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การหาเส้นทางการเดินในระยะยาวรวมกับการหลบหลีกสิ่งกีดขวางรอบๆ เป็นวิธีทั่วไปที่

ถูกน ามาใช้ในการจ าลองการเคลื่อนไหวของตัวตนจ าลองจากต าแหน่งหนึ่งไปยังอีกต าแหน่งหนึ่ง  
โดยไม่ให้เกิดการชนกันระหว่างตัวตนจ าลองกับวัตถุในฉากและระหว่างตัวตนจ าลองด้วยกันเอง วิธี
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ผู้คนถูกจ ากัดทิศทางการเดินให้เหลือเพียงหนึ่งหรือสองทิศทางนั้น ปรากฏว่าตัวตนจ าลองมีลักษณะ
การเดินที่ผิดธรรมชาติ เช่น เดินเข้าไปติดและอยู่นิ่งระหว่างตัวตนจ าลองสองตัวที่เดินสวนมาหรือ
เดินเข้าไปในพ้ืนที่ที่แออัดหรือมีกลุ่มคนเยอะๆ ทั้งๆที่ยังมีเส้นทางเดินที่ท าให้ตัวตนจ าลองสามารถ
เดินหลบหลีกไปได้ ลักษณะเช่นนี้เกิดขึ้นบ่อยและเห็นได้ชัดในสถานการณ์แบบสองทิศทาง งานวิจัย
นี้จึงได้เสนอขั้นตอนในการหาเส้นทางในระยะสั้นเพ่ือขจัดความบกพร่องของพฤติกรรมการเดินของ
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Prof. Dr. Pizzanu Kanongchaiyos 

  
In traditional crowd simulation, global path planning (GPP) and local 

collision avoidance (LCA) have been used to advance pedestrians toward their own 
goals without colliding. However, we found that using those methods in 
bidirectional flow can force a pedestrian to get stuck among the incoming people, 
walk through the congestion, and unintentionally occupy in a dense area, although 
more comfortable passageways are available. These behaviors are usually 
produced and simply noticeable. For this reason, the explicit metabolic-energy-
minimal short-term path planning (MEM) is proposed and added between GPP and 
LCA to achieve more behavioral fidelity. For energy analysis, the optimal control 
theory with the objective energy function from the study of biomechanics is 
employed and finally leads to the very useful optimal walking characteristics for 
pedestrians. The simulation results show that the pedestrians with MEM can adapt 
their moving to avoid the congestion, resulting in more promising lane changing 
and overtaking behaviors. Even though MEM is mainly developed to deal with the 
artifacts in bidirectional flows, it can be extended with a little modification and 
produce significant behavioral improvement in multi-directional case. 
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CHAPTER 1 
INTRODUCTION 

 
A situation when people are incidentally in a specific environment for a 

certain time period is a common phenomenon in an everyday life but when consider 
their movements it turns out to be an extremely difficult issue to predict their exact 
trajectories. This is due to the fact that each individual has his or her own decision-
making that is influenced not only by his or her own physical and psychological 
factors but also by ones of the neighbors. With this complication, many researchers 
have been attempting to find a way to realistically simulate the movement 
trajectories of the people that can be applied in applications such as game, film, and 
engineering simulation. 

 
The characteristics of movement trajectories do not depend on only the 

physical and psychological factors of pedestrians but also (1) the types of crowd flow 
and (2) the types of nearby objects. Types of crowd flow can be classified into three 
categories: uni-, bi- and multi-directional flow. Uni-directional flow is the simplest 
situation that restricts pedestrians to walk inside a passageway with only one 
entrance and one exit, and pedestrians are allowed to walk only one direction. If 
pedestrians are allowed to walk freely in a passageway regardless of the definition of 
the entrance or exit at the endpoint of the passageway, it was called bi-directional 
flow. The pedestrians in these two types of flow will find a way to overtake the 
others in front and change his current position to the adjacent collision-free lane. 
More complication is raised in multi-directional flow where pedestrians can 
absolutely free to walk in the area and must avoid collision with the others from 
many directions. 

 
The nearby objects in crowd simulation can be classified into two types:  

static and dynamic objects. Static object refers to an object that cannot be displaced 
by itself or others. Any object, including walkable pedestrians, that can be displaced 
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is called dynamic object. Pedestrian can easily adapt his movement trajectory to 
avoid collision against static objects by using the mechanism called the global path 
planning. Global path planning will offer collision-free paths from position to position 
in a virtual world. All dynamic objects including virtual pedestrians will be ignored. It 
is like when the reader wants to travel from home to somewhere, first of all is the 
known possible routes to that place, and this will be handled by global path 
planning. However, the global path planning only tells us about the routes, not how 
fast a pedestrian should use along such path. For dynamic objects, the collision-free 
routes will be provided by using a mechanism called local collision avoidance that 
analyzes the surroundings of pedestrian based on different heuristics and then offers 
a walking direction to the pedestrian. The offered walking direction must advance the 
pedestrian toward his destination position along the path provided by global path 
planning. These two mechanisms have been extensively used in traditional crowd 
simulation. 
 
1.1  Definition of Realistic Crowd Simulation 
 

The interesting question is what is the definition of the word realistic in crowd 
simulation? The simplest answer is everything that can make virtual pedestrians look 
natural and similar to the real world in both visual aspect and behaviors. In this 
dissertation, we concern the behaviors of their movement trajectories. These 
behaviors can be validated using two approaches: qualitative and quantitative 
measurement. Qualitative measurement will compare the generated crowd 
behaviors with the ones frequently perceived in the real world, for examples, the 
lane formation behavior must be generated in bi-directional flow. But quantitative 
measurement will convert the generated crowd behaviors into numbers and 
compare with ones in the real world, for examples, the rate of change of the speed, 
the crowd density, and the rate of crowd flow. 
 
1.2  Problem, Scope, and Assumption 
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Utilizing the global path planning and the local collision avoidance works well in 
multi-directional crowd flow. It can generate the satisfying results on pedestrian 
movements. However, when applying to pedestrians in bi-directional case, the 
strange behaviors were simply and noticeably generated as follows: 

 
• A pedestrian gets stuck in the approaching people. 
• A pedestrian chooses the nonsense direction of overtaking. 
• A pedestrian gets pushed from the people walking behind. 

 
With these results, the authors attempt to find a new crowd simulation system that 
is capable of dealing with these strange behaviors. The scope of this dissertation is 
limited to the following: 

 
• This dissertation considers the pedestrian movements in bi-directional flow. 
• This dissertation defines the realistic crowd simulation as the movement 

trajectories that frequently perceived in the real world, not the visual aspect 
of pedestrians such as cloths, hair, or color skin. 

• The maximum pedestrian density in our experiment is no more than 3.5 
ppl/m2 because in real life the overtaking behavior does not frequently 
occur at the density higher than 3.5 ppl/m2. 
  

Additionally, the authors assume the following: 
 

• All pedestrians know the walking direction to the one end of a passageway 
and cannot change it on-the-fly. 

• Each pedestrian has only one desired speed throughout the simulation time 
and is set when the simulation begins. 

• Each pedestrian has a limited perception radius to see the others. 
 

1.3  Contribution 
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In this dissertation, we propose a new mechanism called metabolic-energy-
minimal short-term path planning (MEM) which can be seamlessly added in between 
the existing global path planners (GPP) and the local collision avoidance methods 
(LCA) without modification. Our MEM can leverage the fidelity of the crowd 
movement in bi-directional flow to the next level by allowing a pedestrian to be 
able to automatically adapt himself in both walking direction and speed, which 
results in promising overtaking and lane changing behaviors. 
 

Specifically, our crowd simulation system will begin with the GPP to compute 
the collision-free paths among the static obstacles, then instead of directly doing the 
LCA like many other traditional crowd simulation systems, the MEM will be 
employed to find the best desired walking direction from the predicted walking paths 
of neighboring pedestrians. MEM does not consider only the current positions, but 
also the future. This prevents a pedestrian from the successive awkward motion. 
Finally, the LCA employs the best desired direction to find the actual walking 
direction on the condition that the collision with the others should not occur. All 
these three mechanisms will be processed successively in each frame of simulation, 
making a pedestrian towards the destination position. 

 
1.4  Dissertation Organization 
 

The remainder of the dissertation is organized as follows. The next chapter 
reviews the previous work and points to related theories and principles in Chapter 3. 
In Chapter 4, we give an overview of our crowd simulation system and also detail our 
proposed MEM. In Chapter 5, we demonstrate the simulation results and discuss the 
efficiency and impact of our system on bi-directional crowd flow by comparing with 
the previous methods, and also show the usage of our system on multi-directional 
crowd simulation. We summarize the dissertation and point out the future work in 
Chapter 6. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2 
PREVIOUS WORK 

 
Computer-aided simulation of the creatures' behaviors dates back to the work 

of Reynolds [1] who proposed the model to simulate the movement of the flock of 
birds. Since then, crowd behaviors have been extensively studied by the researchers 
in different disciplines, and the plenty of approaches were then developed in an 
effort to imitate the pedestrian navigation, which will be briefly overviewed in this 
section. 
 
2.1  Global Path Planning 
 

Dealing with avoiding static obstacles has been much addressed in the 
robotics literatures where the robot is treated as an intelligent machine capable of 
sensing the surroundings and planning the collision-free trajectories. We refer the 
reader to the valuable book [2] for the literature review and the useful planning 
algorithms. Likewise, autonomous pedestrians need to recognize the simulated 
world, and plan for a route to the destination. The simple way is to discretize the 
simulated world into the single uniform grid and use the well-known A* search 
algorithm for pathfinding, but it is inefficient for a large-scale environment in terms of 
computation time and memory used, so the multi-resolution grids [3] and the 
hierarchical pathfinding [4, 5] were introduced to enrich the performance. Owing to 
the tradeoff between the level of discretization and the performance, using a set of 
connected graphs to represent the walkable regions is a good choice to compromise 
between both of them. Many researchers construct such graphs based on different 
approaches, including the randomized method [6], Delaunay triangulation [7] 
navigation graph [8], voronoi diagram [9, 10], and medial axis [11-15]. The graph-
based path planners yield a small-sized search space but the queried path, if it 
exists, is not the shortest one as produced in the grid-based planners. Moreover, the 
graphs can store additional information of each walkable region, for example, the 
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crowd density [16], to be used as the heuristic value in the traditional graph search 
algorithms. 

