lg .
Al
2+Jd

. exp(—aljld)—exp[—%(lg+ihB exp[—%[l;+j|dD—eX|0(—a2(|d+jld)) . (5-29)

= 7 | +7, |
j= aly ol ¢

o

o

It should be noted that, in fact, »,, slightly depends on the change of I, through F, in
Eg. (5-28) and (5-29). For example, computing the first order Sl frequency by
substituting the same fiber parameters as the calculation of Fig. 5.2 into Eq. (5-28)
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and (5-29), when we reduce |4 from 40 km (= I; ) to 1 km, the first order Sl

frequency only moves 0.3 GHz closer to the carrier frequency. Therefore, such small
amount of frequency shift is negligible comparing to the shift of Sl position caused by

the change of k; .

G, for this case, can be analytically obtained through the series of Fourier

integration
LI
1822 by |
Gn=|—z J' 7, €Xp(—0,2) exp(—i 3, °z) exp(—ik, nz) dz
f JpOlljldI (5_30)
= ¥, €Xp(=a,2) exp(—iB,qe0° (I~ z) ) exp(-ik,nz)dz .
POk,

As exp(i3,,»°2) in g(z) repeats periodically p times over each I,

oo(- il )24 o o |0 007 )

eXp[_iﬂzﬂ wz (Id _(I_;"‘ jld j}] 2 EXp(_iﬂzﬂ a)z %j ) (5'31)

exp(=i B 0” (ls=(ls + il4))) =1.
Carrying out the integration in Eq. (5-30) by the assistance of the relationsin Eq. (5-
31) gives

G, =n

n

I : |
1- exp(—al ;j exp[—l (B0 +k, n);j -
—ay ] —ik, njl
a1|f+i(ﬂ2fla)2+kfn)|f JZ:(;GXD( a’ljd)exp( | fnjd)

eXp(_az I;j eXp(i (ﬂzﬂa)z —k; n)ng _eXp(_azld )eXp(_ikf nly )
ayle =i (:Bzﬂw2 —k; n)lf

. (5-32)

p-1
XY exp(—a, jly ) exp(-ik,njl, )
j=0

Figure 5.3 shows the relations between the n = 1, 2, and 3-order Sl gains and

D at resonance frequency o, . All parameters used in Fig. 5.3 are the same as the plot

in Fig. 5.2 except |, isset equal to |, a 40 km. The gain characteristics in Fig. 5.3
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are in similar shapes to Fig. 5.2 where the gain decreases and periodically reduces to
minimum points with theincrease in D.

The similar characteristic is also obtained for the case of |, <|; as shown in

Fig. 5.4 where |, isreduced to 10 km. However, in order to achieve the magnitude of

Sl gain aslow asthose of the above two cases, relatively large D is required.

First-order SI gain
-— Second-order SI gain
----- Third-order SI gain

log(SI gain [km™'])

-30 -15 0 15 30
Fiber local dispersion [ps/km/nm]

Figure 5.3: Relations between the n = 1, 2, and 3-order Sl gain peaks and D at

resonance frequency o,,. All parameters used in this figure are the same as the plot
in Fig. 5.2 except |, issetequal to |, at 40 km.~The Sl gain characteristics for all

three orders are similar to Fig. 5.2 where the gain decreases and periodically reduces

to minimum points with the increasein D.

One interesting thing observed from Fig. 5.2 (14 >1¢ ), Fig. 5-3 (I4 =1; ), and
Fig. 5.4 (14 <I¢) isthe gain characteristic in Fig. 5.2 is symmetrical with respect to D
= 0 while those of Fig. 5.3 and Fig. 5.4 are not symmetrical. This can be explained as
follows. As described above, when the sign of D is reversed, the order of the fiber

installation is changed from fiber#1-fiber#2 to fiber#2-fiber#1. For the case of Fig.
5.3 and Fig. 5.4, at least two pieces of fibersis used for constructing the transmission



79

line between two amplifiers. This means that the fiber which locates at the output of
amplifier where the signal power is still high is replaced with the other fiber which
has different « , different y , and different sign of D. Therefore, the gain
characteristics in Fig. 5.3 and Fig. 5.4 become asymmetrical when the order of the
two fibers is changed. On the other hand, for the case of Fig. 5.2, only one fiber is
installed over the entire length of one amplifier spacing. Therefore, the arrangement
of the two fibers will not result any differencesin the gain characteristic.

2 n First-order SI gain
10" =" "3 "~ |== Second-order SI gain
[l -, | SN Third-order SI gain

log(SI gain [km™'])
=

-30 -15 0 15 30
Fiber local dispersion [ps/km/nm]

Figure 5.4: Theoretical n =1, 2, and 3-order S| gain peaks at resonance frequency w,

asafunctionof D when |, isset at 10 km and |, isstill 40 km. Other parameters are

the same as used for Fig. 5.2. All three orders.are similar to Fig. 5.2 and Fig. 5.3
where the gain decreases and periodically reduces to minimum points with the
increase in D. However, in order to achieve the magnitude of Sl gain as low as those
of the above two cases, relatively large D is required.

Quantitatively, |Gn| calculated from Eq. (5-25) by replacing o, and ;1 with
a, and y,, and replacing a,, 7,, and .4 With &, 71, and —f,q is equivalent to

that obtained directly from Eg. (5-25). On the other hand, the replacement between
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ay, 71, Boq and a,, 7o, —P2n in Eq. (5-32) yields different |Gn| comparing to

|Gn| obtained directly from Eq. (5-32) without the replacement. Furthermore, for the
case of 14 <I, even both fiber#1 and fiber#2 possess equivalent values of @ and 7,

when the order of the two fibers is reversed, only the difference in the sign of D also
leads to the different magnitude of SI gain since the power variation on each fiber is
not the same.

It should be emphasized that, in this work, we focus only on the higher-order
dispersion managed transmission line consisting of SMF and RDF. Since SMF and
RDF possess almost equivalent absolute values of SOD and TOD with opposite signs,
our analysis model shown in Fig. 5.1 is well maiched with the practical transmission
line composed of SMF and RDF. However, it is still worth studying Sl induced from
the dispersion-managed line which consists of fibers with different lengths and
different amount of dispersion shifted from the average dispersion value.

Figure 5.5(a) shows the model of the dispersion-managed fiber link composed
of fiber#1 and fiber#2 whose lengths are unequal. The most practical case where

I, =1, isconsidered. InFig. 5.5(a), x is the length of fiber#1 and | — X isthe length

of fiber#2. D, and D,, respectively, denote the local dispersion of the fiber#1 and
the fiber#2 shifted from the average dispersion D,,. To make the accumulated

dispersion vanished at each |, D, can be written asthe function of D; and x as

D, x
D, = les _
2 I —x (5-33)

Following the above derivation for the case | <1, , we found that Sl also

occurs ét the frequency determined by Eq. (5-28) but, for thiscase, F, is obtained as

Fo = %{E yyexp(=ay2)dz + j 7 expl= azz)dz}
_ 71[1_ exp(- alx)J N 72[exp(— a,X)— exp(— a,l ¢ )J

ol ¢ a,l ¢

(5-34)

On the other hand, G, can be obtained as
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G, = IiJ. 7 €xp( -y Z) exp(—i B0’ z) exp( ik, nz) dz
ro (5-35)

s

+|1J.7/2 eXp(_aZZ) eXp(_iwz {(1821 _ﬁzz) X+ ﬂzzz})exp(—ikf I’IZ) dz,

fox

where g, and p,, are local GVD parameters of fiber#1l and fiber#2, respectively.
Completing the integrationsin Eq. (5-35) by using Eg. (5-6) and (5-33), we have
1-exp(— i 21k
Gn:yl{ exp( alx)exp( |(ﬂ21a) + fn)x)}

ol +i(Bue® +Ken)l;
+7, exp[—ico2 {%} x]
-
exp(—azx)exp£i [a)z {Iﬂz—l):(} Ky nj xj—exp(—ozzlf )exp[i {wz [I’Hz_l);j— Kq n]l f ]
ol —i[af[ﬂﬂx}kfn}f
| %

Assuming both fiber#l and fiber#2 exhibit equivaent @ and y , then G,

(5-36)

X

dependson D, and x. To seethe variation of Sl gain with the change of both D, and

X, the gain contour map should be used. Figure 6(b) shows the contour map of the
first order Sl gain peak as functions of D, and x. For obtaining Fig. 5.5(b), D,, = —

0.5 pgkm/nm, & = 0.2 dB/km, y = 2.6 W'km™*, and I, =1, =40 km are used. The

gain map in Fig. 5.5(b) indicates that the use of fiber#1 that has large local dispersion
with relatively long length can significantly reduce the SI gain. Quantitatively, the
length of the fiber#1 should be longer than 10 km and the local dispersion |D,|, which

can be both normal and anomalous dispersion, should be larger than 5 ps’/km/nm to
assure the first order Sl gain smaller than 10°km™.

For all cases, it should be noted that when D,, is set in anomalous dispersion

region the modulation instability (M) [4], which can be interpreted as the zero-order
S|, occurs and also only be slightly reduced by relatively large D.

Recently, the fabrication of optical fiber with designed dispersion value has
been realized [114]. This enables us constructing a dispersion-managed transmission
fiber with appropriate value of dispersion in order to suppress Sl effect for a given

system.
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Figure 5.5: Maodel of ‘dispersion-managed transmission line and its corresponding
Sl gain contour map. (@) shows the model of dispersion-managed transmission
line composed of fiber#1l and fiber#2 whose lengths are unequal. (b) shows the

contour map of thefirst order Sl gain peak as functions of D, and x. The gain map

indicates that the use of fiber#1 that has large local dispersion with relatively long

length can significantly reduce the Sl gain.

82



83

5.3 Computer Simulations

In order to confirm the validity of the proposed theory, we have performed some
numerical smulations using a CW signal and amplified spontaneous emission (ASE)
noise as sideband frequency source. It should be noted that the CW is used for the
convenience of observing the gain and the position of SI. The main parameters used
in the simulations are the same as those used in Fig. 5.2, 5.3, and 5.4. The TOD of
fiber#1 and fiber#2 are set at 0.06 pskm/nm? and —0.06 ps’km/nm?, respectively.
Since the two fibers have equal length so that the accumulated TOD is canceled at
each dispersion compensation interval. At the output of each amplifier the ASE noise
is added to the signal through the process of amplification with noise figure of 5.3 dB
(n = 1.7). The propagation of the optical signal is calculated by solving the
nonlinear Schrodinger equation (NL SE) by the split-step Fourier method (SSFM) [4].
The results of the numerical simulations for several cases in terms of
transmitted optical spectrum are shown in Fig. 5.6. The transmitted CW spectrum for
Iy =1, =40 km with D = 4.3 pskm/nm and D = 21.3 ps’km/nm are shown in Fig.

7(a) and (b), respectively. Figure 5.6(c) and (d) show the results for the case |4 > 1
with D = 14 pskm/nm and I; <I; with D = 16.7 pskm/nm, respectively.

According to Fig. 5.3, at D = 4.3 pskm/nm, the first, second and third order S| all
exhibit high gain with almost the same value. Oppositely, at D = 21.3 pgkm/nm, all
the three orders of Sl appear in minimum value.

As expected, in all figures, the computer simulation results of both Sl gain and
Sl frequency are in a good agreement with the theoretical gain shown in Fig. 5.2, 5.3
and 5.4 together with Eq. (5-19) and (5-28), confirming the accuracy of our analytical
derivation. For high Sl gain as Fig. 5.6(a), Sl arises obviously even in such relatively
short transmission length (2,000 km). On the other hand, in order to observe Sl for
large D , it requires the transmission distance as long as 16,000 km to serve the gain
as shown in Fig. 5.6(b), 8,000 km in Fig. 5-6(c) and 6,000 km in Fig. 5.6(d). This
informs us that strong dispersion management fiber using such the combination of
SMF and RDF can be used to suppress Sl.
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Figure 5.6: Numerica simulation results show the spectrums of optical CW signal
and amplified spontaneous emission (ASE) noise transmitted in dispersion
management transmission line using SMF and RDF with periodic signal

amplification. (&) 2,000-km-transmitted CW spectrum for |, =1, = 40 km with D
= 4.3 ps’km/nm, (b) 16,000-km-transmitted CW spectrum for |, =1, = 40 km with

D = 21.3 pgkm/nm, (c) 8,000-km-transmitted CW spectrum for |, = 40 km, |, =

80 km with D =14 pskm/nm, and (d) 6,000-km-transmitted CW spectrum for |,

40 km, |, =10 kmwith D =16.7 pgkm/nm. All simulation results, for both SI gain

and S| frequency, are in a good. agreement with the theoretical gain shown in Fig.
5.2,5.3and 5.4.

When |, isdetermined, then, it is helpful to use SI gain contour map to design
the operating D,, and P, at the point where the Sl gain becomes as low as possible.

If we consider a practical case when |, =1, , assuming that the local SOD isfixed at a
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given value, the magnitude of SI gain now only depends on P, and D,,. Figure 5.7

shows the gain contour map of the first order of SI concerning the dispersion managed
transmission line using the combination of SMF and RDF. It should be noted that we
should concentrate to the first order Sl because, practically, the low order of Sl is
easier to be phase-matched and causes problem in the long haul transmission than
other high orders. The SMF and RDF parameters used for the calculation are the

same as those have been used for fiber#1l and fiber#2, respectively. In the contour

map, |D| is assumed to be 17ps/km/nm with positive sign for the SMF and minus sign
for the RDF.
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Figure 5.7: Gain contour map of the first order of SI concerning the dispersion

managed transmission line consisting of SMF and RDF for I, =1, =40 kmand |D|

= 17 ps’km/nm with positive sign for the SMF and minus sign for the RDF.
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In Fig. 5.7, for low B, which is referred to relatively short transmission, Sl
possesses relatively low gain over awiderange of D,,. For high power transmission,
using low D,, can avoid the S| gain and, at the same time, move the SI position out
of the signal carrier. However, at some points of P, the SI gain exhibits large value

even at very low D,,, for examples, Sl gain as high as 9 x 10*km™ arises from P, =

5mW at D,, =-0.5pgkm/nm. In order to achieve the maximum performance of the

system, these operating points should be avoided. It should be noted when this
periodic dispersion management using SMF and RDF is not applied to the system, the
first order Sl induced from only periodic amplification in dispersion-shifted fiber

chain exhibits high gain larger than 10°km™ even Py > 2 mW is used.

5.4 Effect of SI on Long Haul WDM Transmission Systems

In dispersion managed transmission system consisting of SMF and RDF, all channels

experience amost the same amount of D,,. Thus, each channel produces its own Sl

that occurs at frequency shifted from carrier frequency by the same amount of
frequency shift with amost the same gain. If two different channels produce Sl at the
same frequency, Sl will cause a serious problem to the channels whose carriers are
placed just at that frequency especially for the frequency where the first order Sl
arises.

In order to confirm our presumption, we perform computer simulations of the
transmission of 4-wavelength CW signal and ASE noise. In the first calculation, we
focus on the case when the first order SI gain generated from two separated channels
enhances each other and positions:on the other two channels; In the calculations, |
isset equal to |, at 40 km and other SMF and RDF parameters are the same as those
used in other calculations described above. According to the contour map in Fig. 8, to
investigate the problem of Sl even the system is operating with condition that yields
relatively low Sl gain, we select Py =3 mW and D,, =-0.5 ps/km/nm, which yields
the first order Sl gain about 2 x 10* km™. Using Eq. (5-28) and the calculation
parameters, the first order Sl will arise at + 77.4 GHz shifted from each carrier

frequency. Next, we place four channels at the frequencies —116.1 GHz, —38.7 GHz,
38.7 GHz, and 116.1 GHz shifted from the zero-dispersion wavelength 1550 nm
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respectively. By this arrangement, SI produced from channel#1 and channel#3 will
arise just at the position of channel#2 carrier. Similarly, Sl induced from channel#2
and channel#4 will occurs just at the position of channel#5-

Figure 5.8(b) shows the spectrum of the 4-channel CW signal transmitted over
4000 km comparing with its initial shape shown in Fig. 5.8(a). By this channel
alocation, the serious distortion of CW spectrum is clearly observed. In order to
avoid this problem, it is necessary to arrange the channel allocation in such away that
none of the channel is placed on the SI frequency.
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Figure 5.8: Optical spectrum of 4-channel CW signal shown in linear scale. |, is set
equal to |, at 40 km, P, = 3 mW-and D,, = -0.5 pskm/nm. In (a) and (b) the

channel spacing is set at + 77.4 GHz where two of the first order Sl from neighbor
channels arise just at channel#2 and channel#3 carrier positions. (@) initia shape
and (b) 4,000-km-transmitted spectrum. By this channel allocation, serious
distortion of CW spectrumsiis clearly observed. (c) and (d), respectively, shows the
initial and 4,000-km-transmitted CW spectrums simulated by decreasing 10 GHz to
shift SI frequency out of signal bandwidth. The transmitted spectrum in (b) appears

in more severe distorted shape than (d) because of Sl.
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Figure 5.8(c) and (d) respectively shows the initial four-channel CW signal
spectrum and its shape after 4,000 km transmission simulated by the same parameters
as Fig. 5.8(b). The channel spacing in this calculation is decreased 10 GHz resulting
in the shift of Sl frequency out of signal bandwidth. Comparing to Fig. 5.8(b) where
the Sl occurs just at the channel position, the output spectrum in Fig. 5.8(d) appearsin
similar shape to the initial than the case of Fig. 5.8(b), confirming the achievement of
avoiding the effect of SI. In fact, as FWM among channels is easy to be phase-
matched when the channel spacing becomes smaller, the decrease in channel spacing
should have led to more signal distortion. However, the transmitted spectrum in Fig.
5.8(b) appears in more severe distorted shape than that of Fig. 5.8(d). This can be
interpreted that the effect of Sl plays a significant role in determining the transmission
performance than the inter-channel FWM for this condition.