 
2.2  Local Collision Avoidance 
 

Without neighboring people, an autonomous pedestrian will walk on a path 
from GPP, but if a pedestrian is surrounded by the others, the pedestrian needs to 
dodge to avoid the collision. There are many works that takes an interest in this 
problem and we can categorize them into eight methods: 

 
2.2.1  Cellular Automata and Lattice Gas Model 
 

In cellular automata [17, 18], the virtual world is discretized to a rectangular 
grid and each cell in the grid is fully occupied by a virtual pedestrian. All pedestrians 
will walk based on some specified mechanism, or rules. 
 

Lattice gas model [19, 20] is similar to the cellular automata but instead of 
discretizing a virtual world into a rectangular grid, the lattice gas model discretizes 
into the uniform mesh. Each node of the mesh can be occupied by a pedestrian. If 
lattice gas model represents a virtual world as the rectangular uniform mesh, it is 
completely the same as the rectangular grid in the cellular automata. 
 

These models are easily implemented to handle collision avoidance, but the 
generated crowd behaviors are unrealistic due to the occupation condition in the 
discretized grid or mesh. 

 
2.2.2  Force Based Method 
 

In this method [21-23], virtual pedestrians are evolved in time by forces 
based on the Newton’s motion laws. There are two types of forces: repulsive and 
attractive forces. The repulsive forces are responsible for the collision avoidance, and 
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the attractive forces for pedestrian following and goal seeking. The advantage of the 
method is it is easy to implement and can inherently generate the pushing behavior 
due to the nature of force. Moreover, the force-based method also implicitly reflects 
the social psychology of the human. 
 

By the Newton’s motion laws, the magnitude of all forces must be 
determined to compute the resultant one. The challenge is how to get the suitable 
magnitude of forces to drive the virtual pedestrians through the environment. It is 
inevitable that the weights of all forces must be specified. If the weights are 
extremely large, the strange behaviors will be exhibited, for example, the oscillation 
of virtual pedestrians. 

 
2.2.3  Rule Based Method 

 
Virtual pedestrians walk based on a collection of predefined rules. This gives 

us a challenge to find the rules that enough for simulating realistic crowd. If there are 
a small number of rules, the unrealistic behaviors may emerge because the 
behaviors of the real human are too complicated to be represented by a few rules. 
The rule-based method [24-26] produces remarkable results in case of low-density 
crowds, but lack realism in high-density because of the ambiguity of the dominant 
rule selection. 

 
2.2.4  Vision Based Method 

 
Based on the real human perception, the vision-based method [27] mimics 

the visual perception, similar to what our eyes can see, to be used for the navigation 
of virtual pedestrians. Pedestrians will visually perceive their surroundings and then 
produce two-dimensional images that represent what they actually see. To efficiently 
make the images, the graphics processing unit (GPU) is necessary, but it comes with 
the problem of data transmission between the GPU and CPU, so this issue must be 
deliberately considered, especially in high-density crowd simulation, because it very 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

much affects the overall computation time of the simulation pipeline. Moreover, the 
perceived virtual pedestrians could be approximated by simple geometries to reduce 
the complexity of the image usage. 

 
Importantly, mimicking the visual perception from the real human is a good 

concept but the concern in navigational mechanism still remains. 
 

2.2.5  Psychology Based Method 
 
This method [28] attempt to find the relationship between the human 

psychology and the pedestrian movements based on observations and studies. In 
particular, some researchers [29] conduct the experiment to obtain the relation 
between psychological factors and the low-level walking parameters: the preferred 
speed, perceiving distance, the virtual pedestrian radius, maximum number of 
neighbors to be perceived, and the planning horizon, by asking the predefined 
questions involved with the human psychology to the volunteers and then finding 
the mathematical relation from the statistic answers. 
 

The advantage of the psychology-based method is that the simulated 
pedestrians will exhibit the behaviors based on the real human psychology, but it is 
not trivial to conduct the procedure to obtain the real human psychological 
behaviors. 
 
2.2.6  Local Field Based Method 

 
Local-field based method constructs a field around a virtual pedestrian to be 

used as the area of perception. In this local field, there are many identical elements 
connected to each other and employed in a different way. Some researchers [30] 
define a local field as a uniform grid and then compute the desired velocities in all 
grid cells. Some researchers [31] define a local field as the connected circles with 
varying radii. Each circle contains the affordance values which provide the relative 
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strength of all possible steering decisions. Virtual pedestrian will walk on a path 
having the optimal affordance values. 

 
The local field-based method reproduces not only the human perception but 

the short-range route finding as well. It comes with the idea that the real human 
rapidly plans the path to walk for the near future. 

 
2.2.7  Example Based Method 

 
To produce crowd behaviors as realistic as possible, the footages of the real 

human movements are provided in the example-based method [32-35]. The patterns 
of the real human movements are created as many as possible from the footages by 
either hand-selected or system-generated, and then collected in the database. In 
run-time phase, the desired velocity is obtained based on the matching function that 
maps the pattern of the virtual pedestrian to the real one in the database. 

 
The advantage of the method is that the virtual pedestrians walk based on 

the walking patterns generated from the real human. The big challenges in the 
example-based method are finding the matching function, acquiring the number of 
the real human footages, and marking the walking patterns. Moreover, the more 
numbers of patterns created from the footages, the more realism of the virtual 
pedestrian movement, but the higher computation time when queries. 

 
2.2.8  Geometry Based Method 

 
Instead of computing the velocity from the Newton’s motion laws in the 

force-based method, the geometry-based method [36, 37] directly computes the 
virtual pedestrian velocity based on the geometric appearances such as neighboring 
pedestrians’ radii, positions, and velocities. 
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In addition, some researchers [38] aimed at constructing the region of 
admissible velocities, and proposed the technique called velocity obstacles, which is 
primarily used in the robotic research. Since the velocity obstacles method generates 
the oscillation motions, it is then enhanced and extensively used and applied to 
crowd simulation [39-46] eventually. Enhanced velocity obstacles method is simply 
implemented and exhibits collision-free, oscillation-free and smooth trajectories, and 
also offers parallel computing. Given the admissible velocity region, the challenge is 
how to choose the actual velocity from the region. The easiest way is choosing the 
velocity in the region that is closest to the desired velocity. 

 
The other advantage of the geometry-based method is that the method does 

not require the weight tuning for odd behavior prevention, like the force-based 
method, since the geometry-based method directly chooses the velocity from the 
admissible region. 

 
2.3  Uni- and Bidirectional Crowd Flows 
 

In these situations, the GPP is easily defined due to the simplicity of static 
obstacle formation, which diverts the researcher interest to the local interaction 
between pedestrians. Some researchers simulate these circumstances using the 
lattice-gas model [19, 20] and cellular automata [47-49] with their own specific rules 
to determine the lane changing direction on a uniform grid. Although the rules were 
developed in different ways, the lane changing direction depends on the same 
attributes, including the crowd density and the walking directions of neighboring 
pedestrians being in frontal areas. Specifically, these rules will direct the pedestrians 
to walk on a more comfortable lane such as a low-density lane or a lane having the 
same-walking-direction pedestrians. By the nature of discretization, limiting pedestrian 
movement to a discrete set produces unrealistic results. Instead, the counterflow 
model [50] computes a new desired walking direction, based again on the crowd 
density and others' walking directions, enabling pedestrians in any continuous crowd 
simulators to walk toward a more comfortable area. Moreover, the overtaking 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 

analysis based explicitly on the social repulsive forces [51, 52] allows pedestrians to 
weave their way through a crowd, but the repulsive forces may cancel each other, 
causing a pedestrian to get stuck into a moving group in front even though walkable 
pathways are available. 
 

The above-mentioned works determine a new walking direction pointing to a 
more comfortable lane or area, by considering merely the current state of the 
neighboring. This does not guarantee the forthcoming movements, and often results 
in strange-looking behaviors, e.g., confronting the oncoming people, getting stuck into 
pedestrians in front, or unintentionally being in a dense area, even though other 
pathways exist. As we point out, the GPP and LCA do not consider the successive 
walking motion so the awkward behaviors are supposed to emerge. Recently, the 
navigational system called the Effective Avoidance Combination Strategy (EACS) [53] 
presented a mid-term motion planning technique, like our MEM, to compute an 
energy-efficient avoidance path made of successive adaptations. But their resulting 
path does not guarantee the minimal energy. It depends on the order of collision 
testing.  

Figure 1. Simulation result generated by our approach. The red-colored pedestrian 
walks through the huge crowd split by a bent, narrow passageway. At each time 
step, he observes his surroundings and chooses a comfortable way allowing him to 
reach to the front area. 
 

In our approach, the presence of MEM produces different behavioral results, 
comparing to the previous methods using only GPP and LCA. Because in GPP and 
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LCA no successive motions will be taken into account. Although some works exploit 
crowd density as a heuristic for guiding pedestrian walking, it is limited to some 
scenarios, for example, the scenario shown in Figure 1. Using crowd density for lane 
changing direction cannot guide the pedestrian to walk on a narrow passageway. 
Instead, pedestrians in our approach are guided by a collision-free path that yields 
the minimal energy. Our approach differs from EACS on the aspect that EACS may 
not consider some feasible paths because some orders of collision testing cannot be 
reachable, so some paths may be skipped. But in our approach the energy-minimal 
collision-free path is computed from all feasible paths which guarantees that the 
resulting path yields the global minimum energy. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 
RELATED THEORIES AND PRINCIPLES 

 
There are four principal subjects related in the research; first, the principle of 

least effort which reflects the psychological factors of the real human against actions, 
second, the biomechanics of gait which focuses on the walking mechanism of the 
real human, third, the optimal control theory which is essentially employed in order 
to mathematically model and analyze the research problem, and fourth, dynamic 
programming which is the important technique to reduce the complexity of 
problems by breaking them down into the simpler sub-problems. 

 
3.1  Principle of Least Effort 

 
The principle of least effort was studied by George K. Zipf [54], and states 

that it is a human nature to want the greatest outcome for the least amount of 
effort. This truly reflects the ordinary decision-making mechanism of the real human 
against actions to be performed. For example, the people frequently choose the 
shortest route when driving a car because it is highly inclined to yields the lowest 
amount of petrol. In the case of human walking, the people will frequently not 
choose a detour since it has a high tendency to make them more exhausted than 
the shortest one. This principle is abroad theory that covers many diverse fields 
involved with the human psychology against actions. 

 
3.2  Biomechanics of Gait 
 

The real human walking is a complex mechanism that we use in everyday 
life. Although it is a complex matter, we can easily distinguish the injured people 
from the normal ones through their walking motion. The biomechanics of gait [55] is 
the research area to study about the detailed mechanism behind the human walking 
in order to use in a clinically meaningful way. 
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Human walking mechanism is regulated by the coordination of the human 
limbs. Bone of each limb produces both kinetic energy and potential energy. To 
measure the efficiency of walking, kinetic energy and potential energy of every bone 
are computed and then summed up together, called the total mechanical energy. 
Since it is not trivial to compute the total mechanical energy at every time step to 
gain the human walking efficiency in a certain period of time, many researchers 
attempt to find a better indicator to measure the efficiency of walking. The 
experiment to measure the oxygen uptake is then well conducted. In the 
experiment, the subjects were required to breathe through a mouth piece, which is 
an oxygen uptake measuring instrument, while walking on a treadmill with different 
speeds. Finally, the relationship between the energy consumption and the speed of 
walking was obtained. This kind of energy is called the metabolic energy. 
 

 
2

s wP e e v= +  (3.1) 

 
where P  is the metabolic consumption power ( J/kg.s ), v  is the velocity (m/s ), se  is 
the energy consumption coefficient when standing ( J/kg.s ), .and we  is the energy 

consumption coefficient when walking ( 2Js/kg.m ). 
 

For the average human, 2.23se =  and 1.25we = , and the most efficient walking 
speed of the average human that yields the lowest amount of metabolic 
consumption power is: 
 

 1.34  m/ss
eff

w
v

e

e
= =  (3.2) 

 
 

3.3  Optimal Control Theory 
 

A problem we are dealing with in this dissertation is the optimization problem 
having the objective function in the integral form with N  inequality constraints and 
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one free endpoint condition. This type of problem is a special case in the optimal 
control theory. For more detail and other cases of problem, we refer the reader to 
these optimal control theory books [56-58]. 

 
3.3.1  Optimization Problem 
 

Our optimization problem begins with minimizing the objective function in 
the integral form as shown in the following equation: 

 

 

1

0

( , ( ), ( )) ,
t

t
E g t p t v t dt  (3.3) 

 

where mp  and nv  are called the state and control variables, 
respectively, and ( )g  is a real-valued function. When the values of the control 
variables v  change, the values of the state variables p  will be changed 
simultaneously by this differential equation: 
 
 ( ) ( , ( ), ( )),p t h t p t v t  (3.4) 
 

where ( )h  is arbitrary vector function that has the same dimension as p . The state 
( )p t  is also constrained by the N  inequality equations: 

 
 ( ( ), ) 0,      1,...,jw p t t j N . (3.5) 
 
for all 0 1[ , ]t t t , and one endpoint constraint: 
 
 1( ( )) 0.f p t  (3.6) 
 
The function jw  and f  are the real-valued functions. We assume that all functions 

are continuously differentiable with respect to their own independent arguments. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16 

Notice that the control function ( )v t  influences the functional E  directly by its own 
values and indirectly by its impact on the state function ( )p t  in Eq.(3.4). Moreover, 
in our problem, the initial point of the state ( )p t  is fixed in both space and time and 
can be computed in advance. That is: 
 
 0 0 and ( ) are fixed to the known values.t p t    
 
3.3.2  Necessary Conditions for Optimality 
 

To find the optimal trajectory ( t , * ( )p t , * ( )v t ), we first eliminate Eq.(3.4) by 

appending it into the functional E  with the Lagrange multiplier vector function ( )t , 
which results in: 

 

 

1

0

( , ( ), ( )) ( ) ( , ( ), ( )) ( ) ,
t

t
E g t p t v t t h t p t v t p t dt  (3.7) 

 

where the Lagrange multiplier ( ) mt  can be arbitrary vector function. Then, 
we expand the product term and apply the integration by parts, so Eq.(3.7) turns out 
to be: 
 

 

1

0

0 0 1 1 ( ) ( ) ( ) ( ),
t

t
E g h p dt t p t t p t  (3.8) 

 
Note that we discard the arguments of the functions in the integral just because of 
the limited space and for the clear explanation. Please remember that such 
functions still depend on their own independent variables that are previously 

displayed. We assume that the optimal trajectory ( t , * ( )p t , * ( )v t ) over time period 

0 1[ , ]t t  produces the minimum functional *E  within some neighborhoods E , so from 
Eq.(3.15) we obtain: 
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1

0

* * * * * *
0 0 1 1 ( ) ( ) ( ) ( ),

t

t
E g h p dt t p t t p t  (3.9) 

 
where the asterisk in the superscript means the function is evaluated at the optimal 

trajectory ( t , * ( )p t , * ( )v t ). 
 

For the neighborhoods of ( t , * ( )p t , * ( )v t ), if trajectories ( t , ( )p t , ( )v t ) for 

0 1 1[ , ]t t t t  are its neighborhoods, they must produce higher or equal 

functional E  to the minimum functional *E . Note that the state at the endpoint in 
our case is free in both space and time, so the time of the endpoint of neighboring 
trajectories can be shifted and this is the reason why the upper bound must be 

1 1t t , where 1t  is a small infinitesimal quantity. From Eq.(3.7), the functional E  
produced by the neighborhoods ( t , ( )p t , ( )v t ) can be computed by: 
 

 

1 1

0

 .
t t

t
E g h p dt  (3.10) 

 
Rewrite Eq.(3.10) by splitting the integral at time 1t  into two separate terms, so 
 

1 1 1

0 1

  .
t t t

t t
E g h p dt g h p dt  (3.11) 

 
The first integral term on the right side of Eq.(3.10) is the same form as one in 
Eq.(3.7), so it can be replaced with the right side of Eq.(3.8). Therefore, 
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1

0

1 1

1

0 0 1 1 ( ) ( ) ( ) ( )

 

t

t

t t

t

E g h p dt t p t t p t

g h p dt

 (3.12) 

 
Consider the last integral term in Eq.(3.12), it can be approximated by: 
 

 

1 1

1
1

1

1

1

1

* *
* *

2 1

                               

                               

                           

 
t t

tt

t t

t t

g h p g h p t

g t

d

g g
g p v R t

p v

t

1

*
1    

t t
g t

 (3.13) 

 

where *( ) ( ) ( )p t p t p t , *( ) ( ) ( )v t v t v t , and *
2R  is the remainder. 

The second line in Eq.(3.13) is from eliminating the last two terms from the first line. 
This was due to the equality constraint specified in Eq.(3.4). The third line results 
from applying the Taylor series expansion to the function g  about the optimal 

trajectory    ( t , * ( )p t , * ( )v t ). The term 1p t , 1v t , and *
2 1R t  are very small, 

so they are eliminated, and finally we obtain its approximation shown in the last line. 
Therefore, Eq.(3.12) becomes: 
 

 

1

0

1

0 0 1 1

*
1

 ( ) ( ) ( ) ( )
t

t

t t

E g h p dt t p t t p t

g t

 (3.14) 
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Since the functional *E  is a local minima within some neighborhood E , which is 
expressed by Eq.(3.14), so we get 
 

 * 0.E E  (3.15) 
 

Consider *E E  from Eq.(3.9)  and Eq.(3.14), 
 

 

1

0

1

* * * *

* *
0 0 0 1 1 1

*
1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

.

 
t

t

t t

E E g g h h p p

t p t p

g

dt

t t p t p t

t

 

  

 

Then, we use the Taylor series expansion on the terms *g g  and *h h , and 

change *p p  to p . 
 

 

1

0

1

0

1

* *
*

* *

1

*
0 0 1 1 1

 

 

( ) ( ) ( ) ( ) ,

t

t

mt
i i

i
t i

t t

g g
E E p v dt

p v

h h
p v p dt

p v

t p t t p t g t

  
(3.16) 

 

where i  is the ith component of the Lagrange multiplier vector function , and ih  

is the ith component of the vector function h . As the state at initial point, the state 
at time 0t , in our case is fixed in both space and time, so 0( ) 0p t , and Eq.(3.16) 
becomes: 
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1

0

1

0

1

* *
*

* *

1

*
1 1 1

 

 

( ) ( ) ,

t

t

mt
i i

i
t i

t t

g g
E E p v dt

p v

h h
p v p dt

p v

t p t g t

  
(3.17) 

 

Let 1p  be the difference between the endpoint of the optimal state *p , which 
ends at the time 1t , and the endpoint of the neighborhood p , which ends at the 

time 1 1t t . Specifically, *
1 1 1 1( ) ( )p p t t p t . So 1( )p t  can be 

approximated by: 
 

 *
1 1 1 1( ) ( ) .p t p p t t . (3.18) 

 
Replacing it in Eq.(3.17) results in: 
 

 

1

0

1

0

1

* *
*

* *

1

* *
1 1 1 1 1

 

 

( ) ( ) ( ) .

t

t

mt
i i

i
t i

t t

g g
E E p v dt

p v

h h
p v p dt

p v

g t p t t t p

 (3.19) 

 
Rearrange terms in the integrand in Eq.(3.19), so we get: 
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1

0

1

0

1

* *
*

1

* *

1

* *
1 1 1 1 1

 

 

( ) ( ) ( ) .

mt
i

i
t i

mt
i

i
t i

t t

g h
E E p dt

p p

g h
v dt

v v

g t p t t t p

  
(3.20) 

 

Let ( , ( ), ( ), ( ))t p t v t t g h , which is called the Hamiltonian. So, Eq.(3.20) 
turns out to be: 
 

 

1

0

1

* *
*

*
1 1 1

 

( ) .

t

t

t t

E E p v dt
p v

t t p

  (3.21) 

 

From Eq.(3.15) and Eq.(3.21), the optimal trajectory * *( , , )t p v  which produces the 

local minimum functional *E  must satisfy the following equation: 
 

 

1

0

1

* *

*
1 1 1                                 ( ) 0.

t

t

t t

p v dt
p v

t t p

  (3.22) 

 

The optimal trajectory * *( , , )t p v  yields the local minimum *E  over all admissible 
neighborhoods ( , , )t p v , and some neighborhoods ( , , )t p v  could have the same 
endpoint in both space and time as the endpoint of the optimal trajectory 

* *( , , )t p v , that is 1 0t  and 1 0p , which turns Eq.(3.22) into 
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1

0

* *

0.
t

t
p v dt

p v
  (3.23) 

 

So the optimal trajectory * *( , ( ), ( ))t p t v t  must satisfy 
 

 

* *

0,p v
p v

  (3.24) 

 
for all 0 1[ , ]t t t . 
 
Back to the N  inequality constraints in Eq.(3.5). We call the constraint jw  is inactive 

at time t , if ( ( ), ) 0jw p t t ; otherwise, active at time t . If the optimal state * ( )p t  

makes the jth constraint jw  inactive at a certain time t , so *( ( ), ) 0jw p t t . 