To explore the effect of SI on WDM transmission more details, we perform
the calculation of the bit-error rate (BER) of the 4-channel WDM system using
pseudorandom 32-bit Gaussian RZ pulse train as an input optical signal whose bit rate
of each channel is equal to 10 Ghit/s. At the end of the system, the accumulated D,,
is post-compensated by multiplying the complex amplitude of the signal with a
negative amount of linearly accumulated phase shift caused by D,,. We assume the

use of a bandwidth-adjustable optical band-pass filter (OBPF) in front of the receiver
to select the passband channel. This OBPF is also aways adjusted to obtain
minimum BER. The receiver is modeled by 6.5-GHz-cutoff sixth-order Bessel-
Thompson low-pass filter following by BER detector. For obtaining the numerical
BER of the detected signal, the simulation is repeated 128 times for the same pseudo-
random pulse train.- The numerical Q factor of -every -bit is then individually
calculated at the maximum eye-opening point of the bit period. Based on the
assumption of -Gaussian noise distribution, the humerical BER's are computed from

the bit numerical Q factors and averaged over the entire bits [25].



89

—=— Channel spacing is decreased 10GHz to avoid the SI

—e— Channel carrier is positioned just where the first order SI arises I

50 I\ AL A B B L
[ Py=3mW
40 _ D,,=-0.5ps/km/nm _

-log(BER)

O Y e,
2000 2500 3000 3500 4000 4500 5000
Transmission distance [km]

(a)

—m— Channel spacing is decreased 10GHz to avoid the SI

—e— Channel carrier is positioned just where the first order SI arises '

50-""I""'I""I""I""I"'I
r Py=3mW
40 | D,y = -0.5ps/km/nm 1
% 30 | .
m L
R
- 20_— 1
woE________° . __1
| DT ST W T T T ST T [ S TR T T N T W 1

0L NI
2000 2500 3000 3500 4000 @ 4500 5000
Transmission distance [km]

(b)

Figure 5.9: BER as a function of transmission distance calculated from the (4 x 10)-
Ghit/s-32-bit RZ signal for different channel spacings. (a) and (b) show BER curves of
channel#2 and channel#3, respectively. In both (a) and (b), circles show BER obtained
from the system whose signal carriers are placed on the position where the S arises while
squares show BER obtained from 10-GHz-decreasing channel spacing. At BER = 10
(shown by an across dotted line) the systems where the channel alocation is re-arranged
to avoid the position of Sl give significantly longer transmission length.
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Figure 5.9(a) and (b), respectively, shows the calculated BER curves of

channel#2 and 3 as a function of transmission distance simulated by P, = 3 mW and
D, = 0.5 pgkm/nm with different channel spacing setting. The BER curves

obtained from the system whose signal carriers are placed on the position where the
Sl arises (shown by circles) drop more rapidly than those obtained from 10-GHz-
decreased channel spacing (shown by squares). If we defined the maximum
transmission distance obtained at the distance where the BER reaches 10”° as shown
by the across dotted line, the systems where the channel allocation is arranged to

avoid the position of Sl yield significantly longer transmission length. We also
smulated the system with P, = 5mW and D4, = -0.5 ps’km/nm that yields high S|

gain. The result showed more severe degradation of BER for channel carriers
positioned just on SI frequency and, on the contrary, an obvious improvement when a
channel alocation is done to avoid the Sl frequency. This confirms the necessity of
avoiding Sl in higher-order dispersion management long-haul WDM transmission
systems.

55 Conclusion

In this chapter, we have presented the derivation of the analytical expression of the
sideband instability (SI) induced from periodic signal power variation and periodic
dispersion management considering when two different fibers are connected together
to form the dispersion compensation link. Three possible dispersion management
systems were considered: (a) system where dispersion management period is larger
than amplifier spacing, (b) system where the two lengths are equal, and (c) system
where amplifier spacing is larger than dispersion management period.

We found that Sl frequency depends on the larger period between the
amplifier spacing and the dispersion ‘management period. The larger the variation
period becomes, the SI frequency will arise closer to carrier frequency. Moreover, the
gain of Sl appears to be reduced with the increase of local fiber second-order
dispersion (SOD). This is because the increase in the local SOD virtually shifts the
order of Sl to higher order resulting in the difficulty of phase-match process. The
computer simulations were made and their results were in a good agreement with the
derived theory.
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In WDM systems that use relatively narrow channel spacing, we demonstrated
that even the dispersion map is properly designed to achieve low S| gain, Sl causes
signal distortion to specific channels that fall just on the low order SI frequency,
especialy the first order. Additionally to WDM system design rules, the channel
allocation must avoid the Sl position in such away that none of the channel should be
lied at. The computer simulations have confirmed that BER of WDM systems whose

channel location is re-arranged to avoid Sl give a significant improvement of the
transmission performance.



CHAPTER 6
SIMULTANEOUS SUPPRESSION OF TOD AND Sl
IN OPC TRANSMISSION SYSTEMSBY
COMBINATION OF SMF AND RDF

In optical phase conjugation (OPC) systems, the third-order dispersion (TOD) of
optical fibers and the nonlinear resonance at well-defined signal sideband frequencies
called sideband instability (SI) mainly limit the transmission performance. We
propose, for the first time, a scheme for simultaneous suppression of both TOD and Sl
in OPC systems using a periodic higher-order dispersion-managed link consisting of
standard single-mode fibers (SMFs) and reverse dispersion fibers (RDFs). Computer
simulation results demonstrate the possibility of 200-Gbit/s data transmission over
10,000 km in the higher-order dispersion-managed OPC system, where the dispersion
map is optimized by our system design strategies [115].

6.1 Introduction

To expand both capacity and distance of ultra-high-bit-rate optical-time-division
multiplexed (OTDM) transmission systems, management of second-order dispersion
(SOD) and third-order dispersion (TOD) of optical fibers will be one of the key
issues. For this purpose, a special dispersion compensating fiber called the reverse
dispersion fiber (RDF) [58], [60] has been proposed and demonstrated. Since the
standard single-mode fiber (SMF) and the RDF possess aimost equivalent absolute
values of SOD and TOD with opposite signs, the combination of SMF and RDF
realizes a dispersion-flattened transmission line with a sufficiently low average SOD.

Several recent OTDM transmission experiments demonstrated very attractive
results such as the 640-Gbit/s signal transmission over 92 km [61], and the 1.28-Thit/s
signal transmission over 70 km by using SMF and RDF [62]. In dispersion-managed
soliton transmission systems, a recent numerical study showed a possibility of 320-
Ghit/s transmission over 6,000 km employing short-period SOD and TOD
management [63]. Even in wavelength-division multiplexed (WDM) transmission
systems, the combination of SMF and RDF could achieve the data rate as high as 1
Thit/s (104 x 10Ghit/s) over 10,000 km [104].

As an dternative approach for ultra-high bit-rate long-haul transmission,

midway optical phase conjugation (OPC) is an attractive solution to compensate for
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the waveform distortion induced from the interplay between the SOD and the self-
phase modulation (SPM) effect [65]. Several recent works have reported broadband,
wavelength-shift-free, and polarization-independent optical phase conjugators [66],
[67]. These may bring the OPC system into a commercia world in the short coming
future.

However, the ultimate performance of the OPC system is aso limited by the
TOD together with the nonlinear resonance at well-defined signal sideband
frequencies induced by the periodic amplification process called the sideband
instability (Sl) effect [68]. Recently, we have demonstrated by a numerica
simulation that a single-channel transmission with a bit rate of 100 Ghbit/s can
successfully achieve a transmission distance over 10,000 km with TOD compensation
in the OPC system [49].

For the Sl effect, Watanabe and Shirasaki have given a condition for perfect S|
compensation [11]. In order to satisfy the condition, a dispersion-decreasing (SOD)
fiber (DDF), whose SOD-decreasing coefficient is proportional to fiber loss
coefficient, must be installed throughout the entire OPC system length. A good
transmission result of 20-Ghit/s data over 3,000 km [95] was demonstrated by using a
guasi-DDF in which short fibers with different dispersion values were concatenated to
form the dispersion-decreasing profile. However, such an approach sounds too
impractical to be employed in real systems. Moreover, the uncompensated TOD will
show up to affect the long-haul transmission with the bit rate higher than 40 Ghit/s.
Recently, our analysis has demonstrated a more practical way to suppress the Sl by
only applying strong dispersion management [51], [52]. Therefore, by using such
combination of SMF and RDF in the OPC system, the simultaneous suppression of
both Sl and TOD can be expected.

In this chapter, we show, for'the first timetoour knowledge, the simultaneous
suppression of TOD and Sl in ultra-high-bit-rate long-haul OPC transmission systems
using the dispersion-managed fiber link consisting of SMF and RDF. This paper is
organized as follows. Section 6.2 reviews our previous works about the TOD
compensation scheme in OPC systems and the reduction of the Sl gain by employing
the combination of SMF and RDF. Our main contributions presented here commence
from section 6.3. In this section, we discuss the implementation of dispersion
management in OPC systems. We suggest that the symmetric SOD profile with

respect to the mid-point of the system is preferable in order to avoid the nonlinear
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accumulation of amplifier noise when the system operates with relatively high signal
intensity. The performance improvement of the 100-Ghit/s OPC system using the
symmetric dispersion profile is confirmed by numerical simulations even when the
dispersion map is not optimized.

In section 6.4, we discuss the optimum dispersion map design for obtaining
the maximum performance in OPC systems. In section 6.5, we demonstrate that, a
200-Gbit/s data transmission over a 10,000 km distance can be achieved by
simultaneously suppressing TOD and Sl in OPC systems using the dispersion-
managed fiber link consisting of SMF and RDF whose dispersion map is properly
designed. Finaly, the summary of this paper is presented in section 6.6.

6.2 Simultaneous Suppression of TOD and Sl by SMF and
RDF

As described above, the performance of OPC transmission systems is mainly limited
by TOD and Sl effect. Without TOD compensation, a 10,000-km transmission with
data rate of 40 Gbit/s was achieved by following optimum design strategies to avoid
the effect of SI [65]. To increase the transmission bit-rate of the 10,000-km OPC
system, it is necessary to suppress both TOD and SI. In this section, we review and
summarize our previous studies on the TOD compensation scheme in OPC systems
[49] and the reduction of SI gain through the strong periodic dispersion-managed fiber
link [51], [52].

6.2.1 TOD Compensation Schemein OPC Systems

The accumulation characteristic of TOD in OPC-systems can be discussed through
three characteristic scales: the SOD length L, the TOD length Lgs, and the nonlinear
length Ly, which are defined in [4]. In OPC systems, the SOD exists along the entire
transmission length; therefore, L4, becomes many times shorter than L, for the case of
high bit-rate transmission. When L4, is much shorter than L and Lgs, the signa
pulses are rapidly broadened by SOD, and their peak power decreases after
transmitting for several Lg. This means that the broadened pulses almost do not
experience the effect of fiber nonlinearity. Thus, in ultra-high-speed OPC systems,
the accumulation of the TOD-induced phase shift increases ailmost linearly with the
transmission length at an ordinary operating signal power. The linear TOD

accumulation enables us to achieve perfect TOD compensation by placing only one
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compensator at any point in the line, or even fredly installing distributed
compensators without the necessity of concerning their intervals.

When TOD is perfectly compensated in OPC systems, the 100-Gbit/s data
transmission over 10,000 km [49] can be made possible at the balance point of the
improvement of signal-to-noise ratio (SNR) and the degradation from Sl effect. In
order to further improve the transmission performance of the TOD-compensated OPC
system, the waveform distortion induced from Sl effect must be overcome.

6.2.2 Reduction of Sideband Instability Gain by Strong Dispersion

M anagement
As shown in previous chapter, the gain of SI can be practically reduced by using a
strong periodic dispersion-managed transmission line such as the combination of
SMF and RDF, instead of uniform dispersion line [51], [52]. This is because the
increase in the local fiber SOD virtually shifts the order of SI to higher orders
resulting in the difficulty of phase-match process. Furthermore, the frequency where
Sl arises depends on the larger period between the amplifier spacing (I;) and the
dispersion management period (l,). The larger the variation period becomes, the
closer to the carrier frequency the Sl frequency arises.

In order to show the reduction of Sl gain through a periodic dispersion-
managed line, here we calculate the gain contour map of the first-order Sl focusing on
the dispersion-managed transmission line consisting of SMF and RDF. The
dispersion management profile is the ssmple type where one SMF and one RDF with
an equivalent length are only connected together. In each dispersion management
period, SMF is placed before RDF at the output end of the amplifier. The placement

of signal carrier frequency determines the values of the operating average SOD D,
and the local SOD D. In Fig. 6.1, the' gain map is obtained as a function of |, and an
input signal power P, when D,, and D are given. It should be noted that we should

concentrate to the first order Sl because, practicaly, the low order of Sl is easier to be
phase-matched and causes more serious signal distortion in long haul transmission
systems than higher order SI. The fiber loss coefficient «;, and the fiber nonlinear

coefficient y, of SMF used for calculating the gain map are 0.2 dB and 1.6 W'km'™,
respectively, while o, , y, representing those of RDF are 0.25 dB and 6.8 Wikm™?,
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respectively. D, is set at —1 pskm/nm and |D| = 17 pskm/nm. Comparing with

these gain maps, the magnitudes of the first, second, and third-order Sl gains of a non-
dispersion management system as a function of the input power is shown in Fig. 12.
In this case, the transmission fiber is assumed to be a dispersion-shifted fiber (DSF)

with @ =0.2dB and y = 2.6 Wkm™.
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Figure 6.1: Gain contour map of the first-order SI focusing on the dispersion-
managed transmission line consisting of SMF and RDF. The gain is calculated as

a function of 1, -and-an input signal power- Py when an average SOD D,, and &

fiber local SOD |D| are set at —1 ps’km/nm and 17 ps/km/nm, respectively.

In Fig. 6.1, for low B, (< 3 mW), Sl possesses very low gain over a wide
range of |, ; thus, SI may not affect the signal transmission for relatively short

distance systems. Even in high power transmission (from 3 mW to 15 mW), Sl till
exhibits relatively low gain (< 10°km™) comparing with the gain shown in Fig. 6.2 at
the same Py . Without dispersion management, Fig. 6.2 indicates that the Sl gain
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almost linearly increases with P, and exhibits a value larger than 10 km™ even for

Py =2 mW for the first-order Sl.

The linear accumulation of TOD, together with the reduction of Sl gan
through strong dispersion management open a possibility of simultaneously
suppressing TOD and Sl in OPC systems by using the higher-order dispersion
management transmission line such as the combination of SMF and RDF.

Assuming that TOD and Sl are perfectly suppressed in OPC systems, there
remains the problem originated from the accumulation of the transmission of
amplified spontaneous emission (ASE) noise which is enhanced during the
transmission by parametric interaction between SOD and SPM [65]. As shown in
Fig. 6.3, the transmission of the ASE noise is not symmetrical with respect to the
midpoint of the system. Thus, only part of the nonlinear enhancement can be
compensated by OPC while there still exists the accumulated ASE noise, which is

enhanced by the nonlinear interaction.

14 I s T 3 u T T > } T T T - E | T 3
12}
_ [ First-order SI
'E 10 _— .
X [
[ap] £
o 8t i
2 |
c I Second-order Si
£ sl
(D L
i
2 , / ]
: Third-order Sl
O § 1 I i N | L " N L 1 N ) i N | i " N L |
0 5 10 15 20

Input signal power [mW]

Figure 6.2: Magnitudes of the first, second, and third-order Sl gains arising from a
non-dispersion management system. The gains are obtained as a function of signal
input power. The transmission fiber is assumed to be only DSF with « = 0.2 dB
and y =2.6 Wkm™,
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It should be noted that this fiber nonlinearity-enhanced ASE noise cannot be
suppressed by the combination of SMF and RDF. However, its harm is expected to
reduce through large fiber local dispersion with sufficiently large compensation
period. This is because the signal pulses are rapidly broadened by SOD, therefore,

they almost do not experience the effect of fiber nonlinearity.

Part of the transmission of ASE noise
where the nonlinear enhancement is accumulated

o O Qe (O

Part of the transmission of ASE noise where the nonlinear enhancement is compensated via OPC

Figure 6.3: Transmission of ASE noise in OPC system. ASE noise produced from
each optical amplifier is enhanced during the transmission by parametric interaction
between SOD and SPM, and will accumulate to the end of system. Since the
transmission of ASE noise is not symmetric with respect to the system mid-point,
therefore, only part of the nonlinear enhancement can be compensated by OPC while
their remains an amount of ASE noise that is enhanced by the nonlinear interaction

and accumulates to the end of system.