However, for any neighborhood ( )p t , it must satisfy Eq.(3.5), so ( ( ), ) 0jw p t t . This 

conduces to: 
 

 
*( ( ), )  { , ,or }  ( ( ), )j jw p t t w p t t     

 

which places no restriction on ( )p t . On the other hand, if the optimal state * ( )p t  

makes the jth constraint jw  active at a certain time t , so *( ( ), ) 0jw p t t , and, as 

before, the neighborhood ( )p t  must satisfy ( ( ), ) 0jw p t t . This conduces to: 

 

 
*( ( ), )    ( ( ), )j jw p t t w p t t     

 
and results in the restriction on ( )p t  as shown below: 
 

 

*

    0.jw
p

p
  (3.25) 
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In case the optimal state * ( )p t  makes all constraints jw  inactive at a certain time t

, so ( )p t  will not be constrained by any jw . This leads to any possibilities of 

values of p  at time t . Likewise, the control ( )v t  is also arbitrary, leading to 
arbitrary v  as well. Therefore, to satisfy Eq.(3.24) when ( )p t  and ( )v t  can 
be arbitrary, the terms in the parentheses must be zero: 
 

 

* *

0     and     0.
p v

  (3.26) 

 

Eq.(3.26) expresses the characteristics of the optimal state * ( )p t  and optimal control 
* ( )v t  in a certain time period when all inequality constraints are inactive. 

 

In case the optimal state * ( )p t  makes some/all constraints jw  active. All active jw  

must place the restriction on ( )p t , as shown in Eq.(3.25). So 
 

 

*

       0,        ,t
jw

p j
p

  (3.27) 

 
where  t  is a set of indices of the active constraints at time t . To satisfy Eq.(3.24) 
when ( )p t  is constrained by Eq.(3.27), the Farkas's lemma, described in the 
appendix, is then employed. This results in: 
 

 

 

** *

( ) 0    and    0,

t

j
j

j

w
t

p p v
  (3.28) 

 
where ( ) 0j t  for all  tj . Eq.(3.28). expresses the characteristics of the 

optimal state * ( )p t  and optimal control * ( )v t  in a certain time period when 
some/all inequality constraints are active. 
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Notice from Eq.(3.26) and Eq.(3.28). that if an inequality constraint becomes active by 

the optimal state *p , the term * /j jw p  will be added. So, we generalize this 

by raising the additional equation shown below: 
 

 
*( ) ( ( ), )    0,      1,..., .j jt w p t t j N     

 

In summary, the optimal trajectory * *( , ( ), ( ))t p t v t  must satisfy: 
 

 

*

*

*

  

   

( ) ( ( ), )    0,        1,...,

( )    0,        1,...,

( ) ,

  0

 0

j j

j

m

p

v
t w p t t j N

t j N

t

  

(3.29) 

 
for all 0 1[ , ]t t t , where  is called the Lagrangian and equals to: 
 

 1

1

( , ( ), ( ), ( ), ( ), ..., ( )) ( ) ( ( ), )
N

N j j

j

t p t v t t t t t w p t t     

 
So far we completely investigate the characteristics of the optimal trajectory 

* *( , , )t p v  against the neighborhoods ( , , )t p v  that have the same endpoint in both 
space and time as one of the optimal trajectory. Now it is time to investigate the 

characteristics of the optimal trajectory * *( , , )t p v  against the neighborhoods 
( , , )t p v  that have different endpoint to one of the optimal trajectory. That is 

1 0t  and 1 0p . Do not forget that Eq.(3.22) must hold for the optimal 
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trajectory * *( , , )t p v , and because Eq.(3.23) holds in the previous investigation, so 
Eq.(3.22) turns out to be: 
 

 
1

*
1 1 1( )   0.  

t t
t t p   (3.30) 

 
However, the endpoints are constrained by Eq.(3.6), which yields: 
 

 *
1 1 1( ( )) 0     and     ( ( )) 0.f p t f p t t     

 

Recall that the optimal state *p  and the neighborhood p  are assumed to end at 

the time 1t  and 1 1t t , respectively. Because of *
1 1 1 1( ) ( )p t t p t p , so 

we get: 
 

 * *
1 1 1( ( )) 0     and     ( ( ) ) 0.f p t f p t p     

 
Using the Taylor series expansion to above equations yields the following constraint 
towards 1p : 
 

 

1

*

1  0. 
t t

f
p

p
  (3.31) 

 
Eq.(3.31) can add into Eq.(3.30) without loss of generality by multiplying with the 
real-valued constant variable , and then adding into Eq.(3.30). Therefore, the 

optimal trajectory * *( , , )t p v  must satisfy: 
 

 
1

1

*
*

1 1 1( )  0, 
t t

t t

f
t t p

p
  (3.32) 
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where  and can be arbitrary real value. However, the endpoints are not 
constrained by only Eq.(3.6) but Eq.(3.5) as well. If the endpoint of the optimal state 

*p  makes jw  inactive, so *
1 1( ( ), ) 0jw p t t , and again, 

1 1 1 1( ( ), ) 0jw p t t t t  must hold for the endpoint of the neighborhood p , 

which results in: 
 

 
*

1 1 1 1 1 1( ( ), )   { , ,  or }   ( ( ), ).j jw p t t t t w p t t     

 
The above equation places no restriction on 1p . On the one hand, if it makes jw  

active, so *
1 1( ( ), ) 0jw p t t , and 

 

 
*

1 1 1 1 1 1( ( ), )    ( ( ), ).j jw p t t t t w p t t     

 
The above equation places the restriction on both 1p  and 1t , as shown below: 
 

 

1 1

* *

1 1   0.  j j

t t t t

w w
t p

t p
  (3.33) 

 

In case the endpoint of the optimal state * ( )p t  makes all constraints jw  inactive, 

1p  and also 1t  can be arbitrary values, and in order to satisfy Eq.(3.32), the terms 
in the parentheses must be zero: 
 

 
1

1

*
*

10       and       ( ) 0.
t t

t t

f
t

p
  (3.34) 

 

Eq.(3.34) expresses the characteristics of the optimal state * ( )p t  and optimal control 
* ( )v t  at the time 1t  when all inequality constraints are inactive. 
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In case the endpoint of the optimal state * ( )p t  makes some/all constraints jw  

active. All active jw  must place the restriction on both 1p  and 1t , as shown in 

Eq.(3.33). So 
 

 
1

1 1

* *

1 1    0,        .  j j
t

t t t t

w w
t p j

t p
  (3.35) 

 
To satisfy Eq.(3.32) when 1p  and 1t  are constrained by Eq.(3.35), the Farkas's 
lemma is employed again, which results in: 
 

 

1
1 1

1 1 1

*
*

**

1

 0,

)  0,(

t

t

j
jt t

t tj

j
j

t t t tj

w

t

wf
t

p p

  (3.36) 

 
where 0j  for all 

1 tj . Eq.(3.36) expresses the characteristics of the optimal 

state * ( )p t  and optimal control * ( )v t  at the time 1t  when some/all inequality 
constraints are active. 
 
Notice from Eq.(3.34) and Eq.(3.36) that if an inequality constraint becomes active at 

time 1t  by the optimal state *p , the term * /j jw t  and * /j jw p  will be 

added. We generalize this by raising the additional equation shown below: 
 

 
*

1 1( ( ), )  0,        1,..., .j jw p t t j N     

 

In summary, the optimal trajectory * *( , ( ), ( ))t p t v t  at time 1t  must satisfy: 
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1
1

1 1

*
*

1

**

1

1
*

1 1

( )

 ( ( ), )  0,        

 0,        

,

.

 0,

 0,

1,...

  1,...,

N
j

jt t
t tj

N
j

j
t t t tj

j j

j

w

t

wf
t

p p

w p t t j

j

N

N

  

(3.37) 

 

For the initial point of the optimal trajectory * *( , ( ), ( ))t p t v t , the initial point of the 
state ( )p t  in our problem is fixed in both space and time, and can be known in 
advance. So, 
 

 
*

0 0( )  p t p   (3.38) 

 
where 0p  is already known. 
 
Conclusion: If a trajectory ( , ( ), ( ))t p t v t  is the optimal trajectory to the problem, it 
must satisfy the necessary conditions defined in Eq.(3.29) along with the boundary 
conditions defined in Eq.(3.37) and Eq.(3.38). 
 
3.3.3  Sufficient Conditions for Optimality 
 

So far we know that if a trajectory ( , ( ), ( ))t p t v t  is the optimal trajectory to 

the problem, which yields the minimum functional *E , it must satisfy Eq.(3.29). But 
we cannot say that any trajectory ( , ( ), ( ))t p t v t  that satisfies Eq.(3.29) is the (local) 
minimum trajectory, because in the previous derivation the only first-order Taylor 

series was used, causing * 0E E  when Eq.(3.29) holds. So, we cannot conclude 
that it is the minimum trajectory. This is analogous to the problem of finding a point 
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x  that minimizes the function ( )f x , which we cannot know that the point x  that 

satisfy ( ) 0f x  is the minimum point unless ( ) 0f x  is satisfied. Therefore, the 
sufficient conditions for optimality are essential, and we will examine in this section. 
 

What we need is the conditions that assert * 0E E  about the (local) 

minimum trajectory * *( , ( ), ( ))t p t v t . Remember that the point * *( , ( ), ( ))t p t v t  
satisfies the necessary conditions defined by Eq.(3.29) and the boundary conditions 
defined by Eq.(3.37) and Eq.(3.38). From the definition E  in Eq.(3.3), 
 

 

1 1 1

0 1

* *( )  .
t t t

t t
E E g g dt g dt   (3.39) 

 

According to the Hamiltonian g h , Eq.(3.39) becomes: 
 

 

1 1 1 1

0 0 1

* *( ) ( )  ,
t t t t

t t t
dt h h dt g dt   (3.40) 

 
and we can deduce that 0  from these following steps: 
 
 1 1 1 1

0 0 1

1

0

1 1 1

0 1

* *

* *(1)

*

( ) ( )  

 

                                ( )  

t t t t

t t t

t

t

t t t

t t

dt h h dt g dt

p v dt
p v

h h dt g dt
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1

0

1 1 1

0 1

1

0

* *(2)

1

*

(3)

 

                                        ( )  

 

                  

Nt
j

j
t j

t t t

t t

t

t

w
p p v dt

p v

h h dt g dt

p p dt

1 1 1

0 1

1

0

1 1 1

0 1

1

0

*

1

(4)

*

1

(5)

      

( )  

                        

( )  

Nt t t
j

j
t tj

t

t

Nt t t
j

j
t tj

t

t

w
p dt g dt

p

d
p dt

dt

w
p dt g dt

p

d
p dt

dt

1 1

1

1

1

1
1 1

(6) *
1 1 0 0 1

(7) *
1 1 1

**(8) *
1 1 1

1

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

t t

t

t t

t t

N
j

j t t
t t t tj

g dt
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1 1

1 1

1

**(9)

1 1

1

**

1 1

1

**

1

1
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       ( ) ( )
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j
t t t tj

N
j

j
t t t tj
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j

j
t t tj
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p t p t

p p

wf
p t p t

p p

wf
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p p
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1

1 1

1

1 1

1

*
1
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1 1

1

*
1
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1 1

1
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t t t tj

t t
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j

j
t t t tj
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wf
p p

p p
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p p

p p

1

*

1

1
(12)

0.