6.3 Implementation of Dispersion Management on OPC
Systems

The most practical way available now to.compensate TOD for ultra-high bit-rate long-
haul transmission is probably the use of the dispersion-managed fiber link such as the
combination of SMF and RDF. In the previous section, we have shown that SI
induced from the periodic power variation can be suppressed by using periodic
dispersion management with large local dispersion. Therefore, by using such
combination of SMF and RDF in OPC systems, the simultaneous compensation of

both TOD and SI can be expected. Moreover, the accumulation of D, will be
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automatically compensated by OPC without post compensation used in ordinary

dispersion management systems.

6.3.1 Possible Installing Dispersion Profiles

Figure 6.4 illustrates two possible schemes to install dispersion management in the
OPC transmission system. In Fig. 6.4(a), both periodic dispersion variation and
periodic power variation are in uniform distributions along the entire system length.
On the other hand, in Fig. 6.4(b), the order of SMF-RDF is reversed to RDF-SMF
after the midway OPC yielding the symmetric distribution of the periodic dispersion

variation with respect to the system mid-point.

SMF RDF

Amp

Power

} 3 3

SMF N SMF

DlsperSIon o {____i _ROF I‘___l *__, _
T T f f f 1‘ T T distance

Accumulation of SPM-local dispersion interaction due to asymmetric dispersion profile

(a)

Power
SMF 3\\ SMF;

D:spers:on R i__j ROF .
T T f t f f T T dlstance

Part of SPM-local dispersion interaction is compensated by symmetric dispersion profile

(b)

Figure 6.4: Two possible ways for implementing the dispersion management in
OPC transmission system. In (a) both periodic dispersion variation and periodic
power variation are in uniform distributions along the entire system length. On the
other hand, in (b), the order of SMF-RDF is reversed to RDF-SMF after the
system mid-point, forming the symmetric distribution of the periodic SOD
variation with respect to the system mid-point. The symmetric dispersion profile
in (b) gives better transmission performance than profile (a) especially when the
systems operates with high signal power because part of the interaction between

SPM and fiber local dispersion is compensated by OPC.
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We suggest that the symmetric dispersion profile in Fig. 6.4(b) gives better
transmission performance than the other profile especially for high power
transmission. The reasons can be explained as follows: First, when the nonlinear

length L, is longer than the periods of the variations, due to the uniform distributions

in Fig. 6.4(a), each order of SI arises from one frequency determined by the two
periodic perturbations and experiences the gain whose magnitude exponentially
increases with the transmission length. On the other hand, for the dispersion
management profile in Fig. 6.4(b), the system in the first half and second half produce
their own SI at different frequencies whose separation depends on the difference in
the nonlinear coefficient and the fiber loss coefficient between SMF and RDF.
However, each resonance frequency experiences the SI gain only half of the system
length, the signal distortion may not be so severe as that occurs from the dispersion
profile in Fig. 6.4(a).

Second, for high power transmission, when L, becomes comparable or

shorter than the compensation interval, the interplay between SPM and the local
dispersion of each fiber occurs and causes additional signal waveform distortion.
With this consideration, by constructing the symmetric dispersion compensation
profile as shown in Fig. 6.4(b), part of the interaction between SPM and local
dispersion of the fiber will be compensated by OPC whether the power variation
distribution remains unchanged. Oppositely, for the profile in Fig. 6.4(a), this
interaction will accumulate along the transmission length due to the asymmetric
distribution with respect to mid-point of both periodic power variation and periodic

dispersion compensation.

6.3.2 Computer Simulations

In order to evaluate our proposed SI suppression method in OPC systems, we perform
a computer simulation of the transmission of 100-Gbit/s data composed of 32-bit
pseudorandom Gaussian RZ pulses based on the system models in Fig. 6.6. In the

calculation, we set /,= [/, = 40 km. TOD is assumed to be 0.06 ps/km/nm for SMF

and -0.06 ps/km/nm for RDF. Other SMF and RDF parameters used in this
simulation are the same as used above. The optical amplifier produces ASE noise
with noise figure of 5.3 dB (ny, = 1.7). The optical pulse at the midway of the system

is conjugated by an ideal infinite-bandwidth optical phase conjugator.
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When the combination of SMF and RDF is not applied for TOD
compensation, the TOD compensator, placed only at the end of system, is assumed to
be an ideal device that multiplies the complex amplitude of the signal with a negative
amount of linearly accumulated phase shift caused by TOD. Also, for signa
transmission in this case, DSF with the same parameters as the calculation above is
used.

To see the efficiency of the SI suppression more obviously, the input signal

power Py is set at 21 mW giving L, becomes equivalent to |,. Also for al other
cases, P, will be set at this value. Since SMF and RDF exhibit different values of «
and y, we calculate L, of the system employing SMF and RDF by using the average

values of those parameters. With P, = 21 mW, L, of the system constructed by

SMF and RDF becomes approximately 36 km, which is dlightly shorter than that of
DSF.

The propagation of the optical pulse is calculated by solving the nonlinear
Schrodinger equation (NLSE) by the split-step Fourier method (SSFM) [4]. The
integration step size of SSFM is aways chosen at the value that gives a step size error
less than 0.01 % [116]. The receiver is modeled by an optical band-pass filter
(OBPF), a 65-GHz-cutoff sixth-order Bessel-Thompson low-pass filter, followed by a
BER detector. The system performance is evaluated in terms of the numerical bit-
error rate (BER). The bandwidth of the OBPF is adways adjusted to obtain the
minimum BER. To caculate the numerical BER of the detected signal, the
simulation is repeated 128 times for the same pseudo-random pulse train. The
numerical Q factor of every bit is then individually calculated at the maximum eye-
opening point of the bit period. 'Based on the assumption of the Gaussian noise
distribution, the numerical BER is computed from the bit numerical Q factor and
averaged over the entire bits [50].
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Figure 6.5: BER of several OPC systems, calculated as a function of transmission
distance. For all OPC systems, the input signal power is adjusted to give L,

equivalent to |, at 40 km. Circles show BER obtained from the system where only

TOD is compensated. Squares show BER of the system using SMF and RDF as
transmission fiber with the symmetric dispersion management profile of Fig. 6.4(b),
while triangles show BER of the system employing the asymmetric dispersion
profile of Fig. 6.4(a). Crosses show BER of the system where TOD is neglected.
Diamonds show BER obtained from the system where both TOD and Sl are
neglected. At BER = 10, the achievable transmission length of the system using
symmetric dispersion increases 2000 km longer than the system where only TOD is
compensated without using SMF and RDF. Furthermore, BER of the system
employing the asymmetric dispersion becomes the worst due to the accumulation of

the nonlinear interaction between SPM and local fiber dispersion.
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Figure 6.5 shows the calculated BER as a function of transmission distance.

According to the condition L, = /., when only TOD is compensated (shown by

r
circles), the performance of the system is limited by SI and the nonlinear distortion
from the interaction between SPM and local dispersion in each segment of fiber.
Thus, BER of the system in this case rapidly decreases. When the dispersion
management profile in Fig. 6.4(b) is employed to the system (shown by squares),
BER curve drops significantly slow. Comparing to the case without the combination
of SMF and RDF, by using SMF and RDF, the achievable transmission length at BER
=107 can be further extended approximately 2000 km. Moreover, the BER curve of
the system where TOD is neglected (shown by crosses) almost fits with that obtained

from TOD-compensated system. This result mentions that this SI suppression method
does not affect accumulation characteristics of TOD since /, is still much shorter than
the TOD length L, (= 280 km) so that in the TOD scale, the signal propagates as if
there is no dispersion management ever be installed.

On the other hand, BER of the system employing the dispersion profile of Fig.
6.4(a) (shown by triangles) obviously becomes worse than others due to the reasons
described above. Furthermore, the difference in transmission distance between the
BER curve obtained from the system using the dispersion profile of Fig. 6.4(b) and
the BER curve obtained from the system neglecting TOD and SI (shown by
diamonds) mainly comes from part of the interaction between SPM and local fiber

SOD that cannot be perfectly compensated by OPC.

6.4 Optimum Dispersion Map for Higher-Order
Dispersion-Managed OPC Systems Using SMF and
RDF

When ‘the combination of SMF and RDF is employed to a given system, the fiber
local SOD and the average SOD are almost automatically determined by the
placement of operating signal wavelength. In this case, the maximum system

performance will be achieved by determining the optimum /, and signal power.

Below, we discuss the optimum dispersion map design considering the OPC systems

using I, >1,,1,=1,,and [, <I,.
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6.4.1 OPC Systems Using /, >/,

For given [, (1, >1,), the increase in the signal power can help improving SNR. At
the same time, when the signal power is increased until L,, becomes comparable to,
or shorter than /,, the signal pulse will experience the local SOD rather than its
periodic variation. In this case, SI determined by the period of /, on each local fiber

length also arises. Additionally, the signal will also be attacked by the interaction

between SPM and the local SOD. Therefore, for given [, (1, >1,), the maximum

system performance will be achieved by using an optimum input power which yields
the balance of the improvement in SNR and the degradation described above.

Even the use of very large /, (1, >/,) can also help reducing the nonlinear
enhancement of the ASE noise since the signal and the ASE noise will transmit
through large local SOD which repeats for long length [93]. Additional to the
problems discussed above, the larger /, we use, SI, whose position is determined by
[, in this case, will occur at the frequency closer to the signal carrier. Therefore,
even only a small SI gain may cause serious signal distortion. As a result, for larger
[, , the optimum signal power will exhibit lower value than that of shorter /, .
Furthermore, the system may give a good result close to the linear SNR limit for
relatively low power transmission. However, the system performance will degrade
very immediately after reaching the optimum signal power.

Comparing to ordinary dispersion management systems, in OPC systems, such
optimum power will be found at relatively high value since dispersion exists along the

transmission yielding L,; several times shorter than Z,;, especially for the case of high

bit-rate transmission.

6.4.2 OPC Systems Using {, =/,

When [, =1,, the transmission of signal is expected to give a good result since SI

occurs at the furthest frequency from the signal carrier. However, the signal, in this
case, keeps its high peak power during the transmission because the signal almost

restores its shape at each /, due to low average dispersion. Therefore, it is easy to be
affected by the nonlinear effect. When L, >/, =1,, the nonlinear enhancement of

ASE noise by the interaction between SPM and average SOD, which is more severe
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than that of system with /, >/, becomes a main problem that limits the system.

Moreover, in the second half of the system, RDF, which exhibits larger nonlinear
coefficient than SMF, is installed near the output of the optical amplifier according to
the symmetric SOD distribution. This results in more serious enhancement of ASE
noise since, in the second half, the signal and the accumulated noise will propagate

through the highly nonlinear RDF where their powers are still intense. When L,

approaches /, by the use of high signal power, the interaction between SPM and fiber

local SOD also arises and causes additional signal waveform distortion. By these

reasons, the system constructed with /, =/, may not be expectable to give good

transmission performance comparing to /, >/, case and even /, </, case.

6.4.3 OPC Systems using /, </,

For the system with /, </, SI will arise at the same frequencies as those of the
[, =1, case since the position of the resonance frequency depends on the larger
period between /, and /,. With increasing the signal input power, similar to the case
of [, =1,, the problem which limits the performance of the system comes from the

enhancement of the amplifier noise by the interaction between SPM and average
SOD. However, even if we reverse the order of fibers after the mid-point to form
symmetric dispersion profile, the nonlinear accumulation of amplifier noise will not
be so severe as the case of /, =/, . This is because the signal at high peak power does
not propagate on highly nenlinear RDF for a long length.

Even L, becomes very short by using relatively high input power, the
interaction between the local SOD and SPM will not be so serious as the case of
I, =1;. This is because the signal does not too much feel the local SOD as long as

L, 1s still not comparable to /,. This makes the systems with /, </, may yield a

significant tolerance to high power transmission comparing to other cases. At given

I, (I; <), the optimum power will exhibit relatively high value than the case of
[, >1,. However, for a low input power, the system may not give good performance

comparing to the case of /, >/, according to the interaction of SPM and average

SOD.
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From the above discussion, for each [, , the optimum input power for
achieving maximum transmission performance will be found at different values. One

will be relatively low input power obtained for the case /, >1,. The longer /, is, the

lower the optimum power becomes. The other one will be found at relatively high

value for the case /, </, and will be higher value with the reduction in /, . However,

the system operating with /, =/, may not give as good result as the others.

6.5 Ultimate Performance of Higher-Order Dispersion-

Managed OPC Systems

To explore the ultimate performance of the higher-order dispersion-managed OPC
systems employing the combination of SMF and RDF when the systems are operating
in optimum conditions, we perform extensive computer simulations of the systems
with data rate of 100 Gbit/s, 160 Gbit/s, and 200 Gbit/s. The SOD profile used in the
simulations is the symmetric profile shown in Fig. 6.4(b). The system parameters and
fiber parameters are all the same as above calculations.

Figures 6.6, 6.7, and 6.8, respectively, show the calculated BER at 10,000 km
of OPC transmission systems with data rate of 100 Gbit/s, 160 Gbit/s, and 200 Gbit/s

as a function of the signal input power £, for several /, (10 km, 40 km, 80 km, 160

km, and 240 km).  In each figure, BER of the same OPC system neglecting the

nonlinear coefficient y 1s also calculated to show the linear SNR Ilimit for

comparison.
According to the simulated results of the 100-Gbit/s OPC systems shown in

Fig. 6.6, for low F,, BER of the systems with larger /, appears in a value closer to
the SNR limit because the use of large /, can help avoiding the effect of fiber
nonlinearity. For higher F,, BER of the systems using large /, start decaying rapidly
while that of system using /, = 10 km still shows a good result due to its tolerance to
fiber nonlinearity. As discussed above, the system with /, is set equivalent to /, at

40 km shows the worst result. However, with defining a maximum transmission
distance at BER = 10'9, all 100-Gbit/s systems can achieve 10,000-km transmission

for a wide range of F,. In comparison with these results, the system using DSF
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incorporated with TOD compensation can only reach 10,000 km by only P, =7 mW

[49]. This mentions the significant improvement of the OPC system by using the

higher-order dispersion management transmission line consisting of SMF and RDF.
For the 10,000-km transmission result of 160-Gbit/s data shown in Fig. 6.7,

the existence of the optimum F, can be observed more obviously. The systems with
[, = 240 km, 160 km, 80 km, and 10 km reach maximum performance, at BER
smaller than 10'9, with their own optimum £, at 9 mW, 10 mW, 14 mW, and 15 mW,
respectively. As predicted, the optimum £, for longer /, is found at lower value.
However, system with /, =40 km no longer succeeds BER = 107 for all range of F,.
According to this ultimate performance of dispersion-managed OPC systems,
further increase in transmission bit-rate can be expected. The calculated BER of 200-

Gbit/s data transmission at 10,000 km shown in Fig. 6.8 indicates the possibility of

this ultra-high bit-rate long-haul transmission at BER = 10 using / , = 240 km with
F,=11mWor /, =10km with £, = 15 mW.

To extend the bit-rate more than 200 Gbit/s in 10,000-km transmission, the

easiest way may be the optimization of the average SOD value D, . The increase in
D, can reduce the effect of fiber nonlinearity, at the same time, moving the SI which

is not completely suppressed to occur more inner signal bandwidth. The optimum

D will be found under the balance of these two effects.

6.6 Conclusion

In this paper, we have proposed for the first time the simultaneous suppression of two
main problems, TOD and SI, in OPC transmission systems by employing the higher-
order dispersion-managed fiber link consisting of SMF and RDF.

In order to implement the combination of SMF and RDF on OPC systems, we
demonstrated that it is necessary to use the symmetric dispersion profile with respect
to the mid-point of the system to reduce the SI gain together with the accumulation of
the interplay between SPM and the fiber local dispersion. Finally, the computer
simulation results have demonstrated that the 10,000-km transmission of the data rate
as high as 200 Gbit/s is made possible at BER = 10” by the higher-order dispersion-

managed OPC system whose dispersion map is properly designed.
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Fig. 6.6. BER of higher-order dispersion-managed 100-Gbit/s OPC transmission
systems at 10,000 km as a function of the signal input power B, for severa |, (10 km,
40 km, 80 km, 160 km, and 240 km), comparing with the linear SNR-limited BER. At
BER = 10°, all-systems can achieve 10,000-km transmission for a broad range of P.
Since the OPC system using DSF where TOD is compensated can only reach 10,000
km by only B, = 7 mW [49], these results show the significant improvement of OPC

system by using the higher-order dispersion management transmission line consisting
of SMF and RDF to eliminate both TOD and SI.
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Fig. 6.7 BER of higher-order dispersion-managed 160-Gbit/s OPC transmission
systems at 10,000 km- as a function of the signal input power P, for severa |, (10 km,

40 km, 80 km, 160 km, and 240 kmy), comparing with the linear SNR-limited BER. The

systems with |, = 240 km, 160 km, 80 km, and 10 km reach maximum performance,
with BER smaller than 10°°, with the optimum P,’at 9 mW, 10 mW, 14 mW, and 15
mW, respectively. - However, system with |, ='|, = 40 km does not achieve BER =

10 for all range of P,.
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Fig. 6.8: BER of higher-order dispersion-managed 200-Gbit/s OPC transmission
systems at 10,000 km as a function of the signal input power P, for severa |, (10
km, 40 km, 80 km, 160 km, and 240 km), comparing with the linear SNR-limited
BER. The 10,000-km transmission of the data rate as high as 200 Gbit/s becomes
possible at BER = 10° by using |, =240 km with P, = 11 mW or |, = 10 km with

P, =15 mW in the higher-order dispersion-managed OPC transmission system.



CHAPTER 7
SUPPRESSION OF NONLINEAR WAVEFORM
DISTORTION INDUCED BY KERR EFFECT IN
OPC SYSTEMSUSING DISTRIBUTED RAMAN
AMPLIFICATION

In optical phase conjugation (OPC) systems, the third-order dispersion (TOD) of
optical fibers and the nonlinear resonance at well-defined signal sideband frequencies
called sideband instability (SI), which is induced by Kerr effect, mainly limit the
transmission performance. We propose, for the first time, a scheme for suppression
not only the Sl effect but all the signal distortion induced by Kerr effect in OPC
systems using distributed Raman amplification (DRA) to form a reverse power
distribution in the second half of the system. In combination with TOD compensator,
our simulation results demonstrate that, a 100-Gbit/s data transmission over 10,000
km with 50-km amplifier spacing and a 200-Ghit/s data transmission over 10,000 km
with 40-km amplifier spacing is achieved in the OPC systems using the DRA [117].

7.1 Introduction

Broadband optical amplifier, together with broadband dispersion compensation
technologies are necessary to respond the ever-increasing demand for transmission
bandwidth in dense wavelength-division-multiplexed (DWDM) systems.
Nevertheless, due to the difficulty in expanding the gain bandwidth of conventional
erbium-doped fiber amplifier (EDFA), distributed Raman amplification (DRA) using
transmission fiber is currently attracting interest [118]. Thisis due to the fiber Raman
amplifier (FRA) offers several advantages to the EDFA, such as wider amplification
bandwidth, higher optical-signal-to-noise-ratio (OSNR) which consequently resultsin
the reduction of fiber nonlinearity and the possibility of increasing amplifier span,
flexible use of signal wavelength since stimulated Raman scattering (SRS) provides
gain at any wavelength with the provision of a suitable pump source. Moreover, the
gain bandwidth of FRA can be designed and expanded by using multiple pumping
scheme and carefully designing the relative positions and powers of the pump lights.
Gain bandwidth in excess of 17 THz has been demonstrated using the FRASs pumped
at multiple wavelengths [119].
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Several DWDM transmission experiments have successfully achieved using
the DRA, such as, 3.28 Thit/s (82 x 40Gbit/s) over 3 x 100 km of non-zero-
dispersion-shifted fiber [120] and 1.05 Thit/s (105 x 10Gbit/s) over 8,186 km [121].

For dispersion compensation, midway optical phase conjugation (OPC)
system is an attractive candidate for ultra-long-haul high-speed transmission since the
signal waveform distortion induced from the interplay between fiber dispersion and
the Kerr effect can be amost compensated [65]. However, the ultimate performance
of the OPC system is also limited by the third-order dispersion (TOD) together with
the nonlinear resonance at well-defined signal sideband frequencies induced by the
periodic amplification process through the Kerr effect called the sideband instability
(SI) effect [50]-[52]. Recently, we have demonstrated by numerical ssmulations that a
single-channel transmission with a bit rate of 100 Gbit/s can succeed a transmission
distance over 10,000 km by only performing TOD compensation in the OPC system
[49].

For the S| effect, a condition for perfect SI suppression has been given by
Watanabe and Shirasaki [95]. In order to satisfy their condition, a dispersion-
decreasing fiber (DDF), whose dispersion-decreasing coefficient is exactly
proportional to the fiber loss coefficient, must be installed throughout the entire OPC
system length. More recently, we have demonstrated a practical way to
simultaneously suppress both TOD and SI by only applying strong higher-order
disperson management using the combination of the standard single-mode fiber
(SMF) and the reverse-dispersion fiber (RDF) [60], [115]. Our computer simulation
result has shown that the 10,000-km transmission of the data rate as high as 200
Ghit/s is made possible by the higher-order dispersion-managed OPC system whose
dispersion map is properly designed [115].

In this chapter, we propose the aternative application of DRA for
compensating residual signal waveform distortion caused by the Kerr effect in ultra-
long-haul high-speed OPC transmission system. The DRA in combination with
optical attenuator, in this case, is used for producing the reverse periodic signal power
variation on the second-half of OPC system, which results in the entirely symmetrical
signal power distribution with respect to the midway OPC. By this scheme, not only
the Sl effect but all the signal waveform distortion induced by the Kerr effect whichis
accumulated from the first-half will be perfectly compensated by transmitting the
conjugated signal through the second half.
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This chapter is organized as follows. Section 7.2 gives the basic knowledge
about the DRA using a transmission fiber. Section 7.3 devoted to the design of the
DRA gain using bidirectional pumping scheme to achieve the reverse power
distribution. In section 7.4, the system configuration of ultra-long haul high-speed
OPC systems using the combination of DRA and optical attenuators, together with the
TOD compensator is proposed for the first time to our knowledge. The simulation
results obtained from the system model demonstrate that, a 100-Gbit/s data
transmission over 10,000 km with 50-km amplifier spacing and 200-Gbit/s data
transmission over 10,000 km with 40-km amplifier spacing can be achieved when the
DRA is used to form the reverse power distribution in the second half of the OPC
systems.

7.2 Distributed Raman Amplification Using Transmission

Fiber
Theoretically, the nonlinear waveform distortion induced from the Kerr effect can be
completely compensated by the OPC if the signal power distribution in the second
half of the system mirrors the distribution in the first half [65]. For the system using
cascaded lump EDFAS, such power distribution can not be realized. We propose that
the use of distributed gain from Raman amplifiers or the combination of the Raman
amplifiers with EDFA may bring such power distribution to reality.

Raman gain in optical fibers arises from the transfer of power from one optical
beam to another that is down shifted in frequency by the energy of an optical phonon.
Practically this can be produced by inject high power laser pump whose frequency is
higher than the signal carrier frequency by an amount of Raman frequency shift into
transmission fibers [4].

The measured Raman gain in fused silicaat a pump wavelength of 1000 nm
has been shown in Fig. 2.9, as a function of frequency shift from the pump. The
Raman gain exhibits the gain over a large bandwidth up to 40 THz with a broad
dominant peak near 13 THz.

Figure 7.1 shows several pump configurations of DRA. In Fig. 7.1, (a) shows
the co-propagating pump scheme, (b) the counter-propagating pump scheme, and (c)
the bidirectional pump scheme, and (d) when combined with EDFA. It was shown
that co-propagating pump scheme suffers from the pump depletion than counter-

propagating pump scheme. However, co-propagating pump scheme gives better SNR
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than that of counter-propagating pump scheme. On the other hand, bi-directional
pumping produces high gain and provides high SNR for medium pump power. For
higher pump power, the counter propagating pumping yields the best in both gain and
SNR[122].
The forward pump power (P, ), backward pump power (R,), signal power
(PR,), and noise power (P,) evolutions in one link of FRA are governed by the DRA
equations as shown in Eq. (7-1), (7-2), (7-3), and (7-4), respectively [125].
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In Eq. (7-1), (7-2), (7-3), and (7-4), zis the transmission distance, «,, a,, and «, are

the fiber loss coefficients at frequencies of the forward and backward pump (single

wavelength pumps), signal, and noise, respectively. Similarly, f, , f,, and Af are
the frequencies of the pumps, signal, and the bandwidth of noise, respectively. G; is
the Raman gain coefficient at signal frequency, K and A the polarization factor

and the effective core area, h,, kg, and T the Plank’s constant, the Boltzman's
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constant, and the temperature in Kelvin unit, and Rl the Rayleigh back-scattering
coefficient. From the DRA equations shown above, the signal power evolution in the
bi-directional pumping DRA depends on the pump powers launched into the fiber.
Therefore, the signal evolution in FRA link can be designed by using appropriate
pump powers.
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Figure 7.1: Several pump configurations of Raman amplifier. (a) shows the co-
propagating pump scheme, (b) the counter-propagating pump scheme, (c) the
bidirectional pump scheme, and (d) when combined with EDFA.
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In Fig. 7.2, we propose a configuration which employs the DRA for obtaining
symmetrical power distribution with respect to system midpoint. Comparing with the
power distribution in cascaded EDFAS shown in Fig. 7.2(a), the use of bi-directional
pumped DRA and optical attenuators in the second-half of the system, shown in Fig.
7.2(b) may enables us to form reverse power distribution of the first half. This
reverse power distribution does not only result in the reduction of Sl effect, but also
provides the avoidance of al nonlinear waveform distortion induced from the Kerr
effectsin OPC transmission systems. With the proposed scheme, in combination with
lump TOD compensators, the vanishing of both TOD and Sl in OPC systems can be
expected.
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Figure 7.2: Periodic signal power variation (a) in chain of EDFA and (b) with DRA in

the second half to form reverse power distribution.
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7.3 Generation of Reverse Signal Power Distribution by
DRA

For long distance transmission, periodic lump amplification is used for maintaining a
good SNR at areceiver. The fiber loss and the periodic gain form a periodic signal
power distribution along the system length, producing a periodic variation of the fiber
refractive index through the nonlinear Kerr effect of an optical fiber. This process
constructs a virtual grating in the transmission fiber. The resonance between the
virtual grating and the signal will occur at signal sideband components whose wave
vectors match with the wave vector of thisvirtual grating, resulting in the exponential
growth of those components with transmission length.

This phenomenon is known as the sideband instability (Sl), which causes
signal waveform distortion if the SI arises at frequencies inside the signal bandwidth.
Figure 7.2(a) shows the signal power evolution in the OPC system constructed by the
chain of lossy fiber and the lump amplification. Since the signal power distribution in
practical OPC systems is not symmetrical with respect to the mid-point, the SI cannot
be compensated and will accumulate to the end of the system length. On the other
hand, by constructing the symmetrical power distribution with respect to the midway
OPC, as shown in Fig. 7.2(b), the Sl induced in the first half will be compensated
while the signal propagates through the second half of OPC system. In order to obtain
such symmetrical power distribution, the signal transmission through the second half
requires a distributed gain whose gain coefficient is equal to the loss coefficient of the
fiber used in the first half. However, such reverse power distribution can never be
realized if alossy fiber and lump amplification is used for signal transmission.

Here, we bring the reverse power distribution into the real world by using the
bidirectional pumping DRA. Since the signal power evolution in FRA depends on the
pump powers taunched into the fiber, there should existsthe appropriate pump powers
which give the reverse power distribution. To find out those powers, we numerically
calculate the signal power transmission in one span DRA using the model based on
the DRA equations presented in [123]. We assume the use of a single wavelength
pump light because the Raman gain bandwidth of about 2 THz, which is sufficiently
broad and flat enough for single channel data rate used in our simulations, can be
produced by only single wavelength pumping. The signal wavelength is 1,550 nm.
The pump wavelength is 1,450 nm, which is corresponding to the 13.2-THz-up-shift
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from signa carrier frequency. Two pump lights are launched into the input end of
fiber, which propagates forward, and the output end of fiber, which propagates
backward. The model in [123] aso accounts for the temperature-dependent
spontaneous Raman scattering noise and the Rayleigh back scattering with multiple
reflections, which are considered as noise. For simplicity, the evolution of signal
power and noise are treated separately because the noise effects has little influence on
the distributed Raman gain spectrum and the signal evolution [124], [125]. In our
calculations, the Raman gain spectrum with polarization factor of 2, and the
attenuation spectrum of silica fiber shown in [2] istaken. The fiber is the dispersion-

shifted fiber (DSF) with effective core area A, = 50z m”. The signal and noise

evolution is computed by integrating the FRA equations using the fourth-order
Runge-Kutta (RK4) method [94] with the integration step size of 10 m.
In order to obtain the reverse power distribution from the FRA, we first

calculate the target reverse power distribution P39(z) with a given input signal power

P39 and keep it asreference. It should be noted that P39 refers to the signal power at

the output end of fiber span for the case of ordinary lump amplification, which can be

calculated by P39 = P39 exp(-al), where pss is the signal input power for lump

pump

amplification,  the fiber loss coefficient, and L the amplifier span. Then, the FRA
equations are solved iteratively until we obtain the bidirectional input pump powers
(P : forward pump power and P : backward pump power), which yield least

normalized root-mean-square error Err(P,,P.) defined as

[P (Pa P =R (2) 2

IOL P (2) “dz

where P39 (P+ P, Z) represents the reverse power distribution obtained by DRA.

Err(P,,P )=

X 100(%) , (7_ 5)

Table 7.1 shows the optimum P, and P and their corresponding err(p,p) at
severa p, for L =40 km and 50 km. Err(p,p) becomes larger for higher value of R, .
At given Ry, the use of 50-km span yields larger Err(P,P ) than that of the 40-km

span. We also calculate Err(P_,P ) from the 80-km span. Err(P,P) larger than 30 %

is resulted from such long span. For instance, Fig. 7.3 and 7.4 shows the reverse
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power distribution from DRA with err(P,P) of about 7.3 %, compared with the

reference calculated by P, = 5 mW and L = 40 km and the corresponding pump

power evolutions. The reverse power distribution obtained from DRA is amost

curve-fitted with the reference, indicating the possibility of generating reverse power

distribution by DRA.

It should be noted that we aso explore the backward and

forward pumping schemes. However, the reverse power distribution with sufficiently

low error cannot be constructed by these two schemes.

Table 7.1: Raman pump powers for constructing reverse power distribution.

Amplifier span 40 km Amplifier span 50 km
Input | Forward | Backward Forward | Backward
signal pump pump Error pump pump Error
power power power [%] power power [%0]
[mW] [mW] [MW] [MW] [MW]
3 120 127 6.9 146 152 11.9
4 120 130 7.1 145 155 12.3
5 127 122 7.3 145 158 12.6
6 127 124 7.3 157 142 12.7
8 126 129 7.4 156 148 12.7
10 125 134 T 155 154 12.9
6
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Figure 7.3: Reverse power distribution formed by DRA for signal input power of 5

mwW.
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Figure 7.4: Pump power evolutions for constructing the reverse power distribution in
Fig. 7.3.

7.4 Computer Simulations of OPC Transmission Systems

Using DRA
After we obtain the optimum Raman bi-directional pump powers for producing the
reverse power distribution, the DRA is implemented on the second half of OPC
system to form the symmetrical power distribution with respect to the system
midpoint. The model of OPC system using DRA in the second half is shown in Fig.
7.2(b). Thefist half consists of chain of transmission fibers and optical amplifiers. In
the second half, at each span end, the optical attenuator is installed to reduce the
signal power to make the reverse power distribution periodic. At the end of system,
the TOD compensator is placed to reset the accumulated TOD. It should be noted that
the accumulation of TOD in OPC systems has been theoretically shown to be linear
[49], thus, only one linear TOD compensator is needed and can be installed anywhere
in the system for perfect compensation.

In order to evaluate the performance improvement using our proposed method,
we perform a computer simulation of the optical signal transmission in OPC systems
based on the model in Fig. 7.2(b). The optical signal composed of 32-bit



121

pseudorandom Gaussian RZ pulses. The transmission fiber is the DSF with the
operating dispersion D = -1ps’/km/nm, the TOD = 0.06 pskm/nm, and the nonlinear

coefficient y = 2.6 Wkm™. Other parameters used in this simulation are the same as

used for integrating the FRA equations above. For the first half of the system, the
optical signal propagation is simulated by solving the nonlinear Schrodinger equation
(NLSE) with the split-step Fourier method (SSFM) [4]. The integration step size of
the SSFM s set at the value that gives the step size error less than 0.1 % [116]. The
optical amplifier produces ASE noise with noise figure of 5.3 dB (n, = 1.7). The

optical pulse at the midway of the system is conjugated by an ideal infinite-bandwidth
optical phase conjugator.

To simulate the signal propagation in the FRAs in the second haf, some
following modifications are needed. The distributed gain for each step of the SSFM
is calculated from the FRAs equations with the RK4, then, the distributed gain is
acted as a gain/loss in the NLSE for that step. Similarly, the amount of noise
generated within the step length of FRA is also computed from Raman equations with
the RK4, then, is used for calculating the varience of the Gaussian distribution of ASE
noise which will be randomly added to the signal bandwidth at end of that step.

The TOD compensator, placed only at the end of system, is assumed to be an
ideal device that multiplies the complex amplitude of the signal with the negative
amount of linearly accumulated phase shift caused by the TOD. The bandwidth of the
optical band-pass filter, which is placed at the output end of the fiber, is always
adjusted to obtain the minimum BER. The receiver is modeled by the 65-GHz-cutoff
sixth-order Bessel-Thompson low-pass filter followed by the BER detector. For
obtaining the numerical BER of the detected signal, the numerical Q factor of every
bit is individualy calculated at the maximum eye-opening point of the bit period.
Based on the assumption of - Gaussian noise distribution, the numerical BER is
computed from the bit numerical Q factors and averaged over the entire bits [25].

Figure 7.5 shows the calculated BER at 10,000 km of the OPC systems using
DRA as afunction of the signal input power launched to the first half. In Fig. 7.5, for
low input signa power, BER of the systems using the reverse power distribution
reduce as the input signal power increase owing to the improvement in SNR, together
with the suppression of Sl. In fact, assuming that the TOD and the Sl are perfectly
suppressed in OPC systems, there remains the problem originated from the
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accumulation of noise which is nonlinearly enhanced during the transmission by the
parametric interaction between dispersion and SPM [65], [93], [115]. Since the
transmission of the ASE noise is not symmetrical with respect to the midpoint of the
system. Thus, only part of the nonlinear enhancement can be compensated by OPC
while there till exists the accumulated ASE noise, which is enhanced by the
nonlinear interaction.