N
j

j

t tj

w
t

t

 

 
Explanation: 
(1):  Assume that  is convex in ( ,p v ).  

So * * */ /p p v v . 

(2): Use the fact that j jw  and * / p . 

(3): * / 0v  and *p h h . 
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(4): ( )d p p p . 

(5): Assume that *( / ) 0j jw p p  for all 1,...,j N . 

(6): The first two terms come from the rule of integration, and  
the last one from Eq.(3.13). 

(7): Since the initial point in our case is fixed, so 0( ) 0p t . 

(8): Replace 1( )t  with the boundary condition in Eq.(3.37). 

(9): Replace 
1

*
t t

g  with 
1 1

* *
1( )

t t t t
t h , and follow from the fact in 

Eq.(3.4), Eq.(3.18), and Eq.(3.37). 
(10): First four terms are cancelled out. 

(11): Replace 
1

*
t t

 with the boundary condition in Eq.(3.37). 

(12): Assume that 
1

*
1( / ) | 0t tf p p  , and 

1 1

* *
1 1( / ) | ( / ) | 0j j t t j j t tw p p w t t . 

 
 

Conclusion: A trajectory ( , , )t p v  that yields the (local) minimum functional *E ; in 

other word * 0E E , must satisfy not only the necessary conditions defined by 
Eq.(3.29) and the boundary conditions in Eq.(3.37), but these following conditions as 
well: 
 

  is convex in ( , )p v   (3.41) 
 

 

*

  0,        1,..., .j
j

w
p j N

p
  (3.42) 

 

 

1

*

1  0. 
t t

f
p

p
  (3.43) 
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1 1

* *

1 1  0,        1,..., . j j
j

t t t t

w w
p t j N

p t
  (3.44) 

 
3.4  Dynamic Programming 
 

Dynamic programming is a useful technique in the diverse areas especially in 
computer science for solving complex problems by breaking the problem down into 
simpler subproblems. The important thing is that the problems must have the 
properties of the optimal substructure and overlapping subproblems. A problem is 
said to have optimal substructure if the optimal solution of the given problem 
contains within the optimal solutions of its subproblems. A problem is said to have 
overlapping subproblems if the problem can be broken down into the subproblems, 
and once the solutions of the subproblems are obtained, they can be reused several 
times until the solution of the problem comes out. Dynamic programming takes the 
advantage of not always generating the new subproblems to speed up the 
performance, and it is better in term of computation time to find out the optimal 
solution than naive recursive approaches like depth-first search and breadth-first 
search.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 
METABOLIC-ENERGY-MINIMAL SHORT-TERM PATH PLANNING 

 
4.1  Overview of Our Crowd Simulation System 
 

Our crowd simulation system assumes that each pedestrian in bidirectional 
flow is already given the desired walking direction to one of the exits of a 
passageway, which can be simply defined by any GPP; for example, in a graph-based 
approach, the desired walking direction may be the tangent to a piecewise smooth 
curve at a point a pedestrian is corresponding to. Given the desired walking direction, 
the pedestrian then employs the MEM by firstly perceiving nearby people, secondly 
predicting their walking paths, and lastly planning for the energy-minimal path that 
compromises between the walking energy expended and the distance to destination. 
The energy-minimal path describes not only the spatial information but also the 
temporal one, which serves as the desired velocity at the present time for the 
considered pedestrian. Finally, the LCA will exploit the desired velocity as an input 
to compute the actual one in the sense that the pedestrian attempts to walk along 
the energy-minimal path simultaneously with preventing collisions with the nearby 
walkers. 
 

 
 

Algorithm 1. shows our simulation loop where the desired walking direction, 
the desired velocity, and the actual velocity of the ith pedestrian are represented by 

id , ,desiv , and ,activ  respectively. The function ( )ComputeDesiredWalkingDirGPP  

will be called in every time step to allow the pedestrian to anytime change his mind 
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on the direction towards an exit of a passageway, but in case the direction is fixed, 
calling it once is enough. Our main contribution is in finding the energy-minimal path 
in the MEM, which performs through the function ( )EnergyMinimalPathMEM  and will 
be detailed in the next section. The proposed MEM can be seamlessly connected 
with any previous LCA methods by using the desired velocity as a connector. 

 
4.2  Metabolic-Energy-Minimal Short-Term Path Planning (MEM) 

 
Our MEM computes the desired velocity ,desiv  for each pedestrian based on 

the principle of least effort and the biomechanical walking energy. The problem we 
are dealing with was shown in Figure 2. Instead of planning a route to the one end of 
the corridor, the considered pedestrian i , which is depicted by the red circle in 
Figure 2, will plan its walking path toward the front line being far away from his 
current position with a distance specified by the user. We assume that the pedestrian 
i  is positioned at the origin of the reference frame x - y  and only responses to the 
perceived people in front. 

 

 
Figure 2. The red pedestrian, who is located at the origin of the reference frame, is 
desired to walk toward the front line, or the red dashed line, with the lowest 
walking energy expenditure 
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The future position of the perceived people in front will be predicted by two 
nuanced ways, subject to the distance to the pedestrian i . If the distance is below 
some threshold thl , the future position is obtained by linearly extrapolating its 
current velocity, otherwise the projected current velocity onto the desired walking 

direction id  of the pedestrian i . The threshold thl  is set to 3.66 meters. This is the 
maximum distance of the social space [59] where the direct interactions and 
responses between the real humans happen. For the people in front beyond the 
social space (farther than the threshold thl ), prediction by using the projected 

velocity onto the desired walking direction id  is reasonable enough in case of 
bidirectional crowd flow where two pedestrians have a high tendency to meet each 
other at a future time, if extrapolating the current velocity is used instead, the future 
position at a large time period may lie outside the corridor and cause no influence 
on the pedestrian i . 
 

The measurement for the walking energy is solely based on the 
biomechanical study of the real human walking [55] in which the oxygen uptake of a 
subject walking on a treadmill at varying speeds was recorded, resulting in a 
mathematical equation that manifests the relationship between the instantaneous 
metabolic energy expenditure and the walking speed, as shown below. 
 

 
2( )s w

dE
m e e v t

dt
  (4.1) 

 
where E  is the total metabolic energy measured in joules (J), m  is the mass 
measured in kilograms (kg), ( )v t  is the velocity at time t  measured in m/s, se  and 

we  are the constants measured in J/kg/s and Js/kg/m 2  respectively, and    is the 
Euclidean norm. The constant se  and we  can be viewed as the rates of the energy 
expended while standing and walking, respectively. These constants are unique for 
each pedestrian, and for the average human, the constant se  is equal to 2.23 J/kg/s 

while the constant we  is 1.25 Js/kg/m 2 . 
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According to Eq. (4.1), we can compute the total metabolic energy expended 

by the pedestrian i  over arbitrary time period t  by using the following equation. 
 

 2( )

t

s wE m e e v t dt   
(4.2) 

 
The pedestrian i  will plan its walking path from the current time ct  to the unknown 
future time et  (time at which the pedestrian i  reaches the front line), so 

e ct t t . 
 
4.3  Constrained Optimization Problem 
 

From the principle of least effort [54], the pedestrian i  is supposed to walk 
with the least amount of energy expenditure. So we compute the desired velocity 

,des ( )iv t  for the pedestrian i  over time period [ , ]c et t  such that the total metabolic 

energy E  is minimized: 
 

 ,des
( )

( )  argmini
v ti

v t E   (4.3) 

 
where  is a set of collision-free velocities over time period [ , ]c et t . Although our 
objective function is similar to PLEdestrians [43], they are different in purposes. In 
PLEdestrians, a desired velocity is given, and the energy-minimal actual velocity is 
then computed. Refer to Algorithm 1, PLEdestrians addresses the problem in 

( )LocalCollisionAvoidance  function. 
 

To define a set of collision-free velocities , the mathematical 
representation of the front line and the perceived people in front must be well 
established. We ignore the boundary of the corridor momentarily to examine the 
energy-minimal walking characteristics of the pedestrian i  against the perceived 
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people. The front line and the j th perceived people at time t  are illustrated by the 
implicit equations ( ) 0f p  and ( , ) 0jw p t , respectively, where p  is a point 

( , )x y  in the reference frame. The geometric shape of j th perceived people is 
defined as a circle with the radius ( )i jr r , where ir  and jr  are the radius of the 

considered pedestrian i  and j th perceived people. So, 
 

 
22( , ) ( ) ( )j j i jw p t r r p p t   (4.4) 

 
where ( )jp t  is the position of the j th perceived people at time t . For the future 

position of the j th perceived people, we linearly extrapolate its current velocity 
when the distance to considered pedestrian i  below the threshold thl , otherwise 

the projected one onto id , so 
 

 
th( ) ( ) ( ), ( )   

( )
( ) ( )( ( ) ) , otherwise.

j c c j c j c
j

j c c j c i i

p t t t v t p t l
p t

p t t t v t d d
  (4.5) 

 
With above definition, a velocity ( )iv t  in a set  must conform to: 
 

 

( )  ( )

0

( ( ), )  0,        1,...,

( ( ))  

i i

j i

i e

p t v t

w p t t j N

f p t

  (4.6) 

 
where ( )ip t  is the position of the pedestrian i  at time t , and N  is the number of 
perceived people. The first equation describes the motion of the pedestrian i , the 
second forces the pedestrian i  not to collide with the perceived people, and the 
last one ensures that the pedestrian i  must reach the front line at time et t . 
 
4.4  Metabolic-Energy-Minimal Walking Characteristics 
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The objective function in Eq.(4.3) and the constraints in Eq.(4.6) are 
investigated to compute the energy-minimal walking velocity which mathematically 
expressed by ,des ( )iv t  for [ , ]c et t t . 