Therefore, for high input signal power, the BER becomes saturate because the
nonlinear enhancement of noise, as well as the increase in error in forming the reverse
power distribution become significant and start to affect the system performance.
When we further increase the signal power, these two effects mainly cause signal
distortion, therefore, the BER degrades rapidly. However, with defining a maximum
transmission distance at BER = 107, the 100-Gbit/s systems using the reverse power
distribution with the amplifier span of 40 km can achieve 10,000-km transmission for
awide range of input signal power (2—10 mW).

In comparison with these results, the same OPC system using the DSF and the
lump amplifiers incorporated with the TOD compensation can only achieve the
10,000-km transmission by using only input signal power of 7 mW [49]. This
mentions the significant improvement of the OPC system by using the DRA. On the
other hand, for the system with the amplifier spacing of 50 km, the 10,000-km
transmission can be achieved with BER = 10 at the input signal power of only 4
mW. This is mainly resulted from larger error in constructing the reverse power
distribution compared to the 40-km span. We also calculate the BER of the systems
using the 80-km span. Because the error in forming the reverse power distribution
becomes even larger than 30 % for signal power al input signal powers, therefore, we
cannot achieve BER = 10°. However, the result has demonstrated the possible in
expanding the span length of 10 km when the DRA is used.

For the 40-km span, the further increase in transmission datarate is expectable
using the DRA. The calculated BER of 160-Gbit/s and 200-Gbit/s data transmission
at 10,000 km shown in Fig. 7.5 indicate the possibility of such ultra-high bit-rate
long-haul transmission at BER = 10 using the signal input power = 4 mW and 5 mW
for the 160-Ghit/s and the 200-Gbit/s data, respectively.
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Figure 7.5: BER of optical signal after transmitted 10,000 km through OPC systems
using DRA.

In [115] we have aso demonstrated the possibility of 10,000-km transmission
of the data rate 200 Ghit/s by simultaneously suppressing both TOD and Sl in OPC
transmission systems employing the higher-order dispersion management fiber link
consisting of SMF and RDF. Although, such method can only reduce the Sl effect, it
realizes such ultra-high bit rate transmission because the harm of fiber nonlinearity-
enhanced ASE noise is aso reduced through large fiber local dispersion of SMF and
RDF. On the other hand, by using the DRA, the signal and noise propagates under
small value of uniform dispersion for entire length of system, therefore, the
nonlinearity-enhanced noise may be almost as strong as the system using the periodic
EDFA. However, the DRA in the second half, where the accumulated noise becomes
large and is enhanced by the fiber nonlinearity, produces lower noise than the chain of
periodic EDFA. Moreover, the Sl isamost perfectly suppressed, thus, the 200-Ghit/s
data transmission over 10,000 km can also be made possible by this method.
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7.5 Conclusion

We have demonstrated the performance improvement of ultra-long-haul high-bit-rate
OPC transmission systems by employing the DRA to suppressing signal waveform
distortion caused by the Kerr effect. The pump powers of the bi-directional pumping
DRA were designed for producing the reverse periodic signal power variation on the
second-half of the systems in order to construct entirely symmetrical power
distribution with respect to the system midpoint. Incorporated with the TOD
compensator, our simulation results have shown possibilities of the 100-Gbit/s data
transmission over a 10,000 km with the 50-km amplifier span and the 200-Gbit/s data
transmission over 10,000 km with the 40-km amplifier span.



CHAPTER 8
FINITE-DIFFERENCE TIME-DOMAIN
SIMULATION OF SLOWLY-VARYING
ENVEL OPE PULSE PROPAGATION IN

RELATIVELY LONG NONLINEAR OPTICAL
FIBER

We propose the use of several agorithms of the finite-difference time-domain
(FDTD) method for simulating pulse propagation in relatively long fiber. The results
are compared with the results from the split-step Fourier method (SSFM). The
numerical results of 5-ps FWHM single optical pulse propagation in dispersion
compensated fiber span using the FDTD method have shown a possibility of the
calculation over severa ten kilometers with acceptable accuracy. The algorithms
studied in this chapter are the explicit FDTD, the implicit FDTD, and the FDTD
employing the Crank-Nicholson (CN) scheme. We have modified these algorithms to
be the implicit-1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to
make them suitable for solving the nonlinear Schrodinger equation (NLSE) which is
separated into two coupled equations for the real and imaginary part of the optical
signal.

8.1 Introduction

Propagation of slowly varying envelope optical signal in optical fibersis governed by
the well-known partial differential equation called nonlinear Schrodinger equation
(NLSE) [4]. Since the NLSE does not have an analytic solution, the use of numerical
method is necessary. The most.commonly used numerical algorithm for solving the
NLSE is the split-step Fourier method (SSFM) [4], in which the fiber is divided into
small sections with a length called the step size.. Each section exhibits only the
dispersive or nonlinear effects which act on the propagating signal separately. The
accuracy of the SSFM solution increases with the reduction of the step size.

Although the SSFM has become the standard method for analyzing ailmost all
problems of signal propagating in optical fibers, it is quite inconvenient for those who
are not good at computer programming, and also who only aim to study simple
problems and want to know the approximate solutions immediately. This is because

it is very complicated and tough to implement the SSFM algorithm into
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computational program. It can take more than a week to develop severa hundred
lines of a simulation program based on SSFM algorithm and then validating it before
it startsto work properly.

As an dternative method for studying optical field propagation, the finite-
difference time-domain (FDTD) method [69] has been widely used for analyzing and
designing several structures of short-scale optical waveguides and devices [70], [71].
Since the FDTD algorithm is much easier and simpler for implementing than the
SSFM, by using the FDTD, it is possible to develop the calculation program which
consumes not more than 20 lines in only an hour. The basic principle of FDTD isto
discretize both time and space into small cells and then applying the central difference
approximations for both temporal and spatial derivatives. Recently, a 12-fs ultra-
broadband optical pulse propagation in optical fiber is also studied using the FDTD
for directly solving Maxwell’ s equations [72].

In this chapter, we propose the use of FDTD for solving the NLSE and
demonstrate that the FDTD can be sufficiently applied to smulate the optical pulse
propagation in relatively long fiber under acceptable accuracy. The paper is
organized as follows. Section 8.2 of this paper mainly devotes to the use of the
explicit FDTD method for solving the NLSE. After the discretization of the NLSE
and the employment of central difference approximation in the NLSE, through the
explicit FDTD algorithm, the NLSE is transformed into first-order linear equation
with initial problem.  Furthermore, we aso introduce a practical condition for
determining spatial step size of FDTD. Then, the problem based on the propagation
of 5-ps single optical pulse over 50-km dispersion compensated fiber link is modeled.
The calculation error caused by the choice of spatia step size is quantified. Next, the
simulation results, together with the comparison with those obtained from the SSFM
are shown and discussed.

Several algorithms have been invented to reduce the accumulated error due to
the choice of the calculation step such as the implicit FDTD [69], the Crank-
Nicholson scheme [69], the Douglas scheme [126], [127], and other algorithm [71].
In section 8.3 and 8.4 of this chapter, we study the use of the implicit FDTD and the
Crank-Nicholson (CN) scheme for solving the NLSE. We modify these algorithms to
be the implicit-1, implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to
make them suitable for solving the NLSE which will be separated into two coupled
equations for the real and imaginary part of the optical signal. Similar to section 8.2,
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the same problem of pulse propagation is smulated. The characteristic of the
accumulation error, as well as the difference between the results obtained by the
FDTD and the SSFM are shown and discussed. Next, the comparison between all the
proposed FDTD algorithms and also the SSFM are discussed in section 8.5. Finally,

the summary of this paper is made at section 8.6.

8.2 Explicit FDTD
We should start from the NLSE for the slowly-varying envelope signal function
A(z,T) propagating along z axis

oA  «a i . 0°A 1 oA
Cme——p e
OZaam® 2ﬂ2 oT? aﬂ3 oTe

+iy|AA, (8-1)

where S, is the group-velocity dispersion (GVD) parameter, S, the higher-order
GVD parameter, o the fiber loss coefficient, and  the nonlinear coefficient. To

apply the explicit FDTD method to Eqg. (8-1), time domain discretization is made with
the step of AT, and the corresponding index n, giving T=nAT (n =1, 2, 3, ...).
Similarly, the propagation distance is discretized with the step Az, and the spatia
index k, therefore, z=kAz (k = 1, 2, 3, ...). Then, after discretization, A(z,T)

becomes A*(n). Following FDTD algorithm, Eq. (8-1) becomes

A (n)— A*(n) ——gAk(n)—i—ﬂ A*(n+1) —2A%(n)+ A*(n-1)
Az — T (AT)?
1, A“(n+2)-2A (n+1)+2A"(n)— A*(n-1)
+ 6:83 (OT)° (8-2)

wiy AL A (n),
Since A(z,T)is complex-function, we will split ‘A“(n) into its real and imaginary
components
R )= R 1)+ 0 (1), 3

Substituting Eg. (8-3) into Eq. (8-2), we obtain two coupled explicit FDTD
equations
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In Eq. (8-4) and (8-5), it is worth noted that, to obtain the signal spectra, the fast-

{Ailr(nag (I’H— 2)_ 2AiI:nag (n +1)+ 2A1I:nag (n _1)+ Alr(nag (n - 2)}
. (85)

(A (n+2)-2A%, (n)+ A%, (n-1))

Fourier transform (FFT) algorithm can be used to transform A*(n) at arbitrary
distance to obtain its spectra. Then the time resolution AT is determined by the
spectral window W with the relation W =1/AT . On the other hand, it is quite
difficult to determine the spatial step Az because there is no specific Courant
condition [2] to guide us, as was the case in Maxwell’s equations simulation. We
propose here a practical approach to determine reasonable Az by defining the
normalized spatial step q
1

L] | Baz | | Az |
= |2aAZ|+\6(AT)3\+\2(AT)2\

+ 102 A () + (Al (1))

<«<1. (86)

max

Our concept is very simple and similar to FDTD numerical stability theorem [2].
That is, a stable solution to Eq. (8-4) and (8-5) will be obtained if q becomes much
less than unity.

The problem model used for simulations is the propagation of optical single
pulse in dispersion compensated fiber link composed of dispersion-shifted fiber (DSF)
and dispersion compensator. The length of one span is 50 km. The optical signal is
5-ps full-width-hal f-maximum (FWHM) single pulse with Gaussian shape. The input
power of the pulse is 10 mW. The parameters used in the simulations are typical

dispersion-shifted fiber parameterss o« = 0.2 dB/km, g, = 0.26 ps’/km
(corresponding to the second-order dispersion (SOD) or the dispersion = -0.2
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pgkm/nm), g, = 0.11 ps’’/km (corresponding to dispersion slope or the third-order
dispersion (TOD) = 0.06 pskm/nm?), and y = 2.6 W'km™. The dispersion
compensator used in simulations is assumed to be an ideal device that multiplies the
complex amplitude of the signal with a negative amount of linearly accumulated
phase shift caused by the SOD. This compensator is placed at the end of 50-km span.
Also, one lump optical amplifier placed at the end of 50-km span. The amplifier
produces gain of 10 dB without amplifier noise for compensating the fiber loss of 50-
km span.

The time window is 50 ps and is sampled to 512 discrete points giving
AT =~ 0.1 ps, which yields the spectral window width W ~ 10 THz. The propagation
of the optical pulse is calculated by solving the NLSE using both above proposed
FDTD method and SSFM. To quantify the error caused by the choice of the spatial
step size of both FDTD and NLSE, the normalized root-mean-square error E(Az),

which is defined in [116],

Z\AJ AZi)= A ( AZI /Z‘A\:‘W A2| , (8-7)

where Ask.m(Az;i) represents the discretized output pulse obtained by simulation, and
A‘..(Azi) the exact solution. It should be noted that and A ,(Azi) is
approximated by Af_, (Azref ;i), where Az, is5 times smaller than the so far smallest

step size for which E(Az) has been estimated.

Figure 8.1 shows E(Az) of the single pulse after propagating for one span as
the function of q simulated by the FDTD method.- Both E(Az) and g in Fig. 8.1 are
shown in logarithm scale.  The result indicates that E(Az) increases almost linearly

with the spatia step size. The smaller the error is, the closer the numerical result gets
closed to the exact solution. However, there becomes a question that how much the
error can be acceptable.

Figure 8.2 shows the output pulse shape computed by setting q = 1.7x10
(shown by solid line), comparing with the output pulse waveform simulated by
reducing q to 3.4x10°3, which is 5 times smaller (shown by dotted line). In this case,
E(Az) obtained from g = 1.7x107? is around the value of 1.2x10 From Fig. 8.2, the

propagated pulses appear with slight asymmetrical broadening induced from higher-
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order GVD. Excepting small distinction around peak point of the pulse, the pulse
waveform calculated by using q = 1.7x102 is almost fitted with that obtained from g =
3.4x10°3. To further decreasing q much shorter than this value may result only alittle
more difference. However, the result from Fig. 8.2 informs us that with error of about

102, we are sufficiently able to attain nearly the exact solution.

10

10" ¢

Error
N

10° F

-3
10 L

103 102 10 10
Normalized FDTD Step

10

Figure 8.1: E(Az) of the single pulse after propagating for one span as the function of
g shown in logarithm scale ssmulated by the FDTD method. E(Az) increases almost
linearly with the spatial step size.

Figure 8.3 compares E(Az) from the explicit FDTD method with the SSFM as
afunction of spatia step size Az. At the same Az, the SSFM produces much smaller
E(Az) and converges to the exact solution more rapid than the FDTD method. At Az
=10, E(Az) of the SSFM exhibits a value lower than 10°°, while that obtained from
the FDTD is as large as 10" Therefore, by the explicit FDTD method, in order to
achieve an equal E(Az) to the SSFM, it is clearly that extremely small Az is required,

resulting in significant increase in computation time.
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Figure 8.2: Output pulse shape calculated by the explicit FDTD method with q =
1.7x10° (shown by solid line), comparing with output pulse shape simulated by q =
3.4x10°® (shown by dotted line). E(Az) of g = 1.7x107” is about 1.2x10% Small
difference around peak point of the pulseis observed. However, the exact solution is
almost obtained with error of about 107,
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Figure 8.3: E(Az) calculated from the explicit FDTD method and the SSFM as a
function of spatial step size. The SSFM yields much smaller E(Az) and converges to
the exact solution more rapid than the explicit FDTD method.
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Figure 8.4 shows the comparison of computation time between the explicit
FDTD method and SSFM method as a function of E(Az). Although, the computation
time used by both methods increase aimost linearly with the reduction of E(Az). As
expected, at equal vaue of E(Az), the explicit FDTD method consumes much
calculation time than the SSFM. However, with the rapid progress in the performance
improvement of nowadays computers, in such a case of smulation of pulse
propagation in fiber span which is not so long, such drawback in computation time
may not disturb those who use the explicit FDTD method too much rather than being
annoyed in wasting much time transforming the SSFM into computer code. For
instance, running the simulations on MS. Visual C++ on Window XP using CPU
Pentium 1V 2 GHz with 512 MB memory take computation time below 1 s for the
SSFM and about 10 s for the explicit FDTD method at the same E(Az) of about 10,

Next, we explore how far the explicit FDTD method can be used to compute
the pulse propagation. Assuming the SSFM is the most accurate method for
simulating pulse propagation in optical fibers, the difference between results obtained
from the explicit FDTD method and the SSFM is investigated. Figure 8.5 shows the
50-km-transmitted pul se waveform calculated by the explicit FDTD method using g =
3.4x10™ (shown by solid line), comparing with that calculated by the SSFM with Az
=10 m. E(Az) of both waveform are 2.4x10™ and 3.9x10°, for the explicit FDTD
method and the SSFM, respectively. According to Fig. 8.5, the difference in results
between two algorithms is observed. To determine an amount of difference between
the explicit FDTD method and the SSFM, we should define the FDTD-to-SSFM error
using Eq. (8-7) by changing the reference term ‘AL (Azi) with A, (Azi), where
A, (Azi) is obtained from SSFM. ' By this definition, the FDTD-to-SSFM error of

the two pulse waveforms.in Fig. 8.5 isabout 7.9x10°.
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Figure 8.4: Comparison of computation time between the explicit FDTD method and
the SSFM method as a function of E(Az). At equal E(Az), the explicit FDTD
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Figure 8.5. 50-km-transmitted pulse waveform calculated by the explicit FDTD
method using q = 3.4x10™* (shown by solid line), comparing with that calculated by
the SSFM with Az = 10 m. E(Az) of both waveform are 2.4x10* and 3.9x10°, for
the explicit FDTD method and the SSFM, respectively. FDTD-to-SSFM error of the

two pulse waveforms is about 7.9x10%.
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Figure 8.6 show the explicit-FDTD-to-SSFM error as a function of
propagation distance for several q values. In this case the pulse is transmitted for two
spans (100 km) with additional one lump noiseless optical amplifier placed at 100 km.
The result from Fig. 8.6 mentions that the FDTD-to-SSFM error become greater with
propagation distance. The increase in spatial step size Az can only dlightly reduce
thiserror. For relatively small g, even we further reducing q by 20 times (g = 6.8x10
3 shown by squares to q = 3.4x10™ shown by diamonds), the corresponding FDTD-to-
SSFM error at arbitrary distance is almost not changed.