 
4.4.1  Result from Constrained Optimization Problem 
 

First of all, we change the objective function in Eq.(3.3) by using these 

following functions: (1) 2( , ( ), ( )) ( ( ) )s wg t p t v t m e e v t , (2) 0 ct t  and 

1 et t , and (3) ( , ( ), ( )) ( )h t p t v t v t , then eliminating the variable  in Eq.(3.29), 
which results in the optimal acceleration: 
 

 
* *

1

1
( ) ( ) ( ( ) ( ))

N

i j i j
w j

a t t p t p t
me

  (4.7) 

 

 
*

j( ) ( ( ), ) 0   and   (t) 0j j it w p t t   (4.8) 

 
And by using Eq.(3.37), the characteristics of the optimal velocity at time et  is 
obtained as follows: 
 

 
*

1 * ,

1
( )    and   

2

N
j

i e j
w j p ti e

wf
v t

me p p
  (4.9) 

 

 
*

* ,1

1
( )

N
js

i e j
w w p ti ej

we
v t

e me t
  (4.10) 

 

 
*

j( ( ), ) 0   and   0j j i e ew p t t   (4.11) 
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Considering the Hamiltonian g h , we get: 
 

 
2( ) ( ),s wm e e v t v t     

where the Hessian matrix of this , corresponding to p  and v  where 2,p v , 
is: 
 

 

0 0 0 0

0 0 0 0
Hessian( )  

0 0 2 0

0 0 0 2
w

w

me

me

    

 
which is positive-definite matrix. This means that the Hamiltonian  is convex in 
( , )p v . So the sufficient condition in Eq.(3.41) is satisfied. 
 
For the inequality constraints ( ( ), ) 0jw p t t , we use the circle equation to 

represent a virtual pedestrian's boundary. Mathematically, 
 

 
22( , ) ( ) ,j jw p t r p p t     

 
and in addition, we obtain the fact that 
 

 

*
2*( ( ), ) ( ( ), ) ( ) ( ) .j

j j
w

w p t t w p t t p t p t
p

    

 

At a certain time t , if the optimal point * ( )p t  makes the constraint jw  inactive 

( 0)jw , so 0j , causing the sufficient condition in Eq.(3.42) to be satisfied. If 

the optimal point * ( )p t  makes jw  active ( 0)jw  as shown in Figure 3, every 

neighborhood ( )p t  that lies in the left half plane specified by the tangent line at the 
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optimal point * ( )p t  will always cause * / 0jw p p , and due to 0j , 

the sufficient condition in Eq.(3.42) is then satisfied. However, for the neighborhoods 
( )p t  that lie in the right half plane and yield 0jw , they could produce 

* / 0jw p p . As ( )p t  is infinitesimal, the admissible neighborhood ( )p t  

within some small radius  will cause * / 0jw p p , as shown in the 

bottom-right rectangle in Figure 3. Therefore, the sufficient condition in Eq.(3.42) is 
satisfied. 
 

 
 

Figure 3. Graphical meaning of the inequality constraint ( ( ), ) 0jw p t t  used in our 

optimization problem. Suppose at a certain time t  the optimal point * ( )p t  on the 
optimal trajectory makes the constraint jw  active as shown in the figure, we can 

conclude that * / 0jw p p  holds for every neighborhood ( )p t , when the 

distance between those two points ( p ) is infinitesimal. 
 

For the endpoint constraint ( ( )) 0f p t , the endpoint of the optimal trajectory 
*

1( ( ))p t  and the endpoint of the neighboring trajectory 1 1( ( ))p t t  must lie on 
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this curve f , and because of the infinitesimal distance between these two 
endpoints, we obtain: 
 

 

*

1

1

0.
t t

f
p

p
   

 
This results in the satisfaction to the sufficient condition in Eq.(3.43) no matter what 

 is. For the graphical description, please see Figure 4. 
 

 
 

Figure 4. Graphical meaning of the endpoint constraint 1( ( )) 0f p t . Since the 
endpoints of the optimal trajectory and the neighborhood must lie on this curve, so 

we can conclude that 
1

*
1( / ) | 0t tf p p  holds for every neighborhood of 

the optimal point *
1( )p t , when 1p  is infinitesimal. 

 
The explanation for the satisfaction towards the sufficient condition in 

Eq.(3.44) is similar to one in Eq.(3.42) except that instead of examining the level 
curves ( , )jw p t  at a specific time t  as shown in Figure 3, the level surfaces emerge 
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when the time t  is considered. Because a virtual pedestrian is supposed to walk with 
constant velocity in MEM and its shape is simplified by using circle, so its level 
surface can be demonstrated by extruding a circle in an upward direction (in time 
direction), resulting in a slanted cylinder if a pedestrian walks with some speed; 

otherwise a straight cylinder. In case the optimal point *
1( )p t  makes the constraint 

jw  inactive ( 0)jw , so 0j , causing the sufficient condition in Eq.(3.44) to be 

satisfied. Likewise, if the optimal point *
1( )p t  makes jw  active ( 0)jw , every 

neighborhood 1 1( )p t t  in an outer region specified by the tangent plane at the 

optimal point *
1( )p t  (similar to the left half plane in Figure 3) always satisfy 

Eq.(3.44). However, for the neighborhoods 1 1( )p t t  that lie in the inner region 
(similar to the right half plane in Figure 3) and yield 0jw , they could cause the 

left-hand side of Eq.(3.44) to greater than or equal to zero. But 1p  is infinitesimal, 
those terms will approach to zero. Therefore, the sufficient condition in Eq.(3.44) is 
satisfied. 
 

As all sufficient conditions are attained, any position ( )p t  and the velocity 
( )v t  that conform to the energy-minimal walking characteristics, defined by Eq.(4.7) 

– (4.11), are the solution that yields the (local) minimum walking energy. 
 

4.4.2  Useful Walking Characteristics 
 

In summary, the result of the investigation provides us the following 
equations: 
 

 
* *

1

1
( ) ( ) ( ) ( )

N

i j i j
w j

a t t p t p t
me

  (4.12) 

 

 
*

j( ) ( ( ), ) 0   and   (t) 0j j it w p t t   (4.13) 
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*

1 * ,

  
1

( ) and  
2

  
N

j
i e j

w j p ti e

wf
v t

me p p
  (4.14) 

 

 
*

* ,1

1
( )

N
js

i e j
w w p ti ej

we
v t

e me t
  (4.15) 

 

 
*

j( ( ), ) 0   and   0j j i e ew p t t   (4.16) 

 
where ( )ia t  is the acceleration of the pedestrian i  at time t , and the asterisk 
means the variable is computed at the optimal point. Eq.(4.12) and Eq.(4.13) explain 
the characteristic of the optimal acceleration that make the pedestrian i  expend the 
(local) minimal metabolic energy. While Eq.(4.14) - Eq.(4.16) tell us about the optimal 
velocity ( )iv t  at time et t  (time at which the pedestrian i  touches the front line 
f ). 

 
The energy-minimal walking characteristics that we can deduce from Eq.(4.12) 

– (4.16) are: 
 

Characteristic A.1: For any time period when the pedestrian i  walks without 
touching any perceived people, he must walk with constant velocity. 

 
Characteristic A.2: For any time period when the pedestrian i  touches one of the 
perceived people; in other words, walks on a circle boundary jw , the relative 

velocity must be tangent to the circle, and the relative speed must be constant 
throughout the time when he is touching. 
 

A.1 and A.2 result from observing Eq.(4.12) and Eq.(4.13). Considering the 
walking characteristics at the time period when pedestrian i  does not touch any 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

perceived people at the optimal position * ( )ip t , we get *( ( ), ) 0j iw p t t  and from 

Eq.(4.13) we get ( ) 0j t  for all 1,...,j N . This results in zero acceleration * ( )ia t  

(constant velocity) in Eq.(4.12) (A.1). Now considering if the pedestrian i  touches the 

j th perceived people (walk on a circle boundary jw ), we get *( ( ), ) 0j iw p t t  and 

then ( ) 0j t . If ( ) 0j t , * ( ) 0ia t  and its velocity is constant. But the 

pedestrian i  is assumed to walk on the circle boundary jw  in this period of time so 

this case cannot happen, forcing ( ) 0j t . When ( ) 0j t , the direction of 
* ( )ia t  will point to the center of the circle jw  due to the term *( ) ( )j ip t p t . Note 

that the velocity of the j th perceived people is constant as explained in Eq.(4.5), so 
* ( )ia t  can be viewed as a relative acceleration of the pedestrian i  against the j th 

perceived people, and since its direction points to the center, the pedestrian i  will 
undergo the uniform circular motion on this period, and this results to A.2. 

 
Characteristic B.1: At the time et  (when the pedestrian i  reaches the front line f ), 
if he does not simultaneously touch any perceived people, his velocity at that time 
must be perpendicular to the front line f , and his speed must be equal to 

/s we e . 

 
Characteristic B.2: At the time et  (when the pedestrian i  reaches the front line f ), 
if he simultaneously touches one of the perceived people, his velocity at that time 
depends on his state at the time before he reaches the front line f . 
 

B.1 and B.2 are the consequence of observing the boundary conditions at 
time et , as shown in Eq.(4.14) - Eq.(4.16). If the pedestrian i  reaches the front line 

without touching any perceived people at time et , we obtain *( ( ), ) 0j i e ew p t t  

and then 0j  for all 1,...,j N  in Eq.(4.16). Therefore, the velocity * ( )i ev t  in 

Eq.(4.14) must be parallel to the gradient of f  (the normal of the front line f ) at 

the position * ( )ep t , and its magnitude must be equal to /s we e  as depicted in 

Eq.(4.15). This results to B.1. In case he touches one of the perceived people at the 
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time et , so *( ( ), ) 0j i e ew p t t  and 0j , which gives * ( )i ev t  the additional 

dependency on the gradient of jw  (the normal of the circle boundary jw ). As the 

position * ( )ip t  and the velocity * ( )iv t  are continuous for all time [ , ]c et t t , and 
* ( )i ep t  lies on the circle boundary jw , if the position before he reaches the front 

line f , denoted by * ( )i ep t  where  is a small positive infinitesimal quantity, 

does not touch any circle boundary, the velocity * ( )i ev t  will be characterized by 

A.1. But if * ( )i ep t  lies on a circle boundary jw , A.2 tells us that he is moving in 

a uniform circular motion at that time and keeps doing this until the time et , so the 

velocity * ( )i ev t  will be characterized by A.2. 
 

Characteristic C.1: If there is no perceived people, the pedestrian i  must walk 

straight with the constant speed /s we e  in the direction that is perpendicular to 

the front line f . 
 

Characteristic C.2: If all perceived people stand still, the pedestrian i  must walk 

with constant speed /s we e  throughout the time along the shortest path towards 

the front line. 
 

C.1 and C.2 explain the walking characteristics in special scenarios. C.1 simply 
deduces from A.1 and B.1, while C.2 from A.1, A.2, and Eq.(4.15) with the removal of 

the time derivatives of all jw . Notice that the walking speed formula /s we e  

matches the most efficient walking speed of the average human studied in the 

biomechanics [55], 2.23 / 1.25 1.34  m/s. 
 

4.5  Near-Global Optimal Solution 
 

A velocity * ( )iv t  that conforms to the above walking characteristics is the 

local optimal solution to the problem. To find the global one, all possible * ( )iv t  
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need to be given but calculating each velocity * ( )iv t  analytically is not trivial 
because the transition at a point between A.1 and A.2 is restricted to be continuous. 
So, we present the approximation method by replacing a circle jw  with two 

perpendicular lines, one is parallel to the x -axis of the reference frame, which we 
called a horizontal line, while the other one is parallel to the y -axis, called a 
vertical line. The intersection point of these lines is at the center of a circle jw , and 

the endpoints of each line are at the middle between the corners of the inner and 
outer rectangles as shown in Figure 5. When the pedestrian i  touches the j th 
perceived people in a period of time (A.2), he will walk between these endpoints 
instead of the circle boundary. If the endpoints are at the corners of the inner 
rectangle in Figure 5(b), the pedestrian i  will think that he can walk through two 
adjacent perceived people, but actually he cannot. If the endpoints are at the 
corners of the outer rectangle, he will think that he cannot walk through, but 
actually he can. To compromise these situations, we choose to use the middle 
points instead. 

 

  
(a)  (b) 

Figure 5. Representation of perceived people. (a) The jth perceived people is 
represented by the circle equation jw . (b) The approximation of jw . 

 

With this approximation, the energy-minimal paths that conforms to the 
aforementioned walking characteristics turn out to be piecewise linear curves (a 
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connected sequence of line segments) in space-time coordinate system of the 
pedestrian i  as shown in Figure 6. We define without loss of generality that the state 
at time ct t  happens at 0t  in this space-time coordinate, and the current 

position of the pedestrian i  is ( , , )x y t 0 . The horizontal and vertical lines 
generate two perpendicular planar strips. The front line f  creates a plane parallel to 
the time axis, as shown in Figure 6(b). 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Near-global energy-minimal velocity. (a) Pedestrian i  perceived two people 
in front. The future position of the outside- thl -zone pedestrian is predicted by 
extrapolating its projected velocity and extrapolating the current velocity for the 
inside one. (b) Horizontal and vertical lines of each perceived people generate two 
perpendicular planar strips, and the front line f  creates a plane in space-time 
coordinate system. (c) The sampling time and maximum time are defined to 
discretize the time axis into levels to construct critical points. (d) The energy-minimal 

velocity is computed from *
iv  obtained by the dynamic programming technique 

with the knowledge of the energy-minimal walking characteristics. 
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To find the energy-minimal path, the time axis will be discretized into levels 
according to the user-defined sampling time sampt  and the maximum time maxt  

(Figure 6(c)). At each level, the endpoints of the horizontal and vertical lines are 
defined as the critical points, which perform as the transition points between A.1 and 

A.2. For the level 0t , there is only one critical point locating at the origin ( 0 ). 
Instead of naively searching the energy-minimal path from the critical point at 0t  
to the plane f , we use the dynamic programming technique by finding the energy-
minimal path starting at the critical points on the top-most level ( maxt t ), and 

then the critical points on the lower level, until the critical point 0  is reached. 
 
For each critical point being examined, two types of line segments must be 

considered, based on the energy-minimal walking characteristics; (1) a /s we e -

slope line segment from the critical point being examined to the closest point on 
the plane f  (B.1), and (2) a line segment from the critical point being examined to 
the critical points on the higher levels (A.1 and A.2). A line segment will be selected 
as a candidate for constituting the energy-minimal path if no collision with the 
perceived people occurs, and thanks to each planar strip, the collision detection is 
very simple by checking only line-plane intersection. If the latest-examined line 
segment and its successor promote the lowest energy, such line segment and its 
successor will be stored at the critical point being examined, and they will be used 

as a successor for the critical points on the lower level. If the critical point 0  is 
examined and there is no connected sequence of line segments from the critical 

point 0  to the plane f , the pedestrian i  will be given the desired velocity 

/s w ie e d , but if there is a sequence (Figure 6(d)), the desired velocity will be 

computed from the first line segment (line attached to the critical point 0 ) by the 
following equation: 
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where 1cp  and 0 ( )cp 0  are the critical points that constitute the first line 
segment. 
 
4.6  Line Segment Pruning 
 

To improve computational performance, line segments that agree with the 
following conditions will be pruned before checking the line-plane intersection: (1) 
one of the critical points at the end of a line segment lies inside a circle jw , (2) the 

speed computed from the slope of a line segment exceeds the maximum speed of 
the pedestrian i , (3) a part of a line segment lies outside the corridor, (4) the 
successor of a line segment does not reach the plane f , (5) a line segment and its 
successor produce more energy than the previously-examined one, (6) in case the 
pedestrian i  is restricted to plan his walking path only in the forward direction (the 
positive direction of the y-axis), a line segment that points to the negative direction 
of the y-axis will be pruned. 
 

Moreover, if we found a /s we e -slope line segment from a critical point 

being examined to the closest point on the plane f , we can discard the line 

segments between levels since the /s we e -slope line segment produces the 

most minimal walking energy from the critical point being examined. 
 

4.7  The constant se , we , and maxt  
 

As pedestrians walk at different preferred speed due to their own 
physiological attributes, for examples, a tall man naturally walks faster than a short 
one, we handle this diversity in our crowd simulation by setting the constant se  and 

we  for each virtual pedestrian on the assumption that virtual pedestrians expend the 
same amount of metabolic energy while standing but different while walking. That is: 
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2
pref

2.23s

s
w

e

v

e
e   (4.18) 

 
where prefv  is the preferred speed of a virtual pedestrian. The above assumption 

comes from the situation when a tall and a short man are at the same position and 
would like to walk to the same location on the condition that they must reach that 
location at the same time. The tall man naturally walks faster than the short one by 
his preferred speed, making the tall man expend the lowest energy, whereas the 
short one must accelerate himself to pursue the tall man, making the short man 
walk with higher speed than he prefers, so the short man must spend more energy 
while walking ( we ) for the instantaneous acceleration, and this conduces to Eq.(4.18). 
 

For the time maxt , it should be equal to or greater than the time et  to 
secure the energy-minimal walking path towards the front line f , however, the time 

et  cannot be known in advance. Nevertheless, maxt  must be greater than the time 

et  in the situation when the pedestrian i  walks without the perceived people in 

front (C.1), so the lower bound for maxt  is /w sc e e , where c  is the minimum 

distance to the front line f . For the upper bound, we define it from the situation 
when the pedestrian i  is closely obstructed by all perceived people which 
horizontally-packed into a single row, so the pedestrian i  must walk to the left or 
right to avoid the perceived people before walking straight to the front line f . 
Therefore, 

 

 max      (largest )  w w
r ij

s s

e e
c t r N c

e e
  (4.19) 

 
where largest

jr
 is the largest radius among the radii of the perceived people.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
RESULTS AND DISCUSSION 

 
In this section, we will show the results through a set of scenarios, and 

discuss the efficiency by comparing with the previous work and the real-world 
bidirectional crowd flow. We implemented our work in C++ and used OpenGL for 
visualization on a 64-bit machine with 8GB of RAM, an Intel i7-2600 3.40GHz 
processor, and with the NVIDIA Geforce GTX 550 Ti. 

 
5.1  Lane Changing and Overtaking Behavior 
 

The first scenario was shown in Figure 7(a) where the red and yellow 
pedestrians are walking upward with the desired speed 1.5 m/s and 0.5 m/s 
respectively, and the three green pedestrians are walking downward with 1.3 m/s. 
The initial position of the red pedestrian slants a bit to the right side of the yellow 
one. We compare our method with the social force model, the velocity-based 
PLEdestrians, and the counterflow model. Since the original social force and the 
velocity-based models allow the simulated pedestrians to perceive the people in 
back, causing the people in front to be pushed and/or sidestep, these behaviors 
should not occur in normal situation of bidirectional crowd flow, so we modified by 
restricting the visual angle to 180 degrees. For our approach, the front line f  is set 
to be a straight line y c  where c  is the planning distance. In this scenario, we set 

7c m and the perception radius is equal to c . The maxt  is set to the halfway 
between the lower and upper bound defined in Eq.(4.19), and the samp 0.25t s.  

 
The results show that If the group of green people does not exist, the red 

pedestrian in all methods will overtakes the yellow on the right-handed side, but 
when the green exists, the red pedestrian in the social force model, the PLEdestrians, 
and the counterflow model still tries to overtake the yellow on the right-handed side 
and eventually get into trouble among the green people. This is because in the 
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social force and PLEdestrians, the desired velocity was fixed, which always points to 
the one end of the corridor, and the resulting walking direction was computed based 
on the simple actions like walking right when someone being left, which produces 
the awkward results as shown in Figure 7(b) and Figure 7(c). Although in the 
counterflow model the desired velocity was recomputed in every timestep, it was 
obtained in a greedy fashion by considering only the present states of the perceived 
people occupying in three overlapped front areas, and choosing a predefined walking 
direction towards a lowest-cost area. This still exhibits an awkward behavior as 
shown in Figure 7(d). In our MEM (Figure 7(e) and Figure 7(f)), the red pedestrian still 
tries to overtake the yellow on the right-handed side but when he perceives the 
green ones, he changes his direction to the left to reach more comfortable area. 

 
The second scenario was shown in Figure 8. The red, blue, and yellow 

pedestrians are walking upward with desired speed 2.0 m/s, 1.3 m/s, and 0.5 m/s, 
respectively, and the green ones are walking downward with 1.3 m/s. The front line 
f , maxt , and sampt  for the red pedestrian are identical to the previous scenario 

except that 10c m. The results show that with the social force model (Figure 8(b)) 
the red pedestrian walked straight towards the group of green people and then was 
pushed back before escaping to the left, whereas with the PLEdestrians (Figure 8(c)) 
and the counterflow model (Figure 8(d)), the red pedestrian immediately turned his 
walking direction to the left when he perceived the green but he afterwards got 
stuck between the two slow yellow pedestrians. This was due to the opposed 
influences produced by each yellow pedestrian. If perceiving the people in back is 
allowed, the two yellow pedestrians will either be pushed or sidestep so that the 
red one can walk through, which should not be occurred since the adjacent 
lanes/areas are available.  