0.2

—— q=3.4x10?
@ (=1.7x102
0.15/ | —m q=6.8x103
—A- g=1.7x10°
- q=34x10%

Error

0.1}

0.051

0 20 40 60 80 100
Propagation Distance [km]

Figure 8.6: FDTD-to-SSFM error as a function of propagation distance for several q
values. The pulse is transmitted for two spans (100km). FDTD-to-SSFM error
becomes greater with propagation distance. Theincrease in spatial step size Az can
only dlightly reduce this error. If we consider the FDTD-to-SSFM error is the most
serious limit of the explicit FDTD method, the simulation using the explicit FDTD
method can only be applied for afiber length of several ten kilometers.

8.3 Implicit FDTD

The concept of implicit FDTD is to use the next step solution to calculate the next
step solution itself. It has been shown that the use of the implicit FDTD can reduce
the error caused by the choice of astep size. At the same step size, theimplicit FDTD
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gives more accurate result than the explicit FDTD. However, the accumulative
characteristics of these two methods are the same.
Using theimplicit FDTD, Eq. (8-2) is rewritten to be
A**(n)— A*(n) % e i 5 At (n+1) —2A% (n)+ A (n-1)
Az 2 2 (AT)?
! 5, A (n+2) - 2A% (n+1) + 2A* " (n) — A**(n-1)
6 (AT)?

(8-8)
+|7‘ Ak+l(n)}2 Ak+1(n),

It should be noted that the suffix k on the right hand side of Eqg. (8-8) is only replaced
by k+1.
After splitting A*(n) aswell as A***(n) into its real and imaginary components using

Eqg. (8-3), we obtain two coupled implicit FDTD equations

A% (M) = AL () a2 ()

/B3AZ k+1 - k+1 k+1 _ k+1 _
e D aAS Az
ﬂZAZ k+1 = k+1 k+1 _
- Z(AT)Z {Aimag (n+1) 2Aimag (n)+ A1mag (n 1)}
+ 783 (A )+ AL ) Al ()
Al (1) = AL )+ aAZA ()
- L2820+ 2)-2A (n2)+ 245 (n-2)+ A (n-2))
6(AT) ©10)
ﬁZAZ k+1 . k+1 k+1 ,
+ 2(AT)? {Areal (n+1)-2A; (n)+ Aea (n 1)}

- ag(A () + (Al ()| A (n)

From Eq. (8-9) and (8-10), to obtain A“'(n), we establish two coupled implicit

FDTD matrix equations for the real part and imaginary part with each equation has n
unknown variables as shown below,
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T AT Am(a)) (AL O]
ASH(2) ALQ)| AL Q)
A A+ B Ara@|=| A% (@), @11

_ LAz | LA m] | A o)
[ TAac@] [ [ASDT [ Avw®]
Anres (2) ASQ)] | A2

A are B | AE)|-| A 612

LA (), LA | At ()]

The matrix A, B, A, and B" areal nx nmatrix. The components of matrix A which

are not zero are

a, =1+%aAz,fori =1,2,3....n, (8-13)
B.Az !
L o===—"fori=1,23,...,n1, 8-14
a‘l,|+l 3AT3 ( )
PAZ ,
L, =———fori=1,23,...,n2, 8-15
a1,|+2 6AT3 ( )
BAZ .
o=———fori=1,23,...,n1, 8-16
a‘H—l,I 3AT3 ( )
PAZ ;
L= Jfori=1,2, 3,...,n2. 8-17
a1+2,| 6AT3 ( )

The components of matrix B which are not zero are

_ k+1f: )2 kil (; 2}A PyAz - 3
b, _—y{AeaJ(l)( + | Ay i) pz- Az fori=L23..n, (8-18)
L= 'BZAi fori=1,23,...,n1, (8-19)
' 2AT
=222 hori=1,2,3. 0, (8-20)
T 2AT

The components of matrix A" which are not zero are
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a, :1+%aAz, fori=1,2,3,...,n, (8-21)

&=L fori=1,23,.n1, (8-22)
BAZ ,

! o=—22_ fori=1,2,3,...,n2, 8-23

a|,|+2 6AT3 ( )
B.Az ,

fo=—"_ fori=1,23,...,n1, 8-24

a1+l,| 3A-|-3 ( )
, BAZ :

| e=teselifori=# 2 3..., n-2. 8-25

a1+2,| 6AT3 ( )

The components of matrix B’ which are not zero are

b, =7{ L AL ) bz ﬂ 222 fori=1,2,3,. (8-26)
o, =—LA2 fori=1,2,3.. 01, (8-27)

| 2AT?
bi'+li F ’BZAi Jfori=1,23,...,n1, (8-28)

' T UoAT

For given fiber parameters and A“, in order to solve the above two equations for
obtaining the next step solution A“*, some agorithms must be used for modifying

Eq. (8-11) and (8-12). Thisis because, for example, to obtain A%}, the second term
on the left hand side of Eq. (8-11), which is dependent on Ay, must be available

first. Similarly, to calculate A: , the second term on the left hand side of Eq. (8-12),

mag ’

k+1

which is dependent on must be also obtained before.. Furthermore, in matrix B,

b and b/, require the calculation of ‘ i j +‘ oo )( , which will not be exactly

obtained unless we have both Agy and Ay, before. ' For overcoming these

problems, we proposed two schemes, which will be assigned the names as the
implicit-1 FDTD and the implicit-2 FDTD.

8.3.1 Implicit-1 FDTD
The agorithm of the implicit-1 FDTD, as shown in Fig. 8.7 isvery simple. A*, and

A, are used instead of A and A in the second terms including the
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calculation of ‘ ";}(iﬁr‘ ';;t,(i)(zinside the matrix B and B', respectively. Then,

Eq. (8-11) and (8-12) will be solve to obtain A‘' and A, which become A*,

mag !

and Af,, for next step.

Transfering
Y
k k
A real imag
Solving
k+1 k+1
Areai imag

Figure 8.7: Algorithm of the implicit-1 FDTD.

Figure 8.8 shows the accumulated step size error of the explicit FDTD in
percentage unit for the single pulse propagation in two spans (100 km), as a function
of distance for several step sizes

For comparison, Fig. 8.9 shows the accumulated step size error of the implicit-
1 FDTD in percentage unit for the single pulse propagation in two spans, as a function
of distance for several step sizes. The results are obtained by solving Eqg. (8-11) and
(8-12) by using Gaussian elimination with backsubstitution with scaling and pivoting
[94]. Although the error increases with transmission distance and then rapidly arises
at a distance that is shorter for larger step size, the error causes by the implicit-1

FDTD is approximately 10 times smaller than the error from using the explicit FDTD.
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Figure 8.8: Step size error of the explicit FDTD in percentage unit for the single pulse
propagation for 100 km as a function of distance for several step sizes.
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Figure 8.9: Accumulated step size error of the implicit-1 FDTD in percentage unit for
the single pulse propagation for 100 km as a function of distance for several step

Sizes.
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Figure 8.10 shows the accumulated explicit-FDTD-to-SSFM error in
percentage unit for the single pulse propagation in two spans, as a function of distance
for several step sizes. Although, the error aimost increases linearly with transmission
distance, similar to Fig. 8.6, the increasein size Az can only slightly reduce this error.
The error converges to a value for a given distance, for examples, 7.6 % for 50 km

and 17.8 % for 100 km transmission.

2

10

‘‘‘‘‘‘

Step =1 km
Step = 0.5 km
Step=0.2 km
Step = 0.1 km
Step =50 m
Step=20m
Step=10m
Step=5>m
Step=2m

FDTD-to-SSFM error [%]

EadXESEE,

Distance [km]

Figure 8.10: Accumulated explicit-FDTD-to-SSFM error in percentage unit for the

single pulse propagation for 100 km as afunction of distance for several step sizes.

In comparison with the result in Fig. 8.10, Fig. 8.11 shows the accumulated
implicit-FDTD-to-SSFM error in percentage unit for the single pulse propagation in
two spans, as a function of distance for severa step sizes. For larger step size (> 0.2
km), this error increases rapidly when the pulse propagates for a distance. However,
for smaller step size (< 0.2 km) the error also saturates to a value which is almost the
same as the case of explicit FDTD. For examples, the error becomes 7.6 % for 50 km

and 17.8 % for 100 km transmission.
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Figure 8.11: Accumulated implicit-FDTD-to-SSFM error in percentage unit for the

single pulse propagation for 100 km as afunction of distance for several step sizes.

8.3.2 Implicit-2 FDTD
The algorithm of the implicit-2 FDTD, as shown in Fig. 8.12, is more complicated
than the implicit-1 FDTD.  For the first step of calculation, A2, is calculated by

using A, and A,. Then, A7 isobtained by using Ay, in the second term of the

left hand side of Eq. (8-12). It should be noted that [A%, (i)| +|AZ, (i) is
. 1 \[2 2 \[2 \[2

approximated by §{|Aia,(|)| +|A1mag(|)| +|Alea, (|)| +|A1mg(|)| } For next step,

AW and A7 areemployed to calculate A%, from Eq. (8-11). A, isthen obtained

by using A% . Anu . and AL, through Eq. (8-12). = This calculation repeats

continuously until A%, and A7 areobtained.
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real real imag
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imag

Figure 8.12: Algorithm of the implicit-2 FDTD.

Figure 8.13 shows the accumulated step size error of the implicit-2 FDTD in
percentage unit for the single pulse propagation in two spans, as a function of distance
for several step sizes. Theincreasein error isamost the same as that of the implicit-1
FDTD. However, the implicit-2 FDTD results dlightly better error for a given step
size than the result from the implicit-1 FDTD. Figure 8.14 shows the accumulated
implicit-2-FDTD-to-SSFM error in percentage unit for the single pulse propagation in
two spans, as a function of distance for several step sizes. Similar to the implicit-1
FDTD, the reduction in the step size can only slightly reduce the difference of the
result from FDTD and the SSFM. For the step larger than 0.2 km, this error increases
rapidly when the pulse propagates for a distance. However, the distance that the error

rapidly arisesislonger than that of the implicit-1 FDTD.
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Figure 8.13: Accumulated step size error of the implicit-2 FDTD in percentage unit
for the single pulse propagation for 100 km as a function of distance for severa step

sizes.
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Figure 8.14: Accumulated implicit-2-FDTD-to-SSFM error in percentage unit for the
single pulse propagation for 100 km as afunction of distance for several step sizes.
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8.4 FDTD Employing Crank-Nicholson Scheme

Crank-Nicholson (CN) scheme is well known for a method that can sufficiently
reduce the accumulated error caused by the choice of step size in FDTD algorithm.
The concept of CN scheme is to use the average value between the solution and the
solution of the next step for estimating the solution of the next step.
Employing the CN scheme, Eq. (8-2) is modified to be

AN -A(M) _ a {Ak+1(n)+Ak(n)}

Az 2 2
AYn+1) - 2A(n) + A“Y(n-1)
—I—,B 2(AT)?
2d - A(n+1)— 2A%(n) + A (n—1) (8-29)
2(AT)?
AN+ 2) - 2A“Y(n+1) + 2A%Y(n) — A“Y(n-1)
. 1 P 2(AT)?
6" L AT(n+2) -2 (n+1)+ 24 (n) - A (n-1)
2(AT)?
siy Ak+1(n)2+ A(n)| {Ak+1(n)2+ A4(n) }

After splitting A“(n) and A*"*(n) into its red and imaginary parts using Eq. (3), we
obtain two coupled implicit FDTD equations

A )+ 2 anzhi ()

_12’ESAATZ)3{Ak;j(n+2)—2A2;1(n+1)+2A2;1(n—1)+Ake;l(n—Z)}=Akea|(n)
L onan, (n)+ LEE (A (n+2) = 2%, (n+1)+ 2A%, (n=1)+ A%, (n-2)) (%0
4 eal 12(AT)3 eal eal eal eal

L Pz {Aﬁ;ﬁ; (N+1)=2A% (n)+ A (N=1)+ Ary (N+1) = 2A%, (N)+ Ay (n—1)}
2(AT)? 2

2

_yAZ|(A‘;£f(n))2+(Aﬁ;(n))2+(Ake;1(n))2+(Af§alg(n))
3 |

2

{%;(n)mﬁgﬂn)}
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A )+ GAZA ()

_ ﬂsAZ k+1 _ k+1 k+1 _ k+1 _
12(AT)3{A”“9(n+2) 2”0 (n+1)+2A5% (n-1)+ Ay (n-2)}

— Ay (M)~ A2 (1)

(8-31)

R (142) 28 (141028 (1) Ay (-2)

Bz [ A (n+1)-2AG (n)+ Ag (n-1)+ A, (n+1)-2A, (n)+ A (n-1)
2(AT)? 2

 pgl At @) (A )+ (Ai) < (A o)
| 2 |

{A:;(nwzg(n)}

2

Similar to the case of the implicit FDTD, to obtain A“*(n), two coupled
implicit FDTD matrix equations originated by EqQ. (8-30) and (8-31) is formed for the
real part and imaginary part with each equation has n unknown variables as shown
below,

(ALY ] A (D]

AG(2) A (2)

Ae(3) |= A (3)

_A:J(n)_ : Aed( )] e
Aneg (1) A () ]
Ares (2) Amag<2
Ao (3) (3)

11 A (0) q Amg( )
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(8-33)

The matrix A, B, A, and B" are all nx nmatrix. The components of matrix A which

are not zero are

a; :1+%aAz, fori=1,23,...,n,

¥ ﬂ3AZ fOrl :1’ 2, 3’_..,n'1,

W AT

BAZ .
W :——,f0r|:1,2,3,.--,n'21
A2 12AT?

B.AzZ .
g ,fori=1,2, 3,...,n-1,
a1+1,I 6AT3

BAZ .
= ,fori=1,23,...,n2.
Aoz = PoAT?

The components of matrix B which are not zero are

b :1—%0{AZ, fori=1,2,3,...,n,

P.AZ .
=== fori=1,2, 3,...,n-1,
h,H—l 6AT3

BAZ ,
= ,fori=1,2,3,...,n-2,
B2 12AT?®

Az .
h+1,i =%l forl = 1! 21 31---; n-ly

PAz .
=——— fori=1,23,...,n2
. 12AT?®

(8-34)

(8-35)

(8-36)

(8-37)

(8-38)

(8-39)

(8-40)

(8-41)

(8-42)

(8-43)



The components of matrix C which are not zero are

= Z AL A (0 A (0 ] A (1) f a2

fori=1,23,...,n,

|,i+1

:ﬂA fori=1,23,...,n1

Gl ,
1+1,i 4AT2

The components of matrix A" which are not zero are

a'; :1+%aAz, fori=1,2,3,...,n,

_ Bz Jfori=1,2,3,...,n-1
AAT?

2,

&= 'BA ,fori=1,2,3,...,n1
6AT?

, BAz

p. <0 | S1N2)S8,. -
a1,|+2 12 T

/ PAZ ,

== ,fori=1,2,3,...,n1
a1+1,| 6AT3

g _BA
o _ s foR=tl 278, ..
& 3 12AT®

The components of matrix B’ which are not zero are

n-2.

of :1—%aAz, fori=1,23,...,n,

l-‘}',H—l ==

o PAZ
. ,fori=1,2,3,...,n-2,
h’|+2 12 T3
b, _& fori=1,2,3,...,n1,
6AT?®
, Bz
o= Jfori=1,23,...,n2.
iz 12AT?

The components of matrix C' which are not zero are

ﬂsAZS,fori =1,23,...,n1
6AT
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(8-44)

(8-45)

(8-46)

(8-47)

(8-48)

(8-49)

(8-50)

(8-51)

(8-52)

(8-53)

(8-54)

(8-55)

(8-56)
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=2 )+ () +] A () A () A2+ 2222

2AT?'
fori=1,23,...,n, (8-57)
Ciy= —'Bz—Ai, fori=1,2,3,...,n1, (8-58)
’ AAT
Ci=- 'BzAi fori=1,2,3,...,n1. (8-59)
’ AAT

Similar to the case of the implicit FDTD, some algorithms must be used for
solving Eq. (8-32) and Eq. (8-33) because, to obtain the next step solution A", we
have to use A“*! itself for computing the second and third term in Eq. (8-32) and (8-
33) before. For this purpose, we present here 5 algorithms for solving Eg. (8-32) and
(8-33). The algorithms are named as CN-1, CN-2, CN-3, CN-4, and CN-5.

84.1 CN-1FDTD
The concept of the CN-1 FDTD algorithm is shown in Fig. 8.15. For the first step of
calculation, A%, is calculated by using A, and A instead of AL and A .

Then, A7, isobtained by using A%, A, and A, inthe second and the third term
of the right hand side of Eq. (8-33). For next step, A%, and AZ,, are used instead of
AL, and A>, while A, and A are used instead of A2, and A’ in the second
and the third term of the right hand side of Eq. (8-32) for calculating A2, from Eq.
(8-32). A’ isthen obtained by using A%, A, and A%, from Eq. (8-33). This
process will repeat continuously until A7, and A7, are obtained.

Figure 8.16 shows the accumulated step size error -of the CN-1 FDTD in
percentage unit for the single pulse propagation intwo spans, as a function of distance
for severa step sizes. The CN-1 FDTD yields less error than that of the implicit
FDTD when the same step size is used. However, if we look at Fig. 8.17, which
shows the accumulated CN-1-FDTD-to-SSFM error in percentage unit for the single
pulse propagation in two spans as a function of distance for several step sizes, the
error becomes larger than 100 % at a distance of about 60 km for all of step size
values. Moreover, the use of larger step size results in dlightly smaller different from
the result from the SSFM. This indicates that the CN-1 FDTD gives the solution that

is much different from the solution from the SSFM.
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Figure 8.15: Algorithm of the CN-1 FDTD.
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Figure 8.16: Accumulated step size error of the CN-1 FDTD in percentage unit for the

single pulse propagation for 100 km as afunction of distance for several step sizes.
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Figure 8.17: Accumulated CN-1-FDTD-to-SSFM error in percentage unit for the

single pulse propagation for 100 km as a function of distance for several step sizes.
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Figure 8.18: Comparison of pulse shapes at the output end of 100-km fiber calculated
by the CN-1 FDTD and the SSFM.

Figure 8.18 shows the pulse shapes at the output end of 100-km fiber
calculated by the CN-1 FDTD compared with that calcul ated by the SSFM. The pulse
obtained from the CN-1 FDTD exhibits the power as large as 70 mW although its
power that we launched into the input end is only 10 mW. Thisisimpossible because
again medium is not installed except the amplifiers which we use only to compensate
the span loss. Therefore, we can conclude that the CN-1 FDTD that we proposed
gives the result that is not accurate. On the other hand, for the result obtained from
the SSFM, the result is reasonable because the output pulse has the peak power value
very closeto 10 mWw.

84.2 CN-2FDTD

The algorithm that we call CN-2 FEDTD is the same as that of the implicit-1 FDTD
which is shown in Fig. 8.7. This CN-2 FDTD is much simpler than the CN-1 FDTD.

InCN-2 FDTD, A, and A, isused instead of A and Ay, for calculating Ay, .
Then, A, and A, isusedinstead of Ag and Ay againfor obtaining Ay . This

cal culation repeats continuously until we obtain A, and A7, .

Figure 8.19 shows the accumulated step size error of the CN-2 FDTD in

percentage unit for the single pulse propagation in two spans, as a function of distance
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for severa step sizes. The step error increases with transmission distance and arises
rapidly at a distance that is shorter for larger step size. Although the CN-2 FDTD
gives sufficiently as small error as those of the implicit FDTD and the CN-1 FDTD,
the error is dlightly larger than that of the CN-1 FDTD at the same step size. Figure
8.20 shows the accumulated CN-2-FDTD-to-SSFM error in percentage unit for the
single pulse propagation in two spans as a function of distance for several step sizes.
The error is almost the same at the error causes by using the implicit FDTD.
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Figure 8.19: Accumulated step size error of the CN-2 FDTD in percentage unit for the

single pulse propagation for 100 km as a function of distance for several step sizes.
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Figure 8.20: Accumulated CN-2-FDTD-to-SSFM error in percentage unit for the

single pulse propagation for 100 km as afunction of distance for several step sizes.

84.3 CN-3FDTD

The concept of the CN-3 FDTD algorithm is the same as the implicit-2 FDTD which
is shown in Fig. 8.12. For the first step of calculation, A%, is calculated by using
A and AL instead of AL, and A7 . Then, AT isobtained by using A%, AL,
and Almag in the second and the third term of the right hand side of Eq. (8-33). For
next step, Aa, and A, are used instead of AL, and A’ in the second and the
third term of ‘the right hand side of Eq. (32) for calculating A3, from Eg. (8-32).
A’ o 18 then obtained by using A%, , ‘A, and A%, ‘from Eq. (8-33). This process
will repeat continuously until A%, and A7 are obtained.

Figure 8.21 shows the accumulated step size error of the CN-3 FDTD in
percentage unit for the single pulse propagation in two spans, as a function of distance
for several step sizes. Comparing to other types of the CN FDTD which we have
proposed, the CN-3 FDTD gives the error that is smaller than the CN-2 FDTD but
dightly larger than the CN-1 FDTD. Figure 8.22 shows the accumulated CN-3-
FDTD-to-SSFM error in percentage unit for the single pulse propagation in two spans
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as a function of distance for severa step sizes. The error is amost the same at the
error causes by using the implicit FDTD and the CN-2 FDTD.

1
— 10 ' 3
° —©&— Step=1km
— —8- Step = 0.5 km
B ||~ stp=02km
A 10 { - Step=10.1km
= —— Step =50 m
& —a— Step=20m
& o 4 Step=10m
G —— Step=5m
2 —— Step=2m
o
= -
v 10
joF
b
n

OI

0/, = 10"
Distance [km]
Figure 8.21: Accumulated step size error of the CN-3 FDTD in percentage unit for the

single pulse propagation for 100 km as afunction of distance for several step sizes.
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Figure 8.22: Accumulated CN-3-FDTD-to-SSFM error in percentage unit for the

single pulse propagation for 100 km as a function of distance for several step sizes.
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844 CN-4FDTD
The concept of the CN-4 FDTD agorithm is shown in Fig. 8.23. The algorithm starts
by the estimation of A, by using A, and A, instead of A%, and A’ . Then,

A, isobtained by using A%, AL . and A, inthe second and the third term of the
right hand side of Eq. (8-33). For next step, A%, and AZ,, are used in the second and
the third term of the right hand side of Eq. (8-32) to obtain A2, again. In the next
step A%, and A, is similarly calculated through this process. The calculation will

repeat continuously until A%, and A, are obtained. Since we have to solve the CN

FDTD equations 3 times (Eq. (8-32), Eq. (8-33), and Eq. (8-33)) for the estimation of

e and A for each step, it consumes the computation time about 1.5 times longer

than other CN FDTD algorithm.

Figure 8.24 shows the accumulated step size error of the CN-4 FDTD in
percentage unit for the single pulse propagation in two spans, as a function of distance
for several step sizes. The CN-4 FDTD vyields larger error than other FDTD
algorithm. Moreover, similar to the result from CN-1 FDTD, the accumulated CN-4-
FDTD-to-SSFM error as a function of distance in Fig. 8.25 shows a very high error
closed to 100 % for long distance caused by this a gorithm.

Figure 8.26 shows the pulse shapes at the output end of 100-km fiber
calculated by the CN-4 FDTD compared with that calculated by the SSFM. The peak
power of the pulse calculated by the CN-4 FDTD reduces significantly to be about 1
mW. Similar to the case of the CN-1 FDTD, this is also not reasonable because we
compensate for the span loss by -optical amplification. - Therefore, the CN-4 FDTD
algorithm is also the one that we have to avoid.
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Figure 8.26: Comparison of pulse shapes at the output end of 100-km fiber calculated
by the CN-4 FDTD and the SSFM.

8.4.5 CN-5FDTD

The concept of the CN-5 FDTD algorithm is shown in Fig. 8.27. In the first step of
calculation, A%, is computed by using A, and A, insteed of A, and A7 in
the second and the third term of the right hand side of Eq. (8-32). Then, Afmg is
estimated by using A%, , A, and A, inthe second and the third term of the right
hand side of Eq. (8-33). For next step, A%, and A, are used in the second and the
third term of the right hand side of Eq. (8-33) to obtain A’ .. Then A’_, A, and
A’ isused to calculate A, from Eq. (8-32). Similarly for each next step, A and

oy arealternatively obtained until the last step that wereach A, and A7 .
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Figure 8.27: CN-5 FDTD algorithm.

Figure 8.28 shows the accumulated step size error of the CN-5 FDTD in
percentage unit for the single pulse propagation in two spans, as a function of distance
for several step sizes. Although for relatively large step size, the error increases very
rapidly, the use of relatively small step size (< 10 m) brings the error to be lower than
other FDTD agorithm. Figure 8.29 shows the accumulated CN-5-FDTD-to-SSFM
error in percentage unit for the single pulse propagation in two spans as a function of
distance for severa step sizes. The error is amost the same at the error causes by
using other FDTD agorithm except the CN-1 and CN-4 FDTD.
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8.5 Comparison among Proposed FDTD Algorithms

Figure 8.30 shows the comparison between proposed algorithms in term of the step
error as a function of transmission distance by using the calculation step size 10 m.
For only the explicit FDTD, the step eror increases amost linearly with the
transmission distance. At a distance shorter than 50 km, all the non-explicit FDTDs
give the errors which are more than 10-time lower than the explicit FDTD. However,
when the distance becomes longer than 50 km, all the non-explicit FDTDs result the
errors which are rapidly increases with the distance and become closer to the error
caused by the explicit FDTD for case of the CN-2 DTD at 100 km or even larger than
the explicit FDTD for the case of the CN-4 FDTD at 100 km. For a distance shorter
than 50 km, the CN-1, CN-3, and CN-5 yield sufficiently small error while, for a
distance longer than 50 km, the implicit-1 and implicit-2 FDTD give the errors
smaller than those from all of the CN FDTD.
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Figure 8.30: Comparison between proposed algorithms in term of the step error as a
function of transmission distance by using the calculation step size 10 m.

Figure 8.31 shows the comparison of the differences from the SSFM caused
by the proposed algorithms as a function of transmission distance by using the

calculation step size 10 m. The CN-1 and CN-2 gives very large differences from the
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result from the SSFM. The differences become larger than 100 % for a distance

shorter than 100 km for these two algorithms. For other algorithms, amost the same
differences from the SSFM are obtained. It should be noted that the explicit FDTD
results slightly larger error than those obtained from other algorithms except the CN-1
and CN-4 FDTD for adistance larger than 60 km.

._.
o

—
o
—
P |

<
o

| —— CN-2 FDTD

|—9— CN-5FDTD

—-&— FDTD
—&— [mplicit FDTD
—o— Implicit-2 FDTD |
—6— CN-1 FDTD

—&— CN-3 FDTD
—8— CN-4 FDTD

._.
o

10"

Difference from result by SSFM error [%]

Distance [km]

10°
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Figure 8.32: Pulse shapes at the output end of 100-km fiber calculated by the CN-5

FDTD and the SSFM.
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As a representative of the result of calculation from FDTD method, Fig. 8.32
shows the pulse shape at the output end of 100-km fiber calculated by the CN-5
FDTD compared with the result from the SSFM. Although the difference between
these two pulse shapes is about 18 %, the result from the CN-5 FDTD looks
sufficiently similar to the result from SSFM. Thus, we can amost get the information
about the pulse after propagation though we choice the FDTD for computation. For
the result from the CN-5 FDTD, the effect of the dispersion slope on pulse
propagation is obviously seen from the small pulse generated at the tail of the pulse.
On the other hand, we cannot observe the small pul se when the SSFM is used.

Table 8.1 shows the comparison among the normalized computation times
consumed by the proposed FDTDs at arbitrary distance with the same step size. The
normalized time is obtained as the ratio between the computation time used by the
FDTD algorithm and the computation time used by the SSFM. Except the explicit
FDTD, the proposed FDTD agorithms use much longer computation time than the
SSFM. Although, the explicit FDTD uses shorter computation time than the SSFM
when the same step size is used, the explicit FDTD causes amost 10° —time larger
than the SSFM as shown in Fig. 8.4. The CN-4 FDTD uses longer computation time

than other algorithms because, in order to obtain A and Ar from Ag, and Ar.,

three steps of calculation are needed.

Table 8.1: Comparison among the normalized computation times used by the
proposed FDTD algorithms.

Algorithms SSFM | Exp | Imp-1 | Imp-2 | CN-1 | CN-2 | CN-3 | CN-4 | CN-5

Normalized
computation 1 0.2 | 1778 188.9 188.9 | 188.9 | 188.9 | 277.8 | 188.9

times

8.6 Conclusion

In this chapter, the use of FDTD method for solving the NLSE in order to simulate
pulse propagation in relatively long optical fiber has been studied. For the simplest
explicit FDTD, we have defined the normalized spatial step size which should be
determined much shorter than unity in order to attain the numerical stability. In
comparison with SSFM, the SSFM is obviously superior to the explicit FDTD method
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in both error and computation time. Taking into account the difference between the
result obtained from the explicit FDTD and the SSFM or the FDTD-to-SSFM error,
the numerical results of 5-ps FWHM single optical pulse propagation in dispersion
compensation fiber span using FDTD method has shown a possibility of the
calculation over several ten kilometers before this error approaches 20 %.

Next, two agorithms (implicit FDTD, and Crank-Nicholson) for reducing the
error due to the choice of calculation step size in the explicit FDTD method are
employed and compared. We have maodified these algorithms to be the implicit-1,
implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them suitable
for solving the NLSE which is separated into two coupled equations for the real and
imaginary part of the optical signal. For the explicit FDTD, the step size error
increases linearly with the transmission distance, while for the implicit and CN
FDTD, the step size error also increases linearly with the transmission but rapidly
arises at a shorter distance when larger step size is used. However, both implicit and
CN FDTD give significantly smaller step size error than the explicit FDTD at the
same step size. For the comparison of the computation time when the same step size
is used, the explicit FDTD consumes the smallest computation time than other
methods including the SSFM because of its simplicity in algorithm.

It has been widely recognized that the SSFM is the method that gives the
sufficient accuracy for the calculation result of pulse propagation in long nonlinear
optical fiber, since the CN-1 and CN-4 FDTD yield the results that differ from the
result obtained from the SSFM more than 100 % for the propagation of the single
pulse over 100 km, we can mention that the algorithms such as the CN-1 and CN-4
FDTD that we have proposed should be avoided. For other algorithms, the
differences in the results compared to the SSFM are almost the same at about 18 %
for 100-km propagation. This indicates that if we consider the FDTD-to-SSFM error
isthe most serious limit of the FDTD method, the simulation using the FDTD method
can only be applied for a fiber length of several ten kilometers. Nevertheless, it isa
matter of exactness which those who compute required for the solution. Also, if
possible, it is still necessary to compare the results from both FDTD method and
SSFM with the experiment result in order to justify which gives more accurate
solution.

According to all results shown above, although the FDTD method was shown
to be difficult to be utilized to simulate pulse propagation in very long optical fiber
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transmission system, the FDTD method can be employed for studying signal
propagation in short distance systems, fiber devices, fiber amplifiers, and also
studying other nonlinear effects in optical fiber by additionally including interesting
terms to the NLSE. The significant advantage of the FDTD method to the SSFM is
that the FDTD method is much easy to implement than the SSFM. Therefore the
calculation results can be immediately seen without wasting too much time in
programming before starting to simulate.

The FDTD method is also capable to be applied to the case of multi-bit signal
or even WDM signal transmission. This can be realized by only reducing the time
sampling resolution and the corresponding spatial step size since such multi-bit signal
and WDM signal are represented by larger bandwidth than the bandwidth of single
pulse.



CHAPTER 9
DISCUSSI ON:
GETTING CLOSER TO THE REAL WORLD

In this dissertation, we proposed the practical schemes for improving the transmission
performance of the OPC systems. The numerical method is used for proving the
effectiveness of our proposed schemes. We should state that, by our numerical
results, we assure the performance improvement of the systems using our proposed
schemes, but we do not aim to assure the achievable data rates shown in this
dissertation. In fact, we have modeled the systems as much practical as possible.
Moreover, the major effects that cause significant signal distortions are al considered.
Thus, we believe that, in the rea world, the performance of the system may differ
from the cal cul ated results not too much.

In all calculations in this dissertation, some minor factors, which can aso
cause the signal distortions, have been neglected. This is because such factors do not
play dominant roles in limiting system performance comparing with the problems
induced from the TOD and Sl effect. However, in order to fulfill the completeness of
this dissertation, in this section, we note about such factors and how they affect an
OPC system.

The polarization mode dispersion (PMD) has been recognized as a significant
problem limiting the transmission of such ultra-high bit-rate data. In this thesis, we
do not take PMD into account in the calculations. For the higher-order-dispersion-
managed OPC systems using the combination of SMF and RDF, which is proposed in
chapter 6, it has been shown that, without compensation, PMD of the dispersion-

managed transmission fiber using SMF and RDF is as small as 0.03 ps/~km [61].
Thus, by incorporating with PMD compensation, the performance of the higher-order-
dispersion-managed OPC systems may not be degraded too much. In chapter 7, we
have proposed the use of DRA in OPC systems. In this case, we assume the use of
DSF for signa transmission. The DSF, in fact, exhibits larger PMD than the
combination of SMF and RDF. For the design of the power distribution in alink of
DRA, we have considered the PMD by including the PMD factor of 2 in the DRA
equations. Therefore, the power distribution obtained by the DRA in the rea world
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may only dlightly be affected by the PMD. However, for the signal transmission in
DSF with datarate larger than 100 Gbit/s, the PMD compensation may be necessary.
In al calculations shown above, for ssimplicity, the optical phase conjugator is
assumed to be ideal because we aim to focus on the effectiveness of our proposed
methods for suppressing the problems induced from the TOD and the SI. Practicaly,
if we use the optical nonlinearity for producing the conjugated replica of the signal,
the SNR of the signal will unavoidably decreases due to the poor conversion
efficiency. Thiswill cause poorer BER than the results we have shown in this thesis.
Furthermore, in our calculations, we neglect the spatial fluctuation of local
fiber SOD. This effect can also cause significant signal distortion in OPC systems.
For the systems where the SOD fluctuation period is shorter than the nonlinear length:

L, ., the SOD fluctuation has a little influence on signal transmission because, the

SOD fluctuation can be averaged out in the nonlinear scale. Then, the signal almost
feels the average SOD rather than the SOD fluctuation while propagating in such
systems. On the other hand, the SOD variation whaose period is comparable or longer

than L, will cause significant signal distortion. For the case of a higher-order-

dispersion-managed OPC system using the SMF and RDF, since the nonlinear
coefficient of RDF is larger than that of SMF, the SOD fluctuation on the RDF will
result more severe degradation than that occurs in the SMF and DSF.