 
With our MEM, the red pedestrian walks to the left to avoid the incoming 

green people, and then overtakes the yellow on the left and finally the blue people 
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on the right, as shown in Figure 8(e) and Figure 8(f). In case the desired speed of the 
red pedestrian decreases from 2.0 m/s to 1.3 m/s, he still avoids the incoming green  

 

   

(a) Initial (b) Social Force (SFM) (c) PLEdestrians 

   

(d) Counterflow Model (e) Ours + SFM (f) Ours + PLEdestrians 

Figure 7. First-scenario comparison between our method and the other traditional 
ones. 
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(a) Initial (b) Social Force (SFM) 

  
(c) PLEdestrians (d) Counterflow Model 

  
(e) Ours + SFM (f) Ours + PLEdestrians (2.0 m/s) 

  
(g) Ours + PLEdestrians (1.3 m/s) (h) Ours + PLEdestrians (3 m/s) 

Figure 8. Second-scenario comparison between our method and the other 
traditional ones.  
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people in the same direction as before, but this time he chooses to overtake the 
yellow on the right, as shown in Figure 8(g), because this path is collision-free, 
shortest, and energy-minimal for the desired speed 1.3 m/s. On the other hand, 
when the desired speed increases to 3.0 m/s, he walks straight towards the incoming 
green people and passes through the crowds via a collision-free gap as shown in 
Figure 8(h). These behavioral varieties reflect the intelligence in his navigation. 

 
5.2  Mimicking the Real-World Bidirectional Flow 
 

We also mimicked the real-world bidirectional crowd flow by using our MEM 
along with the PLEdestrians for LCA, as shown in Figure 9 where the top rows show 
the image sequence from the video footage of bidirectional crowd flow, and the 
bottom rows show our mimicking results. Each simulated pedestrian has its own front 
line f  with different planning distance c , and the maxt  and sampt  are identical to 

the previous scenarios. After setting and tuning for c , the simulated pedestrians 
performed in the same manner as ones in the captured video, which can be seen 
from the movement of the rectangle-marked pedestrian in Figure 9(a) who runs fast 
in an upward direction (left column), then slows down for the expected gap (middle 
column), and finally accelerates to overtake the front people (right column), as well 
as the movement of the marked pedestrian in Figure 9(b) who walked fast (left 
column), then overtakes the people in front on the right (middle column), and finally 
goes through the crowd to the left (right column). 

 
5.3  Lane Formation 
 

One important phenomenon that inherently occurs in bidirectional crowd 
flow is lane formation. We conduct the experiment to observe this capability in our 
approach by placing a group of approximately one hundred pedestrians at each one 
end of the 13-meter-width corridor. The simulated pedestrians are placed randomly 
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in the group and prefer to walk to the opposite side at the desired speed 1.3 m/s. 
The planning distance c  and the perception radius are set to 6 meters for all  

 

 
(a) 

 
(b) 

Figure 9. Mimicking the real-world bidirectional crowd flows. 
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pedestrians. The simulation result shows that after two groups meet each other 
around the middle of the corridor, the simulated pedestrians form 7 lanes as shown 
in Figure 10. If we use longer planning distance c , the lanes are formed faster. The 
lane formation was made in order to decrease the overall walking energy of the 
pedestrians, because following the people in front to reach the front line produces 
lower energy than facing the incoming people. 
 

 
Figure 10. Lane formation simulation from a group of approximately one hundred 
pedestrians at each one end of the 13-meter-width corridor. The simulated 
pedestrians are placed randomly in the group and prefer to walk to the opposite 
side at the desired speed 1.3 m/s. 

 
5.4  Fundamental Diagrams of Traffic Flow 
 

We also quantitatively examine our approach in bidirectional crowd flows 
through the fundamental diagrams. The simulated pedestrians with the desired 
speed in a range from 1.3 m/s to 1.7 m/s are placed randomly in the 3m-wide and 
15m-long corridor. The number of the pedestrians walking towards the right end of 
the corridor is equal to one towards the left end. If a pedestrian reaches to the one 
end, he will show up at the opposite and starts walking again. The maxt  is set to be 
halfway between the lower and the upper bound defined in Eq.(4.19), 

samp 0.25t s, and the planning distance c  is 3.66 m for all pedestrians. To 
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obtain the fundamental diagrams, we measure the average speed v  and crowd 
density  in three areas locating at the middle and the ends of the corridor. Given 
v  and , the specific flow sJ  is computed by using hydrodynamic relation 

sJ v . 
 

  
(a) (b) 

 
(c) 

Figure 11. The fundamental diagrams of bidirectional crowd flows generated by our 
approach. 

 
The flow will be examined at different numbers of pedestrians ranging from 

10 to 120 people (equivalently to 0.37 m 2  to 4.50 m 2  maximum occupation area 
for a single pedestrian). The crowd density and the average speed in each area will 
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be measured every frame and averaged over a second interval. After running the 
simulation, the fundamental diagrams are obtained as shown in Figure 11. Notice 

that in case of 10 people (4.50 m 2 /ppl) and 20 people (2.25 m 2 /ppl), the walking 
speed of the pedestrians clings around the desired speed (1.3 m/s - 1.7 m/s) 

throughout the simulation time, but in case of 30 people (1.50 m 2 /ppl) it sometimes 
a bit decreases due to higher population. When the number of pedestrians increases 

to 60, or the maximum occupation area per pedestrian reduces to 0.75 m 2 , the 
walking speeds spread widely over the range from approximately 0.3 m/s to 1.6 m/s 
in a linearly-decreasing pattern as the density increases. This distribution results from 
dissolving the congestion into the free flow lanes. However, in a highly-dense crowd 

as demonstrated by the cases of 90 people (0.50 m 2 /ppl) and 120 people (0.37 m 2

/ppl), the free flow lanes are hardly constructed, which makes the pedestrians walk 
most of the time at the speeds ranging from approximately 0.15 m/s to 0.5 m/s. 
Given the specific flow, the relationship between the specific flow and the crowd 
density is shown in Figure 11(b), while the specific flow and the average speed shown 
in Figure 11(c). These diagrams have similar trend to the empirical data of 
bidirectional crowd flow [60] and the traffic flow theory [61]. 
 
5.5  Computation Time 
 

The number of critical points, which depends on the user-defined parameters 
and the number of the perceived pedestrians, obviously has a great impact on the 
overall simulation time. To show the trend of the computation time on our 
approach, we measure the average time consumption in the situation when the 
pedestrians are randomly populated with different densities over the 3m-wide and 
15m-long corridor. The desired speed for each pedestrian is randomly set in a range 
from 1.3 m/s to 1.7 m/s. At a certain population density, three different setting for 
the user-defined parameters: (1) 3.66c  m, samp 0.25t  s, (2) 3.66c  m, 

samp 0.50t  s, and (3) 5.00c  m, samp 0.25t  s, will be used for the 

quantitative comparison. 
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After measuring at 12 population densities ranging from 0.2 ppl/m 2  to 2.66 

ppl/m 2 , the trend of the average computation times has been produced as shown 
in Figure 12. It is not surprising that at a certain population density the average 
computation time increases as the planning distance c  increases and/or the 
sampling time sampt  decreases because the increase of c  and/or the decrease of 

sampt  cause the higher number of critical points. However, when observing their 

margins, the average computation times in all three settings are not significantly 

different at the population densities below 1 ppl/m 2 , but dramatically expand at 
the higher population densities. If the long planning distance c  with the precise time 
sampling sampt  is used, the computation time must be expensive in high-density 

crowds. This is the limitation of our approach if the real-time computation for the 
dense crowds is required. 

 
 

 
 

Figure 12. The average computation time of our approach in three different setting 
at different population densities. 
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5.6  Multi-Directional Crowd Flow 
 

Our approach can be used in multi-directional crowd flow with a little 
modification. In bidirectional crowd flow, the pedestrian i  is desired to walk towards 
the front line f  but in multi-directional case the pedestrian i  is desired to walk 
towards a circle with the radius specified by the user. The circle is centered at the 
pedestrian i 's goal position. Figure 13 shows our simulation result in the scenario 
when two pedestrians try to walk across a flow of crowds. Pedestrians in the flow 
walk to the right with the same speed 1.3 m/s while two red pedestrians would like 
to walk to their own goals which located in the other side of the flow. Red 
pedestrian has a desired speed 2.0 m/s. The result shows that the red pedestrians 
can pass through the flow via the two tunnels that are marked with the red-colored 
rectangles.  
 

In the other example as shown in Figure 14, pedestrians with the desired 
speeds ranging from 1.0 m/s to 1.4 m/s are placed at two circle boundaries (Figure 
14(a)), and the goal position for each pedestrian is located at the opposite. At frame 
725 (~12 seconds), the pedestrians in the social force model (Figure 14(b)), 
PLEdestrians (Figure 14(c)), and ORCA (Figure 14(d)) are mostly packed at the center, 
but when equipped with our MEM, the pedestrians are scattered and some of them 
almost reach to their own goal positions. This is because the pedestrians with our 
MEM respond to the others in an early time of simulation by planning the collision-
free, comfortable paths towards their goals. 
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Figure 13. Image sequence (from top to bottom) of two red pedestrians walking 
upward against a flow of crowds by using our approach. The red pedestrians can 
walk through the flow via the two tunnels marked by the red-colored rectangles. 
  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 64 

 
(a) Initial 

  
(b) Social Force (SFM) (c) PLEdestrians 

  
(d) ORCA (e) Ours + SFM 

  
(f) Ours + PLEdestrians (g) Ours + ORCA 

  
Figure 14. Comparison between our method and the other traditional ones in multi-
directional crowd simulation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
CONCLUSION AND FUTURE WORK 

 
 

The short-term path planning based on the principle of least effort with the 
energy calculation using the metabolic energy equation of the real human walking 
was proposed. The technique can be seamlessly integrated with previous local 
collision avoidance methods, which allows the virtual pedestrians in bidirectional 
crowd flows to walk on energy-minimal paths. This results in more promising 
overtaking behavior and more reasonable lane changing direction, and in addition 
can achieve lane formation phenomenon and also generate the same trend of the 
fundamental diagrams as ones in the empirical data and the traffic flow theory. To 
obtain energy-minimal paths, we formulate the problem as the optimization problem 
and employ the optimal control theory with the dynamic programming as a solver. 
The algorithm can perform well in low-to-medium population density but yields the 
expensive computation in dense crowds. Also, our approach can be used for multi-
directional crowd simulation with a little modification. For the future work, we plan 
to reduce the computational burden by finding the heuristic to determine when our 
MEM should operate, and the efficient method for adaptive planning distance c . 
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