The signal distortion caused by the SOD fluctuation can be reduced by using
the transmission fibers with a relatively large SOD. Since the combination of SMF
and RDF yields large loca fiber SOD, moreover, in al calculations, we set the
average SOD value: D,, at -1 pskm/nm for both cases of OPC systems using SMF

and RDF and OPC systems using DSF, we believe that the influence of the SOD
fluctuation is sufficiently suppressed in our proposed systems.

According to the results obtained from chapter 6, relatively high input signal
powers (> 10 mW) are required for achieving BER < 10°. The stimulated Brillouin
scattering (SBS) effect [4] is also one of the main factors that place the upper limit for
the usable input signal power. For the problem induced from the SBS, we have
estimated the SBS threshold powers [128], [129] of the RDF for severa data rates
used in our simulations because the RDF is more nonlinear than the SMF. The SBS
thresholds for the case of 100-Gbit/s, 160-Gbit/s, and 200-Gbit/s data are
approximately 51 mwW, 81 mW, and 102 mW, respectively. Therefore, we can
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conclude that the SBS can be neglected for al values of the signal input powers used
in our calculations.

The fourth-order dispersion, which exhibits a value around 4x10™* pgkm/nm®
[62] for DSF, has been shown to affect the propagation of such a femto-second pulse
(pulse width < 1 ps). For non-OPC systems, using the fourth-order dispersion value

4x10™ pgkm/nm® for the pulse width of 2.5 ps (data rate 200 Ghit/s) and the
transmission distance of 10,000 km, the maximum delay between signal spectral
components can be estimated to be approximately 131 ps. Thus, the fourth-order
dispersion will also cause the signal distortion for such a 200-Gbit/s data transmission
over 10,000 km. However, the NLSE, which is numerically solved in this dissertation,
includes the dispersive effects up to only the third-order. Thisis because the OPC can
perfectly compensate for the dispersion whose order is an even number (2", 4™
6"....) [4]. Therefore, we can neglect the fourth-order dispersion in both higher-order
dispersion-managed OPC systems and OPC systems using DRA. Especidly for the
higher-order dispersion-managed OPC systems, practically the TOD almost vanishes
by the combination of the SMF and RDF. Therefore, the dispersion whose order is
higher than the TOD can be compl etely neglected.

The optical phase conjugator should be exactly placed at the system midpoint
or nearest to the system midpoint in order to utilize the full performance of the OPC
scheme. In case that the optical phase conjugator has to be installed at the point
deviated from the midpoint, it is necessary to compensate the amount of the unbalance
SOD accumulation between the accumulated SOD in the first half and the second half
because the lengths of the first half and the second half become no longer equal. With
respect to the position-of-the optical phase conjugator;-the additional signal distortion
will be induced from the interaction between the fiber SOD and the Kerr effect on the
unbalance section.. Therefore, the larger the position of the optical phase conjugator
deviates from the system midpoint, the more serious such signa distortion degrades
the system performance. The deviation of the optical phase conjugator from the exact
midpoint of the system should be much smaller than the nonlinear scale of the system
in order to reduce the nonlinear waveform distortion occurring in the unbalance
section.

For practical installation, the optical phase conjugator should be placed at the

same point of the optical amplifiers. Therefore, the optical phase conjugator will be
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moved out of the midpoint with the step of one amplifier span. For the higher-order
dispersion-managed OPC systems whose the dispersion management period is larger
than the amplifier span, we have to move the optical phase conjugator with a length
step of one dispersion management period in order to keep the symmetrica
distribution of the dispersion management profile with respect to the optical phase
conjugator. This will cause more severe signal distortion for larger dispersion
management period. According to the installed dispersion management profile shown
in Fig. 6.4(b), for the higher-order dispersion-managed OPC systems whose the
dispersion management period is equal to, or smaller than the amplifier span, the
optical phase conjugator should be moved to the second half in order to shorten the
transmission where the RDFs, whose nonlinear coefficient is larger than the SMFs,
are located near the output of amplifiers. Then, the signa distortion due to the
interaction between the Kerr effect and the SOD on the unbalance transmission
section will be reduced.

Figure 9.1 shows the example of OPC system configuration where the optical
phase conjugator is moved to the second half. The transmission length of the first half
is L1, while that of the second half is L, resulting in the unbalance section of L, —L,

located at the input end of fiber. The operating dispersion is—D, therefore, at the end
of the system, the SOD with amount of —D(L,—L,) is necessary to add in order to

balance the accumulated SOD in the first half and the second half.

Unbalance transmission section

/ Amp
N — =D( L1-Ls)

™~ [~ L | Receive
b L ORS b, Compensator Receiver

Source

Dispersion

- L -

I [ distance
-D 1

Figure 9.1: Example of OPC system configuration where the optical phase conjugator

is moved to the second half.
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It has been shown that the RDF can be manufactured to have almost perfect
compensation of the TOD when combining with the SMF. The average remained
TOD becomes as small as 3.3x10™° pskm/nm? [62]. Using this value, the TOD
length for the data rate of 200 Ghit/s is as long as 60,000 km. Since the longest
transmission length in this dissertation is 10,000 km, we can neglect the dlight
mismatch between the dispersion characteristic of SMF and RDF. Therefore, in this
dissertation, we have assumed that the dispersion characteristic of RDF is a complete
reverse of SMF. The effect of the imperfect match of the cascaded SMFs and RDFs
on signa transmission, however, can be considered as the random variation of the
TOD. For OPC systems, since we have proved that the accumul ation characteristic of
the TOD is amost linear in chapter 4 and in [49], this problem can be completely
overcome by only adjusting the amount of TOD that will be compensated at the TOD
compensator.

It is common and practical to construct a system with equal amplifier spacing.
This is because the accumulated amount of the ASE noise at the receiver becomes
minimum for only the system using the equal amplifier spacing. Moreover, it will be
easy and convenient to design the gain of an optical amplifier for equal amplifier
spacing. However, randomly slight deviation of the amplifier position may possibly
occur in the real world. Comparing to a system using equal amplifier spacing, since
the amount of the accumulated noise in a system using unequal amplifier spacing is
larger, the SNR at the receiver will be poorer than the system using equal amplifier
spacing. Moreover, as shown in Fig. 9.2 for the occurrence of the Sl effect, the signal
power variation in a chain of the randomly unequal amplifier spacing produces the
virtual grating in transmission fiber. This virtual grating has a form of randomly
nonlinear-chirped grating [130] through the Kerr effect. - The nonlinear resonance,
which is assisted by this randomly nonlinear-chirped grating, will arise at many signal
sideband spectral components around the carrier frequency. Although, the gain of this
type of Sl isnot so large as the Sl gain for the case of the equal amplifier spacing, the
gain of the SI from the unequal amplifier spacing exhibits very broad bandwidth.
Therefore, the severe spectral broadening will be resulted from the unequal amplifier
spacing.

In OPC systems, athough either the strong higher-order dispersion
management or the DRA is very effective for suppressing the SI, however, the system
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performance cannot be expected as high as the OPC systems using the equal amplifier

spacing.
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Figure 9.2: The occurrence of Sl for a system using nonuniform amplifier spacing.

The spectral linewidth of the optical source is not taken into account in this
dissertation for the sake of simplicity. The source spectral linewidth is directly
responsible for the dispersion effect and the amount of noise entering the signal
bandwidth. For the data rates used in this dissertation, in combination with the TOD
compensation, the signal will restore its spectral width to its initial linewidth after
transmitting in our proposed OPC systems because the all order of dispersion is
amost perfectly compensated. Therefore, only the degradation of the SNR at the
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receiver is till left to consider when the linewidth of the optical source is taken into
account.

The optical loss due to signal reflections at connection parts on a system is
also neglected in this dissertation. To overcome this additional loss, it is necessary to
increase the gain of the optical amplifiers. This results in larger amount of the ASE
noise generated through high optical gain. Therefore, this problem also causes the
degradation of the SNR at the receiver.



CHAPTER 10
CONCLUSION AND SUGGESTIONS
FOR FURTHER IMPROVEMENT

10.1 Summary of the Dissertation

In this dissertation, performance improvement of ultra-long-haul high-bit-rate optical
transmission system using midway OPC was studied. The serious limitations of OPC
system are mainly resulted from TOD and S| effect. We have shown that the
accumulation characteristic of the TOD in OPC transmission systems is amost linear
aslong asthe SOD length is much shorter than the nonlinear length. Thisfact gave us
a possibility to install only one of the linear TOD compensator at any point in the
system for perfect TOD compensation. By assuming the ideal TOD compensator, the
computer simulation result has shown the possibility of a data transmission over
10,000 km with data rate of 100 Gbhit/s based on TOD compensated OPC systems.

We have presented the derivation of the analytical expression of the sideband
instability (Sl) induced from periodic signal power variation and periodic dispersion
management when two different fibers are connected together to form the dispersion
compensation link. Three possible dispersion management systems were considered:
(a) system where dispersion management period is larger than amplifier spacing, (b)
system where the two lengths are equal, and (c) system where amplifier spacing is
larger than dispersion management period.

We found that SI frequency depends on the larger period between the
amplifier spacing and the dispersion management period. The larger the variation
period becomes, the SI frequency will arise closer to carrier frequency. Moreover, the
gain of Sl appears to be reduced with the increase of local fiber second-order
dispersion (SOD). This is because the increase in the local SOD virtually shifts the
order of Sl to higher order resulting in the difficulty of phase-match process. The
computer simulations were made and their results were in good agreement with the
derived theory.

In WDM systems that use relatively narrow channel spacing, we demonstrated
that even the dispersion map is properly designed to achieve low Sl gain, Sl causes
signal distortion to specific channels that fall just on the low order SI frequency,
especialy for the first order. In addition to WDM system design rules, the channel
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allocation must avoid the Sl position in such a way that none of the channels should
be lied at. The computer simulations have confirmed that a WDM system, whose
channel location is re-arranged to avoid Sl, give a significant improvement of the
transmission performance.

Next we proposed for the first time the simultaneous suppression of the two
main problems, TOD and SI, in OPC transmission systems by employing higher-order
dispersion management fiber link consisting of SMF and RDF. In order to implement
the combination of SMF and RDF on OPC systems, we demonstrated that it is
necessary to use symmetric dispersion profile with respect to mid-point of the system
to reduce Sl gain together with the accumulation of the interplay between SPM and
each fiber local dispersion. According to the numerical computation results, a 100-
Ghit/s data transmission in OPC system that employs the SMF+RDF-dispersion-
managed link without optimizing the dispersion map has achieved the transmission
length a BER = 10 over 2,000 km longer than the system where Sl is not
suppressed, although the nonlinear length of the system is set comparable to the
amplifier spacing.

Next, we have introduced the system design approaches to achieve the
maximum system performance considering the determination of dispersion

management period |, and the corresponding signal input power. Such maximum

performance can be achieved by using optimum input power, which will be found at

relatively low value for the case of |, > |, and at relatively high value for the case of
Iy <l;. The computer simulation results have demonstrated that the 10,000-km

transmissions of 100-Ghit/s data, 160-Ghit/s data.and even the data whose data rate as
high as 200 Gbit/s become possible by the dispersion-managed OPC system whose
dispersion map is properly designed.

Figure 10.1 shows the recent significant progresses in single channel
transmission data rate and distance. From figure 10.1, our result has recorded the
highest bit-rate-distance product that has been proposed by computer simulation up to
now. Also shown in the same figure, L. J. Richardson, et. al. have numerically
demonstrated the transmission of a 320-Gbit/s data over the distance of 6,000 km
[64]. The bit-rate-distance product of their work (1,920 Thit- km/s) is only 4 %
smaller than our work (2,000 Thit-km/s). However, their proposed scheme is very

impractical comparing with our proposed scheme. This is because, in their work, the
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320-Ghit/s soliton signal is propagated through a chain of very-short period higher-
order dispersion management. In one link of 50-km amplifier spacing, the period of
such higher-order dispersion management is assumed to be as much as 64 periods.
Furthermore, the absolute fiber local SOD and the average SOD have to be strictly set
a about 1.2 ps’km and -0.001 ps’km, respectively. This is very difficult to
manufacture such higher-order dispersion-managed fibers. Moreover, since their
scheme requires relatively small values of the fiber local SOD and the average SOD,
the random dispersion fluctuation will easily cause the deviation of such fiber local
SOD and average SOD from the designed values. Therefore, in the real world, the
soliton may be destroyed after only propagating for several amplifier spans.

B40Ghit's, 92k (Experiment)
Bit rate ¥ distance = 59 Thit*km/s
T. Yarmamoto, et al, MTT

IEEE Photon. Tech. Leff

i / May 2000 2000hit's, 10,000km (Simulation)
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Figure 10.1: Recent significant progresses in single channel transmission data rate and
distance. Our result has recorded the highest bit-rate-distance product that has been
proposed by computer simulation up to now.

The performance improvement of the OPC transmission system by employing
distributed Raman amplification (DRA) was also studied. We produced the reverse
periodic signal power variation on the second-half of the systemsin order to construct
entirely symmetrical power distribution with respect to the system midpoint by using
appropriate pump powers of the bi-directional pumping DRA. As aresult, al signal
waveform distortions caused by the Kerr effect are compensated through the midway

OPC. Incorporated with the TOD compensator, our simulation results have shown
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possibilities of the 100-Ghit/s data transmission over a 10,000 km with the 50-km
amplifier span and the 200-Gbit/s data transmission over 10,000 km with the 40-km
amplifier span.

Next, to develop the simple numerical agorithm for calculating signa
transmission in optical fibers, we studied the use of finite-difference (FDTD) method
for solving the nonlinear Schrodinger equation (NLSE) in order to simulate pulse
propagation in relatively long optical fiber. The agorithms studied in this chapter are
the explicit FDTD, the implicit FDTD, and the FDTD employing the Crank-
Nicoleson (CN) scheme. We have modified these algorithms to be the implicit-1,
implicit-2, CN-1, CN-2, CN-3, CN-4, and CN-5 FDTD in order to make them suitable
for solving the NLSE. The model of a 5-ps full-width-half-maximum (FWHM) single
optical pulse propagation in dispersion compensated fiber span was used for
simulation. The numerical results of using these proposed FDTD algorithms are
compared with the results obtained by using the split-step Fourier method (SSFM).
Taking into account the differences of result from the SSFM, our developed FDTD
algorithm have shown a possibility of the calculation over severa ten kilometers with
acceptable accuracy. Therefore, we should mention that the FDTD method can be
employed for studying signal propagation in short distance systems, fiber devices,
fiber amplifiers, and also studying other nonlinear effects in optical fiber by
additionally including interesting terms to the NLSE. The significant advantage of
the FDTD method to the SSFM is that the FDTD method is much easier to implement
than the SSFM. Therefore the calculation results can be immediately seen without

wasting too much time in programming before starting to simulate.

10.2 Suggestionsfor Further Work

We give the suggestions for further work as follows.

1. The optimum operation SOD for OPC systems: To extend the performance of
the OPC systems more than what we have derived, the easiest way may be the
optimization of the average SOD value D,,. Theincreasein D,, can reduce the
effect of fiber nonlinearity either the case for using the combination of SMF and
RDF or the case of using the DRA, at the same time, moving the Sl which is not

completely suppressed to occur more inner signal bandwidth. The optimum D,,

will be found under the balance of these two effects.
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2. The optimum symmetrical power distribution by DRA: Since the power
distribution in a link of transmission fiber with DRA can be designed by using
appropriate input pump powers, there should exist the symmetrical power
distribution constructed by the DRA that gives the least difference from the target
power distribution though high input signal power or large DRA span is required.
This optimum symmetrical power distribution will yield better performance on
both the increasing transmission data rate and the extension of the DRA span
because the Kerr effect will be aimast completely compensated through the OPC.
For examples in Fig. 10.2, we propose two configurations, which employ the
DRA for obtaining symmetrical power distribution with respect to system
midpoint. In Fig. 10.2 (a) and (b), a flat power distribution and a uniform power
distribution may aso be constructed by using the bi-directional pumping schemes.

3. Wavelength division multiplexing: Since all the systems considered in this work
are single channel transmission systems, for future works, we suggest the study on
the use of higher-order dispersion-managed OPC scheme on long-haul wavelength
divison multiplexing (WDM) transmission systems. In this case, design
strategies for signal channel alocation that avoids the position of SI should be
considered.

4. DRA with ultra-broadband, flat-gain, and symmetrical power distribution by
multi-wavelength pumping scheme: To support the data transmission using
OPC with DRA in WDM scheme, the DRA that exhibits ultra-broadband, flat-
gain, symmetrical-power-distribution should be used. This can be realized by
using the multi-wavelength pumping scheme with carefully designing the

wavelength and the power of ‘each pump.
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Figure 10.2: Two symmetrical power distributions, with respect to system midpoint,
which can be constructed by employing the DRA, (@) flat power distribution and (b)

uniform power distribution.
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